
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Understanding and Guaranteeing Security, Privacy, and Safety of Smart Homes

Permalink
https://escholarship.org/uc/item/2zr653v2

Author
Trimananda, Rahmadi

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2zr653v2
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Understanding and Guaranteeing Security, Privacy, and Safety of Smart Homes

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by

Rahmadi Trimananda

Dissertation Committee:
Professor Brian Demsky, Chair
Professor Athina Markopoulou
Professor Guoqing (Harry) Xu

2020

© 2020 Rahmadi Trimananda

DEDICATION

To God the Trinity, my family, and humanity

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

ACKNOWLEDGMENTS ix

VITA xi

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Overview of a Smart Home . 2

1.1.1 Components . 3
1.1.2 Execution Model . 4

1.2 Smart Home Devices . 4
1.3 Smart Home Platforms . 7
1.4 Smart Home Apps . 8
1.5 Organization . 12

2 Packet-Level Signatures for Smart Home Devices 14
2.1 New Packet-Level Signatures . 14
2.2 Problem Setup . 15

2.2.1 Threat Model . 15
2.2.2 Smart Home Environment and Experimental Testbed 16
2.2.3 Motivating Case: Smart Plugs . 20

2.3 PingPong Design . 21
2.3.1 Training . 22
2.3.2 Detection . 30

2.4 Evaluation . 33
2.4.1 Extracting Signatures from Smart Home Devices 37
2.4.2 Smart Home Testbed Experiment . 40
2.4.3 Negative Control Experiment . 42
2.4.4 Events Triggered Remotely . 43
2.4.5 Devices from the Same Vendor . 47
2.4.6 Public Dataset Experiment . 48
2.4.7 Parameters Selection and Sensitivity 56

iii

2.5 Possible Defenses against Packet-Level Signatures 57
2.5.1 Possible Implementations . 58
2.5.2 Residual Side-Channel Information 59
2.5.3 Efficacy of Packet Padding . 60
2.5.4 Recommendations for Padding . 62
2.5.5 Traffic Shaping and Injection . 62

3 Securing Smart Home Edge Computing 64
3.1 Smart Home System Vulnerabilities . 64
3.2 Vigilia Approach . 66
3.3 Threat Model and Guarantees . 67
3.4 Example . 68
3.5 Architecture and Programming Model . 70
3.6 Vigilia Security Mechanisms . 75
3.7 Vigilia Runtime System . 80
3.8 Evaluation . 83

3.8.1 Applications . 84
3.8.2 Comparisons . 87
3.8.3 Public IP . 92
3.8.4 Performance Microbenchmarks . 94

4 Understanding and Detecting Conflicting Interactions between Smart Home
IoT Applications 96
4.1 Methodology . 97

4.1.1 Definitions . 98
4.1.2 Smart Home App Pairs . 101
4.1.3 Threats to Validity . 104

4.2 Device Interaction . 106
4.2.1 RQ1: Types of Non-Conflicting Interactions 107
4.2.2 RQ2: Types of Conflicting Interactions 108
4.2.3 RQ3: Prevalence of Conflicts . 110
4.2.4 RQ4: Unsafe Coding Patterns . 110

4.3 Physical-Medium Interaction . 111
4.3.1 RQ1&2: Types of (Non-)Conflicting Interactions 111
4.3.2 RQ3&4: Prevalence of Conflicts/Unsafe Coding 113

4.4 Global-Variable Interaction . 114
4.4.1 RQ1: Types of Non-Conflicting Interactions 114
4.4.2 RQ2: Types of Conflicting Interactions 115
4.4.3 RQ3&4: Prevalence of Conflicts and Unsafe Coding 116

4.5 IoTCheck: Automated Conflict Detection . 117
4.5.1 IoTCheck Design . 117
4.5.2 Results . 122

iv

5 Related Work 124
5.1 Network Traffic Analysis and Defenses . 124
5.2 Smart Home and IoT Security . 132
5.3 Interactions of Smart Home Applications . 139
5.4 Other Related Work . 149

6 Conclusions 151
6.1 Summary . 151
6.2 Limitations and Future Directions . 152

Bibliography 155

v

LIST OF FIGURES

Page

1.1 SmartThings platform that integrates devices and manages multiple apps. . 2

2.1 Our experimental setup for studying smart home devices. “Wi-Fi Device” is
any smart home device connected to the router via Wi-Fi (e.g., Amazon and
WeMo plugs). “Ethernet Device” is any smart home device connected to the
router via Ethernet (e.g., SmartThings hub that relays the communication
of Zigbee devices). Smart home device events may result in communication
between Phone-Cloud, Device-Cloud, or Phone-Device. There may also be
background traffic from additional computing devices in the home. 17

2.2 Left: PingPong Overview. Right: TP-Link plug is used as a running example
throughout this section. 23

2.3 Pair clustering and signature creation for 2 extreme cases—TP-Link plug
has the simplest signature with only 1 pair (see our initial findings in Ta-
ble 2.2). The Arlo camera has a more complex signature with 1 sequence of
2 pairs and 1 sequence of 1 pair. The left subfigure, in every row, depicts the
packet lengths in one packet pair (Pc1 , Pc2). Notation: C->S means a pair
where the first packet’s direction is Client-to-Server and the second packet’s
direction is server-to-client, and vice versa for S->C; f: 50 means that the
pair appears in the clustering with a frequency of 50 ; Signature notation

shows a summary of 2 sets of 50 instances of packet sequences. Example:
C->S 556, 1293 f: 50 means that the pair of packets with lengths 556
(client-to-server) and 1293 (server-to-client) appear 50 times in the cluster. 24

3.1 A closer examination of an irrigation system. 68
3.2 Vigilia system architecture. 70
3.3 Example application code in Java. 72
3.4 Example device driver header in C++. 74
3.5 Capability-based RMI example. 79
3.6 Vigilia program (i.e., irrigation system) (a), device database (b), and instan-

tiated firewall rules (c). 80
3.7 Vigilia hardware setup. 84

4.1 SmartThings Execution Traces. 98
4.2 IoTCheck Architecture. 118
4.3 Conflict Analysis . 119

vi

LIST OF TABLES

Page

2.1 The set of smart home devices considered in this paper. Devices highlighted
in green are among the most popular on Amazon. 18

2.2 Packet-level signatures of TP-Link, D-Link, and SmartThings smart plugs
observable by the WAN sniffer. The numbers represent packet lengths, with
red indicating that the length is different for ON vs. OFF, and the arrows
represent packet directions. 19

2.3 Smart plugs found to exhibit Phone-Cloud, Device-Cloud, and Phone-Device
signatures. Prefix PH indicates Phone-to-device direction and prefix D indi-
cates Device-to-phone direction in Signature column. Column Dura. reports
numbers in the form of Min./Avg./Max., namely minimum, average, and
maximum durations respectively. 34

2.4 Smart light bulbs found to exhibit Phone-Cloud, Device-Cloud, and Phone-
Device signatures. Prefix PH indicates Phone-to-device direction and prefix D
indicates Device-to-phone direction in Signature column. Column Dura. re-
ports numbers in the form of Min./Avg./Max., namely minimum, average,
and maximum durations respectively. 35

2.5 Smart thermostats and sprinklers found to exhibit Phone-Cloud, Device-
Cloud, and Phone-Device signatures. Prefix PH indicates Phone-to-device
direction and prefix D indicates Device-to-phone direction in Signature col-
umn. Column Dura. reports numbers in the form of Min./Avg./Max.,
namely minimum, average, and maximum durations respectively. 36

2.6 Smart home security devices and others found to exhibit Phone-Cloud, Device-
Cloud, and Phone-Device signatures. Prefix PH indicates Phone-to-device di-
rection and prefix D indicates Device-to-phone direction in Signature column.
Column Dura. reports numbers in the form of Min./Avg./Max., namely
minimum, average, and maximum durations respectively. 37

2.7 Device-Cloud signature in 9 devices triggered by IFTTT home automation. . 44
2.8 Comparison of Device-Cloud signatures for three devices (TP-Link plug, D-

Link plug, and Rachio sprinkler) triggered in three different ways: via (i) a
local phone, (ii) a remote phone, and (iii) IFTTT home automation. 45

2.9 Signatures extracted from different TP-Link devices. ∗These are the latest
signatures for the TP-Link plug and TP-Link light bulb (per December 2019). 48

2.10 Signatures extracted from the cameras and light bulbs only in the Mon(IoT)r [166]
dataset. 49

vii

2.11 Signatures extracted from the voice command devices only in the Mon(IoT)r [166]
dataset. 50

2.12 Signatures extracted from the smart TVs and other devices only in the Mon(IoT)r [166]
dataset. 51

2.13 Common devices that have the same signatures in the Mon(IoT)r and our
testbed experiments. ∗ signature: training on our testbed. † signature:
training on Mon(IoT)r [166]. Matching: training on testbed, detection on
Mon(IoT)r. The number of events vary (around 30-40) per event type—the
result is presented in % for convenience. 51

2.14 Common devices that have similar signatures in the Mon(IoT)r and our testbed
experiments. ∗ signature: training on our testbed. † signature: training on
Mon(IoT)r [166]. Matching: training on testbed, detection on Mon(IoT)r.
The number of events vary (around 30-40) per event type—the result is pre-
sented in % for convenience. 52

3.1 Lines of code in Vigilia applications. 85
3.2 Summary of Vigilia applications. 85
3.3 Attacks performed on devices. 86
3.4 Vigilia comparison with other systems. 88
3.5 Statistics of access attempts for the public IP experiment; ‘A’ is a placeholder

for 128.200.150 and ‘B’ is for calplug.uci.edu; column DS reports the
number of distinct sources; TCP and UDP reports numbers in the form of
X/Y where X and Y represent the numbers of total and distinct addresses,
respectively. 92

3.6 Statistics of public IP experiment on cameras; ‘A’ is for 128.200.150; Att,
Src, Pkt represent the number of access attempts, sources, and network
packets, respectively; U/T stands for UDP/TCP. 93

3.7 Vigilia microbenchmark results. 94

4.1 Groups of apps for device-type pairing. 101
4.2 Groups of apps for physical-medium pairing. 103
4.3 Statistics for device interaction. 107
4.4 Statistics for physical-medium interaction. 111
4.5 Statistics for global-variable interaction. 114
4.6 Comparison between manual study and IoTCheck. 122

5.1 PingPong’s properties vs. alternative approaches (X= Yes; × = No). 132

viii

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to the Triune God: God the Father, God
the Son, and God the Holy Spirit, the author of my life who brought me into existence,
created me with creativity and talents, and gave me breath and every other blessing that
have enabled me to pursue research to discover His glory and beauty in an astoundingly
most profound way through computer science and, in particular, software engineering and
programming languages. Truly, He reigns in every corner of our universe, and His traces
of beauty are evident in every bit we have and will ever discover in research. It is exactly
as what Abraham Kuijper (pronounced as ”Kuyper”), a great theologian and former Prime
Minister of the Netherlands, said: “There is not a square inch in the whole domain
of our human existence over which Christ, who is Sovereign over all, does not
cry, Mine!”

Although I can never say it enough, I sincerely thank Professor Brian Demsky for he has
played a pivotal role in shaping and forming my skills in the past 5 years, in particular, in
software engineering and programming languages. I sincerely thank him for his patience in
teaching, and his passion for research. This world would not be the same without him!

I would like to also thank professors, fellow researchers, and friends who have helped me
along the way. I thank Professor Guoqing Harry Xu and Professor Athina Markopoulou,
who have tirelessly co-advised me in my research. I thank Professor Rainer Dömer and
Professor Mohammad Al Faruque who have served on my candidacy exam committee. I also
thank Janus Varmarken, Seyed Amir Hossein Aqajari, Ali Younis, Bin Xu, Bojun Wang,
Jason Chuang, and Thomas Kwa who have been my student co-authors—this list includes
Anastasia Shuba who gave us a lot of insights for our research on Packet-Level Signatures for
Smart Home Devices although she did not become a co-author. Finally, I thank Peizhao Ou,
Marwen Zorgui, Laleh Aghababaie Beni, Rohit Zambre, Byron Hawkins, Hamed Gorjiara,
Zachary Snyder, Wei Yu Luo, Ahmed Al Nahian, and many others who have been colleagues
and friends.

I would like to thank Kumar Deepak, Jason Villarreal, and Pramod Chandraiah who have
given me the internship opportunity at Xilinx and become my mentors there. I thank them
for their invaluable help, support, and guidance during my internship that has given me a
perfect opportunity to work on an industrial compiler.

I would like to thank the ACM SIGPLAN and IEEE for granting permission to include
content that has been previously published in conference proceedings into this dissertation.

I would like to thank the creators, developers, and community of Java, Python, and C++
as the 3 main languages I have learned a lot about during PhD research. I used them in
almost every project I worked on. I also thank the creators, developers, and community of
Java Pathfinder, and Pcap4J and DBSCAN libraries for Java as they have been pivotal for
the projects I worked on.

ix

Finally, my family has been the greatest supporter of my PhD journey. In particular, I
am grateful for my wife, Adeline Aninda, who has been my greatest fan and supporter
from the very beginning; my son, Alden Oliver Yeh, who came along recently into our little
family; my father, Yap Man On; my sisters, Ainon and Aina Manan; my father-in-law,
Teguh Adie Santosa; my mother-in-law, Chriswanti Kusmanto; my brothers-in-law, Adityo
and Adrian Nugroho; my sister-in-law, Felia Indah Kusuma; and my extended family. I
especially dedicate my PhD to my mother, Tjiu Kon Nyian, who would never be able to
celebrate physically with me at the finish line—God has called her back to be with Him in
heaven on April 23, 2020.

My doctoral research and the work presented in this dissertation would not have been pos-
sible without the support from the UCI EECS Department Fellowship Award, Broadcom
Foundation Fellowship Award, and a UCI Seed Funding Award at UCI. It is also partly sup-
ported by the National Science Foundation under grants CCF-1319786, CCF-1837120, CCF-
2006948, CNS-1613023, CNS-1649372, CNS-1703598, CNS-1763172, CNS-1815666, CNS-
1900654, CNS-2006437, CNS-200 7737, OAC-1740210 and the Office of Naval Research under
grants N00014-16-1-2913 and N00014-18-1-2037.

x

VITA

Rahmadi Trimananda

EDUCATION

Doctor of Philosophy in Computer Engineering 2020
University of California, Irvine Irvine, CA, USA

Master of Science in Computer Engineering 2009
Delft University of Technology Delft, The Netherlands

Bachelor of Science in Computer Engineering 2006
Pelita Harapan University Tangerang, Indonesia

RESEARCH EXPERIENCE

Graduate Student Researcher 2015–2020
University of California, Irvine Irvine, CA, USA

Research Assistant 2008–2009
Delft University of Technology Delft, The Netherlands

Research Intern June-July 2008
TNO Delft Delft, The Netherlands

TEACHING EXPERIENCE

Lecturer 2009–2011
Pelita Harapan University Tangerang, Indonesia

xi

REFEREED JOURNAL PUBLICATIONS1

Packet-Level Signatures for Smart Home Devices Feb 2020
ISOC Network and Distributed System Security Symposium

REFEREED CONFERENCE PUBLICATIONS

Understanding and Automatically Detecting Conflict-
ing Interactions between Smart Home IoT Applications

Nov 2020

ACM SIGSOFT Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE)

Securing Smart Home Devices against Compromised
Cloud Servers (Poster)

Jun 2020

3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge)

Packet-Level Signatures for Smart Home Devices Feb 2020
ISOC Network and Distributed System Security Symposium (NDSS)

Vigilia: Securing Smart Home Edge Computing Nov 2018
ACM/IEEE Symposium on Edge Computing (SEC)

SOFTWARE

IoTCheck http://plrg.ics.uci.edu/iotcheck/

An automatic conflict detection tool that uses model checking to automatically detect
smart home app conflicts.

Fidelius http://plrg.ics.uci.edu/fidelius/

A runtime system for secure cloud-based storage and communication even in the presence
of compromised servers.

PingPong http://plrg.ics.uci.edu/pingpong/

A tool that can automatically extract packet-level signatures for device events from net-
work traffic.

Vigilia http://plrg.ics.uci.edu/vigilia/

A system that shrinks the attack surface of smart home IoT systems by restricting net-
work access of devices.

1These are only publications made during PhD. Please check https://rtrimana.github.io/ for the
complete list.

xii

http://plrg.ics.uci.edu/iotcheck/
http://plrg.ics.uci.edu/fidelius/
http://plrg.ics.uci.edu/pingpong/
http://plrg.ics.uci.edu/vigilia/

ABSTRACT OF THE DISSERTATION

Understanding and Guaranteeing Security, Privacy, and Safety of Smart Homes

By

Rahmadi Trimananda

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2020

Professor Brian Demsky, Chair

In this work, we view smart home from 3 different sides: devices, platforms, and apps. We

first attempt to better understand the problems on each side and later explore new methods

and techniques to better guarantee security, privacy, and safety of smart homes.

On the devices side, we discovered that smart home devices are vulnerable to passive infer-

ence attacks based on network traffic, even in the presence of encryption. We first present

this passive inference attack and our techniques that we developed to exploit this vulnera-

bility on smart home devices. We created PingPong, a tool that can automatically extract

packet-level signatures for device events (e.g., light bulb turning ON/OFF) from network

traffic. We evaluated PingPong on popular smart home devices ranging from smart plugs

and thermostats to cameras, voice-activated devices, and smart TVs. We were able to:

(1) automatically extract previously unknown signatures that consist of simple sequences of

packet lengths and directions; (2) use those signatures to detect the devices or specific events

with an average recall of more than 97%; (3) show that the signatures are unique among

hundreds of millions of packets of real world network traffic; (4) show that our methodol-

ogy is also applicable to publicly available datasets; and (5) demonstrate its robustness in

different settings: events triggered by local and remote smartphones, as well as by home-

automation systems. Furthermore, we also present our discussion and evaluation on existing

xiii

techniques (e.g., packet padding) as possible defenses against passive inference attacks and

their analyses.

On the platforms side, smart home platforms such as SmartThings enable homeowners to

manage devices in sophisticated ways to save energy, improve security, and provide conve-

niences. Unfortunately, we discovered that smart home platforms contain vulnerabilities,

potentially impacting home security and privacy. Aside from the traditional defense tech-

niques to enhance the security and privacy of smart home devices, we also created Vigilia, a

system that shrinks the attack surface of smart home IoT systems by restricting the network

access of devices. As existing smart home systems are closed, we have created an open im-

plementation of a similar programming and configuration model in Vigilia and extended the

execution environment to maximally restrict communications by instantiating device-based

network permissions. We have implemented and compared Vigilia with forefront IoT-defense

systems; our results demonstrate that Vigilia outperforms these systems and incurs negligible

overhead.

On the apps side, smart home platforms allow developers to write apps to make smart home

devices work together to accomplish tasks, e.g., home security and energy conservation—

smart home devices provide the convenience of remotely controlling and automating home

appliances. A smart home app typically implements narrow functionality and thus to fully

implement desired functionality homeowners may need to install multiple apps. These differ-

ent apps can conflict with each other and these conflicts can result in undesired actions such

as locking the door during a fire. We study conflicts between apps on Samsung SmartThings,

the most popular platform for developing and deploying smart home IoT devices. By col-

lecting and studying 198 official and 69 third-party apps, we found significant app conflicts

in 3 categories: (1) close to 60% of app pairs that access the same device, (2) more than

90% of app pairs with physical interactions, and (3) around 11% of app pairs that access

the same global variable. Our results suggest that the problem of conflicts between smart

xiv

home apps is serious and can create potential safety risks. We then developed an automatic

conflict detection tool that uses model checking to automatically detect up to 96% of the

conflicts.

xv

Chapter 1

Introduction

This dissertation presents our work in understanding and guaranteeing security, privacy, and

safety of smart homes. In this work, we look at the three aspects of smart homes: devices,

platforms, and apps1.

Devices. Various sources have reported that smart home devices have vulnerabilities and

are prone to attacks [81, 173, 75, 218, 164, 178, 104, 211, 48, 111, 15]. We specifically discov-

ered that these devices are prone to a new passive inference attack: packet-level signatures.

We developed a tool called PingPong to further evaluate this vulnerability. We also propose

and evaluate a number of techniques to defend against it.

Platforms. Smart home platforms allow users to develop apps that integrate their smart

home devices to perform certain functionalities. These systems also allow users to install

multiple apps for their homes. Unfortunately, these integration systems have vulnerabilities

that make them prone to attacks. We devised and implemented smart home hardening

techniques in a tool called Vigilia. We evaluated the tool and we found that it significantly

reduced the attack surface of smart home systems.

1The results presented here are based on [195, 197, 193]

1

(2)

SmartThings Cloud

Smart Home
Devices

Smart Hub

Smart
Things

App

Third-party
Systems

e.g., IFTTT

RouterWi-Fi
Devices

Zigbee/
Z-Wave
Devices

 ...
Device

Handler
Device

Handler
Device

Handler

 ...

Example of 2 SmartApps
SmartApp #1
FireCO2Alarm

Device Handler
capability.lock
lock.lock()
lock.unlock()

SmartApp #2
Lock-It-When-I

-Leave
Zigbee

door lock

(1)

Global Variables

SmartApp SmartApp SmartApp

 Network/physical
 connection
 Communication

Figure 1.1: SmartThings platform that integrates devices and manages multiple apps.

Apps. Previous work discovered that the interactions between multiple apps in a smart

home often create conflicts [120, 210, 163, 143, 215], which could be safety critical. We

conducted a thorough study on the interactions and conflicts between smart home apps and

developed a tool to automatically model-check these apps and report conflicts.

1.1 Overview of a Smart Home

We first begin by giving an overview of a smart home that consists of three components:

devices, platforms, and apps. To illustrate, we use SmartThings [182], the de-facto smart

home IoT development platform.

2

1.1.1 Components

Figure 1.1 shows an overview of a smart home that uses the SmartThings platform. There

are three main components, as discussed shortly. The network/physical connections be-

tween these components are shown in Figure 1.1 as solid lines, while dashed lines represent

communication paths.

(1) Smart Home Devices: SmartThings supports both SmartThings-branded and third-

party devices as well as a variety of communication protocols, including Wi-Fi, Zigbee, and

Z-Wave. While Wi-Fi devices are connected directly to the home router, Zigbee/Z-Wave

devices are connected to a SmartThings smart hub through dedicated radios. The smart hub

is connected to the home router and relays the communication between the Zigbee/Z-Wave

devices and the SmartThings cloud via the router. Classes of devices that are supported by

the SmartThings platform include both actuators (e.g., switches, locks, thermostats, lights,

or alarms) and sensors (e.g., illuminance, motion, water, or sound sensors).

(2) SmartThings Platform: The SmartThings platform runtime and software components

mainly run on the SmartThings cloud. The SmartThings cloud hosts smart home apps (i.e.,

SmartApps) and device handlers (i.e., drivers that directly control devices) developed using

an event-based programming model in Groovy [95], a managed language running on top of the

Java Virtual Machine (JVM). SmartApps implement desired functionalities on smart home

devices by accessing global variables and device features through capabilities exposed by

device handlers. For instance, a door lock can be accessed by SmartApps through its device

handler that declares lock-related capabilities using capability.lock. These capabilities

provide access to features such as door-lock and door-unlock via APIs such as lock() and

unlock(). Third-party systems, e.g., IFTTT (If-This-Then-That) [23], can also connect to

the SmartThings cloud and control smart home devices through SmartApps that expose

HTTP endpoints as a control interface.

3

(3) SmartThings Smartphone App: Homeowners can use the SmartThings smartphone

app to install devices and SmartApps. To communicate with home devices, the smartphone

first connects and sends control information to the SmartThings cloud either over the In-

ternet or via the home router, illustrated by arrows (1) and (2) in Figure 1.1, and then the

SmartThings cloud forwards the information to smart home devices via the home router and

the smart hub.

1.1.2 Execution Model

SmartThings uses an event-driven execution model and allows multiple SmartApps to run

concurrently. Consider for example the FireCO2Alarm app [162], which attempts to door-

unlock if it detects smoke/fire through a smoke sensor. The app subscribes to the events

generated by the sensor’s device handler: when the sensor detects smoke/fire, it sends a

message to the smart home hub. The smart home hub relays the message to the Smart-

Things cloud, which in turn runs the sensor’s device handler to process the message. The

device handler will generate an event and send it to the app’s event handler method, which

in turn calls another method takeActions() to door-unlock. Since multiple apps run con-

currently, the two apps FireCO2Alarm and Lock-It-When-I-Leave share the device handler

for the door lock, and thus can both execute lock() and unlock() at any time on the same

device handler. The device handler on the cloud translates each action into device specific

commands. The cloud then sends these commands to the local smart hub, which forwards

the commands to the door lock.

1.2 Smart Home Devices

In this work, we first looked into smart home devices. Smart homes enable appliances

to be controlled locally via the network and typically enable more sophisticated control

systems [201]. Companies have launched a wide range of smart-home devices, many of

4

which have serious security issues. A study reported vulnerabilities in 70% of the devices

investigated [81]. Bugs have been found in a wide range of devices including routers [207, 209],

smartcams [173, 75, 218], baby monitors [164, 178, 104], smart hubs [211], sprinklers [48],

smart plugs [111], and smart fridges [15]. The problems in these systems are more basic

than missing buffer checks—some of these devices have unsecured embedded web servers that

allow anyone to update the firmware, have default passwords, use insecure authentication, or

use clear text communications. Hence, these smart home devices have security and privacy

problems.

Passive Inference Attacks. Modern smart home devices typically connect to the Internet

via the home Wi-Fi router and can be controlled using a smartphone or voice assistant.

Although most modern smart home devices encrypt their network traffic, recent work has

demonstrated that the smart home is susceptible to passive inference attacks [41, 42, 43,

40, 132, 180, 179, 66, 28]. An eavesdropper may use characteristics of the network traffic

generated by smart home devices to infer the device type and activity, and eventually user

behavior. However, existing passive inference techniques have limitations. Most can only

identify the device type and whether there is device activity (an event), but not the exact

type of event or command [41, 42, 43, 40, 132, 180, 179]. Others only apply to a limited

number of devices from a specific vendor [66], or need more information from other protocols

(e.g., Zigbee/Z-Wave) [28, 222] and the application source code [222]. Inference based on

traffic volume analysis can be prevented by traffic shaping [28, 40]. Finally, many of these

attacks assume that IP traffic is sniffed upstream from the home router, while the scenario

where a local attacker sniffs encrypted Wi-Fi traffic has received less attention [96, 40].

We experiment with a diverse range of smart home devices, namely 19 popular Wi-Fi and

Zigbee devices (12 of which are the most popular smart home devices on Amazon) from

16 popular vendors, including smart plugs, light bulbs, thermostats, home security systems,

etc. During our analysis of the network traffic that these devices generate, we observed that

5

events on smart home devices typically result in communication between the device, the

smartphone, and the cloud servers that contains pairs of packets with predictable lengths. A

packet pair typically consists of a request packet from a device/phone (“Ping”), and a reply

packet back to the device/phone (“Pong”). In most cases, the packet lengths are distinct for

different device types and events, thus, can be used to infer the device and the specific type

of event that occurred. Building on this observation, we were able to identify new packet-

level signatures (or signatures for short) that consist only of the lengths and directions of

a few packets in the smart home device traffic. These signatures: (1) can be extracted in

an automated and systematic way without prior knowledge of the device’s behavior; (2) can

be used to infer fine-grained information, e.g., event types; (3) correspond to a variety of

different events (e.g., “toggle ON/OFF” and “Intensity”/“Color”); and (4) have a number

of advantages compared to prior (e.g., statistical, volume-based) approaches.

Automated Extraction of Packet-Level Signatures. To further evaluate packet-level

signatures, we created PingPong, a methodology and software tool that: (1) automates

the extraction of packet-level signatures without prior knowledge about the device, and (2)

detects signatures in network traces and real network traffic. For signature extraction, Ping-

Pong first generates training data by repeatedly triggering the event, for which a signature is

desired, while capturing network traffic. Next, PingPong extracts request-reply packet pairs

per flow (“Ping-Pong”), clusters these pairs, and post-processes them to concatenate pairs

into longer sequences where possible. Finally, PingPong selects sequences with frequencies

close to the number of triggered events as the final signatures. The signature detection part

of PingPong leverages the simplicity of packet-level signatures and is implemented using

simple state machines. PingPong’s implementation and datasets are made available at [194].

6

1.3 Smart Home Platforms

In addition to devices, we have also looked into smart home platforms. Part of the promise of

smart home systems is the ability of collections of devices to work together to be smarter and

more capable than individual devices. Achieving this requires integration between different

devices, which may come from different manufacturers with entirely different software stacks,

e.g., Nest Thermostat, WeMo Switch, etc.

Modern smart home platforms support developers writing apps that implement useful func-

tionality on smart devices. Significant efforts have been made to create integration platforms

such as Android Things from Google [97], SmartThings from Samsung [182], and the open-

source openHAB platform [154]. All of these platforms allow users to create smart home apps

that integrate multiple devices and perform more complex routines, such as implementing a

home security system.

Vulnerabilities. Smart home hubs support integration between these disparate devices, but

existing hubs including SmartThings have serious security weaknesses. A lot of smart home

devices do not have proper authentication mechanisms—they trust communication from the

local area network. In the case of SmartThings, the system is a JVM-based system. It trusts

the JVM, despite its bugs, to provide safety. Furthermore, the SmartThings system executes

device drivers and applications on their cloud servers. Unfortunately, it gives excessive access

to the cloud, and thus device drivers and applications.

Vigilia Approach. We developed Vigilia, a new cross-layer technique to harden smart home

systems. Vigilia implements a lightweight approach to securing smart home systems at the

network and operating system layers. This work leverages the observation that most IoT

devices are not general-purpose; they do not need to communicate with arbitrary machines

and thus do not require full network access. By enforcing access at the network level, Vigilia

7

shifts the primary burden for security from individual devices to the network. The net effect

is that system security no longer relies on every device manufacturer securing their devices

and end users keeping devices patched—helping users secure IoT devices when manufacturers

do not.

Vigilia makes contributions in the following aspects for smart home systems:

1) Automatic Extraction of Enforcement of Security Policies: It presents techniques

that automatically extract and enforce fine-grained security policies on applications writ-

ten using a programming model that is similar to SmartThings.

2) Secure Enforcement Mechanism: It uses a set of router-based techniques including

modifications to the Wi-Fi stack that ensure that compromised devices cannot subvert

the enforcement mechanisms by masquerading as the router or another device.

3) No Spurious Failures: It statically checks that programs will respect the policies at

runtime and thus will never spuriously fail due to the security enforcement mechanisms.

Vigilia provides an open implementation of a smart home programming model that is similar

to mainstream (close) platforms. We have made this implementation available at [196]. We

have evaluated Vigilia on four smart home applications that control commercially available

IoT devices. Our results demonstrate that Vigilia, among existing commercial and research

systems, is the best at protecting these applications from various attacks with only minimal

overhead.

1.4 Smart Home Apps

Aside from smart home devices and systems, we have also studied smart home apps. In this

work, we focus on Samsung’s SmartThings platform because it is the de-facto smart home de-

velopment environment and has the most extensive collection of smart home apps, including

those officially created by SmartThings [181] and those developed by third-party companies

8

and hobbyists. Homeowners that use SmartThings can install any of these SmartApps and

run them simultaneously in their home deployment. Many of these apps each implement a

specific functionality, e.g., turn off lights in the absence of motion. Thus, homeowners will

likely need to install multiple apps that collectively achieve the desired functionality.

The presence of multiple apps that can control the same device creates interactions that can

potentially be undesirable: conflicts. For example a homeowner may install the FireCO2Alarm

[162] app which, upon the detection of smoke, sounds alarms and door-unlocks2. The same

homeowner may also install the Lock-It-When-I-Leave [14] app to door-lock automatically

when the homeowner leaves the house.

While it may appear that these apps can be safely installed together, closer examination

reveals that they can interact in surprising ways. Consider the following scenario. If smoke is

detected, FireCO2Alarm will door-unlock the door. If someone leaves home with the presence

tag, this will make the presence sensor change its state from "present" to "not present",

causing the Lock-It-When-I-Leave app to door-lock the door. This defeats the intended

purpose of the FireCO2Alarm app. Thus, the two apps conflict.

Data Races, Atomicity Violations. Interactions of smart home apps may initially appear

similar to those of concurrent programs, including data races [64, 80, 127] and atomicity

violations [135, 217, 91]. Data races can be resolved by acquiring locks appropriately, while

atomicity violations can be resolved by ensuring that locks are held long enough to guarantee

that a thread can finish all operations in a batch without interference from other threads.

Unfortunately, these techniques cannot resolve the above-mentioned conflict. Suppose that

we use a lock to guarantee the atomicity of the critical region of the code—the FireCO2Alarm

app needs to acquire the lock before triggering the alarm and holds the lock while the alarm

is sounding. Similar actions need to be taken to door-lock and door-unlock for the Lock-

2We use door-lock and door-unlock to refer to actions on a physical door, and lock and unlock to refer to
synchronizations in concurrent programming.

9

It-When-I-Leave app. However, this approach could disable the desirable functionality of

the apps. To illustrate, consider a scenario in which the Lock-It-When-I-Leave app detects

that someone leaves the house. It then acquires the lock before it enters the critical region

in which door-lock is performed. It holds the lock to keep the door locked until the person

returns. In this period, if the FireCO2Alarm app detects smoke/fire and attempts to door-

unlock, it will fail because the Lock-It-When-I-Leave app holds the lock. We end up in the

same situation: the door is locked during a fire!

Feature Interaction. Feature interaction considers the problem in which different software

features can have negative interactions [56, 37, 112, 156, 39, 38]. Our setting differs from

most of the previous work in this area in that smart home apps are developed independently

and composed by end users. For example, SmartThings apps are distributed through many

different channels (including pay for source). Thus, there does not exist a means to detec-

t/resolve/avoid conflicts during development. Feature interactions have also been studied in

research prototypes for home automation [120, 210, 163]. These early systems were proto-

type systems, and presumed much coarser apps (e.g., a single app for lighting) than current

smart home apps implement. HCI researchers have shown that feature interactions in IoT

systems make it difficult for users to understand the systems’ behavior [216]. In rule-based

smart home systems, researchers have developed tools for repairing incorrect rules [147].

Interactions of Mobile Apps. Researchers have also studied interactions between An-

droid apps [52, 198, 57, 101, 122, 45, 119]. However, these techniques focus primarily on

cross-app information flow/taint analysis via ICC/IAC mechanisms in Android (e.g., In-

tents) and thus cannot be used in our setting. In particular, our problem requires checking

properties of the execution trace that such analyses cannot handle.

The Smart Home App Interaction Problem. The problem we focus on in this work

is conflict of expectations. The expected result of the Lock-It-When-I-Leave app is that

10

the door should be locked when the homeowner leaves, while the expected result for the

FireCO2Alarm app is that the door should be unlocked during a fire. These expectations

conflict in certain scenarios. Hence, the fundamental question here is what should be the

expected state of the door when these apps interact : locked or unlocked? The potential

conflict between the FireCO2Alarm and Lock-It-When-I-Leave apps is not correctable using

standard mechanisms for concurrent accesses to program variables or entities—using locks

to restore atomicity still violates the integrity of the expected result.

State-of-the-art and Our Work. The research community has been actively looking

into smart home apps. There is a body of work that aims to find bugs and issues that

could lead to serious security problems [85, 87, 61, 60, 49, 222, 188, 30]. However, none of

these techniques focuses on interactions and conflicts between multiple apps. In the cyber-

physical systems community, work has been done to identify and resolve conflicts between

smart home apps at the system level, viewing apps as black boxes [204, 212, 203, 143, 215].

While such techniques are useful in certain simple scenarios, they are still semantics-agnostic

and do not work even for the above-mentioned conflict—how can we automatically resolve

the conflict without understanding the semantics of the apps, and their priority and timing

requirements?

IA-Graph [123, 124] studies smart-home app conflicts and proposes a lightweight approach

to check for conflicts. This work extracts an SMT formula that describes the legal transi-

tions for an app and then uses an SMT solver to detect whether a set of apps has conflicting

transitions. As acknowledged in the IA-Graph paper, IA-Graph ”ignores complicated com-

putations in the app code” and hence the patterns it finds are limited. In addition, not

all transitions in an app can be expressed in SMT, further limiting the kinds of conflicts

IA-Graph can detect. Another important drawback is IA-Graph does not check whether a

conflicting transition is reachable in an execution and hence can produce many false positives.

11

Unfortunately, without access to their implementation, we could not conduct an empirical

evaluation of these issues.

Implications. The implications of this work are two-fold. First, our study opens a new

research direction in the area of testing and verification of concurrent programs where the

development of different apps are done completely independently. The inability of exist-

ing concurrency control mechanisms to resolve smart home apps dictates the need of new

techniques (such as IoTCheck) to detect and/or repair these conflicts. Second, for platform

vendors such as Google and Samsung, new APIs should be designed and applied to these

platforms so that app developers can be directed to make more informed decisions during

development even if they are not aware of potential runtime conflicts.

1.5 Organization

The remainder of this dissertation is structured as follows:

• Chapter 2 further presents our findings on packet-level signatures. It also presents the

design and evaluation of PingPong, a tool that can automatically extract and detect

packet-level signatures in network traffic. Finally, it evaluates existing defenses that

we can deploy against packet-level signatures.

• Chapter 3 discusses vulnerabilities in smart home platforms and presents Vigilia, a

smart home platform similar to SmartThings, that implements techniques to harden

smart home platforms.

• Chapter 4 presents our in-depth study of smart home apps and their interactions that

may lead to conflicts. It also presents IoTCheck, a tool developed to automatically

detect conflicts between smart home apps through model checking.

12

• Chapter 5 discusses related work.

• Finally, Chapter 6 concludes, and discusses limitations and future work.

13

Chapter 2

Packet-Level Signatures for Smart Home De-

vices

In this chapter, we first present the new packet-level signatures for smart home devices.

Next, we present a set of techniques we devised to extract packet-level signatures for smart

home devices, the PingPong tool that implements these techniques, and the evaluation of

the tool. Finally, we discuss possible defenses against packet-level signatures.

2.1 New Packet-Level Signatures

We begin by presenting packet-level signatures. We discover new IoT device signatures that

are simple and intuitive: they consist of short sequences of (typically 2-6) packets of specific

lengths, exchanged between the device, the smartphone, and the cloud. The signatures are

effective:

1) They detect event occurrences with an average recall of more than 97%, surpassing the

state-of-the-art techniques (see Chapter 5 and Section 2.4.2).

2) They are unique: we observe a low false positive rate (FPR), namely 1 false positive

(FP) per 40 million packets in network traces with hundreds of millions of packets (see

14

Section 2.4.3).

3) They characterize a wide range of devices: (i) we extract signatures for 18 out of the 19

devices we experimented with, including the most popular home security devices such

as the Ring Alarm Home Security System and Arlo Q Camera (see Section 2.4.1); (ii)

we extract signatures for 21 additional devices from a public dataset [166], including

more complex devices, e.g., voice-command devices, smart TVs, and even a fridge (see

Section 2.4.6).

4) They are robust across a diverse range of settings: (i) we extract signatures both from

testbed experiments and publicly available datasets; and (ii) we trigger events in different

ways, i.e., using both a local and a remote smartphone, and a home automation system.

5) They can be extracted from both unencrypted and encrypted traffic.

6) They allow quick detection of events as they rely only on a few packet lengths and

directions, and do not require any statistical computation.

2.2 Problem Setup

In this chapter, we first present our threat model. Then, we present the smart home en-

vironment and the passive inference attacks we consider. We also discuss a key insight we

obtained from manually analyzing network traffic from the simplest devices—smart plugs.

The packet sequences we observed in smart plugs inspired the PingPong methodology for

automatically extracting signatures.

2.2.1 Threat Model

We are concerned with the network traffic of smart home devices leaking private information

about smart home devices and users. Although most smart home devices encrypt their com-

munication, information can be leaked by traffic metadata such as the lengths and directions

of these encrypted packets.

15

We consider two different types of adversaries: a WAN sniffer and a Wi-Fi sniffer. The

adversaries differ in terms of the vantage point where traffic is inspected and, thus, what

information is available to the adversary. The WAN sniffer monitors network traffic in the

communication between the home router and the ISP network (or beyond) [41, 42, 43, 40].

This adversary can inspect the IP headers of all packets, but does not know the device

MAC addresses to identify which device has sent the traffic. We assume a standard home

network that uses NAT: all traffic from the home is multiplexed onto the router’s IP address.

