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RISK SHARING TESTS AND COVARIATE SHOCKS

ETHAN LIGON

Abstract. Full risk-sharing implies that marginal utilities of expenditure (MUEs)
have a simple factor structure; Pareto weights divided by a common price. But
MUEs must be inferred from expenditures. The standard approach to inferring
MUEs and testing risk-sharing assumes homothetic preferences and unitary price
elasticities. This works for idiosyncratic shocks, which affect budgets but not prices,
but not "covariate" shocks which change relative prices. We obtain the complete
class of preferences which allows one to infer MUEs from expenditures. We estimate
these using Ugandan data. With these MUEs risk-sharing tests of covariate shocks
deliver sensible results; the standard tests do not.
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1. Introduction

It is well known that in a setting with risk-averse households and uncertainty, an
efficient allocation will eliminate any “idiosyncratic” risk, in the sense that given this
allocation the ratio of any two households’ marginal utilities will vary only in fixed
proportion, regardless of the realization of the uncertain state. Suppose for example
that Farmer A is unlucky and a hailstorm damages his rice crop. Aggregate resources
are reduced by the size of the damage, even if all the damage accrued to A’s crops.
So Farmer’s A’s marginal utility of rice will increase, but if efficiency prevails, then
everyone else’s marginal utility of rice will increase proportionally, even if the shock
was “idiosyncratic” in that it only affected the crops of one farmer.

The risk-sharing problem is often framed in terms of a planning problem, with
different households assigned some Pareto weights ex ante and the planner choosing
allocations decisions such that ratios of households’ marginal utilities of different
goods (e.g., A’s marginal utility of rice to B’s marginal utility of rice) are equal to
the ratio of their Pareto weights. But the problem immediately decentralizes in the
sense that we can describe it in terms of prices and expenditures. In particular, we
can say that an efficient allocation (a) keeps ratios of any two households’ marginal
utilities of expenditures (MUEs) constant; and (b) that given these constant ratios,
allocations (or household expenditures) depend only on common prices, faced by all
the households efficiently sharing risk.1

Townsend (1994) pioneered the idea of testing this “efficient risk-sharing” hypothesis
in the development literature, and Deaton (1992) showed that one can implement the
test as a two-way fixed effects regression.2 The general approach involves regressing
a measure of the (log) marginal utility of expenditures on the (log) average of house-
holds’ marginal utilities of expenditures, allowing for household-specific intercepts.
The idea is to directly test the proportionality of marginal utilities of expenditures
implied by efficiency. And in particular this proportionality implies a testable exclu-
sion restriction: the event of the “idiosyncratic” shock should not affect individual

1There are many different ways in which such efficient allocations could be implemented. Some
of these would involve formal markets for contingent claims (Arrow & Debreu, 1954) or repeated
exchange of some set of securities (Arrow, 1964; Arrow & Hahn, 1983) or forward markets (Townsend,
1978). These market may not even need to be complete (Levine & Zame, 2002). Neither must they
be formal; various forms of informal exchange (Platteau & Abraham, 1987) or reciprocity (Cashdan,
1985) may well constitute a system of informal insurance approaches full efficiency, even in the
complete absence of formal markets or legally enforceable contracts (Fafchamps, 1992; Ligon et al.,
2002).
2Though there are important antecedents in the macro literature (Cochrane, 1991; Mace, 1991).
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MUEs after controlling for its effect on the average MUE. Tests along these lines
have become the stuff of textbooks (Bardhan & Udry, 1999; Ray, 1998) and have
been conducted in settings all over the world, in hundreds of different studies.3 When
the “idiosyncratic shock” is some measure of household income (or often deviations
from mean income) such tests reliably reject the efficient risk-sharing hypothesis—
household-level variation in income has a statistically significant effect on household
consumption expenditures. Despite this rejection, many economists would say that
the magnitude of this effect is not typically very large—empirically, the elasticity of
consumption expenditures with respect to income is in the ballpark of 5-20%. So one
might take the position that most idiosyncratic risk is shared.

But what about risk that is not idiosyncratic? After all, that hailstorm could dam-
age the crops of not just one farmer in the village, but the crops of most farmers. Such
a shock is sometimes said to be “covariate,” capturing the idea that if we condition
on the shock affecting Farmer A then we’d expect some damage also to Farmer B.
Notice that a covariate shock need not be universal—some households may be more
affected than others.

