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ABSTRACT 

FANG, YUAN. Optimization of Daylighting and Energy Performance Using Parametric 

Design, Simulation Modeling, and Genetic Algorithms. (Under the direction of Dr. Soolyeon 

Cho). 

 

With the increasing demand for sustainable design and green buildings, performance is 

becoming an important driving force behind design decisions. Currently, however, only limited 

design options have been explored, and there are limited performance evaluation methods 

available for designers in the early design stages. This research proposes a new building 

performance optimization process that can help designers evaluate both daylighting and energy 

performance, generate optimized design options, and understand the relationship between 

design variables and performance metrics. 

The proposed method of performance optimization utilizes various tools and 

technologies including parametric design, building simulation modeling, and Genetic 

Algorithms. In this method, building design alternatives are extensively explored through 

parametric design. Daylighting and energy modeling and simulation are performed to evaluate 

building performance. Genetic Algorithms is used to identify design options with optimal 

energy and daylighting performance. A case study was conducted to test and verify the 

effectiveness of the optimization process. The geometry of the case study building was 

optimized through the test in three different climate conditions. Various results were analyzed 

and potential influence of design decisions in different environments were discussed.  
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CHAPTER 1:  INTRODUCTION 

1.1 Problem Statement 

Because of the Energy Crisis and climate change, there are growing concerns for sustainability 

around the world. Buildings contribute to one of the largest energy consumption sectors of the 

total energy consumed (EIA, 2016). The interior environment of buildings is also closely 

related to the health and productivity of occupants (Edwards & Torcellini, 2002). Therefore, 

the development of green buildings or high performance buildings is becoming an intense 

research topic. It is important to minimize the energy consumption without sacrificing the 

comfortable and healthy indoor environment. 

With continuous advancement of computational technology, there are numerous building 

performance simulation tools available for designers and engineers to evaluate various aspects 

of building performance. Building performance simulation has been applied to different stages 

of building design and construction (Augenbroe, 2002).  

The early design stage is where most building design decisions are made, and where there is 

the greatest potential to achieve high performance building designs (Miles, Sisk, & Moore, 

2001). However, design alternatives and how are they are related to building performance are 

not thoroughly explored in the early design stage. Currently, performance simulation and 

sustainable design technologies still not well adopted as expected.  
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Therefore, to achieve high performance buildings, it is important to optimize the design process 

that can fully explore design possibilities in the early design stage, and push design decisions 

towards optimal building performance. 

1.2 Research Purpose 

The primary goal of the research is to develop a building daylighting and energy performance 

optimization method in the early design stage for designers to make design decisions towards 

optimal performance. This optimization method is required to have following features. 

First, it can expedite the generation of multiple design alternatives, so that the potential of 

building design can be extensively explored. 

Second, the daylighting and energy performance of each design alternative can be obtained 

simultaneously. 

Third, optimal design options can be found from the large number of design options, and the 

optimal solution should be reliable. 

How this process can be integrated into early architectural design stage, and how the 

optimization results would influence the design decisions are discussed. This research also 

aims to test the applicability of this optimization process through case studies under different 

climate conditions. Finalized design options with enhanced daylighting and energy 

performance are proposed, and the relationship between building design variables and 

performance metrics is analyzed.  
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CHAPTER 2:  LITERATURE REVIEW 

The literature review consists of two main sections. The first section is the review various 

technologies supporting the building performance optimization process: parametric design, 

daylighting and energy performance simulation, and genetic algorithms. The second part is the 

review of precedent building performance optimization studies and their limitations. 

2.1 Parametric Design 

In architectural design practice and research, parametric design approach is becoming popular. 

Parametric design in architecture refers to the modeling process of building geometry using 

parameters and functions. Parametric design adopts similar programming technologies in 

computer science. It has the flexibility of programming, but its graphical user interface and 

visual codes make it more user friendly than traditional programming languages.  

The advantage of parametric design over traditional design method is its ability to quickly 

generate design alternatives (Gerber, 2009). Parametric design maintains dynamic links 

between parameters and geometry defined by the parameters. The modification of parametric 

values lead to simultaneous updates of the building geometry. Once a parametric building 

model is developed, design alternatives can be rapidly generated through the manipulation of 

parameters. Figure 2.1 presents one simple example of parametric design. It shows the 

development of the box geometry involving three functions and three parameters. The three 

parameters control the width, depth, and height of the box. Different box geometries can be 

generated following the change of parameters. Parametric design is widely used in the 
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exploration of patterns and forms. For example, Hemmati and Alavi’s (2016) research 

presented different building envelope patterns generated though the data manipulation of one 

parametric model. 

 

Figure 2.1 Parametric Design 

By combining parametric design and building performance evaluation tools, it is able to create 

design options based on the design performance criteria, such as structural performance, 

lighting performance, energy performance. Rolvink, van de Straat, and Coenders (2010) 

explored building structural system using parametric approaches, and demonstrated how 

parametric design facilitate the generation of design alternatives. Labib (2015) used parametric 

design method to explore the geometry of light shelves and ceilings, and evaluated designs by 

their daylighting performance. 
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Furthermore, the exploration of design alternatives can be automated once the parametric 

model is developed (Kilian, 2006). Just as computer programming, a certain task can be 

accomplished automatically once a sequence of instructions are defined by the corresponding 

code. The automation of the design exploration can significantly save time and provides the 

opportunity for optimization.  

The disadvantage of parametric design is that the modeling of the initial parametric model 

takes longer time than conventional methods. But as the number of design alternatives grows, 

parametric modeling method will quickly show advantage. Another disadvantage is that the 

design alternatives generated by a parametric model still follows the same design concept, and 

have lots of similarities. If the intent is to compare completely different design options, the 

parametric design method is not appropriate. 

Eltaweel and Su (2017) reviewed that parametric design software was first developed in 2008, 

and the prevalent tools include Catia, 3D MAX, 3D Maya, Rivet, Grasshopper, Dynamo, 

Generative Components, Marionette, and Modelur. The most popular parametric design 

software is Grasshopper, which is a plugin for the NURBS (Non-Uniform Rational Basis 

Spline) modeling software Rhinoceros.  

Grasshopper is an open software which can be enhanced by plugins. The plugins target various 

areas such as building geometry development, building structure, environmental analysis, 

mechanical engineering. Ladybug and Honeybee (Roudsari & Pak, 2016), Geco, Diva and 

Archsim are building performance analysis plugins. They create a link between parametric 

building model and building performance through energy modeling and simulation. Like 
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normal energy modeling process, the required input data are usually climatic data, building 

geometry, materials, occupancy and several other schedules and HVAC description and 

operation. Their output usually includes energy consumption, thermal and visual comfort 

metrics, and daylight metrics.  

2.1 Building and Daylighting 

2.1.1 Benefits of Daylighting 

Properly designed daylighting environment can significantly enhance the health and 

productivity of occupants, and improve the energy efficiency of buildings. 

Edwards and Torcellini (2002) reviewed the effects of natural light on building occupants, and 

summarized that daylighting was found to be associated with higher productivity, lower 

absenteeism, improved mood, reduced fatigue, and reduced eyestrain. Solar radiation on the 

skin is essential for human body to produce vitamin D (Holick, 2004). Vitamin D is essential 

for the general health and well-being of people, and vitamin D deficiency has been proven to 

increase the risks of many common cancers, diabetes, autoimmune disease, and sclerosis 

(Holick, 2004). Full-spectrum light from the sun is the best type of light for human eyes’ 

function, whereas most artificial light are concentrated in certain portion of the spectrum, and 

may lead to improper functioning of the eye (Edwards & Torcellini, 2002). Many other 

functions, including nervous system, circadian rhythms, and endocrine system are also 

influenced by different wavelengths of light (Edwards & Torcellini, 2002).  
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Researchers also found various benefits of daylight in different building types. In hospitals and 

assisted-living communities, daylight can improve the physiological and psychological states 

of both patients and staff (Edwards & Torcellini, 2002). Proper lighting environment can ease 

pain, reduce depression of patients, decrease length of stay in hospitals, and lessen agitation 

among dementia patients (Joseph, 2006). Walch et al. (2005) found that patients staying on the 

bright side of the hospital took 22% less painkilling medication per hour. Choi, Beltran, and 

Kim (2012) found a significant relationship between indoor daylight environments and a 

patient’s average length of stay (ALOS) in a hospital, and the ALOS of patients in rooms 

located in the southeast area was 16% - 41% shorter than that in the northwest area.  

The benefits of daylight in office environments include reduced absenteeism, increased 

productivity, financial savings (Edwards & Torcellini, 2002). People prefer to work in daylight 

to artificial light and they prefer to be close to windows (Joseph, 2006). Leather, Pyrgas, Beale, 

and Lawrence (1998) found the area of sunlight penetration is significant positively related to 

job satisfaction, and negatively related to intention to quit. A successful example of daylighting 

in commercial office is Lockheed’s Building 157 in Sunnyvale, California, which has 15-foot-

high window walls, sloped ceilings, and a central atrium to bring daylight deep into the 

building (Romm & Browning, 1994). Absenteeism dropped 15 percent and productivity rose 

15 percent, which helped Lockheed win a $1.5 billion defense contract (Romm & Browning, 

1994). 

The benefits of daylighting in school environments include improved health, student 

attendance and academic performance (Edwards & Torcellini, 2002). Nicklas and Bailey 
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(1997) compared the scores of students from schools using daylighting to schools using 

artificial light, and found students from daylit schools have higher scores in reading and math 

tests. 

Another important benefit of daylighting is energy savings. Alrubaih et al. (2013) reviewed 

that artificial lighting systems consume about 25%-40% of the total energy consumption of 

buildings, and daylighting as an alternative to artificial lighting is considered to be one of the 

simplest method to improve energy efficiency. Daylight by itself does not lead to energy 

savings. Cost and energy savings are achieved through lighting control strategies and photo 

sensors, when artificial lighting can be dimmed or switch off when daylight is sufficient 

(Wong, 2017). Lockheed’s Building 157 saved about 75 percent on its lighting bill, and the its 

energy costs was about half of a typical building constructed at that time (Romm & Browning, 

1994). Opdal and Brekke (1995) compared the energy savings result from calculation and 

measurements and found 40% of lighting energy savings from calculation and 30% of lighting 

energy savings from measurements. Lee and Selkowitz (2006) performed a 9-month field study 

in the mockup of a commercial building in New York, and found 20–23% and 52–59% energy 

savings in two areas of the space through automated roller shades and daylighting controls. 

In addition to the potential to reduce lighting energy, daylighting can also lower the building’s 

cooling load by reducing the heat released by the lighting fixtures. However, excessive glazing 

area may contribute to great heat loss and heat gain, and increase the heating and cooling 

energy consumption of the building. Therefore, daylighting system need to be properly 
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designed, so that the advantages of reduced lighting and cooling energy can overcome the 

disadvantages of increased heat loss and heat gain.  

2.1.2 Daylighting Performance Metrics 

Various performance metrics were defined by researchers to evaluate the quantity of natural 

light on task surfaces in the interior space. The most used metrics are discussed below. 

Illuminance 

Illuminance measures the amount of light on a surface per unit area, and its unit is lux. 

Illuminance is the most commonly used metric to evaluate the brightness of the indoor 

environment. Recommended levels of illuminance are defined by the Illuminating Engineering 

Society (IES) according to the space type, the type of visual tasks, the age of occupants, etc. 

Table 2.1 shows some examples of the recommended illuminance values for different building 

types and seeing tasks (DiLaura, Houser, Mistrick, & Steffy, 2011). 

Daylight factor (DF) 

Daylight factor (DF) measures the ratio of the indoor illuminance to the outdoor illuminance 

under overcast sky conditions. DF is easy to measure and calculate, and its concept is intuitive. 

Thus it is the most frequently used metric to evaluate the daylight condition of a building. 

