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ABSTRACT OF THE DISSERTATION

Dense Image-to-Image and Volume-to-Volume Labeling

by

Jameson Tyler Merkow

Doctor of Philosophy in Electrical Engineering (Signal & Image Processing)

University of California, San Diego, 2017

Professor David Kriegman, Chair
Professor Truong Nguyen, Co-Chair

This thesis presents three principled approaches to dense pixel and voxel level labeling

and demonstrates their effectiveness for both segmentation and boundary detection and

subsequent use in 3D model construction from volumetric data.

First, a structured decision tree classifier for vessel wall segmentation on volumetric

angiograms is presented. Building upon advances in natural image boundary detection, this 3D

classifier generates structured patch-to-patch 3D vessel boundary localization using domain

specific volumetric features, an adaptive prior coupled with an importance driven sampling

scheme. Through comparison of our methodologies to a number of baselines including widely

xiv



used edge detection strategies, non-structured decision trees, and approaches using alternative

input features the effectiveness of the classifier is demonstrated. Additionally, the classifier is

shown to be robust to error in the a-priori information.

Second, a 3D Convolutional Neural Network (CNN) approach to pixel classification

is introduced. Two CNN classifiers are presented, HED-3D and I2I-3D. The first extends

the popular Holistically-Nested Edge Detector into 3D to perform generic volumetric seg-

mentation. A second 3D CNN is introduced that performs precise localization using a novel

fine-to-fine, multi-scale architecture. This classifier addresses three key issues to precise

image-to-image and volume-to-volume labeling: 1) efficient end-to-end voxel label prediction

and training, 2) precise localization capable of capturing fine structures typical in medical

data, and 3) direct multi-scale, multi-level representation learning. I2I-3D is shown to out-

perform alternative fine-to-fine strategies through demonstration and evaluation on multiple

data-sets and tasks. We evaluate these frameworks on three challenging tasks, vessel boundary

prediction, brain boundary prediction and skull-stripping.

Lastly, this fine-scale localization method is augmented with spatial context process-

ing to perform automatic 3D cardiovascular model construction from medical image data.

This approach builds upon the I2I architecture to generate accurate segmentation as part of

DeepLofting, an efficient pipeline for 3D cardiovascular model construction. The I2I classifier

is extended to use spatial context during prediction, forming a new classifier I2I-FC. This

powerful classifier is a critical component in DeepLofting, which builds 3D cardiovascular

models from medical volumes and a-priori information. DeepLofting is evaluated on a

publicly available cardiovascular model dataset, and represents a critical step forward in 3D

model generation.
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Chapter 1

Introduction

1.1 The Role of Pixel Level Labeling

Understanding and interpreting visual data is an essential precursor to almost any

intelligent system. A core component to this understanding is the ability to differentiate and

classify input images, video and other visual data. Pixel level labeling is the process where

pixels or neighborhoods of pixels are classified into a finite number of categories. Pixel level

labels can take many forms, including segmentation, where each pixel is given a category to

differentiate its neighbors, contour detection, where the boundary between objects are labels,

or detection where regions of an image are identified to contain a particular object.

1.1.1 Deterministic Methods

Early approaches to pixel level labeling used deterministic methods, where both

algorithmic features and the classifier were manually designed. Many of these classifiers have

remained popular including various edge operators such as the sobel, prewitt and laplacian

filters as well as the Canny edge detector. Filter based methods use specialized convolutional

filters to transform pixel intensity values such that perceived boundaries give a high response.

The Canny edge detector [Can86] remains one of the most widely used edge detectors for 2D

and 3D vision. Canny uses local gradient information in a multi-step process. First, the image

is smoothed using a Gaussian blur with a specified width (variance), and image gradients are
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calculated. Second, non-maximum suppression (NMS) removes superfluous responses. Last,

hysteresis thresholding is applied such that connected edges are retained, and orphan edge

responses are discarded.

Many deterministic segmentation approaches such as Ostu’s method [Ots79] and the

watershed transform continue to enjoy wide spread use as well. Otsu’s method remains

among the most popular threshold based segmentation techniques. Otsu threshold clusters

pixels into classes by calculating thresholds which optimally separate pixel values such that

their intra-class variance is minimized. Otsu can be thought of as a one-dimensional fisher’s

linear discriminant analysis (LDA) [Fis36]. Another popular morphological segmentation

method, the watershed transform, treats images as a topographical map, where intensity values

represent ‘elevation’. The watershed transform identifies ‘catchment basin’ and ‘watershed

ridge lines’ which simulate flooding the geographical topology. In this way, basins become

contiguous regions and watershed ridges represent the boundaries between regions.

1.1.2 Statistical Models

Over the years, segmentation and boundary detection evolved to use more advanced

statistical models to categorize pixel labels. One such method, region growing, selects

pixels by comparing values among pixel neighborhoods to determine membership. Starting

from an initial selection, pixels along the border of the pixel neighborhood are compared

using a statistical analysis and other similarity criteria to the currently selected group, those

that are sufficiently similar are added. This process is repeated to iteratively ‘grow’ the

region [OC89, TB97, SC05]. Graph cut algorithms use statistical similarity on a global

level to partition pixels into distinct parts. One popular partition criterion, normalized

cuts, uses a normalization factor based on node connectivity to optimally partition graphs

[Shi00, MBLS01].

Deformable models use combined image statistics (external forces) and geometric
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constraints (internal forces) to build consistent models. Internal forces are use geometric

properties of the model such as curvature. External forces are composed of image based forces

such as edge attraction (advection) or data clustering. These two forces act in opposition

of each other to grow from a seed point while adhering to these constraints. One of the

most popular deformable model approaches are active contours or ‘snakes’. Active contours

come in many names including, snakes, active surfaces, balloons, and deformable contours.

In general, there are two type of active contours, parametric and geometric which differ in

their representation of their curves and surfaces. Parametric snakes represent their surfaces

and curves using an explicit, parametric forms. This representation allows direct interaction

and manipulation of the model. While this restrictive model topology makes them easier to

implement, splitting and merging curves becomes difficult. In contrast, geometric models

use an implicit representation, allowing model topology adaption to occur naturally. Level

sets [OS88] are among the most popular type of geometric deformable model and have been

applied to a great deal of problems [Set96, Wan01, MS89, VC02, LHD+11, NC14, VC02].

1.1.3 Learning-Based Methods

As data-sets improve and large annotated data-stores became prevalent, so did learning

based methods. Learning based methods use a set of features, usually derived from pixel

intensity values, and image annotation to train a classifier to detect or classify pixel labels.

Many algorithms use complex features and a simple classifier for pixel level label prediction.

For example, [MFM04] used a large set of pre-defined features, including oriented energy and

gradient-based edge features, all from a range of orientations and scales as input to a simple

weighted aggregation classifier for object boundary prediction. [DTB06] built upon this idea

by using a much more powerful learning component, probabilistic boosting trees (PBT) [Tu05].

[DTB06] proposed a learning based classifier that uses many feature channels to train a PBT

for detection of edge aligned pixels. Decision tree based approaches, such as [DTB06], have
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been shown to be particularly effective when combined with a structured output [DZ13, ZD14,

DZ15, MTKM15]. These ”structured forest” classifiers build upon PBTs but classify entire

regions/patches rather than single pixels. These patch-to-patch methods have been shown to

be effective in a number of applications [MTKM15, MPTAVG16, SLC+14, BBH+16].

Alternative approaches, such as [AMFM11, RB12] use complex features and a simple

classifier to extract object boundaries and segmentation. The gPb classifiers [AMFM11]

use multiple local and global cues with graph cuts and a simple weighting approach to

simultaneously localize boundaries and object segmentation. Another strategy, used sparse

code gradients [RB12] to build complex features using K-SVD [AEB06, RZE08] for an

SVM-based classifier contour detector.

The continued success of learning based approached led to many new and powerful

feature extraction techniques. Feature extraction is used to capture a multitude of contextual

cues including gradient direction [DT05, KM08], spatial in-variance [Low04], pixel difference

[VJ04, OPM02]. These features are also commonly combined into sets such as textons

[LM01, MBLS01] or integral feature channels [DTPB09].

1.1.4 Deep Learning and Convolutional Neural Networks

The success of learning based methods led to those that learn both features and

classifiers. This class of methods is often referred to as “deep learning”. Deep learning

is currently one of the most widely used methods, across a multitude of fields including

computer vision. Deep learning systems simultaneously learn complex image features and

decision boundaries to produce robust classifiers that can be applied to multiple computer

vision tasks.

What is now known as deep learning, has its roots in several innovations across nearly

60 years. Early neural networks using “thresholded logic units”, first theorized in 1943,

were designed to mimic the way a neuron works [MP43] which eventually evolved into
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perceptron units [Ros58] in the late 1950s. Years later, in 1989, modern back-propagation

[LBD+89, LBD+90] was theorized by showing that neural nets with many hidden layers

could be trained with a simple procedure for digit classification on the popular MNIST dataset

[LCB10]. Nearly 20 years later, Geoff Hinton introduced unsupervised pre-training along with

deep belief networks (DBNs) to learn, both, high and low level features on an unsupervised

task [BLPL07]. The weights learned for the unsupervised task were then re-purposed for

training an expanded network on a supervised task with excellent accuracy.

The renewed interest in the re-branded ”Deep Learning” classifiers led to a break

through in 2012 on the Large Scale Visual Recognition Challenge (LSVRC) [DDS+09]. To

this point, top models had errors between 28% and 26% on LSVRC, however with a deep

learning based submission by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton, AlexNet,

the error in this challenge was cut nearly in half to 16% [KSH12]. AlexNet combined many

breakthroughs which would become main-stays of deep learning networks, including the use

of GPUs for fast computation, and rectified linear units (ReLUs).

Deep Learning has become a powerful tool for not only in image classification

but also natural language processing [Kim14], speech recognition [HCC+14], bioinformat-

ics [LXLF14], and many other fields [MKS+13, LLS15, DY14]. With the development

a variety of deep learning and convolutional neural network (CNN) libraries [DJV+13,

ARAA+16, JSD+14, AAB+15, CLL+15, CKF11] and fierce competition on many high

quality data-sets such as [MFTM01, DDS+09, EVGW+10, LMB+14], the field has had

great number of breakthroughs in optimization techniques [Zei12, KB15, DHS11], regu-

larization techniques [SHK+14, GWFM+13, LXG+15, IS15] and improved architectures

[SZ14, SLJ+15, HZRS15].

After the success of deep learning and CNNs in image classification, it was not long

until these powerful tools were used for pixel level labeling. With noteable advances in scene

labeling [FCNL13, HAGM14b], object segmentation [GGAM14, GL14], detection [SVL14,

5



Gir15] and boundary detection [SWW+15, BST15]. Fully convolutional neural networks

[LSD15] provided simultaneous performance and accuracy in semantic segmentation which

led to multiple adaptations that are top performers in a number of pixel labeling applications

[XT15, RFB15, MMKT16, CPK+14].

1.2 Medical Imaging

Though the methods and concepts in this work can be generalized to natural images,

many of the implementations are applied to medical imaging. Here, we outline the basics of

medical imaging and provide an overview of cardiovascular model building, an application

that appears throughout this thesis.

Medical imaging is the process and technique of generating visual representations of

the interior of the body, typically for a clinical analysis or another medical purpose. These

methodologies, referred to as imaging modalities, use a multitude of imaging technologies

and are categorized in a number of ways. Many medical imaging techniques fall into one of

two categories: projection or tomographic.

Typical projection images, such as radiographic, emit x-ray beams through an object

(patient) onto a a detector. Based on the absorption, scatter and other physical characteristics,

an image is formed by the detector. These images are two dimensional presentations of 3D

objects where pixel intensities depend on the object between the emitter and the detector.

Tomography images are formed by imaging sections/slices which are joined together

to form an image volume. Slices may be collected through many different methods, for

example, computed tomography (CT) slices formed using x-rays, or magnetic resonance

(MR) which uses magnetic fields to generate images.

Tomographic medical image volumes use three anatomical planes (axial, sagittal, and

coronal) to describe location or movement of anatomy and anatomical structures. The axial

(or traverse) plane perpendicular to the line drawn from the head to the toe. An axial plane
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Figure 1.1. Illustration of the three anatomical places: axial (traverse), sagittal, and coronal.

that is closer to the head is called superior, where as inferior axial planes are those closer

to the toe. The sagittal plane divides the volume into right and left sections from ear to ear.

Lastly, the coronal plane is orthogonal to the line passing from the navel through the back,

separating anterior planes from the posterior planes. Figures 1.1 and 1.2 depict illustrations

of these three planes.

Since medical image volumes represent consistent physical and anatomical structures

they are often coupled with meta-data describing the conversion from pixel space into physical
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Figure 1.2. Depiction a medical volume showing images in the three anatomical planes.
From top-left to bottom-right: Image taken in the axial place, the saggital plane, the coronal
plane and a 3D rendering of the intersection of the three planes.

space. Pixel spacing denotes the physical distance between the center of pixels or voxels

along all three dimensions. For example, a particular volume may have pixel spacing of

(0.25mm,0.3mm,1mm) meaning there is 0.25mm between pixel columns, 0.3mm between

rows, and 1mm between aisles. Spacing is important for rendering medical volumes to ensure

that information is displayed proportionally, and for analysis as the physical distance between

voxels have bearing on the underlying structures. It is also common normalize volumes by

re-sampling with predefined spacing values via interpolation.

Though medical imaging is free from much of the nuisance variability common

in natural imaging, such as illumination, scale or occlusion, it does come with its own

set of unique challenges. For example, typical medical imaging volumes contain partial

voluming, where low acquisition resolution causes multiple tissues or structures to contribute
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to individual pixel or voxel intensity values. This makes precise segmentation of medical

images more difficult. Another major challenge in medical imaging is the size of the data

itself. A typical volume is built from hundreds or thousands individual slices.

1.2.1 Pixel Level Labeling in Medical Images

Many of the methods mentioned in Section 1.1 have been directly applied or modified

for use in medical imaging.

Thresholding is a simple yet effect method for medical image segmentation that

has remained popular for many years. Usually performed interactively, thresholding is

sometimes used as a precursor to a more advanced method [SP97] or used on its own

[LHKU98, LKC+95]. A major limitation of thresholding, is that it does not take into account

physical characteristics, a property that is especially important in medical imaging.

Region growing is another a mainstay in medical imaging segmentation. Medical

images and volumes have sparse and connected regions of interest, making an algorithm that

sparsely labels pixels (starting from a initial point of interest) both effective and efficient.

Region growing has been used for a variety of tasks, including tumor detection in MR images

[GBBH96], classification of mammograms [PPO+96] and multi-modal usages [PT01]. The

watershed transform is another popular method adapted to medical image segmentation.

3D versions of this algorithm have been applied to various modalities including CT data

[WHOF96, SAB05] and MR data [SSV+97, BMHA00, GMA+04]. It is popular approach to

use in 2D medical segmentation as well [XLS11, KSG09].

Medical imaging has used a variety of approaches based on graph cuts and spectral

clustering as well. These methods utilizes methods ranging from basic clustering techniques

such as fuzzy c-mean [PP99] to self-organizing maps (SOM) for clustering pixels in images

and for segmenting volumes [MX98, AF97].

Deformable models are commonly used in medical imaging [MT96, LABFL09].
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(a) (b) (c) (d) (e) (f)

Figure 1.3. The cardiovascular model construction work-flow used in SimVascular
[UWM+13]. Starting from (a) Image data, (b) users manually generate pathlines, (c) use
these pathlines to segment 2D cross section contours, (d) loft segmented contours into a 3D
model, (e) generate a numerically stable 3D geometric mesh, and finally (f) computation flow
simulations are calculated. Figure reproduced from [UWM+13].

These types of models are more computationally efficient than classification of entire im-

age/volumes and perform consistently on images with partial voluming artifacts. Deformable

models are among the most popular methods used for segmentation in, both, 3D volumes

[JM97, CDPY99, YPC+05, YSD04] and 2D medical images [NC14, LXGF10, Wan01].

Learning based classifiers are also prevalent in medical imaging such as decision trees

[LBW+08, ZLG+11, WLW+15, SHW+15] and support vector machines (SVM) [LSJ+06,

CPJ06, ENYW+02]. More advanced classifiers such as Tu’s auto-context model [TB10] have

also been used with great success.

Given that orientation and scale variability is more tightly controlled in medical

imaging, atlas information is often used to aid in classification. One such example [FSB+02],

marked an early success in full brain segmentation of MRI images by complementing a

intra-class statistical models with atlas information, Another approach [RRM04], used a

competing classifier framework that applies an atlas model to simultaneously label anatomical

regions in CT images.
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(a) Path creation. (b) Cross section
segmentation.

(c) Lofting
segmentations.

(d) Union of
lofted surfaces.

Figure 1.4. Illustration of lofting process. Creation of a vascular geometry using the
lofted 2D segmentation approach involves (a) creating path to navigate and create a series of
segmentations (b) that are lofted to form each vessel (c). A solid model is generated by the
union of individual vessel models (d).

1.3 Cardiovascular Modeling

Cardiovascular disease is among the leading causes of death in the modern world

[Mar14]. Patient-specific simulations of cardiovascular hemodynamics [TF09] are a ground-

breaking tool to improve treatment and diagnosis of various cardiovascular diseases [Mar13].

Hemodynamic simulations use advanced computational fluid dynamics to model blood flow

of individual patients. These numerical methods have enabled realistic representations of car-

diovascular physiologies. These simulations can improve imaging methods, predict surgical

outcomes, localize at risk anatomies and provide increasingly detailed medical data, all at

little to no risk to the patient. Hemodynamics simulations have been used to analyze formation

of atherosclerotic plaques [SEM+11], develop novel surgical approaches for treatment of

congenital heart disease [EMHMoCHAMI15], and as an accurate diagnostic tool for coronary

heart disease [TFM13].

Image based hemodynamic simulations were first developed in the late 1990s and

early 2000s and have proven to be an important tool for clinical research [NOV11, MAI99,
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(a)

(b)

(c)

Figure 1.5. An illustration of a typical lofting procedure. As shown in (a), Users navigate
along the path, segmenting vessel cross sections, shown in (b) and (c). These segmentations
are oriented in 3D space and a 3D surfaces ins generated (shown in (a).

WJV+03, DCFF13, KBBP+14, MKK+16]. HeartFlow was among the first to produce FDA-

approved products based on these concepts and they helped to simultaneously reduce the

cost and risk to patients with various coronary artery diseases. Most image-based modeling

applications start with 3D MR or CT angiograhic data. Image processing is used to generate a

3D geometric model of the vascular regions. This 3D model is imported into a computational

flow dynamics (CFD) package where a volumetric mesh is extracted and hemodynamic

simulations are carried out to numerically simulate blood flow.