If risk is shared efficiently, then how would we expect a covariate shock to affect
outcomes? The central precept that marginal utilities of expenditure should vary in
proportion will still hold, so if we were to regress log MUEs on the village average,
allowing for household-specific intercepts (fixed effects), then efficient risk-sharing
implies that the exclusion restriction should still hold. However, if the shock affects
enough production in the village, then we might also expect the shock to have an effect
on marginal utilities of expenditure because of its effect on local prices. Viewed from
this perspective, a covariate shock is one that affects prices, while an idiosyncratic
shock does not.

1.1. A puzzle. So, let us consider the effects of some covariate shocks. We take the
Living Standards Measurement Survey (LSMS) panel data on household expenditures
for Uganda, spanning 2005–2019, and construct a household “consumption aggregate”
using the procedures of Deaton and Zaidi (2002). We are curious about the effects
of “covariate” shocks on welfare, so we estimate the classic “consumption-smoothing”
or risk-sharing regression (Deaton, 1992; Townsend, 1994) by regressing the log of
the consumption aggregate on measures of droughts, floods, and pests (one at a
3Some recent prominent examples include Angelucci and De Giorgi (2009), Banerjee et al. (2015),
Karlan et al. (2014), Kinnan (2022), Munshi and Rosenzweig (2016), and Santàeulalia-Llopis and
Zheng (2018), while earlier studies are covered in surveys such as Alderman and Paxson (1994),
Attanasio and Weber (2010), Dercon (2005), Morduch (1995), and Townsend (1995).
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time) using two-way fixed effects and controlling for the demographic composition
of the household. We add in (log) idiosyncratic household income as well, to serve
as a benchmark. Here’s what we find,4 reporting the estimated coefficient on three
different classes of shocks:

Drought Floods Pests Income
0.043∗∗∗ 0.091∗∗∗ 0.094∗∗∗ 0.075∗∗∗

(0.015) (0.033) (0.034) (0.007)

So, in the conventional approach, we would reject full risk-sharing for each of
these kinds of shocks. But those coefficients are positive! This would be expected for
income, but does welfare really increase by roughly 4–8% when one of these (biblical!)
covariate shocks is realized?

This sort of finding is not fragile, and survives various tweaks to the specification
and different approaches to the calculation of standard errors. Neither is it confined
to Uganda—“puzzling” coefficients are also found in every other LSMS panel with the
requisite data that we’ve looked at (our search continues).5

And so, a stylized fact: These kinds of negative covariate shocks really can have a
positive effect on measured consumption expenditures. That leads to the two ques-
tions this paper addresses.

(1) How can we make sense of this? Our answer will be that using the consump-
tion aggregate is a mistake. It’s used as a proxy for household’s marginal
utility of expenditures (MUEs), but it’s only a valid proxy if utility functions
are homothetic. Engel (1857) and a host of more recent evidence emphatically
asserts (e.g., Jensen & Miller, 2008) that utility functions are not homothetic,
and so the usual risk-sharing regression is mis-specified—even with full in-
surance we’d find these results. In particular, without homothetic preferences
prices affect total expenditures in a non-separable way, so that the time effects
of the TWFE regression cannot control for variation in relative prices.

(2) How can we fix the specification, and obtain a valid test of risk-sharing against
covariate shocks? To answer this, we go back to some basic consumer theory
to find the broader class of preferences which permit us to infer MUEs using
only data on expenditures (and household characteristics). We are able to

4There are lots of details, but these don’t belong in the introduction! See below for a complete
discussion.
5Kurosaki (2014) also finds puzzling results along these lines when he examines the effects of droughts
and floods in Pakistan.
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completely describe this class by showing the expenditure system can be ex-
pressed in a form known as the generalized Pexider functional equation, and
exploit results from the theory of functional equations to describe the complete
set of solutions to these equations. The solutions take one of two forms: (i) a
family of semiparametric demands which generalize demands associated with
CRRA utility; and (ii) a second family of semiparametric demands which gen-
eralize Stone-Geary. Both families are non-homothetic, and together exhaust
the class of demands from which MUEs can be constructed using expenditure
data. The first family lends itself to linear tests of risk-sharing with two-way
fixed effects; the second does not.