However, DF is a static daylight metric, which means it does not change with the building 

location or orientation, and many daylighting design problems cannot be detected by DF 

(Reinhart, Mardaljevic, & Rogers, 2006). 
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Table 2.1 Building types and recommended illuminance values 

Building types Area and seeing task Recommended Illuminance 

values (lux) 

Residences General lighting 50-100 

Noncritical kitchen duties 200-500 

Office Lobbies 100-200 

Reading 200-500 or 500-1000 or 1000-2000 

depending on the reading material 

types 

Restaurants Kitchen 500-1000 

Dining 50-100 

Stores Merchandising areas 500-1000 

Feature displays 1000-2000 

Stockroom 200-500 

Hospitals Patients’ rooms 50-100 

Emergency rooms 500-1000 

Operating rooms 1000-2000 

 

Daylight autonomy (DA) 

Daylight autonomy (DA) is the ratio of the number of hours in the year when the illuminance 

provided by daylighting is above the minimum illuminance requirement, to the total number 

of hours occupied in a year (Reinhart & Walkenhorst, 2001). DA is a dynamic daylighting 

metric. Dynamic daylight metrics are based on time series of illuminances, which are based on 

annual solar radiation data for the building site (Reinhart, Mardaljevic, & Rogers, 2006). The 

primary advantage of dynamic daylight performance metrics over static metrics is that they 
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consider the quantity and features of daily variations of daylight together with irregular 

meteorological events (Reinhart, Mardaljevic, & Rogers, 2006). 

Useful daylight illuminance (UDI) 

Useful daylight illuminance (UDI) is the ratio of the number of hours in the year when 

illuminance provided by daylighting is within a useful range, to the total number of occupied 

hours in a year (Nabil & Mardaljevic, 2005). UDI aims to determine the daylighting level that 

is neither too dark nor too bright (Reinhart, Mardaljevic, & Rogers, 2006). UDI is usually 

presented by three metrics: UDI <100 lux, UDI 100-200 lux, and UDI >2000 lux. The 

illuminance range that considered useful is between 100 lux to 2000 lux. Illuminance below 

100 lux in considered as too dark, and illuminance above 2000 lux is considered too bright. 

Continuous Daylight Autonomy (cDA) 

Continuous Daylight Autonomy (cDA) is similar as DA, but it provides partial credit to the 

times when the illuminance is below minimum requirement (Rogers, 2006). For example, the 

minimum illuminance requirement of a space is 300 lux, and at a certain time step the 

illuminance is 150 lux. DA would give it 0 credit, while cDA would give it 0.5 credit. 

Spatial Daylight Autonomy (sDA) 

Spatial Daylight Autonomy (sDA) is the percentage of area that meets the minimum daylight 

illuminance for a specified percentage of hours in a year (Heschong et al., 2012). It considers 

both the spatial and temporal characteristics of daylighting performance. 



 

 

 

12 

Annual Sunlight Exposure (ASE) 

Annual Sunlight Exposure (ASE) is the percentage of area that exceeds specified illuminance 

for more than a specified percentage of hours in a year (Heschong et al., 2012). sDA and ASE 

are usually used together to evaluate the daylighting condition of the space. 

2.1.3 Daylighting Simulation 

Wong (2017) reviewed various methods to evaluate daylighting performance of buildings, 

including scale models with simulator, mathematical models, full scale models for field 

measurement, and computer simulation software. This review evaluated the strengths and 

weaknesses of each method, and found that computer simulation method is the most commonly 

used in the building design stage because of its capability of involving design variants and its 

accurate results. 

Wong (2017) also provided an extensive review of computer simulation tools for daylighting 

performance, and the most frequently used programs are Radiance, Adeline, Ecotect, DOE, 

Daysim, and EnergyPlus. There are two most utilized illumination algorithms in daylighting 

simulation programs: ray-tracing (view-dependent algorithm) and radiosity (scene-dependent 

algorithm), which can be respectively represented by Radiance and Relux (Yu & Su, 2015).  

Radiance is backward ray-tracing program, and it is considered as the most popular daylight 

modeling and simulation tool (Yu & Su, 2015). Radiance was widely used in daylighting 

related research topics, and it was extensively validated by researchers (Ochoa et al., 2011). 
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One major drawback of Radiance is the lack of user interface, so it is usually incorporated as 

a lighting simulation engine within other tools, such as Daysim (Ochoa et al., 2011). 

2.2 Building and Energy 

2.2.1 Energy Performance Metrics 

Since the energy crisis in the 1970s, there are growing concerns for energy conservation and 

the use of renewable energy resources. Energy production is related to air pollution and global 

climate, which can directly lead to the prevalence of certain disease (Brown, Henze, & Milford, 

2017). 

Buildings, industries and transportation systems are the three major sectors in energy 

consumption. Energy consumed in the buildings accounts for about 20% of the total energy 

consumed worldwide (EIA, 2016). In the U.S., buildings sector accounts for about 41% of total 

energy consumption in 2010, which is 44% more than the transportation sector and 36% more 

than the industrial sector (D&R International, 2012).  

Energy consumption in buildings has increased dramatically worldwide over the past few 

decades, and it is expected to keep growing. According to EIA (2016), energy consumption in 

buildings is expected to increase by an average of 1.5% per year from 2012 to 2040. Cao, Dai, 

and Liu (2016) reviewed that the main reasons for the energy consumption increase are the 

growth of population, the increased time people spent indoors, the demand for more building 

functions and higher indoor environmental quality, and global climate change. 
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To evaluate the energy performance of buildings, it is necessary to compare the calculated or 

measured building performance metrics to some reference values, which may represent the 

energy-related characteristics of the building components or the energy consumption of 

building systems (Borgstein, Lamberts, & Hensen, 2016). It is increasingly common to 

evaluate building performance based on normalized whole-building energy consumption 

metrics, such as Energy Use Intensity (EUI) (Borgstein, Lamberts, & Hensen, 2016). 

EUI is the energy per square foot per year, and it is calculated by dividing the total yearly 

energy consumption of the building by its total gross floor area (EPA, 2016c). Table 2.2 

summarizes U.S. national median EUI values for some typical building types (EPA, 2016b). 

These values can be used to compare a property’s energy use to the national median. Source 

energy reflects the total amount of raw fuel required to operate the building, while site energy 

is the amount of heat and electricity consumed by a building which is usually shown in utility 

bills (EPA, 2016a). 

Generally, lower EUI indicates better energy performance of a building. Building energy use 

can be influenced by numerous internal and external factors such as weather, plug loads, and 

occupant schedules, and certain building types always have higher EUI than others (EPA, 

2016c). In the listed examples in Table 2.2, restaurants and hospitals have the largest EUI, 

whereas residence halls and dormitories have the least EUI. 
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Table 2.2 U.S. National Median EUI by Building Type 

Primary Function Source EUI (kBtu/ft2) Site EUI (kBtu/ft2) 

Restaurant 432 223.8 

Hospital 389.8 196.9 

College/University 262.6 130.7 

Mall 235.6 93.7 

Hotel 162.1 73.4 

Office 148.1 67.3 

K-12 School 141.4 58.2 

Laboratory 123.1 78.8 

Residence Hall/Dormitory 114.9 73.9 

 

2.2.2 Energy Simulation 

Building energy modeling and simulation is the process of predicting a building’s energy 

performance prior to the building construction. It analyzes the energy consumption of a 

building at the design stage and it can speed up the design process, increase efficiency, enable 

the exploration of multiple design variants, and finally lead to more optimal designs 

(Augenbroe, 2002). 

Before the prevalence of building simulation technologies, architects and engineers relied 

heavily on manual calculations and often use ‘rule-of-thumb’ methods and extrapolations in 

making design decisions, and this approach usually resulted in buildings with poor energy 

performance due to oversized plant and system capacities (Hong, Chou, & Bong, 2000). 
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With the development of computers, there is a rapid proliferation of building performance 

simulation tools in the past few decades. Those tools are becoming more easily for designers 

to use because of the improved user interface, reduced calculation time, easy data transfer 

between programs, and intuitive result display. The most popular energy modeling tools 

include DOE-2, EnergyPlus, Energy 10, TRNSYS, HAP, IES-VE, and TRACE 700. These 

tools focus on various aspects of building performance, including building energy efficiency 

and consumption, thermal comfort, ventilation and indoor air quality, lighting environment, 

and acoustic environment (Wang & Zhai, 2016). 

The EnergyPlus is one of the most popular building performance simulation programs. It is an 

advanced whole-building energy simulation engine, and it can be used to model both energy 

consumption and water use in buildings. The EnergyPlus simulation result is highly accurate, 

and it was validated by different researchers (Mateus, Pinto, & da Graca, 2014; Anđelković, 

Mujan, & Dakić, 2016). EnergyPlus is funded by the U.S. Department of Energy, and it is a 

free, open-source, and cross-platform software. 

2.4 Building Performance Optimization 

2.4.1 Optimization 

One common approach that designers seek the best design solution is “design of experiment” 

and comparison, where different design variables are combined to establish multiple design 

alternatives, and the optimal design is found through the comparison of their performances. 

This process is intuitive and flexible, so it is widely used in practice and research problems. 
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For example, Mahmoud and Elghazi (2016) used an experimental method to the evaluation of 

kinetic facades system performance, and found optimal design solutions with best daylight 

performance. Ho, Chiang, Chou, Chang, and Lee (2008) explored the performance of 4 types 

of shading designs with different height and width combination for a classroom design, and 

found the optimal design with maximum uniform illumination distribution. However, only 

limited design options can be explored in this method. 

Optimization is the process or methodology of making a design or decision as functional or 

effective as possible (Merriam Webster Online, 2017). Mathematically, optimization is the 

process of finding the minimum or maximum value of a function by choosing the best value 

of variables. Optimization provides the possibility to explore a large number of design 

solutions efficiently, but the transfer of a building design problem into the mathematical 

domain is not an easy task. With the development of parametric design, building performance 

simulation and optimization technologies in recent years, optimization of building 

performance has become possible. The applications of mathematical optimization started since 

the 1980s and 1990s, but most studies in building performance optimization with building 

energy simulation and an algorithmic optimization engine were published in the late 2000s 

(Nguyen, Reiter, & Rigo, 2014).  

Building performance optimization is usually considered as a process automated by a building 

simulation program and an optimization engine, which consists of optimization algorithms 

(Nguyen, Reiter, & Rigo, 2014). 
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Optimization process usually requires two types of inputs: variables and objective functions. 

In building performance optimization, variables are the values controlling the geometry or 

properties of the design, and objective functions are the building performance metrics usually 

calculated by simulation tools (Machairas, Tsangrassoulis, & Axarli, 2014). Typical design 

variables explored in optimization studies are the orientation of a building, the shape of a 

building, construction dimensions, construction materials, window to wall ratio, lighting 

equipment, and HVAC system sizes. Optimization methods were applied to a wide variety of 

building design problems such as energy, cost, orientation, façade design, thermal comfort, 

daylighting, massing, structure, and life cycle analysis (Machairas, Tsangrassoulis, & Axarli, 

2014).  

2.4.2 Multi-Objective Optimization 

In building design problems, designers often need to deal with multiple conflicting objectives, 

such as maximum thermal comfort versus minimum energy consumption, or maximum 

equipment capacity versus minimum cost. There are two common methods to solve this 

problem. The first method is weighted sum model, where different weight is applied to various 

objectives, and the weighted objectives are summed up to a single cost function. Then the 

problem is transformed to a single objective problem. Weighted sum approach is easy to apply, 

but the result heavily depends on the weigh allocated to each objective, which require 

professional knowledge and experience. 

The second method is Pareto optimization, which is to find the trade-off front, or Pareto front 

between each objective. Pareto front is defined based on the concept of dominance (Evins, 
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2013). For example, a two-objective minimization problem is illustrated in Figure 2.4. The two 

objectives are a and b. The solutions shown in red squares are non-dominated since there are 

no solutions with better performance in both objectives. They are called non-dominated 

solutions and make up the Pareto front. All the green dots are dominated solutions, since there 

are solutions that are better in both objectives. Genetic algorithms show strong advantages in 

solving multi-objective problems.  