The first step in image-based modeling is to segment the image data in a region

of interest (ROI) to extract the boundary or structure of an object from the intensity field.

While many image processing and segmentation processes exist, most are not well-suited to

CFD simulation which require smooth, noiseless boundaries for accurate simulation. The

segmentation process is most commonly used to identify the luminal surface of a blood vessel;

however other anatomical structures may be similarly segmented and modeled.

Cardiovascular models can be constructed manually, using medical imaging software,
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or by using a variety of image segmentation algorithms to produce a segmentation that

can later be refined into a cardiovascular model of sufficient quality. Most available image

segmentation algorithms have method-specific parameters that must be tuned to produce

accurate segmentations; a process that is cumbersome for non-expert users and introduces

user-variation into simulation results [NUZ00]. Manual model construction is similarly

time-consuming and requires expert knowledge of cardiovascular physiology. As a result,

cardiovascular model construction is currently a major bottleneck in performing large-scale

hemodynamics simulations. Studies on large patient cohorts are required in order to correlate

simulation outputs with clinical outcomes.

1.3.1 Cardiovascular Segmentation

In terms of cardiovascular model building methods, approaches generally fall into

two categories, 3D and pathline based. Level sets are popular among the 3D approaches,

such as [WLK+11] which propagates 3D surfaces through regions of high contrast, and

[APB+08] which apply colliding fronts from two seed points set on opposite ends of a blood

vessel. Many approaches use image enhancement to make vasculature more visible. These

methods range from simple multi-scale pixel intensity based approaches [FNVV98, SNA+97],

to complex curvilinear structure enhancement [Law08] and are often combined with level

sets to improve performance [LC10, SDN+11]. Connected-ness is an important component

to vascular segmentation, making methods that utilize this concept such as graph-based

classifiers popular in the field. These methods go beyond pixel intensity, and leverage the

tabular structure of blood vessels with shape priors [Bau09], vessel-ness responses [Wan16],

Hessian computations [WKN+16], curvilinear structure identification [Tur13, Rob16], and

max-flow optimization [Pez16].

Pathline based model construction methods leverage the fact that vascular networks are

interconnected tubular, pipe-like structures and navigate along individual vessels to create 2D-
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cross section segmentations which can be merged into 3D tubular structures [PTW98, TF09].

This is accomplished by, first, annotating vessel path lines which indicate the path of

a single vessel. These pathlines allow the 3D image data to be navigated at oblique angles,

where the vessels are relatively centered. Once cross-section segmentations are generated,

these contours are oriented in 3D space and a tubular structure is interpolated in a process

called ‘lofting’. After a number of these lofted structures are created, they are merged through

Boolean operations into a single complete 3D model.

Since pathlines are relatively centered in and approximately orthogonal to vessel

walls, images extracted along these path lines typically have predictable placement and shape;

an example is depicted in Figure 1.5. This extraction technique allows easier parameter

selection for geometric constraints and initial contour placement, making active contours

and level sets particularly effective [Wan01, LXGF10]. Alternative strategies directly fit

curves [Kri00, LY07, MST10, BC11] or templates [ZBG+07, KGPS13] to image data. Other

approaches treat the vessel wall as a tracking problem and builds a vessel by updating a

segmentation along the pathline from an initial user generated annotation [KYD+17].

1.4 Aims and outline of this work

The remainder of thesis is organized into three main chapters followed by a conclusion.

A brief description of each chapter appears below.

1.4.1 Chapter 2 - Structured Forests for Cardiovascular Boundary
Detection

Computational simulations provide detailed hemodynamics and physiological data

that can assist in clinical decision-making. However, accurate cardiovascular simulations

require complete 3D models constructed from image data. Though edge localization is a key

aspect in pinpointing vessel walls in many segmentation tools, the edge detection algorithms
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widely utilized by the medical imaging community have remained static. In this chapter, we

describe an approach to medical image edge detection by adopting the powerful structured

forest detector and extending its application to the medical imaging domain. First, we specify

an effective set of medical imaging driven features. Second, we directly incorporate an

adaptive prior to create a robust three-dimensional edge classifier. Last, we boost our accuracy

through an intelligent sampling scheme that only samples areas of importance to edge fidelity.

Through experimentation, it is demonstrated that this method outperforms widely used edge

detectors and probabilistic boosting tree edge classifiers while being robust to error in a-priori

information.

1.4.2 Chapter 3 - Convolutional Neural Networks for Dense Volume to
Volume Labeling

In Chapter 3, we introduce our approach to dense 3D volume labeling in medical

imaging using convolutional neural networks (CNN). To start, we describe an extension of

the start-of-the-art classifier, Holistically-Nested Edge Detector (HED) as a new generic

volumetric classifier, HED-3D. In addition, we introduce a novel 3D CNN architecture,

I2I-3D, that densely labels volumetric data. This fine-to-fine, deeply supervised framework

addresses three critical issues to volume-to-volume labeling: (1) efficient, holistic, end-to-end

volumetric label training and prediction (2) precise voxel-level prediction to capture fine scale

structures prevalent in medical data and (3) directed multi-scale, multi-level feature learning.

To show that I2I-3D and HED-3D significantly advance the state-of-the-art, both frameworks

are evaluated on multiple labeling tasks across two publicly available datasets where they

outperform 2D CNNs, other 3D CNNs, and the current state-of-the-art. We show that these

frameworks have state-of-the-art performance on the publicly available dataset LPBA40 by

precisely predicting skull stripping masks and brain boundaries with great accuracy. We

also evaluate I2I-3D and HED-3D on blood vessel boundary detection with another publicly
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available dataset consisting of 93 medical image volumes captured from a wide variety of

anatomical regions. In addition, we compare a 2D version of this classifier to HED (2D) and

show that our classifier achieves similar performance with greater precision by evaluating on

the popular BSDS dataset [MFTM01] with and without non-maximum suppression.

1.4.3 Chapter 4 - Cardiovascular Model Construction with Convolu-
tional Neural Networks

In this chapter, we describe a novel approach in tackling the challenging task of

constructing 3D cardiovascular models from medical image data. We combine deep learning

with a vessel path-line model construction pipeline to form DeepLofting, a new and efficient

method for building cardiovascular models. We start by developing a novel neural network

architectures I2I-FC, which augments the I2I architecture with spatial context processing

and allows fully convolutional networks to utilize image spatial context to produce accurate

localized segmentations. DeepLofting uses convolutional neural networks to compute ves-

sel boundaries along anatomical path-lines and combines these boundaries to form a final

cardiovascular model. Given vessel path-lines, DeepLofting is fully-automatic requiring

substantially less user-intervention compared to traditional model building workflows. We

evaluate our architectures and DeepLofting pipeline on a publicly available dataset of 100

computed tomography (CT) and magnetic resonance (MR) volumes. DeepLofting, com-

bined with I2I-FC, significantly outperforms other neural network architectures and popular

cardiovascular model building methods for producing accurate 3D cardiovascular models.
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Chapter 2

Structured Forests for Cardiovascular
Boundary Detection

2.1 Introduction

Building on advances in medical imaging technology, cardiovascular blood flow simu-

lation has emerged as a non-invasive and low risk method to provide detailed hemodynamic

data and predictive capabilities that imaging alone cannot [Mar14]. Blood flow simulations

have been used to develop novel surgical methods to treat congenital heart disease, char-

acterize hemodynamics in aneurysms, and assess risk of bypass graft failure [dZMFY10].

A necessary precursor to these simulations is accurate construction of patient-specific 3D

models via segmentation of medical image data.

Currently available tools to aid model construction include ITK-SNAP [HCG03] for

general medical image segmentation and SimVascular [UWM+13] and VMTK [APB+08]

which use specialized segmentation techniques for blood flow simulation. These packages

implement automated segmentation tools, most of which rely heavily on region growers,

active-contours and snakes. These methods can be effective for cardiovascular segmentation,

however they often require finely-tuned algorithm parameters, hence manual segmentation

is commonly used in practice. Model creation remains one of the main bottle-necks in

widespread simulation of patient specific cardiovascular systems. Increased efficiency of the
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model construction process will enable simulations in larger cohorts of patients, increasing

the clinical impact of simulation tools. Machine learning techniques produce robust results

without manual interaction, which make them a powerful tool for model construction. There

has been extensive research into learned edge detection in natural images but edge detection

has not received the same attention in medical imaging.

Here, a machine learning based edge detection technique is proposed by leveraging

diverse domain specific expert annotations in structured prediction labels and builds upon the

structured forest classifier [DZ13]. We contribute a novel combination of domain specific

features, introduce a priori information, and devise an intelligent sampling scheme to correctly

classify edges while using a minimum number of training samples. Much of this chapter was

originally published in [MTKM15].

2.2 Background and Relevant Work

Active contours are one of the most widely used strategies for segmentation in medical

imaging. Active contours propagate segmentation labels using opposing internal and external

forces. Internal forces update the contour via appearance criterion while external forces

modulate the contour shape with geometric constraints. This technique enforces contour

smoothness making it attractive for vascular segmentation for CFD. However, active contours

run into difficulty under varying image conditions and often require finely tuned parameters

to prevent segmentations from leaking into background pixels.

Alternative strategies use learning based methods and avoid parameter tuning by

leveraging expert annotations to build statistical appearance and shape models. Zheng et.

al employed probabilistic boosting trees (PBTs) with pixel transformations, gradient data,

and atlas features to quickly generate vessel-ness labels in 46 cardiovascular CT volumes

[ZLG+11]. Contextual cues were integrated with PBTs for brain segmentation by using

multiple resolution features to learn shape geometry and appearance models in [TND+08]. In
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that work, the authors used a discriminative classifier to capture local appearance information,

and a generative model to enforce global shape constraints. This hybrid method used very

few parameters, and evaluated well qualitatively and quantitatively. Schneider et al. used

steerable features with Hough decision forest voting to perform joint vessel and center-line

segmentation [SHW+15].

Figure 2.1. Cross sectional appearance feature examples, from left to right: lumen intensity,
gradient magnitude, Canny edge map, distance-gradient projection and ground truth.

Research shows that contextual information can boost learned classifier performance.

For example, auto context models learn important shape contexts and discriminative features

with an iterative approach to segmentation. auto context has been successful in a range of

medical imaging tasks including brain segmentation, and segmentation of prostates [TB10,

LLF+12]. However, auto context is best suited to regional label maps, making it sub-optimal

for contour detection where ground truth is often a single voxel in thickness.

Despite an abundance of research into learned edge detection in natural images, edge

detection in medical imaging has remained static. Ren and Bo calculated learned sparse

coding features and SVM to localize image contours, successfully combined powerful oriented

gradient features and dictionary learning to capture edge characteristics [XB12]. In [LZD13],

the authors use discrete sets of clustered local contour features, dubbed sketch tokens, to

perform various segmentation tasks. Dollár and Zitnick used a clustering algorithm to train a

structured forest edge detector [DZ13].

Inspired by the success of contour detection in natural images, we propose a novel

edge detection method specific to cardiovascular imaging. We build upon recent work on
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structured forests by extending the classifier to work for 3D image patches, defining a novel

set of domain specific features, incorporating a priori information into classification, and

employing a specialized sampling scheme.

2.3 Methods

In this section, we describe the methodology used to train our classifier for edge

detection. Our goal is to generate a forest of decision trees that produce high scores at edge

aligned voxels, and low scores elsewhere. First, we begin by collecting randomized samples

of lumen patches and edge ground truth from a training set of image volumes. Second, we

compute feature channels from the input patches and find a discretization of the output space.

Last, input features and edge ground truths are used to train a decision tree. This process

is repeated N times to generate a forest of N trees. We outline our tree training process in

Algorithm 1.

Algorithm 1. Tree training procedure
Given a training set S = (Xi,Pi,Yi) where Xi, Pi and Yi are the ith training image volumes,
atlas priors and edge ground truth.

1: for all (Xi,Pi,Yi) ∈ S do
2: Gi← ComputeFeatures(Xi,Pi)
3: Gc,Yc← CollectSamples(Gi,Yi)
4: end for
5: C←ΠΦ(Yc) . C is the discrete set of labels C = {1,2,3, ..k}
6: t← TrainTree(Gc,C)

2.3.1 Sampling Methodology

At each sample location a 16× 16× 16 voxel patch and an 8× 8× 8 edge ground

truth patch are collected. We denote image patch samples as x ∈ X and boundary annotations

as y ∈ Y . Due to computational constraints of collecting 3D samples, fewer training samples

could be collected so a specialized sampling scheme was devised. First, all positive samples
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were taken from vessel wall aligned overlapping patches to produce more precise edge

responses. Though additional structured information can be gathered by including positive

sample patches that contain any edge segment, we found that collecting only vessel-wall-

aligned samples produced more precise edge responses. Second, negative samples were

collected from two zones. We collected a majority of negative samples in the region just

outside the vessel wall. However, to properly interpret a priori information, approximately

30% of the negative samples were taken from any negative region. These zones were

determined based on the vessel wall location supplied by ground truth annotation. Figure 2.2

depicts 2D cross section diagram of our sampling method, we denote the positive sampling

zone in blue, the vessel wall adjacent negative sample area in yellow (zone 1) and the general

negative sampling region (zone 2) in red.

Figure 2.2. Sample zones depicted as a 2D cross section.
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Figure 2.3. Example of structured labels grouped into discrete sets.

2.3.2 Topographical and Image Features

For each sample, a set of appearance and atlas-based feature channels are computed.

We selected three appearance features: lumen intensity, gradient magnitude and Canny edge

response, each of which are available at full and 1
2 resolutions. In addition to appearance fea-

tures, we incorporated a prior information by including a distance map from user-generated

pathlines as an additional feature channel. Center-lines were generated during model construc-

tion by placing points in vessel lumen and connecting them with splines to form interpolated

curves. Typically, 15-30 control points are selected and approximately 300 points are gen-

erated through interpolation. This feature injects atlas information into the classifier its

treated as any other input feature. Next, we combined appearance and a priori features into

a composite feature by projecting the image gradient onto the gradient of the distance map.
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This provides a strong response when the image gradient aligns with the normal direction of

the path. Last, difference features were calculated by heavily blurring each feature channel

then computing the piece-wise paired differences of five voxel sub-patches.

2.3.3 Edge Detection

Our approach employs a collection of de-correlated decision trees that classify input

patches x ∈ X with a structured label map y ∈ Y . This task is presented as a multi-class

classification problem where each class is a unique label patch. Decision trees are trained

by calculating information gain of the ith element across all j input vectors, x j ∈ X ,x j =

(x1,x2,x3, ...,xi) j, for labeled samples y j ∈ Y. For binary classification, y j has two possible

values, y j = {0,1}, in multi-class systems y j has k possible values, y j = {1,2,3, ...,k}. When

training decision trees with label patches, every permutation of the label patch could be

considered a distinct class; this leads to an enormous number of potential classes of y j.

For example, a binary 8× 8 label map, would result in
(8×8

2

)
= 2016 distinct classes, and

this complexity increases exponentially with 3D patches, a 8×8×8 label patch results in(8×8×8
2

)
= 130,816 classes. With a label space of this complexity, information gain is ill

defined, and training a decision tree is ill posed. However, Dollár and Zitnick observed that

contour labels y ∈ Y have structure and therefore can be mapped to a discrete label space

C = {1, ...,k}. By mapping similar elements in y ∈ Y to the same discrete labels c ∈ C,

approximate information gain can be calculated across C, and normal training procedures can

be used to train decision trees [DZ13].

To find a discrete label set C and an accompanying mapping Y →C, similarity between

individual labels y ∈ Y must be measured. Similarity between labels presents computational

challenge since comparing two label patches results in
(8·8·8

2

)
= 130,816 difference pairs.

To avoid this complexity, we map Y to an intermediate space, Z, where similarity can be

calculated efficiently. Intermediate label space Z is found by down-sampling Y to m samples
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Figure 2.4. Illustration of edge detection results. Columns from left to right: (a) Image data,
(b) center line paths, (c) 3D ground truth, (d) vessel cross section (top: our result, bottom
ground truth), (e) our result. Row 1 depicts an MR result, row 2 depicts a CT result.

then computing Principal Component Analysis (PCA) and keeping only the λ strongest

components. This results in a parameterized mapping Πφ : Y → Z where φ = {m,λ}. Using

similarity calculated in Z, mapping Y →C becomes a straight forward calculation. Figure 2.2

shows an example of structured labels mapped to discrete label sets. During training, decision

trees are de-correlated by randomizing sample locations, randomly disregarding 50% of the

features, and selecting a random down-sampled set when mapping Πφ : Y → Z.

Since each tree classifies an entire neighborhood, we performed edge classification

for patches centered at odd rows, odd columns, and odd aisles. Every voxel location receives

multiple votes from each tree, ti ∈ T where T = (t1, t2, t3, ...tN). With 8×8×8 label patches,

each voxel receives ≈ 83 · ||T ||/8 votes, in our experiments we set ||T || = 8. Votes were

de-correlated by aggregating results from alternating trees at each location.
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2.4 Experimentation and Results

We evaluated our method on a data set consisting of 21 MRI and 17 CT volumes

for a total 38 volumes that include part or both of the thoracic and abdominal regions.

30 of the volumes in our dataset were provided to us from the vascular model repository

(http://www.vascularmodel.com) the remaining eight were collected from local collaborators.

Image volumes vary in resolution from 512×512×512 to 512×512×64. All volumes were

captured from individual patients for clinically indicated purposes then expertly annotated

with ground truth and verified by a cardiologist. Ground truth annotations include all visible

arterial vessels except pulmonary and coronary arteries and each volume was annotated

specifically for CFD simulation. For experimentation, our data set was divided into sets for

training and testing. Our classifiers were trained on 29 randomly selected volumes, and the

remaining 9 were used for testing, both sets include approximately 50% MRI and CT images.

For experimentation, we trained our classifiers using a combination of C++ and Matlab

implementations. Appearance feature extraction and manipulation was performed using the

Insight Toolkit (ITK) [YAL+02], and classifiers were trained using Piotr Dollár’s Matlab

toolbox (http://vision.ucsd.edu/∼pdollar/toolbox/doc).

We performed two sets of experiments to examine different aspects of our algorithm.