1.2. Organization. In this paper we first offer a diagnosis of the problems which give
rise to the puzzling correlations described above. The diagnosis involves three distinct
elements. First, covariate shocks cause variation in relative prices. Second, the ac-
tual structure of preferences isn’t homothetic, so total expenditures depend on prices
in a more complicated way than is assumed by the usual risk-sharing regression—in
particular not all goods have unitary income and price elasticities. These first two
elements are enough to generate correlations between covariate shocks and the con-
sumption aggregate, even if risk is perfectly shared. Third, in practice the constructed
sum of consumption expenditures is not complete, and excludes certain elastic goods
or services, so that the constructed sum taken together has an income elasticity less
than one. The consequence is that shocks that increase prices for observed inelastic
goods will tend to increase observed expenditures, just as we observe in Uganda.

After our diagnosis, we offer a prescription. What does theory tell us about how
to correctly test the hypothesis of full risk-sharing? Here the theory is remarkably
clear on two basic points, both of which I believe to be novel. First, one cannot
sum up expenditures on goods that have different income elasticities and use this
sum to construct MUEs. Second, in order to use time effects to handle the effects of
(possibly unobserved) prices on item-level expenditures, we must be able to express
the system of expenditures as an additively separable function of the MUE and prices.
The requirement that (some transformation of) item-level expenditures have this
separability property (along with some standard regularity conditions) is equivalent
to the utility function taking one of two particular semi-parametric forms, but only
one of these forms is easily estimated using linear methods. Importantly, this class of
utility functions nests the homothetic forms previously used in tests of risk sharing.
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This knowledge of the utility function then dictates the form of demands and the risk-
sharing test. Neither of these two points hinges on whether risk is actually efficiently
shared.

The rest of our prescription is empirical: given the form demands must take if we’re
to control for prices using time effects, how can we construct estimates of MUEs? We
use a simple estimator detailed in Ligon (2019).

Given our prescription, we next turn our attention to treatment: we use the afore-
mentioned data from Uganda to construct estimates of MUEs, which are the natural
objects to use in a test of risk-sharing. We conduct this test, and show that our use
of these more general demand system in fact seems to resolve the puzzle we began
with.

Finally, we conclude with a prognosis. Our construction of MUEs is independent of
the risk-sharing hypothesis, and so these objects could be used in tests and estimation
of the many dynamic models which put structure on the evolution of MUEs over time.
We offer some thoughts and suggestions about ways in which these might proceed.

2. Risk-sharing (The General Case)

Suppose that preferences are “regular” (i.e., can be represented by an increasing,
concave, continuously differentiable utility function). More restrictively, assume that
preferences are von Neumann-Morgenstern and intertemporally separable.

Following Townsend (1994), consider the problem facing a social planner in an
environment with uncertainty; at date t state s ∈ {1, 2, . . . , S} is realized with proba-
bility Prt(s). The planner maximizes a weighted sum of households’ utilities, with the
(Pareto) weight θi associated with household i’s utility. Utility at date t is discounted
by some βt < 1. At each date-state (t, s) the planner allocates a consumption budget
to each household, but has to respect the aggregate resource constraint that the sum
of all expenditures must be less than some given quantity x̄t(s). For household i at
date t in state s let the budget allocated be xit(s). Given this budget and taking
prices as given the household then solves the usual consumer problem.

In general, indirect utility within the period will depend not only on the size of the
budget, but also a complete vector of prices pt(s) and household characteristics zit.
Then the planner’s intertemporal problem can be written

(1) max
xit(s)

∑
i

θi
∑
t

βt
∑
s

Prt(s)V (xit(s), pt(s); zit(s))

subject to the aggregate budget constraint
∑

i xit(s) = x̄t(s) for all t, s.
5



Let νt(s) = µt(s)βtPrt(s) be the multiplier associated with the aggregate resource
constraint at time t in state s. Then the first order conditions associated with the
assignment of xit(s) are

θi
∂V

∂x
(xit(s), pt(s); zit(s)) = θiλ(xit(s), pt(s); zit(s)) = µt(s)

for all (i, t, s), where λ(x, p, z) is a function that can be interpreted as the household’s
marginal utility of expenditures (MUE), and where µt(s) is the shadow price associ-
ated with the aggregate budget within date-state (t, s). Then taking logarithms and
rearranging we have

(2) log λit(s) = log µt(s)− log θi.