Examples of such adversaries include intelligence agencies and ISPs. The Wi-Fi sniffer

monitors encrypted IEEE 802.11 traffic, and has not been as widely studied [96, 40]. We

assume that the Wi-Fi sniffer does not know the WPA2 key, and thus only has access to the

information sent in clear text—the MAC addresses, packet lengths, and timing information.

As packets are encrypted, the Wi-Fi sniffer does not have access to network and transport

layer information.

For both adversaries, we assume that the adversary knows the type of the smart home device

that they wish to target and passively monitor. Thus, they can train the system on another

device of the same type offline, extract the signature of the device, and perform the detection

of the signature on the traffic coming from the smart home they target. We assume that the

devices encrypt their communication and thus neither adversary has access to the clear-text

communication.

2.2.2 Smart Home Environment and Experimental Testbed

Experimental Testbed. Figure 2.1 depicts our experimental setup, which resembles a

typical smart home environment. We experiment with 19 widely-used smart home devices

from 16 different vendors (see Table 2.1). We attempted to select a set of devices with a wide

range of functionality—from plugs to cameras. They are also widely used: these devices are

popular and they come from well-known vendors. The first 12 (highlighted in green) are

16

Background Traffic
Smart Home

Devices

Router

eth0

Cloud

Smartphone

Wi-Fi Device
wlan1

Ethernet
Device

eth1

Cabled
Wi-Fi

WAN Sniffer

Wi-Fi Sniffer
Pho

ne
-C

lou
d Device-Cloud

Phone-Device

Controller

Figure 2.1: Our experimental setup for studying smart home devices. “Wi-Fi Device” is
any smart home device connected to the router via Wi-Fi (e.g., Amazon and WeMo plugs).
“Ethernet Device” is any smart home device connected to the router via Ethernet (e.g.,
SmartThings hub that relays the communication of Zigbee devices). Smart home device
events may result in communication between Phone-Cloud, Device-Cloud, or Phone-Device.
There may also be background traffic from additional computing devices in the home.

the most popular on Amazon [33]: (1) each received the most reviews for its respective

device type and (2) each had at least a 3.5-star rating—they are both popular and of high

quality (e.g., the Nest T3007ES and Ecobee3 thermostats are the two most-reviewed with

4-star rating for thermostats). Some devices are connected to the router via Wi-Fi (e.g., the

Amazon plug) and others through Ethernet. The latter includes the SmartThings, Sengled,

and Hue hubs that relay communication to/from Zigbee/Z-Wave devices: the SmartThings

plug, Kwikset doorlock, Sengled light bulb, and Hue light bulb.

Figure 2.1 shows that smart home devices are controlled from the smartphone using its

vendor’s official Android application. The smartphone is connected to a local network, which

the devices are also connected to. When the smartphone is connected to a remote network,

only the Device-Cloud communication is observable in the local network—the smartphone

controls a device by communicating with its vendor-specific cloud, and the cloud relays the

command to the device. The controller represents the agent that operates the smartphone

to control the smart home device of interest. This may be done manually by a human

17

Table 2.1: The set of smart home devices considered in this paper. Devices highlighted in
green are among the most popular on Amazon.

No. Device Name Model Details
1. Amazon plug Amazon Smart Plug
2. WeMo plug Belkin WeMo Switch
3. WeMo Insight

plug
Belkin WeMo Insight Switch

4. Sengled light
bulb

Sengled Element Classic

5. Hue light bulb Philips Hue white
6. LiFX light bulb LiFX A19
7. Nest thermostat Nest T3007ES
8. Ecobee thermo-

stat
Ecobee3

9. Rachio sprinkler Rachio Smart Sprinkler
Controller Generation 2

10. Arlo camera Arlo Q
11. Roomba robot iRobot Roomba 690
12. Ring alarm Ring Alarm Home Security

System
13. TP-Link plug TP-Link HS-110
14. D-Link plug D-Link DSP-W215
15. D-Link siren D-Link DCH-S220
16. TP-Link light

bulb
TP-Link LB-130

17. SmartThings
plug

Samsung SmartThings Out-
let (2016 model)

18. Kwikset lock Kwikset SmartCode 910
19. Blossom sprin-

kler
Blossom 7 Smart Watering
Controller

(as in Section 2.2.3) or through software (as in Section 2.3). Additionally, there are other

computing devices (e.g., laptops, tablets, phones) in the house that also generate network

traffic, which we refer to as “Background Traffic”. The router runs OpenWrt/LEDE [155],

a Linux-based OS for network devices, and serves as our vantage point for collecting traffic

for experiments. We run tcpdump on the router’s WAN interface (eth0) and local interfaces

(wlan1 and eth1) to capture Internet traffic as well as local traffic for all Wi-Fi and Ethernet

devices. We use the testbed to generate training data for each device, from which we in turn

extract signatures (Section 2.4.1). In Section 2.4.2, the same testbed is used for testing, i.e.,

18

Table 2.2: Packet-level signatures of TP-Link, D-Link, and SmartThings smart plugs ob-
servable by the WAN sniffer. The numbers represent packet lengths, with red indicating
that the length is different for ON vs. OFF, and the arrows represent packet directions.

TP-Link D-Link

TP-Link

t t

556
TLSv1.2
Application Data

1293

a) Toggle On

TP-Link

t t

b) Toggle Off

t

t

Phone

Phone

TCP :
:

557
TLSv1.2
Application Data

1294

TCP :
:

Internet Host

Internet Host

Phone Internet Host

t t

1117

613

a) Toggle On

Phone

t t

1118

613

b) Toggle Off
TLSv1.2 Application Data

TLSv1.2 Application Data

Internet Host

SmartThings

Phone Internet Host 1

t

t

699

511

TLSv1.2
Application Data

t

136

612

136

777

a) Toggle On

Application Data

Application Data

Phone

t

700

511

136

616

136

780

b) Toggle Off

Application Data

Application Data

TLSv1.2
Application Data

Internet Host 2

Internet Host 1

t

t

Internet Host 2

to detect the presence of the extracted signatures in traffic generated by all the devices as

well as by other computing devices (background traffic).

Communication. Smart home device events may result in communication between three

different pairs of devices, as depicted in Figure 2.1: (1) the smartphone and the smart home

19

device (Phone-Device); (2) the smart home device and an Internet host (Device-Cloud), and

(3) the smartphone and an Internet host (Phone-Cloud). The idea behind a passive inference

attack is that network traffic on any of these three communication paths may contain unique

traffic signatures that can be exploited to infer the occurrence of events.

2.2.3 Motivating Case: Smart Plugs

As an illustrative example, let us discuss our manual analysis of 3 smart plugs: the TP-Link

plug, the D-Link plug, and the SmartThings plug. Data for the manual analysis was collected

using the setup in Figure 2.1. For each device, we toggled it ON, waited for approximately

one minute, and then toggled it OFF. This procedure was repeated for a total of 3 ON and 3

OFF events, separated by one minute in between. Timestamps were manually noted for each

event. The PCAP files logged at the router were analyzed using a combination of scripts

and manual inspection in Wireshark.

New Observation: Packet Pairs. We identified the traffic flows that occurred immedi-

ately after each event and observed that certain pairs of packets with specific lengths and

directions followed each ON/OFF event: the same pairs consistently showed up for all events

of the same type (e.g., ON), but were slightly different across event types (ON vs. OFF).

The pairs were comprised of a request packet in one direction, and a reply packet in the op-

posite direction. Intuitively, this makes sense: if the smart home device changes state, this

information needs to be sent to (request), and acknowledged by (reply), the cloud server to

enable devices that are not connected to the home network to query the smart home device’s

current state. These exchanges resemble the ball that moves back and forth between players

in a game of pingpong, which inspired the name for our software tool.

Table 2.2 illustrates the observed packet exchanges. For the TP-Link plug, we observed an

exchange of 2 TLS Application Data packets between the plug and an Internet host where

the packet lengths were 556 and 1293 when the plug was toggled ON, but 557 and 1294 for

20

OFF. We did not observe any pattern in the D-Link plug’s own communication. However,

for ON events, the controlling smartphone would always send a request packet of length

1117 to an Internet host and receive a reply packet of length 613. For OFF, these packets

were of lengths 1118 and 613, respectively. Similarly for the SmartThings plug, we found

consistently occurring packet pairs in the smartphone’s communication with two different

Internet hosts where the lengths of the request packets were different for ON and OFF events.

Thus, this request-reply pattern can occur in the communication of any of the three pairs:

Phone-Device, Device-Cloud, or Phone-Cloud (see Figure 2.1).

Key Insight. This preliminary analysis indicates that each type of event is uniquely iden-

tified by the exchange of pairs (or longer sequences) of packets of specific lengths. To the

best of our knowledge, this type of network signature has not been observed before, and we

refer to it as a packet-level signature.

2.3 PingPong Design

The key insight obtained from our manual analysis in Section 2.2.3 was that unique sequences

of packet lengths (for packet pairs or longer packet sequences) typically follow simple events

(e.g., ON vs. OFF) on smart plugs, and can potentially be exploited as signatures to

infer these events. This observation motivated us to investigate whether: (1) more smart

home devices, and potentially the smartphones that control them as well, exhibit their own

unique packet-level sequences following an event, (2) these signatures can be learned and

automatically extracted, and (3) they are sufficiently unique to accurately detect events. In

this section, we present the design of PingPong—a system that addresses the above questions

with a resounding YES!

PingPong automates the collection of training data, extraction of packet-level signatures, and

detection of the occurrence of a signature in a network trace. PingPong has two components:

21

(1) training (Section 2.3.1), and (2) detection (Section 2.3.2). Figure 2.2 shows the building

blocks and flow of PingPong on the left-hand side, and the TP-Link plug as an example

on the right-hand side. We use the TP-Link plug as a running example throughout this

section.

2.3.1 Training

The training component is responsible for the extraction of packet-level signatures for a

device the attacker wants to profile and attack. It consists of 5 steps (see Figure 2.2).

Data Collection. The first step towards signature generation is to collect a training set for

the device. A training set is a network trace (a PCAP file) that contains the network traffic

generated by the device and smartphone as a result of events; this trace is accompanied by

a text file that contains the set of event timestamps.

PingPong partially automates training set collection by providing a shell script that uses

the Android Debug Bridge (adb) [35] to issue touch inputs on the smartphone’s screen. The

script is run on a laptop that acts as the controller in Figure 2.1. The script is tailored to

issue the sequence of touch events corresponding to the events for which a training set is to

be generated. For example, if a training set is desired for a smart plug’s ON and OFF events,

the script issues a touch event at the screen coordinates that correspond to the respective

buttons in the user interface of the plug’s official Android app. As device vendors may choose

arbitrary positions for the buttons in their respective Android applications, and since the

feature sets differ from device to device, the script must be manually modified for the given

device. The script issues the touch sequence corresponding to each specific event n times,

each separated by m seconds.1 The results reported in this paper use n = 50 or n = 100

depending on the event type (see Section 2.4.1).

1We selected m = 131 seconds to allow sufficient time such that there is no overlap between events.
Section 2.4.7 provides more explanation for this choice with respect to other parameters.

22

Training

Pair Clustering

Signature
Creation

Data Collection

Trace Filtering

Signature File

Network Trace
(Training Dataset)

Input

Event Triggers Device

TP-Link Plug

TCP Connections

<..., C-556, S-1293, ...>
<..., C-237, S-826, ...>
<..., C-129, S-123, ...>

...

ON event cluster

<C-556, S-1293>
<C-556, S-1293>

...

ON event signature

Packet Pairs

<C-556, S-1293>
…

<S-237, C-826>
…

<C-129, S-123>
...

Detection

Signature Matching

Matched Events
Event 1 Event 2 Event n

Network Trace

TCP Connections

<..., …, ...,...,…,, ...>
<..., C-556, S-1293, ...>
<..., …, ...,...,…,, ...>
<..., C-556, S-1293, ...>
<..., …, ...,...,…,, ...>
<..., C-556, S-1293, ...>
<..., …, ...,...,…,, ...>

...

Matched ON Events

<C-556, S-1293>
<C-556, S-1293>
<C-556, S-1293>

...

Signature
Validation

System Example

Figure 2.2: Left: PingPong Overview. Right: TP-Link plug is used as a running example
throughout this section.

The script also outputs the current timestamp to a file on the laptop when it issues an event.

To collect a training set, we do the following: (1) start tcpdump on the router’s interfaces;

23

C->S
556, 1293
f: 50

S->C
[238-240], [826-830]
f: 98

C->S
[310-312], [352-357]

f: 100
C->S
339, 329
f: 50

C->S
[271-273], [499-505]
f: 50

C->S
[364-365], [1061-1070]

f: 50

Pairs 1

Sequences 1

Signature Creation

Pair 1.1

Sequence 1.1

556

1293

C

S

C

556

1293

C

S

C

339

329

C

S

C

Pair Clustering

365

1067

S

C

C
272

502

S

C

339

329

C

S

C
364

1070

S

C

C
273

503

S

C

Pair 1.1

Pair 2.1

Sequence 2.1

Sequence 1.1

Pair 3.1

(a) TP-Link Plug

(b) Arlo Camera

Pairs 2

Pairs 1

Pairs 3

Sequences 1

Sequences 2

556

1293

C

S

C

1

339

329

C

S

C
365

1068

S

C

C
272

499

S

C

2 50

1 2 50

S1: C-339 S-329 C-[364-365] S-[1061-1070]
S2: C-[271-273] S-[499-505]

Signature notation

Packet
Pairs

Packet
Sequences

Set of Packet Sequences of 50

Set of Packet Sequences of 50

Sequence 2.1

Pair 3.2

Sequence 2.50

Pair 3.50

Pair 1.2

Pair 2.2

Sequence 1.2

Pair 1.50

Pair 2.50

Sequence 1.50

Pair 1.2

Sequence 1.2

Pair 1.50

Sequence 1.50

List of Packet Sequence Sets (= Packet-level signature)

Sequences 1

Sequences 2

Sequences 1

Figure 2.3: Pair clustering and signature creation for 2 extreme cases—TP-Link plug has
the simplest signature with only 1 pair (see our initial findings in Table 2.2). The Arlo
camera has a more complex signature with 1 sequence of 2 pairs and 1 sequence of 1 pair.
The left subfigure, in every row, depicts the packet lengths in one packet pair (Pc1 , Pc2).
Notation: C->S means a pair where the first packet’s direction is Client-to-Server and the
second packet’s direction is server-to-client, and vice versa for S->C; f: 50 means that
the pair appears in the clustering with a frequency of 50 ; Signature notation shows a
summary of 2 sets of 50 instances of packet sequences. Example: C->S 556, 1293 f: 50

means that the pair of packets with lengths 556 (client-to-server) and 1293 (server-to-client)
appear 50 times in the cluster.

(2) start the script; (3) terminate tcpdump after the n-th event has been issued. This leaves

us with a set of PCAP files and event timestamps, which constitute our raw training set.

24

We base our signature generation on the traces collected from the router’s local interfaces as

they are the vantage points that provide the most comprehensive information: they include

both local traffic and Internet traffic. This allows PingPong to exhaustively analyze all

network packets generated in the communications between the device, smartphone, and

Internet hosts on a per device basis. As signatures are based entirely on packet lengths and

directions, signatures present in Internet traffic (i.e., Device-Cloud and Phone-Cloud traffic)

are applicable on the WAN side of the router, despite being extracted from traces captured

within the local network.

Trace Filtering. Next, PingPong filters the collected raw training set to discard traffic

that is unrelated to a user’s operation of a smart home device. All packets, where neither

the source nor destination IP matches that of the device or the controlling smartphone,

are dropped. Additionally, all packets that do not lie within a time window t after each

timestamped event are discarded. We selected t = 15 seconds to allow sufficient time for all

network traffic related to the event to complete. Our sensitivity study also confirmed that

this was a conservative choice (see Section 2.4.7).

PingPong next reassembles all TCP connections in the filtered trace. Given the set of

reassembled TCP connections, we now turn our attention to the packets P that carry the

TCP payload. For TLS connections, P is limited further to only be the subset of packets

that are labeled as “Application Data” in the unencrypted TLS record header [168]. By

only considering packets in P , we ensure that the inherently unpredictable control packets

(e.g., TCP ACKs and TLS key negotiation) do not become part of the signature as P only

contains packets with application layer payload.

We next construct the set P ′ by forming packet pairs from the packets in P (see Defini-

tion 2.1). This is motivated by the following observation: the deterministic sequence of

packets that make up packet-level signatures often stem from a request-reply exchange be-

25

tween the device, smartphones, and some Internet hosts (see Section 2.2.3). Furthermore,

since a packet pair is the simplest possible pattern, and since longer patterns (i.e., packet

sequences—see Definition 2.2) can be reconstructed from packet pairs, we look for these

packet pairs in the training set. For the TP-Link plug example in Figure 2.2, PingPong

reassembles <..., C-556, S-1293, ...>, <..., C-237, S-826, ...>, etc. as TCP con-

nections. Then, PingPong extracts <C-556, S-1293>, <C-237, S-826>, etc. as packet pairs.

Definition 2.1. Packet Pair. Let Pc be the ordered set of packets with TCP payload

that belong to TCP connection c, let Pci denote the i-th packet in Pc, and let C and

S each denote client-to-server and server-to-client packet directions, respectively, where

a client is a smartphone or a device. A packet pair p is then p = (C−Pci , S−Pci+1
)

or p = (S−Pci , C−Pci+1
) iff Pci and Pci+1

go in opposite directions. Otherwise, if Pci

and Pci+1
go in the same direction, or if Pci is the last packet in Pc, the packet pair

p = (C−Pci , nil) or p = (S−Pci , nil) is formed, and packet Pci+1
, if any, is paired with

packet Pci+2
.

Pair Clustering. After forming a set of packet pairs, relevant packet pairs (i.e., those

that consistently occur after an event) must next be separated from irrelevant ones. This

selection also needs to take into account that the potentially relevant packet pairs may have

slight variations in lengths. Since we do not know in advance the packet lengths in the pairs,

we use an unsupervised learning algorithm: DBSCAN [82].

DBSCAN is provided with a distance function for comparing the similarity of two packet

pairs, say p1 and p2. The distance is maximal if the packet directions are different, e.g.,

if p1 is comprised of a packet going from a local device to an Internet host followed by a

packet going from an Internet host to a local device, while p2 is comprised of a packet going

from an Internet host to a local device followed by a packet going from a local device to an

Internet host. If the packet directions match, the distance is simply the Euclidean distance

26

between the two pairs, i.e.,
√

(p1
1 − p1

2)
2

+ (p2
1 − p2

2)
2
, where pij refers to the packet length

of the i-th element of pair j. DBSCAN’s parameters are ε and minPts, which specify the

neighborhood radius to consider when determining core points and the minimum number

of points in that neighborhood for a point to become a core point, respectively. We choose

ε = 10 and minPts = bn− 0.1nc, where n is the total number of events. We allow a slack of

0.1n to minPts to take into account that event-related traffic could occasionally have missing

pairs, for example caused by the phone app not responding to some of the automated events.

We report the study of PingPong parameter values in Section 2.4.7.

Figure 2.3(a) illustrates the pair clustering process for TP-Link plug. There are 50 ON and

50 OFF actions, and there must be at least 45 (n = 50 =⇒ minPts = b50−0.1×50c = 45)

similar packet pairs to form a cluster. Two clusters are formed among the data points, i.e.,

those with frequencies f: 50 and f: 98, respectively. Since these two clusters contain

similar packet pairs that occur during t , this indicates with high confidence that the packets

are related to the event.

Signature Creation. Given the output produced by DBSCAN, PingPong next drops all

clusters whose frequencies are not in the interval [bn− 0.1nc, dn+ 0.1ne] in order to only

include in the signature those clusters whose frequencies align closely with the number of

events n. Intuitively, this step is to deal with chatty devices, namely devices that commu-

nicate continuously/periodically while not generating events. Consequently, PingPong only

picks the cluster Pairs 1 with frequency 50 for the TP-Link plug example in Figure 2.3 as

a signature candidate since 50 is in [bn− 0.1nc, dn+ 0.1ne] = [45, 55] when n = 50, whereas

98 is not. As a pair from this cluster occurs exactly once during t , there is high confidence

that the pair is related to the event.

PingPong next attempts to concatenate packet pairs in the clusters so as to reassemble the

longest packet sequences possible (see Definition 2.2), which increases the odds that a sig-

27

nature is unique. Naturally, packet pair concatenation is only performed when a device has

more than one cluster. This is the case for the Arlo camera, but not the TP-Link plug.

Packet pairs in clusters x and y are concatenated iff for each packet pair px in x, there

exists a packet pair py in y such that px and py occurred consecutively in the same TCP

connection. If there are more pairs in y than in x, the extra pairs of y are simply dropped.

The result is referred to as a set of packet sequences (see Definition 2.3) and is considered

for further concatenation with other clusters if possible.

Definition 2.2. Packet Sequence. A packet sequence s is formed by joining packet

pairs p1 and p2 iff p1 and p2 are both in Pc (same TCP connection) and the packets in

p1 occur immediately before the packets in p2 in Pc. Note that the packet sequence s

resulting from joining p1 and p2 can be of length 2, 3, or 4, depending on whether or not

the second element of p1 and/or p2 is nil.

Definition 2.3. Set of Packet Sequences. A set of packet sequences S is a set of

similar packet sequences. Two packet sequences s1 and s2 are similar and thus belong

to the same set S iff they (1) contain the same number of packets, (2) the packets

at corresponding indices of s1 and s2 go in the same direction, and (3) the Euclidean

distance between the packet lengths at corresponding indices of s1 and s2 is below a

threshold—packet lengths in packet sequences inherit the slight variations that stem from

packet pairs.

Figure 2.3(b) shows how pair clustering produces 3 clusters around the pairs <C-339, S-329>

(i.e., cluster Pairs 1), <C-[364-365], S-[1061-1070]> (i.e., cluster Pairs 2), and <C-

[271-273], S-[499-505]> (i.e., cluster Pairs 3) for the Arlo camera. The notation C-

[l1 − l2] or S-[l1 − l2] indicates that the packet length may vary in the range between l1 and

l2. Each pair from cluster Pairs 1 and each pair from cluster Pairs 2 are then concatenated

into a sequence in Sequences 1 (a set of packet sequences) as they appear consecutively in

28

the same TCP connection, i.e., Pair 1.1 with Pair 2.1, Pair 1.2 with Pair 2.2, ...,

Pair 1.50 with Pair 2.50. The cluster Pairs 3 is finalized as the set Sequences 2 as its

members appear in different TCP connections than the members of Sequences 1. Thus, the

initial 3 clusters of packet pairs are reduced to 2 sets of packet sequences. For the TP-Link

plug, no concatenation is performed since there is only a single cluster, Pairs 1, which is

finalized as the set Sequences 1.

Finally, PingPong sorts the sets of packet sequences based on the timing of the sets’ members

to form a list of packet sequence sets (see Definition 2.4). For example, for the Arlo camera,

this step produces a list in which the set Sequences 1 precedes the set Sequences 2 be-

cause there is always a packet sequence in Sequences 1 that precedes a packet sequence in

Sequences 2. The purpose of this step is to make the temporal order of the sets of packet

sequences part of the final signature. If no such order can be established, the set with the

shorter packet sequences is discarded. Manual inspection of some devices suggests that the

earlier sequence will often be the control command sent from an Internet host followed by

the device’s acknowledgment of the command, while the later sequence will stem from the

device initiating communication with some other Internet host to inform that host about its

change in status.

Definition 2.4. List of Packet Sequence Sets. A list of packet sequence sets is a

list that contains sets of packet sequences that are sorted based on the occurrence of the

set members in time. Set Sx goes before set Sy iff for each sequence sx in Sx, there exists

a sequence sy in Sy that occurred after sx within t.

Signature Validation. Before finalizing the signature, we validate it by running the de-

tection algorithm (see Section 2.3.2) against the raw training set that was used to generate

the signature. If PingPong detects at most n events, and the timestamps of detected events

match the timestamps for events recorded during training, the signature is finalized as a

29

valid packet-level signature (see Definition 2.5) and stored in a signature file. A signature

can fail this check if it detects more events than the actual number of events in the training

set (i.e., false positives). This can happen if the packet sequences in the signature frequently

appear outside t .

Definition 2.5. Packet-level Signature. A packet-level signature is then a list of

packet sequence sets that has been validated and finalized.

Signature File. A signature file stores a packet-level signature. Figure 2.3 shows that the

TP-Link plug signature consists of 50 instances of packet sequences in set Sequences 1, but

only one instance will be used during detection since all 50 are identical. Figure 2.3(b) shows

the signature file (on the right-hand side) for the Arlo camera. It is a list that orders the

two sets of packet sequences, Sequences 1 and Sequences 2. Sequences 1 is comprised

of 50 packet sequences, each comprised of two packet pairs. Sequences 2 is comprised of

another 50 packet sequences, each comprised of a single packet pair. Since the sequences

vary slightly in each set, all unique variations are considered during detection.

2.3.2 Detection

PingPong’s detection component determines if a packet-level signature is present in a cap-

tured network trace, or real-time network traffic. The implementation differs slightly for the

two adversaries described in Section 2.2.1.

Layer-2 Information. The Wi-Fi sniffer has the disadvantage of only having access to

layer-2 header information due to WPA2 encryption. This means that it cannot reconstruct

TCP connections, but can only separate traffic into flows of packets exchanged between pairs

of MAC addresses, referred to as layer-2 flows. On layer 2, the encryption added by WPA2

does not pad packet lengths. Thus, our signatures, extracted from TCP/IP traffic, can be

directly mapped to layer 2 if the IEEE 802.11 radiotap header, frame header, the AES-

30

CCMP IV and key identifier, and FCS are accounted for. In our testbed, these consistently

add 80 bytes to the packet length.

Packet Sequence Matching. A state machine is maintained for each packet sequence

of the signature for each flow, i.e., TCP connection for the WAN sniffer or layer-2 flow for

the Wi-Fi sniffer. Each packet in the stream of packets is presented to the state machines

associated with the flow that the packet pertains to. If the packet’s length and direction

match that of the packet for the next state, the state machine advances and records the

packet. The detection algorithm operates differently for layer-2 and layer-3 detections when

the packet does not match the expected next packet. For layer-2 detection (Wi-Fi sniffer),

the packet is simply ignored, and the state machine remains in the same state. Out-of-order

packets can in theory cause failures for our current layer-2 signature matching implemen-

tation. In practice, out-of-order packets occur rarely enough that they are unlikely to be

a significant issue. There are other mitigating factors that further lower the likelihood of

out-of-order packets posing a problem. Signatures that strictly follow the pingpong pattern

do not provide an opportunity for their packets to be reordered. Out-of-order packets often

result in TCP ACKs in the other direction that would cause retransmissions. Thus, another

event packet would be seen right after the first one and the first one would be ignored. For

layer-3 detection (WAN sniffer), the packet causes the state machine to discard any partial

match—layer-3 detection does not deal with interleaving packets as it considers individual

TCP connections and can filter out TCP retransmissions. When a state machine matches

its first packet and advances to the next state, a new state machine is created for the same

packet sequence, but in the initial state. This is to ensure that the state machine starts

at the correct first packet, e.g., when a packet of that length appears in other traffic. To

bound the number of active state machines, and to minimize the number of false positives

resulting from retransmissions, any state machine that advances from state s to state s+ 1

replaces any existing state machine in state s+ 1 iff the last packet of the newly advanced

state machine has a later timestamp than that of the existing state machine. Once a state

31

machine reaches its terminal state, the set of recorded packets is reported as a sequence

match.

Matching Strategies. For every packet in a sequence, there are two possible matching

strategies: exact and range-based matching. In exact matching, the state machines only

consider exactly those packet lengths that were observed during training as valid. In the

range-based matching strategy, the state machines allow the packet lengths to lie between

the minimum and maximum packet lengths (plus a small delta) observed during training.

As such, range-based matching attempts to accommodate packet sequences that have slight

variations where all permutations may not have been observed during training. For range-

based matching, the lower and upper bounds for each packet of a packet sequence are derived

from the core points of the packet pair clustering (see Section 2.3.1). ε is then applied to

these bounds analogous to the clustering technique used in the DBSCAN algorithm—we,

therefore, consistently use the same ε = 10. For example, for ε = 10 and core points

<C-338, S-541> and <C-339, S-542>, a state machine that uses range-based matching will

consider client-to-server packets with lengths in [328, 349], and server-to-client packets

with lengths in [531,552] as valid.

Exact matching is used when no variations in packet lengths were observed during training,

and range-based matching is used if variations in packet lengths were observed during train-

ing. However, range-based matching is not performed when the signature only consists of

2 packets and/or there is an overlap between the signatures that represent different types

of events (e.g., the D-Link plug’s signatures for ON and OFF in Table 2.3) as range-based

matching for 2-packet signatures has a high risk of generating many false positives.

Declaring a Signature Match. A sequence match does not necessarily mean that the full

signature has been matched. Some signatures are comprised of multiple packet sequences and

all of them have to be matched (e.g., Arlo camera, see Section 2.3.1). Sequence matches are

32

therefore reported to a secondary module that verifies if the required temporal constraints

are in place, namely that the sequence match for packet sequence set i occurs before the

sequence match for packet sequence set i + 1 and that the time between the first packet of

the sequence match corresponding to packet sequence set 1 and the last packet of the sequence

match corresponding to packet sequence set k (for a signature with k packet sequence sets)

is below a threshold. A signature match is declared when all matching packet sequence sets

occur within the duration dt+ 0.1te with t being the maximum observed signature duration

(see Tables 2.3, 2.4, 2.5, and 2.6).

Simultaneous Events. Finally, during signature matching, PingPong’s algorithm first

separates incoming packets into different sets on a per device basis: individual TCP connec-

tions in the WAN sniffer matching, or individual substreams based on source/destination

MAC addresses in the Wi-Fi sniffer matching. Since the devices we have seen only generate

events sequentially, sequences that correspond to a certain event will also appear sequen-

tially in the network trace: there will never be an overlap of events in a single device. If

two devices or more generate events simultaneously, the corresponding sequences will be

either in separate TCP connections for the WAN sniffer adversary or separate substreams

for the Wi-Fi sniffer adversary: there will never be overlap of events generated by different

devices. This also implies that changing the amount and types of background traffic (e.g.,

video or audio streaming) does not affect our signatures—other traffic will be in different

TCP connections/substreams.

2.4 Evaluation

In this section, we present the evaluation of PingPong. In Section 2.4.1, we show that

PingPong automatically extracted event signatures for 18 devices as summarized in Ta-

bles 2.3, 2.4, 2.5, and 2.6—11 of which are the most popular devices on Amazon (see Ta-

ble 2.1). In Section 2.4.2, we used the extracted signatures to detect events in a trace

33

Table 2.3: Smart plugs found to exhibit Phone-Cloud, Device-Cloud, and Phone-Device
signatures. Prefix PH indicates Phone-to-device direction and prefix D indicates Device-
to-phone direction in Signature column. Column Dura. reports numbers in the form of
Min./Avg./Max., namely minimum, average, and maximum durations respectively.

Matching (Per 100 Events)
Device Event Signature Comm. Dura. No Defense STP+VPN

(ms) WAN FP Wi-Fi FP WAN FP
Snif. Snif. Snif.

Amazon ON S1: S-[443-445] Device- 1,232 / 98 0 99 0 99 0
plug S2: C-1099 S-235 Cloud 2,465 /

OFF S1: S-[444-446] 4,537
S2: C-1179 S-235
S3: C-1514 C-103

S-235
WeMo ON/ S1: PH-259 Phone- 33 / 42 - - 100 0 - -
plug OFF PH-475 D-246 Device / 134
WeMo ON/ S1: PH-259 Phone- 32 / 39 - - 99 0 - -
Insight OFF PH-475 D-246 Device / 97
plug
TP- ON S1: C-556 S-1293 Device- 75 / 85 99 0 - - 98 3
Link OFF S1: C-557 Cloud / 204
plug S-[1294-1295]

ON S1: PH-112 Phone- 225 / - - 99 0 - -
D-115 Device 325 /

S2: C-556 S-1293 & 3,328
ON S1: PH-112 Device-
ON D-115 Cloud

S2: C-557
S-[1294-1295]

D-Link ON/ S1: S-91 S-1227 Device- 4 / 95 0 95 0 95 0
plug OFF C-784 Cloud 1,194 /

S2: C-1052 S-647 8,060
ON S1: C-[1109-1123]

S-613
Phone-
Cloud

35 / 41
/ 176

98 0 98 0 98 0

OFF S1: C-[1110-1124]
S-613

Smart- ON S1: C-699 S-511 Phone- 335 / 92 0 92 0 92 0
Things S2: S-777 C-136 Cloud 537 /
plug OFF S1: C-700 S-511 2,223

S2: S-780 C-136

collected from a realistic experiment on our smart home testbed. Section 2.4.3 discusses the

results of negative control experiments: it demonstrates the uniqueness of the PingPong sig-

natures in large (i.e., with hundreds of millions of packets), publicly available, packet traces

from smart home and office environments. Section 2.4.4 discusses the results of our experi-

34

Table 2.4: Smart light bulbs found to exhibit Phone-Cloud, Device-Cloud, and Phone-Device
signatures. Prefix PH indicates Phone-to-device direction and prefix D indicates Device-
to-phone direction in Signature column. Column Dura. reports numbers in the form of
Min./Avg./Max., namely minimum, average, and maximum durations respectively.

Matching (Per 100 Events)
Device Event Signature Comm. Dura. No Defense STP+VPN

(ms) WAN FP Wi-Fi FP WAN FP
Snif. Snif. Snif.

Sengled ON S1: S-[217-218] Device- 4,304 / 97 0 - - 97 0
light C-[209-210] Cloud 6,238 /
bulb S2: C-430 8,145

S3: C-466
OFF S1: S-[217-218]

C-[209-210]
S2: C-430
S3: C-465

ON S1: C-211 S-1063 Phone- 4,375 / 93 0 97 0 96 1
S2: S-1277 Cloud 6,356 /

OFF S1: C-211 S-1063
S-1276

9,132

Inte- S1: S-[216-220] Device- 16 / 74 99 2 - - 99 5
nsity C-[208-210] Cloud / 824
Inte- S1: C-[215-217] Phone- 3,916 / 99 0 99 0 98 2
nsity S-[1275-1277] Cloud 5,573 /

7,171
Hue ON S1: C-364 Device- 11,019 / - - - - - -
light S2: D-88 Cloud 12,787 /
bulb OFF S1: C-365 & 14,353

S2: D-88 Phone-
Device

TP- ON S1: PH-198 Phone- 8 / 77 / - - 100 4 - -
Link D-227 Device 148
light OFF S1: PH-198
bulb D-244

Inte- S1: PH-[240-242] Phone- 7 / 84 / - - 100 0 - -
nsity D-[287-289] Device 212
Color S1: PH-317

D-287
Phone-
Device

6 / 89 /
174

- - 100 0 - -

ments when devices are triggered remotely from a smartphone and via a home automation

service. Section 2.4.5 shows the uniqueness of signatures for devices from the same vendor.

Section 2.4.6 discusses our findings when we used PingPong to extract signatures from a

public dataset [166]. Finally, Section 2.4.7 discusses our study on parameters selection and

sensitivity.

35

Table 2.5: Smart thermostats and sprinklers found to exhibit Phone-Cloud, Device-Cloud,
and Phone-Device signatures. Prefix PH indicates Phone-to-device direction and prefix D
indicates Device-to-phone direction in Signature column. Column Dura. reports numbers
in the form of Min./Avg./Max., namely minimum, average, and maximum durations
respectively.

Matching (Per 100 Events)
Device Event Signature Comm. Dura. No Defense STP+VPN

(ms) WAN FP Wi-Fi FP WAN FP
Snif. Snif. Snif.

Thermostats
Nest Fan S1: C-[891-894] Phone- 91 / 93 0 93 1 93 2
ther- ON S-[830-834] Cloud 111 /
mo- Fan S1: C-[858-860] 1,072
stat OFF S-[829-834]
Ecobee HVAC S1: S-1300 C-640 Phone- 121 / 100 0 99 0 99 0
ther- Auto Cloud 229 /
mo- HVAC S1: C-1299 C-640 667
stat OFF

Fan S1: S-1387 C-640 Phone- 117 / 100 0 100 0 100 1
ON Cloud 232 /
Fan
Auto

S1: C-1389 C-640 1,776

Sprinklers
Rachio Quick S1: S-267 C-155 Device- 1,972 / 100 0 100 0 100 1
sprin- Run Cloud 2,180 /
kler Stop S1: C-496 C-155

C-395
2,450

Stand- S1: S-299 C-155 Device- 276 / 100 0 100 0 100 0
by / C-395 Cloud 690 /
Active 2,538

Blo- Quick S1: C-326 Device- 701 / 96 0 96 0 96 3
ssom Run S2: C-177 S-505 Cloud 3,470 /
sprin- Stop S1: C-326 8,431
kler S2: C-177 S-458

S3: C-238 C-56
S-388

Quick S1: C-649 S-459 Phone- 70 / 956 93 0 93 0 93 0
Run C-574 S-507 Cloud / 3,337

S2: S-[135-139]
Stop S1: C-617 S-431
Hiber- S1: C-621 S-493 Phone- 121 / 95 0 93 0 93 1
nate Cloud 494 /
Active S1: C-622 S-494 1,798

S2: S-599 C-566
S-554 C-566

36

Table 2.6: Smart home security devices and others found to exhibit Phone-Cloud, Device-
Cloud, and Phone-Device signatures. Prefix PH indicates Phone-to-device direction and
prefix D indicates Device-to-phone direction in Signature column. Column Dura. reports
numbers in the form of Min./Avg./Max., namely minimum, average, and maximum du-
rations respectively.

Matching (Per 100 Events)
Device Event Signature Comm. Dura. No Defense STP+VPN

(ms) WAN FP Wi-Fi FP WAN FP
Snif. Snif. Snif.

Home Security Devices
Ring Arm S1: S-99 S-254 Device- 275 / 98 0 95 0 95 0
alarm C-99 S-[181-183] Cloud 410 /

C-99 605
Disarm S1: S-99 S-255

C-99 S-[181-183]
C-99

Arlo
camera

Stream
ON

S1: C-[338-339]
S-[326-329]

Phone-
Cloud

46 / 78
/ 194

99 2 98 3 97 4

C-[364-365]
S-[1061-1070]

S2: C-[271-273]
S-[499-505]

Stream
OFF

S1: C-[445-449]
S-442

D-Link ON S1: C-1076 S-593 Phone- 36 / 37 100 0 98 0 97 0
siren OFF S1: C-1023 S-613 Cloud / 65
Kwikset Lock S1: C-699 S-511 Phone- 173 / 100 0 100 0 100 0
door S2: S-639 C-136 Device 395 /
lock Unlock S1: C-701 S-511 2,874

S2: S-647 C-136
Others

Roomba Clean S1: S-[1014-1015] Phone- 123 / 91 0 94 0 94 1
robot C-105 S-432 Cloud 2,038 /

C-105 5,418
Back- S1: S-440 C-105
to- S-[1018-1024]
station C-105

Average (Tables 2.3, 2.4, 2.5, and 2.6) 97.05 0.18 97.48 0.32 96.77 1.09

2.4.1 Extracting Signatures from Smart Home Devices

Training Dataset. In order to evaluate the generalizability of packet-level signatures, we

first used PingPong to automate the collection of training sets (see Section 2.3.1) for all

19 smart home devices (see Table 2.1). Training sets were collected for every device under

test, individually without any background traffic (see Figure 2.1). The automation script

37

generated a total of 100 events for the device. For events with binary values, the script

generated n = 50 events for each event type (e.g., 50 ON and 50 OFF events). For events

with continuous values, the script generated n = 100 events (e.g., 100 intensity events for

the Sengled light bulb).

Results Summary. For each training set, we used PingPong to extract packet-level signa-

tures (see Section 2.3.1) for each event type of the respective device. In summary, PingPong

extracted signatures from 18 devices (see Tables 2.3, 2.4, 2.5, and 2.6). The signatures span a

wide range of event types: binary (e.g., ON/OFF) and non-binary (e.g., light bulb intensity,

color, etc.). Similar to our manual observation described in Section 2.2.3, we again see that

these events are identifiable by the request-reply pattern.

Tables 2.3, 2.4, 2.5, and 2.6 present the signatures that PingPong identified.2 Each line in

a signature cell represents a packet sequence set, and the vertical positioning of these lines

reflects the ordering of the packet sequence sets in the signature (see Section 2.3.1 for the

notation).