In our first set of experiments, we compared our method against a baseline structured forests

model and two PBT forests models, one trained using our feature and sampling methodologies

and another trained with baseline features and sampling. In our baseline models, positive

samples included patches where any edge voxel is present and negative samples were collected

from any negative region without restriction. We selected baseline features to closely mirror

features used in natural images, these are: lumen intensity, gradient magnitude and oriented

gradients. Oriented gradients were computed by projecting ∇F(x,y,z) = (d f
dx ,

d f
dy ,

d f
dz ) onto

surface of an approximated unit sphere. In addition, we collected results of commonly used
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Figure 2.5. Classifier receiver operating curves comparing our method, PBT edge detectors
and commonly used edge detectors.
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Figure 2.6. Classifier precision vs recall curves comparing performance of our method, PBT
edge detectors and commonly used edge detectors.
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edge detection methods, gradient magnitude and Canny edge response.

Figure 2.7. Example illustration of path-lines where control points were perturbed with
increasing levels of additive noise. Depicted uniform additive noise levels (from left to right):
±0mm, ±1mm, ±10mm and ±25mm. During experimentation noise levels were perturbed
with uniform additive between ±0mm and ±50mm

In our second set of experiments, we examined our method’s robustness to error

in user-generated center-line annotations. For each test volume, the center-line control

points were varied by additive uniform noise, center-lines were re-interpolated, and new

edge maps were computed. This process was performed at increasing noise levels from

U(−.5mm, .5mm) to U(−50mm,50mm), Figure 2.7 shows select examples of the result.

Performance statistics were calculated by comparing edge responses against ground truth

annotations and hit, fall out and positive predictive voxel rates were calculated by tallying

counts for each image and combining them to obtain rates for the entire test set. For our

method, PBT and gradient magnitude, performance curves were generated by thresholding

edge responses at different values. Canny performance curves were generated by sampling

different combinations of input parameters. For each performance curve, area-under-the-curve
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Figure 2.8. Receiver operating curves of SE-3D after after introducing center-line error
through uniform additive noise on control points.

(AUC) and top F-Measure scores were recorded and are included in our results. To fairly

compare conventional methods against learned edge classifiers, only voxels within a 15 voxel

radius of ground truth vessel walls were considered in performance calculations for Canny

response and gradient magnitude.

Quantitative results for the first set of experiments are displayed in Figures 2.5 and

2.6. This figure shows that our method out-performs similarly trained PBT classifiers and

out-performs commonly used edge detectors by a wide margin. We see both increased
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Figure 2.9. ROC AUC of the SE-3D classifiers with various noise levels introduced into the
pathline through uniform additive noise on control points.

accuracy and improved precision when utilizing structured output labels and domain specific

features. Figures 2.5 and 2.6 further indicate that our features and sampling methodology

boost accuracy for other learned edge detectors. Figure 2.4 shows qualitative examples of

classifier’s results. Results of the second experiment appear in Figure 2.8. These curves

suggest that our method is very robust to inaccurate annotation. We see only small a small

drop in performance for noise levels up to U(−2.5mm,2.5mm), and our method continues to

achieve reasonable performance even with high noise introduced to the pathline.
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2.5 Conclusion

We introduced a novel method for edge classification in medical imaging with domain

specific features capable of effectively capturing edge contours across two imaging modalities.

In addition, we incorporate an atlas prior to edge classification and increase performance. We

show that to obtain top accuracy and edge localization, it is important to constrain positive

and negative sampling regions to areas of interest. Our experiments indicate that our method

out performs other edge detectors and show that it is robust to a prior error. Given that

many medical imaging techniques are built upon edge fields, we feel that this approach has

significant potential to a variety of applications.
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Chapter 3

Convolutional Neural Networks for Dense
Volume to Volume Labeling

3.1 Introduction

Imaging technologies such as Computed Tomography (CT) and Magnetic Resonance

(MR) produce a vast amount of volumetric data that radiologists and other medical profes-

sionals are required to analyze and evaluate. For clinicians and researchers alike, computer

assisted diagnostic and detection (CAD) systems produce valuable information often required

for comprehensive review of this data. Medical image segmentation plays a vital role in many

CAD systems by providing detailed annotation and labeling, which in turn allows a more

exhaustive analysis to be carried out. We introduce two methods for automatic volume-to-

volume labeling, which classify each voxel of a medical image volume input into a finite

number of categories.

In most neurological studies, annotation and extraction of brain tissue is the first step

to a more sophisticated analysis. For example, brain volumetry [GDS13] and surface recon-

structions [TRN+06, FSTD99] require accurate and precise skull stripped scans. Furthermore,

the shape of the neurological structures such as gyrus and sulcus provide valuable information

in diagnosis of Alzheimer’s disease [TMW+01] and other neurological pathologies. Accurate

brain boundary localization can aid in the characterization of these structures and subsequent
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disease diagnosis.

In addition, medical volume segmentation plays a major role in patient-specific

cardiovascular simulation, which, has emerged as an increasingly necessary method to non-

invasively obtain detailed hemodynamic data. This data is vital to developing new surgical

procedures [EMHMoCHAMI15] and linking hemodynamic factors with clinical outcomes

and disease progression [Mar14]. Construction of 3D cardiovascular model from imaging

data is a necessary but time consuming precursor to these types of simulations.

Automatic volumetric labeling is a challenging task, given the large anatomic vari-

ability and the computational complexity required to process 3D medical data. A popular

method to mitigate cost is to repeat a simple core operation on dense, overlapping windows.

These “sliding-window” approaches and patch-centric frameworks distribute the complexity

into smaller, more manageable operations but limit the long-range modeling capabilities,

high-order correlations, and volume-wide information of the underlying classifiers. Com-

putational cost of the sliding window model is still steep, a cost which grows exponentially

in volumetric labeling, highlighting the need to move past patch-centric methodologies for

volume-to-volume labeling.

Recently, there have been an influx of approaches using deep CNNs aiming to

tackle image-to-image prediction. Fully convolutional neural networks (FCN), introduced

by [LSD15], represent a proof-of-concept for simultaneous performance and full image

segmentation/labeling. [LSD15] modified the VGGNet architecture [CSVZ14] by adding

element-wise summations to link coarse predictions to layers with finer strides. [XT15]

applied another approach to image-to-image object boundary detection creating the popular

Holistically-Nested Edge Detector (HED), and tackled two key issues of this long-standing

vision problem: (1) holistic image training and prediction; and (2) multi-scale feature learning.

HED, guided by deep supervision [LXG+15], merges boundary predictions from multiple

resolutions to resolve ambiguities. However, CNN architectures such as FCN and HED are
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fundamentally limited by their fine-to-coarse structure. [RFB15] extended FCN by replacing

summation layers concatenation and convolution layers to produce fine-to-fine predictions,

but made no attempt to learn multi-resolution features.

Early approaches to volume-to-volume prediction treat each slice of the volume as

a 2D image, and use post-processing to recombine the results back into 3D. This approach

lacks the capability to model volumetric features and therefore has fundamental context

limitations. Some patch-to-patch methodologies have been proposed; [MTKM15] outlines

one such strategy, where appearance features and a-priori information are used as input to

a 3D extension of the popular structured forest classifier [DZ15] to make cardiovascular

boundary predictions. That work side-steps the inefficiency of patch-centric classifiers by

employing a specialized sampling scheme and limiting prediction to a narrow set of structures.

Other volumetric approaches using CNNs have been attempted, such as [ZLG+15], but these

architectures continue to incur a high computational cost which make them unsuitable for

volume-to-volume tasks.

In addition to the computational challenges inherent in volume-to-volume prediction,

medical volume labeling requires greater precision than typical natural image tasks due to the

prevalence of small, yet important structures that need to be detected. Unlike natural images,

where small structures can generally be ignored, localizing small abnormalities and subtle

anatomical changes is crucial for diagnosis and patient care in applications that include cancer

tumor detection, coronary atherosclerosis, neuroscience, and others.

Here, we introduce two volume-to-volume frameworks that emphasize efficiency,

precision and a fine-to-fine strategy coupled with nested multi-level and multi-scale learning.

First, we describe our extension of the popular 2D-CNN HED [XT15] for volumetric labeling

then build upon this work and introduce a new architecture, I2I-3D, aimed at tackling three

critical issues in precise volume-to-volume labeling: (1) efficient volumetric labeling of

medical data using 3D, volume-to-volume CNN architectures, (2) precise fine-to-fine and
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volume-to-volume labeling at input resolution, (3) nested multi-level, multi-scale feature

learning. We evaluate our approach on two challenging medical imaging task across two

publicly available datasets. We compare against multiple baselines including 2D and 3D

CNN strategies and achieve state-of-the-art performance on vessel wall segmentation, brain

boundary detection and skull stripping.

3.2 Dense Volume to Volume Labeling

3.2.1 Existing Pixel Level Prediction

In this section, we describe, in detail, the foundations of our approach to dense

volume-to-volume labeling. We begin by discussing related CNN approaches, in particular

those that perform dense pixel predictions on 2D images. Many CNNs that perform dense

pixel-level predictions derive from VGGNet [CSVZ14]. Each unit in VGGNet contains 2-3

successive convolution layers followed by a pooling layer. Convolution layers produce robust

features, and pooling layers distill these features into a smaller spatial extent, allowing diverse,

long-range responses to be learned later in the network. As these units are repeated, features

are pooled and processed at a lower resolution to form more abstract features with a larger

spatial footprint. This architecture has proven powerful in a number of classification tasks

due to its rich set of features across multiple scales but it creates two critical challenges for

image-to-image or volume-to-volume prediction: (1) the most powerful representations, in

terms of complexity and depth, also have the lowest resolution and (2) coarse resolution

information cannot be used at finer resolutions, therefore no coarse level guidance exists.

Some approaches aim to mitigate these limitations. [LSD15] adapted the VGGNet

architecture by adding skip connections which link coarse resolutions to finer ones. [XT15]

proposed an alternative adaptation, where multi-resolution outputs are fused through weighted

aggregation, producing a state-of-the-art boundary detector. In yet another adaptation,

[HCH+16] added upsampled skip connections to the HED architecture to increase recall of
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higher resolution side-outputs. These approaches avoid the fine-to-coarse limitations but they

do not tackle these limitations directly. Furthermore, [HAGM14a] show that directly merging

low resolution features with finer ones is sub-optimal. An inspection of the outputs of these

networks reveals coarse predictions that leave major ambiguities which can only be delineated

during post processing. HED produces many thick, orphan edges and requires post-processing

with non-maximum suppression and morphological thinning to increase resolution [XT15].

Outputs from FCN have been refined via conditional random fields to increase precision of its

coarse predictions as detailed by [ZJRP+15]. Recently, the UNet architecture used an end-to-

end approach to neuronal segmentation [RFB15]. UNet’s architecture merges resolutions and

applies a penalty for poor localization, but it does not directly learn nested multi-scale features,

furthermore, its layer density make it too inefficient for volume-to-volume predictions. Some

of these limitations of UNet were addressed in a follow up work UNet-3D [CALR17], how-

ever, similar to other 3D networks such as [TSR+15], [CALR17] does not, directly, account

for multi-scale features. All of these approaches, therefore, have fundamental limitations

to precise end-to-end, volume-to-volume prediction in many application of medical image

analysis.

3.2.2 From Fine-to-Coarse to Fine-to-Fine

We start by examining different multi-resolution merging configurations: downstream

merging, upstream merging, nested multi-level merging and multi-level merging with directed

multi-scale learning. Figure 3.3 illustrates of these four strategies. Downstream-merging starts

by producing multiple predictions at different resolutions then, as the name suggests, merges

the multi-resolution predictions downstream, typically through aggregation. As depicted in

Figure 3.3(a), in this type of architecture processing moves strictly fine-to-coarse and the

burden of fine localization is placed solely on early layers. An alternative strategy, illustrated in

Figure 3.3(b), is to merge resolutions upstream by pulling deeper/lower resolution predictions
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directly into higher resolution side-outputs. This upstream merge strategy aims to alleviate

the burden on early stage side-outputs by providing coarse prediction information, and in-turn

the higher resolutions features are freed-up to resolve the ambiguities left by the coarse

predictions. The final strategies appears in Figure 3.3(c) and 3.3(d). In contrast to the other

two approaches, these strategies integrate multiple resolutions at the feature level rather than

at the prediction level. Architectures following the strategy depicted in Figure 3.3(c) integrate

multi-level features but do not use any sort of multi-scale learning, discouragin multi-level

representation since their in no cost for failing to do so. Our strategy, shown in Figure 3.3(d),

combines low and high resolution features through a resolution ‘mixing’ procedure, and

rewards mult-scale integration at each stage with multi-scale loss thereby directly enforcing

multi-resolution merging. We discuss these strategies in greater detail in subsequent sections.

3.2.3 Nested Multi-level Learning

Our framework tackles three crucial aspects of fine-to-fine, volume-to-volume pre-

diction: (1) efficient labeling of 3D medical volumes, (2) holistic volumetric training and

prediction of precise voxel-level labels (3) nested multi-scale, and multi-level feature learning.

By making high resolution predictions at deeper layers, we enable the network to produce

predictions that benefit from network depth, maintain higher precision and learn the complex

interaction between multiple scales.

I2I builds upon previous works in holistic prediction by introducing nested coarse-to-

fine feature learning which turns the typical fine-to-coarse network into a precise fine-to-fine

classifier. The fine-to-coarse path of I2I resembles popular architectures and contains several

cascaded units each consisting of two to three convolution layers followed by a pooling layer.

Adding side-outputs and weighted aggregation to this fine-to-coarse network results in our

HED-3D architecture, which, efficiently produces accurate results but, unsurprisingly, the

labels lack precision.
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To create our I2I framework, we append an additional coarse-to-fine structure that

systematically merges fine and coarse features. Each stage in our coarse-to-fine path carries

out representational and spatial mixing, combining coarse and finer resolution responses

into new higher resolution predictions. We use deep supervision [LXG+15] at each stage

to enforce a multi-resolution loss function, rewarding integration of coarse representations

into finer features. Finer resolution features benefit from abstract features and coarse level

guidance, culminating in an output layer with the finest resolution, as well as the most

predictive power. The favorable characteristics of these underlying techniques manifest in I2I

being accurate, precise and computationally efficient.

3.2.4 Formulation

We denote our input training set of N volumes by S = {(Xn,Yn), n = 1, . . . ,N}, where

sample Xn = {x(n)j , j = 1, . . . , |Xn|} denotes the raw input volume which is paired with a

corresponding ground truth label map Yn = {y(n)j , j = 1, . . . , |Yn|},y(n)j ∈ {1, ..,K} where K is

the total number of semantic classes. Our examples use only two classes (K = 2), however

in this formulation, we define the generic loss formulation for K classes. As we consider

volumes independently, n is dropped for simplicity. Our goal is to learn network parameters,

W, that produce M outputs, each containing voxel labels at different resolutions. Each output

has a resolution of 1
2m−1 of the input resolution. All outputs use a classifier whose weights are

denoted w = (w(1), . . . ,w(M)). Loss for each of these outputs is defined as:

Lout(W,w) =
M

∑
m=1

`
(m)
out (W,w(m)), (3.1)

where `out denotes the volume-level loss function. Loss is computed over all voxels in a

training volume X and label map Y . Specifically, we define the following cross-entropy loss

function used in Eqn. (3.1):
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`
(m)
out (W,w(m)) =−∑

k
∑
j∈Yk

logPr(y j = k|X ;W,w(m)), (3.2)

where Yk denotes the voxel truth label sets for the kth class. Pr(y j = k|X ;W,w(m)) =σ(a(m)
j )∈

[0,1] is computed using sigmoid function σ(.) on the activation value at voxel j. We obtain

predictions Ŷ (m)
out = σ(Â(m)

out ), where Â(m)
out ≡ {a

(m)
j , j = 1, . . . , |Y |} is the output of layer m.

Putting everything together, we minimize the following objective function via standard

stochastic gradient descent:

(Ŵ, ŵ) = argmin
W,w

(Lout(W,w)), (3.3)

During evaluation, given image X , we obtain label map predictions from the output

layers via the following operation: Ŷtop = Net(X ,(W,w)), where Net(·) denotes the label

maps produced by one of our networks.

3.3 Network Architectures

In this section, we discuss the architectures used for volume-to-volume prediction.

Figures 3.1 and 3.2 depicts our two architectures, HED-3D and I2I-3D.

3.3.1 HED-3D

With 16 single stride convolution layers and multiple stages at different resolutions,

VGGNet [CSVZ14] provides a great starting point for accurate volume-to-volume labeling.

Our fine-to-coarse classifiers build upon VGGNet’s structure by adapting it to 3D and making

domain specific modifications. First, we reduce the number of filters in the first two layers

(conv1 2 and conv1 2) to 32 from 64. Medical volumes contain less texture and other low-

level complex cues, therefore fewer low-level features are required. We also remove all fully

connected layers and the fifth pooling layer (pool5). We make two optional modifications: 1)
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the type of pooling used is modified (max or average), and 2) we change the total number of

stages (resolutions).

Our vascular boundary detector uses average pooling with either four (I2I-3D) or five

stages (HED-3D); all of the skull stripping and brain boundary classifiers use max pooling

and four stages. Modifications for each application are summarized in Table 3.1. To build

our HED-3D classifier, we add side-outputs and deep supervision just prior to each pooling

layer and a fusion layer which merges each side output with learned weighted aggregation.

HED-3D uses downstream merging as depicted in Figure 3.3(a).

3.3.2 Densely Connected HED-3D

We also introduce an alternative 3D classifier that merges resolutions upstream by

linking deeper side outputs directly to shallower ones with skip connections. This network

uses a simple structure that merge deeper, lower resolution responses with weaker, higher

resolution side outputs. This method differs from HED in how in that each side output

is merged with all those at lower resolution. This architecture was recently proposed in

[HCH+16]; we follow design modifications outlined there, applying them to our HED-3D

architecture. We report results of this classifier as an alternative strategy for multi-resolution

merging. We refer to this architecture style as densely connected HED-3D, or dHED-3D for

short. This strategy is depicted in Figure 3.3(b).

3.3.3 I2I-3D

I2I-3D uses a coarse-to-fine structure to systematically integrate multiple resolutions

and learn nested multi-scale features. This structure follows an inverse pattern of the fine-

to-coarse structure described in Section 3.3.1. Upsample layers replace pooling layers

and higher resolutions appear later in the network. The coarse-to-fine path is divided into

distinct stages, each of which take inputs from multiple resolutions. In each stage, a series
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of specialized convolution layers mix these two inputs. Initially, the two representations

are directly mixed, channel by channel, via a ‘mixing layer’. Mixing layers perform two

operations simultaneously: concatenation and channel pooling via a 1×1×1 convolution

layer. These operations are conceptually similar to ‘reduction’ layers used by [SLJ+15],

but differ in purpose. In addition to maintaining network efficiency, these layers produce

an amalgam of features from two resolutions. Feature mixing results are passed to two

convolution layers that spatially mix the two streams. Effective multi-resolution mixing is

enforced by deep supervision (DSN) at the end of each stage. DSN plays an important role

in our architecture, as it forces each stage to merge powerful low resolution features with

finer resolution features to minimize loss at each stage. After these multi-resolution features

are learned, all lower resolution outputs are removed leaving a single high resolution output.

