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Potential Energy as a F1..mction or Internal :Rotation 
r \ 

in. C1'~"C1Br-CFC1Bc- by N.ttm Measurements 

Douglas S~ T'notnpsonll Richard A. Net~mta:rk, and Cha~les H. Sederholm 
. I . . 

Depart;mont of Ch<;1m1at~y a.nd Lat'll."'ence Radiation Laboratory 
Universi.ty of Cali1:ornia., Berkeley 4., California 

T'ne NMR spectrum or CFClBl~-cFcl~ is a.~eported as a 

function of temperature ft•om 177°K to .300°K. The high 

temperature spectrum is an.aly:.-~ed in tt;~rzns. of a superposition. 

of the spectl"a of the meeo and dl isomers.,· each in rapid 

l.,ota.ticm. about the c-c bond; the low temperature spectrum on 

the basis of a supel<'ipQsition o.i' the spectra of the three 

l"Ota.mcr·e o1' each of the tt>Jo isomers. T'.ae gauche coupling 

cons ta.nt bet TJJeen fluorine a toms in this CO!i1POlli"1d is 21. 5 ±' 

o.s cps. Chemical shifts for the fluorine atoms \'lere different 

for the three rota.mers.- Fluorine atoms gauche to one fluor':'Lne 

and one chlorine a.tom ar1:;; at the highest field~ and fluox:5.ne 

atoms gauche to one fluor•ine and one bromine atom. are at the 

lo\';est field. 

By observing the relative, areas of peaka at lovJ 

temperature:: relative energ:tes · of: the three potential minir:~a 

for each isomer are calc~ulated.. High ter;'lpet>ature areas 

dete:t..,mined the relative amounts .of the t\'10 isomers. Us in:., in 

sp¢ctra of this mixture of :tsotners have been calculated £L:J a 

f'unctiOil of temperature assigning various potential barl."ier·s 

to internal rotation. By (H>nlparing the calculated spectr-a 
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with those observed at various temperatures, several of the 

potential barrier.$ to internal rotation have been assigned. 

In ·each isomer;; the three potential minima vary by at :most 

450 cal/niole._ . The potential· maJtima which can, be measured are 

all approximatel1 10.0 :t 0.5 kcal/mc>le above the potential 

minima .. 

A great deal ot vtoJ?k has been done in miCl"Ot~ave spec­

troscopy to measuz;e th(St barrier·s to internal rotation in a 

aeries of molecules in an t~t'tempt to understand the causes 

ot: these barriers. 1 · Due to inJnerent restrictions in the 

micro~7ave 1nethod only bal"'I'.i<~rs of methyl groups rotating 

aga:tnst various other> g!'l::>ups hav'e been .measured by this 

techniqUe. In all substituted ethanes containing a. methyl 
.. 

groupj the measured ba:t•riers have turned out surprisingly 

constant at approxintately Z» kca.l/mole. This has led people 

to postulate that the main. contribution "'co these barrier·s 

arises from .auch thiP..gs as bond multipoles interacting with 

bond multipoles -D or non-c;y·l:tndrica.l electron distributions 

around the c-c bond. MorC!O\f'le:r ~ r.aos·t people are in agreement 

that little if any of these barr:Lers arises from strictly 

steric. repulsions,. It has been felt that as larger ator"(=' a.re 

added to both ends of the ethane molecule; a sizable,contri-

bution. from .sterio repulsion might result.. Ear:t"iers ar'e 

known for tt<ro substituted ethanes where halogens have been 

aubst:ituted. on both ends, tlnd -in these two cases~ the ba:!":c'i~;;.:::::J 
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t:'"' "inl. ""· >.J(;.l:'h,-:· "' - ·-
The scu-nple Ttme pr~ov:tded by :or .. Paul Resnibl-t or this 

departrr~et1.t .•. The m1Cl"Gib0111ng point of. the compound wa$ 158°0 

1t1 good .ae..re~"rtent ~Jith the V'alue tabulated by tovelac:e~ RauschJI. 

.and Fostelnek2 or. lS9. tee.. A f:r·eezing-point ... depression .. ot-

benzene detel~inat.i<:m of the mol·eculu weight gave a value of 

sss g/r.noleQ T'nis value is oons1dlel~ea to be \~Jithin the exper­

il'nental. accut"acy of the th;.~ox•etical value. A11 ot ·the peaks . ' 
in ·the r~MR apectra can x;eadily be assigned to the t1:to isomers 

. with no observable 1~sq.nan<)es col"'responding to ·:tmpuritiea. 

T:he flatnple t-Jas diluted witll carbon disulfide to a final con· 
' 

centt'a1;;iori of approximately 5% by volume;; and sealed in a .5 nm1, 

thin t~a.lled NMR tube. 

The spectra tle.t·'e taken on a Val~ian HR-60 spectrometer 
· .. <~ 

operatin~ at 56.4 mcs. Ttds instrument \\!"aS equipped with a 

difficulties d;ue to probe· inbalance as the t:emperaturo of' the 

i..YlS ert t>iaS changed. 