PingPong performed well in extracting signatures: it has successfully extracted packet-level

signatures that are observable in the device’s Phone-Cloud, Device-Cloud, and Phone-Device

communications (see Tables 2.3, 2.4, 2.5, and 2.6). Although the traffic is typically encrypted

using TLSv1.2, the event still manifests itself in the form of a packet-level signature in the

Phone-Cloud or Device-Cloud communication. PingPong also extracted signatures from

the Phone-Device communication for some of the devices. These signatures are extracted

typically from unencrypted local TCP/HTTP communication between the smartphone and

the device.

2Phone-Device signatures are observable only by the Wi-Fi sniffer. The Sengled light bulb’s Device-
Cloud signatures are sent by the Zigbee hub to the cloud through the Ethernet interface; thus, they are not
observable by the Wi-Fi sniffer. The Hue light bulb has unique signatures; they consist of a pair, in which
one is a Device-Cloud packet coming from the Zigbee hub to the cloud—this is observable only by the WAN
sniffer since the hub is an Ethernet device—and the other one is a Phone-Cloud packet—this is observable
only by the Wi-Fi sniffer; thus we did not use the signatures to perform detection since they partially belong
to both adversaries.

38

Smart Plugs PingPong extracted signatures from all 6 plugs: the Amazon, WeMo, WeMo

Insight, TP-Link, D-Link, and SmartThings plugs. The Amazon, D-Link, and SmartThings

plugs have signatures in the Phone-Cloud or Device-Cloud communication, or both. The TP-

Link plug has signatures in both the Device-Cloud and Phone-Device communications. Both

the WeMo and WeMo Insight plugs have signatures in the Phone-Device communication.

In general, the signatures allow us to differentiate ON from OFF except for the WeMo,

WeMo Insight, TP-Link plug’s Phone-Device communication, and D-Link plug’s Device-

Cloud communication (see Table 2.3).

Light Bulbs. PingPong extracted signatures from 3 light bulbs: the Sengled, Hue, and

TP-Link light bulbs. The Sengled light bulb has signatures in both the Phone-Cloud and

Device-Cloud communications. The Hue light bulb has signatures in both Device-Cloud and

Phone-Device communications. The TP-Link light bulb has signatures only in the Phone-

Device communication. Table 2.4 shows that PingPong also extracted signatures for events

beyond ON/OFF, e.g., Color.

Thermostats. PingPong extracted signatures for both the Nest and Ecobee thermostats.

Both thermostats have Phone-Cloud signatures. The signatures allow us to differentiate Fan

ON/OFF/Auto events. The Ecobee thermostat’s signatures also leak information about its

HVAC Auto/OFF events.

Sprinklers. PingPong extracted signatures from both the Rachio sprinkler and Blossom

sprinkler. Both sprinklers have signatures in both the Device-Cloud and Phone-Cloud com-

munications. The signatures allow us to differentiate Quick Run/Stop and Standby/Hiber-

nate/Active events.

Home Security Devices. A highlight is that PingPong extracted signatures from home se-

curity devices. Notably, the Ring alarm has signatures that allow us to differentiate Ar-

m/Disarm events in the Device-Cloud communication. The Arlo camera has signatures for

39

Stream ON/OFF events, the D-Link siren for ON/OFF events, and the Kwikset lock for

Lock/Unlock events in the Phone-Cloud communication.

Roomba Robot. Finally, PingPong also extracted signatures from the Roomba robot in

the Phone-Cloud communication. These signatures allow us to differentiate Clean/Back-to-

station events.

Signature Validity. Recall that signature validation rejects a signature candidate whose

sequences are present not only in the time window t , but also during the subsequent idle pe-

riod (see Section 2.3.1). We saw such a signature candidate for one device, namely the LiFX

light bulb. PingPong captured a signature candidate that is present also in the idle period of

the TCP communication and then rejected the signature during the validation phase. Man-

ual inspection revealed that the LiFX light bulb uses unidirectional UDP communication

(i.e., no request-reply pattern) for events.

2.4.2 Smart Home Testbed Experiment

Testing Dataset. To evaluate the effectiveness of packet-level signatures in detecting

events, we collected a separate set of network traces and used PingPong to perform detection

on them. We used the setup in Section 2.2.2 to collect one dataset for every device. Our

smart home setup consists of 13 of the smart home devices presented in Table 2.1: the

WeMo plug, WeMo Insight plug, Hue light bulb, LiFX light bulb, Nest thermostat, Arlo

camera, TP-Link plug, D-Link plug, D-Link siren, TP-Link light bulb, SmartThings plug,

Blossom sprinkler, and Kwikset lock. This fixed set of 13 devices was our initial setup—it

gives us the flexibility to test additional devices without changing the smart home setup

and needing to rerun all the experiments, yet still includes a variety of devices that generate

background traffic. While collecting a dataset, we triggered events for the device under test.

At the same time, we also connected the other 12 devices and turned them ON before we

40

started the experiment—this allows the other devices to generate network traffic as they

communicate with their cloud servers. However, we did not trigger events for these other

devices. For the other 6 devices (the Amazon plug, Sengled light bulb, Ecobee thermostat,

Rachio sprinkler, Roomba robot, and Ring alarm), we triggered events for the device under

test while having all the 13 devices turned on. To generate additional background traffic as

depicted in Figure 2.1, we set up 3 general purpose devices: a Motorola Moto g6 phone that

would play a YouTube video playlist, a Google Nexus 5 phone that would play a Spotify

song playlist, and an Apple MacBook Air that would randomly browse top 10 websites [29]

every 10-500 seconds. We used this setup to emulate the network traffic from a smart home

with many active devices.

Results Summary. Tables 2.3, 2.4, 2.5, and 2.6 present the summary of our results (see

column “Matching”). We collected a dataset with 100 events for every type of event—for

binary events (e.g., ON/OFF), we triggered 50 for each value. We performed the detection

for both the WAN sniffer and Wi-Fi sniffer adversaries: we have a negligible False Positive

Rate (FPR) of 0.25 (0.18 for the WAN sniffer and 0.32 for the Wi-Fi sniffer) per 100 events

for every event type.

Later, we added 6 more devices into our smart home setup: the Amazon plug, Sengled

light bulb, Ecobee thermostat, Rachio sprinkler, Roomba robot, and Ring alarm.3 For these

newly added devices, we still generated events for the device under test while collecting a

dataset. However, this time we used all of our first 13 devices and the 3 general purpose

devices in our initial setup to generate background traffic.

3Our initial setup had already allowed us to observe this packet-level signature in a mixed group of most
popular and less popular devices. We then decided to further confirm our findings by adding 6 more most
popular devices that eventually gave us a set of 19 devices with 12 devices being the most popular smart
home devices on Amazon [33] (see Section 2.2.2).

41

2.4.3 Negative Control Experiment

If the packet-level signatures are to be used to detect events in traffic in the wild, they

must be sufficiently unique compared to other traffic to avoid generating false positives. We

evaluated the uniqueness of the signatures by performing signature detection on 3 datasets.

The first 2 datasets serve to evaluate the uniqueness of the signatures among traffic generated

by similar devices (i.e., other smart home devices), while the third dataset serves to evaluate

the uniqueness of the signatures among traffic generated by general purpose computing

devices.

Dataset 1: UNSW Smart Home Traffic Dataset. The first dataset [180] contains net-

work traces for 26 smart home devices that are different from the devices that we generated

signatures for. The list can be found in [199]. The dataset is a collection of 19 PCAP files,

with a total size of 12.5GB and a total of 23,013,502 packets.

Dataset 2: YourThings Smart Home Traffic Dataset. The second dataset [31, 32]

contains network traces for 45 smart home devices. The dataset is a collection of 2,880 PCAP

files, with a total size of 270.3GB and 407,851,830 packets. There are 3 common devices

present in both YourThings and our set of 18 devices: the WeMo plug, Roomba robot, and

TP-Link light bulb.

Dataset 3: UNB Simulated Office-Space Traffic Dataset. The third dataset is the

Monday trace of the CICIDS2017 dataset [177]. It contains simulated network traffic for an

office space with two servers and 10 laptops/desktops with diverse operating systems. The

dataset we used is a single PCAP file of 10.82GB, with a total of 11,709,971 packets observed

at the WAN interface.

False Positives. For datasets 1 and 3, we performed signature detection for all devices. For

dataset 2, we only performed signature detection for the 15 of our devices that are not present

42

in YourThings to avoid the potential for true positives. We used WAN sniffer detection for

devices with Phone-Cloud and Device-Cloud signatures, and Wi-Fi sniffer detection for all

devices.

WAN Sniffer. There were no false positives across 23,013,502 packets in dataset 1, 1 false

positive for the Sengled light bulb across 407,851,830 packets in dataset 2, and 1 false positive

for the Nest thermostat across 11,709,971 packets in dataset 3.

Wi-Fi Sniffer. PingPong detected some false positives due to its more relaxed matching

strategy (see Section 2.3.2). The results show that the extracted packet-level signatures are

unique: the average FPR is 11 false positives per signature across a total of 442,575,303

packets from all three datasets (i.e., an average of 1 false positive per 40 million packets).

Further analysis showed that signatures comprised of a single packet pair (e.g., the D-Link

plug’s Phone-Cloud signatures that only have one request and one reply packet) contributed

the most to the average FPR—FPR is primarily impacted by signature length, not device

type. Five 3-packet signatures generated 5, 7, 16, 26, and 33 false positives, while one 4-

packet signature generated 2 false positives. There were also three outliers: two 4-packet

signatures generated 46 and 33 false positives, and a 6-packet signature generated 18 false

positives. This anomaly was due to PingPong using the range-based matching strategy

for these signatures (see Section 2.3.2). Furthermore, the average of the packet lengths

for the signatures that generated false positives is less than 600 bytes: the packet lengths

distribution for our negative datasets shows that there are significantly more shorter packets

than longer packets.

2.4.4 Events Triggered Remotely

Our main dataset, collected using our testbed (see Section 2.4.1), contains events triggered

by a smartphone that is part of the local network. However, smart home devices can also

43

Table 2.7: Device-Cloud signature in 9 devices triggered by IFTTT home automation.

Device Event Device-Cloud Signature Duration
(ms)

Matching (Per 100 Events)

Min./Avg. WAN FP Wi-Fi FP
/Max. Sniffer Sniffer

Plugs
WeMo ON/OFF S1: S-146 226 / 345 / 100 0 100 0
plug S2: C-210 S-134 S-286 C-294 2,236
WeMo ON S1: S-146 216 / 253 / 99 0 94 0
Insight S2: C-210 S-134 S-286 C-294 473
plug OFF S1: S-146

S2: C-210 S-134 S-350 C-294
TP- ON S1: C-592 S-1234 S-100 71 / 76 / 100 0 100 0
Link OFF S1: C-593 S-1235 S-100 139
plug
D-Link ON/OFF S1: C-256 269 / 750 / 93 1 93 1
plug S2: C-1020 S-647 6,364

Light Bulbs
Hue ON S1: S-[227-229] C-[857-859] C-365 37 / 44 / 99 1 - -
light OFF S1: S-[227-230] C-[857-860] C-366 76
bulb Intensity S1: S-[237-240] C-[895-899] 36 / 40 / 97 0 - -

S2: C-[378-379] 96
TP- ON S1: S-[348-349] C-[399-400] 11 / 15 / 100 0 100 0
Link OFF S1: S-[348-349] C-[418-419] 78
light Intensity S1: S-[438-442] C-[396-400] 12 / 16 / 100 0 99 0
bulb 53

Color S1: S-[386-388] C-[397-399] 12 / 17 /
60

99 0 97 0

Others
Rachio Quick S1: S-267 C-155 1,661 / 95 3 95 5
sprin- Run 2467 /
kler Stop S1: C-661 4,677

S2: C-155
Arlo
camera

Start
Record-
ing

S1: C-704 S-215 156 / 159 /
195

100 0 99 0

D-Link ON S1: S-[989-1005] C-616 162 / 181 / 99 1 98 1
siren S2: C-216 281

Average 98.4 0.5 97.5 0.7

be controlled remotely, using home automation frameworks or a remote smartphone. In

this section, we show that even with such remote triggers, the Device-Cloud communication

exhibits similar signatures, which can be extracted using PingPong.

44

Table 2.8: Comparison of Device-Cloud signatures for three devices (TP-Link plug, D-Link
plug, and Rachio sprinkler) triggered in three different ways: via (i) a local phone, (ii) a
remote phone, and (iii) IFTTT home automation.

Device Event Device-Cloud Signatures
Local-Phone Remote-Phone IFTTT

TP-Link ON S1: C-592 S-1234 S-100 S1: C-592 S-1234 S-100 S1: C-592 S-1234 S-100
plug OFF S1: C-593 S-1235 S-100 S1: C-593 S-1235 S-100 S1: C-593 S-1235 S-100
D-Link ON/OFF S1: S-91 S-1227 C-784 S1: S-91 S-1227 C-784 S1: C-256
plug S2: C-1052 S-647 S2: C-1052 S-647 S2: C-1020 S-647
Rachio
sprinkler

Quick
Run

S1: S-267 C-155 S1: S-267 C-155 C-837
C-448

S1: S-267 C-155

Stop S1: C-496 C-155 C-395 S1: S-219 S-235 C-171 C-661 S1: C-661
C-496 C-155 C-395 S2: C-155

Home Automation Experiment (IFTTT). In this section, we trigger events using the

IFTTT (If-This-Then-That) home automation platform [23], which supports most of our

devices. IFTTT is one of the most popular web-based home automation frameworks: in

2019 it provides around 700 services for 17 million users [186]. IFTTT allows users to set

up automation rules that work in a Trigger-Action fashion. Each automation rule typically

connects a trigger (i.e., This) to an action (i.e., That). The occurrence of the trigger causes

the action to be performed by the framework. For example, “if motion is detected, then turn

on the smart plug” [27].

In this experiment, we use IFTTT to trigger events. We integrate IFTTT into our existing

infrastructure for triggering device events via Android widget button presses. For each event

type, we develop an IFTTT rule that triggers the event using an Android button widget.

For example, we set up a button widget to toggle ON the TP-Link plug: “if the widget

button is pressed, then turn on the smart plug”. Then, we install the IFTTT app on our

smartphone, log in to the app using our IFTTT account, and add the button widget onto

the home screen of the smartphone. Then, instead of using the official Android app, we use

the button widget to trigger events from the smartphone. The smartphone is connected to

a different network than the smart home testbed network to simulate controlling the devices

from a remote location.

45

For every device: (1) we use IFTTT to trigger events to collect a new training dataset, and

we run PingPong to extract packet-level signatures from the Device-Cloud communication in

this dataset; (2) we collect a new smart home testbed dataset (as in Section 2.4.2, but using

the IFTTT widget to trigger events), which we then use for testing, i.e., to detect events by

matching on the IFTTT signatures extracted from the aforementioned training dataset.

Signatures Found in Device-Cloud Communication. IFTTT provides support for 13

out of our 18 devices: no support was provided at the time of the experiment for the Amazon

plug, Blossom sprinkler, Roomba robot, Ring alarm, and Nest thermostat. The main finding

is that, from the supported 13 devices, PingPong successfully extracts Device-Cloud signa-

tures for nine devices and 12 event types, which are summarized in Table 2.7.4 Three out of

the nine supported devices (the TP-Link plug, the D-Link plug, and the Rachio sprinkler) al-

ready have Device-Cloud signatures when triggered by a local phone: the phone is connected

to the smart home testbed, where the device is also connected to (see Tables 2.3, 2.4, 2.5,

and 2.6). Interestingly, six out of the nine supported devices have Device-Cloud signatures

when triggered via IFTTT, but did not have Device-Cloud signatures when triggered by a

local phone.

Comparison of Device-Cloud Signatures. Having answered the main question (i.e.,

that there are indeed Device-Cloud signatures even when devices are triggered by IFTTT),

a secondary question is whether the signature varies depending on the way the device is

triggered. To answer this question, we consider the TP-Link plug, the D-Link plug, and the

Rachio sprinkler, and we trigger events in three different ways:

1) Local-Phone: signatures are extracted from the previous experiment (see Tables 2.3, 2.4, 2.5,

4PingPong did not extract Device-Cloud signatures from 4 devices: the Sengled light bulb, Ecobee ther-
mostat, SmartThings plug, and Kwikset lock. For the Ecobee thermostat, SmartThings plug, and Kwikset
lock. PingPong extracted signatures from the Phone-Cloud communication (not from the Device-Cloud com-
munication) in the previous experiment (see Tables 2.3, 2.4, 2.5, and 2.6). For the Sengled light bulb, the
device was recently forced to update its firmware—PingPong in its current state did not extract signatures
in the Device-Cloud communication anymore although there is potentially a new signature.

46

and 2.6), using the vendor’s official Android application to trigger events. The phone is

connected to the smart home testbed network.

2) Remote-Phone: signatures are extracted from training datasets we collect using a remote

phone setting (without using IFTTT). We use the vendor’s official Android application

to trigger events for each device. We connect the phone to a different network than the

smart home testbed network.

3) IFTTT: signatures are extracted from a training dataset collected with the IFTTT home

automation experiment described in this section.

Table 2.8 lists all the Device-Cloud signatures we extract. We can see that the majority of

Device-Cloud signatures are the same or very similar across the IFTTT, Local-Phone, and

Remote-Phone experiments. For the TP-Link plug, the Device-Cloud signatures from the

three experiments are the same or similar (same packet sequences within 1B).5 For the D-Link

plug, the Local-Phone and the Remote-Phone Device-Cloud signatures are the same, but the

IFTTT Device-Cloud signatures are partially similar to the Local-Phone and Remote-Phone

Device-Cloud signatures. For the Rachio sprinkler, the Device-Cloud signatures from the

three experiments are subsets of one another.

2.4.5 Devices from the Same Vendor

Since the signatures reflect protocol behavior, a natural question to ask is whether devices

from the same vendor, which probably run similar protocols, have the same signature. In

our testbed experiment, we had already extracted signatures from 2 TP-Link devices: the

TP-Link plug and TP-Link light bulb (see Tables 2.3, 2.4, 2.5, and 2.6). We also acquired,

and experimented with, 4 additional devices from TP-Link. We report the detailed results

in Table 2.9. In summary, we found that packet-level signatures have some similarities (e.g.,

the TP-Link two-outlet plug and TP-Link power strip have similar functionality and have

5We repeated our previous experiment and found that the Device-Cloud signatures presented in Table 2.3
have evolved over time and since the original experiment.

47

Table 2.9: Signatures extracted from different TP-Link devices. ∗These are the latest signa-
tures for the TP-Link plug and TP-Link light bulb (per December 2019).

Device Model Event Signature Duration (ms)
Min./Avg./Max.

Existing TP-Link Devices
TP-Link HS-110 ON ∗S1: PH-172 D-115 406 / 743 / 10,667
plug S2: C-592 S-1234 S-100

OFF ∗S1: PH-172 D-115
S2: C-593 S-1235 S-100

TP-Link LB-130 ON ∗S1: PH-258 D-288 8 / 77 / 148
light OFF ∗S1: PH-258 D-305
bulb Intensity S1: PH-[240-242] D-[287-289] 7 / 84 / 212

Color S1: S1: PH-317 D-287 6 / 89 / 174
Newly Added TP-Link Devices

TP-Link HS-107 ON S1: PH-219 D-103 1,083 / 1593 / 2,207
two-outlet S2: C-300 C-710 S-1412 S-88
plug OFF S1: PH-219 D-103

S2: C-300 C-711 S-1413 S-88
TP-Link HS-300 ON S1: PH-219 D-103 976 / 1,537 / 4,974
power strip S2: C-301 C-1412 S-[1405-1406] S-88

OFF S1: PH-219 D-103
S2: C-301 C-1413 S-[1406-1407] S-88

TP-Link KL-110 ON S1: S-[414-415] C-[331-332] 1,892 / 2,021 / 2,157
white light S2: C-648 S-[1279-1280] S-88
bulb OFF S1: S-[414-415] C-[350-351]

S2: C-649 S-[1280-1281] S-88
Intensity S1: S-[479-483] C-[329-332] 2,418 / 2,540 / 3,610

S2: C-[654-656] S-[1285-1288] S-88
TP-Link KC-100 ON S1: PH-256 D-162 PH-624 D-256 PH-72 804 / 1,105 / 1,739
camera D-111 PH-608 D-371 PH-97 S-100

S2: C-1288 S-[1161-1162] S-100
OFF S1: PH-256 D-162 PH-624 D-256 PH-72

D-111 PH-614 D-371 PH-97
S2: C-1289 S-[1162-1163] S-100

packet lengths 1412B and 88B). However, they are still distinct across different device models

and event types, even for devices with similar functionality (e.g., the TP-Link plug, TP-Link

two-outlet plug, and TP-Link power strip).

2.4.6 Public Dataset Experiment

In this section, we apply the PingPong methodology to a state-of-the-art, publicly avail-

able IoT dataset: the Mon(IoT)r dataset [166]. First, we show that PingPong successfully

48

Table 2.10: Signatures extracted from the cameras and light bulbs only in the
Mon(IoT)r [166] dataset.

Device Event Signature Duration (ms)
Cameras

Amazon
camera

Watch S1: S-[627-634] C-[1229-1236] 203 / 261 / 476

Blink hub Watch S1: S-199 C-135 C-183 S-135 99 / 158 / 275
Photo S1: S-199 C-135 C-183 S-135 87 / 173 / 774

Lefun Photo S1: S-258 C-[206-210] S-386 C-206 17,871 / 19,032 / 20,358
camera S2: C-222 S-198 C-434 S-446 C-462 S-194 C-1422

S-246 C-262
S3: C-182

Recording S1: S-258 C-210 S-386 C-206 13,209 / 15,279 / 16,302
S2: C-222 S-198 C-434 S-446 C-462 S-194

Watch S1: S-258 C-210 S-386 C-206 14,151 / 15,271 / 16,131
S2: C-222 S-198 C-434 S-446 C-462 S-194

Microseven
camera

Watch S1: D-242 PH-118 1 / 5 / 38

ZModo
doorbell

Photo S1: C-94 S-88 S-282 C-240 / S1: S-282 C-240 C-94
S-88

1,184 / 8,032 / 15,127

Recording S1: C-94 S-88 S-282 C-240 / S1: S-282 C-240 C-94
S-88

305 / 7,739 / 15,137

Watch S1: C-94 S-88 S-282 C-240 / S1: S-282 C-240 C-94
S-88

272 / 7,679 / 15,264

Light Bulbs
Flex light ON/OFF S1: PH-140 D-[346-347] 4 / 44 / 78
bulb Intensity S1: PH-140 D-346 4 / 18 / 118

Color S1: PH-140 D-346 4 / 12 / 113
Wink hub ON/OFF S1: PH-204 D-890 PH-188 D-113 43 / 55 / 195

Intensity S1: PH-204 D-890 PH-188 D-113 43 / 50 / 70
Color S1: PH-204 D-890 PH-188 D-113 43 / 55 / 106

extracted signatures from new devices in this dataset, thus validating the generality of the

methodology and expanding our coverage of devices. Then, we compare the signatures ex-

tracted from the Mon(IoT)r dataset to those extracted from our testbed dataset, for devices

that were present in both.

The Mon(IoT)r Dataset. The Mon(IoT)r dataset [166] contains network traces from

55 distinct IoT devices.6 Each PCAP file in the dataset contains traffic observed for a

single device during a short timeframe surrounding a single event on that device. Moreover,

6The paper [166] reports results from 81 physical devices, but 26 device models are present in both the
US and the UK testbed, thus there are only 55 distinct models.

49

Table 2.11: Signatures extracted from the voice command devices only in the Mon(IoT)r [166]
dataset.

Device Event Signature Duration (ms)
Allure speaker Audio ON/OFF S1: C-658 C-412 89 / 152 / 196

Volume S1: C-[594-602] 217 / 4,010 / 11,005
S2: C-[92-100]

Amazon Echo Dot Voice S1: C-491 S-[148-179] 1 / 23 / 61
Volume S1: C-[283-290] C-[967-979] 1,555 / 2,019 / 2,423

S2: C-[197-200] C-[147-160]
Amazon Echo Plus Audio ON/OFF S1: S-100 C-100 1 / 5 / 28

Color S1: S-100 C-100 1 / 4 / 18
Intensity S1: S-100 C-100 1 / 4 / 11
Voice S1: C-[761-767] S-437 1,417 / 1,871 / 2,084

S2: C-172 S-434
Volume S1: C-172 S-434 2 / 13 / 40

Amazon Echo Spot Audio ON/OFF S1: S-100 C-100 1 / 8 / 233
Voice S1: C-246 S-214 1,220 / 1,465 / 1,813

S2: C-172 S-434
Volume S1: C-246 S-214 1,451 / 1,709 / 1,958

S2: C-172 S-434
Google Home Voice S1: C-1434 S-136 9 / 61 / 132

Volume S1: C-1434 S-[124-151] 8,020 / 9,732 / 10,002
S2: C-521 S-[134-135]

Google Home Mini Voice S1: C-1434 S-[127-153] 1 / 29 / 112
Volume S1: C-1434 S-[135-148] 5 / 47 / 123

Harman Kardon Voice S1: S-1494 S-277 C-1494 2,199 / 2,651 / 3,762
Invoke speaker S2: S-159 S-196 C-1494

Volume S1: S-159 S-196 C-1418 C-1320 S-277 223 / 567 / 793
S2: S-196 C-[404-406]

the authors provide timestamps for when they performed each event. As a result, we can

merge all PCAP files for each device and event type combination into a single PCAP file,

and directly apply PingPong to extract signatures, similarly to how we extracted signatures

from the training set we collected using our testbed. We only considered a subset of the 55

devices in the Mon(IoT)r dataset, due to a combination of limitations of the dataset and of

our methodology. In particular, we did not apply PingPong to the following groups of devices

in the Mon(IoT)r dataset: (1) 3 devices with nearly all PCAP files empty; (2) 6 devices with

a limited number (three or less) of event samples;7 and (3) 13 devices that only communicate

7We consider this to be too few samples to have confidence in the extracted signatures. In contrast,
the traces for the remaining devices generally had 30–40 event samples for each device and event type
combination.

50

Table 2.12: Signatures extracted from the smart TVs and other devices only in the
Mon(IoT)r [166] dataset.

Device Event Signature Duration (ms)
Smart TVs

Fire TV Menu S1: C-468 S-323 16 / 18 / 20
LG TV Menu S1: PH-204 D-1368 PH-192 D-117 43 / 90 / 235
Roku TV Remote S1: PH-163 D-[163-165] 578 / 1,000 / 1,262

S2: PH-145 D-410
S2: PH-147 D-113

Samsung TV Menu S1: PH-[237-242] D-274 2 / 7 / 15
Other Types of Devices

Honeywell thermostat ON S1: S-635 C-256 C-795 S-139 C-923 S-139 1,091 / 1,248 / 1,420
OFF S1: S-651 C-256 C-795 S-139 C-923 S-139
Set S1: C-779 S-139 86 / 102 / 132

Insteon hub ON/OFF S1: S-491 C-623 76 / 100 / 1,077
S2: C-784 C-234 S-379

Samsung fridge Set S1: C-116 S-112 177 / 185 / 185
View Inside S1: C-116 S-112 177 / 197 / 563

Table 2.13: Common devices that have the same signatures in the Mon(IoT)r and our testbed
experiments. ∗ signature: training on our testbed. † signature: training on Mon(IoT)r [166].
Matching: training on testbed, detection on Mon(IoT)r. The number of events vary (around
30-40) per event type—the result is presented in % for convenience.

Device Event Signature Duration (ms) Matching
Min./Avg./Max./St.Dev. WAN FP Wi-Fi FP

Sniffer Sniffer
WeMo ON/ ∗S1: PH-475 D-246 29 / 33 / 112 / 9 - - 98.75% 0
Insight
plug

OFF †S1: PH-475 D-246 31 / 42 / 111 / 15

Blink Watch ∗S1: C-331 S-299 267 / 273 / 331 / 8 100% 0 100% 0
camera C-139

†S1: C-331 S-299
C-139

170 / 269 / 289 / 19

Photo ∗S1: C-331 C-123
S-139 S-123 S-187

C-1467

281 / 644 / 1,299 / 348 97.37% 0 97.50% 0

†S1: C-331 C-123
S-139 S-123 S-187

C-1467

281 / 742 / 2,493 / 745

via UDP (PingPong’s current implementation only considers TCP traffic). Next, we report

results from applying PingPong to the remaining 33 devices in the Mon(IoT)r dataset. Out

51

Table 2.14: Common devices that have similar signatures in the Mon(IoT)r and our testbed
experiments. ∗ signature: training on our testbed. † signature: training on Mon(IoT)r [166].
Matching: training on testbed, detection on Mon(IoT)r. The number of events vary (around
30-40) per event type—the result is presented in % for convenience.

Device Event Signature Duration (ms) Matching
Min./Avg./Max./ WAN FP Wi-Fi FP

St.Dev. Snif. Snif.
TP-Link ON ∗S1: C-592 S-1234 S-100 70 / 74 / 85 / 2 100% 0 - -
plug OFF ∗S1: C-593 S-1235 S-100
(Device- ON †S1: C-605 S-1213 S-100 16 / 19 / 29 / 2
Cloud) OFF †S1: C-606 S-1214 S-100
TP-Link ON ∗S1: PH-172 D-115 406 / 743 / 10,667 / - - 100% 0
plug S2: C-592 S-1234 S-100 1,417
(Phone- OFF ∗S1: PH-172 D-115
Device S2: C-593 S-1235 S-100
& ON †S1: PH-172 D-115 197 / 382 / 663 / 165
Device- S2: C-605 S-1213 S-100
Cloud) OFF †S1: PH-172 D-115

S2: C-606 S-1214 S-100
Sengled ON ∗S1: S-[217-218] 4,304 / 6,238 / 8,145 / - - - -
light C-[209-210] 886
bulb S2: C-430

S3: C-466
OFF ∗S1: S-[217-218]

C-[209-210]
S2: C-430
S3: C-465

ON †S1: S-219 C-210 354 / 2,590 / 3,836 /
S2: C-428 859

S3: C-[478-479]
OFF †S1: S-219 C-210

S2: C-428
S3: C-[478-480]

TP-Link ON ∗S1: PH-258 D-288 8 / 77 / 148 / 42 - - - -
light OFF ∗S1: PH-258 D-305
bulb ON †S1: PH-258 D-227 17 / 92 / 224 / 46

OFF †S1: PH-258 D-244

of those, 26 are exclusive to the Mon(IoT)r dataset, while seven are common across the

Mon(IoT)r dataset and our testbed dataset.

Devices only in the Mon(IoT)r Dataset. We ran PingPong’s signature extraction on

the traces from the 26 new devices from the Mon(IoT)r dataset. PingPong successfully

extracted signatures for 21 devices and we summarize those signatures in Tables 2.10, 2.11,

52

and 2.12.8 Some of these devices provide similar functionality as those in our testbed dataset

(e.g., bulbs, cameras). Interestingly, we were also able to successfully extract signatures for

many new types of devices that we did not have access to during our testbed experiments.

Examples include voice-activated devices, smart TVs, and even a fridge. This validates the

generality of the PingPong methodology and greatly expands our coverage of devices.

There were also 5, out of 26, new devices that PingPong originally appeared to not extract

signatures from. However, upon closer inspection of their PCAP files and PingPong’s output

logs, we observed that those devices did actually exhibit a new type of signature that we had

not previously encountered in our testbed experiments: a sequence of packet pairs with the

exact same pair of packet lengths for the same event. The default configuration of PingPong

would have discarded the clusters of these packet pairs during the signature creation of

the training phase (see Section 2.3.1), because the number of occurrences of these pairs is

higher than (in fact a multiple of) the number of events. However, based on this intuitive

observation, PingPong can easily be adapted to extract those signatures as well: it can take

into account the timing of packet pairs in the same cluster instead of only across different

clusters, and concatenate them into longer sequences. We note that these frequent packet

pairs can be either new signatures for new devices, or can be due to periodic background

communication. Unfortunately, the Mon(IoT)r dataset does not include network traces for

idle periods (where no events are generated), thus we cannot confirm or reject this hypothesis.

Common Devices. We next report our findings for devices that are present in both

the Mon(IoT)r dataset and in our own testbed dataset, referred to as common devices.

There were already 6 common devices across the 2 datasets, and we acquired an additional

device after consulting with the authors of the paper: the Blink camera. We excluded 2

8For some of the devices, we had to relax the training time window, i.e., t = 30s, because there is usually
a gap of more than 20s from the provided timestamps to the appearance of event-related traffic. As a result,
PingPong extracted longer signatures for certain devices, e.g., the Lefun camera. Further, we also had to
exclude some PCAP files that are empty or contain traffic that look inconsistent with the majority (e.g.,
some only contain DNS or IGMP traffic).

53

common devices: (1) the Nest thermostat as it was tested for different event types; and

(2) the Hue light bulb as it has a unique signature that PingPong cannot use to perform

matching—it is a combination of Device-Cloud (visible only to the WAN sniffer) and Phone-

Device communications (visible only to the Wi-Fi sniffer). Tables 2.13 and 2.14 summarize

the results for the 5 remaining common devices. First, we report the complete signatures

extracted from each dataset. The signatures reported in Table 2.3 were obtained from data

collected throughout 2018. For the WeMo Insight plug and TP-Link plug, we repeated

our testbed data collection and signature extraction in December 2019 to facilitate a better

comparison of signatures from the same devices across different points in time. Then, we

compare the signatures extracted from the two datasets for the common devices: some of the

signatures are identical and some are similar. Such a comparison provides more information

than simply training on one dataset and testing on the other.

Identical Signatures. For the WeMo Insight plug and Blink camera, the signatures extracted

from the Mon(IoT)r dataset and our dataset (December 2019) were identical. Since the

signatures obtained from our own dataset do not have any variations in packet lengths,

we used PingPong’s exact matching strategy (see Section 2.3.2) to detect events in the

Mon(IoT)r dataset, and we observed a recall rate of 97% or higher for both devices (see

Table 2.13).

Similar Signatures. For the TP-Link plug and Sengled light bulb, the signatures extracted

from the Mon(IoT)r dataset are slightly different from those extracted from our own dataset:

some packet lengths at certain positions in the sequence are different (by a few and up to

tens of bytes), and these differences appear to be consistent (i.e., all signatures from both

datasets appear to be completely deterministic as they do not contain packet length ranges).

For example, the TP-Link plug’s ON event is C-592 S-1234 S-100 in our experiment vs.

C-605 S-1213 S-100 in Mon(IoT)r. To understand the cause of these discrepancies, we

examined the TP-Link plug in further detail—between the two devices, its signatures exhibit

54

the largest difference in packet lengths across datasets. Through additional experiments

on the TP-Link plug, we identified that changes to configuration parameters (e.g., user

credentials of different lengths) could cause the packet lengths to change. However, the

packet lengths are deterministic for each particular set of user credentials.

For devices that exhibit this kind of behavior, an attacker must first train PingPong multiple

times with different user credentials to determine to what extent these configuration changes

affect the packet lengths in the signatures. Moreover, the signature matching strategy should

not be exact, but must be relaxed to allow for small variations in packet lengths. To this

end, we implemented relaxed matching that augments the matching strategies discussed in

Section 2.3.2.9 We ran PingPong with relaxed matching on the TP-Link plug with a delta

of 21B, and successfully detected 100% of events. Furthermore, by performing the negative

control experiments described in Section 2.4.3, we verified that the increase in FPR due to

relaxed matching is negiligible. For dataset 1, relaxed matching results in two FPs for the

Wi-Fi sniffer. For dataset 3, relaxed matching results in seven FPs for the Wi-Fi sniffer and

one FP for the WAN sniffer. In comparison, exact matching only produces one false positive

for the Wi-Fi sniffer for dataset 3. We note that the total number of packets across these

datasets is 440 million. However, relaxed matching may eliminate the ability to distinguish

event types for signatures that only differ by a few bytes (e.g., the packet lengths for the

TP-Link plug’s ON and OFF signatures differ by one byte).

Signature Evolution. We observed that some signatures change over time, presumably due

to changes to the device’s communication protocol. The WeMo Insight plug’s signature

changed slightly from our earlier dataset from 2018 (see Table 2.3) to our latest dataset

collected in December 2019 (see Table 2.13): the first PH-259 packet is no longer part of

the signature. Both of these datasets were collected using the same testbed with the same

9In relaxed matching, a delta equal to the greatest variation observed in packet lengths is applied to the
packets that vary due to configuration changes. For the TP-Link plug, we observed that the first packets
differ by 13B in the the Device-Cloud signatures from the two datasets (i.e., 13 = 605 − 592 = 606 − 593)
and the second packets differ by 21B (i.e., 21 = 1234− 1213 = 1235− 1214), thus a delta of 21B is used.

55

user accounts, but with different device firmware versions. Therefore, the change is probably

due to changes in the communication protocol, introduced in firmware updates. This is

further backed by the observation that the WeMo Insight plug’s signature extracted from

the Mon(IoT)r dataset (collected in April 2019) is identical to the signature extracted from

our December 2019’s dataset. This implies that there has been a protocol change between

2018 and April 2019, but the protocol has then remained unchanged until December 2019.

Similarly, the TP-Link light bulb’s signature has changed slightly from our first to our second

in-house dataset (see Tables 2.4 and 2.14), and is also slightly different for the Mon(IoT)r

dataset.10 The signatures from our 2018 dataset and those from the Mon(IoT)r dataset differ

in the first packet (PH-198 vs. PH-258, an offset of 60 bytes), and the signatures from the

Mon(IoT)r dataset and those from our December 2019 differ in the second packet (D-227

vs. D-288 and D-244 vs. 305, an offset of 61 bytes). Thus, we also suspect that there is a

signature evolution due to firmware updates for the TP-Link light bulb. Signature evolution

is a limitation of our approach, and is elaborated on in Section 6.2. Nevertheless, an attacker

can easily overcome this limitation simply by repeating PingPong’s training to extract the

latest signatures from a device right before launching an attack.

2.4.7 Parameters Selection and Sensitivity

Clustering Parameters. We empirically examined a range of values for the parameters

of the DBSCAN algorithm. We tried all combinations of ε ∈ {1, 2, ..., 10} and minPts ∈

{30, 31, ..., 50}. For those devices that exhibit no variation in their signature related packet

lengths, e.g., the TP-Link plug, the output of the clustering remains stable for all values

of ε and minPts < 50. For such devices, keeping ε at a minimum and minPts close to the

number of events n reduces the number of noise points that become part of the resulting

clusters. However, our experiments show that there is a tradeoff in applying strict bounds to

10We also repeated our experiments for the TP-Link light bulb to further understand this phenomenon.

56

devices with more variation in their packet lengths (e.g., the D-Link plug), strict bounds can

result in losing clusters that contain packet pairs related to events. For the D-Link plug, this

happens if ε < 7 and minPts > 47. In our experiments, we used our initial values of ε = 10

and minPts = 45 (i.e., minPts = bn − 0.1nc with n = number of expected events) from

our smart plugs experiment (i.e., the TP-Link plug, D-Link plug, and SmartThings plug)

that allowed PingPong to produce the packet-level signatures we initially observed manually

(see Section 2.2.3). We then used them as default parameters for PingPong to analyze new

devices and extracted packet-level signatures from 15 more devices.

Time Window and Signature Duration. We also measured the duration of our signatures—

defined as the time between the first and the last packets of the signature. Tables 2.3, 2.4, 2.5

and 2.6 report all the results. The longest signature duration measured is 9,132 ms (less than

10 seconds) for the Sengled light bulb’s ON/OFF signatures from the Phone-Cloud communi-

cation. This justifies our choice of training time window t = 15 seconds during trace filtering

and signature validation (see Section 2.3.1). This conservative choice also provides slack to

accommodate other devices that we have not evaluated and that may have signatures with

a longer duration. This implies that events can be generated every 15 seconds or longer.

We conservatively chose this duration to be 131 seconds to give ample time for an event to

finish, and to easily separate false positives from true positives.

2.5 Possible Defenses against Packet-Level Signatures

In this section, we discuss possible defenses against passive inference attacks such as packet-

level signatures. There are several broad approaches that can obfuscate network traffic to

defend against passive inference attacks that analyze network traffic metadata:

1) Packet padding adds dummy bytes to each packet to confuse inference techniques that

rely on individual packet lengths, and less so volume. Packets can be padded to a fixed

length (e.g., MTU) or with a random number of bytes.

57

2) Traffic shaping purposely delays packets to confuse inference techniques that rely on

packet inter-arrival times and volume over time.

3) Traffic injection adds dummy packets in patterns that look similar (e.g., have the same

lengths, inter-arrival times or volume signature etc.) as the real events, thus hiding the

real event traffic in a crowd of fake events.