 

Figure 2.2 Pareto front (red dots) and dominated solutions (green dots) 

2.4.3 Genetic Algorithms 

It is important to choose the proper optimization algorithm for different optimization problems. 

Numerous types of optimization algorithms have been developed in recent years. Nguyen, 

Reiter, and Rigo (2014) reviewed the different optimization algorithms, and classified them as 

local or global methods, deterministic or stochastic methods, heuristic or meta-heuristic 

methods, derivative-based or derivative-free methods, bio-inspired or non-bioinspired 

methods, trajectory or population-based methods, single-objective or multi-objective 
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algorithms, etc. The strength and weakness, and typical algorithms of each family were also 

thoroughly reviewed. Similar reviews were also conducted by Evins (2013), and Machairas, 

Tsangrassoulis, and Axarli (2014). 

From the review of previous studies, it can be concluded that the stochastic population-based 

algorithms, such as Genetic algorithms, Particle swarm optimization, and Hybrid algorithms, 

were the most frequently used in building performance optimization (Nguyen, Reiter, & Rigo, 

2014).  

Genetic algorithm is the most popular optimization algorithm in building performance studies. 

Genetic algorithm was first proposed by Holland (1975) in the 1970s as a heuristic search 

method. It is based on the natural selection process in biological evolution (Galletly, 1998). It 

recurrently modifies a population of solutions using principles that can be observed in nature, 

such as selection, crossover, and mutation. Genetic algorithm randomly selects solutions of 

good performance from the current population and uses them as parents to produce the next 

generation, and the population "evolves" toward an optimal solution (MathWorks, 2016). It is 

suitable for building performance optimization for the following few reason: it can handle both 

continuous and discrete variables; it allows parallel simulations on multi-processor computers; 

it is suited to solve multi-objective problems; it is robust in handing discontinuity, multi-modal, 

and constrained problems; it is robust to high simulation failure rates (Nguyen, Reiter, & Rigo, 

2014). 

The tools that were used in building performance optimization studies can be separated into 

three categories: custom programmed algorithms, optimization packages, and special 
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optimization tools for building design (Machairas, Tsangrassoulis, & Axarli, 2014). Custom 

programmed algorithms are the most flexible, but advanced programming skills are required. 

Examples of optimization tools for building design include MultiOpt (Chantrelle, Lahmidi, 

Keilholz, El Mankibi, & Michel, 2011), GENE_ARCH (Caldas, 2008), ParaGen (Turrin, von 

Buelow, & Stouffs, 2011). These tools are developed by third party developers, but they are 

not widely used and their performance is not widely tested and validated. 

Currently, the optimization packages are becoming popular because they do not require 

advanced programming skills, have enough flexibility, and users can work in familiar software 

environment. Genetic algorithm based optimization packages are available in the Grasshopper 

parametric modeling environment. Galapagos is one example which is able to conduct single 

objective optimization. Labib (2015) used Galapagos to study the interaction between light 

shelves and complex ceiling forms for optimized daylighting performance. Ercan and Elias-

Ozkan (2015) also used Galapagos to optimize the design of shading devices for daylighting 

performance. Octopus is also a plugin for Grasshopper, which is based on genetic algorithm 

and can produce trade-off solutions for multi-objective optimization problems. Zhang, Zhang, 

& Wang (2016) performed a multi-objective optimization of a community center building 

using Grasshopper and Octopus. 

2.5 Review of Building Performance Optimization Studies 

The number of building performance optimization papers has increased significantly in recent 

years. Evins (2013) summarized that 38% of the reviewed work focused on the optimization 

of building envelop; 21% focused on building form; 17% focused on HVAC systems; 16% 
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focused on renewable energy generation, and the others focused on control strategies and 

lighting systems. 53% of the studies addressed single objective optimization; 8% of the studies 

used weighted sum approach in multi-objective optimization, and 39% applied Pareto multi-

objective optimization (Evins, 2013). Genetic Algorithm was the most common optimization 

method, which was used in more than half of the works, and the other popular methods are 

direct search, simulated annealing, particle swarm (Evins, 2013). The most common 

optimization objective was energy consumption, which was found in 60% of the studies, and 

the other common objectives are cost, comfort, daylight performance, CO2 emission, etc 

(Evins, 2013). 

In this review, precedent building performance optimization studies are categorized according 

to their major area of optimization: building systems, building envelope, and building 

geometry. 

2.5.1 Optimization of Building Systems 

HVAC system 

The Heating, Ventilation and Air Conditioning (HVAC) systems are essential to maintain 

comfortable interior thermal environment, and they have significant influence on the building 

energy performance. The optimization objectives usually include building energy, life cycle 

cost, and thermal comfort. Typical variables considered are equipment number and size, water 

and air temperature set points, etc.  
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Wright, Loosemore, and Farmani (2002) investigated a multi-objective genetic algorithm 

optimization method to identify the optimum pay-off between energy cost and occupant 

thermal discomfort. The 11 design variables were all related to HVAC system, such as supply 

air temperature, supply air flow rate, coil width, coil height, number of rows, number of 

circuits, and maximum flow rate. Feasible solutions were found within a few generations. 

Kusiak and Xu (2012) performed a multi-objective optimization of HVAC system to achieve 

minimum energy consumption while maintaining acceptable indoor room temperature. The 

optimization model was based on particle swarm optimization algorithm. 21 parameters were 

selected as the candidates for the optimization model, and these parameters include supply air 

temperature, fan speed, room temperature, room humidity. The optimized model was applied 

on the actual HVAC system, and it demonstrated 29.99% decrease in energy consumption. 

Renewable energy system 

While sustainable design strategies can reduce the energy demand of buildings, renewable 

energy system can generate energy for building’s demand, and achieve low or zero carbon 

buildings. Renewable energy systems explored in building performance optimization studies 

include combined heat and power systems, solar technologies, and ground energy and storage 

systems (Evins, 2013). Since the equipment for renewable energy generation require large 

capital and operating cost, studies usually try to find trade-offs between system efficiency and 

cost.  
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Kayo and Ooka (2009) used multi-objective genetic algorithm to optimize a distributed energy 

system. The objectives are the minimization of energy consumption and cost, and design 

variables are different levels of cool heat supply, hot heat supply, hot water supply, and 

electricity supply. This method was applied to a hospital building in Tokyo, and optimal design 

options were found. 

Fan and Xia (2017) presented a weighted sum multi-objective optimization for building 

envelop retrofitting. Rooftop solar panel system was also taken into consideration. The 

optimization objective is to maximize energy savings and economic benefits. Design variables 

are solar panel types, and window, wall, roof materials. The result showed that, the optimal 

retrofitting plan would yield promising energy savings with acceptable economic benefits in a 

24-year period. 

2.5.2 Optimization of Building Envelope 

Building envelop is the physical separator between the interior and exterior environment, 

which has great influence on the building performance. Building envelop optimization studies 

mostly concerned the selection of construction types and building materials, and some studies 

considered basic shape variables like window to wall ratio and orientation. The most 

investigated optimization objectives were energy performance, thermal comfort, and 

environmental impacts. The studies that explored more complex building shape variables are 

discussed in the next section. 
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Schwartz, Raslan, and Mumovic (2016) proposed a multi-objective optimization process for a 

residential complex refurbishment. The optimization objectives are minimum life cycle carbon 

footprint and life cycle cost over 60 years. The variables are the wall insulation materials, 

thermal bridge insulation, and window to wall ratios. The study successfully found the optimal 

design solutions. The results also indicate that the optimization of annual energy consumption, 

which is more commonly considered, might result in higher life cycle CO2 emissions. 

Ascione, Bianco, De Masi, Mauro, & Vanoli (2015) adopted a multi-objective approach to 

optimize the energy performance and thermal comfort, and the methodology was applied to a 

residential building in two different Mediterranean climates. The problem was solved using 

Genetic Algorithm in MATLAB and energy simulation engine EnergyPlus. Design variables 

were related to the thermo-physical performance of the building envelop, such as the thermal 

transmittance, the thermal capacity, thickness of materials, and the radiative properties of 

external coatings. This methodology was considered effective, and different optimization 

results were found for the different climates. 

Azari, Garshasbi, Amini, Rashed-Ali, and Mohammadi (2016) utilized a multi-objective 

optimization method to optimized energy consumption and life cycle impacts on the 

environment. Design variables include insulation materials, window types, window frame 

materials, wall thermal resistance, and window-to-wall ratios. The energy simulation tool was 

eQuest 3.65 and environmental impact estimation tool was Athena IE. A hybrid artificial neural 

network and genetic algorithm was used as the optimization method.  

Some studies included the daylighting performance as optimization objectives.  
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Lartigue, Lasternas, and Loftness (2013) provided a methodology for optimizing the building 

envelope with respect to minimum heating load, minimum cooling load and maximum 

daylight. The variables to optimize are the window to wall ratio and the window type. Energy 

performance simulation software was TRNSYS, daylighting simulation software was Daysim, 

and optimization tool was GenOpt. Trade-off solutions between different objectives were 

found using Pareto approach. 

Carlucci, Cattarin, Causone, and Pagliano (2015) presented a multi-objective optimization of 

a net zero-energy house in southern Italy to minimize thermal and visual discomfort. The four 

objectives are minimum thermal discomfort during winter and summer and minimum visual 

discomfort due to glare and inappropriate daylight level. EnergyPlus was the daylighting and 

energy simulation engine, and GenOpt was the optimization engine. Design variables include 

wall, roof, floor materials, glazing materials, control strategies for shading devices, and 

opening of windows. 

2.5.3 Optimization of Building Geometry  

One of the most important design decisions made in early design stage is the building form, 

shape, or geometry. It does not only determine the aesthetics and functions of a building, but 

also greatly influences a building’s energy and daylighting performance. The main design 

variables of concern are window design, shading design, roof design, façade design, building 

shape design, etc.  
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Tuhus-Dubrow and Krarti (2010) developed a simulation–optimization tool to optimize 

building shape and building envelop features. This tool coupled a genetic algorithm to a 

building energy simulation engine, and aimed to find optimal building design for minimum 

energy consumption. Different building shapes, including rectangle, L, T, cross, U, H, and 

trapezoid were investigated. Building envelope features, including wall and roof constructions, 

foundation types, insulation levels, and window types and sizes were also considered. The 

optimization results indicated that rectangular and trapezoidal shaped buildings generally have 

lowest life-cycle cost.  

Lin and Gerber (2014) developed an Evolutionary energy performance feedback for design 

(EEPFD) methodology using parametric design and multi-objective optimization. A prototype 

tool, H.D.S. Beagle, was also developed to facilitate the development of the methodology. 

H.D.S. was a plug-in for Autodesk Revit, which integrates Autodesk Green Building Studio 

and Microsoft Excel. Optimization objectives were spatial programing compliance, energy 

performance, and financial performance. Complex building geometries with multiple design 

variables were explored in the research. 

Futrell et al. (2015) used a bi-objective optimization method to investigate building design for 

minimum energy demand and maximum daylight. Design variables were ceiling height, 

window transmittance, window width, shade length, and light shelf length. A classroom design 

in Charlotte, NC was optimized for north, south, east, and west orientations. For each 

orientation, trade-offs between thermal and daylighting performance were found using Pareto 
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front. Results showed that for the south, east, and west orientations, energy and daylighting 

performance are not in strong conflict. A stronger conflict was found for the north orientation. 

Caruso and Kämpf (2015) optimized the three-dimensional form of buildings for minimum 

energy consumption due to solar irradiation. A cumulative sky model approach was used for 

the computation of solar irradiation on the building envelope, and an evolutionary algorithm 

was used to find the optimal building form. Various families of building forms were 

investigated, and optimal shapes were found. 

Ercan and Elias-Ozkan (2015) presented a methodology to explore shading device design 

alternatives for optimal daylight performance in an office building in a hot and humid climate. 

Parametric design tool Grasshopper was used to generate design alternatives for shading 

devices with four design variables. The optimization objective was minimum solar irradiation 

and the variance between the analysis nodes. Weighted sum approach was used to solve this 

multi-objective optimization problem. 