Equation (2) is the hallmark of full risk-sharing, given time-separable von Neumann-
Morgenstern preferences, expressing the simple factor structure of optimal allocations.
It also immediately lends itself to testing: The right hand side can be estimated using
panel data with two-way fixed effects (time and household), assuming only that prices
are common.

Everything up to this point is standard and implied by Pareto optimality, provided
only that agents are risk averse and have well-behaved preferences which are separable
across dates and states.

There is, however, a key issue before taking the predictions of full risk sharing
to data: one must take a stand on how to construct the MUE function λ(x, p, z).
Townsend adopted a representation of momentary household utility which depends
only on the consumption aggregate, normalized by a price index and a scalar function
of household characteristics; this is equivalent to assuming a homothetic utility func-
tion (Blackorby & Donaldson, 1988). The empirical literature has mostly followed his
example. Typical risk-sharing tests following Townsend (or Deaton, 1992) assume ho-
mothetic or (less often) quasi-homothetic (e.g., Ogaki & Zhang, 2001; Zhang & Ogaki,
2004) preferences, for example assuming the household indirect utility function takes
the “Constant Relative Risk Aversion” (CRRA) form

V (x, p, z) =
(x/(π(p)g(z)))1−γ − 1

1− γ
,

where π(p) is a scalar price index, and where g(z) is a scalar function mapping
household characteristics into “adult equivalents”.6 Then the household’s marginal
6Townsend (1994) actually works principally with exponential or CARA utility, with V (x, p, z) =
− 1

σ exp[−σ (x/π(p)− g(z))] which delivers a regression specified in levels rather than logs of total
expenditures, but the subsequent literature has generally adopted the CRRA specification.
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utility of expenditures is given by

λ(x, p, z) =
x−γ

(π(p)g(z))1−γ .

Substituting this expression into (2) and re-arranging yields an estimating equation
of the form exploited by Townsend and Deaton,

(3) log xit =
1

γ
log θi −

[
1

γ
log µt +

1− γ

γ
log π(pt)

]
− 1− γ

γ
log g(zit).

So we estimate this by regressing the log of the consumption aggregate on house-
hold fixed effects (which identify γ−1 log θi) and time (or perhaps village-time) effects
(which identify the term in square brackets involving only prices), and some known
function g of observed household characteristics.

From the comparison of the two equations (2) and (3) three important points
emerge. First, that the Townsend/Deaton risk-sharing regression is a special case of
the more general (2). Second, that the marginal utility of expenditures λ already
automatically incorporates information on household characteristics that may affect
demand, and does so much more flexibly than does the g(z) function that appears in
the Townsend approach (c.f., Lewbel, 2010). Third, in general λ also depends on the
entire vector of prices p, while in the CRRA case prices affect total expenditures only
via a single scalar price index π(p).

Townsend-style risk-sharing tests are generally implemented by adding some mea-
sure of a “shock” to (3), and testing the exclusion restriction (idiosyncratic shocks
shouldn’t affect MUEs). But even if perfect risk-sharing doesn’t hold (we can think
of this as the Pareto weights θi varying with the state), total expenditures in this
framework depend only on Pareto weights (reflecting households’ relative wealths),
on prices p (capturing aggregate shocks to demand and supply), and on characteris-
tics z (which may drive changes to the structure of household demands). So “shocks”
can affect total expenditures only via one of these three channels.

Under a maintained hypothesis of full risk-sharing, idiosyncratic income variation
will be insured, but variation in prices will still affect expenditures, implying a re-
gression of the form

(4) log λit = log µt − log θi + δShockit + eit.

When we observe λit, we can implement this regression simply by adding two-way
fixed effects—time effects account for log µt, while household fixed effects account
for log θi. This leaves a disturbance term eit which can be interpreted as either (or
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both of) measurement error in the dependent variable, or the effects of time-varying
unobserved household characteristics on expenditures. In either case full insurance
implies the exclusion restriction δ = 0. (Here we also assume that the shock doesn’t
affect unobserved household characteristics.) Note that in this case full insurance
implies δ = 0 regardless of whether the shock is idiosyncratic (doesn’t affect prices)
or covariate (affects prices).