Figure 3.3(d) depicts the merging strategy used by I2I-3D.

3.4 Implementation

Our 3D-CNN, publicly available at https://github.com/jmerkow/I2I implementation is

based on the popular Caffe library [JSD+14]. Volume manipulation is performed using the

ITK library [JMI15].

3.4.1 Data Preparation

Prior to training and testing, each volume is cropped into 96×96×48 overlapping

segments following a volume-wide voxel intensity whitening step. Each training volume

segment overlaps its neighbors by an eighth of the segment size (12×12×8 voxels) resulting

in approximately 37.5% overlap during training. To avoid class imbalances, only volumes

with over 0.125% positively labels voxels were trained on (approx. 500 of 442,368 voxels).
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3.4.2 Network training

We begin by describing common training procedures among our architectures. All of

our network’s fine-to-coarse weights are initialized from pretrained weights. Our pretrained

weights were generated by training a generic fine-to-coarse architecture for a segmentation

task. This network was initialized with using Xavier random initialization and trained with

a high learning (1e-7) for a fixed number of epochs (25). Hyper parameters for this process

were not tuned, the highest learning rate which did not diverge for at least 25 epochs was

selected. This process simply generates meaningful weights for initializing networks when

training for other tasks. All other hyper-parameters were optimized based on performance on

a validation set.

All data is shuffled after every epoch during training. When training to predict

vascular boundaries, segments belonging to the same volume were shuffled followed by a

randomization of the order of volumes; all segments from an individual volume were trained

on prior to moving onto the next volume in the sequence. After each epoch the intra-volume

segments were reshuffled as was the order of the volumes. On brain and skull data, segments

from all volumes were shuffled together and randomized again after every epoch. Given that

all images in our brain and skull datasets were a single modality, intra-volume shuffling did

not improve results. The network-wide learning rate was reduced using the step policy:

LR(epoch) = baseLR ·γb
epoch
step c (3.4)

Update optimization was calculated using standard stochastic gradient. Hyper-parameters

used during training are summarized in Table 3.1.

I2I-3D is trained in three phases. In first phase, only the fine-to-coarse path of I2I-

3D is trained, hyper-parameters are identical to those used for our HED-3D classifier (as

summarized in Table 3.1). Both the first phase I2I-3D and HED-3D are trained with a side

42



Table 3.1. Table of hyper-parameters and network configurations we use to train our archi-
tectures on different tasks. Parameters were selected from a sweep based on validation set
performance criteria. HED-3D hyper-parameters were used to train the fine-to-coarse path of
our I2I-3D framework. I2I-3D values listed here refer to those used during the second phase
of training.
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output and loss layer at each scale (as described in 3.1), and an additional output with loss at

the fusion layer; an example illustration of this network (with 5 scales) is depicted in Figure

3.1. The fusion layer of HED-3D is used during evaluation, as it provided the best results.

During training, we drop balanced cross entropy loss as used in [XT15]. Given that we

train on volumetric segments as described in Section 3.4.1, this cost function was no longer

necessary. Training a powerful fine-to-coarse classier is critical to producing an accurate

and precise fine-to-fine network; this ensures meaningful representations at each resolution,

creating a strong starting point for multi-scale integration. During the second phase, we attach

the coarse-to-fine path and initialize each layer as outlined in Section 3.4.3. We train phase

two for fewer epochs per step with a higher learning rate. During this training phase, weights

in the fine-to-coarse path are fixed by setting their learning rate multipliers such that they

update 100 times slower than that of the rest of the network. Given that these additional

weights are freshly initialized, we increase the learning rate to compensate. These learning

rates force the coarse-to-fine path integrate their multi-resolution inputs to minimize loss

rather than update fine-to-coarse features. During the final phase, we lower the network-wide

learning rate to a tenth of the previous rate, and return all learning rate multipliers to their

original values to train for an additional 3-4 epochs.

3.4.3 Weight Initialization

Since the secondary pathway aims to incorporate complex, low resolution information

into higher resolution responses, it is important that this information is not degraded when

incorporated into higher resolutions. We preserve these representations through careful

initialization of the coarse-to-fine layers before training phase 2. Each stage is initialized

such that their output is an identity mapping of the higher resolution inputs. Specifically, we

initialize the parameter weights of each mixing layer to one at locations corresponding to finer

resolution inputs and all others are set to zero. The two convolution layers are initialized with

44



a one in the spatial center along the channel diagonals and otherwise zero. This initialization

strategy forces each stage to output only higher resolution features, the weights in the fine-to-

coarse path are fixed so, in order to reduce loss at each resolution, coarse representations must

be integrated. In this way, we leverage the power of the lower resolution features to make

accurate, though imprecise, predictions and allow multi-resolution mixing to occur naturally.

With random initialization of these layers, the signal from the fine-to-coarse layers become

corrupt and the network cannot integrate multi-scale features efficiently. We found through

experimentation that when these layers are initialized randomly, the full I2I network performs

sub-optimally.

3.5 Experimentation and Results

In this section, we outline our experimental setup and report performance of the two

algorithms, HED-3D and I2I-3D and compare them to multiple baselines. On all tasks we

compare our method to UNet-3D [CALR17], HED [XT15], and dHED-3D as described in

Section 3.3.2. On our brain-related tasks, we compare to two additional baselines, the All-

CNN architecture proposed by [KUH+16] and the popular ROBEX [ILTT11] classifier. On

vascular boundary detection, we compare against SE-3D [MTKM15] as well as Canny-3D.

During experimentation, each network was trained as outlined in Section 3.4. The 2D

classifier, HED, was trained on slices taken from each volume in the training set following

the steps and hyper-parameters outlined by [XT15]. For evaluation, HED label maps were

computed on sequential 2D slices and then combined back into a 3D volume. All CNN

classifiers were trained with with the hyper-parameters that resulted in the best performance

on a validation set during a parameter sweep. Hyper-parameter values are summarized in

Table 3.1.
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3.5.1 Datasets

First, we evaluate our frameworks on the LONI Probabilistic Brain Atlas, commonly

called LPBA40, dataset performing two separate tasks: skull stripping and brain-boundary

detection. Atlas information plays important roles for visualization, interpretation and analysis

of brain data.

LPBA40 is a publicly available dataset of 40 MRI volumes, each accompanied with a

manually annotated brain mask used for skull stripping. Examples of data from this dataset

can be found in Figure 3.4. Brain boundaries, for both training and testing, were obtained

from brain masks through morphological manipulation. This dataset was randomly split into

25 training volumes, 5 validation volumes, and the remaining 10 were used for testing.

Second, we evaluate our approach on blood vessel boundary detection an extension of

the dataset used by [MTKM15], that has been expanded to incorporated a wider variety of

physiologies and anatomical regions. The dataset was expanded from the oringal 38 used by

[MTKM15] with 65 additional volumes to form a dataset of 93 volumes containing, roughly,

an equal number of MR and CT volumes. Though many approaches train separate networks

for each modality, we found that training a single network without regard to modality (after

appropriate preprocessing steps) to be more efficient. An example of data from this dataset can

be found in Figure 3.5. The dataset contains various arterial vessel types, but only one structure

is annotated per volume. Each volume was captured from individual patients with a wide

variety of pathologies including: aneurysms, stenoses, peripheral artery disease, congenital

heart disease, and dissection as well as normal physiologies. Each volume is accompanied

with an expertly annotated 3D model, built for computational blood flow simulation in the

open source SimVascular package [UWM+13]. All volumes from this dataset are publicly

available1 at the vascular model repository [WOJ13]. During experimentation, these volumes

were split into three sets: training, validation, and testing each containing 67, 7 and 19

1http://www.vascularmodel.com
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volumes respectively. Each set contains approximately the same ratio of CT and MR volumes

(∼50% of each). Volumes in this dataset are under-annotated and a mask was introduced

during evaluation so that only voxels inside annotated vessels and those within 20 voxels of

the vessel wall were considered. Phase 1 and our HED-3D networks were initialized with

pre-trained weights learned from segmenting entire vessels.

3.5.2 Metrics

Skull Stripping

For skull-stripping evaluation, three standard metrics are used: precision-recall curves,

DICE score, and F-measure. To fully evaluate segmentation map quality, we use the F-measure

metric which is defined as follows:

Fβ =
(1+β 2)precision× recall

β 2 precision+ recall
. (3.5)

We set β 2 = 0.3, as suggested by other works, which stresses importance of the precision

[HCH+16].

Boundary Detection

On boundary detection tasks, we evaluate using performance benchmarks introduced

by [MFTM01] which are standard protocols for evaluating boundary contours in natural

images. Voxel overlap is not well-suited for boundary detection evaluation as it fails to account

for any localization error in boundary prediction and over-penalizes usable boundaries that do

not perfectly overlap with ground truth boundaries. The BSDS metrics use correspondence to

match true boundaries with predicted boundaries. Corresponding voxels contribute to true

positive counts, while unmatched voxels contribute to fall-out and miss rates. Our code that

extends these metrics to 3D is publicly available at https://github.com/jmerkow/segbenchpy.

We report four performance measures: dataset-fixed threshold F measure (ODS), best per-
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image threshold F measure (OIS), average precision (AP) and precision-recall curves.

On all datasets and tasks, metrics were collected through a threshold sweep of the

continuous label map outputs; hits, misses and false alarms are counted at every threshold on

each volume. Using these counts, we generated precision-recall curves by summing counts at

each threshold across the entire dataset. ODS, DICE, Fβ scores were calculated using these

dataset-wide aggregated counts, but OIS scores were found by averaging the best F score per

volume. 3D non-maximal suppression was performed on all boundary label maps prior to

thresholding.

3.5.3 BSDS Results

Table 3.2. Summary statistics of BSDS results with and without non maximal suppression.
I2I-2D produces significantly better performance when evaluated against other state-of-the-art
algorithms without post-processing. We produce more precise pixel level responses and
display competitive performance with post processed responses.

ODS OIS AP
Human .80 .80 -

With NMS
Canny 0.600 0.640 0.580
SE-Var [DZ15] 0.746 0.767 0.803
DeepEdge [BST15] 0.753 0.772 0.807
DeepContour [SWW+15] 0.756 0.773 0.797
HED [XT15] 0.782 0.804 0.833
I2I-2D (ours) 0.779 0.797 0.789

Without NMS
SE-Var [DZ15] 0.589 0.601 0.599
HED [XT15] 0.583 0.596 0.570
I2I-2D (ours) 0.627 0.635 0.729

In addition, to the 3D medical tasks, we validate our approach in 2D to show its

efficacy in for precise end-to-end predictions. We show results of our classifier’s robust and

precise classification without post-processing by comparing the I2I principles in a 2D network

for a popular 2D task, boundary detection, against state-of-the-art classifiers in that area.
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[MFTM01] is a highly competitive dataset for natural images and has driven object boundary

and edge detection since its creation in 2001. BSDS is composed of 400 images with manually

labeled ground truth contours. This dataset has a predefined split with 200 training, 100

validation, and 100 test. Recently, [XT15] produced near human level accuracy on this dataset,

but this result relies heavily on using non-maximum suppression and morphological thinning.

We evaluate our method against the state-of-the-art result with and without post-processing.

We start by loading VGGNet pre-trained weights, but increase the number of training

iterations to 20,000, keeping the starting base learning rate at 1e-6, which is decimated after

5000 iterations, all other hyper-parameters remain unchanged. We found that the secondary

training stage (supervision on the coarse-to-fine path) provided little benefit for this task, so

these outputs were removed, and we trained the entire network with only supervision at the

top most output. While training the full network, we increased the learning rate step size so

that the the learning rate was reduce by a factor of 10 every 12,000 iterations, and decreased

the batch size to 5. We trained for 24,000 iterations then completed training with increased

learning rate multipliers in the fine-to-coarse path for only 6000 iterations.

Without post-processing our method significantly out-performs the current state-of-the-

art, HED which is clear from Figure 3.7. Qualitative results appear in Figure 3.6 which shows

much finer resolution responses from I2I-2D than HED, but maintains near state-of-the-art

accuracy and compares favorably to structured forests.

3.5.4 LPBA40 Results

On the LPBA40 dataset, we evaluate our approach on two tasks, brain boundary

detection and skull-stripping. Skull stripping networks were trained on the brain-mask ground

truth included in the dataset. For brain-boundary detection, new networks were trained on

brain boundary voxels, these annotations were derived from the original brain mask ground

truth data through morphological operations. Example detection for both skull-stripping and
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Table 3.3. Results on brain boundary detection. Summary statistics of our approach and
baselines.

ODS OIS AP

HED [XT15] 0.688 0.695 0.574

[KUH+16] 0.423 0.425 0.199
dHED-3D 0.613 0.619 0.448
HED-3D (ours) 0.632 0.639 0.489
UNet-3D [CALR17] 0.680 0.683 0.537
I2I-3D (ours) 0.714 0.717 0.600

brain boundaries appear in Figure 3.4.

Brain Boundary Detection

First, we discuss results from our brain boundary detection evaluation. Figure 3.8

depicts precision/recall curves; a table of summary statistics appears in Table 3.3. We compare

our approaches with HED applied to slices, dHED-3D, UNet-3D [CALR17], and [KUH+16].

Here, we omit Canny-3D results as brain-boundary detection requires context information

that canny detectors cannot model resulting in especially poor performance.

Interestingly, we notice that HED achieves second best performance on this task.

Each volume is relatively registered to a reference skull, and there is little variation along

the other two axes. We theorize that the performance boost from 3D features is, therefore,

not as advantageous. When evaluating on a more diverse dataset, with variation along all

axes, we suspect that we would see HED’s performance drop significantly, as we do in

vascular boundary detection. Furthermore, we observe in Figure 3.4 that HED boundary

predictions are considerably thicker than any of the predictions from the 3D classifiers. It is

apparent that HED relies heavily upon non-maximal suppression, where as the 3D classifiers

produce higher resolution predictions. We also notice artifacts in predictions from the 2D

classifier in the axial and sagittal planes, likely, due to the lack of 3D contextual cues. When

comparing UNet-3D to our approach, we see that our classifier consistently out-performs
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UNet-3D. Particularly, we notice, from the performance curves in Figure 3.8, that UNet-3D

exhibits similar precision/recall trade-offs, but at a consistently lower precision rate, providing

evidence for the effectiveness of directly learning nested multi-scale features. [KUH+16]

shows poor performance on brain boundary detection, we theorize that the required large-

scale contextual information for boundary detection is not captured by this network given its

shallow depth and few spatial representations. All in all, I2I-3D significantly outperforms

all other classifiers according to all metrics with an increase of approximately 5% in ODS

and OIS scores, and roughly 12% in average precision. I2I-3D achieves a particularly large

improvement in precision as observed from the shape of the precision/recall curve in Figure

3.8.

Skull Stripping

For the skull stripping task, we compare performance of our approaches with HED

applied to slices, dHED-3D, UNet-3D [CALR17], the ROBEX skull stripping application

[ILTT11] and the current state of the art, [KUH+16]. Table 3.4 shows summary statistics and

precision recall curves appear in 3.8. Again, we observe that our I2I-3D classifier achieves top

performance according to all metrics. Our 3D-CNN approaches show a large improvement

in performance over the popular ROBEX method [ILTT11] and the All-CNN network in

[KUH+16].

Table 3.4. Results on skull stripping. Summary statistics of our approach and baselines.

DICE Fβ

HED [XT15] 96.18 0.9680
ROBEX [ILTT11] 96.60 0.9698

dHED-3D 97.06 0.9761
[KUH+16] 97.34 0.9775
HED-3D (ours) 97.65 0.9809
UNet-3D [CALR17] 97.78 0.9814
I2I-3D (ours) 97.85 0.9826

51



When comparing HED-3D and HED, we find evidence of the benefit of using 3D-

CNNs over their 2D counter parts. A comparison of HED-3D and I2I-3D, shows an increase

in the DICE and Fβ scores, indicating that our classifiers have greater precision without loss

of recall. On this task, we notice that UNet-3D and I2I-3D have much closer performance

measures, however I2I-3D performance is consistently better across all metrics. We observe

from Figure 3.4, as seen in brain boundary detection striking noise artifacts in predictions

from the 2D-CNN, HED. We can infer that HED produces these artifact in the axial and

sagittal views (columns 4 and 6 from right to left of Figure 3.4) as a result of its inability to

capture 3D contextual information. We do not see any such artifacts in any 3D classifiers, but

rather smooth predictions across all three dimensions. [KUH+16] performs much better at

this task than at brain boundary detection. Skull stripping requires shorter range context than

a boundary detection, we theorize that this causes the disparity between performances on skull

stripping and brain boundary detection for this classifier. Lastly, we observe that dHED-3D

has the worst performance across all 3D-CNNs, indicating that its upstream merging strategy

is not only less effective but can also be detrimental.

3.5.5 Vascular Boundary Results

Table 3.5. Results on vascular boundary detection. Summary statistics of our approaches and
baselines.

ODS OIS AP

SE-3D [MTKM15] 0.303 0.316 0.149
Canny-3D 0.351 0.545 0.241
HED [XT15] 0.529 0.542 0.182

dHED-3D 0.454 0.463 0.271
HED-3D (ours) 0.515 0.528 0.362
UNet-3D [CALR17] 0.550 0.562 0.386
I2I-3D (ours) 0.567 0.580 0.421

Next, we turn to the more difficult problem of vessel boundary detection. This dataset
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is considerably larger than the LPBA40 dataset, and spans multiple imaging modalities. Image

data is collected from various anatomical regions and volume orientation is not registered to a

reference, making this dataset more challenging than the previous ones. In addition to the

CNN baselines, we compare HED-3D and I2I-3D to the popular Canny edge detector, and the

current state-of-the-art in vascular boundary detection, SE-3D [MTKM15].

Precision/recall curves appear in Figure 3.10 and summary statistics are shown in

Table 3.5. Figure 3.5 depicts example detection of I2I-3D and HED-3D. I2I-3D achieves

top performance across all metrics with an ∼3% increase in ODS and OIS scores, and ∼9%

increase in average precision score to its closest competitor (UNet-3D). Interestingly, we

notice that HED produces high ODS and OIS scores. However, all 3D methods have higher

average precision and we observe in the precision/recall curves that they achieve a sustained

improvement to precision.