Zhang et al. (2016) provided an approach to optimize the shape of free-form building based on 

solar radiation and space efficiency. Rhinoceros and Grasshopper was used to develop the 

parametric free-form building model. A multi-objective genetic algorithm was used to find 

trade-offs between the three objectives: maximum solar radiation gain, maximum space 

efficiency, and minimum shape coefficient. Compared to a cube-shaped reference building, 

the optimized free-form shape building achieved 30–53% higher solar radiation, 15-20% lower 

shape coefficient, and less than 5% of space efficiency. 
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2.6 Summary of Literature Review 

The findings from the literature review are summarized below: 

First, design decisions made in the early design stage have significant impacts on the building’s 

daylighting and energy performance. Great performance improvement was found after 

implementing building performance optimization. However, there are not enough tools and 

methodologies for designer to easily evaluate and optimize their design in early design stage. 

Second, daylighting is an essential part of interior environment for occupants’ health and 

comfort. It is also an effective sustainable strategy to improve buildings’ energy performance. 

Even though there are a growing number of studies on the optimization of building 

performance, daylighting performance were usually not one of the optimization objectives to 

be considered. 

Third, precedent building performance optimization studies usually employed fixed building 

geometry, and the variables to be optimized were physical properties of material or settings of 

building systems. The studies that evaluated alteration in building shapes were restricted to 

simplified performance objectives, such as solar radiation. There is a lack of studies that 

combined both variance in building geometry and sophisticated energy modeling and 

simulation process. 

Fourth, parametric design is found to be a powerful approach in generating design alternatives, 

and the combination of Rhino and Grasshopper was the most used parametric design tools. 

Ladybug and Honeybee are energy and daylighting modeling plugins for Grasshopper, and the 
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developed energy and daylighting models are simulated in EnergyPlus and Daysim, which are 

two of the most reliable simulation engines in the industry. Galapagos and Octopus are genetic 

algorithm based optimization engines in Grasshopper. Genetic algorithms were the most 

popular optimization algorithms in building performance optimization, and were proved to be 

reliable in both single-objective and multi-objective problems.  

This research aims to establish a building performance optimization process considering both 

daylighting and energy performance. It could integrate both building geometry alternation and 

detailed energy and daylighting simulation. This optimization process is executed in Rhino and 

Grasshopper platform with various environmental analysis and optimization plugins.  
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CHAPTER 3:  CONCEPTUAL FRAMEWORK AND RESEARCH OBJECTIVES 

3.1 Conceptual Framework 

The proposed building performance optimization process is integrated in schematic design 

phase, which is an important early architectural design phase (Figure 3.1). After understanding 

the project goals and requirements, architects develop preliminary building design concept, 

including study drawings illustrating the spatial relationships, scale, and form of the design. 

The building performance optimization process aims to provide designers with optimized 

design options without compromising original building design concept. If the proposed design 

options are meet the performance target and other design requirements, the design will be 

continued into the next design stages. If it is not satisfactory, initial design concept could be 

modified and this optimization process could be repeated multiple times, until a desirable 

design is obtained. 

The four main components inside the framework are parametric building design, energy and 

daylight modeling, simulation and building performance metric, and optimization. The goal is 

to seamlessly connect the four components, and automate the building design generation, 

performance simulations and optimization process.  

Parametric design is a method to define building geometry with design parameters and 

functions. Design alternatives are generated with the change of design parameters. The tools 

for parametric modeling are Rhino and Grasshopper.  
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Figure 3.1 Building Performance Optimization in Architectural Design Process 

In energy and daylight modeling process, detailed building information is assigned to the 

parametric model, such as geometry adjacency information, construction types and materials, 

loads, occupancy and operational schedules. The energy modeling tools are Ladybug and 
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Honeybee. Ladybug provides the main functions of energy and daylighting modeling, while 

Honeybee is used for the manipulation and visualization of weather data and simulation data. 

Ladybug will generate an idf file for energy simulation in EnergyPlus and a rad file for daylight 

simulation in Radiance. After simulation, Ladybug imports simulation result file back to 

grasshopper, and read the energy and daylight performance metrics.  

The optimization process needs two type of input: variables and fitness function. In building 

performance optimization, variables are the building design variables in grasshopper that can 

control the building geometry. The fitness function is the energy or daylight performance 

metrics calculated by the simulation engine. For single objective optimization, the fitness 

function is the minimum or maximum value of the performance metric, such as minimum 

energy load or maximum UID. Then genetic algorithm is used to examine the relationship 

between design parameters and performance metrics, and generate new design options towards 

better performance. For multi-objective optimization, multi-objective genetic algorithm is used 

to find the Pareto front, which is the trade-off solutions between different objectives. The 

optimization process is stopped at a user specified criterion, such as total simulation time. 

Each component requires different tools, and the structure of the tools is shown in Figure 3.2. 

Rhino is a 3D NURBS modeling tool. Grasshopper is a plug-in for Rhino, and it provides 

parametric modeling platform that integrates the functions in Rhino and other add-on 

programs. Ladybug, Honeybee, Galapagos, Octopus, and TT toolbox are plug-ins for 

Grasshopper. Ladybug and Honeybee are energy and daylighting modeling tools. They are 

connected to energy and daylighting simulation engines EnergyPlus and Radiance. Galapagos 
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and Octopus are optimization tools. Galapagos is for single objective optimization, and 

Octopus is for multi-objective optimization. TT toolbox is used to record each simulation data, 

and export the data to an Excel document. 

 
 

Figure 3.2 Structure of Optimization Tools 

3.2 Research Goals and Objectives 

The goal of the research is to develop and verify an optimization process for high performance 

buildings design. This process can help designers identify designs with optimized daylighting 

and energy results, and understand how design parameters influence building performances. 

To achieve the goal, objectives are specified as follows: 

1. Define a case study model, building design variables, and optimization objectives.  

2. Develop the optimization framework with a parametric design model, energy and 

daylighting modeling components and optimization engines. 
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3. Use this framework to optimize daylighting and energy performance of the case study 

building respectively, and optimize both daylighting and energy performance using 

multi-objective optimization techniques. 

4. Analyze the data from the optimization process, and examine the relationship between 

design variables and performance metrics. Compare the three optimization results, and 

propose best design solutions. Compare the optimization results of the same design in 

different climate zones. 

5. Summarize the research findings. Identify the limitations in the optimization process, 

and propose future studies. 
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CHAPTER 4:  METHODOLOGY 

4.1 Research Framework  

4.1.1 Overview 

The overall research strategy and process is shown in Figure 4.1. There are four main steps. 

The first step is to identify design parameters and build a parametric design model. The second 

step is the development of daylight and energy model for three optimization cases. The three 

cases represent the same building geometry in different climate zones in United States: hot, 

mixed, and cold climate. The purpose is to compare how the optimization results are different, 

and how the relationship between design variables and performance are different in the three 

climate zones.  

The third step is nine optimization processes - a daylighting optimization process, an energy 

optimization process, and a multi-objective optimization process considering both daylighting 

and energy for each climate zone. The reason to separate three optimization processes is to 

fully explore building design potential under different objectives, and compare the 

performance difference.  

The fourth step is the analysis and evaluation of simulation data and optimized design after the 

optimization processes are accomplished for each climate. The optimal designs are compared 

visually, and the settings of each optimized design are compared. The building performance 

improvement, and the variables with the most influence on the building performance are also 

analyzed. 
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Figure 4.1 Research Diagram 

4.1.2 Integrated Daylighting and Energy Simulation 

To achieve energy savings from daylighting, it is necessary to install lighting control system 

in the building. Lighting controls can adjust the level of electric light to complement the 

illumination provided by daylight, or turn off the light when daylight illuminance is adequate. 

In building performance simulation, the process is similar. Figure 4.2 illustrates the integrated 

daylighting and energy simulation process for daylight energy savings. A daylighting 

simulation is required first to calculate the illuminance at the lighting sensor positions for every 

hour in a year, and electrical light would be turned off or dimmed according to the daylight 
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illuminance. Then a year-long lighting schedule will be generated. The schedule will be input 

into energy model to incorporate the electrical lighting, heating or cooling energy requirement 

differences due to daylighting. Ladybug and Honeybee have the functions of exporting and 

importing lighting schedules, which makes each daylighting and energy simulation sequence 

automated. 

 

Figure 4.2 Integrated Daylight and Energy Simulation 

Figure 4.3 shows the workflow of this process in grasshopper. Group A is the components for 

developing the building geometry. The geometry is connected to components in Group B for 

energy and daylighting modeling. The daylight model is connected to components in Group C 

for daylighting simulation. Group D connects both the energy model from Group B and the 

daylighting simulation output from Group C for energy simulation. Group E is the components 

for optimization. Group F is the components for data output. 
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Figure 4.3 Optimization Process in Grasshopper 

4.1.3 Daylighting Optimization 

Figure 4.4 presents the detailed daylighting optimization process. The process begins in 

Grasshopper with parametric design variables and building geometry. Ladybug and Honeybee 

provides the functions of daylight and energy modeling. In the daylighting modeling process, 

the parametric building geometry is connected to Radiance materials component, with the 

setting of material transparency, reflectance, etc. Then the building materials are connected to 

daylighting simulation component, with the input of weather files, daylighting sensor 

placement, and other simulation settings. A rad file is generated and daylighting simulation is 

executed in Radiance. After simulation, Ladybug imports simulation result file back to 

grasshopper, reads the daylight performance metrics, and generates an annual lighting 

schedule.  

A 
B 

D 
E 

F 

C 
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Figure 4.4 Daylighting Optimization Process and Tools 

In the energy modeling process, parametric building geometry is connected to EnergyPlus 

materials, and connected to a Honeybee thermal zone component. Honeybee automates the 

process of intersecting the masses, and finding adjacent surfaces. Honeybee assigns 

construction set, schedules and internal loads for each space based on the building type and 

climate zone. The lighting schedule generated by daylighting simulation is also added to the 

energy model. An idf file is generated and energy simulation is executed in EnergyPlus. 
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Ladybug brings the energy simulation result back to grasshopper, and reads the energy 

performance metrics. 

The optimization process uses Galapagos to search for optimal building configurations for the 

maximum UDI, which is the percentage of hours in a year that the illuminance is between 100 

and 200 lux.  The design variables are connected to the Genetic input of Galapagos, and the 

UDI output are connected to the Fitness input. The population size of each generation is 100 

with an initial boost of twice the population for the first generation. The design variables, 

daylighting metrics, and energy metrics of each simulation are automatically exported to an 

Excel file using TT Toolbox.  

4.1.4 Energy Optimization 

Figure 4.5 presents the detailed energy optimization process. The overall procedure is the same 

as daylighting optimization. The difference is only in the optimization objective, which is the 

minimum energy required for the building. Therefore, the fitness input for optimization is the 

total energy load for heating, cooling, and lighting. The design variables, daylighting metrics, 

and energy metrics are exported to another Excel file using TT toolbox. 
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Figure 4.5 Energy Optimization Process and Tools 

4.1.5 Multi-Objective Optimization 

Multi-objective optimization is also similar as the previous two processes. The only difference 

is that it uses a different optimization engine, that can evaluate multiple objectives at the same 

time. Octopus, a multi-objective optimization plug-in for Grasshopper, is used to perform the 

optimization. 
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Figure 4.6 Multi-Objective Optimization Process and Tools 

The two objectives are maximum average UID, and minimum total cooling, heating, and 

lighting load. The target is to find design with balanced performance between daylighting and 

energy. Octopus by default find the minimum value of each objectives, so the objective to be 

maximized (average UDI) should be multiplied by -1. Pareto frontiers with trade-off between 

each performance metric are found after the optimization process.  
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4.2 Research Design 

4.2.1 Case Study Model 

A simple building geometry is chosen as the case study model, as shown in Figure 4.7. This 

building is a 3600 square feet office building with a pitched roof. Building shape, sizes of 

windows, shadings, and skylights on different parts of the building are explored for optimal 

daylighting and energy performance.  There are three windows on each facade of the building, 

and three skylights on the north and south side of the roof. There are horizontal shadings on 

the south windows, vertical shadings on east and west windows, and no shading on the north 

windows. To simplify the problem, placement of the doors and the interior partition are not 

considered in the optimization process.  