Now, consider the special case of CRRA preferences, for which MUEs can be ex-
pressed in the separable form log λ(x, p, z) = −γ log

(
x

π(p)g(z)

)
− log π(p) − log g(z).

Adding a “shock” to the right-hand side of (3) yields the CRRA risk-sharing regression

(5) log xit =
1

γ
log θi −

1

γ
[log µt + (1− γ) log π(pt)] + δShockit −

1− γ

γ
g(zit) +

1

γ
eit,

where now the joint hypothesis of full risk-sharing and CRRA preferences implies
δ = 0. But suppose that there’s full risk-sharing but preferences are not CRRA.
If the shock is idiosyncratic (and so doesn’t affect prices, and also doesn’t affect
characteristics z) then we would still expect δ = 0. But if the shock changes relative
prices then the exclusion restriction will fail, because in this case the single index
π(p) can’t account for the effects of changes in relative prices on the composition of
expenditures. An immediate consequence is that the disturbance term eit must be a
function of those prices.

More particularly, in the face of increased prices expenditures on inelastic goods
such as food will increase. And since most of the expenditure items we have household-
level data on are different sorts of food, we might expect a measure of total food ex-
penditures to be positively correlated with “covariate” negative shocks which increase
local prices, such as drought, floods, pests, or changes in prices for agricultural inputs.
Or putting a finer point on it, if the measure of xit is not really total expenditures on
all non-durable goods and services, but is expenditures on a subset of goods which
have inelastic demands, then by definition expenditures on that subset will tend to
increase with increases in prices of those goods. Per Engel (1857) the subset “food”
would be a good example, with more recent evidence including McKenzie (2003) and
Thomas and Frankenberg (2007). And in this case we would predict that any shock
that causes increases in food prices will be associated with δ > 0.

So, our diagnosis. Covariate shocks affect prices and hence expenditures in ways
that aren’t properly accounted for in a specification of the risk-sharing regression that
assumes homothetic preferences (i.e., that prices have no effect on expenditures).
Thus, even if there is full insurance covariate shocks may be correlated with total
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expenditure. Further, if the constructed consumption aggregate excludes some elastic
goods in particular, then we would expect the correlation between covariate shocks
and the constructed consumption aggregate to be positive, just as observed in Uganda.

3. Inferring MUEs from Expenditure Data

The problem we’ve identified is that the usual risk-sharing regression provides a
joint test of full risk-sharing and CRRA utility. Assuming CRRA utility allows us
to use nothing more than panel data on expenditures (and perhaps household demo-
graphics) to construct risk-sharing tests based on panel estimation of two-way fixed
effects. In practice these are highly desirable properties. Are there non-homothetic
utility structures which could more flexibly account for demand responses to changes
in relative prices while at the same time preserving these desirable properties? In
this section we establish that the answer is “yes”, and obtain the complete class of
demand systems which (i) are implied by some regular utility function; and (ii) can be
constructed using (just) data on consumption expenditures (and perhaps household
demographics).

3.1. Preliminaries. In this section we set aside any explicit consideration of house-
hold characteristics. There’s no loss of generality in this. With time-separable von-
Neumann-Morgenstern preferences we can simply describe utility functions and de-
mand implicitly conditioning on those characteristics.

Thus, let Un be the set of strictly increasing, strictly concave, twice-continuously
differentiable functions mapping Rn

+ into R, and call Un the set of regular utility
functions over Rn

+.
For a household with a utility function U ∈ Un with a total budget x̄ > 0 fac-

ing prices p ∈ Rn, a Lagrangian formulation of the consumer’s problem is to solve
maxc∈Rn

+
U(c) + λ(x̄ − p⊤c), with λ the Lagrange multiplier or MUE that we would

like to obtain for our risk-sharing test.
We can express a solution to the consumer’s problem in terms of demand functions

which depend on prices and λ. This form of demands was advocated by Ragnar
Frisch, so we might say that Frischian demands map the product of positive quantity
λ and n prices into n quantities demanded. We say that

Condition 1. An n-vector of Frisch demands f(p, λ) is rationalized by U if there
exists a U ∈ Un such that

(6) uj(f(p, λ)) :=
∂U

∂cj
(f(p, λ)) = pjλ

9



for all p in any open subset of Rn
+ and λ > 0 for j = 1, . . . , n.