We observe that dHED-3D does not perform as well as either of the other 3D-CNN

methods, providing evidence that directly merging lower resolutions into higher ones is

not effective. Furthermore, precision-recall curves show that I2I-3D consistently improves

precision across all recall values over other 3D-CNN frameworks. This indicates that our

fine-to-fine multi-scale architecture increases localization resolution without loss of recall. In

Figure 3.5, we see the qualitative results of our fine-to-fine architecture. We observe in this

figure, particularly when compareing Figures 3.5(e) and 3.5(h), 3.5(f) and 3.5(i), that I2I-3D

produces more precise boundaries than HED-3D.

3.6 Conclusion

We have introduced two network structures, HED-3D and I2I-3D, that address major

issues in efficient volume-to-volume labeling. Our HED-3D framework demonstrates that

processing volumetric data natively in 3D, has performance benefits over its 2D counterpart.

Our I2I-3D framework efficiently learns multi-scale hierarchical features and generates precise
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voxel-level predictions at input resolution. We demonstrate, through experimentation on two

datasets, that our approach produces accurate and precise volume-to-volume labels. We

compare our approach to a powerful 2D-CNN classifier, various strategies to multi-resolution

merging with 3D-CNNs, as well as popular and state-of-the-art methods for each task. We

provide our source code and pretrained models to ensure that our approach can continue to be

applied to wide variety of medical applications and domains.
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Figure 3.1. An illustration of the network architectures, HED-3D. HED-3D combines
multiple side-outputs at different scales and uses simple aggregation to fuse them into a final
output at the scale of the input volume. The number of channels is denoted on the left of each
convolution layer and arrows denote network connections and operations.
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(a) (b) Input Data

Hidden Layer

Output Layer

Mixing Layer

(c) (d)

Figure 3.3. Depictions of different multi-resolution merge strategies. (a) downstream merging
where higher resolution predictions are fused later in the network. (b) upstream merging where
coarse predictions are connected directly to finer resolution predictions, earlier in the network,
(c) feature merging where representations are merged rather than side-outputs. Lastly, the
architecture in (d) combines multi-level features similar to (c), however, it also directly learns
multi-scale features through mixing and applying multi-scale loss at each resolution. Method
(a) corresponds to the strategy used by HED and HED-3D and is described in Section 3.3.1.
As described in Section 3.3.2, method (b) illustrates the approach used by dHED and dHED-
3D. Method (c) is the strategy used by UNet. I2I uses method (d), described in greater detail
in Section 3.3.3.
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Figure 3.5. Results of our HED-3D and I2I-3D classifiers on vessel boundary detection. (a)
Input volume and ground truth (in blue), (b) HED-3D result, (c) I2I-3D result. (d),(g) vessel
cross section and ground truth (in blue). (e),(h) HED-3D cross section result. (f),(i) I2I-3D
cross section result.
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Figure 3.6. Illustration of the proposed I2I architecture. Each row depicts state of the art
edge detection from different algorithms without non maximum suppress. We show clear
advantage in accuracy over Canny and Structured Forests, and greater precision than HED,
while maintaining overall performance.
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Figure 3.7. Precision recall curves comparing I2I-2D with the state of the art in natural image
edge detection without non maximal suppression post-processing.
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Figure 3.8. Results on brain boundary detection. Precision recall curves comparing our
approach with baseline methods.
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Figure 3.9. Results on skull stripping. Precision recall curves comparing our approach with
popular methods and baseline methods.
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Figure 3.10. Results on vascular boundary detection. Precision recall curves comparing our
approach (HED-3D and I2I-3D) with state-of-the-art and our baseline methods.
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Chapter 4

Cardiovascular Model Construction with
Convolutional Neural Networks

4.1 Introduction

Patient-specific simulations of cardiovascular hemodynamics [TF09] are gaining in-

creased clinical utility for improving cardiovascular disease treatment [Mar13, TBT+14].

Hemodynamics simulations are currently used in myriad cardiovascular applications, in-

cluding analysis of atherosclerotic plaque progression [SEM+11], development of novel

surgical approaches for treatment of congenital heart disease [EMHMoCHAMI15], novel

cardiovascular graft design [MBR+09], improved surgical planning [WTT+17] and as an

accurate diagnostics tool for coronary heart disease [TFM13]. Simulation results have also

been used to study intra-cranial and abdominal aneurysms [KSVS17, HT08], pulmonary flows

and stenosis [dLDM+96, SKM+15], and coronary stents and grafts [MPC+02, GMY+12,

RCSF13, RKM16]

To translate these tools to the clinic, studies on large patient cohorts are increasingly

required in order to statistically correlate simulation outputs with clinical outcomes. However,

production of accurate hemodynamics simulations requires construction of high quality three-

dimensional patient-specific cardiovascular models. Cardiovascular models are typically built

manually using a variety of image segmentation tools that generate vessel surfaces which
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are refined and merged to form the final 3D cardiovascular anatomic model. Most available

image segmentation algorithms require method-specific parameters, which require substantial

tuning to produce accurate segmentations. This process is not only cumbersome and time

consuming for non-expert users but also introduces variation into simulation results [NUZ00].

Manual model construction is similarly time-consuming and requires expert knowledge of

cardiovascular imaging and anatomy. As a result, cardiovascular model construction currently

represents a major bottleneck for large-scale studies requiring hemodynamic simulations to

be performed in large cohorts.

Software packages such as SimVascular [UWM+13], the Vascular Modeling Toolkit

(VMTK) [APB+08] and Cardiovascular Integrated Modeling and Simulation (CRIMSON)

[KF16] specialize in cardiovascular model construction and blood-flow simulation. Typically,

this process, (Figure 4.1), begins by loading medical image volume data and constructing

pathlines along vessels, then building the model one vessel at a time through 2D segmentation

of cross-sectional slices at discrete locations along the pathlines. Next, these 2D cross sections

are oriented in 3D space and interpolated to form a vessel surface, and multiple vessels are

merged, through Boolean operations, into a final 3D model.

In this work-flow, segmentation (Figure 4.1(c)) is by far the most time consuming

step, often taking several days to build sufficiently complex models. In practice, users often

opt to manually segment vessels due to inadequacy of current automated methods, which

exacerbates this bottleneck, since a large number of segmentations (upwards of 50) are

typically required per vessel and there are often 10-100 vessels per model. In contrast, manual

pathline construction is a much simpler process, requiring identification of the vessels of

interest with a few mouse clicks per pathline which requires minutes to a few hours.

Despite the availability of automated image segmentation methods, such as level sets,

thresholding and region growing, they have not been widely adopted in the cardiovascular

modeling community due to several drawbacks. First, these methods usually require more ef-
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(a) (b) (c) (d) (e) (f)

Figure 4.1. The cardiovascular model construction work-flow used in SimVascular
[UWM+13]. Starting from (a) Image data, (b) users manually generate pathlines, (c) use
these pathlines to segment 2D cross section contours, (d) loft segmented contours into a 3D
model, (e) generate a numerically stable 3D geometric mesh, and finally (f) computational
flow simulations are calculated.

fort and time to properly tune algorithmic parameters. Second, they often produce un-realistic

segmentations that need to be manually edited. Recently, there has been an increase of ma-

chine learning approaches aiming to improve model construction efficiency through voxel and

pixel level labeling [MMKT16, MTKM15, KLN+16, CALR17, SWR+16, BRLF13]. These

methods use “ground-truth” segmented medical image volumes to train machine learning

models or neural networks to perform medical image segmentation. These methods require

no user interaction, a significant advantage that represents an opportunity to accelerate the

cardiovascular model construction process. However, a fully end-to-end model construction

methodology has yet to be proposed.

Our method, DeepLofting, combines a novel, spatially aware, CNN architecture with

automatic contour generation to perform automatic model construction of 3D cardiovascular

models from image and pathline data. By using our powerful CNN classifier, DeepLofting

eliminates the need for parameter tuning and contour selection during vessel segmentation,

allowing accurate and automatic model construction across a range anatomies and imaging

modalities without human interaction thereby significantly accelerating 3D cardiovascular

model construction. Central to DeepLofting is a novel neural network architecture, I2I-FC,
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which utilizes pathline contextual cues to accurately produce precise localization of vascular

structures. Our CNN embeds spatial processing into the I2I CNN classifier [MMKT16]

to form I2I-FC. Our I2I-FC architecture refines the prediction by the base I2I classifier

by enhancing vessel detection and ignoring extraneous vessels. From these segmentations,

contours are autonomously extracted and oriented into 3D space to create vessel surfaces.

Multiple vessel surfaces are automatically merged through Boolean operations to form a final

3D model. Our method requires substantially less user involvement and represents a critical

step forward in automatic 3D model generation.

4.2 Background and Related Work

4.2.1 Cardiovascular Model Construction

Construction of cardiovascular models from medical image data is a complex multi-

step process. Image segmentation plays an important role in all cardiovascular modeling

algorithms, however segmentation strategies differ depending on the application. These

strategies can be separated into two broad categories, 1) direct 3D methods, which generate a

model directly from image data and 2) 2D path-planning methods, which use the pathlines of

vessels to guide model construction. Here, we review relevant work and refer the reader to

comprehensive reviews of the various stages of cardiovascular model building for additional

information [SLLL02, LABFL09, Duf13].

Direct 3D Cardiovascular Model Building

In cardiovascular imaging, contrast enhancing agents are combined with magnetic

resonance (MR) or computed tomography (CT) imaging to produce 3D medical image vol-

umes where blood vessels produce high pixel intensities. Direct 3D cardiovascular modeling

methods leverage this property to construct approximate 3D surfaces of vessels for a given

image.
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Various strategies have been used to develop 3D cardiovascular model building meth-

ods. For example, [WLK+11] use a level set based algorithm that numerically solves partial

differential equations and propagates an initial surface to regions of high contrast. Other

methods use filters to enhance the pixel response of vessels allowing segmentations to be

obtained through thresholding. For example [FNVV98] uses the local pixel intensity Hessian

and [Law08] use the flux of image intensity along specific vectors to increase vessel visibility.

Image enhancement methods are often combined with active contours such as level sets to

improve performance for detection of the structures of interest [LC10, SDN+11].

Another common approach represents voxels as a graph of connected “nodes” and

edge and node values are used to partition a volume. Graph based methods, such as normal-

ized cut [Shi00], have been extended to vascular segmentation by incorporating information

such as tubular shape priors [Bau09], vessel-ness filter response [Wan16] and Hessian tensors

[WKN+16]. Other graph-based methods use a curvilinear computation and integer program-

ming [Tur13, Rob16] to identify tubular structures for vessel segmentation. Whereas other

approaches use a max-flow based optimization scheme which, when combined with Hessian

vessel-ness filters, has also been used for tubular structure segmentation [Pez16].

Direct 3D model building methods avoid the need for manual model construction,

making them the method of choice for most commercial and open-source medical image

processing software such as 3D Slicer [FBKC+12], the Insight Registration and Segmentation

Toolkit (ITK) [YAL+02], ITK-Snap [YPCH+06] and the Vascular Modeling Toolkit (VMTK)

[APB+08]. However direct 3D methods often require substantial image pre-processing and

tuning of method specific parameters on a case-by-case basis. This currently makes high

throughput cardiovascular model construction difficult to achieve with direct 3D methods.

69



Path-planning Model Building Methods

Path-planning uses a different approach and treats blood vessel networks as individual

tubular structures which are segmented by navigating along their path and merged to form a

final anatomic model. Pathlines indicate the path followed by particular vessels in the medical

image volume and traversing a volume along these pathlines results in a cross-sectional view

where one can easily view and outline the vessel lumen. Using pathlines to segment the each

vessel constrains the model construction process thereby reducing difficulties in accurately

localizing vessel surfaces.

Figure 4.2 shows a typical pathline based model building procedure used by multiple

software packages [UWM+13, KF16]. This work-flow follows four major steps: (1) pathline

annotation, (2) vessel cross-section segmentation, (3) 3D lofting and interpolation, (4) vessel

union. As with 3D model building, various strategies exist to improve efficiency for these

stages.

Path-planning methods for model construction start with annotated vessel pathlines,

typically performed by a human user [PTW98, TF09]. The user selects the approximate

pathline of each vessel by picking control points along the vessels; from these a smooth

line is interpolated. Typically, pathlines produced by pathline extraction algorithms are

not sufficiently accurate for model construction, and require substantial manual corrections.

Therefore users typically manually specify the pathline as it only requires selection 10-20

control points. These control points are interpolated, using splines to 100-300 points which

form the basis of cross-section segmentation along the vessel path.

Next, segmentations are generated at selected points along the interpolated pathline

from cross-sectional 2D images extracted from the plane perpendicular to the pathline di-

rection. Vessel cross sections are segmented using manual annotation or two dimensional

segmentation algorithms such as level sets or thresholding [Wan01, LXGF10]. Manual con-

tour labeling requires selection of 15-25 contour points and a typical vessel requires 30-50
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(a) Path creation. (b) Cross section
segmentation.

(c) Lofting
segmentations.

(d) Union of
lofted surfaces.

Figure 4.2. Illustration of model segmentation process. Creation of a vascular geometry
using the lofted 2D segmentation approach involves (a) creating path to navigate and create a
series of segmentations (b) that are lofted to form each vessel (c). A solid model is generated
by the union of individual vessel models (d). This figure is reproduced from [UWM+13] with
author permission.

cross-section segmentations to build an accurate 3D vessel surface. Automated segmentation

algorithms may be well suited for larger vessels or vessels with high intensity contrast, how-

ever, other vessels typically require manual segmentation, as these segmentation algorithms

often produce unacceptable errors which necessitate substantial manual correction.

The next step, “lofting”, 3D surfaces of each vessel are produced by orienting the

vessel cross section contours along the pathline (Figure 4.2(b)) and interpolating a surface

along the associated pathline (Figure 4.2(c)). After all vessels of interest are modeled, they are

merged through Boolean operations as shown in Figure 4.2(d). Once the final cardiovascular

model is generated, it is converted into a numerical mesh, boundary conditions are assigned

to inlets and outlets of the model and a computational fluid dynamics (CFD) solver carries

out a blood-flow simulation [UWM+13].

There have been many approaches for reducing the human burden in the time-
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consuming segmentation step. For example, model-based approaches define vessels as curves

with circular or elliptical cross-sections with radii that vary along the curve [Kri00, LY07,

MST10, BC11]. Vessel models are fit to the image data by minimizing an objective function

corresponding to the structure of interest. Other methods construct vessel templates and

identify where along the pathlines to place these templates. For example, [ZBG+07] extracts

a vascular skeleton from a 3D segmentation to construct a model by sweeping non-uniform

rational B-splines (NURBS) vessel templates along that extracted skeleton. Yet another

approach applies this sweep template strategy to an implicit function to build cardiovascular

models along the pathline [KGPS13]. In [KYD+17], a pathline tracking algorithm, initialized

from user supplied seed points, extracts a vessel skeleton, after which local implicit functions

model the vessel surface.

Despite constraining the model via the pathlines, many pathline-based methods suffer

from drawbacks similar to 3D model building methods. 2D segmentation methods still contain

method-specific parameters which must be repeatedly tuned to obtain accurate segmentations

across images, volumes and anatomical regions. Thus, existing pathline based methods have

failed to produce a high throughput cardiovascular model construction strategy.

4.2.2 CNN Segmentation

Recently, learning methods have come to the forefront of natural image and medical

segmentation strategies. Learning based methods learn directly from image data and, once

trained, require no parameter tuning, in contrast to other segmentation methods. In addition,

learning based methods can be modified to utilize multiple sources of information. For

example, in a recent decision tree based approach to vessel wall localization, [MTKM15]

used image data alongside pathline based atlas features to robustly detect vessel boundaries

in 3D. However, classical machine learning algorithms which require significant feature

engineering have fallen to the way-side in favor of CNN-based segmentation algorithms
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capable of learning from raw input data.

Fully convolutional networks (FCN) [LSD15] demonstrated efficient holistic image

segmentation with CNNs by replacing fully connected layers with convolutional layers in the

VGGNet architecture [CSVZ14]. Spurred by the success of FCN, Holistically Nested Edge

Detection (HED) [XT15] used multi-scale fusion and deep supervision to obtain improved

segmentation accuracy on fine-scale image structures to obtain near human-level performance

in edge-detection. U-Net [RFB15] extended FCN to medical imaging by adding concatenation

and convolution layers in the expanding path of the network so finer-scale details could be

captured. More recently, medical imaging research efforts have focused on extending FCN

architectures to 3D volume segmentation. In [KLN+16], multi-resolution FCNs were used

for brain tumor segmentation from 3D medical image volumes. A 3D U-Net architecture was

developed and applied to kidney segmentation, making additional use of data augmentation

and developing techniques to learn from sparsely labeled planar views of 3D medical images

[CALR17]. The I2I architecture [MMKT16] achieved state-of-the-art performance in volume-

to-volume vascular boundary detection, by enhancing segmentation precision through coupled

efficient coarse-to-fine and fine-to-coarse paths that targeted multi-resolution learning.

CNN methods have shown their effectiveness for image and volume segmentation,

however, these methods have yet to be applied directly to cardiovascular model construction.

In addition, CNNs in the FCN family sacrifice image-wide spatial context for efficiency by

replacing fully connected layers with convolution layers. This approach is suitable for tasks

where the segmentation can appear anywhere in the image, however this context is critical in

applications where location is discriminative such as cardiovascular model construction.

4.3 Methodology

Although convolutional networks have been widely used for image segmentation,

little work has employed neural networks for anatomical model construction. In this section,
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we describe our neural network architecture and its application within a framework for

cardiovascular model construction.

4.3.1 Problem formulation

We begin by providing a mathematical formulation of our approach. Our goal is to

segment a full 3D model Y from a given volume, V , and a set of pathlines, P . This goal is

broken down into sub-tasks where each vessel Yk is segmented individually, then merged to

form the final model Y. Specifically, we are given an image volume, V ∈ ZW×H×D, and a set

of K corresponding path-lines, P := {P1, ...,PK} where Pk represents the kth path-line and Pk

is a sequence of coordinates, Pk := {pk, j}, j = 1, ...,M, where pk, j ∈ R3.

For each pathline, Pk, there is a ground-truth vessel segmentation, Yk ∈ {0,1}W×H×D,

where Yk(x,y,z) = 1 when voxel V (x,y,z) is inside the vessel corresponding to pathline k and

Yk(x,y,z) = 0 otherwise. In other words, Yk is a binary segmentation of only the kth vessel.