The model is developed with OpenStudio open office construction set, loads, schedules, and 

thermostat settings for the simulation. There are about 36 daylighting sensors evenly spaced 

on the height of 2.5 feet (0.76 meter) above the floor. As the shape of the building changes, the 

number and placement of the sensors might be different as shown in Figure 4.8. 
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(1) Southeast view 

 

(2) Northwest view 

Figure 4.7 Case Study Model 
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(1) 36 sensors 

 

(2) 35 sensors 

Figure 4.8 Placement of Sensors 
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4.2.2 Optimization in Three Different Climate Conditions 

Climate is one of most important factors that determines buildings’ energy consumption 

because of the direct relationship between outdoor temperature and building cooling and 

heating load. Daylighting performance is greatly influenced by the latitude of the building 

location. 

Figure 4.9 presents the 18 climate zones in the US. Three representative cities are chosen as 

the locations for the three optimization cases (Table 4.1). Orlando represents climate zone 2A, 

which is hot climate. Raleigh represents climate zone 4A, which is mixed climate. Minneapolis 

represents climate zone 6A, which is cold climates. These three cities present three typical 

climate conditions in the US, and they show great difference in both temperature and latitude. 

The models are built with DOE commercial reference buildings template from OpenStudio. 

The construction set and climate files for the three models are listed in Table 4.1. 

The main purpose to compare optimization results between climate zones is to see how the 

same building design would change with the climate features to achieve optimal performance. 

Another purpose is to compare if the relationship between design variables and performance 

metrics are different in different climates. The output to be compared are the geometry of the 

optimized design under three climate conditions, the performance improvement of optimized 

design on the baseline design, the relationship between design variables and design 

performance, and the relationship between different performance metrics. 
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Figure 4.9 US Climate Zones (IAQSource, 2016) 

 

Table 4.1 Representative Cities 

Climate 

Zone 
City Construction Set Weather File 

2A Orlando, Florida 
DOE Ref 2004 –

CZ1-2 - Office 

USA_FL_Orlando.Intl.AP.722050_T

MY3 

4A 
Raleigh, North 

Carolina 

DOE Ref 2004 - 

CZ4 - Office 

USA_NC_Raleigh-

Durham.Intl.AP.723060_TMY3 

6A 
Minneapolis, 

Minnesota 

DOE Ref 2004 - 

CZ6 - Office 

USA_MN_Minneapolis-

St.Paul.Intl.AP.726580_TMY3 
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4.2.3 Building Parameters 

Some building parameters are fixed throughout the optimization process. The building is fixed 

at 3600 square feet. The height of the building (from ground to the edge of the pitched roof) is 

13 feet. The windows on the four facades is fixed at the height of 9 feet. The length of skylight 

is 10 feet. The height of the windows and the centerline of the windows are also fixed. 

There are three sets of building construction materials for the models in three different climates 

zones, which are OpenStudio DOE Ref 2004 Office Climate Zone 1-2, Climate Zone 4, and 

Climate Zone 6. The details of each material are listed in Table 4.2, 4.3 and 4.4. To avoid 

excessive heat gain or heat loss from the skylight, an insulated translucent material is used as 

its glazing material. The material has a U-Value of 0.45, and it is the same for the three climate 

zones. 

Radiance materials for daylighting simulation are the same for the three climate zones. The 

reflectance of the ceiling, floor, interior, exterior walls, and louver are respectively 0.8, 0.2, 

0.5, 0.5, and 0.8. The window is a transparent material with visible transmittance of 0.65. 

Skylight is a translucent material with transmittance of 0.24. Details of Radiance materials are 

listed in Table 4.5. 
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Table 4.2 Construction set: DOE Ref 2004 – CZ1-2 - Office 

 Construction Name in OpenStudio Library 
U-Value 

(Btu/h∙ft2∙℉) 

Roof ASHRAE 90.1-2004 ExtRoof IEAD ClimateZone 1-4 0.07 

Exterior Wall ASHRAE 90.1-2004 ExtWall Mass ClimateZone 1-2 0.65 

Exterior Floor ExtSlabCarpet 4in ClimateZone 1-8 0.99 

Window ASHRAE 90.1-2004 ExtWindow ClimateZone 1-2 1.03 

Interior Floor Interior Floor 0.26 

Interior Wall Interior Wall 0.45 

Interior 

Ceiling 
Interior Ceiling 

0.26 

 

Table 4.3 Construction set: DOE Ref 2004 - CZ4 - Office 

 Construction Name in OpenStudio Library 
U-Value 

(Btu/h∙ft2∙℉) 

Roof ASHRAE 90.1-2010 ExtRoof IEAD ClimateZone 1-4 0.07 

Exterior Wall ASHRAE 90.1-2010 ExtWall Mass ClimateZone 3-4 0.17 

Exterior Floor ExtSlabCarpet 4in ClimateZone 1-8 0.99 

Window ASHRAE 90.1-2010 ExtWindow ClimateZone 4-6 0.57 

Interior Floor Interior Floor 0.26 

Interior Wall Interior Wall 0.45 

Interior 

Ceiling 

Interior Ceiling 0.26 
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Table 4.4 Construction set: DOE Ref 2004 - CZ6 - Office 

 Construction Name in OpenStudio Library 
U-Value 

(Btu/h∙ft2∙℉) 

Roof ASHRAE 90.1-2004 ExtRoof IEAD ClimateZone 5-6 0.07 

Exterior Wall ASHRAE 90.1-2004 ExtWall Mass ClimateZone 6 0.11 

Exterior Floor ExtSlabCarpet 4in ClimateZone 1-8 0.99 

Window ASHRAE 90.1-2004 ExtWindow ClimateZone 4-6 0.57 

Interior Floor Interior Floor 0.26 

Interior Wall Interior Wall 0.45 

Interior 

Ceiling 

Interior Ceiling 0.26 

 

Table 4.5 Material Information for Radiance 

 Material Type Values 

Shading Radiance opaque material Reflectance: 0.8 

Interior Wall Radiance opaque material Reflectance: 0.5 

Interior 

Ceiling 
Radiance opaque material Reflectance: 0.8 

Interior Floor Radiance opaque material Reflectance: 0.2 

Window Radiance glass material Visible transmittance: 0.65 

Skylight Radiance translucent material 

Transmittance: 0.24 

Diffuse reflectance: 0.21 

Specular reflectance: 0.08 

Surface roughness: 0 

Transmitted specularity: 0 
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4.2.4 Independent Variables 

There are 9 independent design variables for the building geometry: room depth, roof height, 

width of the east and west windows, width of the south windows, width of the north window, 

length of the vertical shading on the east and west, length of the horizontal shading on the 

south, width of the south skylight, and width of the north skylight. Changing those variables 

results in the creation of multiple design options. Each variable is divided into 10 steps within 

their range, and represented by numbers from 0 to 1. There are 119 design possibilities in total.  

The variables, their ranges, and building examples are listed in detail in Table 4.6. The building 

examples present the minimum and maximum value of the variable in each row, with all the 

other variables at the medium value. Windows with the width of zero, or windows that fill the 

whole wall would lead to energy simulation failure. Therefore, the minimum window width is 

set to 1 inch, and the maximum window width is when there is 1 inch space between windows 

and 1 inch space between the windows and the wall. 

Table 4.6 Design Variables and Ranges 

 Variable Minimum Maximum 

1 
Room 

Depth 

  

40 ft. 90 ft. 
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2 
Roof 

Height 

 
 

When roof slope is 1/12 When roof slope is 12/12 

3 

East 

West 

Window 

Width 

  

No windows Full-wall windows 

4 

South 

Window 

Width 

  

No windows Full-wall windows 

5 

North 

Window 

Width 

  

No windows Full-wall windows 
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6 

East 

West Fin 

Length 

  

No shading 1.5 times of fin distance 

7 

South 

Overhang 

Length 

  

No shading 1.5 times of overhang distance 

8 

South 

Skylight 

Width 

  

 No skylight 2 ft. 

9 

North 

Skylight 

Width 

  

 No skylight 2 ft. 
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4.2.5 Dependent Variables 

The daylighting simulation output includes DF (Daylight Factor), DA (Daylight Autonomy), 

UDI (Useful Daylight Illuminance) <100 Lux, UDI 100-2000 Lux, UDI > 2000 Lux, sDA 

(spatial Daylight Autonomy), and cDA (continuous Daylight Autonomy). Daylighting 

optimization objective is maximum UDI. UDI is preferred over other daylighting metrics as is 

because it has both an upper and lower illuminance threshold, thus it can exclude conditions 

of too dark or too bright daylight.  

The energy simulation output includes annual heating, cooling, equipment and lighting energy 

loads. Since the equipment load stay the same for all the design options, it is not considered in 

this research. Energy optimization objective is minimum total energy load. The total energy 

load is the sum of heating, cooling, and lighting loads. EUI (Energy Use Intensity) is also 

calculated by dividing the total energy load by the floor area of the building.   
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CHAPTER 5:  RESULTS 

5.1 Baseline Design and Performance 

The baseline building geometry is the same for the three representative cities. The building 

variables are set to the midpoint of all the variable ranges, except the variable for room depth. 

Room depth variable is set to 0.4 to achieve a square-shape building. Table 5.1 lists the setting 

values and exact values for all variables. The baseline design is a square shape building with 

16.2 feet pitched roof. It has three 10 feet wide windows on its four facades, and three 2 feet 

wide skylights on the north and south side of the roof. The fins on the east and west façade are 

1.5 feet long, and the overhangs on the south façade are 1.4 feet long. Figure 5.1 presents the 

southeast view and the northwest view of the baseline design. 

Table 5.1 Design Variables of Baseline Building 

Design Variables 

Variable values 

Setting 

(Range: 0 to 1) 

Actual value  

[ft.] 

Room Depth 0.4 60.0 

Roof Height 0.5 16.2 

East West Window Width 0.5 10.0 

South Window Width 0.5 10.0 

North Window Width 0.5 10.0 

East West Fin Length 0.5 1.5 

South Overhang Length 0.5 1.4 

South Skylight Width 0.5 2.0 

North Skylight Width 0.5 2.0 
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(1) Southeast view                                          (2) Northwest view 

Figure 5.1 Baseline Building Design 

The comparison of the temperature and solar altitude of the three representative cities is shown 

in Figure 5.2 and Figure 5.3. 

Orlando is in hot-humid climate. It has hot and humid summers and warm and dry winters. 

During the summer season, high temperatures are typically around 90 °F, while low 

temperatures are around 70 °F. During the winter season, the temperatures are usually between 

50 °F and 70 °F. The weather data used is from the location of Orlando International Airport, 

and the latitude is 28.43. The sun altitude is 82 degrees at summer solstice (June 21), 61 degrees 

at equinox (March 20), and 38 degrees at winter solstice (Dec 21). 

Raleigh has a mixed-humid climate with four distinct seasons. Summers are hot and humid, 

and average low and high temperatures are about 65 °F and 85 °F. Winters are generally cool, 

and average low and high temperatures are about 35 °F and 55 °F. The weather data is from 
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Raleigh-Durham International Airport. The sun altitude is 77 degrees at summer solstice (June 

21), 54 degrees at equinox (March 20), and 31 degrees at winter solstice (Dec 21). 

 

(1) Orlando, FL 

 

(2) Raleigh, NC 

(3) Minneapolis, MN 

Figure 5.2 Annual Dry Bulb Temperature 
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(1) Orlando, FL 

  

(2) Raleigh, NC 

  

(3) Minneapolis, MN 

Figure 5.3 Solar Altitude 
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Minnesota has a cold climate with hot summers and cold winters. During summer months, the 

average low temperatures are around 60 °F, and average high temperatures are around 80 °F. 

During the winter months, the average low temperatures are around 10 °F, and average high 

temperatures are around 25 °F. The weather data is from Minneapolis-St.Paul International 

Airport. The sun altitude is 68 degrees at summer solstice (June 21), 45 degrees at equinox 

(March 20), and 22 degrees at winter solstice (Dec 21). 