The above approaches can be implemented in different ways and can also be combined

(e.g., on the same VPN). Since our signatures rely on unique sequences of individual packet

lengths, packet padding is the most natural defense and therefore discussed in depth below.

We provide a brief overview of packet padding in the literature in Chapter 5.

In the next sections, we discuss packet padding more thoroughly. We first discuss how packet

padding may be implemented to obfuscate packet-level signatures. Then, we evaluate the

efficacy of packet padding for the TP-Link plug. Finally, we discuss traffic shaping and traffic

injection in Section 2.5.5.

2.5.1 Possible Implementations

Next, we discuss the potential benefits and drawbacks of different padding implementations.

We consider a VPN-based implementation, padding at the application layer, and TLS-based

padding.

VPN. One option is to route traffic from the smart home devices and the smartphone

through a VPN that pads outbound tunneled packets with dummy bytes and strips the

padding off of inbound tunneled packets: a technique also considered in [40]. The smart

home end of the VPN may be implemented either directly on each device and smartphone or

on a middlebox, e.g., the home router. The former provides protection against both the WAN

and Wi-Fi sniffers as the padding is preserved on the local wireless link, whereas the latter

only defends against the WAN sniffer. However, an on-device VPN may be impractical on

58

devices with limited software stacks and/or computational resources. The middlebox-based

approach may be used to patch existing devices without changes to their software. Pinheiro

et al. [160] provide an implementation in which the router is the client-side end of the VPN,

and where the padding is added to the Ethernet trailer.

Application Layer and TLS. Another option is to perform the padding at the application

layer. This has at least three benefits: (1) it preserves the padding across all links, thus

provides protection against both the WAN and Wi-Fi sniffers; (2) it imposes no work on

the end user to configure their router to use a VPN; and (3) it can be implemented entirely

in software. An example is HTTPOS by Luo et al. [136], which randomizes the lengths

of HTTP requests (e.g., by adding superfluous data to the HTTP header). One drawback

of application layer padding is that it imposes extra work on the application developer.

This may be addressed by including the padding mechanism in libraries for standardized

protocols (e.g., OkHttp [187]), but a separate implementation is still required for every

proprietary protocol. A better alternative is to add the padding between the network and

application layers. This preserves the benefits of application layer padding highlighted above,

but eliminates the need for the application developer to handle padding. As suggested in [77],

one can use the padding functionality that is already available in TLS [167].

2.5.2 Residual Side-Channel Information

Even after packet padding is applied, there may still be other side-channels, e.g., timing

and packet directions, and/or coarse-grained features such as total volume, total number

of packets, and burstiness, as demonstrated by [77]. Fortunately, timing information (e.g.,

packet inter-arrival times and duration of the entire packet exchange) is highly location

dependent (see the comparison of signature durations in Tables 2.13 and 2.14), as it is

impacted by the propagation delay between the home and the cloud, as well as the queuing

and transmission delays on individual links on this path. Exploiting timing information

59

requires a much more powerful adversary: one that uses data obtained from a location close

to the smart home under attack. The work of Apthorpe et al. on traffic shaping [43] and

stochastic traffic padding (STP) [40] may aid in obfuscating timing, volume, and burstiness.

2.5.3 Efficacy of Packet Padding

The discussion has been qualitative so far. Next, we perform a simple test to empirically

assess the efficacy of packet padding for the TP-Link plug.

Setup. We simulated padding to the MTU by post-processing the TP-Link plug testbed

trace from Section 2.4.2 (50 ON and 50 OFF events, mixed with background traffic) using

a simplified version of PingPong’s detection that only considers the order and directions of

packets, but pays no attention to the packet lengths. We focus on the WAN sniffer because

it is the most powerful adversary: it can separate traffic into individual TCP connections

and eliminate the confusion that arises from multiplexing. We used the TP-Link plug’s

two-packet signatures for ON and OFF events (see Table 2.3) as the Phone-Device commu-

nication is not visible on the WAN. We consider the packet padding’s impact on transmission

and processing delays to be negligible. We assume that the adversary uses all available infor-

mation to filter out irrelevant traffic. Specifically, the adversary uses the timing information

observed during training to only consider request-reply exchanges that comply with the sig-

nature duration.11 Moreover, since the TP-Link plug uses TLSv1.2 (which does not encrypt

the SNI), the adversary can filter the trace to only consider TLS Application Data packets

to the relevant TP-Link host(s) in the no-VPN scenarios.

VPN-Based Padding. To simulate VPN-based packet padding, we consider all packets

in the trace as multiplexed over a single connection and perform signature detection on this

tunnel. This results in a total of 193,338 positives, or, put differently, more than 1,900 false

11t = 0.204s =⇒ d0.204 + 0.1× 0.204se = 0.224s (see Table 2.3 and Section 2.3.2)

60

positives for every event. This demonstrates that VPN-based packet padding works well for

devices with short signatures (e.g., a single packet pair).

TLS-Based Padding. From the training data, the adversary knows that the signature

is present in the TP-Link plug’s communication with events.tplinkra.com. To simulate

TLS-based packet padding, we performed signature detection on the TLS Application Data

packets of each individual TLSv1.2 connection with said host. As expected, this produced

a total of 100 detected events, with no FPs. Intuitively, this is because the only TLS

Application Data packets of these connections are exactly the two signature packets, and

the device only communicates with this domain when an event occurs.

Hybrid. We next explore how multiplexing all of the TP-Link plug’s traffic over a single

connection affects the false positives (the plug communicates with other TP-Link hosts).12

This is conceptually similar to a VPN, but only tunnels application layer protocols and can

be implemented in user space (without TUN/TAP support). To simulate such a setup, we

filtered the trace to only contain IPv4 unicast traffic to/from the TP-Link plug, and dropped

all packets that were not TLS Application Data. We then performed detection on the TLS

Application Data packets, treating them as belonging to a single TLS connection. For this

scenario, we observed 171 positives. While significantly better than TLS-based padding for

individual TLS connections, the attacker still has a high probability (more than 50%) of

guessing the occurrence of each event (but cannot distinguish ON from OFF).

12We envision that this could be implemented by maintaining a single TLS connection between the device
and a single TP-Link endpoint, T , that would then carry all application layer messages, each prepended
with an additional header that identifies the type and order of that particular request/response, and padded
to MTU using TLS record padding. For each request, T would interpret its type based on the application
layer header, and forward it to an appropriate backing server responsible for that part of the application
logic (i.e., T is analogous to a load balancer).

61

2.5.4 Recommendations for Padding

Based on the above insights, we recommend VPN-based packet padding due to its additional

obfuscation (encryption of the Internet endpoint and multiplexing of IoT traffic with other

traffic) as TLS-based padding seems insufficient for devices with simple signatures and little

background traffic. For more chatty devices, multiplexing all device traffic over a single TLS

connection to a single server may provide sufficient obfuscation at little overhead.

2.5.5 Traffic Shaping and Injection

Stochastic traffic padding (STP)13 is a state-of-the-art defense for passive inference attack

on smart home devices [40].14 STP shapes real network traffic generated by IoT events and

injects fake event traffic randomly into upload and download traffic to imitate volume-based

signatures. We contacted the authors of [40], but they did not share their STP implementa-

tion. Therefore, we simulated the VPN-based STP implementation, and performed a simple

but conservative test. We used OpenVPN to replay packets from our pre-recorded smart

home device events. Alongside 100 real events, we injected 100 dummy STP events of the

same type distributed evenly and randomly throughout the experiment. Our experiments

with OpenVPN reveal that it consistently adds a header of 52 bytes for client-to-server pack-

ets and 49 bytes for server-to-client packets: thus our signatures remain intact. However,

all traffic is now combined into one flow between two endpoints, and this could potentially

increase the FPs.

In our STP experiments, PingPong performs well and STP has very little effect on our sig-

natures: it does not generate many FPs: the average recall remains around 97% and the

13It is worth clarifying that despite its name, STP does not perform packet padding. It performs traffic
shaping and injection (referred to as “traffic padding” in [40]) of fake traffic that resembles the real IoT
traffic.

14Other examples of traffic injection include [158] that injects fake/spurious HTTP requests to defend
against website fingerprinting.

62

FPR increases to 1.09 per 100 dummy events of the same event type: the FPR increase is

minimal. Tables 2.3, 2.4, 2.5, and 2.6 report additional false positives for 3 devices: Arlo

camera, Nest thermostat, and TP-Link light bulb. Further inspection revealed that these

FPs were caused only by 2-packet signatures, while longer signatures were more resilient.

The small increase occurs for two reasons: (1) the VPN tunnel combines all traffic into one

flow, and (2) the dummy event packets are sometimes coincidentally sent from both end-

points simultaneously, allowing the request and reply packets to be in the same signature

duration window (see Section 2.4.7). Thus, a VPN-based STP implementation is not ef-

fective in defending against our PingPong; this is expected as STP was designed to defend

against volume-based signatures, while our signatures consist of sequences of packet lengths,

which survive both traffic shaping and injection. Furthermore, this defense is currently only

applicable against the WAN sniffer adversary, while the Wi-Fi sniffer is not affected by this

router-based implementations of STP.

63

Chapter 3

Securing Smart Home Edge Computing

In this chapter, we present our findings on smart home platforms vulnerabilities (in the

context of SmartThings), threat model and guarantees. We also present Vigilia, a system

that we developed to harden smart home platforms, and its evaluation.

3.1 Smart Home System Vulnerabilities

The SmartThings platform has the following vulnerabilities [70, 89, 103, 153, 200, 93, 131, 86]:

1) Device Vulnerabilities: Many IoT devices connect directly to the home Internet con-

nection and communicate with the hub via the LAN or the cloud. Many of these devices

either intentionally trust communication from the local area network (e.g., WeMo, LiFX),

use inadequate authentication mechanisms (e.g., a short PIN in the case of D-Link), or

have backdoors (e.g., Blossom sprinkler) that make them vulnerable to attack.

2) Trusted Codebases with Bad Security Records: The SmartThings system executes

device drivers and applications on a Java Virtual Machine (JVM)—recall that Groovy is

a managed language that is running on top of the JVM, and relies on the JVM to provide

safety. Bugs in the JVM could potentially allow applications to subvert the capability

system and access arbitrary devices.

64

3) Excessive Access Granted to Cloud Servers: The SmartThings system executes

most applications and device handlers on their cloud servers and uses the hub to relay

commands to the local devices. The hub punches through the home firewall to give

the SmartThings cloud servers arbitrary access to communicate with any local device.

Note that while compromised firmware updates could conceptually be used to obtain

similar access, the scenarios are fundamentally different because firmware updates are

often signed. Thus, with appropriate key protection mechanisms, they can be made

difficult for attackers to compromise.

4) Excessive Access Granted to Device Handlers or SmartApps: SmartThings

device handlers have the ability to capture all SSDP network traffic to the hub [115],

communicate with arbitrary IP addresses and ports by reconfiguring the device’s network

address, and send arbitrary commands to arbitrary Zigbee devices [86].

When a homeowner purchases a new IoT device, they first make it available to their Smart-

Things hub. SmartThings provides drivers for a wide range of third party devices; users can

also write their own drivers or import third-party driver code. Some popular devices such

as the Nest thermostat can only be integrated into SmartThings via third-party drivers that

are not subject to any code review process.

When a SmartApp is first installed, the user configures it by selecting the devices to be

monitored and controlled. This process grants the SmartApp the capabilities to access those

devices. While the SmartThings capability system appears at first glance to provide strong

security assurances, it can be easily subverted. For example, a SmartApp can conspire with

a device handler to subscribe to all SSDP traffic to the hub, open arbitrary connections to

cloud servers, or obtain arbitrary access to LAN and Zigbee devices.

65

3.2 Vigilia Approach

To overcome the aforementioned vulnerabilities, we propose the Vigilia approach. Our initial

goal was to implement this novel approach in SmartThings. However, SmartThings is closed

source—we could not directly enhance it as we do not have access to its source code. As

a result, we had to develop a new distributed IoT infrastructure that closely follows the

programming and computation model of SmartThings. We demonstrate the viability of our

approach by implementing Vigilia on top of this new system. Our idea is generally applicable

to SmartThings and any other smart home IoT infrastructure that uses similar models.

First, Vigilia restricts network access—Vigilia uses a similar programming model as Smart-

Things but leverages the configuration information that is already available to also restrict

network access. Vigilia makes the network primarily responsible for the security of IoT

devices—Vigilia implements a default deny policy for all IoT devices and smart home appli-

cations. Access is only granted when user has explicitly configured a smart home application

to use a specific device. A key advantage of this approach is that it becomes less critical

that end users keep every IoT device fully patched. At the same time, by leveraging the

configuration information that is already present, Vigilia’s security mechanisms never get in

the way of legitimate computations.

Second, Vigilia provides more fine-grained access control to specific devices. In Vigilia, a

smart home application controls a specific device via a device driver. The interaction between

the smart home application and the device driver occurs through remote method invocation

(RMI). Device features are exposed as API methods in the device’s driver class. This is

implemented as capability-based RMI that only allows a limited set of API methods to be

called depending on the configuration. Thus, this mechanism provides more fine-grained

access control to specific devices on top of the network policy restrictions.

66

3.3 Threat Model and Guarantees

Vigilia protects IoT devices from attacks resulting from overprivileged network access. We

use the following threat model: 1) the IoT devices have vulnerabilities, 2) attackers have full

knowledge of Vigilia, and 3) attackers have access to the home network via a compromised

laptop or device, not physical access.

Our threat model is stronger than those assumed in the existing IoT-defense systems that

we are aware of. Commercial systems [79, 78] typically assume that threats come from the

outside network and the home network is well-guarded. In the research community, systems

such as HomeOS and HanGuard [73, 68] assume that attacks can come from the home

network, but they focus on PC and smartphone apps vulnerabilities. IoTSec [184] mainly

safeguards against arbitrary port accesses. Our comparison (see Section 3.8.2) between

Vigilia, and commercial and research systems demonstrates that the threat model we use

enables stronger protection of IoT devices than these systems.

We do not trust application developers—Vigilia ensures that applications can only perform

network, Zigbee, and file accesses allowed by the user configuration. We do not assume that

application processes are trusted. The attacker may tamper with the source/binary code

of the IoT program or the language runtime such as the JVM, e.g., exposing device driver

objects to applications that are not supposed to access those devices. In such cases, the

unspecified communications will be blocked by the Wi-Fi router or the Zigbee gateway—we

trust the integrity of the Vigilia Wi-Fi router and the Zigbee gateway. We do not trust

the wireless stack of any smart home device. This includes not trusting devices to use the

assigned MAC or IP addresses.

We assume a partial trust of the OSs (i.e., TOMOYO Linux [189]) running on Raspberry

Pi nodes. Defending against attacks on the OS is out of scope. Note that even if the OS is

67

Raspbian

Vigilia Application

Router

Sprinkler
(IoT Device)

MoistureSensor1
(DeviceDriver)

Raspbian

Sprinkler1
(DeviceDriver)

MoistureSensor2
(DeviceDriver)

Irrigation

Controller

ZigBee

Gateway

MoistureSensor1
(ZigbeeDevice)

MoistureSensor2
(ZigbeeDevice)

Raspberry Pi

Raspberry Pi

JVM/Binary

JVM/Binary

LEDE/

OpenWrt

JVM/Binary

JVM/Binary

Figure 3.1: A closer examination of an irrigation system.

compromised, the attacker can only obtain the permissions of other Vigilia components on

the same device as the router enforces inter-device permissions.

Vigilia provides the following guarantees : (1) all communications that are not explicitly

configured by the user with a Vigilia component or IoT device are blocked; (2) a Vigilia

component is only allowed to perform actions permitted by the capabilities it is granted; (3)

smart home applications developed by honest developers will never be blocked by Vigilia’s

checks.

3.4 Example

Figure 3.1 presents a block diagram of an example smart irrigation system that connects

a set of IoT devices, Raspberry Pis, Zigbee gateways, and Zigbee devices with a router.

An IoT device is a smart home device connected to the Wi-Fi network such as a sprinkler.

Similar to the SmartThings system, each device has a device driver that interfaces between

68

the device and smart home applications. The device driver runs on a Raspberry Pi running

Raspbian. Similar to SmartThings, we expect that device drivers will be written either by

the device manufacturer, Vigilia developers, or third-party hobbyists. For standard classes

of devices, we expect that the Vigilia developers would define standardized APIs to support

compatibility much like SmartThings ecosystem. For each smart home application, there

is an application that interacts with the drivers of the involved devices to achieve certain

smart home functionalities. In our example, the application talks to a set of moisture sensors

(discussed shortly) to measure soil moisture, which will be used to adjust the irrigation

schedule for the sprinkler. The application thus needs to communicate with the drivers of

the sprinkler and the moisture sensors.

One significant difference between SmartThings and Vigilia is that SmartThings components

(e.g., apps and device handlers) typically run on the SmartThings cloud, whereas Vigilia

runs its components entirely on local compute nodes. This has significant advantages in

that Vigilia applications can operate even if Internet connectivity is lost. The application

also runs on a Raspberry Pi, which may or may not be the same one that hosts the drivers. A

smart home system often has multiple applications and thus multiple applications may exist

simultaneously. The drivers and the application may be developed by different developers

and/or in different languages. For example, if they are written in Java, they are executed

by JVMs; if they are C++ programs, their binary code is directly executed. In this paper,

we refer to device drivers or applications as components.

Zigbee is a standard communication protocol that connects devices with small, low-power

radios. A smart home system may also contain Zigbee devices that connect to the home

Wi-Fi through a Zigbee gateway. In this case, the Zigbee gateway has an IP address from

the LAN while the Zigbee devices do not support TCP/IP and only have Zigbee addresses.

Hence, device drivers must communicate with Zigbee devices via requests made to the Zigbee

gateway.

69

Compiler &

Type Checker

Installer
Device

Database

Program Code

Bytecode / Binary

Routing

Policies

Camera Sprinkler
Compute

Node

Runtime System

… …

Router

Figure 3.2: Vigilia system architecture.

3.5 Architecture and Programming Model

Figure 3.2 depicts Vigilia’s architecture. Vigilia implements key components of the Smart-

Things programming model and system architecture to ensure that our techniques are ap-

plicable to real smart home systems.

Applications are compiled using the Vigilia tool chain. The tool chain checks that applica-

tions will never violate the declared permissions at runtime. Applications are then deployed

using the Vigilia installer. The deployment process involves the end user specifying how the

application should be configured for the given house. For example, this process might spec-

ify which switches and light bulbs an application has access to, and which switches should

control which light bulbs. The Vigilia installer then computes a set of permissions that is

required for the given installation. Finally, the Vigilia runtime enforces these permissions.

To enable applications to fully realizing the potential benefits of smart home systems, sys-

tems like SmartThings implement and expose rich APIs—potentially increasing their attack

surface. Complex interactions among different devices requires a programming framework

70

that makes it easy for components to interact when desired while at the same time block-

ing undesired interactions. Like SmartThings, Vigilia users implicitly grant permissions to

a smart home application when they configure the application to implement the desired

functionality. The permissions required are partly determined by the application’s intended

function—thus, some information about the nature of the permissions required by smart

home applications must be specified by the developer. However, the developer does not

know the specifics of a given deployment. For example, the developer would typically not

know how many light bulbs or cameras an end user has installed (or what rooms these devices

are installed in). Instead, developers only have a high-level view of which type of device the

application needs and the required relationships between devices (e.g., that they are in the

same room).

Like SmartThings, Vigilia employs an object-oriented component model. Each device driver

or smart home application has a corresponding class. Vigilia classes can declare sets and

relations. These sets and relations are declared as data fields in these classes. Sets represent

abstract communication permissions. In the SmartThings programming model, the same

information is specified using the preferences keyword. Vigilia extends the SmartThings

programming model by using RMI to both isolate components and to support distributed ap-

plications. Communication with devices or other smart home applications are implemented

using remote method invocation or RMI. As IoT systems may contain components written

in different languages, Vigilia provides cross-language support for RMI. Vigilia contains a

RMI compiler that parses policy files defining the capabilities of a component to generate

code that implements the RMI stubs and skeletons.

Irrigation Application Code. To better explain the programming model, we show a code

example for a smart irrigation application. Figure 3.3 presents Java code for the example.

In this example, the application communicates with a set of sprinklers to water the lawn

and a set of moisture sensors to monitor soil moisture. The IrrigationController class

71

1 public class IrrigationController extends

2 Application implements Irrigation {

3 @config Set <Sprinkler > sprinklers;

4 @config Set <MoistureSensor >

5 moisturesensors;

6 @config Relation <MoistureSensor ,

7 Sprinkler > sensortosprinklers;

8 @config Set <Gateway > phone;

9 @config Set <Address > weatherforecast;

10 // Interface method containing initialization logic

11 public void init() {

12 ...

13 }

14 //Other computation methods

15 private void turnOn () {

16 ...

17 }

18 }

Figure 3.3: Example application code in Java.

implements the smart irrigation application. The irrigation application uses information

from several moisture sensors to adjust watering schedules and thus must communicate with

the moisture sensors. Each application class extends the Vigilia Application class and

implements the init method. This method will be invoked by the Vigilia runtime during

application startup.

Abstract Permissions. In general, developers only know which types of devices an ap-

plication needs to communicate with; the exact device instances in each class are specified

during the site-specific installation process. Vigilia provides the developer with an abstract

permission model to specify the permissions required by a given application. These abstract

permissions are specified in terms of members of sets (similar to SmartThings preferences).

The Vigilia installer (like the SmartThings installer) then instantiates these permissions by

specifying the exact members of the sets.

For example in Line 4 of Figure 3.3, a developer specifies an abstract permission that allows

communication between the application and the generic type of moisture sensor by declaring

72

@config Set<MoistureSensor> moisturesensors in the IrrigationControl- ler appli-

cation class. This declares that the application has the abstract permission that allows it

to talk to moisture sensors at runtime. The Vigilia programming model uses annotations

either in the code (Java) or in a separate file (C++) to allow the developer to express this

information.

In the above example, the developer does not need to worry about how to create the set ob-

ject and the contained MoistureSensor objects in the program as these objects are created

by the runtime system. For example, if the end user configures two moisture sensors for the

application, then the Vigilia runtime would create two MoistureSensor objects and insert

both objects into the moisturesensors set. When the program is executed, the Vigilia

runtime system initializes this set with references to the appropriate sensor objects. Vigilia

components such as applications and device drivers run in separate processes (i.e., JVM/bi-

nary). Since communication between components is implemented via RMI, a reference from

the moisturesensors set can be used to directly communicate with the sensor. Components

in Vigilia can only communicate with other components that are specified by this set-based

model.

Application Installation. During the installation process, the end user configures the

application for their home. This configuration process is not unique to Vigilia, most smart

home systems include a similar process in which the end user must specify which devices

should be controlled and how they should be. Moreover, the Vigilia installation process

for an application is similar to SmartThings. The Vigilia installer asks the end user to

configure the concrete device instances to be used by an application. For example, a sprinkler

controller may ask which moisture sensors should be used to monitor soil moisture. The

end user specifies which specific moisture sensors the application should use by defining the

devices that comprise the set of moisture sensors. Finally, the Vigilia installer uses abstract

permissions and user configuration to generate concrete permissions. Abstract permissions

73

1 class SpruceSensor : public Device ,

2 public MoistureSensor {

3 private:

4 Set <ZigbeeAddress*> sprucesensor;

5 Set <DeviceAddress*> zigbeegateway;

6 double moisture;

7 double temp;

8 public:

9 void init();

10 double getMoisture ();

11 double getTemperature ();

12 }

Figure 3.4: Example device driver header in C++.

are generic for the application, while concrete permissions are specific to installations and

grant access to physical devices.

Vigilia extends the set-based model with relations, specifying relations between devices and

communicating configuration information. For our irrigation example, the application must

know which sprinklers are located near which moisture sensors. During installation, the

user provides this information in relations as it is specific to their installation. Line 6 of

Figure 3.3 declares the sensortosprinklers relation that maps moisture sensors to the

nearby sprinklers. Similar to sets, relation objects are also constructed by the runtime

system.

Communication. Line 8 of Figure 3.3 declares a set of gateways for smartphones. Devices

like tablets/smartphones/laptops can be used to provide a user interface, through which users

can input application parameters. Finally, Line 9 declares a set of addresses of cloud-based

servers that provide weather forecast information. Vigilia uses an oblivious cloud-based key-

value store to provide secure storage and communication even in the presence of malicious

cloud servers.

Device Drivers. Figure 3.4 presents a device driver class declaration in C++ for the mois-

ture sensor used by our irrigation example. Our irrigation example uses a Spruce moisture

74

sensor [185], which is a Zigbee-based wireless sensor. To communicate with the sensor, the

device driver must send packets to the sensor via a Zigbee gateway. Thus the driver needs

two addresses: (1) the IP address for the Zigbee gateway and (2) the Zigbee network address

for the Spruce sensor.

Device drivers use the same set-based mechanism to obtain direct access to network-based de-

vices. The installation process stores the system configuration parameterized by the devices’

MAC addresses, and the Vigilia runtime maps the MAC addresses to the corresponding IP

addresses. Network access is only permitted via runtime provided IP address/port pairs, and

thus the Vigilia runtime knows which devices a driver may communicate with. The Vigilia

runtime uses this information to configure the routing policies. Device drivers may declare

a set of public methods such as getMoisture for the application to get/set information

from/to the device.

3.6 Vigilia Security Mechanisms

We next discuss the security mechanisms Vigilia implements for the programming model.

Checking. One challenge is how to statically eliminate permission bugs, in which an ap-

plication accidentally exceeds its declared permissions and thus fails at runtime when the

Vigilia runtime enforcement framework blocks the illegal access. The Vigilia static checking

framework is designed to help honest developers ensure that their applications never fail at

runtime because of Vigilia’s runtime enforcement framework. It is important to note that

Vigilia does not rely on the static checks for security—applications that attempt to violate

their permissions will be blocked by runtime checks. The static checker needs to notify the

developer of any network accesses that are doomed to be blocked by runtime checks. For

example, an application could potentially violate its permissions if it were to obtain a refer-

ence to a device object from some other component and then attempt to use that reference

75

to access the underlying device. Such an access would fail at runtime and potentially cause

the application to crash.

Vigilia supports both Java and C++. One goal of Vigilia is to make it easy to support new

languages and thus we minimize the dependence on specialized compiler passes for static

checking. To the degree possible Vigilia uses the existing language type system to check

for permission violations. Vigilia implements these checks via the Vigilia RMI compiler.

The Vigilia RMI compiler uses the declared types to ensure that the existing language type

system will catch any accidental sharing of references to device objects by an application.

SmartThings applications have full Internet access. A malicious app can easily leak private

information. Internet access may also provide a conduit to attack benign applications. On

the other hand, some functionality requires Internet access to implement. Thus, Vigilia

supports managed access to TCP/IP sockets. This ensures that Vigilia is aware of any

potential TCP/IP accesses. If a program were to attempt other accesses, they would be

blocked by the Vigilia enforcement framework. The Java implementation of Vigilia’s checker

uses a type checker to ensure that Java Vigilia applications do not attempt to directly use

raw TCP/IP sockets for communication. The C++ implementation does not implement

this particular check—note that this does not impact security, but developers could attempt

direct network accesses that would be blocked at runtime.

Vigilia Installer. The Vigilia installer manages the installation of new devices and smart

home applications. A major issue with the SmartThings system is that it trusts that devices

on the home network are not malicious. Under SmartThings, a single malicious device

on the home network has full network access to all other devices. Vigilia fully isolates

each IoT device from every other device on the network, permitting communication only

when applications are explicitly configured to use a device during the installation process.

When a new device is installed, Vigilia must update its database to include a record of the

device’s MAC address and type. To prevent MAC address spoofing or sniffing attacks from

76

circumventing Vigilia’s access control, Vigilia assigns a unique pre-shared key (PSK) to each

device. The Vigilia router ties each unique PSK to a specific device MAC address. Note

that while some Android and iOS devices implement MAC randomization, it is used only

when probing for wireless networks. Thus, our approach is compatible with modern smart

phones. Finally, the installer maps the device to a specific driver.

The Vigilia installer also manages the addition of new smart home applications. Installing

a new smart home application requires specifying the device instances that the smart home

application can control. For each type of abstract permission the smart home application

has requested, the Vigilia installer presents the list of devices that could provide those

capabilities. The user then selects the subset of devices she wishes the application to use.

For relations, the user specifies the pairs that comprise the relation (e.g., that a moisture

sensor is close to a given sprinkler head).

Enforcement. Vigilia implements its security model by combining a range of known tech-

niques. It begins with a modified wireless router based on LEDE—now merged with Open-

Wrt [155]. Many commercially available routers are built using a similar core code base, so

it should be relatively straightforward to modify existing routers to implement the necessary

functionality. The Vigilia router allows wireless devices on the same wireless network to have

different PSKs. This allows the router to prevent both MAC spoofing and sniffing attacks:

Vigilia can trust the MAC address of a device and that the wireless communications between

the router and other devices are secure. Vigilia then uses firewall rules to prevent IP spoofing

so that it can trust IP addresses.

Compute nodes can run more than one computation and these computations may have dif-

ferent permissions. Vigilia assigns different ports to different computations on the same node

so that other devices can identify a communication’s source. Vigilia sandboxes client code

using TOMOYO Linux to ensure that client processes cannot fake port numbers. TOMOYO

Linux also ensures that processes do not access the files of other processes.

77

Vigilia implements concrete permission checks by translating each access permission into a

corresponding firewall rule. Vigilia’s default policy is to block communications—e.g., unused

smart home devices are not allowed to communicate with anything.

So far we have only discussed restricting network accesses. However, devices may have

many features (e.g., read temperature and set temperature), and it is important to restrict

accesses to only the necessary features. To support restrictive feature access, Vigilia employs

a capability-based RMI —device features are often exposed as API methods in the device’s

driver class and thus accessing device features is often done through remote invocations on

the corresponding methods. A capability in Vigilia is a device feature that consists of a set

of methods from its corresponding class. A component can declare multiple capabilities and

the capabilities can contain overlapping methods.

Components declare the capabilities they require from other components. The RMI compiler

uses these policy files to generate stubs and skeletons that only provide access to the declared

capabilities. Although Vigilia’s security guarantees for capabilities are enforced dynamically,

this code generation strategy enables the existing C++ or Java compiler to statically check

that a component does not exceed its declared capabilities. This ensures that a well-behaved

component will never fail a runtime security check.

Figure 3.5 shows an interaction between a Camera object and the stubs generated from the

original Camera interface. The Camera interface has two capabilities, namely ImageCapture

and ShutterSpeed. Each of these capabilities has two methods and three stubs (ShutterSpeed-

Stub, ImageCaptureStub, and UniversalStub) are generated based on each combination of

the capabilities. The skeleton supports all the methods. Vigilia’s capability-based model is

complementary to firewall rules—while firewall rules restrict communications between com-

ponents, the capability-based model restricts method invocations by component.

78

Camera

setImage()

setShutter()

getSpeed()

Method

arguments

Return

value
M

e
th

o
d

a
rg

u
m

e
n

ts R
e
tu

rn

v
a
lu

e

Capabilities Method

ImageCapture setImage()

setShutter()

ShutterSpeed getSpeed()

setShutter()

ShutterSpeed

Stub

getSpeed()

setShutter()

UniversalStub

setImage()

setShutter()

getSpeed()

ImageCapture

Stub

setImage()

setShutter()

Skeleton
Method

arguments

Return

value

Figure 3.5: Capability-based RMI example.

This means the problem of restricting feature accesses can be reduced to restricting remote

method invocations. Vigilia enforces capabilities by using request filters in its RMI request

server—these filters are automatically configured by Vigilia, and use the source port and IP

address to determine whether a given request is allowed.

Figure 3.6 shows the relationship between the programming model, Vigilia’s configuration

database, and the firewall rules. The developer specifies that the Spruce sensor driver com-

municates with the Spruce sensor. Since the driver runs on a Raspberry Pi while the Spruce

sensor is a Zigbee device that needs to communicate via a Zigbee gateway, the developer

adds a second set that enables the driver to obtain a reference to appropriate the Zigbee

gateway. These two abstract permissions have two separate effects. They mean that the code

can only communicate with the Zigbee gateway specified by the DeviceAddress object and

can only communicate with the ZigbeeAddress for the Spruce sensor. These abstract per-

missions will be concretized into concrete permissions at installation, which, together with

the network configuration in the device database (Figure 3.6(b)), will be used by Vigilia to

79

ZigBee

Gateway

RouterCompute Node

(a) Sets in Vigilia Code

(b) Database Table

(c) Firewall Rules

public class SpruceSensor ...{

// a driver class

Set<ZigBeeAddress> sprucesensor;

Set<DeviceAddress> zigbeegateway;

...

ZigbeeAddress

SpruceSensor

SpruceSensor (driver) <--> ZigbeeGateway

c0:4a:00:10:9c:b3 (MAC) | 5005 (Port) | UDP

ZigbeeGateway <--> SpruceSensor (device)

000d6f0003ebf2ee (Zigbee address)

Spruce

Sensor

DeviceAddress

ZigbeeGateway

ZigbeeGateway

c0:4a:00:10:9c:b3 5005 udp

SpruceSensor

000d6f0003ebf2ee

SpruceSensor

Device

000d6f0003ebf2ee
c0:4a:00:10:9c:b3

IP packet

Some

Device

Figure 3.6: Vigilia program (i.e., irrigation system) (a), device database (b), and instantiated
firewall rules (c).

generate the firewall rules for the router (Figure 3.6(c)). As a result, the router will block

any communication inconsistent with these permissions.

3.7 Vigilia Runtime System

The Vigilia runtime system is a distributed system with a master and several slaves.

Startup. The master manages the application startup process. The master generates a

deployment plan for an application, configures the appropriate firewall rules for both the

router and every compute node, and then sends requests to slave processes to start up the

components. Each component is started inside of a sandbox that constrains the component

to the specified ports.

Wireless Network Filtering. In the default configuration, a standard firewall will not

filter traffic between devices on the same wireless network as the traffic never passes through

80

the firewall. Access points typically offer two modes of operation: the standard mode, which

forwards all traffic between clients, and the client isolation mode, which blocks all traffic

between clients. However, the Linux kernel firewall can be configured to filter these packets.

This is implemented by: (1) enabling access point isolation, (2) turning on bridge hairpin

mode (also called ‘reflective relay’) for the wireless LAN interface to force the traffic through

the kernel firewall, and (3) then using iptables to filter the traffic.

Vigilia modifies the Wi-Fi stack to secure it against network-level attacks such as snoop-

ing, ARP-spoofing, and MAC-spoofing that would otherwise subvert Vigilia. Most IoT

devices only support the pre-shared key (PSK) mode of WPA/WPA2 and do not support

WPA/WPA2 Enterprise mode. This introduces a potential attack—even though each device

eventually negotiates its own key, in the pre-shared key mode all devices on the same network

know the same initial shared key. Any device that knows the pre-shared key and monitors

the key negotiation can extract the private key.

Surprisingly, it turns out that it is possible to assign a unique PSK to each MAC address

without breaking the WPA/WPA2 protocol. This prevents devices from computing the

private keys of other devices, ensuring that malicious devices cannot masquerade as the

router. This approach also effectively locks a physical device to a specific MAC address—

malicious devices cannot spoof the MAC addresses of other devices as they do not know the

MAC-specific PSK. The Vigilia router also enforces that MAC addresses are locked to the

specific assigned IP address—any spoofed traffic is dropped.

Vigilia uses an Android app to configure new devices on the network. The app generates a

new PSK and sends the PSK to the router using ssh. The router then changes the default

password for the network to this PSK to allow the new device to join the network. It then

detects the MAC address of the new device, adds the MAC address-PSK pair to its database,

and reverts to the default PSK.

81

The shared group key, which is used for broadcasting messages, can also be misused by

attackers. Vigilia addresses this issue by assigning a unique randomized group key to each

device (the router then unicasts group packets) and combining this with proxy ARP [161].

Please note that while these options are present in the hostapd source code, they do not

work properly and required us to fix them.

Application Sandboxing. Vigilia can run multiple applications on the same host. This

brings the possibility that a malicious application can masquerade as another application on

the same host by stealing the other application’s port. Alternatively, a malicious application

might try to access or modify files that are owned by another application. To prevent

these attacks, Vigilia sandboxes applications using TOMOYO Linux [189]—components are

restricted to their own ports and files.

Zigbee Support. An issue with SmartThings is that any driver that obtains the Zigbee

address of any Zigbee device can send commands to it [86]. The problem is that device drivers

explicitly build low-level Zigbee packets. These packets include the destination address for

the commands and the address where responses should be sent. Thus, SmartThings trusts

that device drivers are not malicious. Malicious device drivers can easily communicate with

any Zigbee device whose address they have.

Vigilia guarantees that device drivers cannot interact with the wrong Zigbee devices. Vigilia’s

Zigbee support consists of four components: (1) language support for communicating Zigbee

addresses to device drivers, (2) language support to ensure that honest device drivers do

not manually produce Zigbee address objects, (3) a Zigbee abstraction that separates the

specification of addresses from device commands, and (4) a Zigbee firewall that verifies that

the given device driver has permission to communicate with the specific Zigbee device.

At the language level, Vigilia uses the same basic set-based abstraction that it uses for both

RMI and IP addresses to check for permission bugs in Zigbee accesses. It then enforces these

82

properties using runtime permission checks in the Zigbee gateway. The Zigbee gateway

checks are configured automatically by the Vigilia master to implement the permissions

granted by the end user. These checks use the source port and IP address to verify that

a given Zigbee device driver has been granted permission to communicate with the specific

Zigbee device address—this is a Zigbee firewall mechanism that is parallel to the firewall on

the router.

Some Zigbee requests can leak information about other devices or configure a Zigbee device

to interact with other devices. Thus the Zigbee gateway limits the types of messages a

device driver can send to prevent the device driver from directly performing commands such

as device discovery. The Zigbee gateway also filters incoming messages to ensure that device

drivers only receive messages about the relevant device.

Incoming messages are often reports that are generated by a network node. For a node to

receive information from another network node it must tell that node to send reports using

a ZDO bind command. The Zigbee gateway remembers which driver performed a ZDO bind

command, and to which node and cluster. When a report arrives from a Zigbee node, the

gateway consults a table to determine which driver should receive it.

3.8 Evaluation

We deployed Vigilia on a test bed that consists of the following devices: 2 Raspberry Pi

2 compute nodes, a Google Nexus 5X smartphone, a Netgear Nighthawk R7800 wireless

router, 2 LIFX Color 1000 bulbs, 4 Amcrest IP2M-841 ProHD 1080P cameras, a XBee S2C

Zigbee module attached to a Raspberry Pi 1 (Zigbee gateway), a Spruce soil moisture Zigbee

sensor, a Blossom sprinkler controller, 2 iHome iWS2 AirPlay speakers, a D-Link DCH-S220

siren, 3 Samsung SmartThings Zigbee sensors (motion, water-leak, and multi-purpose), and a

Kwikset SmartCode 910 Zigbee lock. Table 3.1 presents the lines of code for our applications.

83

Figure 3.7: Vigilia hardware setup.

Our test bed is built in a smart home lab environment. Figure 3.7 shows the hardware setup

in the lab.

3.8.1 Applications

We implemented four applications on our test bed. Table 3.2 presents the summary of these

applications.

Irrigation. The irrigation application optimizes watering to conserve water. It uses the

Spruce moisture sensor to measure soil moisture. The system makes use of weather forecasts

to determine the expected precipitation. When people walk on a lawn, they stress the lawn

and thus it requires more water [19, 99]. It uses cameras to monitor lawn usage and thus

whether it requires extra water. The Spruce moisture sensor uses Zigbee to communicate;

we have implemented a driver for this sensor that uses the sensor to monitor soil moisture.

84

Table 3.1: Lines of code in Vigilia applications.

Application Application Driver Library Android
LOC LOC LOC LOC

Irrigation 4,075 2,975 401,843 208
Lights 1,683 3,456 401,843 N/A
Music 1,237 2,434 25,254 641
Home Security 2,299 4,177 401,843 187

Table 3.2: Summary of Vigilia applications.

Application Smart Home Security Properties
Devices

Irrigation 1 Spruce soil moisture
sensor
1 Blossom sprinkler
controller
1 Amcrest camera
1 Google smartphone

This benchmark uses the device drivers for camera, Spruce
moisture sensor, and sprinkler controller. It also includes a
Zigbee gateway that relays messages to the Spruce sensor.
Vigilia generates firewall rules that only allow the following
communication: (1) the application can communicate with
the drivers, phone, and the weather forecast website and (2)
each device driver can communicate with its respective de-
vice. Each communication channel is isolated from the others
and from all outside devices by (1) the compute node firewall
and (2) the router firewall. The runtime system sends filter-
ing rules also to the Zigbee gateway, ensuring that the Spruce
driver can only communicate with the Spruce sensor.