Similarly, we say a given f is rationalizable if there exists a U ∈ Un which rational-
izes f .

Condition 1 basically requires that demands be interior solutions to the problem of
maximizing some regular utility function subject to a budget constraint. If a consumer
has a utility function U , and solutions to that consumer’s problem are characterized
by the first order conditions (6), then these demands will also be solutions to this
consumer’s problem.

From the form of the right-hand side of (6) it’s apparent that Frischian demands
must be homogeneous of degree zero in (p, 1/λ). It follows that we can simplify
the expression of Frischian demands, as we have f(p, λ) = f(pλ, 1), which can then
simply be written as f(pλ). This same point follows from the observation that at the
optimum the vector of marginal utilities u can be inverted to yield f(p, λ) = u−1(pλ),
so that we know we can write Frischian demands as simply f(pλ).

3.2. MUEs for risk-sharing tests. The problem: we observe consumption expen-
ditures {xj} for some (but perhaps not all) goods j. From these data we wish to infer
values for MUEs; further, we want to be able to use these MUEs in a risk-sharing
test that can be implemented using two-way fixed effects.

The fundamental risk-sharing equation is

log λ = log µ(p)− log θ,

but we don’t directly observe λ, only expenditures. So if we’re to preserve the risk-
sharing test we need to be able to write some transformation of expenditures as
an additively separable function of prices and log λ. Note that CRRA utility does
exactly this as expenditures for good j in the CRRA case satisfy −γ log xj = log λ+

(1 − γ) log pj, or (summing over goods) log x = −1
γ
log λ + log π(p) for some linearly

homogeneous price index π(p). However, other more general preferences will also
work. What are these preferences?

In general, for any good j we need functions (ϕj, aj) such that

(7) ϕj(xj) = log λ+ aj(p).

If there exist functions (ϕj, aj) satisfying (7), then we can substitute into the funda-
mental risk-sharing equation, obtaining

ϕj(xj) = [log µ(p)− aj(p)]− log θ.
10



Since the term in brackets varies only with prices this can serve as the basis of the
kind of risk-sharing test that we’re after, with time-effects identifying log µ(p)−aj(p)
and household fixed effects identifying log θ. The key property is (7); this is a special
case of a more general property we’ll call λ-separability.7

Condition 2. The Frischian expenditures on good j, xj(p, λ) ≡ pjfj(pλ) are λ-
separable if there exist functions (ϕj, aj, bj) such that

(8) ϕj(xj(p, λ)) = aj(p) + bj(λ),

with ϕj continuously differentiable and aj either non-constant or zero.

Note that while rationalizability is a property of the entire system of demands and
expenditures, (λ-) separability is a property of a particular good. In particular it’s
possible that some but not all demands or expenditures are (λ-) separable.

3.3. Demands and utilities when expenditures are λ-separable. Exploiting
the fact that expenditures must be linearly homogeneous, it turns out that one can
write any rationalizable λ-separable expenditures in the form

k(p+ λ) = g(λ)ℓ(p) + h(p),

which is called the generalized Pexider equation. This gives us a single functional
equation in two variables, which can be solved for the four functions g, h, k, and
ℓ. Exploiting this allows us to describe all rationalizable demands and utilities when
expenditures are λ-separable:

Theorem 1. If expenditures for some good i satisfy Condition 1 and Condition 2
with ϕj increasing; aj(p) either non-constant or zero, and continuous at a point; and
with bj continuous at a point, then transformation functions ϕj, Frischian demands
fj and rationalizing marginal utility uj must satisfy one of the following two cases for
positive constants αj, βj, and σj:

(1) (Constant Frisch Elasticity): ϕj(xj) = log(xj); fj(p, λ) = (αj/(λpj))
βj ; and

uj(c) = αjc
−1/βj

j .
(2) (Generalized Stone-Geary): ϕj(xj) = x

σj

j ; fj(p, λ) = [(βj/(λpj))
σj + αj]

1/σj ;
and uj(c) = βj

(
c
σj

j − αj

)−1/σj .