 

Table 5.2 Daylighting and Energy Performance of Baseline Design 

 Orlando,  

FL 

Raleigh,  

NC 

Minneapolis,  

MN 

Daylighting 

Performance 

Metric 

[%] 

DA 80.5 78.8 75.7 

UDI < 100 13.3 15.0 16.6 

UDI 100-2000 70.7 69.1 69.4 

UDI > 2000 16.0 15.9 13.9 

cDA 85.0 83.4 81.4 

sDA 100.0 100.0 100.0 

Energy 

Performance 

Metric 

[kBtu/ft2] 

Cooling EUI  26.7 11.2 4.8 

Heating EUI 2.8 15.3 39.9 

Lighting EUI 2.9 3.2 3.6 

Total EUI (Heating, 

Cooling, & Lighting) 
32.5 29.6 48.4 
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Figure 5.4 Daylighting Performance Metrics of Three Climates 

 

Figure 5.5 Energy Performance Metrics of Three Climates 
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The daylighting and energy performance metrics of baseline design in three climate zones is 

listed in Table 5.2, and also illustrated in Figure 5.4 and Figure 5.5. Orlando has the highest 

DA and cDA, and Minneapolis has the lowest, which can generally represent the overall 

daylight availability of the three cities. Orlando has the highest UDI > 2000 lux, while 

Minneapolis has the highest UDI < 100 lux. The UDI 100 - 200 lux are similar at around 70% 

for the three cities. 

The energy performance of the baseline building in the three climate zones also accurately 

presents the climate features. Orlando has the highest cooling EUI, while Minneapolis has the 

highest heating EUI. The lighting EUI of the three cases are quite low because of daylighting 

strategy. Minneapolis has the highest total EUI, and Raleigh has the lowest total EUI. 

5.2 Optimization Case 1 (Orlando, FL) 

5.2.1 Daylighting Optimization 

The daylighting optimization process involves 1106 simulations. The population size of the 

first generation is 200, and the population is 100 for the following generations. There are 10 

generations in total. The optimization objective is maximum UDI 100-200 lux. Figure 5.6 

shows the optimization process in Galapagos.  

Figure 5.7 shows the geometry of the optimal design. The design has square footprint, 5.2 feet 

high roof, 2.1 feet wide windows on the south, 4 feet wide windows on the east, west, and 8 

feet wide windows on the north. The fins are 0.5 feet long, and the overhangs are 2 feet long. 

The south skylights are 3.2 feet wide, and the north skylights are 1.6 feet wide.  
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Figure 5.8 shows the UDI at all the sensors in the room. The UDI of baseline model is 70.7. 

The final optimized UDI is 82.1, which is 16.1% higher than the baseline model. The optimized 

design variable values are shown in Table 5.3, and the daylighting and energy performance 

metrics are shown in Table 5.4. 

 

Figure 5.6 Optimization Process in Galapagos (Orlando, FL) 
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Figure 5.7 Geometry of Optimized Design for Daylighting (Orlando, FL) 

 

 

Figure 5.8 Daylighting Performance of Optimized Design (Orlando, FL) 
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Table 5.3 Variables of Optimized Design (Orlando, FL) 

  
Setting 

(Range: 0 to 1) 

Actual value  

[ft.] 

Design 

Variables 

Room Depth 0.4 60.0 

Roof Height 0.1 5.2 

East West Window Width 0.2 4.0 

South Window Width 0.1 2.1 

North Window Width 0.4 8.0 

East West Fin Length 0.4 0.5 

South Overhang Length 0.7 2.0 

South Skylight Width 0.8 3.2 

North Skylight Width 0.4 1.6 

 

Table 5.4 Daylighting and Energy Performance of Optimized Design (Orlando, FL) 

  Values 

Daylighting 

Performance 

Metric 

[%] 

DA 73.0 

UDI < 100 16.1 

UDI 100-2000 82.1 

UDI > 2000 1.8 

cDA 81.2 

sDA 100.0 

Energy 

Performance 

Metric 

[kBtu/ft2] 

Cooling EUI  21.5 

Heating EUI 2.1 

Lighting EUI 3.3 

Total EUI (Heating, 

Cooling, & Lighting) 
27 
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5.2.2 Energy Optimization 

There are 1213 simulations in the energy optimization process. Same as the previous 

daylighting optimization setting, the population size of the first generation is 200, and the 

population is 100 for the following generations. There are totally 11 generations. The 

optimization objective is minimum total energy load. Figure 5.9 shows the optimization 

process in Galapagos.  

Figure 5.10 shows the geometry of the optimal design. The design footprint is a rectangular 

shape with the south and north edges slightly longer than the east and west edges. The roof 

slope is the minimum height. The windows on the east and west are 1.9 feet wide, and the 

windows on the south are 2.2 feet wide. There are no windows on the north. The fin length is 

0, and the overhang length is 1.1 feet. The skylights on the south are 1.6 feet wide, and the 

skylights on the north are 2.8 feet wide. The overall window sizes are much smaller than the 

daylighting optimal design. 

Figure 5.11 shows the daylighting condition of the room. The baseline EUI is 32.5. The final 

optimized EUI is 25.6, which is 21.2% lower than the baseline design. The optimized design 

variable values are shown in Table 5.5, and the daylighting and energy performance metrics 

are shown in Table 5.6. 
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Figure 5.9 Optimization Process in Galapagos (Orlando, FL) 
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Figure 5.10 Geometry of Optimized Design for Energy (Orlando, FL) 

 

Figure 5.11 Daylighting Performance of Optimized Design (Orlando, FL) 
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Table 5.5 Variables of Optimized Design (Orlando, FL) 

  
Setting 

(Range: 0 to 1) 

Actual value  

[ft.] 

Design 

Variables 

Room Depth 0.3 55.0 

Roof Height 0 2.3 

East West Window Width 0.1 1.9 

South Window Width 0.1 2.2 

North Window Width 0 0.1 

East West Fin Length 0 0.0 

South Overhang Length 0.4 1.1 

South Skylight Width 0.4 1.6 

North Skylight Width 0.7 2.8 

 

 

Table 5.6 Daylighting and Energy Performance of Optimized Design (Orlando, FL) 

 Values 

Daylighting 

Performance 

Metric 

[%] 

DA 59.3 

UDI < 100 20.6 

UDI 100-2000 77.1 

UDI > 2000 2.3 

cDA 74.3 

sDA 80.0 

Energy 

Performance 

Metric 

[kBtu/ft2] 

Cooling EUI  19.6 

Heating EUI 1.7 

Lighting EUI 4.2 

Total EUI (Heating, 

Cooling, & Lighting) 25.6 
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5.2.3 Multi Objective Optimization 

There are 897 simulations in the multi-objective optimization process. The optimization 

objectives are minimum energy load and maximum UDI. Octopus finds the trade-off solutions 

between the two objectives through the Pareto front.  

 

 

Figure 5.12 Pareto front (Orlando, FL) 

As Figure 5.12 shows, all the dark red color dots present non-dominated solutions found in the 

optimization process. Three solutions from the Pareto front are selected as examples. Option 1 

has the best daylighting performance. Option 3 has the best energy performance. Options 2 has 

Option 1 

Option 2 Option 3 

EUI 

[kBtu/ft2] 

UDI  

[%] 
80.11 66.47 

25.97 

34.00 
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relatively balanced daylighting and energy performance. The geometry of the three options are 

shown in Figure 5.13. Their variable values and performance metrics are shown in Table 5.7 

and Table 5.8.  

         
 

(1) Option 1 (Best Option for Daylighting) 

 

 

    
 

(2) Option 2 (Balanced Option) 
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(3) Option 3 (Best Option for Energy) 

 

Figure 5.13 Geometry of Pareto Frontiers (Orlando, FL) 

Table 5.7 Variables of Pareto Frontiers (Orlando, FL) 

 

Option 1 

(Best Option for 

Daylighting) 

Option 2 

(Balanced Option) 

Option 3 

(Best Option for 

Energy) 

 

Setting 

(Range: 

0 to 1) 

Actual 

value  

[ft.] 

Setting 

(Range: 

0 to 1) 

Actual 

value  

[ft.] 

Setting 

(Range: 

0 to 1) 

Actual 

value  

[ft.] 

Design 

Variables 

Room 

Depth 
0.4 60.0 0.1 45.0 0.1 45.0 

Roof 

Height 
0.6 19.0 0 1.9 0.1 3.9 

East 

West 

Window 

Width 

0.2 4.0 0.1 1.6 0.1 1.6 

South 

Window 

Width 

0.6 12.0 0.6 16.0 0.4 10.7 
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North 

Window 

Width 

0.4 8.0 0.4 10.7 0.4 10.7 

East 

West Fin 

Length 

0.4 0.5 0.4 0.2 0.3 0.2 

South 

Overhang 

Length 

0.6 1.7 0.6 1.7 0 0.0 

South 

Skylight 

Width 

0.8 3.2 0.9 3.6 0.4 1.6 

North 

Skylight 

Width 

0.6 2.4 0.8 3.2 0.7 2.8 

 

Table 5.8 Daylighting and Energy Performance of Three Options (Orlando, FL) 

 

Option 1 

(Best Option 

for 

Daylighting) 

Option 2 

(Balanced 

Option) 

Option 3 

(Best 

Option for 

Energy) 

Daylighting 

Performance 

Metric 

[%] 

DA 68.1 71.6 71.8 

UDI < 100 16.4 16 15.7 

UDI 100-2000 80.1 79 75.8 

UDI > 2000 3.5 4.9 8.3 

cDA 80.1 81 81.3 

sDA 86.1 100 100 

Energy 

Performance 

Metric 

[kBtu/ft2] 

Cooling EUI  25.5 21.1 20.4 

Heating EUI 2.5 2.2 2.1 

Lighting EUI 4.3 3.4 3.4 

Total EUI (Heating, Cooling, 

& Lighting) 
32.3 26.7 26.0 
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5.2.4 Data Analysis 

Linear regression approach is used to model the relationship between design variables and 

building performance. There are two regression models for each case. One energy performance 

regression model and one daylighting performance regression model. The data is the 

combination of all the simulation data from the three optimization processes.  

Energy Regression Model 

In the first model, total EUI is the dependent variable, and the actual values of 9 design 

variables are independent variables. The interaction effects between independent variables are 

not considered. The actual by predicted plot, summary of fit, effect summary, and parameter 

estimates are shown in Figure 5.14, Table 5.9, Table 5.10, and Table 5.11. The fitted model 

has R-square of 0.79, which indicates a good fit. The actual by predicted plot also indicates a 

good match between predicted value and actual value.  

 
 

Figure 5.14 Actual by Predicted Plot (Orlando, FL) 
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Table 5.9 Summary of Fit (Orlando, FL) 

 

Table 5.10 Effect Summary (Orlando, FL) 

 

Table 5.11 Parameter Estimates (Orlando, FL) 

 
 

The variables that contribute to the most variance of total energy include roof height, room 

depth, east west window width, and south window width. All the variables are considered 

significant in the model. 
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The relationship between design variables and the energy performance can be found through 

parameter estimates table (Table 5.11). A positive estimate value indicates a positive 

relationship, and a negative relationship indicates a negative relationship. The relationship can 

be also found through data plots. Figure 5.15 shows the plot of total EUI versus two design 

variables that are the most important in the linear model. Total energy increases with the 

increase in roof height, and total energy increases with the increase in room depth. 

  
 

Figure 5.15 Plots of Total Energy against Design Variables (Orlando, FL) 

Daylighting Regression Model 

In the second model, Useful Daylighting Illuminance (UDI 100-2000 Lux) is the dependent 

variable, and the actual values of 9 design variables are independent variables. The actual by 

predicted plot, summary of fit, effect summary, and parameter estimates are shown in Figure 

5.16, Table 5.2, Table 5.13, and Table 5.14. R-square of the model is 0.50, which indicates the 

fit is not as good as the first model. From the actual vs predicted plot, it is found that the 

prediction is not accurate at higher UDI values. The actual value is sometimes much lower 
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than the predicted value. The design variables have different effect on the daylighting and 

energy performance. For example, roof height shows strong relationship with total energy, but 

shows almost no relationship with UDI. The plots of the two most influential design variables 

are shown in Figure 5.17.  