Tl'le insert \~~Jas cons tt•u.cted in thia labOl"atory. It was 

dewared and had provisitms for passing cooled nitrogen dm:m 

an outel.4 compartment.ii then up around ~he sample. The bo·ctom 

or the assembly t4fas ther·m.r1.lly i.n.sulated from the metallic 

pJ::?Obe by a quartz plug. :Qt1artz was :used here so that the 

positioning of the receiver coil was not drastically.chqnged 

as the temperature was l.otvered. A dewar~d nitrogen inlet 
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l::Lne i'ilas us~d to cat'rY -the cool~nt from a liquid nitJ."ogen 

boiler to the inseJ?t. 'l1l':te coolil'lB gas. outlet was attached to 
' . 

a high vol1.1.trle vacuum $ystem to .1r1c~ease the f'lO\tJ l'~~at~ through 

the i.nse:r:t r1ithout using prohibit:i.ve pressure~ on the high 

pr"essul"~e side. ~ovi.sions tor spin.."ling the sample were 1ncor ... 

porated into the insert des\igrt •. 

A copper-constantan ·thel"'m.ocouple ·was placed in· the insert 

at a po;'lnt 1~\ the nitl."'ogen path ,just ahead 6f: the sample. 
' 

The temperatur~ of this th~?.X'lnocouple was oompared with the 

temperature or a the:rm.ocou~Jl.e placed in a dummy sampie ·tube 

which ~~ra.a inserted :tn the p:r·obe. It \'laS round that if the 

·tempe2"~rture tfas held a f€n•: degJ:>ees below the deaired value 

for a few minutes &1d then brought to the cieaired value, the 

temperature ot the per-manent t11ermocouple and that ot tho 

sample thermocouple were identJ.cal to l'lithin an accuracy of 

't2°K. All apectzta and in.tegr·alt:; l"ePOl .. ted here are reproducible 

to within the litrl.ta im.posed by t;he signal-to-noise r~tio. 

Tl"le experimental spcct1~a. as ~ function of tempera'CtU'e 

of taqo sharp pea!-cs. Th~e sepa.:r•ation or the two peaks is 08. 4 -

0.2 cps. At room temperature and_ above;? the high f'ield paak 

contains 5'2. 8% of the tota:t integrated at•ea~ Th.e chemic&l 

Shi!'ts from an arbit·r·a.:ry zer·-o and. the relative intensitie~:> of 

the low temperature pealce t3hm'ln in Fig. l are tabulated in 

Table !. The integrated ar·eas were obtained by uaing a plani­

meter on a large number -of good spectra ana taking the average. 
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T'.ne J."Oot-rnea,n~square dev:;;ration :f'ro1n the mean wa:s:' approximately~-

1% and the most ~ro'bable ezoror o. 2%. However;p Sjrstematic · 

err()l"a due to .overlap of the lin~es prob~bly ,mEH~e some ot. these 

integrated area:a nlO~e Uncer.ta.in than. the above· figu:N~S .indicate • 

TI1e. oompounci under .11'1Vet."$tlgat1<m has tt>10 asYmroetrio carbon' 

atoms.. 'I'I1.ere is therefore the possibility of two d.i.ffe:t'ent 

lsomet>a, a meso ·form. and a dl form. At low ·temperatures, both 

of .. chese isoraers will conS1f~.t of three :rotamers. ·These rota~ 

mere ar-e depicted in F1gur~~ 59 

At high temperatm'les, when .free rotation about the· carbon­

carbon bond· is possible., 'the two fluorine_ atoms· in each isomer 

will appear to. be· cht:mically equivalent due to time a.ve~agi11g 

of the nuclear env:trorzmentJ hoNever.; a fluorine atom in one 

isomer 'Will be chemically d:i.ff'el .. ent fl"om a fluorine atom 111 the 

othe1:•~ The predicted high ten1pel:'ature spectr-u-m or a mixtm.""e 

of these two isomers should then consist of two lines, one 

.from each isomet"". · Since thE~ prep~r.-ation of' this compound vse.s 

temperature spectrura of: a ml::;;ture of the two isomers. From the 

· integrated areas the t>elative proportion of the tiflO isom(;:rs is 

.. lJ.;1 A .2j'G 'co 52. 8%. Hithout furthel .. analyais; it is not appax,ent 

t~hich peak corresponds to ·whiet• isomer. 

t~ot sufficiently lot"l temperaturesJ the spectru.'l!t should be 

the superposition of the ep'2:ctr·a of the three different rotamer:G 

of each of the tt<Jo isomers. If some ot these rotarners are at a 
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much higher ener-g.y than ot11.ers Jl! their popUlation may be so 

'I small that the lines due to said rotamet")s \'Jill be unobservable .. 

*11leore.ticall;:r, we would predict that r6tamer la should give a 

single line, since l?Y S;}i'lumett.iy the eqa11ibr1uxn d:ihedral angle 

.• 

·' bettiJeen the fluo~ine atoms must 'be exactly 180° :J hence making 

the t11o fluorine atoms chemically equivalent.. Rotaraers Ib and 

Ic are :mir:oor !magee of ea.clh other a1'1d henoe should yield 

identical spectra~ in th.eue tt·Jo rota..-ners.; the t\~O :fluorine 

atoms a:t"e not· identical and hence should lead to two resonances~ 
<? 