Proof. See Appendix A.2. □

7This property generalizes what Browning et al. (1985) calls “Case 2” demands, discussed in detail
in Ligon (2016b).
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Rationalizing Utility Functions. The labels of the different cases in Theorem 1 in-
dicate names for the rationalizing utility function U having marginal utilities uj(c);
an example of “Constant Frisch Elasticity” (CFE) utility can be written as U(c) =∑n

j=1 αjβj
c
1−1/βj
j −1

βj−1
.8 The CFE system generalizes the Constant Elasticity of Substi-

tution (CES) system (take βj = β), of which the Cobb-Douglas system is a limiting
case (take β → 1, applying L’Hôpital’s rule). Both the CES and Cobb-Douglas cases
are homothetic, and consistent with the CRRA indirect utility function. Finally, the
“Generalized Stone-Geary” case gives what is, to the best of my knowledge, a marginal
utility function which has not previously appeared in the literature. This case gives
demands which are not linear in parameters, which may limit its usefulness in applied
empirical work. However, when σj = 1 one obtains the quasi-homothetic Stone-Geary
utility function, which suggests that it could be used to explore the behavior of Engel
curves, perhaps exploiting a Box-Cox approach to estimation.

3.4. Estimating log λ. Using Theorem 1, the condition that expenditures be λ-
separable implies that expenditures must take one of two forms:

(1) log xj = aj(p)− βj log λ; or
(2) log xj =

1
σj
log

[(
βj

λ

)σj

+ aj(p)
]
.

The second form (generalized Stone-Geary) does not easily allow us to estimate
log λ using data on expenditures. But the first does, using standard “interactive
fixed effects” panel methods (Bai, 2009). But here, instead of the panel dimensions
varying over households and time periods, they vary over households and items of
consumption expenditure. In particular, indexing goods by j and households by i we
have for every period t

(9) log xjit = gj(zit) + aj(pt)− βj log λit + ϵjit,

where zit are observable household characteristics, such as household size and compo-
sition, bj(pt) measures the effect of common time t prices pt on expenditures, where
βj log λit gives us the effect of λ on expenditures for good j, and where ϵjit can be
regarded as measurement error in expenditures, or perhaps the effects of unobserved
household characteristics on expenditures. The term aj(pt) we can account for using
good-time effects. Different strategies may be employed to estimate the functions gj;
our preference here is perhaps the simplest, which is to simply assume that gj(z) is

8Ligon (2019) gave this name to a general form of this utility function, but special cases include
the “direct addilog” of Houthakker (1960) or the “constant relative income elasticity” form of Caron
et al. (2014).
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linear in the vector of characteristics z. And then the tools of factor analysis can
be used to simultaneously estimate the parameters βj and log λit, up to an unknown
(and unimportant) factor of proportionality. (Details are given in Ligon, 2019, while
code to compute estimates is provided by Ligon (2023).) We call the system (9) the
Constant Frisch Elasticity (CFE) expenditure system, as it is an example of the sys-
tems considered by Frisch (1959) with its chief distinguishing characteristic the fact
that the elasticities (the βj) of expenditures with respect to MUE are constant.

4. Data

We use eight rounds of LSMS data from Uganda, with expenditures on 41 different
goods (mostly foods). We also use some demographic data: counts of men, women,
boys, and girls; the log of total household size (to allow for effects of scale); a “Rural”
dummy variable. Our test of risk-sharing requires panel data on households over
time. The Ugandan LSMS covers eight waves of data collection, spanning the years
2005–2020. Waves were not always collected at regular intervals, however, and only
a subset of households appear multiple times. In particular, while we observe usable
data from 5797 distinct households over this period, 980 of these households appear
only once, and so contribute nothing of value to the risk sharing test (though data
on these households’ consumption expenditures is still useful for estimating the CFE
demand system). Table 1 describes the number of households observed in each round,
and how many households observed in a particular round also turn up in another.
For example, looking at the first row of the table, we have data for 3122 households
in 2005, and of these 1288 are also observed in 2019-20. Overall, we have an eight
year unbalanced panel with a total of 22,500 usable household-year observations.