We seek to estimate Y from the input volume V and set of paths P by merging a

corresponding set of predicted vessel segmentations, Ŷ := {Ŷ1, ...,Ŷk} such that each Ŷi is

an accurate estimation of ground truth Yi. The final model is produced by Ŷ = UNION(Ŷ )

where UNION(·) represents a surface Boolean operation that joins vessel surfaces. Our

approach reduces the estimation of each Ŷk to cross sectional segmentations along the pathline

Pk for which we use a convolutional neural network specialized to incorporate image-wide

spatial context into its predictions.

4.3.2 Spatially Aware CNNs for Segmentation

Our methodology relies on precise and accurate segmentation of individual vessels

at 2D cross-section images along the path. While fully-convolutional architectures achieve

excellent performance for pixel level labeling, they are unable to capture spatial positioning

information since convolution is a spatially invariant operation. Fully convolutional networks
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Figure 4.3. An illustration of our spatial context network, I2I-FC. The spatially invariant
FCN segmentation is followed by our proposed spatial context processor which computes a
localized encoding using fully-connected layers. The final output is an enhanced localized
segmentation.

sub-optimally capture contextual cues based on image structure such as those in vessel cross-

section images sliced along pathlines. In particular a previous approach trained a 3D fully

convolutional multi-resolution network, named I2I-3D, to detect pixels corresponding to

vessel boundaries in 3D medical image volumes [MMKT16]. However, despite improving

vessel edge detection accuracy significantly, predicted edge maps were often still multiple

pixels wide and not straightforward to convert into accurate cardiovascular models.

We address the short comings of previous attempts at using CNNs for model construc-

tion in two key ways. First, we train CNNs to produce vessel segmentations as opposed to

pixel-wise edge predictions, simpifiing the extraction processing by using a simple marching-

squares algorithm. Second, our proposed spatially aware classifier is designed to utilize

image-wide spatial context leading to enhanced vessel localization. For our base classifier we

used I2I [MMKT16], which allows our method to benefit from the increased accuracy and

precision provided by I2I’s multi-resolution architecture.

In our novel CNN architecture, images pass the I2I network to produce an initial
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segmentation prediction which is refined by two fully-connected layers and three convolution

layers and final 1× 1 convolutional layer. The first fully connected layer transforms the

prediction of I2I from 128×128 = 16384 into a smaller 128×1 dimensional tensor. Next,

second fully connected layer transforms this tensor back into 16384 elements which is

reshaped back into a 128× 128 tensor. Since fully connected layers are computationally

expensive, we use only two fully connected layers to encode spatial context. The fully-

connected layers ensure that each output segmentation uses information from the entire FCN

segmentation and allows the network to more precisely localize structures of interest. Since

the spatial context processor is a part of the network it can be trained end-to-end allowing the

network to learn to process spatial context from the data and no post-processing is required.

4.3.3 The DeepLofting Pipeline

Spatial Context Processor

User Generated 
Path Lines

Automatic Contour 
Generation with I2I-FC

Loft Contours into 
Model

3232
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256256256
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Figure 4.4. An illustration of our DeepLofting pipeline. Path-lines are built from a medical
image volume, thereafter image patches are extracted along the path-lines and automatically
processed by our CNN and lofted into a 3D model. The resulting segmentations are converted
to vessel boundaries and reoriented along the path-lines. In the final step, the vessel boundaries
are lofted together to form a solid model.

Our spatially-aware CNN architecture computes precisely localized segmentations of

2D images and incorporates spatial context such as vessel pathline locations as part of our
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automated 3D cardiovascular model construction pipeline, DeepLofting shown in Fig. 4.4.

DeepLofting begins with creation of vessel pathlines to specify which vessels/region are of

interest. Typically, pathlines are built by selecting a modest number of control points within

a medical image volume and generating a full path through interpolation. These pathlines

provide context within a medical volume, specifying which vessels to include in the full 3D

cardiovascular model. DeepLofting uses the pathlines for vessel selection and derives spatial

cues to improve the standard lofting work-flow (depicted in Figure 4.1) by eliminating the

need for user-intervention in segmentation.

Image patches are extracted at points centered at points along the interpolated path

which are then automatically segmented with our spatially aware CNN, I2I-FC. Since I2I-FC

is trained to produce a response for only a single vessel, loft-able contours can easily be

extracted from the segmentations using marching-squares. Once contours are generated, they

are lofted into 3D space along the path and a 3D surface is interpolated. The process is

repeated for each pathline. Lastly, we use specialized Boolean operations [UWS16] to union

all vessel surfaces into a complete cardiovascular model.

4.3.4 DeepLofting Training Procedure

Our input training set consists of N 3D volumes V := {v1, ...,vN}where vi ∈ZWi×Hi×Di .

Associated with each image is a set of K path-lines {P1, ...,PK} where the kth path-line repre-

sents a sequence of (x,y,z) physical space coordinates in the image Pk := {pk, j}, j = 1, ...,M,

and pk, j ∈ R3. Image and segmentation pairs, xn,k, j and yn,k, j, represent 2D images captured

at point pk, j in volume Vn. Each image pair is processed independently once it is extracted,

and we denote these pairs with a simplified subscript: xi and yi, where i denotes the unique

(n,k, j) triplet. Each image and segmentation pair, xi and yi have specified width w and

height h. Pixel values are interpolated from the lumen value in the plane orthogonal to the

path line direction. Spacing and pixel values are normalized. All segmentations are binary
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representations of user annotated contours at the specified path point such that yk ∈ {0,1}w×h

is a binary image where a pixel value of 1 denotes vessel and 0 denotes non-vessel tissue.

At each path-point a contour is extracted from the 3D vessel surface and then converted into

a binary image. We obtain our final dataset by grouping the image and segmentation pairs

into a collection denoted by X := {(x1,y1), ...,(x|X |,y|X |)}. This collection is used to train a

Neural Network classifier, NET(x,w) : x→ {0,1}w×h, with m layers. The weights, w, are

found by approximately minimizing a binary cross-entropy loss function on the dataset X .

We calculate pixel-wise loss across a mini-batch with cross-entropy cost function:

Ex,y∼X [L(x,y,w)]≈
1

Nbatchhw

Nbatch

∑
i=1

L(xi,yi,w), xi,yi ∼ X , (4.1)

where L(xi,yi,w) is given by

−
w

∑
j=1

h

∑
k=1

yi jk log
(
Pr(yi jk = 1|xi,w)

)
, (4.2)

, where yi jk denotes the value of pixel ( j,k) of yi. Pr(yi jk = 1|xi,w) = σ(a jk) ∈ [0,1] are

classifier predictions and a jk is the pixel value at ( j,k) of network output, a.

During training, parameters are updated using an Adam optimization [KB15] to

minimize pixel-wise loss in (4.1). Given an image xi, the estimated segmentation is denoted

ŷ = NET(x,w). Our networks are trained and evaluated on typical path-lines generated from

multiple users which have varying degrees of accuracy. This makes the trained network

inherently robust to image acquisition noise and inaccuracies in the user-specificed path-lines.

4.3.5 Cardiovascular Model Construction with DeepLofting

Using a trained classifier, the DeepLofting pipeline takes an input volume V and a

collection of path-lines P to produce a final 3D model. We obtain a sequence of spatial

coordinates, {p1...pNP}, by selecting points at intervals along each path-line from P. At each
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point pi, we extract a corresponding image patch, xi, by interpolating voxel intensity values

of V in the plane normal to the path direction at pi. For each xi, we compute an estimated

segmentation ŷi by feeding xi through our trained network. We then apply marching-squares

to each ŷi (using a fixed isovalue) to produce contours ci. Appropriate isovalues are obtained

through validation and are fixed for each net. The final solid model is constructed placing

each contour, ci, at its associated point pi (in 3D), which orients ci in the same plane as the

original extracted image, xi. The set of C = {c1, ...,cNP}, are interpolated along the associated

path, P, to form a complete vessel surface. Once all vessel surfaces are constructed, they are

merged through a union operation, creating a complete 3D model.

The pathline based approach of DeepLofting has multiple beneficial properties. Our

spatially aware CNN classifier produces consistent contours along each vessels resulting in a

smoother final surface. DeepLofting is more efficient than volume-to-volume methods as only

sparsely placed 2D images need to be segmented and therefore it avoids the computationally

demanding task of segmenting entire volumes. In an application setting, users have fine-tuned

control over what contours to generate, reducing this cost even further. In addition, our 2D

CNN uses substantially fewer parameters, thus requiring less memory than an equivalent 3D

CNNs allowing them to be used on consumer grade hardware.

4.4 Data

We evaluate our method on a dataset consisting of 100 contrast-enhanced medical

volumes which contains an even split between CT and MR data. Each of the 100 volumes

has a corresponding cardiovascular model and a set of vessel pathlines. Figure 4.5 shows the

distribution of cases by anatomical region. All volumes in our dataset are publicly available

from the Vascular Model Repository 1 [WOJ13]. This dataset contains image data, models

and hemodynamics simulation results for a range of cardio-pulmonary regions, including

1http://www.vascularmodel.com
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Figure 4.5. Distribution of anatomical region of included in our dataset of 100 medical
volumes (50 MR and 50 CT). Volumes may span multiple regions. All volumes are available
at the Vascular Model Repository [WOJ13]

both normal and abnormal physiologies. All segmentations were created in SimVascular

using a pathline based model building approach by expert curators and verified by clinical

collaborators. Approximately 25% of the cases have normal anatomy the remaining contain

pathological models including abdominal aortic aneurysms, aortic coarctation, coronary

aneurysms, coronary artery bypass graft surgery patients, and cerebral aneurysms [WOJ13].

Most image volumes in the Vascular Model Repository have anisotropic pixel resolution

which we normalize during pre-processing. For experimentation, we split volumes into

three mutually exclusive sets for training, validation, and testing of 76, 8 and 16 volumes

respectively. Since the number and length of the pathlines vary model to model, the total

number of cross section slices also vary slightly. After extracting image cross sections along

pathlines, these volumes resulted in 108,253 (CT) and 143,394 (MR) images for training,

6,835 (CT) and 12,812 (MR) images for validation and 42,694 (CT) and 53,987 (MR)

images for testing.
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4.4.1 Data Pre-processing

During data pre-processing, we normalize the image intensity of all volumes before

extracting 2D image patches along pathlines. For each modality, we apply different intensity

normalization strategies.

In CT image volumes, pixel intensity corresponds to Hounsfield units, so as to not

degrade this anatomical information, we scale all CT images using min-max normalization:

XCT,norm =
XCT

ICT
(4.3)

where XCT is an unnormalized CT image volume, XCT,norm is a normalized CT image volume,

and ICT is a predefined intensity scaling value used for all CT image volumes. Given that

Hounsfield units typically have a range between ±3000HU , we use ICT = 3000 so that

normalization would result in a range of ±1.

Unlike CT image volumes, the pixel intensities in MR images do not have a fixed

range, this makes defining a suitable normalization scheme for MR images difficult [NUZ00].

As such, for MR images we use per-image min-max normalization, where the minimum and

maximum intensity scaling values are taken from each volume individually.

4.4.2 Data Augmentation

We use extensive data augmentation on each batch of images during training all neural

networks. Specifically, image patches and corresponding ground truth segmentations are

randomly rotated, shifted and transformed using elastic deformations [SSP03]. An example

of augmentation is depicted in Figure 4.6. Augmentation is computed on-the-fly, allowing the

training dataset to be expanded indefinitely.
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(a) (b)

Figure 4.6. Example augmentation. (a) Regular image patch and ground truth segmentation
from a CT image volume. (b) Image patch and ground truth segmentation after applying
elastic deformation.

4.5 Experimentation

4.5.1 Evaluation Methodology

To evaluate our methodology, we measure performance of the segmentation process as

well as the final 3D model produced by the DeepLofting pipeline. First, the 2D segmentation

results are evaluated using three metrics: 1) the dice-coefficient (DICE), 2) Hausdorff distance

and 3) Average Symmetric Surface distance (ASSD). Precision recall curves are calculated

via a threshold sweep of all classifier predictions which are compared on binarized ground

truth images. Second, we measure performance of the entire DeepLofting pipeline using

each segmentation technique. The same performances metrics are calculated, and as with 2D

evaluation, ground truth and predicted 3D models are converted to binary volumes before

comparison.

Performance Metrics

Here, we briefly discuss our performance metrics which are illustrated in Figure

4.7. DICE is a commonly used metric for evaluating segmentation performance, however,

it does not capture some key aspects for measuring 3D cardiovascular model fidelity. For

these reasons, we also measure performance using Hausdorff distance, and ASSD. Hausdorff
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distance is useful to measure the worst-case distance error between two binary segmentations.

ASSD measures the average surface distance between two binary segmentations. Both ASSD

and the Hausdorf distance are useful for evaluation as they take the physical image spacing

into account.

A

B

(a)

A

B

(b)

A

B

(c)

Figure 4.7. Illustrations of DICE coefficient, ASSD and Hausdorff distance metrics. (a) The
DICE coefficient measures the ratio between the area of the intersection and union of two
volumes. (b) ASSD measures the average distance between two surfaces. (c) The Hausdorff
distance measures the maximum of the smallest distances between two surfaces.

DICE The DICE coefficient values range from 0 (no overlap) to 1 (no error) which measures

the similarity between two segmentations and is given by:

DICE(A,B) =
2|A∩B|
|A|+ |B|

. (4.4)

The DICE coefficient penalizes both false positives and false negatives, making it useful for

measuring total performance.

Hausdorff Distance The Hausdorff distance has lower bound of 0 (perfect match) with no

upper point. This metric measures the maximum minimum distance between two sets of

points and is given by:

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a,b),sup
b∈B

inf
a∈B

d(a,b)}, (4.5)
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where d(a,b) is a distance function, for which we use the euclidean norm d(a,b) = ||a−b||2.

Hausdorff distance is used to capture the worst errors of each classifier.

Average Symmetric Surface Distance The average symmetric surface distance computes

the average minimal distance between the surface points of two sets A and B. Let Ã and B̃ be

sets of the surface points in A and B respectively. The ASSD is then:

ASSD(A,B) =
1

|Ã|+ |B̃|

(
∑
a∈Ã

min
b∈B̃

d(a,b)+ ∑
b∈B̃

min
a∈Ã

d(b,a)

)
, (4.6)

where d is again the Euclidean norm. A perfect match between Ã and B̃ result in an ASSD

score of 0. Qualitatively, the ASSD is more representative of the global similarity between

two sets than the Hausdorff distance.

4.5.2 Implementation

In this section, we outline the implementation specifics of our DeepLofting pipeline

and segmentation classifiers. In particular, we describe the specific methodologies and

libraries used for each baseline method, extracting and lofting contours as well as procedures

for training CNN networks.

Active Contour Baselines

We compare our DeepLofting pipeline to recent level-set methods used in standard

medical image segmentation. Specifically, we compare to the Distance Regularized Level

Set (DRLS) [LXGF10] which has been extensively used in the area of medical image seg-

mentation. Additionally, it is common to pre-process images using a vessel enhanced filter

before segmentation and we investigate this strategy by using optimally oriented flux (OOF)

[Law08] as an image enhancement step prior applying the DRLS for segmentation.

The use of the Distance Regularized Level Set is denoted by DRLS in our results.
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Where DRLS is used with OOF pre-processing, it is denoted as DRLS+OOF. During evalua-

tion, DRLS and DRLS+OOF are used as drop-in replacements for 2D segmentation in our

DeepLofing pipeline. First, the methods are applied to 2D vessel image patches extracted

along vessel path lines to generate 2D segmentations and vessel boundaries. Second, 2D

vessel boundaries of each vessel are lofted together to form the final 3D vessel surface. Finally,

vessel surfaces are then joined though Boolean operations to form the final 3D patient-specific

model. DRLS and OOF have a number of algorithmic parameters which were selected based

on performance on the training and validation sets wih reference to the guidelines suggested

in [LXGF10]. These parameters used are listed in Table 4.1.

We used an implementation of DRLS obtained from the HistomicsTK [HGM+17]

library, and OOF was performed using the Tubular Geodesics library [BTF17] which is based

on the Insight Segmentation and Registration Toolkit (ITK) [YAL+02].

Table 4.1. Algorithmic parameters used for DRLS and OOF comparisons

Symbol Value Description
Niter,drls 100 Number of level-set iterations

λdrls 2.0 DRLS length regularization coefficient
µdrls 0.2 DRLS Energy regularization coefficient
σdrls 0.5 DRLS Gaussian smoothing parameter
αdrls 0.9 DRLS Area energy function coefficient

σmin,OOF 0.1 Minimum vessel scale for OOF enhancement
σmax,OOF 3.0 Maximum vessel scale for OOF enhancement

Nscales,OOF 9 Number of scales between σmin,OOF and σmax,OOF
for OOF enhancement

CNN Implementation and Training

As the proposed method builds on existing FCN networks, we compare our I2I-FC

architecture to the base I2I network without spatial context processing which is an a 2D

adaptation of I2I-3D [MMKT16]. We train both I2I and I2I-FC individually and end-to-end

using identical procedures using TF Weights were initialized by sampling from a zero-mean
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normal distribution with fixed variance for all weights. Each network was trained with

a constant base-learning rate of 1e− 4 and a batch size of 16 for 40,000 iterations. L2

regularization with a small coefficient value was added to the binary cross-entropy loss

function. Given the difference in data normalization methods (as described in Section 4.4.1),

we trained separate CNN classifiers on CT and MR data. Hyper-parameters for networks

trained on CT and MR data were kept the same and are summarized in in Table 4.2.

We also compare to the original I2I-3D network [MMKT16] which was re-trained for

vessel segmentation on 3D volumes. As with the 2D CNN classifiers, two I2I-3D networks

were trained, one on CT data and another on MR. Again, both classifiers were trained using

the same hyper-parameters. 2D segmentations were extracted from the I2I-3D volumetric

predictions at the same path-points at as image patches After 2D segmentations were captured,

they were converted into 2D contours and lofted in the same way as all other methods. We

found that this step improves results by ignoring excessive false positives.

All CNN networks were implemented in the Tensorflow software package [AAB+15].

We used the marching squares algorithm from the Visualization Toolkit (VTK) [SML06] for

contour extraction.

Table 4.2. Hyper-parameters used for training I2I-FC and I2I networks

Symbol Value Description
α 1e-4 learning rate

Niter 40,000 Number of training iterations
Nbatch 16 Training batch-size
Winit 7e-2 Weight initialization standard deviation

λ 1e-4 L2 regularization coefficient
w 128 Width of input images
h 128 Height of input images

ICT 3000 CT pixel value normalization constant
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Model Construction

The final stages of our DeepLofting pipeline were carried out in the open source pack-

age, SimVascular [UWM+13]. Besides its extensive hemodynamics simulation capabilities,

SimVascular provides an interface with which to reorient 2D segmentations around a pathline

and to interpolate vessel surfaces. SimVascular also provides specialized Boolean operations

for vessel surfaces [UWS16] which were used to form the final 3D models.