.By analogy with other oompo11.11ds, ¥ one . might expect the spins 

of' these tvm fluorine ato:ms 'to be coupled resulting in a pair 

of doublets t~ith ec.tual spl.ltt111.g. Rota.mer IIa haa two chemically 

equivalent fluorine atom:;; 4h:~respective of .the dihedral angle 

between the f'l~o~ine atoms. Tl'le same iJ:P tr-tle for rotame:L"'S lib 

and IIc~ These three l"otat-ners should then yield three singlets 

in the spectrum. Hence.; the combined spectr'Ulll of the three 

rotamc~rs or· the tv1o isomers. should be i'm;~.r ai~..glets and a pair 
' 

of doublets. This is pr·e·~isely the spectm"lt ob13erved at 1Tl°K 

as shot'.rn in Fig. · 1. The two doublets should have equal e:r:E:as 

since they are due to equal num.bex's of fluorine ator.'lS in 

:r>otamers Ib and Ic.. The nonequivalence of these two areas is 

due to errors in area mea$ur•ements brought about 'by overlap 6f 

·the various lines and 'base line ambiguities. 'l''he splitting of 

·the tt~lo doublets should be identical tihioh it is, -vlithin ·;::;he 

limits of experimental el""l"'Or. The coupling constant bet~Ioe::I ti~K: 

gauch¢ t'luorine atoms in rotamera Ib and !c is 21.5 t o. 5 cps. 
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ftefering to the. letter·lng scheme in Fig,. 1~ p~alm B,~r C.9 F 

and Q must arise from rotal:.lH3J:>a Ib and. Ic becaus,e or the doublet 

natur-e.. The ~urn. of the area,s of these four peaks is 19.:5% of 

the total area~ . Since . fl."'om the high temperature spectrum, tole 

lt"..not,r that isqmer I must roal!::e up e1thel" 52.8~. or 47.2% ot the 
i' 

total ar>ea" this means t-otal'Jler.Ia must acoourl.t f'or either 33 .. 5%; 

or 27. 9~ or the ~total. Hence, rotamer. Ia must be responsible ;il 

for either peak D or !.. trhe other of these ··t-v1o peaks must be 

associated l'Jith some rotamel"' (lf' isomer II:t and since· the total 

ax>ea. of these two peaka is so. 4~$ the area of .the peak assoc1at€~d 

with some one rotamer of :t~omerf !I must be either 16.9% Ol"' 

22.5% of the total area. Since the peak associated with rotame:t."' 

Ie must have a greate1 .. al,ea than the peak associated \'d.th said 

rotaTUel ... of .isomer · I.I,;: and sint!(:~ D is greater in area than E, 

peak :0 must be associated tV'ith rotarae:t' !a • 

. ~Je a:.t•e no\'i. in a position ~to rnore accurately assign the 

~oom tempe:t•atui"e spect1.-.um. Isomer I is responsible for pea.ks 
0 

B!> c., D3 F and G. The high texn:perature spectl."'t'l...rn of this l:somcr :• 

which consists or a. single peak 'llvhose chemical shift is the 

time weighted average ot the che,mical shifts ot' the above liste<• 

peaks shouJLd be someplace r'lear peale D.·· Isomer II is responsible 

for peak:s A# E;· ~nd H~ Since the rotamer responsible f:o:..., peal-:: 

H is less populated than the other tt>~o rota.mers even at roe:E 
r...-,. 

temperature, the high tem.pe:.c•ature time tt'Ieighted aver-age pc.s~k 
\ 
\ 

due to, i'somE~l., !I ahould lie some111hat downfield frortt peak E;J ;.~~-.d 

in fact., dot~mf.ield from pea:k D. Hence,jl 'illS pan tentatively asr-.iiz;n 

the let'l field.~~ room temperature peak to· .is1::>mer II a.nq. the high 

,·· .. :: 

• f. 
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field one to iaomer !o The correctness or thiS assi~"'lment iS 

checked at a later point. ln the .argument.. With th.is tentative 

aes igi.1J.1lent ~ 111e oonclude th;lt i:somer I! makes tl.P 4/l. 2% ot the 

mi.<'ttur~Q and isomer !, 52 .• 8]$. This then irapliee ·that peak D , , 

·• has an area of' 35.5% ahd p$ak E a.nc: area or 16. 9%. The assign-' · 

·ment of the low tempQrat\l.re spe¢trum 1a sUtrlln~rized in Table II, 
~. .;: 

Using the BOlt~~an en:mrgy distribut1on.1 one can calculat~:f 

free energies associated wit;h the various rotamers., using as art 

isomer. The·se are also tabulated in Table It. 

It 1s nolit possible t<'· ''heck both the tentative room temper­

atl.Are assigttrat;!H:lt and the loti/ temperat~e .at"eas and chemica.! 

shifts by calculating the eJcpect.ed room te~mpe:t .. ature separ<:~tion 

from the low temperature data. .. ·. The position o£ the room 

tempel"'ature peak of a givell i·sotnet' ia given by5 ; 

-E /RT . .,, n 
"'n e . 