Lights 2 LIFX light bulbs
2 Amcrest cameras

This benchmark uses the device drivers for camera and light
bulb. Vigilia generates firewall rules that only allow the fol-
lowing communication: (1) the application can communicate
with the device drivers and (2) each device driver can commu-
nicate with its respective device (i.e., light bulb or camera).
Each communication channel is isolated in a way similar to
Irrigation.

Music 2 iHome speakers
1 Google smartphone

This benchmark uses a phone app and two speaker drivers.
Vigilia generates firewall rules that only allow the following
communication: (1) the main music application can commu-
nicate with the speaker drivers and the phone app, and (2)
each of the device drivers can communicate with its respec-
tive speaker. Each communication channel is isolated in a
similar manner.

Home Security 3 Samsung Smart-
Things sensors
1 Kwikset door lock
1 Amcrest camera
1 D-Link siren
1 Google smartphone

This benchmark uses the device drivers for camera, siren,
door lock, and SmartThings sensors. Vigilia generates fire-
wall rules that only allow the following communication: (1)
the main home security application can communicate with it
device drivers and the cloud, and (2) each device driver can
communicate with its respective device. Each communication
channel is isolated in a similar manner.

85

Table 3.3: Attacks performed on devices.

No. Attack Application Detail
1. Sprinkler attack Irrigation A rogue program that controls the sprinkler (i.e., turn on

valves, reconfigure wireless connectivity, and update the
firmware based on a non-documented, non-secured RESTful
API to port 80 [48]).

2. Light bulb attack Lights A rogue program that issues commands to turn the light on
and off (port 56700).

3. Speaker attack Music A rogue program that sends and plays music file on the
speaker (port 80).

4. Camera attack Home Security A HTTP URL is used to view the main/sub stream via a web
browser (port 80).

5. Siren attack Home Security A rogue program that launches a brute-force attack to guess
the PIN code of the siren; an attacker can use this PIN code
to perform a valid authentication (port 80).

6. Deauth. attacks All A jammer is used to deauthenticate a specific device (i.e.,
sprinkler, light bulb, speaker, camera, or siren) from its orig-
inal access point (AP) to let it join a malicious AP with the
same SSID and PSK as the ones used for the actual AP.
Thereafter, the device is attacked using the attack for the
specific device (i.e., attack 1, 2, 3, 4, or 5).

An Amcrest camera monitors the usage of the lawn to adjust the soil moisture target. An

Android app provides the user interface. Finally, a Blossom sprinkler controller actuates the

sprinklers.

Lights. The light application attempts to save energy by turning lights off in unoccupied

spaces, and to improve sleep by adjusting brightness and color temperature to match the

sun’s color [105, 98, 62]. The application uses cameras combined with image processing to

detect people. We use two Amcrest cameras to monitor rooms and control the two LiFX

light bulbs.

Music. The music application tracks people using Wi-Fi-based indoor localization of their

cell phone and plays music from the closest speakers. An Android phone is used to implement

localization and play music through two iHome speakers.

86

Home Security. The home security application is modeled after commercial home security

products. Such applications usually consist of multiple sensors that can detect intrusion-

s/anomalies and sound an alarm. Our test bed uses an Amcrest camera, three Samsung

SmartThings sensors (i.e., motion, water-leak, and multi-purpose sensors), a Kwikset door

lock, and a D-Link siren as the alarm. Sensor and door lock drivers communicate with

the three sensors and the door lock through the Zigbee gateway. Finally, an Android app

implements a UI through the secure cloud (see Section 3.5).

3.8.2 Comparisons

We next compare Vigilia with existing commercial (Norton Core [79] and Bitdefender BOX

2 [78]) and research systems (HanGuard [68] and IoTSec [184]).

Attacks. We designed a set of direct attacks, under our threat model (Section 3.3), against

our smart home devices. The sprinkler, speaker, camera, and siren communicate through

port 80 using the HTTP protocol. The speaker also uses other ports as it communicates

using the AirPlay protocol [110]. The sprinkler particularly has a known vulnerability that

can be exploited through a non-documented and non-secured RESTful API [48].

The light bulb communicates through port 56700, through which all LiFX bulbs listen [128].

The deauthentication attack is a more sophisticated attack that we use in combination with

the first five attacks that directly target the devices. This attack deauthenticates a device,

and makes it leave its router to join a malicious router that has the same SSID and PSK.

When the device joins the other router, we can forcefully launch a direct attack to the device.

Table 3.3 summarizes all of them.

For every system that we evaluated, we connected the smart home devices to the system and

we performed the direct attacks. When a direct attack failed, we performed a combination

attack. We first deauthenticated the device, let it join the malicious router that we have

87

Table 3.4: Vigilia comparison with other systems.

Attack Normal IoTSec Vigilia
Sprinkler cont. attack X X ×
Light bulb attack X X ×
Speaker attack X × ×
Camera attack X X ×
Siren attack X × ×
Deauthentication + sprinkler cont. attack N/A N/A ×
Deauthentication + light bulb attack N/A N/A ×
Deauthentication + speaker attack N/A X ×
Deauthentication + camera attack N/A N/A ×
Deauthentication + siren attack N/A X ×

X= successful attack × = thwarted attack

prepared, and performed the direct attack. Table 3.4 summarizes the results. We also

performed the attacks on a normal router to establish a baseline. The normal router does

not have any of the security properties that the Vigilia router has.

SmartThings. We implemented several previously known attacks against the SmartThings

hub. In our first attack, we modified a device handler to subscribe to all LAN traffic. When

we installed this device handler, there was no notification that it might access all SSDP

network communications. We then ran the handler and could observe all SSDP packets in

the network traffic that goes through the hub.

We next modified the service manager component of the WeMo Switch driver to change the

IP address and port of a device after installation. This allowed us to control arbitrary devices

on the LAN. Since third party drivers are commonly used to control smart home devices

under SmartThings (e.g., the only driver for Google Nest is a third party driver written by

a hobbyist), this is a significant threat. This hack can be used to communicate with any

device on the LAN.

We then implemented the same type of attack on Zigbee drivers and have discovered that

Zigbee drivers can contact arbitrary Zigbee devices and send arbitrary Zigbee commands [86].

88

None of these attacks are possible under Vigilia. Vigilia blocks all network traffic by default

and thus components can only access network traffic that they have been explicitly configured

to access and that was explicitly intended for the component. Drivers under Vigilia are

subject to the fine-grained access controls for both the TCP/IP and Zigbee networks and

thus can only access the devices they were explicitly configured for. Moreover, our Zigbee

framework prevents issuing commands that would cause a Zigbee device to interfere with

other Zigbee devices.

Finally, as part of our general attacks reported later in this section, we sent commands

directly to smart home devices. SmartThings does not block any such attacks. Vigilia

blocks all such attacks.

Commercial Systems. We selected Norton Core and Bitdefender BOX 2, which are

two leading secure routers that protect smart home IoT devices [79, 145, 78, 146]. They

both use machine learning to learn the normal behavior of smart home devices. Their

system compares device behavior against their database that contains information about

vulnerabilities, attacks, viruses, malicious activities, etc., and warns users when it detects

anomalies.

We first connected our devices to Norton Core and Bitdefender BOX 2. Subsequently, we

performed a number of direct attacks against the smart home devices. All of these attacks

were successful—the two routers were not able to protect the devices. Thus we categorize

these systems under the normal router category in our results.

Further inspection revealed that these systems operate under a different threat model—they

only defend against attacks that come from outside. A device inside the local network is

considered safe and trusted—it is allowed to generate any traffic to any of the other local

devices. Hence, they do not defend against our attacks that come from compromised local

devices, e.g., devices hacked and controlled by people with malicious intents.

89

Research Systems. For research systems, we evaluated HanGuard [68] and IoTSec [184].

To the best of our knowledge, these systems are the closest to Vigilia in terms of the threat

model.

HanGuard uses SDN-like techniques to learn the normal traffic between smartphone apps

and their respective smart home devices. A Monitor app runs on the phone to identify

any attacks and inform the router through the system’s control plane. The router then

enforces policies in the data plane after verifying the party that attempts to access the

device. Unfortunately, we could not obtain the implementation of HanGuard. Thus, we

could not compare HanGuard with Vigilia. However, the paper [68] implies that HanGuard

would leave IoT devices vulnerable to the combination attacks that can be thwarted by

Vigilia.

IoTSec has two phases: profiling and deployment. During profiling, it attempts to learn the

normal traffic of devices, e.g., legitimate source and destination IP addresses, port numbers,

protocols, etc. Then, a set of firewall rules will be generated and can be deployed on the

router. Similarly to Vigilia, IoTSec reduces the attack surface with firewall while trying to

maintain full functionality of devices.

To evaluate IoTSec, we connected our devices to a router running the IoTSec profiler. We

then executed the four Vigilia applications, but turned off Vigilia’s firewall protection. The

IoTSec profiler learned the normal traffic of the four applications and generated a set of

firewall rules for all devices. Finally, we deployed the firewall rules on the router and restarted

the applications subsequently.

A key weakness of IoTSec is that it relies entirely on profiling. For most of our devices,

this approach worked because they always use the same IP address, port numbers, and

protocols. However, the iHome speaker randomly selects a port number and the generated

firewall rules disrupted the speaker’s operation—these rules assume devices always use the

90

same port numbers. In addition, profiling may not exhibit all behaviors of a system. For

example, during profiling, we did not trigger the siren to let it go off—deliberately triggering

the home alarm to enable the home security system is not a normal behavior. The profiler

did not learn the siren’s traffic and thus the generated firewall rules disabled the siren.

We performed direct attacks on the devices. The attacks against the sprinkler, light bulb,

and camera were successful because the generated firewall rules allowed them to communicate

through their respective port numbers. During profiling, IoTSec does not learn the source

IP addresses—it assumes that devices are allowed to communicate through their respective

ports regardless of the source IP addresses. Hence, the firewall rules are not fine-grained

enough to block communications from illegal sources.

The attacks against the speaker and siren failed because the incomplete firewall rules meant

that they did not function at all. We then performed the deauthentication attack to both

devices. After they joined our malicious router, we successfully attacked them.

Vigilia. We performed the same attacks against the devices under Vigilia. We connected

every device using a unique PSK to Vigilia’s router. We ran the four applications simulta-

neously and attacked them.

Under the protection of Vigilia’s firewall and sandboxing mechanisms, all of the applications

and devices were fully functional, and all of the attacks were successfully thwarted. The direct

device attacks were blocked by the deployed firewall rules on the router and the compute

nodes. The deauthentication attack also failed as none of the devices could join the malicious

router. Even though the malicious router was configured with the same SSID and PSK as the

Vigilia router, the devices did not use the router’s default PSK—every device was connected

to the Vigilia router using a unique PSK.

91

Table 3.5: Statistics of access attempts for the public IP experiment; ‘A’ is a placeholder for
128.200.150 and ‘B’ is for calplug.uci.edu; column DS reports the number of distinct
sources; TCP and UDP reports numbers in the form of X/Y where X and Y represent the
numbers of total and distinct addresses, respectively.

IP Domain Total DS TCP UDP ICMP
A.130 iot1.B 2,944 1,411 1,992 / 340 334 / 60 218
A.131 iot2.B 2,791 1,451 2,039 / 343 256 / 84 69
A.132 iot3.B 3,255 1,405 1,947 / 350 203 / 62 693
A.133 iot4.B 2,841 1,364 1,934 / 344 219 / 73 271
A.134 iot5.B 2,769 1,422 2,043 / 349 233 / 62 82
A.135 iot6.B 2,792 1,416 2,024 / 353 281 / 65 69
A.136 iot7.B 3,284 1,443 2,106 / 342 276 / 64 496
A.137 iot8.B 3,006 1,507 2,084 / 316 272 / 88 246
A.138 iot9.B 3,000 1,433 2,028 / 316 353 / 72 231
A.139 iot10.B 2,620 1,370 1,862 / 283 244 / 62 169
A.140 iot11.B 2,692 1,419 1,983 / 316 258 / 69 66
A.141 iot12.B 2,709 1,429 2,018 / 267 262 / 69 93
A.142 iot13.B 3,582 1,397 2,042 / 352 287 / 63 838
A.143 iot14.B 2 2 0 / 0 2 / 2 0
A.144 iot15.B 3 2 0 / 0 3 / 2 0
A.145 iot16.B 6 2 0 / 0 6 / 1 0

Total 38,296

3.8.3 Public IP

To further evaluate Vigilia, we conducted another experiment, in which we assigned public IP

addresses to our devices. While other secure routers generally claim to protect smart home

IoT devices when they are connected to a local network behind Network Address Translation

(NAT), we let our devices be exposed to the open Internet. For this experiment, we assigned

a public IP address for every device, ran the four applications, and let Vigilia set up firewall

rules on the router. We ran this experiment for approximately 10 days.

Table 3.5 summarizes the results of the experiment. The table reports, for a device, the IP

address, its domain name, the total number of access attempts for this device, the number of

distinct sources these attempts came from, the number of total and distinct TCP attempts,

the number of total and distinct UDP attempts, as well as the number of ICMP packets.

The 16 public IP addresses generated 38,296 access attempts—approximately 3,629 access

attempts per day and 240 access attempts per day per device.

92

Table 3.6: Statistics of public IP experiment on cameras; ‘A’ is for 128.200.150; Att, Src,
Pkt represent the number of access attempts, sources, and network packets, respectively;
U/T stands for UDP/TCP.

IP With Vigilia
(Att / Src /
Pkt)

Ports
(U/T)

With pwd only
(Att / Src / Pkt)

Ports
(U/T)

A.134 106 / 96 / 114 6 / 23 5,337 / 117 /
9,658

39 /
48

A.135 111 / 100 / 115 7 / 23 20,172 / 124 /
40,998

47 /
46

A.136 206 / 97 / 208 6 / 22 1,201 / 98 /
2,039

19 /
43

A.137 128 / 109 / 135 7 / 21 4,520 / 119 /
8,889

17 /
51

All the attempts were thwarted by the Vigilia firewall rules set up on the router. No de-

vice responded to any of the sources, except for the ICMP packets. The network trace

suggests that most of the access attempts were either ICMP ping or TCP SYN/ACK port

scanning [208], which are the two approaches attackers commonly use to “test the waters”.

Since our devices only replied to ICMP pings, there were no further packets from more

sophisticated attacks.

Real Attacks on Cameras. We conducted an additional experiment with our Amcrest

cameras and exposed them to real attacks. This experiment was done under three scenarios:

1) cameras were protected under Vigilia, 2) cameras were protected with passwords, and 3)

cameras were unprotected. Each scenario lasted for 14 hours.

Table 3.6 summarizes the results of the experiment for the first two scenarios. In the first

scenario, the first camera with address 128.200.150.134 received 106 access attempts from

96 distinct sources with 114 packets of total traffic under Vigilia’s protection—the attempts

targeted 6 distinct UDP ports and 23 distinct TCP ports, and were all thwarted. In the

second scenario, the same camera received many more access attempts. Although the camera

93

Table 3.7: Vigilia microbenchmark results.

Node-to-Node Overhead Node-to-LAN Overhead
Normal 2.91 MB/s N/A 5.64 MB/s N/A
Hairpin 2.78 MB/s 4.5% 5.62 MB/s 0.3%
Hairpin + Policies 2.75 MB/s 5.5% 5.62 MB/s 0.3%

had not been compromised, it could have been had we extended the duration. This is

especially the case when people use generic/default passwords for their cameras, as shown

in a study on the Mirai botnet attack [36]—there was even a ... Mirai infection on Amcrest

cameras despite strong passwords [92].

In the third scenario, it took just 15 minutes, for all of the four cameras to be hacked and

crippled—the user interface was completely broken although it was still able to stream out

video. Each attack session for each camera just took around 172 - 362 packet exchanges

between each camera and the attacker. The network trace in the log file suggests that the

attackers used a technique called XML-RPC attack [176], which typically brings down web

services by executing remote procedure call (RPC) commands via the HTTP protocol.

3.8.4 Performance Microbenchmarks

Vigilia’s primary enforcement is implemented by firewall rules. The other components are not

on the hot paths and should add minimal overhead. This subsection evaluated the overhead

of Vigilia’s routing policies on network throughput. We measured the network bandwidth

under three different router configurations: normal mode, hairpin mode, and hairpin mode

with policies. We performed each of these measurements under two different setups: (1) a

node-to-node bandwidth measurement using the Apache HTTP server on a Raspberry Pi 2

and (2) a node-to-LAN bandwidth measurement using the Apache HTTP server on an Intel

Core i7-3770 CPU 3.40GHz machine running Ubuntu. We ran wget on another Raspberry

Pi 2 to retrieve a 30 MB file from both the Raspberry Pi 2 and the Ubuntu machine. All

94

equipment was placed in a Faraday cage to limit interference. We report average bandwidth

over 20 runs.

Table 3.7 reports the average bandwidths. Under the node-to-node scenario, hairpin mode

introduces a 4.5% overhead since it forces traffic to exit the driver and go through the

kernel firewall. Under the node-to-LAN scenario, the lower overhead is not surprising as

node-to-LAN traffic already exits the driver before going through the firewall. The firewall

policies introduce almost negligible overhead for both setups. Node-to-node results show

lower bandwidths as communication must take two hops on the same Wi-Fi channel. Overall,

the overheads are relatively small.

95

Chapter 4

Understanding and Detecting Conflicting In-

teractions between Smart Home IoT Applica-

tions

In this chapter, we present our wide scale study on smart home apps to understand the nature

of the interactions between them. We have identified the following five research questions to

guide our study.

RQ1: What kinds of interactions are there? We have collected and studied 198 official

SmartThings apps and 69 third-party apps. Compared with recent studies of smart home

apps [222, 188, 61, 60], we have among the largest app suite. To understand interactions and

possible conflicts, we analyzed these apps in pairs and examined all pairs of apps that can

potentially interact. We discovered three main categories of interactions: (1) interactions

between apps that access the same device, (2) interactions between apps such that the

output from one app interferes with the input of the other app (e.g., via sensors), and (3)

interactions between apps accessing global variables, e.g., whether the home is in the Home

or Away mode.

96

RQ2: What types of conflicts arise between smart home apps? For an app pair,

we first inspected their source code and documentation to understand the intended behavior

of each individual app and then reason about possible interactions between them. If there

exists an interaction that can compromise the desired functionality of either app, we say

that this pair has a conflict, e.g., the functionality of the FireCO2Alarm app to door-lock is

compromised by the Lock-It-When-I-Leave app. Our goal is to carefully inspect apps that

interact, and understand whether they conflict and if they do, why.

RQ3: How prevalent are these conflicts? We summarized the results of our study to

understand how prevalent the conflicts are. We found that almost 60% of pairs in the first

category, more than 90% of pairs in the second category, and around 11% of pairs in the

third category have conflicts.

RQ4: Are there common coding patterns that are unsafe in the presence of

app interactions? During our study, we observed several common programming idioms

that often result in problematic interactions between apps. Discovering and classifying these

idioms can help developers mitigate potential conflicts by avoiding these idioms.

RQ5: How can we automatically detect conflicts? Based on our findings, we develop a

tool called IoTCheck that can automatically detect conflicts—Section 4.5 presents the design

and implementation of the IoTCheck tool. IoTCheck model-checks smart home apps and

automatically detects conflicts between apps. Our tool is available under an open source

license [192, 190, 191].

4.1 Methodology

This section describes our research methodology. We first define several terms. Next, we

discuss our database of smart home apps and the way we structure them for the study.

Our study focuses on pair-wise interactions. The rationale is that pair-wise interactions

97

X ∈ Execution = (Action | Event | Update)∗

A ∈ Action = read(α, d, τ , r) | write(α, d, τ , r, v) |
moderead(α) | modewrite(α, µ) |
schedule(α, t, m)

event ∈ Event = devEv(α, d, τ , r, v) | modeEv(α, µ) |
schedEv(α, m)

U ∈ Update = devUp(α, d, τ , r, v) | modeUp(α, µ)

α ∈ App d ∈ DeviceID τ ∈ DeviceType r ∈ Feature
v ∈ Value t ∈ Time µ ∈ Mode m ∈ Method

Figure 4.1: SmartThings Execution Traces.

are fundamental for understanding multi-app interactions since multi-app interactions can

be decomposed to pair-wise interactions for reasoning about. Although we have carefully

observed how these apps interact in bigger groups, we have not seen any new interaction

patterns that manifest only when three or more apps are involved.

4.1.1 Definitions

Execution Traces. We first formalize our notion of execution traces for SmartThings

in Figure 4.1. The traces can be generated by one or more apps that run concurrently. An

execution X ∈ Execution from a set of apps is a sequence of the following:

(1) Action: App α performs an action A ∈ Action by executing any of the following set of

operations:

• read(α, d, τ , r) and write(α, d, τ , r, v), which read from and write a value v to a

feature r of a device with ID d and device type τ , respectively;

• moderead(α) and modewrite(α, µ), which read from and write a new mode µ to the

location .mode variable, respectively; and

98

• schedule(α, t, m), which schedules a method m to run at time t.

(2) Event: An event event ∈ Event is either:

• devEv(α, d, τ , r, v), a device event is delivered to app α from device d to notify the

app of device status update;

• modeEv(α, µ), a mode event is delivered to app α to notify it of a mode change; or

• schedEv(α, m), a schedule event denotes when the framework processes a schedule

action and executes the method m in app α.

(3) Update: An update U ∈ Update is an external input to the smart home. It is either:

• devUp(α, d, τ , r, v), an update with a new value v generated from a device with ID

d and type τ for feature r and value v, i.e., a sensor reading a temperature change; or

• modeUp(α, µ); an update with a new mode µ, e.g., the homeowner manually setting

a new mode.

Interacts-with Relation. We next define a relation interacts-with over the domain of

Apps × Apps where Apps is the set of all smart home apps. A pair of apps (α1, α2) ∈

interacts-with (i.e., α1 interacts-with α2) if they interact with each other in one of the three

ways:

(1) Access the same device capability: Apps α1 and α2 can access a shared device

using the same capability; α1 updates the device state (i.e., feature r and value v) and α2

accesses (i.e., updates or reads) the device state. We refer to this relationship as a device

interaction. For example, α1 may turn on a switch based on the input of a light/illuminance

sensor and α2 may turn off the same switch based on a motion sensor, both calling methods

on the same device handler object.

99

(2) Physical interaction: We say that two apps have a physical-medium interaction if

the output of α1 physically becomes an input for α2 and affects the execution of α2. For

example, α1 activates a robot vacuum cleaner at a certain time during the day, and the

robot’s movement becomes the input to a motion sensor that is used by α2.

(3) Access the same global variable: Apps α1 and α2 can interact via the same global

variable, whose value is stored on the cloud, e.g., α1 updates the variable and α2 accesses

it. This is referred to as a global-variable interaction. In this study, we focused on the

location.mode variable because it is the only global variable in the SmartThings platform

that allows for both write and read accesses. location.mode has three preconfigured values:

Home, Away, and Night. An example scenario is that one app updates location.mode based

on the input of the presence sensor while the second app reads it to determine whether a

door should be locked/unlocked.

Conflict Relation. Apps α1 and α2 conflict if they interact (in one of the ways discussed

above) and the interaction may compromise the correctness of the apps or produce an un-

intended outcome. Although the notion of a conflict is somewhat vague, we found that

Definitions 4.1 and 4.2 worked well most of the time in practice.

Definition 4.1. Device/ Global-Variable Conflict. Two apps α1 and α2 conflict iff

there exists an execution X of α1 and α2 and two actions A1 and A2 that update the

same feature r or mode µ in X such that: (1) A1 and A2 are performed by different

apps (α1 and α2), (2) A1 and A2 write different values (v1 and v2, or µ1 and µ2), (3)

there is no such A3 that updates the same r or µ and that the update is ordered between

A1 and A2, and (4) A2 was not initiated by a direct user action.

100

Table 4.1: Groups of apps for device-type pairing.

Group Capability Subgroup App
Apps # Pairs

Switches switch General 24 276
Lights 32 496
AC/fan/heat 3 3
Vent 3 3
Camera 2 1

Locks lock 21 210
Thermostats thermostat 19 171
Lights colorControl Hue 13 78

Non-Hue 11 55
Dimmers switchLevel 11 55
Alarms alarm 10 45
Valves valve 7 21
Music Players musicPlayer 5 10
Relay relaySwitch 5 10
Speech speechSynthesis 3 3
Synthesizers
Cameras imageCapture 2 1

Total 171 1,438

Definition 4.2. Physical-Medium Conflict. Two apps α1 and α2 conflict iff one

app performs an action that affects a physical medium (e.g., motion) and the other app

reads from a sensor that can sense that physical medium (e.g., a motion sensor).

4.1.2 Smart Home App Pairs

Choice of Apps. We studied 198 official and 69 third-party smart home apps that we

have collected from the SmartThings official Github [181] and other third-party repositories.

While the statistics of app usages and installations are proprietary, all the apps that we

used in this study can be obtained easily from the aforementioned repositories. Today, the

SmartThings official Github [181] has an active user community—it has been forked into

personal repositories more than 70,000 times. Any user can get and upload any app’s source

code to the SmartThings Marketplace via the SmartThings Groovy IDE [26]. Thus, users

can install and use any app.

101

App Pairing. These apps were initially developed to perform their specific functionality.

There are no standardized guidelines either from SmartThings or from the community as to

how to develop an app in a way so that it can safely interact with other apps.

Our process for manual examination was to independently examine each app pair by at least

two of the authors. In the event that the two examiners disagreed about whether an app pair

conflicted, they discussed their disagreement on the app-pair’s classification and reached a

consensus. There are 35,511 app pairs given the 267 apps we collected above. From this

huge set of pairs, we identify 2,844 pairs of apps that potentially interact with each other.

We next explain how we use the three interact-with conditions to identify these 2,844 pairs.

We will then study how many of these 2,844 pairs contain conflicts in Sections 4.2–4.4.

Device-Type Pairing. To identify apps that have device interactions, we first divide the

267 apps into groups based on what type of device an app aims to manage, as shown in

Table 4.1. Clearly, if two apps do not access a common device, it is impossible for them to

have device interaction.

Out of the 267 apps, we excluded 132 apps for three reasons. First, we excluded apps that

take inputs from outside of the SmartThings platform. For instance, the IFTTT (If-This-

Then-That) [23] app functions as a bridge between the SmartThings platform and IFTTT,

a third-party platform. These apps typically wait for a third-party application built on

a third-party platform (e.g., IFTTT and other similar platforms) to send commands and

generate events through HTTP endpoints. We do not have access to the source code of

such third-party applications; thus, it is not possible to accurately reason about potential

interactions. Second, we excluded apps that only send messages to a smartphone about the

state of sensors because these apps do not interact with other apps. Third, we also excluded

apps that use third-party specific device handlers since these apps cannot share a device with

other apps. Therefore, we included 135 apps for device interaction. Some of them access

multiple devices and, thus, are included in multiple groups of devices—hence, a total of 171

102

Table 4.2: Groups of apps for physical-medium pairing.

Output # Apps Sensor # Apps # Pairs
Lights 42 Illum. 5 205
Moving Dev. 2 Motion 39 78
Water Valves 2 Water 11 21
Sound Dev. 21 Sound 1 21

Total 325

apps. At the end, we identified a total of 1,438 pairs from the 171 apps classified in various

device-type-based groups.

For some groups, we identify all pairs of apps from the group as device-interaction pairs.

For example, the Locks group contains 21 apps, we inspected all the
(

21
2

)
= 210 pairs and

confirmed them all to be device-interaction pairs.

For some groups that provide generic functionality, such as Switches and Lights, we further

create sub-groups and only identify apps that belong to the same sub-group as having a

device interaction. For example, for the Switches group, out of a total of 64 apps, 24 access

general switches (276 pairs), 32 access light switches (496 pairs), 3 access AC/fan/heater

(3 pairs), 3 access the ventilation system (3 pairs), and 2 access cameras (1 pair). We also

found 8 apps (not included in Table 4.1) that control specific devices (e.g., curling-iron) that

are not shared by other apps; hence, no pairs were constructed for these apps. The Lights

group consists of apps that use the light device handler (i.e., capability.colorControl) to

turn the lights on or off, set their illuminance level [20], or change their colors. Each group

was divided into a subgroup of apps that controls Philips Hue lights and another subgroup

that controls non-Hue lights. In the Lights group, there are 13 apps for Hue leading to 78

pairs and 11 apps for non-Hue leading to 55 pairs.

Physical-Medium Pairing. Two apps can interact via a physical medium; e.g., one app

generates an output that could be a physical input to the other app. To illustrate, consider

an app that changes the state (i.e., toggle on/off) of light bulbs. These changes also affect

103

the illuminance produced by the light bulbs, which can become an input to apps that read

from illuminance sensors.

Table 4.2 reports results for apps that interact physically. We grouped them based on the

output-input relationships, such as lights (output) and illuminance sensors (input), moving

devices (output) and motion sensors (input), water valves (output) and water sensors (input),

or sound-generating devices (output) and sound sensors (input). For the light-illuminance-

sensor relationship, for example, we constructed a total of 205 pairs for the 42 apps that

control lights and the 5 apps that read from illuminance sensors.

Global-Variable Pairing. Apps can also interact if they access the same global variable.

Currently, there is only one global variable in the SmartThings platform that multiple apps

can read from and write into: location.mode. We grouped together all the 47 apps that

access it for a total of 1,081 pairs.

4.1.3 Threats to Validity

External Validity. This study focused on Samsung’s SmartThings platform and thus

may miss interaction patterns specific to other platforms. However, we believe that most of

the findings and insights revealed in this study are universal for smart home applications and

frameworks. For instance, our results also apply to rule-based systems, e.g., IFTTT—two

rules: (1) “if the humidity is high, turn off the AC” and (2) “if the temperature is low, turn

on the AC”, have a conflict by our definition if the humidity is high and the temperature is

low. Even for interactions that are specific to the SmartThings platform (e.g., concurrent

accesses to the location.mode variable), the patterns discovered under such interactions

are general. For example, other platforms would also have global variables that serve similar

purposes and hence our results can be generalized to these other platforms as well.

104

Internal Validity. This study covers all of the 198 official apps that we could find in

the SmartThings official Github repository and the example set for SmartThings tutorials

as of July 2018. We added 69 third-party apps that we gathered from various other sources.

While we studied the complete set of the official apps, the third-party apps used in the

study may not be exhaustive. Nevertheless, our experience shows that the patterns that

exist in the official apps are similar to those in the third-party apps. We believe adding new

third-party apps would not change the main findings and insights.

In this study, we limited the scope of app interactions to pairs, and hence, there could be new

types of interactions that manifest only when three or more apps are involved. However, we

have already manually inspected a large number of triplets and not found any new interaction

patterns that do not exhibit in pairs.

We manually inspected app pairs to determine whether the two apps in each pair can conflict.

The manual determination is subjective in some cases—it reflects the authors’ beliefs of

whether the interactions between a pair of apps represent an unintended outcome. Whether

this conflict represents a problem in the real world is a very complicated question and can

depend on (1) the intended use of the homeowner and (2) the home environment. For

example, if one app turns a light on and a second app based on the absence of motion from

a sensor turns the light off, we classify this as a conflict. However, users may compose apps

with the intention of this app interaction. As another example, certain interactions are made

over physical mediums; for instance, the sound generated by a speaker app could become

the input of a sound sensor used by a different app. In this case, whether the sensor can pick

up the sound depends on whether it is physically close to the speaker generating the sound.

In the study, we assume that this interaction can actually happen although the speaker and

the sensor may be far away in a real-life deployment.

105

Conflicts that have safety or security aspects are certainly critical and could be harmful.

However, it is somewhat difficult to determine the potential safety hazards or implications of

a conflict as they can depend on the specific deployment. For example, if a conflict causes a

smart outlet to remain on, whether it is a safety hazard depends on what is plugged into the

smart outlet, e.g., toaster versus LED light. Nevertheless, even benign conflicts can render

apps useless—they make a smart home system unpredictable and difficult to rely on with

any confidence, ultimately causing users to get rid of the system.

Our ultimate goal is to identify all avoidable conflicts and their possible sources so that

actions can be taken in future development and/or deployment to mitigate potential conflicts.

Some conflicts can be potentially handled by the development of API with support for

common app interaction patterns. On the contrary, if physical proximity is a concern, we

could develop an analysis that warns the user during installation. This explains why we

treated these two scenarios differently.

4.2 Device Interaction

This section presents our findings for apps that form pairs with device interactions. When

we first studied this category, we found that some apps monitor status changes but do not

initiate any changes on devices. When such an app is paired with another device monitor app,

both apps concurrently read the device status and neither of them makes any changes to the

device status. We refer to such a pair of apps as having a read-read relationship. 128 (8.9%)

pairs have this relationship and thus do not interact. We classified device interactions into

non-conflicting and conflicting interactions; the statistics of the classification are reported

in Table 4.3.

106

Table 4.3: Statistics for device interaction.

Relationship # Pairs Percentage
Read-read 128 8.9%
Non-conflicting Interactions
Direct-direct 20 1.4%
Composable 319 22.2%
Different-feature 52 3.6%
Same-feature 90 6.3%

481 33.5%
Conflicting Interactions
Feature conflicts 632 43.9%
Invalid-local-state 76 5.3%
Dropped-update 121 8.4%

829 57.6%
Total 1,438

4.2.1 RQ1: Types of Non-Conflicting Interactions

We observed three types of non-conflicting interactions. First, although two apps can access

the same device, their accesses can only be triggered manually by users. Consequently,

whether they conflict with each other depends on how users operate them. For example,

Big-Turn-ON is such an app: it turns on switches when the user touches the app’s user

interface [8]. Two users may concurrently initiate conflicting commands to a switch through

two apps like Big-Turn-ON. We consider this type of conflicts out of the control of apps. We

refer to this type of interaction as a direct-direct relationship. We found that this relationship

holds for 20 (1.4%) app pairs in the device category (see Table 4.3).

Second, certain apps can work together to realize desired functionality, and hence are in-

tended to interact with each other. We refer to this type of interaction as a composable

relationship and corresponding apps as composable apps. We found that this composable

relationship holds for 319 (22.2%) pairs in the device category.

Please note that many of these composable apps were developed independently. For exam-

ple, the FireCO2Alarm app sets off the alarm and triggers door-unlocks when smoke/fire is

107

detected [162], while the Initial-State-Event-Streamer app [18] monitors and forwards

events from many devices including the alarm device handler to a website [24] that allows

users to remotely monitor device activities. These two apps were independently developed,

but they could interact to fulfill a desired functionality at run time—notifying a user through

the specific website that an alarm is set off.

Third, some apps simultaneously access different features of the same device or the same

feature of the same device in a consistent way, and hence do not conflict with each other.

An example we discovered for the former (i.e., accesses to different features) is the Keep-

Me-Cozy and Thermostats [12, 22] pair of apps from the Thermostats group. One app calls

methods on the thermostat to set heating or cooling points (e.g., setHeatingSetpoint()

and setCoolingSetpoint()), while the other app sets the mode of the thermostat (e.g., via

setThermostatMode()). Although these two apps control the same shared device, they oper-

ate on different features of the device. Hence, although the first app interacts-with the second

app, there is no conflict between them. We refer to this interaction as a different-feature

relationship and found this relationship holds for 52 (3.6%) pairs in the device category.

An example we discovered for the latter (i.e., consistent accesses to the same feature) is

the following pair of apps from the Locks group: the Lock-It-at-a-Specific-Time and

Auto-Lock-Door apps [5, 171]. Both apps call lock.lock() to door-lock. We consider

this interaction non-conflicting, since these apps’ actions would lead the shared device to the

same state and hence the expected outcome is not compromised. We refer to this interaction

as a same-feature relationship and found it to hold for 90 (6.3%) pairs in the device category.

4.2.2 RQ2: Types of Conflicting Interactions

Of the 1,438 app pairs in the device category, 829 pairs exhibit conflicting behaviors. We

classified these conflicting behaviors as either feature conflicts and saved-state conflicts.

108

Feature Conflicts. There are many pairs where the two apps attempt to update the

same device state with incompatible values. An example is the FireCO2Alarm and Lock-It-

When-I-Leave pair discussed in Chapter 1. Recall that the FireCO2Alarm app attempts to

door-unlock during a fire while the Lock-It-When-I-Leave app could potentially door-lock.

We refer to these conflicts as feature conflicts. A majority of the app pairs: 632 (43.9%)

pairs in the device category have feature conflicts.

Saved-State Conflicts. Many apps use their local variables to keep track of device states

and guide their own device updates. These apps easily become broken when paired with

other apps that can update the same devices—a concurrent update from the other app

would make this app’s variable inconsistent with the device state.

Consider Auto-Humidity-Vent that turns on/off a fan based on the humidity level [2]. This

app conflicts with the Big-Turn-OFF app that allows a user to manually turn off the fan [7]

for the following reason. When Auto-Humidity-Vent detects that the room humidity is

above a threshold, it turns on the fan and simultaneously updates its local state variable

state.fansOn to true. A user may then use the Big-Turn-OFF app to turn off the fan,

causing the room humidity to increase above the threshold. Unfortunately, since the local

variable state.fansOn remains true in the Auto-Humidity-Vent app, unaware of the fan

being turned off by Big-Turn-OFF, Auto-Humidity-Vent would stop functioning, incorrectly

assuming that the fan is already on. We refer to this scenario as invalid-local-state conflicts,

and found that 76 (5.3%) pairs in the device category exhibit this pattern.

A common pattern we observed is an app that stores and restores the state of a device. For

example, the Thermostat-Auto-Off app restores the state of the thermostat to a previously

stored state. Consider an execution in which after the Thermostat-Auto-Off app saves

the current state (e.g., off) of the thermostat into a local variable, a second app changes

the actual device state to a different value (e.g., "cool"), which does not propagate to

Thermostat-Auto-Off’s internal state. The next time Thermostat-Auto-Off tries to restore

109

the thermostat state, the restoration will be based on the stale and wrong value saved in

the local variable. Thus the update performed by the second app is dropped. We refer to

this scenario as dropped-update conflicts, and found 121 (8.4%) pairs in the device category

exhibit this pattern.

4.2.3 RQ3: Prevalence of Conflicts

As reported in Table 4.3, 91.1% of the pairs in device category have actual interactions

(i.e., at least one device updates the device state), while 8.9% of the pairs have read-read

relationships and hence do not actually interact. Of the pairs that have actual interactions,

the majority (57.6%) have conflicts.

4.2.4 RQ4: Unsafe Coding Patterns

We found there are at least two unsafe coding patterns for device interactions: (1) blind-

update and (2) saved-state. The blind-update pattern occurs in apps that blindly update the

same state of the same device without checking the current state of the device. The saved-

state pattern occurs when an app that saves the state of a device feature into a local variable

and later uses the saved value. This may cause updates from other apps to be discarded. In

some cases, a check of the current state before doing the update could help the app verify

that its local state is consistent with the device state. However, with the existing APIs,

there is no way to do the check-and-update in an atomic way—an app could only retrieve

the device state by invoking a method m1 and then update the state by invoking another

method m2; the state could be changed by another app after m1 returns but before m2 is

completed.

110

Table 4.4: Statistics for physical-medium interaction.

Medium # Pairs Percentage
Non-Conflicting Interactions
Water 10 3.1%
Sound 21 6.4%

31 9.5%
Conflicting Interactions
Water 11 3.4%
Motion 78 24.0%
Light state 151 46.5%
Light color 20 6.2%
Light brightness 5 1.5%
Light combination 29 8.9%

294 90.5%
Total 325

4.3 Physical-Medium Interaction

This section presents our findings for apps that interact via the physical world. In this

category, two apps are paired when the output from the first app can physically become the

input of the second app and affect its operation. Table 4.4 reports our findings.

4.3.1 RQ1&2: Types of (Non-)Conflicting Interactions

Motion. The first set of physical interactions are due to motion. An example pair is

Neato-(Connect) and Forgiving-Security [25, 1]. Neato-(Connect) is a third-party app

that controls a Neato vacuum-cleaning robot. When the app activates the robot, the robot

starts cleaning the house. While it is moving around the house, its movement could trigger

a motion sensor used by the Forgiving-Security app and thus set off a security alarm—a

false alarm. Of the 325 app pairs in the physical-medium category, 78 pairs (24.0%) interact

via motion and all exhibit conflicts.