4.6 Results

Table 4.3. Comparison between 2D vessel boundaries produced by our methods and baselines
split based on imaging modality as well as overall scores. Marching squares was used to
extract contours for all methods.

DICE Hausdorff ASSD
CT MR Overall CT MR Overall CT MR Overall

OOF+DRLS 0.200 0.143 0.176 0.688 0.825 0.728 0.287 0.524 0.357
DRLS 0.268 0.145 0.203 0.667 0.860 0.726 0.215 0.589 0.328
I2I-3D 0.434 0.470 0.442 0.647 0.470 0.589 0.311 0.191 0.272
I2I 0.399 0.601 0.421 0.806 0.359 0.698 0.251 0.132 0.222
I2I-FC (ours) 0.579 0.623 0.586 0.373 0.250 0.339 0.126 0.093 0.117

4.6.1 Segmentation and Contour Results

We begin by discussing the results for 2D segmentation with all methods. We compare

results of our I2I-FC segmentation classifier to several common and state-of-the-art methods

for segmentation, including the same architecture without the spatial context processing unit

and the I2I-3D network. I2I-3D was re-trained following the steps outlined in [MMKT16] for

3D-segmentation and integrated with DeepLofting by extracting planar segmentations from

the volume segmentation along the path-lines. We also compare against a distance regularized

active contour method, denoted by DRLS [LXGF10] used on raw image data as well as the

same active contour with input that have been enhanced enhanced by optimally oriented flux
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.8. Final 3D model results from using different segmentation classifiers. Each row
represents a different volume. Each column depicts a result from a classifier: (a) maximum
intensity projection, (b) ground truth, (c) DRLS, (d) DRLS+OOF, (e) I2I-3D, (f) I2I, (g)
I2I-FC (ours).
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.9. Example cross-section segmentation results. The columns represent: (a) image,
(b) ground truth, (c) DRLS, (d) DRLS+OOF, (e) I2I-3D, (f) I2I, (g) I2I-FC (ours). The first
four rows show results on CT data and second four show results on MR data.
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Figure 4.10. Precision-Recall curves for 2D vessel boundaries generated by all methods tested
on the test set. CT results appear as the solid lines or a dot and MR performance is denoted
with dotted lines or an X. I2I-FC: I2I convolutional network enhanced with our proposed
spatial context processor, I2I: fully-convolutional multi-resolution neural network trained
for 2D vessel segmentation, I2I-3D: fully-convolutional multi-resolution neural network
from [MMKT16], now trained for 3D vessel segmentation. DRLS: Distance regularized
level set [LXGF10], OOF+DRLS: DRLS on images enhanced with optimally oriented flux
pre-processing [Law08]. The inclusion of spatial context processing (I2I-FC) improves
precision-recall on 2D vessel segmentation over standard fully-convolutional networks (I2I,
I2I-3D) and classical algorithms such as level sets (DRLS, OOF+DRLS).

[Law08] denoted as DRLS+OOF.

Figure 4.10 depicts precision-recall curves of our MR and CT classifiers which were
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generated using a threshold sweep of the predicted segmentations. A summary of classifier

performance on CT and MR data as well as the overall performance appears in Table 4.3.

Reported DICE scores were computed across the entire dataset, whereas Hausdorff distance

and ASSD were computed on a per-contour basis then averaged. We evaluate these metrics at

every position along the interpolated pathlines where a ground truth contour is available. The

results in Table 4.3 use a single threshold value which match the iso value used for marching

squares.

We observe from Figure 4.10 that I2I-FC has improved precision and recall over all

other presented 2D segmentation methods. We also tee that I2I-FC has greater performance

accounts to the metrics summaries in Table 4.3 which shows improvements of 39%, 49%

and 53% for overall DICE, Hausdorff and ASSD metrics when comparing I2I-FC and I2I. In

particular, the smaller Hausdorff distance and ASSD produced by I2I-FC, compared to I2I,

implies that I2I-FC provides more consistent vessel segmentations, both on average and in

terms of worst-case error. Similar improvements hold when comparing I2I-FC to I2I-3D and

both DRLS methods. DICE Hausdorff and ASSD improved more for CT images than for

MR images for I2I-FC. For example, comparing I2I-FC to I2I, Hausdorff improvements of

54% and 31% are observed for CT and MR modalities respectively. We hypothesize that the

differences in accuracy between CT and MR are due to the lower image resolution of MR

images compared to CT, leading to increased ambiguity in ground truth vessel location.

Example 2D predicted planar vessel segmentations appear in Figure 4.9, showing the

improved consistency of I2I-FC compared to other methods. We see that level set methods are

found to be error-prone even after applying OOF pre-processing to the image. The superior

performance of both I2I and I2I-FC compared to I2I-3D provides evidence that utilizing vessel

pathline information leads to improved accuracy in cardiovascular segmentation. We theorize

that the poor performance exhibited by I2I-3D, as shown in Figure 4.10, results from the

many false positives seen in the cross sections examples in Figure 4.9. These false positives
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lead to ambiguous contours for model construction. In addition, by comparing the output of

I2I and I2I-FC, we see the effect of the spatial processing unit, which refines the segmentation

to produce smoother contours and consistently produces only a single vessel response by

removing secondary vessels and noise near the center of the image. The refinement indicates

that I2I-FC successfully incorporated positional information to overcome this limitation of

fully convolutional networks.

4.6.2 Comparison of 3D Patient-Specific Models

Table 4.4. Comparison between 3D patient-specific cardiovascular models produced by our
methods and baselines split based on imaging modality.

DICE Hausdorff ASSD
CT MR Overall CT MR Overall CT MR Overall

DRLS+OOF 0.237 0.131 0.203 0.539 0.551 0.542 0.145 0.117 0.136
DRLS 0.322 0.100 0.222 0.549 0.648 0.580 0.114 0.151 0.125
I2I-3D 0.595 0.549 0.587 0.761 0.641 0.722 0.195 0.126 0.173
I2I 0.637 0.627 0.635 0.413 0.359 0.396 0.071 0.067 0.069
I2I-FC 0.682 0.654 0.677 0.333 0.316 0.327 0.059 0.063 0.061

Next, we discuss the results of the full DeepLofting pipeline. The classifiers denoted

in Table 4.4 and Figure 4.8 refer to the classifier used to segment vessel cross sections as part

of the DeepLofting pipeline. Performance metrics are calculated with binarized volumes of

ground truth models and predicted 3D models. As described in Section 4.3.4, each vessel is

generated individually then merged through a Boolean operation. Pathlines often extend past

the ground truth models, to avoid over-segmentation in these locations, only contours along

the length of the vessel surface were lofted. In Table 4.4, we report summary statistics of our

method, I2I-FC and other baseline classifiers. DICE scores are calculated by generating hit

and miss counts on the entire dataset; ASSD and Hausdorff distances represents the average

distance on a per-volume basis. As with 2D performance metrics, we report results for our

CT and MR classifiers, as well as the overall performance on the entire data set, obtained by
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merging the results from the CT and MR evaluations. All metrics are calculated on binary

versions of the 3D models.

From Table 4.4, we see that I2I-FC outperforms all other methods, resulting in

improvements of 7%, 18% and 12% for overall DICE, Hausdorff and ASSD metrics. Again

we see larger improvements for CT images than for MR images. When comparing 2D results

(Table 4.3) and 3D model construction results (Table 4.4), we see an overall improvement

in performance which we believe is due reduces false positives after contour extraction with

marching squares. Nevertheless, we still see substantial improvements when comparing our

CNN (I2I-FC) to the other methods. When comparing our 2D CNN classifiers (I2I and I2I-FC)

to I2I-3D, again, we see the benefit of training and prediction using pathline information as

they both show considerable improvement over the 3D CNN. Also, as seen when comparing

I2I and I2I-FC, we observe consistently superior performance when applying the spatial

processing unit.

Figure 4.8 shows example 3D model results, generated using each classifier with the

DeepLofting pipeline as well as the ground truth 3D model. We notice the the particularly large

distortion and errors when using the level set methods, with and without OOF pre-processing

(columns 4.8(c) and 4.8(d)). Many of the contours are malformed and segmentation is

inconsistent at each point, leading to a large amount of noise through the model. Though

much more consistent than the level set methods, the results of I2I-3D (column 4.8(e)) remain

noisy. With this classifier, the contours are erratic, likely due to the over-segmentation

exhibited by the underlying classier. In column 4.8(f), we see the results of I2I, the 2D CNN

classifier without spatial processing. Here, we see many contours that are too large, most

noticeably in the smaller vessels. This classifier fails to ignore extraneous contours when

many exist close together which cause errors within these clusters. Finally, in column 4.8(g)

we see the results of our full DeepLofting pipeline with the I2I-FC classifier, and we notice

the effect of the localized predictions on the final model. I2I-FC produces only a single
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segmentation, located correctly along the path-line and we see well-formed vessels even in

areas where many vessels overlap. The vessels are consistent in size and shape, leading to a

more complete final model.

4.7 Conclusion

We proposed a neural network architecture that substantially improved segmentation

performance of FCNs when spatial context in images was essential for making correct

predictions. We developed a novel neural network, I2I-FC, that extends I2I with image-

wide context processing. Our proposed architectures demonstrate that utilizing this context

is essential to producing accurately localized segmentations and generalizes across neural

networks and is not restricted to a particular architecture. We combined our architectures

with a pathline-based lofting 3D model construction work-flow to form DeepLofting, a new

and more efficient method for constructing 3D cardiovascular models. DeepLofting produces

models with higher quality than state-of-the-art 2D and 3D methods and baseline active

contour methods. DeepLofting automates contour generation, significantly reducing user

effort in 3D model construction.
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Chapter 5

Conclusion

5.1 Summary of Contributions

This thesis presents three approaches to dense pixel level labeling and demonstrates

their effectiveness for segmentation and boundary detection in images and volumetric data.

First, a 3D extension of the popular structured forest classifier for cardiovascular

vessel wall localization is introduced. This classifier utilizes an intelligent sampling scheme to

train a structured forest classifier to predict patch-to-patch pixel level predictions from domain

specific image features which include an adaptive prior. Evaluation of this classifier was

carried out on a publicly available cardiovascular dataset where it achieved top performance

compared to multiple baselines and similar classifier without these contributions. Furthermore,

we demonstrated that this approach is robust to user error by analyzing its predictive capability

when error is introduced to the user-supplied a-priori information.

Next, two new 3D CNN classifiers for volume and image segmentation are introduced.

The first is an extension of the popular HED classifier, extended for use in 3D medical images.

The second is a new classifier, I2I, that precisely localizes boundaries and small structures

using a novel fine-to-fine, multi-scale architecture. These classifiers were applied to multiple

medical imaging applications and demonstrate its effectiveness for natural images. I2I was

shown to out-perform current state-of-the-art methods as well as alternative multi-scale
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merging strategies on multiple tasks across multiple datasets.

Last, I2I, introduced in Chapter 3, is used as part of a novel cardiovascular model

building process, DeepLofting. DeepLofting describes a principled approach to cardiovascular

model building that significantly improves efficiency and reduces the need to for human

intervention. DeepLofting uses an extensions of the I2I architecture which adds spatial

context processing, allowing the classifier to utilize powerful a-priori information. We

demonstrate the effectiveness of DeepLofting on a dataset of 100 cardiovascular models by

reconstructing accurate 3D geometries from both CT and MR volumes.

5.2 Conclusions and Future Directions

The methodologies in this work constitute a step forward in pixel level labeling. In

particular, the precise fine-to-fine architecture presented in Chapter 3 has potential use in

many applications which require precise localization. The presented techniques are currently

used in image-to-image and volume for volume labeling mainly for cardiovascular boundary

detection and cerebral segmentation, however, the same methodologies could be used for a

wide variety of applications.

Possible 3D application include action recognition in video, as well as broader usage

in medical imaging tasks such as breast lesion segmentation, bone fracture detection and any

other task where precise localization of small structures is critical. As we show in Chapter

3 and 4, I2I is effective for segmentation in not only 3D volumes but 2D images. With this

in mind, the same methodology could be used in 2D natural image applications requiring

precise localization such as aerial photography and image disparity detection.

In Chapter 4, spatial context processing is added to the I2I architecture, leveraging

the powerful spatial cues prevalent in medical imaging for classification of vessel walls.

This property could aid in tasks such as eye/pupil tracking, lip reading, autonomous vehicle

sensing, and many others.
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The DeepLofting framework could be extended in various ways. DeepLofting relies

heavily on user supplied path-lines. A re-framing of this framework could remove this

requirement by simultaneously segmenting contours and predicting pathline prediction thereby

the entirety of automating the model construction process. In addition, the clinical impact

of DeepLofting is yet to be assessed. Though work on measuring this impact is underway,

there remains many unanswered questions. Though DeepLofting produces accurate 3D

segmentations, are they accurate enough for blood flow simulation, and in what ways to they

vary from user generate models. In fact, very little work has been done on characterizing

user-variability within the models themselves. Accounting for this variation, is a promising

next step for deploying DeepLofting in a wide-spread setting.

The above only represent a personal vision of the directions which could be followed

in the near future. However, whatever scenarios arise, precise pixel labeling will play an

increasingly important role in both medical image analysis and natural image computing.
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[KBBP+14] B. R. Kwak, M. Bäck, M.-L. Bochaton-Piallat, G. Caligiuri, M. J.A.P.
Daemen, P. F. Davies, I. E. Hoefer, P. Holvoet, H. Jo, and R. Krams.
Biomechanical factors in atherosclerosis: mechanisms and clinical
implications. European heart journal, page ehu353, 2014.

[KF16] R. Khlebnikov and C.A. Figueroa. Crimson: Towards a software envi-
ronment for patient-specific blood flow simulation for diagnosis and
treatment. Clinical Image-Based Procedures. Translational Research
in Medical Imaging, 2016.

[KGPS13] Jan Kretschmer, Christian Godenschwager, Bernhard Preim, and Marc
Stamminger. Interactive patient-specific vascular modeling with sweep
surfaces. IEEE Transactions on Visualization and Computer Graphics,
19(12):2828–2837, 2013.

[Kim14] Yoon Kim. Convolutional neural networks for sentence classification.
arXiv preprint arXiv:1408.5882, 2014.

[KLN+16] K. Kamnitsas, C. Ledig, V.F.J. Newcombe, J.P. Simpson, A.D. Kane,
D.K. Menon, D. Rueckert, and B. Glocker. Efficient multi-scale 3d
cnn with fully connected crf for accurate brain lesion segmentation.
Medical Image Analysis, 2016.

[KM08] Alexander Klaser and Marcin Marszalek. A spatio-temporal descriptor
based on 3d-gradients. XXXX, 2008.

[Kri00] Krissian, K. and Malandain, G. and Nicholas, A. Model-Based Detec-
tion of Tubular Structures in 3D Images. Computer Vision and Image
Understanding, 80, 2000.

105



[KSG09] HB Kekre, Tanuja K Sarode, and Saylee M Gharge. Tumor detection
in mammography images using vector quantization technique. Inter-
national Journal of Intelligent Information Technology Application,
2(5):237–242, 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In NIPS, 2012.

[KSVS17] M. O. Khan, D. A. Steinman, and K. Valen-Sendstad. Non-Newtonian
versus numerical rheology: Practical impact of shear-thinning on the
prediction of stable and unstable flows in intracranial aneurysms. Inter-
national Journal for Numerical Methods in Biomedical Engineering,
33(7):n/a–n/a, July 2017.

[KUH+16] Jens Kleesiek, Gregor Urban, Alexander Hubert, Daniel Schwarz,
Klaus Maier-Hein, Martin Bendszus, and Armin Biller. Deep mri
brain extraction: a 3d convolutional neural network for skull stripping.
NeuroImage, 129:460–469, 2016.

[KYD+17] E Kerrien, A Yureidini, J Dequidt, C Duriez, R Anxionnat, and S Cotin.
Blood vessel modeling for interactive simulation of interventional
neuroradiology procedures. Medical Image Analysis, 35:685–698,
2017.

[LABFL09] David Lesage, Elsa D Angelini, Isabelle Bloch, and Gareth Funka-
Lea. A review of 3d vessel lumen segmentation techniques: Models,
features and extraction schemes. Medical image analysis, 13(6):819–
845, 2009.

[Law08] Law, M.W.K. and Chung, A.C.S. Three Dimensional Curvilinear Struc-
ture Detection Using Optimally Oriented Flux. European Conference
on Computer Vision, 2008.

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Back-
propagation applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

[LBD+90] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Hender-
son, Richard E Howard, Wayne E Hubbard, and Lawrence D Jackel.
Handwritten digit recognition with a back-propagation network. In
Advances in neural information processing systems, pages 396–404,
1990.

[LBW+08] Le Lu, Adrian Barbu, Matthias Wolf, Jianming Liang, Marcos Sal-
ganicoff, and Dorin Comaniciu. Accurate polyp segmentation for 3d

106



ct colongraphy using multi-staged probabilistic binary learning and
compositional model. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[LC10] M.W.K. Law and A.C.S. Chung. An oriented flux symmetry based
active contour model for three dimensional vessel segmentation. Euro-
pean Conference on Computer Vision, 2010.

[LCB10] Yann LeCun, Corinna Cortes, and Christopher JC Burges. Mnist hand-
written digit database. AT&T Labs [Online]. Available: http://yann.
lecun. com/exdb/mnist, 2, 2010.

[LHD+11] C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and J. C. Gore.
A level set method for image segmentation in the presence of intensity
inhomogeneities with application to mri. IEEE Transactions on Image
Processing, 20(7):2007–2016, 2011.

[LHKU98] Chulhee Lee, Shin Huh, Terence A Ketter, and Michael Unser. Unsu-
pervised connectivity-based thresholding segmentation of midsagittal
brain mr images. Computers in biology and medicine, 28(3):309–338,
1998.

[LKC+95] Huai-Dong Li, Maria Kallergi, Laurence P Clarke, Vijay K Jain, and
Robert A Clark. Markov random field for tumor detection in digital
mammography. IEEE transactions on medical imaging, 14(3):565–
576, 1995.

[LLF+12] Wei Li, Shu Liao, Qianjin Feng, Wufan Chen, and Dinggang Shen.
Learning image context for segmentation of the prostate in ct-guided
radiotherapy. Physics in medicine and biology, 57(5):1283, 2012.

[LLS15] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for de-
tecting robotic grasps. The International Journal of Robotics Research,
34(4-5):705–724, 2015.