! 1 ' \ .... ) 

where v ie the room ternpe-ra'tt.tre l"'esonant . frequency of an 

v is the resonant frequency or rota.Iiler n of that isor;1e:r'~ n 
and En is the free energy associated 11~ith, rotamer n of tt~at 

Using the data t.sl.bulatied in Tabl'e !Is we find that s.t T e 

298°K v1 = ·198. 0 cpa.? v!I ::::: 152.0 ¢pe., ?ielding; a pl"edi.cted 

separation or 46,. 0 cps. This :ts to be· compared with the expel"­

imental separation of 4f3. 4 ± o .. 2 cps. Since thla is a fair'lJT 

I 

! 
I 
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aen.sitive function of the lovJ temperature areas and chemical 

shiftS~ s the observed ¢tgx~EH:;;rctsn.t ia excellent .. 

It ia to be noted that in this calculation~ isomer I gives 

l'"ise to the high f'ieid p~<:li.l( as was qualitatively predicted 

earliei.".. If alternatiyely~ the high field pea.tt at ·room temp~ 

er•atu:ce had been asu3.igned ·to i1somer II6 the present calculation 

t-Jould 11.a.ve yielded .vi = 191.6 cps, ·v1I :: 166.0 ops, sePa-ration 

Q 41.6 cpa.. In this oase;lt "'I eomee out the high ~ield peak 

in t:lontradiotion. to the .1n:.i:t:tal assumption. Hence, the tenta­

tive assignment or iao:met• I to the high .t'i.eld, room temperature 

peale is conf'it'med. 

Refering to Fig. 5~ peak D must co~espond to rotamer Ia · 

and peaks B, C:li F, and Q to :t'Otamers Ib and Ic. In rotamer ra~ 

th~ f'1uor1nes are gauche to Br and Cl atoma. IJ:his 1a also true 

of the fluorine atoms in 1.'otar:1cr I!a. Hence, the chemical 

en"l1'1ronmel1t or the fluor-ir.t(:~ a't1::>ms in rotamers Ia and I!a are .. 

peak E to rotruner IIa. 

energy than the othero 
. A 

to r.fizushima... the energy 

differ-ence bet\'leen the V[.t:K'iou.s r6tame:r.s seems to be determined 

by ateric considerations and/or bond-dipole bond-dipole inter·~ 

actions., In totally halogen substituted ethanes.,. both oi' these 

phenomenon lead to the sa.me conclusions concerning thci ?.."';:;lati".re 

s.tabilitiee of the three ,rotaraers. O.o. this basin., it appear's 

that IIb should be loWJG:X' :..n energy than· !Ic since I!b should 

have less steric interaction ene:.q~Y. and less dipole-dipole 

interaction energy.. Hence., we t;,~sign peak A to IIb and peak 

H to IIc. 
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.In isomer II,·a tluorlne atom gauche toF and Br is·to 

· lm<t f~eld and a fluorine at~~m .gauche to .F at1d ci is to high · · 

f'ield ot one gauche to Br a11d Cl .• 
. ' 

·. ~. ,' . ' : . 
.J. t is thet~etore reasonable, 

to assume. that the F atou1s in rota'llte~e !b and. Ic gauche to F 

and Br are ~eapcnsible for pcake B and·c·and the fluorine atoms 

gauche to F and Cl are t•esponsibl.e to;r peaks F and \h · 

P.t a tern:peratuxJe suf:L':l.ciently high eo that the molecules 

change from one rotational configuration t~ another. 1n.a 

tim.e short \1ith respect to the leJ:tgth ot time necet:rsary for an 

N!,R tra.nsition_. the fluorine spectrum eoneiats ot peaks .cor•re ... 

spondii'lg to average env.1.1~miDifH1ts of• the fluorine atoms. t~.rhen 

the time characteristic or rotation is decr~aaed by lowering 

the tE.'mperatu:re~ to a time~ long compared to tna Nl·1R trru1.sition 

time.!) the f'luor1ne speo~cr1.:un consists ot peaks corresponding to 

the fluoz•ine atoms in the individual rotaraers. At in-'cermed.iata 

temperatures, the speotrura t~ill be intertilediate between these 

oases., This intermediate t3peotJ"v.r(i can be calculated from the 

Bloch equat:tons, given t-;hE! chemica:t shifts of' the fluorine atomr:: 

in each of the rotamers~ the relative populations of molecules 

e:rlst.in.g as each rotamel:>a ;S,nd the transition probabilities 

betv~emt the . varioua rotantel'S. The chemical shifts or tho 

not ohant~e much With tempnrature$ one can l"'eadily calculate' the 

relative population of molecules in each of the· rotamers at o.rrs­

given .temperature. · T'ae transition. probabilities between the 
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various t.·otame:re can be czJ .. culated ;ft>om absolute :reaction rat.e 

theo:t .. Y. The rate constant for such a unimOlEH~ulas.,. ;reaction 
........ · .. 