Light. A similar set of app pairs are based on interactions via light. The Turn-On-at-

Sunset and Light-Up-the-Night apps [17, 13] are an example. Consider a deployment in

111

which each app controls a different light bulb. At sunset, the Turn-On-at-Sunset app may

turn on a light bulb whose light may affect the illuminance sensor of the Light-Up-the-Night

app. The Light-Up-the-Night app is supposed to turn on a light bulb when its illuminance

sensor detects that the surrounding is dark. If the light bulb controlled by the Turn-On-at-

Sunset app is sufficiently close to the illuminance sensor used by the Light-Up-the-Night

app, the sensor may pick up some light from the light bulb. This could cause the Light-Up-

the-Night app to determine that there is no need to turn on the light bulb, and hence, the

two apps conflict.

Some apps can control a light bulb by changing its on/off state, colors, or brightness levels.

Any of these changes can potentially be detected by an illuminance sensor [20].

Table 4.4 summarizes our findings: 151 pairs (46.5%) have a conflict through the change

of light’s on/off state; 20 pairs (6.2%) conflict through the change of light’s color; 5 pairs

(1.5%) conflict through the change of light’s brightness; and 29 pairs (8.9%) conflict through

a combination of the three.

Water. Physical interactions can also occur via water. An example pair that interacts

via water consists of the Sprayer-Controller-2 and Close-The-Valve apps [6, 3]. The

former schedules irrigation for a certain amount of time periodically, while the latter closes

a water valve when the water sensor detects moisture. When the water coming from a water

sprayer controlled by the Sprayer-Controller-2 app reaches the water sensor used by the

Close-The-Valve app, the two apps interact. This interaction potentially results in a conflict

because a bad moisture sensor placement could cause the Close-The-Valve app to prevent

the irrigation that has been scheduled by the Sprayer-Controller-2 app.

Our results show that 21 pairs interact through water: 11 of them have conflict and 10 do

not. In each of these 10 pairs, the app that controls the water valve actually closes it when

112

it detects moisture through its sensor. Therefore, no water can be produced and detected

by the water sensor of the other app.

Sound. Apps can also interact via sound. For example, an interesting app pair we discovered

is Bose-SoundTouch-Control and InfluxDB-Logger, which reads from a sound sensor [21].

In fact, the latter can be paired with any other sound-producing apps, such as those that

control speakers, alarms, or music players.

Our findings show that there are 21 pairs (6.4%) that interact via sound but we could not

find any conflicts among them. Typically, a pair consists of a sound-producing app and the

InfluxDB-Logger app. Since the InfluxDB-Logger app only logs the status of the sound

sensor, the two apps are actually composable—similar to the composable relationship in the

device interaction (see Section 4.2.1).

Physical Factors. The physical-medium interaction depends on certain physical factors.

The position of the first app’s actuator relative to the second app’s sensor determines whether

the output from the actuator could reach the sensor. If their proximity is sufficiently close

for the actuator’s output to affect the sensor, the two apps interact; otherwise, they do

not. When we performed this study, we assumed that their locations are sufficiently close.

Although it is a conservative approximation, this is the best we could do and our findings

can help developers and users to avoid such conflicts.

4.3.2 RQ3&4: Prevalence of Conflicts/Unsafe Coding

Table 4.4 summarizes the statistics for the physical-medium interaction pairs. Our findings

suggest that typically, when a pair of apps interact through a physical medium, they will

most likely conflict. In most cases, the second app does not expect to receive any input

from the first app. It normally expects sensor inputs from its surroundings. Out of the 325

pairs with physical-medium interaction, 90.5% (294 pairs) of them have a conflict. We did

113

Table 4.5: Statistics for global-variable interaction.

Relationship # Pairs Percentage
Read-read 405 37.5%
Non-Conflicting Interactions
Direct-direct write-write 28 2.6%
App write-read 302 27.9%
Direct write-read 221 20.4%
App-app write-write 1 0.1%

552 51.0%
Conflicting Interactions
App-app write-write 44 4.1%
App-direct write-write 80 7.4%

124 11.5%
Total 1,081

not observe any coding patterns that cause conflicts in this category. Hence, we concluded

that the conflict in pairs with physical-medium interaction is caused mainly by the physical

proximity between the actuators and sensors of the conflicting apps.

4.4 Global-Variable Interaction

This section presents our findings for app pairs that have global-variable interactions. As

discussed in Section 4.1.1, since SmartThings only has one global variable location.mode

that allows both reads and writes, we consider two apps to have global-variable interaction

if they both access location.mode. Our statistics are reported in Table 4.5. 405 (37.5%)

of the pairs (reported as pairs with read-read relationships in Table 4.5) contain apps that

only read from location.mode. These apps do not actually interact.

4.4.1 RQ1: Types of Non-Conflicting Interactions

The first type contains apps that only write location.mode and they are controlled manually

by the user. We refer to this as a direct-direct write-write relationship. As discussed earlier in

Section 4.2.1, we did not consider these apps as conflicting since the user controls them. This

114

group contains 28 pairs (2.6%), reported as pairs with direct-direct write-write relationships

in Table 4.5.

A second type, consisting of 302 app pairs (27.9%), exhibits app write-read relationships,

exemplified by the Greetings-Earthling and Hello,-Home-Phrase-Director apps [11, 4].

The Greetings-Earthling app changes the value of location.mode when the presence

sensor detects that the homeowner arrives home. On the other hand, the Hello,-Home-

Phrase-Director app sends a greeting message to the homeowner depending on the value

of location.mode. In this case, the two apps have a composable relationship: one app reads

the variable updated by the other.

A third type, consisting of 221 app pairs (20.4%), exhibits direct write-read relationships:

one app requires the user to manually control the app to write into location.mode, while the

other reads from it. This is the intended usage scenario of location.mode, namely to facili-

tate interactions between apps through mode changes. Hence, these write-read interactions

are not conflicts.

Finally, we found one pair in which both apps write into location.mode and yet do not

conflict. This pair consists of the Greetings-Earthling and Bon-Voyage apps [11, 9]. The

Greetings-Earthling app writes into location.mode when the user arrives at home, while

the Bon-Voyage app writes into the same location when the user leaves. Hence, they do not

conflict as they have disjoint intents and never write at the same time. This is an exception

to our current formal definition that can be improved.

4.4.2 RQ2: Types of Conflicting Interactions

When two apps both write into location.mode, in most cases, conflicts would result. There

are two types of write-write conflicts: app-app write-write and app-direct write-write. For

example, there exists an app-app write-write conflict between the Smart-Security and

115

Good-Night apps [16, 10], which both attempt to write into location.mode. While the

Smart-Security app updates location.mode with Home, the Good-Night app changes

location.mode to Night or Away. In Smart-Security, the update to location.mode oc-

curs when intrusion is detected. This is rather an important update and the user certainly

does not want the result of the Smart-Security app to be compromised. There are 44 pairs

(4.1%) of such conflicts.

An app-direct write-write conflict occurs when in one app the update of the global variable

is triggered by a non-user input, e.g., a sensor, while in the other app the user performs an

operation that triggers the update. For example, the first app uses the motion sensor to

detect if there is anyone home and updates location.mode based on the sensor input. The

second app lets the user control the light—when the user turns on the light, location.mode

is automatically updated. This category has 80 (7.4%) conflicting pairs.

4.4.3 RQ3&4: Prevalence of Conflicts and Unsafe Coding

There are a total of 124 (11.5%) conflicting app pairs. Thus, conflicts are not prevalent for

this type of interaction.

We found that concurrent-writes to location.mode is an unsafe pattern, which is due to

the SmartThings APIs that allow apps to directly change the value of location.mode. For

instance, in the case of the Smart-Security app, a good practice would be to not allow other

apps to write into location.mode when the alarm is sounding; otherwise, the alarm may

be stopped abruptly before it is noticed. For modes, the combination of (1) changing the

API to specify a duration for the mode change and (2) allowing the user to specify priorities

would resolve many of the conflicts.

116

4.5 IoTCheck: Automated Conflict Detection

In this section we address RQ5: How can we automatically detect conflicts?

We developed IoTCheck, a tool that automatically identifies conflicts by model-checking

pairs of apps. A model checker checks, exhaustively and automatically, if a system meets

a specification. Model checking is particularly useful in detecting app conflicts due to its

ability to exhaustively check all potential interactions between apps.

We begin by summarizing the key insights from our manual study that we used for designing

IoTCheck. Our study shows that most device conflicts occur when two apps issue conflicting

updates to the same device. We found that when one app writes to a device feature and

another app reads from the same device feature, it typically does not represent a conflict;

this scenario commonly occurs when apps compose. We also found that it is important to

consider the reason why two apps perform conflicting updates. If both updates are performed

in response to user requests, there is typically no conflict since the actions are triggered by the

user. Finally, we found that conflicts on global variables occur only when two apps both write

to the global variable; read-write interactions typically represent normal cooperation between

apps, not conflicts. IoTCheck model-checks pairs of apps and monitors for conflicting updates

to the same device or global variables from different apps. IoTCheck directly executes the

original app code, eliminating the need to build models of the apps. IoTCheck extends the

Java Pathfinder (JPF), an explicit state-based model checking infrastructure [205].

4.5.1 IoTCheck Design

Architecture. Figure 4.2 presents IoTCheck’s architecture. The arrows represent the

workflow of IoTCheck that starts from app code as an input to the IoTCheck configuration

tool and IoTCheck preprocessor. Each SmartThings app has a configuration method that

asks users for configuration information—while most of the configuration can be automati-

117

App
Code

IoTCheck
Preprocessor

Instrumented Groovy
Code

IoTCheck
Configuration

Tool

App
Configuration

Groovy
Compiler

Bytecode
File

IoTCheck Simulation
Framework

IoTCheck Monitor

JPF with Groovy
&

IoTCheck Extensions

Conflict Analysis
Report

Figure 4.2: IoTCheck Architecture.

cally generated, apps can ask for arbitrary input and thus part of the configuration requires

human help. The IoTCheck configuration tool runs this method, automatically configures

most options, and asks the user for non-standard options. The IoTCheck configuration tool

then outputs app configuration files, which, together with the original app, are processed

by the IoTCheck preprocessor. The IoTCheck preprocessor generates model checker hooks

to enable JPF to generate device events, combines multiple apps into the same program,

and sets up the necessary configuration to run the program. It then outputs instrumented

Groovy code which is compiled into bytecode by the Groovy compiler.

We developed a SmartThings simulation framework for IoTCheck. This framework contains

virtualized devices (i.e., device handlers) for all of the devices used by our benchmark apps.

While an actual SmartThings device handler controls an actual device, a virtualized device

handler changes the value of a state variable that represents the value of a device feature.

Thus, a virtual device handler for a door lock changes the value of the door lock state variable

instead of controlling an actual Zigbee door lock (see Figure 1.1). These device handlers are

under the control of the JPF model checker—JPF triggers device events such as a motion

118

detected by a motion sensor, or a temperature value change detected by a temperature sensor.

For devices such as temperature sensors, there is a large range of potential temperatures that

would make model checking infeasible without using symbolic techniques. IoTCheck thus

supports a set of potential temperature readings (e.g., a hot reading and a cold reading),

which is practical given the nature of many smart home apps. IoTCheck does not currently

model physical interactions between devices (other than to flag that they could potentially

interact); this remains future work.

Finally, IoTCheck model-checks the generated bytecode using the JPF model checker. We

developed IoTCheck monitor as a JPF listener that performs conflict analysis while JPF is

executing the bytecode. When a conflict is detected, the listener halts JPF and immediately

reports the conflict. Otherwise, JPF finishes its execution and the listener reports that there

is no conflict.

S(n) =
⋃
ε∈in(n) φ(Ae, ismanual(ε), S(in(ε))φ(∅, λ, S) = S

φ(A; write(α, d, τ , r, v), λ, S) =

conflict, if(∃a ∈ app(S, d, r).a 6= α ∧ value(S, d, r) 6=

v ∧ ¬λ)

update(φ(A, λ, S), write(α, d, τ, r, v)) otherwise

φ(A; modewrite(α, µ), λ, S) =

conflict, if(∃a ∈ modeapp(S).a 6= α ∧modevalue(S) 6=

µ ∧ ¬λ)

update(φ(A, λ, S),modewrite(α, µ)) otherwise

update(S,A) = {A′ ∈ S | ¬A , A′} ∪ {A}

(write(α, d, τ , r, v) , write(α’, d’, τ ’, r’, v’)) :=
(d = d′) ∧ (r = r′)

(modewrite(α, µ) , write(α, d, τ , r, v)) := false

(modewrite(α, µ) , modewrite(α’, µ’)) := true

Figure 4.3: Conflict Analysis

Challenges. There are 3 challenges in extending JPF for IoTCheck:

(1) JPF does not provide out-of-the-box support for checking Groovy code. One

challenge is that the Groovy runtime system keeps its own internal state that thwarts JPF’s

state matching algorithm; this often prevents even very simple Groovy programs from model-

checking. IoTCheck extends JPF to consider only the state of the virtual smart home devices

119

and the apps when matching states—it ignores state changes that are internal to the Groovy

runtime library and do not affect the behavior of apps. This creates a second issue—JPF

generates state matching points at many execution points. After eliminating Groovy runtime

state from state matching, there can be spurious state matches terminating JPF before the

state space is fully explored. To solve this problem, IoTCheck extends JPF to only match

states right before generating a new event.

(2) Groovy is a dynamic language. Thus, method calls are resolved at runtime via

Java Reflection—JPF was missing this feature and we had to extend it. Furthermore, the

same call stack from the perspective of the program can be implemented by many different

bytecode-level call stacks due to Groovy’s method lookup and caching mechanisms. Since

the call stack is considered by JPF’s state matching algorithm, this can cause the algorithm

to fail to match conceptually identical states and increase the state space to be explored.

IoTCheck extends JPF’s state matching algorithm to match conceptually identical call stacks

with different bytecode-level stacks.

(3) Scalability is a challenge for JPF as an explicit-state model checker. IoTCheck

initially exhaustively model-checks a app pair for up to 30 minutes. If it either a detects a

conflict or completes, IoTCheck outputs the result and finishes. Otherwise, IoTCheck falls

back on JPF’s heuristic search and performs it for an extended 30-minute period. If no

conflict is detected during this period or the tool runs out memory (usually caused by bigger

apps that have tens of events), IoTCheck reports that the result is inconclusive. Future

work can employ techniques such as partial order reduction to further improve IoTCheck’s

performance.

Detection. Conflicts cannot be directly checked on the executions JPF explores because

state-based model checking is only guaranteed to explore all program states and transitions

and not all possible paths through the state machine. Consider apps α1 and α2 where α1

only turns the light on and α2 can turn the light on and off. A conflict only occurs when α1

120

turns the light on followed by α2 turning the light off. However, all states and transitions can

be reached without exploring this execution path. Thus, we must analyze the state machine

and search for any conflicting path.

IoTCheck’s conflict analysis is an online analysis of the state machine that JPF explores.

Our analysis is similar to a standard dataflow compiler analysis with the exception that in

our context nodes represent states and edges represent transitions. IoTCheck updates its

analysis results as JPF explores new states and halts the exploration process when a conflict

is detected. We abstract state machine as a set of nodes n ∈ N that represent the JPF

states, and edges e ∈ E that represent transitions between JPF states. We denote sequences

of actions using A (see execution trace definitions in Section 4.1.1). Each transition e has

a corresponding sequence of actions Ae. The relevant actions are write(α, d, τ , r, v) and

modewrite(α, µ). We define in(n) to be the set of incoming edges to n and src(e) to be the

source node of the edge e. The analysis computes the set S(n) of the most recent updates

to each device feature and mode at node n. We define app(S, d, r) to be the set of apps that

have most recently updated r on d and value(S, d, r) to be the value of that update. We

define modeapp(S) to return the set of apps that have most recently updated the mode and

modevalue(S) to return the values of the most recent update to the mode set.

Figure 4.3 presents equations that formalize our analysis. These equations are evaluated

using a standard fixed point algorithm whenever JPF explores a new transition to either an

existing state or a new state. Function φ applies the sequence of actions in transition to

the set S for the previous node to compute the transition’s contributions to set S for the

destination node. The function update applies an action to set S.

121

Table 4.6: Comparison between manual study and IoTCheck.

Interaction IoTCheck Manual Study
Conflict No conflict

Device Conflict 679 38
No conflict 33 101
Not terminated 16 396
Excluded 100 75

Global-Variable Conflict 98 16
No conflict 0 318
Not terminated 0 388
Excluded 26 235

4.5.2 Results

We repeated the same set of evaluations, but using IoTCheck to check for conflicts instead

of manual inspection. Table 4.6 compares IoTCheck’s results with those from the manual

study. We did not use IoTCheck to detect conflicts in physical-medium interactions since

these conflicts depend on physical factors.

For the device interaction, we initially found 829 conflicting pairs through manual study:

632 pairs with feature conflict, 76 pairs with invalid-local-state conflicts, and 121 pairs with

dropped-update conflicts (see Table 4.3). From the 829 pairs, we had to exclude 100 conflicting

pairs because of the 8 apps that we could not run on IoTCheck: 5 apps use third-party

features and 3 apps have serious bugs. Because of these 8 apps, we also had to exclude 75

non-conflicting pairs. Overall, IoTCheck was able to find conflicts in 679 pairs but failed to

detect conflicts in 33 pairs—a thorough manual inspection confirmed that 8 pairs are indeed

non-conflicting (i.e., mistakes in our manual study), while other conflicts were not detected

due to IoTCheck’s limitations (e.g., in our modeling of time). It also did not terminate for

16 pairs labeled as conflicting in the manual study, but 4 of them are indeed non-conflicting.

Surprisingly, IoTCheck found 38 new conflicting pairs that were overlooked in our manual

study and labeled as non-conflicting. Thus, in total IoTCheck found 717 conflicting pairs.

122

For the 497 pairs labeled as non-conflicting in the manual study, IoTCheck confirms that

101 pairs are indeed non-conflicting, whereas it did not terminate for 396 of them.

For the global-variable interaction, our manual study found 124 pairs of conflicting apps: 44

pairs with app-app write-write conflicts and 80 pairs with app-direct write-write conflicts (see

Table 4.5). With IoTCheck, we were able to find conflicts in 98 of the 124 pairs. We had to

exclude 26 of the pairs with conflicts because of 6 apps that we could not run on IoTCheck:

5 apps use third-party features and 1 app has serious bugs. Additionally, IoTCheck found 16

pairs with a conflict that was initially labeled as a non-conflicting pair. Because we excluded

6 apps, we had to exclude 235 non-conflicting pairs initially observed in the manual study.

Among the 706 non-conflicting pairs labeled in the manual study, IoTCheck was able to

complete its check and found no conflicts in 318 of them. IoTCheck did not terminate for

388 of them. For the physical-medium interaction, IoTCheck generates a warning if one app

uses a device that could be the physical input of a device used by the other app.

Statistics. The average runtime for IoTCheck to find conflicts is 27 seconds for the device

interaction, and 11 seconds for the global-variable interaction. These suggest that conflicts

are found quickly: the 30-minute time limit is enough to perform an exhaustive model

checking in general. Thus, classifying non-terminating runs as non-conflict gives IoTCheck a

precision of 100% and a specificity of 100%. The recall is 95.1% for the device interaction pairs

and 100% for the global-variable interaction pairs. The overall recall of the two categories is

95.7%.

False Positives. The false positives/negatives in our manual study were typically due to

subtle issues involving complex logic that had several conditions for generating commands

or subtle concurrent executions. Due to page limits, we do not have space to provide a full

accounting of these errors. We advise the interested reader to obtain IoTCheck and our

dataset that provide greater detail of our results for both the manual study and automated

conflict detection using IoTCheck [192, 190, 191].

123

Chapter 5

Related Work

5.1 Network Traffic Analysis and Defenses

Network Signatures for IoT devices. The research community has been actively look-

ing into network traffic analysis techniques and network signatures. Work in this area was

pioneered, among others, by Honeycomb [117]. Honeycomb is a system that generates sig-

natures for malicious network traffic automatically. The system uses honeypots, namely

decoy computer resources set up to monitor and log the activities of entities that attempt

to compromise them. Honeycomb then deploys pattern-detection techniques and packet

header conformance tests on traffic captured on the honeypots to identify malicious traffic

and generate signatures for this traffic for future detections.

A body of work presented in a series of papers by Apthorpe et al. is the closest to our

work on packet-level signatures. In their work, they have reported that a set of traffic

features is useful to infer device type and activity: MAC addresses, DNS queries, and network

traffic shape [40, 41, 42, 43]. They reported that MAC addresses and DNS queries are

useful to determine the type of the device. The first three bytes of a MAC address is the

organizational unique identifier that uniquely corresponds to a device manufacturer. Many of

124

the DNS queries can also be mapped to a specific device or manufacturer/vendor: the queries

oftentimes contain the name of the manufacturer/vendor and they are easily identifiable since

a lot of the devices from the same manufacturer/vendor typically communicate with the same

set of cloud servers.

Further, they also used network traffic shape (volume-based) signatures to infer the presence

of IoT device activity. They discovered that network traffic fluctuations can be correlated

with the activity that is occurring on the device. For example, they found a volume increase

in the traffic generated by a WeMo plug whenever the plug is toggled ON or OFF. For a

Nest camera, the traffic volume increases whenever a livestreaming session is happening.

Unfortunately, while their volume-based approach can only infer the occurrence of some

event, it cannot be used to precisely predict the type of the event. Nevertheless, they claimed

that when a device only have a pair of event types, one could hypothetically associate a

traffic volume increase with one type of the events and assume that the next volume increase

correlates with the other event type: if a WeMo plug traffic volume increase is correlated

with a “toggle ON“, then the next one would be a “toggle OFF“. Our packet-level signatures

do not share the same weakness—one can infer the exact type of the device and event. Our

signatures leverage packet lengths and directions that are unique for each device type and

event, even for devices from the same vendor.

Furthermore, their signatures (that correspond to different traffic shapes) are intuitive, but

not automatically extracted: the authors did not release any automated traffic analysis

software tool. They collected traffic from a number of devices they experimented with. Then,

they manually processed the traffic: they separated the traffic into different flows and divided

these flows into time series vectors that are further divided into w -second windows. They

further extracted 2-element feature vectors containing the mean and standard deviation of

the traffic amounts in the samples of each window, and used a 3-nearest-neighbors classifier

trained on these feature vectors. This allows them to determine the device type: they

125

discovered that the mean traffic volumes of the Nest and Amcrest security cameras differed

by almost an order of magnitude over the data collection period. For device activity, they

had to manually observe the volume changes and correlate them with the occurrence of the

device activity.

The authors proposed stochastic traffic padding (STP) to mitigate volume-based inference

attacks. They also discussed two possible implementations of STP: a VPN-based approach

that only defends against WAN sniffers and a device-based approach that defends against

both Wi-Fi and WAN sniffers. Our preliminary results show that our packet-level signatures

might potentially survive the proposed VPN-based STP implementation. In our experiments,

it was revealed that OpenVPN consistently adds a 52-byte header and a 49-byte header for

client-to-server and server-to-client packets respectively. Thus it does not completely hide

packet lengths and directions. Nevertheless, these results are very limited because we only

experimented with our VPN-based STP implementation with fixed parameters because we

could not obtain the source code of their actual STP implementation.

HomeSnitch [152] by OConnor et al. is another related work closest to ours. HomeSnitch

identifies IoT activity using a key observation that is similar to ours, i.e., the client (the

IoT device) and the server take turns in a request-reply communication style. HomeSnitch

was mainly intended to enhance smart home transparency and control by classifying IoT

device communication by semantic behavior : we call it device event in this work. HomeS-

nitch consists of two main parts: (1) behavior classification that classifies flows into known

behaviors using supervised machine learning, and (2) policy enforcer that translates policy

into network rules: it uses OpenFlow to send network flow information to a SDN controller

application. HomeSnitch uses statistics derived from the entire client-server dialog traf-

fic, namely from the features derived from application data unit (ADU) in four categories:

throughput, burstiness, synchronicity, and duration. The authors selected thirteen features

from transport layer headers that describe the client/server dialogues of smart home IoT

126

devices. Then, they calculated the feature importance, namely a measurement of the pre-

dictive importance of each feature variable: each feature has a different level of contribution

to the entire classification process. Finally, they used the Random Forest algorithm to per-

form the device behavior classification. The classification result is then used by HomeSnitch

to enforce policy rules that prevent unwanted device behaviors and report malicious device

behaviors.

HomeSnitch and PingPong both exclude IP addresses, port numbers, and DNS information

from their event inference methodologies. However, they differ in terms of the granularity

of the features they use. HomeSnitch uses aggregate network traffic statistics derived from

the thirteen features generated by the ADU extraction from the entire client-server dialog.

On the other hand, PingPong considers the direction and length of each individual packet.

Interestingly, the most important feature used in HomeSnitch is the average number of bytes

sent from the IoT device to the server per turn. This aligns with the main observation of this

paper: packet lengths of individual requests (and replies) uniquely identify device events.

Measurement Studies. A recent paper by Ren et al. [166] presents a large-scale measure-

ment study of IoT devices and reveals how these devices operate differently in the US and the

UK with respect to Internet endpoints contacted, exposure of private information, etc. Their

work attempts to address six research questions as their main objectives: (1) the destination

of network traffic, (2) the extent of traffic encryption, (3) the data sent in plaintext, (4)

the content sent using encryption, (5) the information a device exposes unexpectedly, and

(6) the impact of the device’s location on information exposure. Using 34,586 controlled

experiments, they reported that a lot of devices: (1) have one or more destinations that

is not a first party, (2) contact destinations outside their region, (3) expose information to

eavesdroppers via plaintext flow, and (4) leak information about device behavior. The pa-

per reported information exposure analyses for a total of 81 devices. However, they actually

only used 55 distinct devices across their US and UK experimental setups.

127

We use their dataset to evaluate PingPong in Section 2.4.6. Surprisingly, we found that

their dataset is suitable for our methodology. To answer the fifth research question: the

information a device exposes unexpectedly, they built a classifier that can infer event types

spanning many device categories despite having moderate effectiveness—they achieved F1

score as low as 0.75. For this experiment, they collected network traffic for the 55 devices

labeled with the timestamps of each generated device event. We, however, do not compare

PingPong with their classifier because it is not the focus of their work.

Aside from [166], we also used the datasets from other measurement studies to evaluate

PingPong. Other well-known measurement studies and publicly available IoT network traf-

fic datasets include YourThings [31, 32] and [180], which we use in our evaluation in Sec-

tion 2.4.3. Despite having massive volume of IoT network traffic, including traffic related to

device events, these other datasets are not labeled with timestamps. Therefore, unlike the

dataset from [166], these other datasets cannot be used to verify PingPong methodology.

Other Protocols. Other papers consider specific types of devices or protocols. Copos

et al. [66] analyze network traffic to infer the activity specifically for the Nest Thermostat

and Nest Protect (only), and show that the thermostat’s transitions between the Home and

Auto Away modes can be inferred with 88% and 67% accuracy for each direction (Home to

Auto Away and Auto Away to Home respectively). Thus, this reveals whether the home

is occupied or not. Other work [28, 222] focus on Zigbee/Z-Wave devices and leverage

specialized Zigbee/Z-Wave sniffers to collect traffic from these protocols. Since the Zigbee

protocol for communicating with smart home devices is well documented, it makes the

creation of the signatures easier than in our case. For instance, in [222] the authors used

the application source code to correlate Zigbee traffic and device events. The byte-level

information of a particular Zigbee command is typically hard-coded in the source code of

the Zigbee device drivers.

128

Limitations of Other Techniques. Most event inference techniques rely on machine

learning [132, 180, 179] or statistical analysis of traffic time series [66, 28, 152, 166]. Limita-

tions of these approaches include: (1) the inability to differentiate event types [132, 180, 179]

(e.g., distinguishing ON from OFF), and (2) lack of resistance to traffic shaping tech-

niques [66, 28, 152, 166] such as [40]. For example, in traffic volume signatures [40, 41, 42, 43],

there is no obvious correlation between a certain traffic volume with a certain type of device

event. However, the authors highlighted that this correlation is possible for device type

inference. These approaches also rely significantly on the statistical analysis of the TCP/IP

network traffic time series (e.g., mean packet length, inter-arrival time, standard deviation

in packet lengths, etc.). Thus, these signatures can easily be obfuscated by traffic shaping

techniques, e.g., once the traffic is shaped, traffic volume changes are not apparent anymore.

On the other hand, our work identifies simple packet exchange(s) between the device/smart-

phone and the cloud that uniquely identify event types. PingPong’s classification perfor-

mance (recall of more than 97%) is better than most statistical approaches: [28] reported

90% accuracy, [66] reported 88% and 67% accuracy, and [166] reported some F1 scores as

low as 0.75. Unsupervised learning techniques may be hard to interpret, especially for large

feature sets (e.g., 197 features in [28]). PingPong also uses clustering to identify reoccurring

packet pairs, but provides an intuitive interpretation of those pairs: they correspond to a

request and the subsequent reply.

Network Traffic Analysis beyond IoT. There is a large body of work in the network mea-

surement community that uses traffic analysis to classify applications and identify anoma-

lies [150, 116, 114], attacks [74], or malware [34, 159]. There has also been a significant

amount of work on fingerprinting techniques in the presence of encryption for web brows-

ing [51, 102, 126, 63, 134, 158, 77, 55, 206, 157, 100], and variable bit-rate encodings for

communication [214, 213] and movies [174]. The problems of using traffic analysis to finger-

129

print web browsing sessions or variable bit-rate encodings are quite different from extracting

events from IoT device traffic. First, the fundamental structures of the communication pro-

tocols are different. For instance, IoT device traffic typically involves a fixed set of endpoints

and predictable packet exchanges; hence, our discovery of packet-level signatures. On the

other hand, web browsing sessions typically involve communications with a lot more variety

of endpoints and significantly more complex packet exchanges patterns. Thus, instead of

exploring the potential of minimal set of traffic features (e.g., packet lengths and directions),

a lot of web browsing fingerprinting techniques leverage statistical based analyses, e.g., ag-

gregate traffic volume, inter-arrival time, etc. Second, the volumes of data also significantly

differ. While IoT devices have idle periods and typically generate less amount of traffic,

web browsing sessions that occur on more powerful computing machines typically generate

significantly larger amount of traffic in a more regular fashion. Thus, these problems require

different analysis approaches that consider different features and use different techniques.

Moreover, for these examples the underlying protocols are well understood, while PingPong

can work with (and is agnostic to) any arbitrary, even proprietary, application-layer proto-

col.

Defenses against Packet-level Signatures. Related to profiling and fingerprinting is also

the body of work on defenses that obfuscate traffic signatures. Examples include [158, 136]

that use packet padding and traffic injection techniques to prevent website fingerprinting.

In Section 2.5, we discuss two general defense approaches: (1) traffic shaping that refers

broadly to changing the shape of traffic over time; and (2) VPN that brings multiple benefits

such as encryption (that our signatures survive), and multiplexing of several flows. We

partly evaluate these defenses—we obtained some preliminary results by implementing our

version of VPN-based STP with fixed parameters to evaluate the effectiveness of packet-level

signatures (see Section 2.5.5). A VPN also provides a natural place to implement additional

defenses (e.g., packet padding).

130

Packet Padding. Packet padding has already been studied as a countermeasure for website

fingerprinting [126, 77, 53, 54]. Liberatore and Levine [126] showed that padding to MTU

drastically reduces the accuracy of a Jaccard coefficient based classifier and a naive Bayes

classifier, both of which use a feature set very similar to packet-level signatures: a vector of

<direction, packet length> tuples. Dyer et al. [77] later showed that such padding is less

successful against more advanced classifiers, such as the support vector machine proposed by

Panchenko et al. [158] that also considers coarse-grained features such as total traffic volume.

Cai et al. [53, 54] improved [77] by providing a strategy to control traffic flow that better

obfuscates the traffic volume as a result. Although applied in a different context, these prior

works indicate that packet padding should successfully guard against a packet-level signature

attack. The question then becomes where and how to implement the padding mechanism.

PingPong in Perspective. Our work can be categorized within this broader area of net-

work signatures for IoT devices, and as such our packet-level signatures have the following

advantages over the other approaches: it (1) operates on possibly encrypted network traf-

fic, (2) does not rely on application code or deep packet inspection, and (3) is potentially

generally applicable across IoT devices.

Table 5.1 summarizes the properties of PingPong and compares it to other IoT traffic analysis

approaches. PingPong combines all the following desired features: (1) unique signatures

that can detect not only the occurrence of an event, but also the exact type of the event; (2)

applicability across a broad range of devices, agnostic to their details; (3) applicability to

two distinct adversaries (i.e., a WAN sniffer observing IP traffic upstream from the wireless

router, and a Wi-Fi sniffer observing encrypted Wi-Fi traffic on the local Wi-Fi network); (4)

new signatures (consisting of minimal information of packet length and direction) that (i) are

intuitive, i.e., capture the request and reply associated with events, (ii) can be automatically

extracted from training datasets, and (iii) are simpler than previously known signatures,

allowing for more lightweight detection; (5) seemingly resilient to state-of-the-art defenses

131

Table 5.1: PingPong’s properties vs. alternative approaches (X= Yes; × = No).

Approaches for IoT Network Traffic Signatures
Volume

+
Nest Machine Learning Zigbee/ PingPong

DNS device [152] [28] [179] Z-Wave
based [66] [180] device

[42, 43,
41, 40]

[222]

(1) Signature can detect
Device type X X X X X X X
Event type × X X X × X X

(2) Applicability to devices
> 15 Models × × X X X × X

(3) Observation points/threat models
LAN × X X X X N/A X
WAN X × × × × N/A X
Wi-Fi X × × X × N/A X

(4) Signature characteristics
Features Traffic TCP 13, (795) 12 Packet Packet

volume, connection ADU 197 length length
DNS size, & &

protocol direction direction
Interpretable X × X × × X X
Automated × × X X X X X
Extraction

(5) Resilient against defenses
VPN × × × × × N/A X
Traffic shaping × × × × × N/A X

such as VPN encryption and traffic shaping. Limitations and further discussion of our

approach can be found in Chapter 6.

5.2 Smart Home and IoT Security

Devices and Protocols. Denning et al. [70] made the first attempt to identify emergent

threats to smart homes due to the use of IoT devices. A recent work from [86] discusses

these threats in more concrete contexts, for example, by demonstrating scenarios in which

hackers can weaken home security through compromising these devices. The authors in-

vestigated the SmartThings smart home platform for security and vulnerability issues. For

instance, these devices do not have sufficient sensitive event data protection. Events could

132

leak sensitive information through capability-based access (e.g., battery status events could

leak pin code) or device identifier. The environment is also prone to event spoofing, e.g.,

the authors experimented with generating fake smoke detection events. Furthermore, the

environment has insecure third-party integration: HTTP endpoints are used for third-party

access. Although OAuth-based authentication service is used [151], the authors found that

there are apps with client ID and secret hard-coded in bytecode. On top of these issues, the

programming environment also exhibits an unsafe use of dynamic method invocation. For

instance, a method foo() can be called using the string "foo". This string is often sent via

the HTTP protocol in clear text, which makes it vulnerable to command injection attacks.

The research community is also actively looking into how the improperly secured IoT devices

can allow them to be used to mount large-scale attacks. Recent work shows that if an

attacker can control enough high-wattage IoT devices, the attacker can cause power grid

failures [183, 142, 76, 67]. A recent study by Antonakakis et al. provides a comprehensive

insight into the recently occurred Mirai botnet attack. In the attack, approximately 64,500

devices were infected by Mirai botnet in just 20 hours—approximately 600,000 devices were

infected during the peak of the attack in November 2016. With enough devices being infected,

the attackers performed a massive distributed DoS attack that crippled a few cloud services

providers, such as Krebs on Security, OVH, and Dyn. This in turn brings down a number of

well-known websites, such as Amazon, Spotify, etc. Antonakakis et al. discovered that a bot

would scan the legacy telnet port (port 23) and port 2323 of the IoT device that is potential

for the attack. If any of the ports is open, the bot would attempt to login by brute force.

The attack was successful because a lot of these devices used default telnet passwords for

login—the Mirai source code release included 46 unique passwords, some of which were even

traceable to a device type and vendor.

There are two main categories of work in current smart home security research, focused

primarily on devices and protocols, respectively. Work on devices includes the MyQ garage

133

system that can be used as a surveillance tool to inform burglars when the house is possibly

empty, the Honeywell Tuxedo touch controller that has authentication bypass bugs and

cross-site request forgery flaws [89, 103], as well as compact florescent lamps that can induce

seizures in epileptic users [153]. A study by Ur et al. [200] on the access control of the Philips

Hue lighting system and the Kwikset door lock found that each system provides a siloed

access control system that fails to enable essential use cases such as sharing smart devices

with other users like children and temporary workers. On protocols, studies found various

flaws in the ZigBee and Z-Wave protocol implementations [93, 131] as well as design flaws in

their programming frameworks [86]. Bluetooth devices face similar issues to Zigbee devices

regarding access control. Previous work [121] has explored access control for Bluetooth

devices. Low-level protocol differences mean that the solution for Bluetooth devices does

not solve the problem for Zigbee. A study from Veracode [202] on several smart home

hubs found that the SmartThings hub had an open telnet debugging interface that can be

exploited, while Fernandes et al. [86] discovered framework design flaws in the SmartThings

platform.

Overprivilege and Applications. The research community has also recently looked into

smart home apps [85, 87, 61, 60, 49, 149, 222, 188, 30]. Fernandes et al. present a thorough

study on the SmartThings environment [85]. They pointed out underlying security issues

and a simple program analysis to detect the overprivilege issue in the app source code.

They also found that IoT devices are also overprivileged due to the framework design itself.

In [87], Fernandes et al. investigated and discovered that applications can leak confidential

information.

Since many IoT security problems arise due to overprivileged network accesses, much work

has been done to limit the privilege of a networked system. However, this is difficult to

achieve due to the lack of programming language and system support. For example, Felt

et al. [83] analyzed many Android apps on the privilege they were given. Using Stowaway,

134

an automated tool that they developed in their study, they discovered that 323 out of 940

Android apps (approximately 35.8%) are overprivileged. They also discovered that more

than half of these apps have 1 extra permission and 6% request more than 4 unnecessary

permissions. Au et al. [44] developed PScout, a static analysis framework for Android source

code to produce complete permission specifications for different Android versions. The au-

thors discovered that Stowaway executes APIs in apps and, thus, it does not analyze the

apps comprehensively. PScout, instead, performs a static analysis on the Android app source

code and extracts specifications from the API source code to provide a more comprehensive

analysis. They specifically highlight that although there is a small percentage that permis-

sions could be redundant and undocumented APIs are used, most APIs only require a simple

permission scheme: more than 80% APIs only need 1 permission.

Roesner et al. [170, 169] introduced User-Driven Access Control, which involves the user at

the moment an app uses a sensitive resource. For instance, a remote control door lock app

should only be able to control a door lock in response to user action. However, certain devices

and apps are better suited to install-time permissions. Felt et al. introduced guidelines on

when to use different types of permissions [84].

Fernandes et al. [86] conducted a similar analysis on smart home IoT devices and found that

overprivilege also exists in IoT devices and much of the overprivilege is due to the frame-

work design itself. They investigated 499 apps and 132 device handlers using static analysis:

they found that 55% do not entirely use the requested capabilities and 42% are granted

the capabilities that are never requested. They discovered that the problem is twofold: (1)

coarse-grained capabilities, and (2) coarse binding between app and device. HomeOS sup-

ports smart home devices using a PC-like abstraction [73]. HomeOS only provides support

for placing restrictions on modules running on the PC—other devices on the network are

free to attack smart home devices. Vigilia provides much stronger security guarantees—it

can defend against attacks from any arbitrary components on the home network.

135

FlowFence [87] provides security by requiring consumers of sensitive applications to declare

their data flow patterns. It provides IoT applications with the ability to perform computation

on the sensitive IoT data, while mitigating data abuse at the same time. To achieve this,

the authors devised a technique called opacified computational model that consists of two

parts: (1) Quarantined Modules, (2) opaque handles. A Quarantine Module is a code

module written by developers. This module performs computation on sensitive data, which

is assigned a taint label at the data source—the module runs in a sandbox that is provided

by the system. An opaque handle is an interface with the non-sensitive side. It does not

reveal any information about the data value, data type, data size, taint size, or exceptions

that could occur to the non-sensitive code. This mechanism provides a means to track

sensitive data and information flow. It also prevents information leak from the sensitive

data as this sensitive data computation always occurs in a Quarantine Module. Quarantine

Modules and opaque handles are associated with a set of taint labels that indicates data

source and helps track information flows. FlowFence has the authority to make security

decisions over sensitive data: all declassification of sensitive data can only occur through

trusted APIs provided in the framework. Thus, this framework uses a similar concept that

has been explored by the research community in the area of information flow control (see

Section 5.4).