[LM01] Thomas Leung and Jitendra Malik. Representing and recognizing
the visual appearance of materials using three-dimensional textons.
International journal of computer vision, 43(1):29–44, 2001.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Mi-
crosoft coco: Common objects in context. In European conference on
computer vision, pages 740–755. Springer, 2014.

[Low04] David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60(2):91–110, 2004.

107



[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolu-
tional Networks for Semantic Segmentation ppt. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
3431–3440, 2015.

[LSJ+06] Zhiqiang Lao, Dinggang Shen, Abbas Jawad, Bilge Karacali,
Dengfeng Liu, Elias R Melhem, R Nick Bryan, and Christos Da-
vatzikos. Automated segmentation of white matter lesions in 3d brain
mr images, using multivariate pattern classification. In Biomedical
Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium
on, pages 307–310. IEEE, 2006.

[LXG+15] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and
Zhuowen Tu. Deeply-supervised nets. AISTATS, 2015.

[LXGF10] C. Li, C. Xu, C. Gui, and M.D. Fox. Distance regularized level set evo-
lution and its application to image segmentation. IEEE Transactions
on Image Processing, 19, 2010.

[LXLF14] Michael KK Leung, Hui Yuan Xiong, Leo J Lee, and Brendan J Frey.
Deep learning of the tissue-regulated splicing code. Bioinformatics,
30(12):i121–i129, 2014.

[LY07] H. Li and A. Yezzi. Vessels as 4-D Curves: Global Minimal 4-D Paths
to Extract 3-D Tubular Surfaces and Centerlines. IEEE Transactions
on Medical Imaging, 26, 2007.

[LZD13] Joseph J Lim, C Lawrence Zitnick, and Piotr Dollár. Sketch tokens:
A learned mid-level representation for contour and object detection.
In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, pages 3158–3165. IEEE, IEEE, 2013.

[MAI99] A. M. Malek, S. L. Alper, and S. Izumo. Hemodynamic shear stress
and its role in atherosclerosis. Jama, 282(21):2035–2042, 1999.

[Mar13] Alison L Marsden. Simulation based planning of surgical inter-
ventions in pediatric cardiology. Physics of Fluids (1994-present),
25(10):101303, 2013.

[Mar14] Alison L Marsden. Optimization in cardiovascular modeling. Annual
Review of Fluid Mechanics, 46:519–546, 2014.

[MBLS01] Jitendra Malik, Serge Belongie, Thomas Leung, and Jianbo Shi. Con-
tour and texture analysis for image segmentation. International journal
of computer vision, 43(1):7–27, 2001.

108



[MBR+09] Alison L. Marsden, Adam J. Bernstein, V. Mohan Reddy, Shawn C.
Shadden, Ryan L. Spilker, Frandics P. Chan, Charles A. Taylor, and
Jeffrey A. Feinstein. Evaluation of a novel Y-shaped extracardiac
Fontan baffle using computational fluid dynamics. The Journal of
Thoracic and Cardiovascular Surgery, 137(2):394–403.e2, February
2009.

[MFM04] David R Martin, Charless C Fowlkes, and Jitendra Malik. Learning
to detect natural image boundaries using local brightness, color, and
texture cues. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(5):530–549, 2004.

[MFTM01] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A
database of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological statistics.
In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on, volume 2, pages 416–423. IEEE, 2001.

[MKK+16] U. Morbiducci, A. M. Kok, B. R. Kwak, P. H. Stone, D. A. Steinman,
and J. J. Wentzel. Atherosclerosis at arterial bifurcations: evidence for
the role of haemodynamics and geometry. Thrombosis and haemosta-
sis, 115(3):484–492, 2016.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[MMKT16] Jameson Merkow, Alison Marsden, David Kriegman, and Zhuowen
Tu. Dense volume-to-volume vascular boundary detection. In Medical
Image Computing and Computer-Assisted Intervention, pages 371–379.
Springer International Publishing, Cham, 2016.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

[MPC+02] Francesco Migliavacca, Lorenza Petrini, Maurizio Colombo, Ferdi-
nando Auricchio, and Riccardo Pietrabissa. Mechanical behavior of
coronary stents investigated through the finite element method. Journal
of Biomechanics, 35(6):803–811, June 2002.

[MPTAVG16] Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez, and Luc
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Bjoern H Menze. Joint 3-D vessel segmentation and centerline extrac-
tion using oblique Hough forests with steerable filters. Med. Image
Analysis, 19(1):220–249, January 2015.

[SKM+15] Daniele E. Schiavazzi, Ethan O. Kung, Alison L. Marsden, Catriona
Baker, Giancarlo Pennati, Tain-Yen Hsia, Anthony Hlavacek, Adam L.
Dorfman, and Modeling of Congenital Hearts Alliance (MOCHA)
Investigators. Hemodynamic effects of left pulmonary artery stenosis
after superior cavopulmonary connection: a patient-specific multiscale
modeling study. The Journal of Thoracic and Cardiovascular Surgery,
149(3):689–696.e1–3, March 2015.

[SLC+14] Ari Seff, Le Lu, Kevin M Cherry, Holger R Roth, Jiamin Liu, Shijun
Wang, Joanne Hoffman, Evrim B Turkbey, and Ronald M Summers.
2d view aggregation for lymph node detection using a shallow hier-
archy of linear classifiers. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 544–552.
Springer, 2014.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015.

[SLLL02] J.S. Suri, K. Liu, Redenm L., and S. Laxminarayan. A Review on MR
Vascular Image Processing: Skeleton Versus Nonskeleton Approaches:
Part II. IEEE Transactions on Information Technology in Biomedicine,
6, 2002.

[SML06] W. Schroeder, K. Martin, and B. Lorensen. The visualization toolkit
(4th ed.). 2006.

[SNA+97] Yoshinobu Sato, Shin Nakajima, Hideki Atsumi, Thomas Koller,
Guido Gerig, Shigeyuki Yoshida, and Ron Kikinis. 3d multi-scale line
filter for segmentation and visualization of curvilinear structures in
medical images. In CVRMed-MRCAS’97, pages 213–222. Springer,
1997.

113



[SP97] H Ross Singleton and Gerald M Pohost. Automatic cardiac mr image
segmentation using edge detection by tissue classification in pixel
neighborhoods. Magnetic resonance in medicine, 37(3):418–424,
1997.

[SSP03] P.Y. Simard, D. Steinkraus, and J.C. Platt. Best practices for convolu-
tional neural networks applied to visual document analysis. Interna-
tional Conference on Document Analysis and Recognition, 2003.

[SSV+97] J Sijbers, P Scheunders, M Verhoye, A Van der Linden, D Van Dyck,
and E Raman. Watershed-based segmentation of 3d mr data for volume
quantization. Magnetic Resonance Imaging, 15(6):679–688, 1997.

[SVL14] I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning
with neural networks. In Proc. of NIPS, 2014.

[SWR+16] Udhayaraj Sivalingam, Michael Wels, Markus Rempfler, Stefan
Grosskopf, Michael Suehling, and Bjoern H. Menze. Inner and outer
coronary vessel wall segmentation from CCTA using an active contour
model with machine learning-based 3d voxel context-aware image
force. volume 9785, page 978502. International Society for Optics
and Photonics, March 2016.

[SWW+15] Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, and Zhijiang Zhang.
Deepcontour: A deep convolutional feature learned by positive-sharing
loss for contour detection draft version. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In arXiv:1409.1556, Sept.
4, 2014.

[TB97] Alain Tremeau and Nathalie Borel. A region growing and merging
algorithm to color segmentation. Pattern recognition, 30(7):1191–
1203, 1997.

[TB10] Zhuowen Tu and Xiang Bai. Auto-context and its application to
high-level vision tasks and 3d brain image segmentation. PAMI,
32(10):1744–1757, 2010.

[TBT+14] Kenji Takizawa, Yuri Bazilevs, Tayfun E. Tezduyar, Christopher C.
Long, Alison L. Marsden, and Kathleen Schjodt. Patient-Specific
Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS
Methods. In Numerical Simulations of Coupled Problems in Engi-
neering, Computational Methods in Applied Sciences, pages 71–102.
Springer, Cham, 2014. DOI: 10.1007/978-3-319-06136-8 4.

114



[TF09] C.A Taylor and C.A. Figueroa. Patient-specific Modeling of Car-
diovascular Mechanics. Annual Review of Biomedical Engineering,
11:109–134, 2009.

[TFM13] C.A Taylor, T.A. Fonte, and J.K. Min. Computational Fluid Dynamics
Applied to Cardiac Computed Tomography for Noninvasive Quantifi-
cation of Fractional Flow Reserve. Journal of the American College of
Cardiology, 61:2233–2241, 2013.

[TMW+01] Paul M Thompson, Michael S Mega, Roger P Woods, Chris I
Zoumalan, Chris J Lindshield, Rebecca E Blanton, Jacob Moussai,
Colin J Holmes, Jeffrey L Cummings, and Arthur W Toga. Cor-
tical change in alzheimer’s disease detected with a disease-specific
population-based brain atlas. Cerebral Cortex, 11(1):1–16, 2001.

[TND+08] Zhuowen Tu, Katherine L Narr, Piotr Dollár, Ivo Dinov, Paul M
Thompson, and Arthur W Toga. Brain anatomical structure segmen-
tation by hybrid discriminative/generative models. Medical Imaging,
27(4):495–508, 2008.

[TRN+06] Duygu Tosun, Maryam E Rettmann, Daniel Q Naiman, Susan M
Resnick, Michael A Kraut, and Jerry L Prince. Cortical reconstruc-
tion using implicit surface evolution: accuracy and precision analysis.
NeuroImage, 29(3):838–852, 2006.

[TSR+15] J. Tran, D. Schiavazzi, A. Ramachandra, A. Kahn, and A. L. Marsden.
Automated tuning for parameter identification in multi-scale coronary
simulations. In APS Meeting Abstracts, 2015.

[Tu05] Zhuowen Tu. Probabilistic Boosting-Tree: Learning Discriminative
Models for Classification, Recognition, and Clustering. IEEE Interna-
tional Conference on Computer Vision, pages 1–8, July 2005.

[Tur13] Turetken, E. and Benmansour, F. and Andres, B. and Pfister, H. and
Fua, P. Reconstructing Loopy Curvilinear Structures Using Integer
Programming. IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

[UWM+13] A. Updegrove, N. Wilson, J. Merkow, H. Lan, A.L. Marsden, and S.C.
Shadden. SimVascular: An Open Source Pipeline for Cardiovascular
Simulation. Annals of Biomedical Engineering, 61:1–17, 2013.

[UWS16] A. Updegrove, N.M. Wilson, and S.C. Shadden. Boolean and smooth-
ing of discrete surfaces. Advances in Engineering Software, 95, 2016.

115



[VC02] Luminita A Vese and Tony F Chan. A multiphase level set frame-
work for image segmentation using the mumford and shah model.
International journal of computer vision, 50(3):271–293, 2002.

[VJ04] Paul Viola and Michael J Jones. Robust real-time face detection.
International journal of computer vision, 57(2):137–154, 2004.

[Wan01] K C Y Wang. Level set methods for computational prototyping with ap-
plication to hemodynamic modeling. PhD thesis, Stanford University,
2001.

[Wan16] Wang, C. and Kagajo, M. and Nakamura, Y. and Oda, M. and Yoshino,
Y. and Yamamoto, T. and Mori, K. Precise renal artery segmentation
for estimation of renal vascular dominant regions. Medical Imaging:
Image Processing, 2016.

[WHOF96] Susan Wegner, T Harms, Helmut Oswald, and Eckart Fleck. The
watershed transformation on graphs for the segmentation of ct images.
In Pattern Recognition, 1996., Proceedings of the 13th International
Conference on, volume 3, pages 498–502. IEEE, 1996.

[WJV+03] J. J. Wentzel, E. Janssen, J. Vos, J. C.H. Schuurbiers, R. Krams, P. W.
Serruys, P. J. de Feyter, and C. J. Slager. Extension of increased
atherosclerotic wall thickness into high shear stress regions is associ-
ated with loss of compensatory remodeling. Circulation, 108(1):17–23,
2003.

[WKN+16] Chenglong Wang, Mitsuru Kagajo, Yoshihiko Nakamura, Masahiro
Oda, Yasushi Yoshino, Tokunori Yamamoto, and Kensaku Mori. Pre-
cise renal artery segmentation for estimation of renal vascular dominant
regions. Proc.SPIE, 9784, 2016.

[WLK+11] Xunlei Wu, Vincent Luboz, Karl Krissian, Stephane Cotin, and Steve
Dawson. Segmentation and reconstruction of vascular structures for
3D real-time simulation. Medical Image Analysis, 15(1):22–34, 2011.

[WLW+15] Qian Wang, Le Lu, Dijia Wu, Noha El-Zehiry, Yefeng Zheng, Ding-
gang Shen, and Kevin S Zhou. Automatic segmentation of spinal
canals in ct images via iterative topology refinement. IEEE transac-
tions on medical imaging, 34(8):1694–1704, 2015.

[WOJ13] Nathan M. Wilson, Ana K. Ortiz, and Allison B. Johnson. The Vascular
Model Repository: A Public Resource of Medical Imaging Data and
Blood Flow Simulation Results. Journal of Medical Devices, 7(4),
2013.

116



[WTT+17] Zhenglun (Alan) Wei, Phillip M. Trusty, Mike Tree, Christopher M.
Haggerty, Elaine Tang, Mark Fogel, and Ajit P. Yoganathan. Can
time-averaged flow boundary conditions be used to meet the clinical
timeline for Fontan surgical planning? Journal of Biomechanics,
50(Supplement C):172–179, January 2017.

[XB12] Ren Xiaofeng and Liefeng Bo. Discriminatively trained sparse code
gradients for contour detection. In NIPS, pages 584–592, 2012.

[XLS11] Shengzhou Xu, Hong Liu, and Enmin Song. Marker-controlled wa-
tershed for lesion segmentation in mammograms. Journal of digital
imaging, 24(5):754–763, 2011.

[XT15] Saining Xie and Zhuowen Tu. Holistically-nested edge detection.
Proceedings of the IEEE International Conference on Computer Vision,
2015.

[YAL+02] T.S. Yoo, M.J. Ackerman, W.E. Lorensen, W. Schroeder, V. Chalana,
S. Aylward, D. Metaxas, and R. Whitaker. Engineering and algorithm
design for an image processing api: a technical report on itk – the
insight toolkit. Studies in Health Technology and Informatics, 85,
2002.

[YPC+05] Paul A Yushkevich, Joseph Piven, Heather Cody, Sean Ho, James C
Gee, and Guido Gerig. User-guided level set segmentation of anatom-
ical structures with itk-snap. In Insight Journal, Special Issue on
ISC/NA-MIC/MICCAI Workshop on Open-Source Software, 2005.

[YPCH+06] Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel
Gimpel Smith, Sean Ho, James C. Gee, and Guido Gerig. User-guided
3D active contour segmentation of anatomical structures: Significantly
improved efficiency and reliability. Neuroimage, 31(3):1116–1128,
2006.

[YSD04] Jing Yang, Lawrence H Staib, and James S Duncan. Neighbor-
constrained segmentation with level set based 3-d deformable models.
IEEE Transactions on Medical Imaging, 23(8):940–948, 2004.

[ZBG+07] Y. Zhang, Y. Bazilevs, S. Goswami, C.L. Bajaj, and T.J.R. Hughes.
Patient-specific vascular NURBS modeling for isogeometric analysis
of blood flow. Computer Methods in Applied Mechanics and Engi-
neering, 196, 2007.

[ZD14] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object
proposals from edges. In Computer Vision–ECCV 2014, pages 391–
405. Springer, 2014.

117



[Zei12] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

[ZJRP+15] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vib-
hav Vineet, Zhizhong Su, Dalong Du, Chang Huang, and Philip Torr.
Conditional random fields as recurrent neural networks. arXiv preprint
arXiv:1502.03240, 2015.

[ZLG+11] Yefeng Zheng, Maciej Loziczonek, Bogdan Georgescu, Shaohua Kevin
Zhou, Fernando Vega Higuera, and Dorin Comaniciu. Machine learn-
ing based vesselness measurement for coronary artery segmentation
in cardiac ct volumes. In Medical Imaging: Image Processing, page
79621K, 2011.

[ZLG+15] Yefeng Zheng, David Liu, Bogdan Georgescu, Hien Nguyen, and
Dorin Comaniciu. 3D Deep Learning for Efficient and Robust Land-
mark Detection in Volumetric Data. In Medical Image Computing and
Computer-Assisted Intervention, pages 565–572. Springer, 2015.

118


	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	The Role of Pixel Level Labeling
	Deterministic Methods
	Statistical Models
	Learning-Based Methods
	Deep Learning and Convolutional Neural Networks

	Medical Imaging
	Pixel Level Labeling in Medical Images

	Cardiovascular Modeling
	Cardiovascular Segmentation

	Aims and outline of this work
	Chapter 2 - Structured Forests for Cardiovascular Boundary Detection
	Chapter 3 - Convolutional Neural Networks for Dense Volume to Volume Labeling
	Chapter 4 - Cardiovascular Model Construction with Convolutional Neural Networks


	Structured Forests for Cardiovascular Boundary Detection
	Introduction
	Background and Relevant Work
	Methods
	Sampling Methodology
	Topographical and Image Features
	Edge Detection

	Experimentation and Results
	Conclusion

	Convolutional Neural Networks for Dense Volume to Volume Labeling
	Introduction
	Dense Volume to Volume Labeling
	Existing Pixel Level Prediction
	From Fine-to-Coarse to Fine-to-Fine
	Nested Multi-level Learning
	Formulation

	Network Architectures
	HED-3D
	Densely Connected HED-3D
	I2I-3D

	Implementation
	Data Preparation
	Network training
	Weight Initialization

	Experimentation and Results
	Datasets
	Metrics
	BSDS Results
	LPBA40 Results
	Vascular Boundary Results

	Conclusion

	Cardiovascular Model Construction with Convolutional Neural Networks
	Introduction
	Background and Related Work
	Cardiovascular Model Construction
	CNN Segmentation

	Methodology
	Problem formulation
	Spatially Aware CNNs for Segmentation
	The DeepLofting Pipeline
	DeepLofting Training Procedure
	Cardiovascular Model Construction with DeepLofting

	Data
	Data Pre-processing
	Data Augmentation

	Experimentation
	Evaluation Methodology
	Implementation

	Results
	Segmentation and Contour Results
	Comparison of 3D Patient-Specific Models

	Conclusion

	Conclusion
	Summary of Contributions
	Conclusions and Future Directions

	Bibliography