(2) 

t1he:t-;e K is the· transmis~ion qoefficient.; .f4 is the partition 

fur}.(;ti'.::>n of the a.ativat~d ·c·on1p1ex (in this case;.· the eclipsed · 

tona ot .t.he molecule ).si f.' ir~ ·che partition function fOl:t the 
J. 

individual rotamer which 1s .reaotil"~O", and /iET is the activation "'Q . \ . . . . 

of,the staggered form~ oal"tit1on !'unctions fOl" the t:.: ' . . I ' ·, ' 

eclipced and .ata.ggered f'O:i:'la;;:J or the molecule under consideration 
.. 

at•e ver•y nearly equal an.d. vJ:llll therefore ca.nce'l out. Hence= 

. . . 1~ • ... A~:f 1.-;:m..l.. 
..... _ •_1< .::.!-..e- L..u;:;,tn 
.t\,- A h . (3} 

t:Je cot1ld make various assvrrtptions ·for .K. The two lim:tting 

. cases are as follows: (1). tc = 1 v~hich corresporJ.ds to a picture 

wher>e ever:/ ·time a molecule is excited to an eclipsed formS> it 

continues to rotate in the same dit"ection and finally ends up 

in the next stagget-ed. form~ This . would se~"U to be a l?OO:i., 

approzd.mation since the length of tinte neoessat•y ror rotatic:: ... al 

deact:iv;;ttic;Hl in .the liquid pha:~e is probably much. longer than 

the rota,tional fr~quenby. (2) 1£. is assigned a value t'iih:lob 

coz~respo.ndS to the fo11crwltl:3 phys~.C:a.l Situation., F.ach tir:!G f:"l.. 

l"etains this energy for several vibrations 01.:~ rotations, a.s the: 

case may be.;; and finally has equal probability of falling into 
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. every potential miniru.a to which it has acilelss. . vJhe11 all three 

ma.:dn1a a:t"'e the· same height; this corz~esponde to tt ·== 1/3. In 

·Other cases, 1<. is not a ccm:;rtant,~~ but ie easilY· written do~~n · 

:Col"~ a giv~m.: s$t o.f ba.rl"'iera. Although. thie1 is probably not; the 

e}:act case, it should be a much better app;"o:r.imation~~ ; T'.ae · · ·· 
. these . . 

actual case lies· someplace. bet_"L•teen/two, appro:ldJ:nations. The 
~ . i 

choice of approx:i~tnation is' n.ot terribly Ql .. itical .• ··.·If case 1 

were chosen r~a.thel? than. casc;~ z, all o .. f' the calculated barriel"S 

would be approximately 0 . .5 1'~{~a.l. higher: .. , .... , .. 
'· 

The Bloch equatio.na .:1.s applied to this· phet1omeno~ are5 : 

(4) 

(5) 

(6) 

'lilll1Cr·e aj. :ts a duttuny val"'i£tblr~, t•2 j ie the t:roansverse r·ela::;;:a:tion 

time :Cot• a fluorin.e in P':>D::ttlo.n j:; GJ is the t"'ad.io frequ\".:m.c::y 
WJ is the r·esonant 

being used for excitation of' t.l'H'~ m\111. transition.liAC:L is· the 
frequency ·Of a fluorine in. posi ti.on j,., .. ·.. . ·. .J .... 

comple·:l'C co.mponetlt of ·t.lle: rnagnctization du6 to ·t;he flum .. "~ine 

atmns in the J th po~1:tion~ G is the total. complex magnetization 

abso~c·ptiort aignal.i 'Y is th.1i:: magnetogyric :t:>at:1o for fluol~ine 

atoms ... H1 is the magnri·(~ttd~: · <:1£ the l"f' tleld, and M0 .. is the 
'. ... . J . 

1nax:t:mum z~~o.gneti¢ motuettc of' t.he fluorine atoras in the j tl1. po.zijcio:n .• 

-l . ' t 't ~ • 1 "'. i ' 't'kj ~s eqttal o t£le trar.~s:t1;ion probabi ity for a IlUOl"' ne <;t'com 

changing from position k t1:J pos.ition j. . From absolute :veaction 
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(7) 

In OUl'' parti.oular appli<U~.tton~ at both h.igh and low tempe:t'­

atures ~ the lines are very narrow compared to the t>.r.idths or 

the li.nes in the transit:'!. on l..,egion. vle ·can therefore set 

T2J = 0 for a11· J witp. little error in the calculated spectra. · 
. . 

Consider a· potential energy curve as ahollm ·in Fig .• · s. 
·The following reasoning can be called upon to evaluate 't'i~,. 

In ordel'll tor a molecule :tn oonfiguration 1 to change to con-

fi[6'ttl.~iation 2, it rm.u~t gaitl an energy at least as great as E6-

The f:;::aotion of molecul,sa in con!'igut>.ation l with energy 

g:reate+"' than E6 is ~::w(-(:a;6-E1 )/RT) and each o.f. these molecules 

trtill have a one third prc>1),£;~b111ty ot falling into configuration 

On the other hand, the fraction of .molecules in oontigurat:?.mt 

l i/Jith enel"gy bet\ieen F;4 and :&}6 1.s exp[-(E4-E1 )/RT] -

exp[ ... (E0•E:1)/RT]. and ea.ch o:t these molecules hn.s a probability 

of one half of falling into cont""igur·ation 3. The fraction of' 

molecules in configuration l ·with energy greatel., than E6 is 

exp(-(E6-E1 )/RTl. ·and each of these n1o .. ~ecul~s has a probability 

or one third of falling into eonf'iguration 3. Hence: 
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Putting in the observed values of ~;, ro2.; ro3,. E1 $ E2, and 

one can now calculate the imaginary pstrt of G as a function 



.. 