ContexIoT [113] is a context-based permission system provides contextual integrity by sup-

porting fine-grained context identification for sensitive actions. Thus, ContexIoT is orthogo-

nal to the technique presented in FlowFence. context. ContexIoT tries to provide contextual

integrity—sensitive action has to match trigger time and user’s intention. ContexIoT patches

the app code with additional code that will ask for user’s permission if the context and the

request appear to breach the security requirements, e.g., an app that requests to open the

bedroom window when the temperature is high and the user is sleeping. ContexIoT consists

of two main parts: (1) static analysis (intra-procedural context analysis and code patching),

and (2) runtime logging for dynamic/runtime values.

136

Network and Routing Policies. Network-based policy checking is not a new idea

and it has been studied in the software-defined networking (SDN) community [94, 59, 58].

SANE [59] and Ethane [58], a successor of SANE, are systems developed to manage policies

in enterprise networks. With ACLs, packet filters, and other security measures that were

intended to secure network perimeters, enterprise networks become too inflexible and very

hard to maintain. Administrators have to manage a large set of policies that easily need

changing as the network devices change. The SANE creators intend to mitigate the burden

and move this responsibility to the network itself. Based on capabilities that are enforced at

each switch, the network is able to make routing decisions. These are done automatically,

without compromising the security, and involving any human intervention. For example,

Ethane [58] requires each application to specify a manifest of its required communication

and then checks packets against security rules and installs forwarding rules as required.

While Ethane is applicable in our setting, it is designed primarily for enterprise networks

that have a large number of switches; it requires a sophisticated controller that performs

authentication, registration, and checking. It also requires expert administrators to develop

routing policies—a task that is beyond the abilities of most end users. Moreover, IoT devices

typically communicate via Wi-Fi and often do not support the enterprise security modes.

Thus, malicious devices can masquerade as other devices to bypass the SDN protections.

HanGuard [69] also uses SDN-like techniques to learn the normal traffic between smart-

phone apps and their respective smart home devices. HanGuard has a Monitor app runs on

the phone to identify any attacks. It then informs the router about the attacks through the

system’s control plane. The router subsequently enforces policies in the data plane after

verifying the party that attempts to access the device—if the attempt is identified as an

attack (or as an activity that is malicious), it will then be rejected by HanGuard.

Many other projects have made a similar observation that IoT devices have highly structured

communication patterns. The research community, thus, developed toolkits for managing

firewalls to manage the communications between these devices: IoTSec and IDIoT [184,

137

46] are the closest to Vigilia. They use a similar concept to Vigilia’s that firewalls are

useful to constrain accesses and communications that occur through a router between IoT

devices. However, their policy management appears to require users to specify allowed and

rejected network properties at a very low level—Vigilia, instead, derives the policy and, thus,

firewalls directly from the application (source code) level. IoTSec has two phases: profiling

and deployment. During profiling, it attempts to learn the normal traffic of devices, e.g.,

legitimate source and destination IP addresses, port numbers, protocols, etc. Then, a set

of firewall rules will be generated and can be deployed on the router. Similarly to Vigilia,

IoTSec reduces the attack surface with firewall while trying to maintain full functionality of

devices.

The Firmato [47] toolkit allows administrators to specify rules in terms of a higher-level

model. This model is specified by the administrator and thus has no direct relationship to

code— errors in specifying the model can either open the system to attacks or block desired

communications. Moreover, it is likely to not be reasonable to expect end users to develop

such models for their home networks.

The Bark policy language uses manually created policies [107]. This policy language provides

five types, i.e., who, what, where, when, and how to capture the high level information (e.g.,

devices, apps, types of service, etc.) needed to construct network level policies. Other

approaches, such as IoT Sentinel, propose learning policies [219, 140]. IoT Sentinel [140]

provides mitigation for devices with vulnerabilities. It identifies vulnerable devices in the

system, controls traffic flows, and constrains communication for such devices. It consists of

a security gateway (router) and a security service. The security gateway performs traffic

monitoring and control, and device fingerprinting. The security service classifies device

type, performs machine-learning on the collected fingerprints, and assesses vulnerability.

The vulnerability assessment will categorize vulnerable devices in different isolation levels.

IoT Sentinel specifies three levels for isolation: strict, restricted, and trusted.

138

Firmato, Bark, and the other approaches suffer from similar challenges to IoTSec, in that

they can generate overly relaxed policies that allow attacks or overly restrictive policies

that break applications. Moreover, compromised devices can easily bypass the policies by

masquerading as other devices. For simple IoT control rules of the form used by IFTTT,

automated analysis can generate rich policies that only grant permissions under specific

criteria (e.g., one can only turn on the heat if it is cold) [88].

SIFT [125] is a related work that is orthogonal to the other related work in rules and policy

generation. The authors made an observation that IoT applications (in the form of rules

and policies) can introduce conflict and safety issues. SIFT checks app rules and policies for

conflicts. It first transforms rules into intermediate representation that becomes an input to

the SMT solver. The process also combines model checking with symbolic execution to find

specific instances of environmental inputs that can trigger conflicts.

Automatic routing policy derivation and deployment have also been a critical goal of Vigilia.

To avoid mistakes in manual setup caused by human errors, Vigilia is designed to be able to

derive these policy rules based on the network’s security invariants, and the specifications of

sets and relations of devices. While SANE or Ethane derives its routing policies dynamically

based on the network conditions and actual packets at runtime, Vigilia statically derives

all the security policies from sets/relations and information stored in a database. This

approach is suitable for IoT devices as each device serves a single purpose and thus generates

monotonous traffic.

5.3 Interactions of Smart Home Applications

Data Races. Interactions of smart home apps may appear similar to those of concurrent

programs, including data races [175, 65, 64, 80, 127] and atomicity violations [135, 217, 91].

Earliest work in race detections is based on Lamport’s concept of happens-before rela-

139

tion [118]. Eraser [175] is among the pioneering work in the area of data race detection.

Eraser dynamically tracks the set of locks assigned and held at runtime during program

execution. It computes the intersection of all locks held when involved threads access a

shared memory location. Thus, when a shared location does not have any intersection, it

is flagged as not being properly protected. Intersection set is commutative, so Eraser can

flag errors regardless of the actual interleavings between the involved threads. Eraser has

been improved by Choi et al. by incorporating static analysis to remove unnecessary checks

during runtime analysis [65]. This technique tremendously reduced the overhead of Eraser

to at most around 40%—it was originally a factor of 10.

Engler et al. took a different approach and developed RacerX, a race detection tool that

is based on static analysis. RacerX is a static tool that detects race conditions and dead-

locks using flow-sensitive, interprocedural analysis. In general, RacerX traces locks based

on the operations they protect, code contexts that are multithreaded, and shared accesses

that are dangerous. It also tracks code features that are useful to sort errors based on

their severity. As counter analysis to avoid mistakes, RacerX uses novel techniques: (1)

result selection based on the most trustworthy paths, (2) decision cross-check in different

ways, and (3) semaphore inference to differentiate between mutual exclusion and unilateral

synchronization.

The research community has also looked into race detection of other programming languages

and built detection tools—data race detection tools are mostly developed for C/C++. Cheng

et al. developed a race detector for Cilk programs [64]. Flanagan et al. developed a race

detector for Java programs [90].

Atomicity Violations. Atomicity violations could be another problem that occurs al-

though a critical region has been properly protected using locks. Locks can guarantee that a

shared memory location is not accessed by multiple threads at the same time. However, the

interference between concurrent threads can still cause a problem. Different threads may ac-

140

cess this shared location at different times (race condition free), but they could still interfere

with the same shared location through other functions and procedures in the program; this

may leave a shared location with a random value that could cause the program to throw an

exception.

Flanagan et al. developed Atomizer [91], a dynamic analysis tool that detects atomicity

violations by verifying that every execution of a code block annotated as being atomic is not

affected and does not interfere with other running threads. Atomizer takes an aggressive

approach: instead of waiting for the signs of erroneous program behaviors, it is preemptively

looking for evidence of atomicity violations with the potential of causing future errors.

Lu et al. studied and developed a methodology to test the interleaving space and expose

atomicity-violation bugs [135]. The authors designed and evaluated a number of interleaving

coverage criteria through the use of real-world concurrency bugs. They formulated a coverage

criterion, called unserializable interleaving coverage, that they used to study the effectiveness

of stress testing. Finally, they designed CTrigger, a tool that deploys the unserializable

interleaving coverage criterion.

Yoga et al. proposed a dynamic analysis technique to detect atomicity violations in task

parallel programs [217]. Similarly to thread-based programs, interference between two tasks

that execute in parallel can also cause data races and atomicity violations. In this case, the

two tasks can logically execute in parallel, access the same location, and at least one of them

performs write operation. Their proposed technique detects atomicity violations through

appropriate metadata and dynamic execution structure of task parallel executions. The

technique maintains a history of multiple tasks that dynamically access a shared memory

location. Using the access history, it determines if memory accesses that are performed by

parallel tasks are conflict serializable.

141

Data races can be resolved by acquiring locks appropriately, while atomicity violations can

be resolved by ensuring that locks are held long enough to guarantee that multiple threads do

not interfere with one another when accessing the critical region. These techniques, however,

cannot resolve the above-mentioned conflict of smart home apps. They could, instead, disable

the desirable functionality of the apps that attempt to access a shared memory location and

render the apps useless.

Feature Interaction. Feature interaction focuses on the interactions between different

software features [56, 37, 112, 156, 39, 38]. In this case, these different software features can

have negative interactions.

In their position paper, Apel et al. [37] explored the nature of feature interactions system-

atically. The authors comprehensively classified feature interactions in terms of order and

visibility. In particular, they attempted to understand the efficiency of interaction-detection

and performance-prediction techniques. They presented a set of preliminary results. They

also presented a discussion of possible experimental setups.

Jackson et al. [112] reported their findings on feature interactions in telecommunications

services. They presented Distributed Feature Composition (DFC) as a new technology for

feature specification and composition. In the DFC architecture, calls from customers are pro-

cessed dynamically through assembling configurations of filter-like components. Each com-

ponent implements an applicable feature and communicates with other components through

internal calls.

Oster et al. [156] explored a similar feature interaction problem in the domain of Software

Product Lines (SPLs). In this domain, features interact, exchange information with other

features, or influence one another. Thus, an adequate test criterion is necessary to increase

coverage for various interactions between different features. Their technique combines a

combinatorial design algorithm for pairwise feature generation with model-based testing.

142

The purpose is to reduce the size of the SPL and to achieve a comprehensive coverage for

feature interactions.

Apel et al. [39] investigated whether feature-based specifications can be used to detect fea-

ture interactions. Feature-based specifications aim to achieve modularity in feature-oriented

systems. The authors addressed the problem of how much the modularity of specifications

can affect the detection of feature interactions. However, some of these specifications required

workarounds as they were not properly modularized.

In [38], the authors proposed a novel software design paradigm, namely feature-oriented

design. Feature-oriented software development (FOSD) considers a systematized feature

mapping, and the tendency of features to have unpredictable interactions. The authors

created FeatureAlloy, an extension to the lightweight modeling language Alloy, that has a

support for feature-oriented design. They demonstrated that the feature-oriented design

techniques deployed in FeatureAlloy facilitate separation of concerns, variability, and reuse

of models of individual features. The techniques also help with the definition and detection

of semantic dependence and interactions between features.

Compared to related work in feature interactions in these areas, the smart home setting is

different and unique. Smart home apps are developed independently by different app devel-

opers. They are also composed separately by end users. In the context of the SmartThings

platform, the smart home apps are distributed through many different channels; these in-

clude pay-for-source channels. In other words, the community (developers and end users)

does not have a means to detect, resolve, and avoid conflicts during the development phase

of these apps.

In the context of smart home, feature interactions have also been studied [120, 210, 163].

Nakamura et al. [120] used an object-oriented approach, in which each networked appliance

is modeled as an object. This object consists of properties and methods. The authors define

143

two types of feature interactions: appliance and environment interactions. An appliance

interaction occurs on an appliance object when different services try to invoke methods and

this results in incompatible updates or references for common properties. An environment

interaction occurs when methods of various appliances conflict through environment object—

this happens indirectly.

Wilson et al. [210] studied the side-effect problem in the interaction between components in

environmental modelling. While previous work introduced a device-centric approach that

detects undesirable behaviors when there are interactions between appliances, the authors

argue that some appliances also affect the environment through their side effects, e.g., an air

conditioner that decreases the humidity in addition to cooling the air as its main function.

Rajan et al. [163] proposed test oracle specifications. Due the dynamic nature of smart home

environments, many of the services inside a smart home may change their configuration at

runtime. This presents testing challenges, namely the specification of test oracles. The

authors gave the formal specification of test oracles in the JML specification language. In

the presence of dynamic reconfigurations in a smart home, the proposed mechanism notifies

dynamic changes along with the runtime evaluation of JML specifications.

Although this body of work also has smart home as a context, what they used was early

research prototypes with home automation. In these early systems, the richness and com-

plexity of the smart home environment do not compare with those of modern smart home

platforms, such as the SmartThings platform. Since they were prototype systems, they pre-

sumed much simpler and coarser apps. For instance, a smart home app could be a single

app that controls a light; this app does not serve any other functionality. HCI researchers

have shown that feature interactions in IoT systems make it difficult for users to understand

the systems’ behavior [216]. In rule-based smart home systems, researchers have developed

tools for repairing incorrect rules [147].

144

Interactions of Mobile Apps. The research community is actively studying the inter-

actions between Android apps [52, 198, 57, 101, 122, 45, 119]. Bagheri et al. [45] pre-

sented a technique that enables end-users to safeguard apps installed on their device from

attacks. These attacks exploit the vulnerabilities in downloaded and installed apps on An-

droid platforms—it is hard to foresee these attacks as developers would not know which apps

will be installed together by end users. Based on these findings, the authors created SEPAR,

a static analysis tool that uses formal method techniques to infer security properties from

a group of apps automatically. It subsequently uses a constraint solver to predict possible

exploits and derive fine-grained security policies as a means for protection for these apps.

A body of work focuses on the analysis of the Android message passing mechanism called

Inter-Component Communication (ICC). Inter-app ICCs have the potential to be abused

by malwares to launch collusion attacks using multiple apps, but the analysis complexity

prohibits concrete security evidence. Bosu et al. [52] reported their findings in the first large-

scale detection of collusive and vulnerable apps. Their design aims to achieve accuracy, as

well as runtime scalability. Still in the domain of multi-app vulnerabilities, IACDroid [57]

deploys an inter-application analysis technique to detect sensitive data leakage. IACDroid

was tested on DroidBench and IAC Extended DroidBench datasets—it yields high accuracy.

LinkFlow [101] leverages taint analysis technique to enumerate ICCs that could lead to

privacy leakage in each individual apps. Most ICCs are normal, so they can be excluded

in the next step analysis. This allows LinkFlow to perform large-scale leakage detection

among a large set of apps, which was still a challenge prior to this work. SEALANT [119]

combines static analysis, which discovers vulnerable communication channels, of app code

with runtime monitoring of inter-app communication that occurs through those channels.

This helps to prevent attacks. ApkCombiner [122] combines different apps into a single apk.

With this, existing tools can indirectly perform inter-app analysis. IoTCheck also combines

multiple apps into one app before using JPF to perform model checking on the combined

app. JITANA [198] analyzes interacting Android apps simultaneously.

145

These techniques focus primarily on cross-app information flow and taint analysis via IC-

C/IAC mechanisms in Android (e.g., Intents). Their settings are different from the setting

for smart home apps. The smart home apps problem requires checking execution trace

(representing the progress of program states) and its properties (e.g., the changes of shared

memory locations). Hence, the techniques developed for Android ICC/IAC analysis would

not be effective to handle these specific requirements.

Event-Based Races: Mobile Apps. The interactions of smart home apps also has some

similarity to event-based races in mobile apps [108, 165, 138, 109, 50]. Bielik et al. [50]

presented a complete dynamic analysis system that is capable of finding data races in real-

world Android applications in just minutes. The system the authors created was based on

three key concepts: (1) a thorough happens-before model of Android-specific concurrency, (2)

an analysis algorithm that is scalable for efficiently constructing the happens-before graph,

and (3) a domain-specific filter that effectively reduces the number of reported data races

(by several orders of magnitude).

Hu et al. [109] introduced SIERRA, a static analysis tool with precision and scalability to

detect Android event-based races. SIERRA is based on a novel concept called concurrency

action that ”reifies threads, events, messages, system, and user actions”. It then statically

derives order in terms of happens-before relation for the tested Android apps.

Hsiao et al. [108] presented a race detection tool, CAFA, for event-driven mobile applications.

CAFA accounts for the causal order due to the event queues. This is not accounted for in

past data race detectors. CAFA also overcomes the problem of detecting races based on

low-level properties between memory accesses that leads to a large number of false positives

by, instead, checking for races between high-level operations.

Raychev et al. [165] developed EVENTRACER, a tool built on their novel technique that

addresses two problems: (1) large number of false positives and (2) scalability challenge.

146

The authors introduced race coverage, a method that systematically exposes ad hoc syn-

chronization and other potentially harmful races to the user to reduce false positives. They

also presented an algorithm to compute race coverage.

Maiya et al. [138] implemented DROIDRACER, a tool that tests Android applications and

generates execution traces. DROIDRACER detects data races by computing the happens-

before relation on the traces. The authors also formalized the concurrency semantics of the

programming model and defined the happens-before relation for Android applications.

Related work on mobile apps typically deals with one app that has multiple events. On the

other hand, our work focuses on the interactions between multiple apps. The event and event

handlers in smart home apps are developed by different programmers who are uncoordinated.

Furthermore, a number of apps also allow the user to generate arbitrary events. Even though

the ordering between events in one app can be clearly defined, the ordering between events

across multiple apps combined with user-generated events is completely arbitrary. Thus, the

techniques presented to synchronize events in individual apps would not be useful in this

context.

Concurrency in Smart Home Apps. The research community has been actively looking

into security bugs and issues in smart home apps. They conducted studies and developed

novel techniques to detect these issues [85, 87, 61, 60, 49, 222, 188, 30, 130]. Unfortunately,

interactions and conflicts between multiple apps are not the focus of this body of work.

Researchers have presented new techniques to model-check and analyze confidential infor-

mation leakage in smart home applications. The techniques presented in [149, 148] require

translating the apps to perform the model checking using SPIN [106]. The limitation is that

the expressiveness of app features could be lost in translation: with just 3 apps the authors

found 1 feature that their system could not express concisely [148]. Other work [61, 60, 49]

ignores internal application state, and thus admits executions that cannot happen.

147

Several of our apps depend on internal state to decide whether to perform an action, and

thus they would not be accurately modeled by their techniques. While conflicts between

apps are discussed in [61], they considered a much smaller corpus of apps and a number of of

them are self-crafted to generate the intended conflicts. Unfortunately, their system is not

publicly available.

There have also been efforts to resolve the conflicts between smart home apps from the

perspective of dependencies between application components at the system level [204, 212,

203, 143, 215]. This body of work, which was done in the cyber-physical systems community,

attempts to identify and resolve conflicts between smart home apps at the system level, view-

ing apps as black boxes Several systems [204, 203, 212] provide frameworks for programming

networks of sensors and actuators. DepSys [143] provides infrastructure with comprehensive

strategies to specify, detect, and resolve conflicts through the use of user-specified metadata.

Kripke [215] performs conflict detection through the use of model checking.

While such techniques are useful in certain simple scenarios, they are still semantics-agnostic

and do not work even for the above-mentioned conflicts. Understanding the semantics of

the apps (e.g., scheduling of events) is key to build a tool that can automatically detect

the conflicts—they can typically be exposed only when a specific set of events occur in a

certain order. Our work is orthogonal to this body of work that attempts to deal with

conflicts between apps at the system level, by viewing apps as black boxes. Our work, on

the contrary, studies how apps interact and what can be done at the source code level to

mitigate conflicts.

IA-Graph [123, 124] studies smart-home app conflicts and proposes a lightweight approach

to check for conflicts. This work extracts an SMT formula that describes the legal transi-

tions for an app and then uses an SMT solver to detect whether a set of apps has conflicting

transitions. As acknowledged in the IA-Graph paper, IA-Graph ”ignores complicated compu-

tations in the app code”—they are, in fact, used either (1) in condition statements, or (2) to

148

update the device state—and hence the patterns it finds are limited. In addition, not all tran-

sitions in an app can be expressed in SMT, further limiting the kinds of conflicts IA-Graph

can detect. Another important drawback is IA-Graph does not check whether a conflicting

transition is reachable in an execution and hence can produce many false positives—it may

incorrectly label non-conflicting apps as conflicting. Understanding the impact of these is-

sues is quite difficult without accessing their implementation. Unfortunately, the authors did

not release any software—thus an empirical evaluation is not possible. Furthermore, they

did not perform any wide-scale study.

5.4 Other Related Work

Capability-based Object Model. The concept of capability-based object model is used to

limit accesses to a certain object based on the set of capabilities it provides. It was first coined

in 1959 by Dennis et al. [71] in which a hierarchical structure of object names is presented

in programming semantics for multi-programmed computers. Miller et al., [141] compared

access control list (ACL) with capability-based model. In [137, 136] capability-based model

has been used to secure web browsers, while [172] compares features and capability based

model.

Conceptually, in many of those systems, capabilities are resolved dynamically as needs arise.

Joe-E [139] demonstrates how it is possible to achieve the strong security properties of an

object-capability language while retaining the features and feel of a mainstream object-

oriented language. Unix based operating systems, such as Linux, have fundamentally im-

plemented ACL that is orthogonal to capability-based object model. SELinux [133] adds

support for mandatory access control policies to Linux. Policies are specified by an admin-

istrator and they capture the behaviors a program is allowed to perform. Errors in policies

can cause the operating system to block operations, wasting user time debugging issues and

in many cases resulting in SELinux ultimately being disabled.

149

Vigilia provides in-depth security guarantees through capability-based object model. Vig-

ilia RMI compiler generates stubs and skeletons for each object based on the capabilities

that the stub can access on the object that controls a certain device. Although it is gener-

ated statically when the stub and skeleton are created, the filter checks method invocations

dynamically at runtime.

Type System and Information Flow Control. Vigilia deploys a type system in its

capability-based RMI mechanisms that set up constraints for communication between com-

ponents. The stub and skeleton code generated by Vigilia use a filter to verify that the

remote method invocations come from components that have been granted accesses to the

appropriate capabilities. Type systems have been used to control information flow and avoid

vulnerabilities in several previous works. JFlow [144], is a language that is based on Java

and it analyzes information flow before it translates its source code into Java code. A pro-

grammer needs to use labels and write policies on variables, methods, classes, etc. The Java

Checker Framework [72] is another work that provides a framework to write type checkers

for specific needs in Java, e.g., null dereferences, equality operators, reference/object im-

mutability, etc. Basically, Vigilia ’s type system checks and forbids remote object passing

from one process to another through its RMI compiler that generates two interfaces.

Operating systems [220] and distributed systems [221, 129] have used information flow to en-

force similar properties. Fabric [129] extends the JiF language with support for transactions

and remote calls and can be used to enforce information flow security on distributed sys-

tems. The techniques developed by Vigilia are largely orthogonal to those in Fabric: Vigilia

assumes that component implementations may have bugs and thus focuses on constraining

communication between components while Fabric relies on the correctness of components

and instead focuses on information flow properties. This body of work is largely orthogonal

to Vigilia.

150

Chapter 6

Conclusions

6.1 Summary

In this dissertation, we present a passive inference attack we discovered and studied on smart

home devices: packet-level signatures. We designed, implemented, and evaluated PingPong,

a methodology for automatically extracting packet-level signatures for smart home device

events from network traffic. Notably, traffic can be encrypted or generated by proprietary

or unknown protocols. This work advances the state-of-the-art by: (1) identifying simple

packet-level signatures that were not previously known; (2) proposing an automated method-

ology for extracting these signatures from training datasets; and (3) showing that they are

effective in inferring events across a wide range of devices, event types, traces, and attack

models (WAN sniffer and Wi-Fi sniffer). We have made PingPong (software and datasets)

publicly available at [194]. We note that the new packet-level signatures can be used for

several applications, including launching a passive inference attack, anomaly detection, etc.

To deal with such attacks, we outlined a simple defense based on packet padding.

Based on the knowledge that smart home devices are vulnerable to network attacks, we

developed techniques to secure smart home systems that, in turn, also secure smart home

151

devices. We present an approach for building secure smart home systems out of insecure

components in Vigilia. Our approach moves the burden of securing the system from the

device manufacturers to the platform, reducing concerns about the long-term availability of

security patches.

We have implemented 4 applications in Vigilia using commercially available IoT devices. The

intended deployment of the IoT devices used by each application had least one vulnerability.

Vigilia successfully defended all our applications against all attacks.

In addition to smart home devices and systems, we also looked into smart home apps.

In this dissertation, we also present a comprehensive study of interactions and conflicts

between smart home apps, as well as an automated tool for finding conflicts. We studied the

SmartThings framework: we collected and studied 198 official and 69 third-party apps. We

formed pairs from the apps and we categorized their interaction patterns (i.e., interacts-with

relation) between apps into the following 3 major categories: (1) device, (2) physical-medium,

and (3) global-variable relations.

Our results show conflicts in close to 60% of app pairs in the device relation category, more

than 90% of app pairs in the physical-medium relation category, and around 11% of app

pairs in the global-variable relation category.

Based on these results, we developed a tool, IoTCheck, that uses model checking to automat-

ically detect and report conflicts. IoTCheck successfully detects around 96% of the conflicts

in app pairs in the device and physical-medium relation categories.

6.2 Limitations and Future Directions

PingPong has its limitations and can be extended in several directions. First, in order to

extract the signature of a new device, one must first acquire the device and apply PingPong

152

to train and extract the corresponding packet-level signatures. This is actually realistic for

an attacker with minimal side information, i.e., one who knows what device they want to

attack or who wants to distinguish between two different types of devices. One direction for

future work is to extend PingPong by finding “similar” known behaviors for a new device,

e.g., via relaxed matching of known and unknown signatures.

Second, a signature may evolve over time, e.g., when a software/firmware update changes

a device’s communication protocol. Whoever maintains the signature (e.g., the attacker)

needs to retrain and update the signature. We observed this phenomenon, for example, for

the TP-Link plug. This can be handled by relaxed matching since the packet sequences tend

to be mostly stable and only evolve by a few bytes (see Section 2.4.6).

Third, there may be inherent variability in some signatures due to configuration parameters

(e.g., credentials and device IDs) that are sent to the cloud and may lead to slightly different

packet lengths. In Section 2.4.6, we saw that this variability is small: from a few to tens

of bytes difference and only for some individual packets within a longer sequence. An at-

tacker could train with different configuration parameters and apply relaxed matching when

necessary (only on packets with length variations).

Other possible improvements include: profiling and subtracting background/periodic traffic

during signature creation, and unifying the way we account for small variation in the sig-

natures in the training and detection—PingPong currently supports range-based matching

(see Section 2.3.2) and relaxed matching as separate features. Another limitation is that our

methodology currently applies only to TCP—not to UDP-based devices that do not follow

the request-reply pattern.

The techniques used in Vigilia, i.e., static checking, router policy enforcement, process sand-

boxing, and capability-based RMI (see Section 3.6) along with Wi-Fi network filtering and

Zigbee firewall (see Section 3.7) could also be deployed in existing systems, e.g., Smart-

153

Things. The major issue with directly implementing our approach on SmartThings is that

the SmartApps run on their cloud servers and none of the source code for their software in-

frastructure for running SmartApps is available. Nevertheless, assuming that we had access

to their software infrastructure and extended it to execute applications and device drivers

on the local network, it would be straightforward to deploy the static checking, router policy

enforcement, process sandboxing, and capability-based RMI. The techniques to secure the

Wi-Fi network against snooping, ARP-spoofing, and MAC-spoofing could be applied directly

to the router, while the Zigbee firewall could also be integrated fairly easily into the smart

hub.

The study of interactions between smart home apps and automated conflict detection using

IoTCheck have a few alternatives for future directions. IoTCheck model-checks smart home

apps to find device and global-variable conflicts based on the definition given in Definition 4.1.

This definition works for most of the cases we have found in our manual study. However, we

also found an exception of a pair of apps that do not actually conflict (see Section 4.4.1), but

will be determined as a conflicting pair by IoTCheck. Thus, future work includes improving

our definitions of conflict. Another future direction is to study and measure the criticality

of conflicts between smart home apps—this is not a trivial problem because it depends on

the specific deployment of the apps (see Section 4.1.3). Finally, conflict resolution is also a

potential future direction. For example, our preliminary results show that a large number

of the conflicts we detected can be resolved by redesigning APIs to (1) enable developers to

understand and reason about potential conflicts during app development and (2) allow the

platform to centrally control various app requests. Nevertheless, further study, experiment,

implementation, and evaluation remain as future work.

154

Bibliography

[1] Forgiving security. https://github.com/imbrianj/forgiving_security/blob/

master/forgiving_security.groovy, 2013.

[2] Auto humidity vent. https://github.com/SmartThingsCommunity/

SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/

smartapps/jonathan-a/auto-humidity-vent.src/auto-humidity-vent.groovy,
2014.

[3] Close the valve. https://github.com/SmartThingsCommunity/SmartThingsPublic/
blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/

close-the-valve.src/close-the-valve.groovy, 2014.

[4] Hello, home phrase director. https://github.com/SmartThingsCommunity/

SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/

smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-

director.groovy, 2014.

[5] Lock it at a specific time. https://github.com/SmartThingsCommunity/

SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/

smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-

specific-time.groovy, 2014.

[6] Sprayer controller 2. https://github.com/erocm123/SmartThingsPublic-1/blob/

master/smartapps/sprayercontroller/sprayer-controller-2.src/sprayer-

controller-2.groovy, 2014.

[7] Big turn off. https://github.com/SmartThingsCommunity/SmartThingsPublic/

blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/

big-turn-off.src/big-turn-off.groovy, 2015.

[8] Big turn on. https://github.com/SmartThingsCommunity/SmartThingsPublic/

blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/

big-turn-on.src/big-turn-on.groovy, 2015.

[9] Bon voyage. https://github.com/SmartThingsCommunity/SmartThingsPublic/

blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/

bon-voyage.src/bon-voyage.groovy, 2015.

155

https://github.com/imbrianj/forgiving_security/blob/master/forgiving_security.groovy
https://github.com/imbrianj/forgiving_security/blob/master/forgiving_security.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/jonathan-a/auto-humidity-vent.src/auto-humidity-vent.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/jonathan-a/auto-humidity-vent.src/auto-humidity-vent.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/jonathan-a/auto-humidity-vent.src/auto-humidity-vent.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/close-the-valve.src/close-the-valve.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/close-the-valve.src/close-the-valve.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/close-the-valve.src/close-the-valve.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/erocm123/SmartThingsPublic-1/blob/master/smartapps/sprayercontroller/sprayer-controller-2.src/sprayer-controller-2.groovy
https://github.com/erocm123/SmartThingsPublic-1/blob/master/smartapps/sprayercontroller/sprayer-controller-2.src/sprayer-controller-2.groovy
https://github.com/erocm123/SmartThingsPublic-1/blob/master/smartapps/sprayercontroller/sprayer-controller-2.src/sprayer-controller-2.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-off.src/big-turn-off.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-off.src/big-turn-off.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-off.src/big-turn-off.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-on.src/big-turn-on.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-on.src/big-turn-on.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-on.src/big-turn-on.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/bon-voyage.src/bon-voyage.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/bon-voyage.src/bon-voyage.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/bon-voyage.src/bon-voyage.groovy

[10] Good night. https://github.com/SmartThingsCommunity/SmartThingsPublic/

blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/

good-night.src/good-night.groovy, 2015.

[11] Greetings earthling. https://github.com/SmartThingsCommunity/

SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/

smartapps/smartthings/greetings-earthling.src/greetings-earthling.

groovy, 2015.

[12] Keep me cozy. https://github.com/SmartThingsCommunity/SmartThingsPublic/

blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/

keep-me-cozy.src/keep-me-cozy.groovy, 2015.

[13] Light up the night. https://github.com/SmartThingsCommunity/

SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/

smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy,
2015.

[14] Lock it when i leave. https://github.com/SmartThingsCommunity/

SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/

smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-

leave.groovy, 2015.

[15] Samsung smart fridge leaves Gmail logins open to attack. http://www.theregister.
co.uk/2015/08/24/smart_fridge_security_fubar/, August 2015.

[16] Smart security. https://github.com/SmartThingsCommunity/SmartThingsPublic/
blob/master/smartapps/smartthings/smart-security.src/smart-security.

groovy, 2015.

[17] Turn on at sunset. https://github.com/SmartThingsCommunity/Code/blob/

master/smartapps/sunrise-sunset/turn-on-at-sunset.groovy, 2015.

[18] Initial state event streamer. https://github.com/SmartThingsCommunity/

SmartThingsPublic/blob/master/smartapps/initialstate-events/initial-

state-event-streamer.src/initial-state-event-streamer.groovy, 2016.

[19] Lawn watering tips - best times & schedules. http://www.scotts.com/smg/goART3/
Howto/lawn-watering-tips/33800022/12400007/32000006/18800019, April 2016.

[20] Understanding illuminance: What’s in a lux? https://www.allaboutcircuits.com/

technical-articles/understanding-illuminance-whats-in-a-lux/, January
2016.

[21] Influxdb logger. https://github.com/codersaur/SmartThings/blob/master/

smartapps/influxdb-logger/influxdb-logger.groovy, 2017.

156

https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/good-night.src/good-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/good-night.src/good-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/good-night.src/good-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/keep-me-cozy.src/keep-me-cozy.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/keep-me-cozy.src/keep-me-cozy.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/keep-me-cozy.src/keep-me-cozy.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
http://www.theregister.co.uk/2015/08/24/smart_fridge_security_fubar/
http://www.theregister.co.uk/2015/08/24/smart_fridge_security_fubar/
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/smart-security.src/smart-security.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/smart-security.src/smart-security.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/smart-security.src/smart-security.groovy
https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-at-sunset.groovy
https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-at-sunset.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/initialstate-events/initial-state-event-streamer.src/initial-state-event-streamer.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/initialstate-events/initial-state-event-streamer.src/initial-state-event-streamer.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/initialstate-events/initial-state-event-streamer.src/initial-state-event-streamer.groovy
http://www.scotts.com/smg/goART3/Howto/lawn-watering-tips/33800022/12400007/32000006/18800019
http://www.scotts.com/smg/goART3/Howto/lawn-watering-tips/33800022/12400007/32000006/18800019
https://www.allaboutcircuits.com/technical-articles/understanding-illuminance-whats-in-a-lux/
https://www.allaboutcircuits.com/technical-articles/understanding-illuminance-whats-in-a-lux/
https://github.com/codersaur/SmartThings/blob/master/smartapps/influxdb-logger/influxdb-logger.groovy
https://github.com/codersaur/SmartThings/blob/master/smartapps/influxdb-logger/influxdb-logger.groovy

[22] Thermostats. https://github.com/SmartThingsCommunity/SmartThingsPublic/

blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/

thermostats.src/thermostats.groovy, 2017.

[23] Ifttt. https://www.ifttt.com/, September 2018.

[24] Initial state. https://www.initialstate.com/, September 2018.

[25] Neato (connect). https://github.com/alyc100/SmartThingsPublic/blob/master/
smartapps/alyc100/neato-connect.src/neato-connect.groovy, 2018.

[26] Smartthings groovy ide. https://graph.api.smartthings.com/, 2019.

[27] If motion detected by D-Link motion sensor, then turn on D-Link smart
plug. https://ifttt.com/applets/393508p-if-motion-detected-by-d-link-

motion-sensor-then-turn-on-d-link-smart-plug, January 2020.

[28] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu, M. Conti,
A.-R. Sadeghi, and A. S. Uluagac. Peek-a-Boo: I see your smart home activities, even
encrypted! arXiv preprint arXiv:1808.02741, 2018.

[29] Alexa. Top sites in United States. https://www.alexa.com/topsites/countries/US,
November 2018.

[30] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. SoK: Security evaluation of
home-based IoT deployments. In Proceedings of the IEEE Symposium on Security and
Privacy, page 0. IEEE.

[31] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. SoK: Security evaluation of
home-based IoT deployments. In 2019 2019 IEEE Symposium on Security and Privacy
(SP), volume 00, pages 208–226.

[32] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. Yourthings scorecard. https:
//yourthings.info/, 2019.

[33] Amazon. https://www.amazon.com/smart-home/b/?ie=UTF8&node=6563140011&

ref_=sv_hg_7, March 2019.

[34] B. Anderson and D. McGrew. Identifying encrypted malware traffic with contextual
flow data. In Proceedings of the 2016 ACM Workshop on Artificial Intelligence and
Security, AISec ’16, pages 35–46, New York, NY, USA, 2016. ACM.

[35] Android.com. Android debug bridge (adb). https://developer.android.com/

studio/command-line/adb, November 2018.

[36] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-
rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou. Under-
standing the mirai botnet. In Proceedings of the 26th USENIX Security Symposium,
2017.

157

https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/thermostats.src/thermostats.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/thermostats.src/thermostats.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/thermostats.src/thermostats.groovy
https://www.ifttt.com/
https://www.initialstate.com/
https://github.com/alyc100/SmartThingsPublic/blob/master/smartapps/alyc100/neato-connect.src/neato-connect.groovy
https://github.com/alyc100/SmartThingsPublic/blob/master/smartapps/alyc100/neato-connect.src/neato-connect.groovy
https://graph.api.smartthings.com/
https://ifttt.com/applets/393508p-if-motion-detected-by-d-link-motion-sensor-then-turn-on-d-link-smart-plug
https://ifttt.com/applets/393508p-if-motion-detected-by-d-link-motion-sensor-then-turn-on-d-link-smart-plug
https://www.alexa.com/topsites/countries/US
https://yourthings.info/
https://yourthings.info/
https://www.amazon.com/smart-home/b/?ie=UTF8&node=6563140011&ref_=sv_hg_7
https://www.amazon.com/smart-home/b/?ie=UTF8&node=6563140011&ref_=sv_hg_7
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb

[37] S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, and B. Garvin. Exploring feature
interactions in the wild: The new feature-interaction challenge. In Proceedings of the
5th International Workshop on Feature-Oriented Software Development (FOSD), pages
1–8, 2013.

[38] S. Apel, W. Scholz, C. Lengauer, and C. Kästner. Detecting dependences and interac-
tions in feature-oriented design. In IEEE 21st International Symposium on Software
Reliability Engineering (ISSRE), pages 161–170, 2010.

[39] S. Apel, A. Von Rhein, T. ThüM, and C. KäStner. Feature-interaction detection
based on feature-based specifications. Computer Networks: The International Journal
of Computer and Telecommunications Networking, 57(12):2399–2409, August 2013.

[40] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster. Keeping
the smart home private with smart(er) IoT traffic shaping. Proceedings on Privacy
Enhancing Technologies, 2019(3), 2019.

[41] N. Apthorpe, D. Reisman, and N. Feamster. Closing the blinds: Four strategies for
protecting smart home privacy from network observers. CoRR, abs/1705.06809, 2017.

[42] N. Apthorpe, D. Reisman, and N. Feamster. A smart home is no castle: Privacy
vulnerabilities of encrypted IoT traffic. CoRR, abs/1705.06805, 2017.

[43] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feamster. Spying
on the smart home: Privacy attacks and defenses on encrypted IoT traffic. CoRR,
abs/1708.05044, 2017.

[44] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: Analyzing the android
permission specification. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, Raleigh, NC, USA, October 2012 (CCS ’12), pages
217–228. ACM, 2012.

[45] H. Bagheri, A. Sadeghi, R. Jabbarvand, and S. Malek. Practical, formal synthesis
and automatic enforcement of security policies for android. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pages 514–525. IEEE, 2016.

[46] D. Barrera, I. Molloy, and H. Huang. Idiot: Securing the internet of things like it’s
1994. CoRR, abs/1712.03623, 2017.

[47] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall management
toolkit. ACM Transactions on Computer Systems, 22(4):381–420, November 2004.

[48] M. Bergin. Unplugging an IoT device from the cloud. https://blog.korelogic.com/
blog/2015/12/11/unplugging_iot_from_the_cloud, December 2015.

[49] Z. Berkay Celik, E. Fernandes, E. Pauley, G. Tan, and P. McDaniel. Program analysis
of commodity IoT applications for security and privacy: Challenges and opportunities.
arXiv preprint arXiv:1809.06962, 2018.