 

Figure 5.16 Actual by Predicted Plot (Orlando, FL) 

Table 5.12 Summary of Fit (Orlando, FL) 
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Table 5.13 Effect Summary (Orlando, FL) 

 

Table 5.14 Parameter Estimates (Orlando, FL) 

 

 

Figure 5.17 Plot of UDI against Design Variables (Orlando, FL) 
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5.3 Optimization Case 2 (Raleigh, NC) 

5.2.1 Daylighting Optimization 

The daylighting optimization process involves 1224 simulations. Figure 5.19 shows the 

optimization process in Galapagos. The geometry of the optimal design and its daylighting 

performance are shown in Figure 5.20 and Figure 5.21. 

 
 

Figure 5.18 Optimization Process in Galapagos (Raleigh, NC) 
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Figure 5.19 Geometry of Optimized Design for Daylighting (Raleigh, NC) 

 

 

Figure 5.20 Daylighting Performance of Optimized Design (Raleigh, NC) 
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Table 5.15 Variables of Optimized Design (Raleigh, NC) 

  
Setting 

(Range: 0 to 1) 

Actual value  

[ft.] 

Design 

Variables 

Room Depth 0.5 65.0 

Roof Height 0.3 11.6 

East West Window Width 0.3 6.5 

South Window Width 0.1 1.9 

North Window Width 0.2 3.7 

East West Fin Length 0.6 1.2 

South Overhang Length 0.1 0.3 

South Skylight Width 0.6 2.4 

North Skylight Width 0.8 3.2 

 

Table 5.16 Daylighting and Energy Performance of Optimized Design (Raleigh, NC) 

  Values 

Daylighting 

Performance 

Metric 

[%] 

DA 71.2 

UDI < 100 17.2 

UDI 100-2000 81.5 

UDI > 2000 1.3 

cDA 79.8 

sDA 100.0 

Energy 

Performance 

Metric 

[kBtu/ft2] 

Cooling EUI  9.4 

Heating EUI 13.1 

Lighting EUI 3.7 

Total EUI (Heating, 

Cooling, & Lighting) 26.2 
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The optimized geometry is similar as the daylighting optimization case in Orlando. The design 

footprint is close to a square shape. It has 11.6 feet high roof, 1.9 feet wide windows on the 

south, 6.5 feet wide windows on the east, west, and 3.7 feet wide windows on the north. The 

fins are 1.2 feet long, and the overhangs are 0.3 feet long. The south skylights are 2.4 feet wide, 

and the north skylights are 3.2 feet wide. 

The UDI of the baseline design in Raleigh is 69.1. The final optimized UDI is 81.5, which is 

17.9% higher than the baseline model. The optimized design variable values are shown in 

Table 5.15, and the daylighting and energy performance metrics are shown in Table 5.16. 

5.2.2 Energy Optimization 

There are 1147 simulations in the energy optimization process. Figure 5.22 shows the 

optimization process in Galapagos. Figure 5.23 shows the geometry of the optimal design. The 

design footprint is a rectangular with longer edge at the south and north orientation. Figure 

5.24 shows the daylighting condition of the room.  

The final optimized EUI is 22.6. Compared to the EUI of 29.6 from the baseline design, there 

is 23.6% reduction. The optimized design variable values are shown in Table 5.17, and the 

daylighting and energy performance metrics are shown in Table 5.18. 
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Figure 5.21 Optimization Process in Galapagos (Raleigh, NC) 
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Figure 5.22 Geometry of Optimized Design for Energy (Raleigh, NC) 

 

 

Figure 5.23 Daylighting Performance of Optimized Design (Raleigh, NC) 
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Table 5.17 Variables of Optimized Design (Raleigh, NC) 

  
Setting 

(Range: 0 to 1) 

Actual value  

[ft.] 

Design 

Variables 

Room Depth 0.1 45.0 

Roof Height 0.0 1.9 

East West Window Width 0.0 0.1 

South Window Width 0.3 8.0 

North Window Width 0.2 5.4 

East West Fin Length 0.2 0.0 

South Overhang Length 0.0 0.0 

South Skylight Width 0.1 0.5 

North Skylight Width 0.4 1.6 

 

Table 5.18 Daylighting and Energy Performance of Optimized Design (Raleigh, NC) 

 Values 

Daylighting 

Performance 

Metric 

[%] 

DA 59.5 

UDI < 100 20.8 

UDI 100-2000 74.1 

UDI > 2000 5.1 

cDA 74.4 

sDA 75.0 

Energy 

Performance 

Metric 

[kBtu/ft2] 

Cooling EUI  7.4 

Heating EUI 10.6 

Lighting EUI 4.7 

Total EUI (Heating, 

Cooling, & Lighting) 22.6 
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5.2.3 Multi Objective Optimization 

This multi-objective optimization process includes 1002 simulations. Figure 5.25 shows the 

Pareto front formed by non-dominated solutions. Three examples are chosen again for best 

daylighting performance, best energy performance, and balanced performance. Their geometry 

is shown in Figure 5.26. The variable values, and the performance metrics of the three options 

are listed in Table 5.19 and Table 5.20.  

 

 

Figure 5.24 Pareto frontier (Raleigh, NC) 

Option 1 

Option 2 Option 3 

EUI 

[kBtu/ft2] 

UDI  

[%] 
80.67 74.56 

21.18 

27.05 
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(1) Option 1 (Best Option for Daylighting) 

 

     
 

(2) Option 2 (Balanced Option) 

 

 
(3) Option 3 (Best Option for Energy) 

 

Figure 5.25 Geometry of Pareto Frontiers (Raleigh, NC) 
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Table 5.19 Variables of Pareto Frontiers (Raleigh, NC) 

 

Option 1 

(Best Option for 

Daylighting) 

Option 2 

(Balanced 

Option) 

Option 3 

(Best Option for 

Energy) 

Setting 

(Range: 

0 to 1) 

Actual 

value  

[ft.] 

Setting 

(Range: 

0 to 1) 

Actual 

value  

[ft.] 

Setting 

(Range: 

0 to 1) 

Actual 

value  

[ft.] 

Design 

Variables 

Room Depth 0.4 60.0 0.4 60.0 0.3 55.0 

Roof Height 0.6 19.0 0 2.5 0 2.3 

East West 

Window 

Width 0.1 2.1 0.1 2.1 0 0.1 

South 

Window 

Width 0.4 8.0 0.3 6.0 0.1 2.2 

North 

Window 

Width 0.4 8.0 0.2 4.0 0.5 10.9 

East West Fin 

Length 0.7 0.4 0.1 0.1 0.7 0.0 

South 

Overhang 

Length 0.9 2.5 0.9 2.5 0.1 0.3 

South 

Skylight 

Width 0.9 3.6 0.6 2.4 0.7 2.8 

North 

Skylight 

Width 0.8 3.2 0.9 3.6 0.1 0.5 
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Table 5.20 Daylighting and Energy Performance of Pareto Frontiers (Raleigh, NC) 

 

Option 1 

(Best 

Option for 

Daylighting) 

Option 2 

(Balanced 

Option) 

Option 3 

(Best 

Option for 

Energy) 

Daylighting 

Performance 

Metric 

[%] 

DA 68.5 69.0 59.2 

UDI < 100 18.4 18.4 21.1 

UDI 100-2000 80.7 80.3 77.4 

UDI > 2000 1.1 1.4 1.6 

cDA 78.1 78.3 74.3 

sDA 100.0 100.0 70.0 

Energy 

Performance 

Metric 

[kBtu/ft2] 

Cooling EUI  8.9 7.6 6.8 

Heating EUI 13.0 10.6 10.2 

Lighting EUI 3.4 3.5 4.2 

Total EUI (Heating, Cooling, 

& Lighting) 
32.3 26.7 26.0 

 

 

5.2.4 Data Analysis 

The same regression method for the energy and daylighting performance are applied to the 

optimization data in Raleigh. 

Energy Regression Model 

The actual by predicted plot, summary of fit, effect summary, and parameter estimates are 

shown in Figure 5.26, Table 5.21, Table 5.22, and Table 5.23. The fitted model has R-square 

of 0.89. The variables that contribute to the most variance of total energy include roof height, 
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east west window width, north window width, and south window width. South overhang length 

and north skylight width are not significant in the model.  

 

Figure 5.26 Actual by Predicted Plot (Raleigh, NC) 

Table 5.21 Summary of Fit (Raleigh, NC) 

 

Table 5.22 Effect Summary (Raleigh, NC) 
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Table 5.23 Parameter Estimates (Raleigh, NC) 

 
 

 

 

Figure 5.27 shows the plot of total energy versus two design variables that are the most 

important in the linear model. Total energy increases with the increase of the roof height, and 

total energy increases with the increase of the window width on the east and west. 

 

Figure 5.27 Plots of Total Energy against Design Variables (Raleigh, NC) 

 

Daylighting Regression Model 
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The Actual by predicted plot, summary of fit, effect summary, and parameter estimates are 

shown in Figure 5.28, Table 5.24, Table 5.25, and Table 5.26. R-square of the model is 0.60. 

The plots of the most influential design variables are shown in Figure 5.29.  

 

Figure 5.28 Actual by Predicted Plot (Raleigh, NC) 

Table 5.24 Summary of Fit (Raleigh, NC) 

  

Table 5.25 Effect Summary (Raleigh, NC) 
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Table 5.26 Parameter Estimates (Raleigh, NC) 

 

  

Figure 5.29 Plot of UDI against Design Variables (Raleigh, NC) 

 

5.4 Optimization Case 3 (Minneapolis, MN) 

5.3.1 Daylighting Optimization 

The daylighting optimization process involves 1106 simulations. Figure 5.30 shows the 

optimization process in Galapagos. The geometry of the optimal design and its daylighting 

performance are shown in Figure 5.31 and Figure 5.32. The UDI of baseline design is 69.4. 
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The final optimized average UDI is 77.5, which is 11.7% higher than the baseline model. The 

optimized design variable values are shown in Table 5.27, and the daylighting and energy 

performance metrics are shown in Table 5.28. 

 

Figure 5.30 Optimization Process in Galapagos (Minneapolis, MN) 
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Figure 5.31 Geometry of Optimized Design for Daylighting (Minneapolis, MN) 

 

 

Figure 5.32 Daylighting Performance of Optimized Design (Minneapolis, MN) 
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Table 5.27 Variables of Optimized Design (Minneapolis, MN) 

  
Setting 

(Range: 0 to 1) 

Actual value  

[ft.] 

Design 

Variables 

Room Depth 0.4 60.0 

Roof Height 0.1 5.2 

East West Window Width 0.2 4.0 

South Window Width 0.1 2.1 

North Window Width 0.3 6.0 

East West Fin Length 0.6 0.7 

South Overhang Length 0.7 2.0 

South Skylight Width 0.8 3.2 

North Skylight Width 0.5 2.0 

 

 

Table 5.28 Daylighting and Energy Performance of Optimized Design (Minneapolis, MN) 

  Values 

Daylighting 

Performance 

Metric 

[%] 

DA 64.1 

UDI < 100 20.9 

UDI 100-2000 77.5 

UDI > 2000 1.4 

cDA 75.4 

sDA 100.0 

Energy 

Performance 

Metric 

[kBtu/ft2] 

Cooling EUI  3.4 

Heating EUI 31.7 

Lighting EUI 4.3 

Total EUI (Heating, 

Cooling, & Lighting) 
39.5 
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5.3.2 Energy Optimization 

There are 1105 simulations in the energy optimization process. Figure 5.33 shows the 

optimization process in Galapagos. The geometry of the optimal design and its daylighting 

performance are shown in Figure 5.34 and Figure 5.35. The EUI of the baseline design is 48.4. 