•' 

·of ro at various .values or T, adjusting tho valuea or E4, s5, 

and E6 until a. best fit of .the ,expe:rittlental data is obtained. 
. . . . . . . 

1\otu.ally,· on'ly- two or the three: unknomi energies dete!'mine· ~he 

spect::."'llln ot:. a single isoluer using the above choice tor ~;. The ' 

epect1"lliU is completely indE;~pendmtt of the highest or the 

po'ce.ntia.l barr.iers. 'this can readily be seen since any staggered. 

conf'igur,ation e~n. chai.1$<:i irrto ·'lny other staggered configl.tt>ation 

vtit;hout traverains the highest o:r· the potentia-l barriers • 
. . 

SUch a <:;alculat:ton was· carri~d ou·~ on an !BM 704: for each 

1so1ue1~~ a·t several.. tem.p.era.turea in the trax~sition :r-ange> al"ld 

tor a variety or different: values of E4.,. E!s,.t and. :E6 for each 

isome~ti The calculated spectra for the t.wc> isomers \!Jere super ... 

imposed.~~ and the reaultan:t c~ompa.red with the experimental 

.spectra. The results ot these compari~on~ are sho1rm 1n Figs. 

!n ~,aomer !, two ~~xinm. 1111 the potential energy are 
. ..i 

1dent :'f. cal by· S~1llmet~~y.. If ·~lJ.e thit>d maximum is . higher$ ·the 

the arg~J.ment above~ I£ on t;he other hand, the mannrw11 bet~~me:n 

a single peak at a lotl·er tera:perature tf'LE.tn peal! D merges :tn. Hi·:;;t. 

the other four. Unfortuna.tely; a single peak resulting ft•om 

"'· th.e collapse of B; c., F.~ and. G '\'.rould lle almost on top oJ·;· ::)eak: 

D and hence it ia lmpc~ssible to tell whether these five J..iLc :> 

have all collapsed into on~~ 01., whether Bs C~ .F1
.1> and G have 

collapsed into one .line wh:ich lies on top of peak D.. .It• is 
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.. the:t-.efore. on,ly pot;!s:tol~ to dlete;f."!iline .tJ;le .. h~ight. of the smallest 

~.:t"'rier to .ini;el."nal ;-:-otation in isoraer. ·X.t, ~!ld. th~ epeotrum .is 

e£isen~-;:ta1ly not a. function of the b.eis,.txt ot the ot.her 'barrie:r(s) .. 
' 1. • • ' ' ' 

Hence;> in our oaleu.lation for .isomer . I~ all three ·barr.iera lw.ve 

.\ 

:ti t-1e1"'e. equated •.. with thi~~ t1110 paramet.~4? .sy.atem,. a fair tit 

of: the experimental data V?::l.S possible •. Howev-er~ whfm, this 

.. appl.,OY..:Lrr.;o:~ion·· \1as· made, p(llak Il always came out insufficiently 
. . 

intens0 in the· calcv.la.ted spectra •.. It ~;raa thought. that the low 

--
enel~gy associated 'W--:tth p~~aJr. H rnia;ll.t be . considet'ably .leas than 

450 cal/ntole~ · A. value o1: approx:L..~tely. 200. cal/mole was 

necessa1"Y to fit the intensity of peale H in thE: transition 

temp·e:rature .region. HcrwevraJI"t} a value of 200 cal/rnole for the 

encn~gy Of the :rotaro.e~ associa.ted · \'dth peale H leads to a. calot'.·· 

This laclc ·of agreement :tmplies 'that the height of peak II at. 

the transition tempera'ture.s r.;amr.ot .b~ aocoun·ted for by changi~1g 

the value of the energy. a.mwoiated with that isomer. 

·The other method of' :making the calculated height, of' pE:e:.:: 

H large!'· is to increase the barriers on ·both sides of the, 
t, ..... 

l"otamer corresponding to. peak H~ above the value of the thi:r'd 

[).eight of . the highest of the th~·ee barriers doe~L not chartge the: 

calculated ape·ctrwn,; hel"l(!eJ . the barriers on either side ot ·the 

rotame.:~.~ assooiated with peak H ·vJeJ.-1e set e~l .in the calculation.. 
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or the f:lve indepe.nde:nt barrier•s 1 there a:t>e only thx>ee 

parameters which, wbe11. adjuHted, v.iill alter:. the,· calculated 

1. Th~. height of' the lowest . barrier in iao111er . I . 

2 ... The height of the ban"'ier between the configurations 

oo:rare~pond1ng to peaks A and :g 

5. . The height . ,of: the lolter. of the two bar1-'ier.s · 'Which· are 

on either aide of the t>ota-~er ·, corresponding "co. peak 

\ 

fitted 'tio the observed spectt"'a. at l94QK$ 207°K ar.d 233°K to an 
' • • < 

accurao;t of ±o.s l~cal/mole. !n F~ge'! 31 4~ S.l"l.d 5 are shovm 

the obsst"Vecl $1)(iCt~a$ the calc·ulated .spectra which best fit the 
. . . . 

obsewed spectra at each te1n1:>era'l:iure., and the calculated 
. . . . ' . 