158

https://blog.korelogic.com/blog/2015/12/11/unplugging_iot_from_the_cloud
https://blog.korelogic.com/blog/2015/12/11/unplugging_iot_from_the_cloud

[50] P. Bielik, V. Raychev, and M. Vechev. Scalable race detection for Android applica-
tions. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, pages
332–348, New York, NY, USA, 2015. ACM.

[51] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine. Privacy vulnerabilities in
encrypted HTTP streams. In Proceedings of the 5th International Conference on Pri-
vacy Enhancing Technologies, PET’05, pages 1–11, Berlin, Heidelberg, 2006. Springer-
Verlag.

[52] A. Bosu, F. Liu, D. D. Yao, and G. Wang. Collusive data leak and more: Large-scale
threat analysis of inter-app communications. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pages 71–85. ACM, 2017.

[53] X. Cai, R. Nithyanand, and R. Johnson. CS-BuFLO: A congestion sensitive web-
site fingerprinting defense. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society, pages 121–130. ACM, 2014.

[54] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg. A systematic approach
to developing and evaluating website fingerprinting defenses. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pages 227–238.
ACM, 2014.

[55] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a distance: Website
fingerprinting attacks and defenses. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12, pages 605–616, New York, NY,
USA, 2012. ACM.

[56] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature interaction: a
critical review and considered forecast. Computer Networks, 41(1):115–141, 2003.

[57] N. T. Cam, P. Van Hau, and T. Nguyen. Android security analysis based on inter-
application relationships. In Information Science and Applications (ICISA) 2016,
pages 689–700. Springer, 2016.

[58] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker. Ethane:
Taking control of the enterprise. SIGCOMM Comput. Commun. Rev., 37(4):1–12,
Aug. 2007.

[59] M. Casado, T. Garfinkel, M. Freedman, A. Akella, D. Boneh, N. McKeowon, and
S. Shenker. SANE: A Protection Architecture for Enterprise Networks. In Proc.
Usenix Security Symposium, August 2006.

[60] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel, and A. S. Uluagac.
Sensitive information tracking in commodity iot. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association.

159

[61] Z. B. Celik, P. McDaniel, and G. Tan. Soteria: Automated IoT safety and security
analysis. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, 2018.

[62] A.-M. Chang, F. A. J. L. Scheer, and C. A. Czeisler. The human circadian system
adapts to prior photic history. The Journal of Physiology, 589(5):1095–1102, March
2011.

[63] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in web applications:
A reality today, a challenge tomorrow. In 2010 IEEE Symposium on Security and
Privacy, pages 191–206. IEEE, 2010.

[64] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting
data races in Cilk programs that use locks. In Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA ’98, pages 298–309, New
York, NY, USA, 1998. ACM.

[65] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Effi-
cient and precise datarace detection for multithreaded object-oriented programs. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design
and implementation, pages 258–269, 2002.

[66] B. Copos, K. Levitt, M. Bishop, and J. Rowe. Is anybody home? Inferring activity
from smart home network traffic. In Security and Privacy Workshops (SPW), 2016
IEEE, pages 245–251. IEEE, 2016.

[67] A. Dabrowski, J. Ullrich, and E. R. Weippl. Grid shock: Coordinated load-changing
attacks on power grids: The non-smart power grid is vulnerable to cyber attacks as
well. In Proceedings of the 33rd Annual Computer Security Applications Conference,
ACSAC 2017, pages 303–314, New York, NY, USA, 2017. ACM.

[68] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. Gunter, X. Zhou, and M. Grace.
Guardian of the HAN: Thwarting mobile attacks on smart-home devices using OS-
level situation awareness. https://arxiv.org/abs/1703.01537, 2017.

[69] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. Gunter, X. Zhou, and M. Grace.
Guardian of the HAN: Thwarting mobile attacks on smart-home devices using OS-
level situation awareness. https://arxiv.org/abs/1703.01537, 2017.

[70] T. Denning, T. Kohno, and H. M. Levy. Computer security and the modern home.
Commun. ACM, 56(1):94–103, Jan. 2013.

[71] J. B. Dennis and E. C. Van Horn. Programming semantics for multiprogrammed
computations. Commun. ACM, 9(3):143–155, Mar. 1966.

[72] W. Dietl, S. Dietzel, M. D. Ernst, K. Muşlu, and T. Schiller. Building and using plug-
gable type-checkers. In Proceedings of the 33rd International Conference on Software
Engineering, pages 681–690, 2011.

160

[73] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu, and P. Bahl. An
operating system for the home. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, 2012.

[74] R. Doshi, N. Apthorpe, and N. Feamster. Machine learning DDoS detection for con-
sumer internet of things devices. CoRR, abs/1804.04159, 2018.

[75] L. DROLEZ. Wanscam JW0004 IP Webcam hacking. http://www.drolez.com/blog/
?category=Hardware&post=jw0004-webcam, July 2015.

[76] Y. Dvorkin and S. Garg. Iot-enabled distributed cyber-attacks on transmission and
distribution grids. CoRR, abs/1706.07485, 2017.

[77] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-boo, i still see
you: Why efficient traffic analysis countermeasures fail. In 2012 IEEE symposium on
security and privacy, pages 332–346. IEEE, 2012.

[78] M. Eddy, V. Song, and J. R. Delaney. Bitdefender box 2. https://www.pcmag.com/

review/357433/bitdefender-box-2, November 2017.

[79] M. Eddy, V. Song, and J. R. Delaney. Symantec norton core router. https://www.

pcmag.com/review/355417/symantec-norton-core-router, September 2017.

[80] D. Engler and K. Ashcraft. RacerX: Effective, static detection of race conditions and
deadlocks. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, pages 237–252, New York, NY, USA, 2003. ACM.

[81] H. P. Enterprise. Internet of things research study: 2015 report. http://h20195.

www2.hp.com/V2/GetDocument.aspx?docname=4AA5-4759ENW&cc=us&lc=en, 2015.

[82] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231,
1996.

[83] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions demys-
tified. In Proceedings of the 18th ACM Conference on Computer and Communications
Security, Chicago, IL, USA, October 2011 (CCS ’11).

[84] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner. How to ask for
permission. In Proceedings of the 7th USENIX Workshop on Hot Topics in Security,
Bellevue, WA, August 2012 (HotSec ’12). USENIX, 2012.

[85] E. Fernandes, J. Jung, and A. Prakash. Security analysis of emerging smart home
applications. In 2016 IEEE Symposium on Security and Privacy (SP), pages 636–654.
IEEE, 2016.

[86] E. Fernandes, J. Jung, and A. Prakash. Security analysis of emerging smart home
applications. In 2016 IEEE Symposium on Security and Privacy (SP), Oakland, CA,
USA, May 2016 (Oakload ’16), pages 636–654, May 2016.

161

http://www.drolez.com/blog/?category=Hardware&post=jw0004-webcam
http://www.drolez.com/blog/?category=Hardware&post=jw0004-webcam
https://www.pcmag.com/review/357433/bitdefender-box-2
https://www.pcmag.com/review/357433/bitdefender-box-2
https://www.pcmag.com/review/355417/symantec-norton-core-router
https://www.pcmag.com/review/355417/symantec-norton-core-router
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA5-4759ENW&cc=us&lc=en
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA5-4759ENW&cc=us&lc=en

[87] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash.
FlowFence: Practical data protection for emerging IoT application frameworks. In
25th USENIX Security Symposium (USENIX Security 16), pages 531–548, Austin,
TX, 2016. USENIX Association.

[88] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decentralized Action Integrity
for Trigger-Action Platforms. In 22nd Network and Distributed Security Symposium
(NDSS 2018), Feb. 2018.

[89] D. Fisher. Pair of bugs open honeywell home controllers up to easy hacks.
https://threatpost.com/pair-of-bugs-open-honeywell-home-controllers-

up-to-easy-hacks/, 2015.

[90] C. Flanagan and S. N. Freund. Type-based race detection for java. In Proceedings of
the ACM SIGPLAN 2000 conference on Programming language design and implemen-
tation, pages 219–232, 2000.

[91] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker for multi-
threaded programs. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’04, pages 256–267, New York, NY,
USA, 2004. ACM.

[92] A. Forum. Mirai infection. https://amcrest.com/forum/technical-discussion-

f3/mirai-infection-t3686.html, October 2017.

[93] B. Fouladi and S. Ghanoun. Honey, i’m home!!, hacking zwave home automation
system. In Black Hat USA, 2013.

[94] O. N. Foundation. Software-defined networking (sdn) definition. https://www.

opennetworking.org/sdn-resources/sdn-definition, 2017.

[95] T. A. S. Foundation. The apache groovy programming language. http://groovy-

lang.org/, 2003-2018.

[96] M. Ghiglieri and E. Tews. A privacy protection system for HbbTV in Smart TVs.
In 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC),
pages 357–362, Jan 2014.

[97] Google. Android things website. https://developer.android.com/things/, 2018.

[98] J. J. Gooley, K. Chamberlain, K. A. Smith, S. B. S. Khalsa, S. M. W. Rajaratnam,
E. V. Reen, J. M. Zeitzer, C. A. Czeisler, and S. W. Lockley. Exposure to room
light before bedtime suppresses melatonin onset and shortens melatonin duration in
humans. Journal of Clinical Endocrinology & Metabolism, 96(3):E463–E472, March
2011.

[99] J. Hartin, P. M. Geisel, and C. L. Unruh. Lawn watering guide for california. Technical
Report ANR 8044, University of California – Agriculture and Natural Resources, http:
//anrcatalog.ucanr.edu/pdf/8044.pdf, 2001.

162

https://threatpost.com/pair-of-bugs-open-honeywell-home-controllers-up-to-easy-hacks/
https://threatpost.com/pair-of-bugs-open-honeywell-home-controllers-up-to-easy-hacks/
https://amcrest.com/forum/technical-discussion-f3/mirai-infection-t3686.html
https://amcrest.com/forum/technical-discussion-f3/mirai-infection-t3686.html
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition
http://groovy-lang.org/
http://groovy-lang.org/
https://developer.android.com/things/
http://anrcatalog.ucanr.edu/pdf/8044.pdf
http://anrcatalog.ucanr.edu/pdf/8044.pdf

[100] J. Hayes and G. Danezis. K-fingerprinting: A robust scalable website fingerprinting
technique. In Proceedings of the 25th USENIX Conference on Security Symposium,
SEC’16, pages 1187–1203, Berkeley, CA, USA, 2016. USENIX Association.

[101] Y. He, Q. Li, and K. Sun. Linkflow: Efficient large-scale inter-app privacy leakage
detection. In International Conference on Security and Privacy in Communication
Systems, pages 291–311. Springer, 2017.

[102] D. Herrmann, R. Wendolsky, and H. Federrath. Website fingerprinting: Attacking
popular privacy enhancing technologies with the multinomial näıve-bayes classifier. In
Proceedings of the 2009 ACM workshop on Cloud computing security, pages 31–42.
ACM, 2009.

[103] A. Hesseldahl. A hackers-eye view of the internet of things. http://recode.net/

2015/04/07/a-hackers-eye-view-of-the-internet-of-things/, 2015.

[104] K. Hill. The half-baked security of our ’Internet Of Things’. http:

//www.forbes.com/sites/kashmirhill/2014/05/27/article-may-scare-you-

away-from-internet-of-things/.

[105] D. C. Holzman. What’s in a color? the unique human health effects of blue light.
Environmental Health Perspectives, 118(1):A22–A27, January 2010.

[106] G. J. Holzmann. The SPIN model checker: Primer and reference manual, volume
1003.

[107] J. Hong, A. Levy, L. Riliskis, and P. Levis. Don’t talk unless i say so! securing the
internet of things with default-off networking. In 2018 IEEE/ACM Third International
Conference on Internet-of-Things Design and Implementation (IoTDI), pages 117–128,
April 2018.

[108] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira, G. A. Pokam, P. M.
Chen, and J. Flinn. Race detection for event-driven mobile applications. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, pages 326–336, New York, NY, USA, 2014. ACM.

[109] Y. Hu and I. Neamtiu. Static detection of event-based races in Android apps. In
Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’18, pages 257–270, New
York, NY, USA, 2018. ACM.

[110] A. Inc. Airplay. https://developer.apple.com/airplay/, 2018.

[111] IOActive. Belkin WeMo home automation vulnerabilities. http://www.ioactive.

com/pdfs/IOActive_Belkin-advisory-lite.pdf, 2014.

[112] M. Jackson and P. Zave. Distributed feature composition: A virtual architecture for
telecommunications services. IEEE Transactions on Software Engineering, 24(10):831–
847, October 1998.

163

http://recode.net/2015/04/07/a-hackers-eye-view-of-the-internet-of-things/
http://recode.net/2015/04/07/a-hackers-eye-view-of-the-internet-of-things/
http://www.forbes.com/sites/kashmirhill/2014/05/27/article-may-scare-you-away-from-internet-of-things/
http://www.forbes.com/sites/kashmirhill/2014/05/27/article-may-scare-you-away-from-internet-of-things/
http://www.forbes.com/sites/kashmirhill/2014/05/27/article-may-scare-you-away-from-internet-of-things/
https://developer.apple.com/airplay/
http://www.ioactive.com/pdfs/IOActive_Belkin-advisory-lite.pdf
http://www.ioactive.com/pdfs/IOActive_Belkin-advisory-lite.pdf

[113] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao, and A. Prakash.
ContexIoT: Towards providing contextual integrity to appified IoT platforms. In NDSS,
2017.

[114] Y. Jin, E. Sharafuddin, and Z.-L. Zhang. Unveiling core network-wide communication
patterns through application traffic activity graph decomposition. In Proceedings of the
Eleventh International Joint Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’09, pages 49–60, New York, NY, USA, 2009. ACM.

[115] Security of the Local LAN? https://community.smartthings.com/t/security-on-

the-local-lan/41585, May 2018.

[116] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc: Multilevel traffic classifica-
tion in the dark. In Proceedings of the 2005 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM ’05, pages
229–240, New York, NY, USA, 2005. ACM.

[117] C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion detection signatures us-
ing honeypots. ACM SIGCOMM computer communication review, 34(1):51–56, 2004.

[118] L. Lamport. Time, clocks, and the ordering of events in a distributed system. In
Concurrency: the Works of Leslie Lamport, pages 179–196. 2019.

[119] Y. K. Lee, J. Y. Bang, G. Safi, A. Shahbazian, Y. Zhao, and N. Medvidovic. A
sealant for inter-app security holes in android. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages 312–323. IEEE, 2017.

[120] P. Leelaprute, T. Matsuo, T. Tsuchiya, and T. Kikuno. Detecting feature interactions
in home appliance networks. In Proceedings of the 2008 Ninth ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing (SNPD), pages 895–903, 2008.

[121] A. Levy, J. Hong, L. Riliskis, P. Levis, and K. Winstein. Beetle: Flexible Communi-
cation for Bluetooth Low Energy. In Proceedings of the 14th International Conference
on Mobile Systems, Applications and Services (MobiSys), June 2016.

[122] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, and Y. Le Traon. Apkcombiner: Combining
multiple android apps to support inter-app analysis. In IFIP International Information
Security and Privacy Conference, pages 513–527. Springer, 2015.

[123] X. Li, L. Zhang, and X. Shen. IA-graph based inter-app conflicts detection in open
IoT systems. In Proceedings of the 20th ACM SIGPLAN/SIGBED International Con-
ference on Languages, Compilers, and Tools for Embedded Systems, pages 135–147,
2019.

[124] X. Li, L. Zhang, X. Shen, and Y. Qi. A systematic examination of inter-app conflicts
detections in open IoT systems. Technical Report TR-2017-1, North Carolina State
University, Dept. of Computer Science, 2017.

164

https://community.smartthings.com/t/security-on-the-local-lan/41585
https://community.smartthings.com/t/security-on-the-local-lan/41585

[125] C.-J. M. Liang, B. F. Karlsson, N. D. Lane, F. Zhao, J. Zhang, Z. Pan, Z. Li, and
Y. Yu. Sift: building an internet of safe things. In Proceedings of the 14th International
Conference on Information Processing in Sensor Networks, pages 298–309, 2015.

[126] M. Liberatore and B. N. Levine. Inferring the source of encrypted http connections. In
Proceedings of the 13th ACM conference on Computer and communications security,
pages 255–263. ACM, 2006.

[127] C. Lidbury and A. F. Donaldson. Dynamic race detection for C++11. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, pages 443–457, New York, NY, USA, 2017. ACM.

[128] LIFX. Device messages. https://lan.developer.lifx.com/docs/device-

messages, 2018.

[129] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers. Fabric: A
platform for secure distributed computation and storage. In Proceedings of the ACM
2009 Symposium on Operating Systems Principles and Implementation, 2009.

[130] R. Liu, Z. Wang, L. Garcia, and M. Srivastava. RemedioT: Remedial actions for
Internet-of-Things conflicts. In Proceedings of the 6th ACM International Conference
on Systems for Energy-Efficient Buildings, Cities, and Transportation, BuildSys ’19,
pages 101–110, 2019.

[131] N. Lomas. Critical flaw identified in zigbee smart home devices. http://techcrunch.
com/2015/08/07/critical-flaw-ided-in-zigbee-smart-home-devices/, 2015.

[132] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret. Network traffic
classifier with convolutional and recurrent neural networks for internet of things. IEEE
Access, 5:18042–18050, 2017.

[133] P. Loscocco and S. Smalley. Integrating flexible support for security policies into the
Linux operating system. In Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, 2001.

[134] L. Lu, E.-C. Chang, and M. C. Chan. Website fingerprinting and identification using
ordered feature sequences. In Proceedings of the 15th European Conference on Research
in Computer Security, ESORICS’10, pages 199–214, Berlin, Heidelberg, 2010. Springer-
Verlag.

[135] S. Lu, S. Park, and Y. Zhou. Finding atomicity-violation bugs through unserializable
interleaving testing. IEEE Transactions on Software Engineering, 38(4):844–860, 2012.

[136] T. Luo and W. Du. Contego: Capability-Based Access Control for Web Browsers, pages
231–238. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[137] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities and isolation of untrusted
web applications. In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19
May 2010, Berleley/Oakland, California, USA, pages 125–140, 2010.

165

https://lan.developer.lifx.com/docs/device-messages
https://lan.developer.lifx.com/docs/device-messages
http://techcrunch.com/2015/08/07/critical-flaw-ided-in-zigbee-smart-home-devices/
http://techcrunch.com/2015/08/07/critical-flaw-ided-in-zigbee-smart-home-devices/

[138] P. Maiya, A. Kanade, and R. Majumdar. Race detection for Android applications.
SIGPLAN Not., 49(6):316–325, June 2014.

[139] A. Mettler, D. Wagner, and T. Close. Joe-E: A security-oriented subset of Java. In
Network and Distributed Systems Symposium. Internet Society, 2010.

[140] M. Miettinen, S. Marchal, I. Hafeez, T. Frassetto, N. Asokan, A. R. Sadeghi, and
S. Tarkoma. IoT Sentinel: Automated device-type identification for security enforce-
ment in IoT. In 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), June 2017.

[141] M. S. Miller, K.-P. Yee, and J. Shapiro. Capability myths demolished, 2003.

[142] A. Mohsenian-Rad and A. Leon-Garcia. Distributed internet-based load altering at-
tacks against smart power grids. IEEE Transactions on Smart Grid, 2(4):667–674,
Dec 2011.

[143] S. Munir and J. A. Stankovic. Depsys: Dependency aware integration of cyber-physical
systems for smart homes. In ICCPS ’14: ACM/IEEE 5th International Conference on
Cyber-Physical Systems (with CPS Week 2014), ICCPS ’14, pages 127–138, Washing-
ton, DC, USA, 2014. IEEE Computer Society.

[144] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proceedings of
the 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1999.

[145] B. Nadel. Norton core router review. https://www.tomsguide.com/us/norton-

core-router,review-4827.html, November 2017.

[146] B. Nadel. Bitdefender box (2018) review: Flexible protection. https://www.

tomsguide.com/us/bitdefender-box,review-3766.html, January 2018.

[147] C. Nandi and M. D. Ernst. Automatic trigger generation for rule-based smart homes.
In Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis
for Security (PLAS), pages 97–102, 2016.

[148] J. L. Newcomb, S. Chandra, J.-B. Jeannin, C. Schlesinger, and M. Sridharan. Iota:
a calculus for internet of things automation. In Proceedings of the 2017 ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, pages 119–133, 2017.

[149] D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J. M. Colbert, and P. Mc-
Daniel. IotSan: Fortifying the safety of systems. In Proceedings of the 14th Interna-
tional Conference on Emerging Networking EXperiments and Technologies, CoNEXT
’18, pages 191–203, New York, NY, USA, 2018. ACM.

[150] T. T. Nguyen and G. Armitage. A survey of techniques for internet traffic classification
using machine learning. Commun. Surveys Tuts., 10(4):56–76, Oct. 2008.

166

https://www.tomsguide.com/us/norton-core-router,review-4827.html
https://www.tomsguide.com/us/norton-core-router,review-4827.html
https://www.tomsguide.com/us/bitdefender-box,review-3766.html
https://www.tomsguide.com/us/bitdefender-box,review-3766.html

[151] Oauth integrations. https://smartthings.developer.samsung.com/docs/oauth/

oauth-integration.html.

[152] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and A.-R. Sadeghi.
HomeSnitch: Behavior transparency and control for smart home IoT devices. In Pro-
ceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Net-
works, WiSec ’19, pages 128–138, New York, NY, USA, 2019. ACM.

[153] T. Oluwafemi, T. Kohno, S. Gupta, and S. Patel. Experimental security analyses of
non-networked compact fluorescent lamps: A case study of home automation security.
In Proceedings of the LASER 2013, Arlington, VA, USA (LASER 2013), pages 13–24.
USENIX, 2013.

[154] openHAB. openhab website. https://www.openhab.org/, 2018.

[155] OpenWrt. https://openwrt.org.

[156] S. Oster, M. Zink, M. Lochau, and M. Grechanik. Pairwise feature-interaction testing
for SPLs: Potentials and limitations. In Proceedings of the 15th International Software
Product Line Conference (SPLC), pages 6:1–6:8, 2011.

[157] A. Panchenko and F. Lanze. Website fingerprinting at internet scale. In NDSS, 2016.

[158] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website fingerprinting in onion
routing based anonymization networks. In Proceedings of the 10th annual ACM work-
shop on Privacy in the electronic society, pages 103–114. ACM, 2011.

[159] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of http-based malware and
signature generation using malicious network traces. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation, NSDI’10, pages 26–26,
Berkeley, CA, USA, 2010. USENIX Association.

[160] A. J. Pinheiro, J. M. Bezerra, and D. R. Campelo. Packet padding for improving pri-
vacy in consumer IoT. In 2018 IEEE Symposium on Computers and Communications
(ISCC), pages 00925–00929, June 2018.

[161] Proxy arp. http://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-

allocation-resolution/13718-5.html, January 2008.

[162] Y. Racine. Fireco2alarm smartapp. https://github.com/yracine/device-type.

myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy,
2014.

[163] A. Rajan, L. du Bousquet, Y. Ledru, G. Vega, and J.-L. Richier. Assertion-based test
oracles for home automation systems. In Proceedings of the 7th International Workshop
on Model-Based Methodologies for Pervasive and Embedded Software (MOMPRES),
pages 45–52, 2010.

167

https://smartthings.developer.samsung.com/docs/oauth/oauth-integration.html
https://smartthings.developer.samsung.com/docs/oauth/oauth-integration.html
https://www.openhab.org/
https://openwrt.org
http://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html
http://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html
https://github.com/yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy
https://github.com/yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy

[164] Rapid. HACKING IoT: A case study on baby monitor exposures and vulner-
abilities. https://www.rapid7.com/docs/Hacking-IoT-A-Case-Study-on-Baby-

Monitor-Exposures-and-Vulnerabilities.pdf, September 2015.

[165] V. Raychev, M. Vechev, and M. Sridharan. Effective race detection for event-driven
programs. In Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA ’13,
pages 151–166, New York, NY, USA, 2013. ACM.

[166] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Haddadi. Infor-
mation exposure from consumer IoT devices: A multidimensional, network-informed
measurement approach. In Proceedings of the Internet Measurement Conference, pages
267–279, 2019.

[167] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
RFC Editor, August 2018.

[168] E. Rescorla and T. Dierks. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, Aug. 2008.

[169] F. Roesner and T. Kohno. Securing embedded user interfaces: Android and beyond.
In Proceedings of the 22nd USENIX Security Symposium, Washington, D.C. (USENIX
Security ’13), pages 97–112. USENIX, 2013.

[170] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan. User-
driven access control: Rethinking permission granting in modern operating systems.
In Proceedings of the 2012 IEEE Symposium on Security and Privacy, Oakland, CA,
USA, May 2012 (Oakland ’12), pages 224–238, 2012.

[171] C. Sader. Auto lock door smartapp. https://github.com/smartthings-users/

smartapp.auto-lock-door/blob/master/auto-lock-door.smartapp.groovy,
2013.

[172] S. Saghafi, K. Fisler, and S. Krishnamurthi. Features and object capabilities: Rec-
onciling two visions of modularity. In Proceedings of the 11th Annual International
Conference on Aspect-oriented Software Development, AOSD ’12, pages 25–34, New
York, NY, USA, 2012. ACM.

[173] Samsung SmartCam. https://www.exploitee.rs/index.php/Samsung_SmartCam%

E2%80%8B#Fixing_Password_Reset_.22Pre-Auth.22, August 2014.

[174] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, and T. Kohno. Devices that tell
on you: Privacy trends in consumer ubiquitous computing. In Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium, SS’07, pages 5:1–5:16,
Berkeley, CA, USA, 2007. USENIX Association.

[175] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dy-
namic data race detector for multithreaded programs. ACM Transactions on Computer
Systems (TOCS), 15(4):391–411, 1997.

168

https://www.rapid7.com/docs/Hacking-IoT-A-Case-Study-on-Baby-Monitor-Exposures-and-Vulnerabilities.pdf
https://www.rapid7.com/docs/Hacking-IoT-A-Case-Study-on-Baby-Monitor-Exposures-and-Vulnerabilities.pdf
https://github.com/smartthings-users/smartapp.auto-lock-door/blob/master/auto-lock-door.smartapp.groovy
https://github.com/smartthings-users/smartapp.auto-lock-door/blob/master/auto-lock-door.smartapp.groovy
https://www.exploitee.rs/index.php/Samsung_SmartCam%E2%80%8B#Fixing_Password_Reset_.22Pre-Auth.22
https://www.exploitee.rs/index.php/Samsung_SmartCam%E2%80%8B#Fixing_Password_Reset_.22Pre-Auth.22

[176] J. Schwenn. How to protect wordpress from xml-rpc attacks on ubuntu
14.04. https://www.digitalocean.com/community/tutorials/how-to-protect-

wordpress-from-xml-rpc-attacks-on-ubuntu-14-04, February 2016.

[177] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward generating a new intrusion
detection dataset and intrusion traffic characterization. 2018.

[178] S. Shekyan and A. Harutyunyan. To watch or to be watched: Turning your surveil-
lance camera against you. https://conference.hitb.org/hitbsecconf2013ams/

materials/D2T1%20-%20Sergey%20Shekyan%20and%20Artem%20Harutyunyan%20-

%20Turning%20Your%20Surveillance%20Camera%20Against%20You.pdf.

[179] A. Sivanathan, H. H. Gharakheili, A. R. Franco Loi, C. Wijenayake, A. Vishwanath,
and V. Sivaraman. Classifying IoT devices in smart environments using network traffic
characteristics. IEEE Transactions on Mobile Computing, (01):1–1.

[180] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wijenayake, A. Vish-
wanath, and V. Sivaraman. Characterizing and classifying IoT traffic in smart cities
and campuses. In 2017 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 559–564, May 2017.

[181] SmartThings. Smartthings public github repo. https://github.com/

SmartThingsCommunity/SmartThingsPublic, 2018.

[182] S. SmartThings. Samsung smartthings website. http://www.smartthings.com, 2018.

[183] S. Soltan, P. Mittal, and H. V. Poor. BlackIoT: IoT botnet of high wattage devices
can disrupt the power grid. In 27th USENIX Security Symposium (USENIX Security
18), pages 15–32, Baltimore, MD, 2018. USENIX Association.

[184] D. A. Sorensen, N. Vanggaard, and J. M. Pedersen. IoTsec: Automatic profile-based
firewall for IoT devices. http://projekter.aau.dk/projekter/files/260081086/

report_print_friendly.pdf, June 2017.

[185] Spruce - the smart irrigation controller. http://www.spruceirrigation.com, April
2016.

[186] Square, Inc. What’s going to happen with IFTTT? https://square.github.io/

okhttp/, 2019.

[187] Stacey Higginbotham. OkHttp. https://staceyoniot.com/whats-going-to-

happen-with-ifttt/, 2019.

[188] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague. Smartauth: User-
centered authorization for the internet of things. In Proceedings of the 26th USENIX
Conference on Security Symposium, SEC’17, pages 361–378, Berkeley, CA, USA, 2017.
USENIX Association.

[189] Tomoyo linux. https://tomoyo.osdn.jp/index.html.en, April 2017.

169

https://www.digitalocean.com/community/tutorials/how-to-protect-wordpress-from-xml-rpc-attacks-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-protect-wordpress-from-xml-rpc-attacks-on-ubuntu-14-04
https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Sergey%20Shekyan%20and%20Artem%20Harutyunyan%20-%20Turning%20Your%20Surveillance%20Camera%20Against%20You.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Sergey%20Shekyan%20and%20Artem%20Harutyunyan%20-%20Turning%20Your%20Surveillance%20Camera%20Against%20You.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Sergey%20Shekyan%20and%20Artem%20Harutyunyan%20-%20Turning%20Your%20Surveillance%20Camera%20Against%20You.pdf
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
http://www.smartthings.com
http://projekter.aau.dk/projekter/files/260081086/report_print_friendly.pdf
http://projekter.aau.dk/projekter/files/260081086/report_print_friendly.pdf
http://www.spruceirrigation.com
https://square.github.io/okhttp/
https://square.github.io/okhttp/
https://staceyoniot.com/whats-going-to-happen-with-ifttt/
https://staceyoniot.com/whats-going-to-happen-with-ifttt/
https://tomoyo.osdn.jp/index.html.en

[190] R. Trimananda, S. A. H. Aqajari, J. Chuang, B. Demsky, and G. H. Xu. Iotcheck.
http://plrg.ics.uci.edu/iotcheck/, 2020.

[191] R. Trimananda, S. A. H. Aqajari, J. Chuang, B. Demsky, and G. H. Xu. Iotcheck and
manual study supporting materials. http://plrg.ics.uci.edu/iotcheck/, 2020.

[192] R. Trimananda, S. A. H. Aqajari, J. Chuang, B. Demsky, and G. H. Xu. Iotcheck
vagrant package. http://plrg.ics.uci.edu/iotcheck/, 2020.

[193] R. Trimananda, S. A. H. Aqajari, J. Chuang, B. Demsky, G. H. Xu, and S. Lu. Un-
derstanding and automatically detecting conflicting interactions between smart home
IoT applications. In Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, November 2020.

[194] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky. Pingpong: Packet-
level signatures for smart home devices (software and dataset). http://plrg.ics.

uci.edu/pingpong/.

[195] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky. Packet-Level Sig-
natures for Smart Home Devices. Proceedings of the 2020 Network and Distributed
System Security (NDSS) Symposium, February 2020.

[196] R. Trimananda, A. Younis, B. Wang, B. Xu, B. Demsky, and G. Xu. Vigilia: Securing
smart home edge computing (software). http://plrg.ics.uci.edu/vigilia/.

[197] R. Trimananda, A. Younis, B. Wang, B. Xu, B. Demsky, and G. Xu. Vigilia: Securing
smart home edge computing. In 2018 IEEE/ACM Symposium on Edge Computing
(SEC), pages 74–89. IEEE, 2018.

[198] Y. Tsutano, S. Bachala, W. Srisa-An, G. Rothermel, and J. Dinh. An efficient, robust,
and scalable approach for analyzing interacting android apps. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), pages 324–334. IEEE,
2017.

[199] UNSW. List of smart home devices. https://iotanalytics.unsw.edu.au/

resources/List_Of_Devices.txt, November 2018.

[200] B. Ur, J. Jung, and S. Schechter. The current state of access control for smart devices in
homes. In Proceedings of Workshop on Home Usable Privacy and Security, Newcastle,
UK, July 2013 (HUPS), 2013.

[201] S. H. USA. What is a smart home? https://www.smarthomeusa.com/smarthome/,
2018.

[202] Veracode. The internet of things: Security research study. https:

//www.veracode.com/sites/default/files/Resources/Whitepapers/internet-

of-things-whitepaper.pdf, 2015.

170

http://plrg.ics.uci.edu/iotcheck/
http://plrg.ics.uci.edu/iotcheck/
http://plrg.ics.uci.edu/iotcheck/
http://plrg.ics.uci.edu/pingpong/
http://plrg.ics.uci.edu/pingpong/
http://plrg.ics.uci.edu/vigilia/
https://iotanalytics.unsw.edu.au/resources/List_Of_Devices.txt
https://iotanalytics.unsw.edu.au/resources/List_Of_Devices.txt
https://www.smarthomeusa.com/smarthome/
https://www.veracode.com/sites/default/files/Resources/Whitepapers/internet-of-things-whitepaper.pdf
https://www.veracode.com/sites/default/files/Resources/Whitepapers/internet-of-things-whitepaper.pdf
https://www.veracode.com/sites/default/files/Resources/Whitepapers/internet-of-things-whitepaper.pdf

[203] P. A. Vicaire, E. Hoque, Z. Xie, and J. A. Stankovic. Bundle: A group-based pro-
gramming abstraction for cyber-physical systems. IEEE Transactions on Industrial
Informatics, 8(2):379–392, 2012.

[204] P. A. Vicaire, Z. Xie, E. Hoque, and J. A. Stankovic. Physicalnet: A generic framework
for managing and programming across pervasive computing networks. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2010 16th IEEE,
pages 269–278. IEEE, 2010.

[205] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
10:203–232, April 2003.

[206] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg. Effective attacks and
provable defenses for website fingerprinting. In 23rd {USENIX} Security Symposium
({USENIX} Security 14), pages 143–157, 2014.

[207] G. Wassermann. ZyXEL NBG-418N, PMG5318-B20A and P-660HW-T1 routers con-
tain multiple vulnerabilities. http://www.kb.cert.org/vuls/id/870744, October
2015.

[208] A. Whitaker and D. Newman. Penetration testing and network defense: Perform-
ing host reconnaissance. http://www.ciscopress.com/articles/article.asp?p=

469623&seqNum=3, June 2018.

[209] Z. Whittaker. Hackers exploiting ‘serious’ flaw in Netgear routers. http://www.zdnet.
com/article/hackers-exploiting-serious-flaw-in-netgear-routers/, October
2015.

[210] M. Wilson, M. Kolberg, and E. H. Magill. Considering side effects in service interac-
tions in home automation-an online approach. Feature Interactions in Software and
Communication Systems IX, pages 172–187, 2008.

[211] Wink hub. https://www.exploitee.rs/index.php/Wink_Hub%E2%80%8B%E2%80%

8B#Wink_Hub_.22.2Fvar.2Fwww.2Fdev_detail.php.22_SQLi_for_root_command_

execution.

[212] A. D. Wood, J. A. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu,
L. Fang, and R. Stoleru. Context-aware wireless sensor networks for assisted living
and residential monitoring. IEEE network, 22(4), 2008.

[213] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson. Uncover-
ing spoken phrases in encrypted voice over IP conversations. ACM Transactions on
Information and System Security, 13(4):35:1–35:30, Dec. 2010.

[214] C. V. Wright, L. Ballard, F. Monrose, and G. M. Masson. Language identification of
encrypted VoIP traffic: Alejandra y Roberto or Alice and Bob? In Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium, SS’07, pages 4:1–4:12,
Berkeley, CA, USA, 2007. USENIX Association.

171

http://www.kb.cert.org/vuls/id/870744
http://www.ciscopress.com/articles/article.asp?p=469623&seqNum=3
http://www.ciscopress.com/articles/article.asp?p=469623&seqNum=3
http://www.zdnet.com/article/hackers-exploiting-serious-flaw-in-netgear-routers/
http://www.zdnet.com/article/hackers-exploiting-serious-flaw-in-netgear-routers/
https://www.exploitee.rs/index.php/Wink_Hub%E2%80%8B%E2%80%8B#Wink_Hub_.22.2Fvar.2Fwww.2Fdev_detail.php.22_SQLi_for_root_command_execution
https://www.exploitee.rs/index.php/Wink_Hub%E2%80%8B%E2%80%8B#Wink_Hub_.22.2Fvar.2Fwww.2Fdev_detail.php.22_SQLi_for_root_command_execution
https://www.exploitee.rs/index.php/Wink_Hub%E2%80%8B%E2%80%8B#Wink_Hub_.22.2Fvar.2Fwww.2Fdev_detail.php.22_SQLi_for_root_command_execution

[215] M. Yagita, F. Ishikawa, and S. Honiden. An application conflict detection and res-
olution system for smart homes. In Proceedings of the First International Workshop
on Software Engineering for Smart Cyber-Physical Systems, SEsCPS ’15, pages 33–39,
Piscataway, NJ, USA, 2015. IEEE Press.

[216] S. Yarosh and P. Zave. Locked or not?: Mental models of IoT feature interaction. In
Proceedings of the 2017 Conference on Human Factors in Computing Systems (CHI),
pages 2993–2997, 2017.

[217] A. Yoga and S. Nagarakatte. Atomicity violation checker for task parallel programs.
In Proceedings of the 2016 International Symposium on Code Generation and Opti-
mization, CGO ’16, pages 239–249, New York, NY, USA, 2016. ACM.

[218] K. York. Dyn statement on 10/21/2016 ddos attack. http://dyn.com/blog/dyn-

statement-on-10212016-ddos-attack/, October 2016.

[219] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. Handling a trillion (unfixable)
flaws on a billion devices: Rethinking network security for the Internet-of-Things. In
Proceedings of the 14th ACM Workshop on Hot Topics in Networks (HotNets), 2015.

[220] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information flow
explicit in HiStar. In Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation, 2006.

[221] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing distributed systems with
information flow control. In Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, 2008.

[222] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu. Homonit: Monitoring
smart home apps from encrypted traffic. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18, pages 1074–1088,
New York, NY, USA, 2018. ACM.

172

http://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/
http://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Overview of a Smart Home
	Components
	Execution Model

	Smart Home Devices
	Smart Home Platforms
	Smart Home Apps
	Organization

	Packet-Level Signatures for Smart Home Devices
	New Packet-Level Signatures
	Problem Setup
	Threat Model
	Smart Home Environment and Experimental Testbed
	Motivating Case: Smart Plugs

	PingPong Design
	Training
	Detection

	Evaluation
	Extracting Signatures from Smart Home Devices
	Smart Home Testbed Experiment
	Negative Control Experiment
	Events Triggered Remotely
	Devices from the Same Vendor
	Public Dataset Experiment
	Parameters Selection and Sensitivity

	Possible Defenses against Packet-Level Signatures
	Possible Implementations
	Residual Side-Channel Information
	Efficacy of Packet Padding
	Recommendations for Padding
	Traffic Shaping and Injection

	Securing Smart Home Edge Computing
	Smart Home System Vulnerabilities
	Vigilia Approach
	Threat Model and Guarantees
	Example
	Architecture and Programming Model
	Vigilia Security Mechanisms
	Vigilia Runtime System
	Evaluation
	Applications
	Comparisons
	Public IP
	Performance Microbenchmarks

	Understanding and Detecting Conflicting Interactions between Smart Home IoT Applications
	Methodology
	Definitions
	Smart Home App Pairs
	Threats to Validity

	Device Interaction
	RQ1: Types of Non-Conflicting Interactions
	RQ2: Types of Conflicting Interactions
	RQ3: Prevalence of Conflicts
	RQ4: Unsafe Coding Patterns

	Physical-Medium Interaction
	RQ1&2: Types of (Non-)Conflicting Interactions
	RQ3&4: Prevalence of Conflicts/Unsafe Coding

	Global-Variable Interaction
	RQ1: Types of Non-Conflicting Interactions
	RQ2: Types of Conflicting Interactions
	RQ3&4: Prevalence of Conflicts and Unsafe Coding

	IoTCheck: Automated Conflict Detection
	IoTCheck Design
	Results

	Related Work
	Network Traffic Analysis and Defenses
	Smart Home and IoT Security
	Interactions of Smart Home Applications
	Other Related Work

	Conclusions
	Summary
	Limitations and Future Directions

	Bibliography