The final optimized EUI is 36.2, which is 25.2% lower than the baseline design. The optimized 

design variable values and the daylighting and energy performance metrics are shown in Table 

5.229 and Table 5.30. 

 
 

Figure 5.33 Optimization Process in Galapagos (Minneapolis, MN) 
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Figure 5.34 Geometry of Optimized Design for Energy (Minneapolis, MN) 

 

 

Figure 5.35 Daylighting Performance of Optimized Design (Minneapolis, MN) 
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Table 5.29 Variables of Optimized Design (Minneapolis, MN) 

  
Setting 

(Range: 0 to 1) 

Actual value  

[ft.] 

Design 

Variables 

Room Depth 0.2 50.0 

Roof Height 0 2.1 

East West Window Width 0 0.1 

South Window Width 0.2 4.8 

North Window Width 0.1 2.5 

East West Fin Length 0.2 0.0 

South Overhang Length 0.2 0.6 

South Skylight Width 0.5 2.0 

North Skylight Width 0.5 2.0 

 

Table 5.30 Daylighting and Energy Performance of Optimized Design (Minneapolis, MN) 

 Values 

Daylighting 

Performance 

Metric 

[%] 

DA 49.7 

UDI < 100 26.9 

UDI 100-2000 70.5 

UDI > 2000 2.5 

cDA 67.5 

sDA 48.6 

Energy 

Performance 

Metric 

[kBtu/ft2] 

Cooling EUI  2.9 

Heating EUI 27.5 

Lighting EUI 5.8 

Total EUI (Heating, 

Cooling, & Lighting) 36.2 
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5.3.3 Multi Objective Optimization 

There are totally 905 simulations in the optimization process. Figure 5.36 shows the Pareto 

front formed by non-dominated solutions. Three examples are chosen for best daylighting 

performance, best energy performance, and balanced performance. Their geometries are shown 

in Figure 5.37. The variable values, and the performance metrics of the three options are listed 

in Table 5.31 and Table 5.32. 

 

 

Figure 5.36 Pareto frontier (Minneapolis, MN) 

Option 1 

Option 2 

Option 3 

EUI 

[kBtu/ft2] 

UDI  

[%] 
77.75 56.77 

37.35 

44.86 
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(1) Option 1 (Best Option for Daylighting) 

 

      
(2) Option 2 (Balanced Option) 

 

      
(3) Option 3 (Best Option for Energy) 

 

Figure 5.37 Geometry of Pareto Frontiers (Minneapolis, MN) 
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Table 5.31 Variables of Pareto Frontiers (Minneapolis, MN) 

 

Option 1 

(Best Option for 

Daylighting) 

Option 2 

(Balanced 

Option) 

Option 3 

(Best Option for 

Energy) 

Setting 

(Range: 

0 to 1) 

Actual 

value  

[ft.] 

Setting 

(Range: 

0 to 1) 

Actual 

value  

[ft.] 

Setting 

(Range: 

0 to 1) 

Actual 

value  

[ft.] 

Design 

Variables 

Room Depth 0.4 60.0 0.3 55.0 0.3 55.0 

Roof Height 0.3 10.7 0 2.3 0.2 7.3 

East West 

Window 

Width 0.1 2.1 0.1 1.9 0 0.1 

South 

Window 

Width 0.3 6.0 0.2 4.4 0.2 4.4 

North 

Window 

Width 0.4 8.0 0.4 8.7 0 0.1 

East West Fin 

Length 0.5 0.3 0.2 0.1 0.5 0.0 

South 

Overhang 

Length 1 2.8 0 0.0 0.1 0.3 

South 

Skylight 

Width 0.7 2.8 0.8 3.2 0.1 0.5 

North 

Skylight 

Width 0.9 3.6 0.3 1.3 1 4.0 
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Table 5.32 Daylighting and Energy Performance of Pareto Frontiers (Minneapolis, MN) 

 

Option 1 

(Best 

Option for 

Daylighting) 

Option 2 

(Balanced 

Option) 

Option 3 

(Best 

Option for 

Energy) 

Daylighting 

Performance 

Metric 

[%] 

DA 64.5 67.7 41.5 

UDI < 100 21.0 19.7 30.1 

UDI 100-2000 77.8 76.3 67.8 

UDI > 2000 1.2 3.8 2.2 

cDA 75.3 77.2 63.0 

sDA 100 100 26.67 

Energy 

Performance 

Metric 

[kBtu/ft2] 

Cooling EUI  3.6 3.2 3.0 

Heating EUI 33.9 30.9 28.0 

Lighting EUI 4.4 4.3 6.4 

Total EUI (Heating, Cooling, 

& Lighting) 41.9 38.5 37.3 

 

 

5.3.4 Data Analysis 

The same regression method for the energy and daylighting performance are applied to the 

optimization data in Minneapolis. 

Energy Regression Model 

The actual by predicted plot, summary of fit, effect summary, and parameter estimates are 

shown in Figure 5.38, Table 5.33, Table 5.34, and Table 5.35. The fitted model has R-square 

of 0.97, which is better than the model from the previous two cities. The variables that 

contribute to the most variance of total energy include roof height, east west window width, 
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north window width and south window width. Figure 5.39 shows the plot of total energy versus 

two design variables that are the most important in the linear model.  

 

Figure 5.38 Actual by Predicted Plot (Minneapolis, MN) 

Table 5.33 Summary of Fit (Minneapolis, MN) 

 

Table 5.34 Effect Summary (Minneapolis, MN) 
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Table 5.35 Parameter Estimates (Minneapolis, MN) 

 
 

 

 

  

Figure 5.39 Plots of Total Energy against Design Variables (Minneapolis, MN) 

Daylighting Regression Model 

The actual by predicted plot, summary of fit, effect summary, and parameter estimates are 

shown in Figure 5.40, Table 5.36, Table 5.37, and Table 5.38. R-square of the model is 0.45. 

The plots of the most influential design variables are shown in Figure 5.41.  
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Figure 5.40 Actual by Predicted Plot 

Table 5.36 Summary of Fit (Minneapolis, MN) 

 

Table 5.37 Effect Summary (Minneapolis, MN) 
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Table 5.38 Parameter Estimates (Minneapolis, MN) 

 

  

Figure 5.41 Plot of UDI against Design Variables (Minneapolis, MN) 

5.4 Comparison of Three Cases 

Table 5.39 shows the comparison of the optimized design geometries for daylighting or energy 

optimization. The building geometries for best daylighting performance have the 

characteristics of square foot print, low roof slope, middle sized windows on all four facades, 

and relatively large skylights. Building geometries for the best energy performance have wider 

facade on the south and north, nearly flat roof, wider windows on south and north, small or no 

windows on the east and west, and the skylights are relatively smaller. 
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Some features of the optimized building geometry are specific to this building design. For 

example, because of the locations of skylight, square shaped building makes the distribution 

of daylight more evenly in the space, so daylight optimal designs are all square shaped. Some 

features are in accordance with prevalent passive design strategies. For example, smaller 

facade area and smaller window on the east and west can reduce the unnecessary heat gain into 

the space and make the building more energy efficient.  

Table 5.39 Comparison of Optimized Design  

 Daylighting Optimization Energy Optimization 
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Daylighting and energy optimization processes all achieved significant performance 

improvement. The results are listed in Table 5.40 and Table 5.41. The largest daylighting 

performance improvement is found in Orland, and the largest energy performance 

improvement is found in Minneapolis. 

Table 5.40 Comparison of Daylighting Optimization Results 

 Orlando, FL Raleigh, NC Minneapolis, MN 

Baseline UDI [%] 70.7 69.1 69.4 

Optimized UDI [%] 82.1 81.5 77.5 

Improvement 16.1% 17.9% 11.7% 

 

Table 5.41 Comparison of Energy Optimization Results 

 Orlando, FL Raleigh, NC Minneapolis, MN 

Baseline EUI 

[kBtu/sqft] 

32.5 29.6 48.4 

Optimized EUI 

[kBtu/sqft] 

25.4 22.6 36.2 

Improvement 21.8% 23.6% 25.2% 
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The regression models for the energy performance generally have good fit, which is because 

of the strong linear relationship between some design variables and energy load, such as the 

roof height and window width. The regression models are generally not fit well for the 

daylighting performance cases, which is because the relationship between UDI and design 

variables are not linear. The most important variables on energy and daylighting performance 

are found to be different. Also, the variables are different for different climate zones.  

Table 5.42 Comparison of Energy Regression Models 

 Orlando, FL Raleigh, NC Minneapolis, MN 

R-Square 0.81 0.89 0.97 

Most Important 

Variables 

Roof Height 

Room Depth 

South Window 

Width 

East West Window 

Width 

Roof Height 

East West Window 

Width 

North Window 

Width 

South Window 

Width 

Roof Height 

East West Window 

Width 

North Window 

Width 

South Window 

Width 

 

Table 5.43 Comparison of Daylighting Regression Models 

 Orlando, FL Raleigh, NC Minneapolis, MN 

R-Square 0.56 0.60 0.45 

Most Important 

Variables 

East West Window 

Width 

South Window 

Width 

North Window 

Width 

South Overhang 

Length 

East West Window 

Width 

South Window 

Width 

South Overhang 

Width 

East West Fin 

Length 

East West Window 

Width 

South Window 

Width 

South Overhang 

Width 

East West Fin 

Length 
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CHAPTER 6:  CONCLUSIONS 

6.1 Conclusions 

This research proposed a building performance optimization process during the early stages of 

design. The optimization process involves parametric design, daylighting simulation, energy 

simulation, and Genetic Algorithms. This process allows designers to extensively explore 

building design alternatives, accurately evaluate daylighting and energy performance of each 

design, and automatically find designs options with optimal performance. 

Extensive literature demonstrated the benefits of daylighting for occupants’ health and 

buildings’ energy efficiency, whereas the optimization of both daylighting and energy 

performance was not properly considered in precedent optimization studies. This research 

integrated daylighting and energy simulation process, and it was able to evaluate energy 

efficiency while considering the admission of daylight. 

The applicability and effectiveness of this approach were tested through three optimization 

cases in different climate. Each case included three optimization processes: daylighting 

optimization, energy optimization, and multi-objective optimization. Through the optimization 

processes, this method successfully demonstrated the ability to adapt to various design 

environments, and provide design solutions with significant performance improvement. As a 

result, this method can be considered a valid approach. 
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The analysis of optimization data in the three optimization cases also revealed general building 

performance features in hot, mixed, and cold climate zones. These findings can also be used 

to further provide design guidelines for sustainable buildings. 

6.2 Limitations 

The optimization is a complex process, so this method requires advanced computational design 

ability, energy modelling experience, and proficiency in multiple programs. It is still not ready 

for architects to seamlessly incorporate into their design process.  

The optimization algorithm in this research, genetic algorithm, randomly selects individuals 

from the current population and uses them as parents to produce the children for the next 

generation. Because of the random selection process, it is normal that each optimization 

process generates different design options with different performance. The optimal design 

found through each optimization process is one of the best options. Mathematically, the global 

optimal design cannot be found. 

The methodology relies heavily on computational power. The optimization time of each 

scenario is between 24 to 48 hours depending on the speed of the computer processor, even 

though the case study model has a simple geometry. Also, this optimization process involves 

multiple programs. Complicated design model could make the data transfer between programs 

broke and make the optimization process stopped. Therefore, further technical support is 

needed to deal with more advanced design problems.  
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6.3 Future Studies 

Further work is needed on expanded optimization objectives, including cost, thermal comfort, 

visual comfort, energy generation, building life cycle performance, etc. Multi-objective 

optimization is also needed to evaluate multiple performance metrics simultaneously. 

Future work also includes the application of this optimization process on real architectural 

design projects, which could be design projects in architectural design firms or student design 

works. 

Finally, future research is the examination of optimization algorithms and the development of 

optimization tools. Desired optimization tool should have graphical user interface, powerful 

optimization algorithms, accurate optimization result, and reduced the optimization time. 

Multi-disciplinary cooperation is needed in this process. 
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