· spectl""t:t ild.th e~ch paramet<.~J:o varied by ±o. 5 kcal/mol~ f'ro:m the 

h¢st f'it value., The values os."' the pa:t, ... ameters vJh:J.ch give th3 

best f'it at tl'le t.hree tempEn."'atw .... es are listed in Table J.:JT. 

~~he V8X'iation of th~s thr~,f:~ parameters VJith temperai:;uz"e is 

p;robably due to (1) va:J?iation of' t!:le fl'"ee enel"'gies associute·:i 

t-Jlth the. vai,.,io-ua rotruuers as a function of' temperature; (2) 

inaccuracies in the approximation to ~;) (5) inaccuracies in tl:.·3 

tempa"atw;>e raeaaut'ements.. '.I'here w.ajfalao be. some erroi.~ due ·co 

the long L'1st.rw11ent respon.se ti.mes necessitated by the signal-

signal height of .tall nal"'row peake much more th.an o:r s::c:."L 

broad o:n.es. 

~, 

' 
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Conclusions 

Again refering to Fig. 63 and denoting. the eclipsed con­

f:tgura.tion. intermediate t1etween rotamera !a and .Ib as Iab., a 

sum.L18.l"'Y or the observed. energy data 1e given in Table IV. 

The coupling Qonstant bet\'ieen th~ two fluorine atome in 

th5.a corapounch t'l71,1en they at~e gauche to .. each other ie 2L. s ±. C! 

o. 5 cps,, . This . ~$ , in general agreetnent with fluorine ... fluorine 
I i : :· · 

· coupling oons:t;a11.ts ·in i;)thol~ substituted ethanea where the 

substituted groups are large. 3 

The chemical ehif't of the f'luor1ne.atoms·:ts. partially 

determined by.· the rotational conf'iguration o:t .. the molecule. A 

£1uorine atom gauche to a F and a Cl atom ia to higher field 
. .... ·. ' 

than one gauche to. a Br· and . a .. Cl atom •. · A fluorine gauche to 
. . . ' 

. . .· i . 
.. an F and a Br atom is to lo1.·~ie1 ... field still. . In terms of high 

·.field :shifting pov1er of ·the individual neighboring atoms~ th5..s 

implies Cl > F > Br j an Ol"der whlch is somewhat SUl"<;Pr1sing and 

difficult to explain. 

The small differences betv1een the e~iergies of the three 

rotame:;:-as is intuitively somE~i'Vha.t; surprising; ho\•ffevel..,.; th::i.s 
.. ' 

order of magnitude is quite •Jornmon in halogen substituted 
to· 

ethanes .in the liquid phase.· 

S1n6e the promine atoms are the largest substituents in 

this compound$ and hence. should be re~.pons1ble for the majority 

of the stcric t"'epulsion.:> it seems Cf..Iite reasonable that i.~ctw:-.e:c-;~ 

" Ib and Ic should be highm." in energy than Ia since both !b a:·l.d Ic 

involve gauche bromine-b:t"'Om~.ne atom 1nteract:ions \'lhereas ·the 



. \ 

'.1. .c.·. 

.' 

' .. 

•' 

b:t-;ondne a tome in :ta ·are trans to each other. In .isomer II., 

it also seems reasonable that the .rotamer with the lowest energy 

is IIb vshere the bl."omine ato:ma are trans to ~ach· other as is 
('') 
~ •'' 

observed experimentally. An argument based on bond-dipole'bo,nd­

dipole intera.ctions yielde similar conclusions for both isomers .. 

The magnitude of the bal"ri.ere to internal rotation seem 

quite reasonable 'li'Jhen compared \'lith the. barrier in ccl3cc13. 
which ia· 10. a 1-:cal/mole~ 1 ~'rom the data availablep it is 

possible to drat'~ a eornewhat quantitative.? empirical correlation 
' 

bett.;een bar·riera' to 1nt€lrna.l rotation and the substituted,;groups. 

T.ne near ecu.ivalence of all of·the.measurable barr1era in . . ~ . 

the compound here investigat,ed :i.mplies that to a first approx.-

. imation$ · the btu')rier is only a f·unction of tha nm'lber and kind 

of substituted atoms$ an.d not a sensitive function o.f their 

relative orientation. It s€:ems reasonable therefore that ~ohe 

enel"SY barrier might. be expresa.i.ble as a. !'unction of. a single 

variab1e1 this variable being an additive property cf the 

substituted groups.; This property of the substituted groups 

should b~ a measure of: the rr~teric energy tor li'Jhich that group 

is l"'esponsible. Such a property might be the difference be·cL_. ~· 

the distance of a substitut<ad atom from the plane bisecting the 

c-c bond, and the covalent 1?a.dius or that atom.. Covalent radii 

were chosen rather than van der tliaal radi.i since the covalent 
·~ •· 

radii ar•e a measure of the atomic size whereas the van del"' l\la;:;.l 

radii a1"e also a function of the attractive forces betvr:::-:en. at::::~:.;·l ~ 
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of the i th. atom from t;he plane bisecting the c-c bond and R1 
is the covalent :radius of \-;he i th atom.. . In Table V are listed 

' ' 

the valttes ot this . A f'Ol" th.re~ halogens . and hydrogen, assuming 

tetrahedral angles and no:rmal·covalent bond·distances. 

Figure. 1 shows the .. barJ."'ier to internal rotation plotted 
8 

against .z .A1; the ~urn. being taken.over the siX atoms attached 
::1..=1 . 

to the c ... c skeletono This plot.includea the.data. for all sub--

.stituted. eth<.-mes for which harriet's are known. Although tlle 

points on this curve fall in two 'bunches.the plot seems to 

indicate some correlation between these two variables •. · 

. \. 

£1~1<:no";rledement.. ·~le wfsh to thank Dr. ·Paul Resnick oi'' this 

department fol? the prepa.:ration of the compound used. \'le also 

wish to than.l{ the JL E. c ~ for support of thi.a research . 
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Table I 

=====~======-=··==~.:!!::=::::=·=·=================== 

Peak 

A 

:a 
c 
D 
E 

F 
"' .... 

H 

=·· '; . 

Isoraer 

I 

II 

. Chemical ehj.f't in 
cps t:':rom lowest 

:f'l>)e<:auen.oy peak 

o.o 
94; 9 ) . :LOS. 5 ···-: . 116 .. 0 

205 .. 5 ) 
'214.2 

264~5 } 
286.2 

. 368 .. 1 

'"'75 .1! 1.. • <:S 

. • Integ:t•ated area 
· ·· (% . ot total area) 

9,5, 

. . 6.6 

======:w , ==_....·===· ================ 

Table II 

Peal<: f)h·i.f··c 
{ops) 

B-C 105.5 
F-G 2T5.·4 

A (). 0 

E 214.2 
H .S68.1 

Area 
(%) 

33.5 

9 .. 65 
9.65 

23.7, 

16.9 
6.5 

F1"'ee 
Enel.,gy . 

( I .. \ cal, mo.1.e J 

0 

438 

438 
'· 

0 

119 
450 

1, =-..: ::::1====· =====•=ete=:===:~~=··M==-~================== 
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Ta.ble III 

Seat .fit 
233°Ic··· . 

l lO,.O 1.0. 0 \o~s 10 .. 2 
2 9 .. 5 10.0 9.5 9.7 : 

3 10 .. 0 10.5 ·10.0 10.2 
~====:et:::t = :11::: ., 

'.rable IV 

-F d'.• .... -::;·::::·l•=•==·=·==; ==· ==~ =· =::::-=•=k ::=:::t;:-~==l=: =========· ':,:o == ========== 
Configul"at:ton 

Ia · 

Iab 
Ib 
I be 
Ic~ 

Ica ... .. ;:g·-· 

Enel"'gy 
(l<:ca1/mo le.) 

0.000 
>·lO ,,a .... ~t:.. 

O.o 4~38 
;!::10~ 2a 

0 .. 438 
>10 •;:ra ..,.. a- t~ 

7 =-=~-.,.,.-·~=;;;;:;:~ 

IIa 
IIab 
IIb 
Ilbc 
IIc 
II ca. 

. EneJ."'gy 
(lcca.l/mole) 

0~119 

9 .. 7 
0.000 

~lo.zb 
0.450 

b 
~10. 2 

! I"' • -=-
~'The ene:rgies of aonfig..1..tra .. t.ions .Iab and rae are equ.al~ The 

ener•gy of either Iab or J:bc is equal to 10. 2 kcal/mole. 

bThe energy of IIbc or• IIB.·3 1B eQual· to· 10$ 2 kcal/mole. 

.B' 

Cl 
Br 

Ta.bJ.e V 

i; 

.82 

.. so 

I 
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Fig.. $ 
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F'ig;. 4 

Fig. 5 

Fig~ 6 

Fig.. 1 

Cantio!;ts,. for Figyt:,e~. 
. ' . 

Experi~ental I~r.m 'spectrum or CFCl.Br-CFCl.Br at 177°K. 

.Experimental a.nd. calcv.lated l~MR speatx-a of CFClBr• 
CFClBr a.t l9'*°K. ~a ·dotted_linlfla in the .experi• 
mental spectrwn. t•epredlent what the .spectrum ilaould be · 
.it.the gauche coupling conat~t were zero; the apptiox­
imation used in the calculation. The energies tabulated 

. . . 

' . on each oalculat<?d spectrum eorl,"espond to pat'ameters 1., 
2,. and 3 :respect:t;tely of the text •.. 

Experimetl.tal and calculated NMR epectt>a of CFClBr ... 
' ' ' . 

Cli'ClBr at 2Cl7°K. The energies tabulated on each 
calculated e1pe;~t:t"'tlm correspond to parameters 1,~~ 2~ 

and S respact1·ve1y o~~· the text .... · 

Exper~ental and calculated N?lJR spec_trJa of CFClBr· 
CFClB~ at 233°K. ~1e energies tabulated on each cal­
culated spect:t"um oorr.e.spond to pa.ratneters lg 2.; and 

. 5 re.spectively of the text .. 

· The three rotamE~:rs of the t\.iO . isomers of CFClBl"'­
CF·ClBr. 

A possible potential energy curve aa a function of: 
dihedral angle. 

Piot of bai..,..t'iB17 t;o int,ernal l">Otatio"n in substituted 
ethanes ~- sum o1' steric,. factors fo:t" substs~tuents; 
see text~ 

·, · .. 

. ·-~-
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