Table 1. Households’ Attrition in the Ugandan LSMS

Round 2005 2009 2010 2011 2013 2015 2018 2019
2005-06 3122 2606 2386 2363 1566 1470 1356 1288
2009-10 — 2974 2617 2581 1685 1578 1451 1376
2010-11 — — 2685 2487 1603 1506 1389 1322
2011-12 — — — 2843 1712 1610 1481 1410
2013-14 — — — — 3117 2870 2613 2468
2015-16 — — — — — 3305 2968 2796
2018-19 — — — — — — 3241 3007
2019-20 — — — — — — — 3076

Table 2 reports some characteristics of the sample households, by year. These char-
acteristics are important because the household-level marginal utility of expenditures
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seems likely to depend not only on household size, but also on its composition. Our

Table 2. Mean characteristics of households by year.

(t/Nt) Girls Boys Women Men Rural log HSize
2005-06 1.55 1.56 1.17 1.05 0.72 1.48

3122 (1.48) (1.49) (0.81) (0.82) (0.45) (0.68)
2009-10 1.73 1.77 1.26 1.13 0.74 1.60

2974 (1.53) (1.59) (0.82) (0.90) (0.44) (0.64)
2010-11 1.85 1.86 1.31 1.16 0.78 1.66

2685 (1.60) (1.62) (0.88) (0.93) (0.41) (0.63)
2011-12 1.79 1.77 1.29 1.15 0.79 1.63

2843 (1.57) (1.58) (0.80) (0.90) (0.40) (0.62)
2013-14 1.58 1.59 1.25 1.12 0.74 1.54

3117 (1.50) (1.50) (0.77) (0.86) (0.44) (0.64)
2015-16 1.28 1.29 1.17 1.05 0.75 1.34

3304 (1.39) (1.40) (0.77) (0.88) (0.43) (0.74)
2018-19 1.46 1.42 1.23 1.11 0.75 1.48

3176 (1.40) (1.36) (0.72) (0.86) (0.44) (0.63)
2019-20 1.42 1.37 1.23 1.09 0.76 1.46

3076 (1.40) (1.32) (0.71) (0.85) (0.43) (0.64)
Pooled 1.57 1.57 1.23 1.11 0.75 1.52
24297 (1.49) (1.49) (0.79) (0.87) (0.43) (0.66)

estimates of MUEs relies on preferences not being homothetic—we are using data on
the composition of households’ consumption portfolios, and since we observe only a
subset of all consumption goods changes in relative prices make efforts to use con-
sumption aggregates ill-advised (Christiaensen et al., 2022). Figure 1 uses the fact
that homothetic preference structures imply that aggregate expenditure shares (of
the sort that appear in national income and product accounts) will be the same as
average expenditure shares. The figure takes logs of each of these, and then differ-
ences. It is apparent that these shares are not the same at all, with goods to the
right (e.g., beer) playing a larger role in the consumption portfolios of households
with larger budgets, and goods to the left (e.g., sorghum) playing a more important
role for poorer households.

The data we have from the LSMS surveys includes self-reported data on a variety
of “shocks” the household may have experienced (Heltberg et al., 2015, discuss the
collection of this sort of data in a variety of different household surveys), generally
elicited using the prompt “Did you experience [SHOCK] in the last twelve months?”9

9There is some variation in the elicitation in different rounds, and the first 2005-06 round in particular
uses a longer reporting period.
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Figure 1. Log of aggregate shares minus log of mean shares for dif-
ferent years (ordered by average aggregate share), with 95% confidence
intervals.

Where the answer is “Yes”, the respondent is asked about the timing of the shock (in
what month did the shock occur, and for how long did it last). There is some modest
variation across rounds in the language used to describe different sorts of shocks (see
Appendix A.1), but one can distinguish two classes. The first is idiosyncratic, shocks
which directly involve the household. Frequently reported idiosyncratic shocks include
health issues (serious illness or accident), thefts of property, and death (death of
“income earners” is reported separately from the death of other household members).
The second is covariate, shocks which seem likely to affect many households within
a local area, though not necessarily equally. Frequently reported covariate shocks
are drought (or “irregular rains”), agricultural pests, floods, and adverse agricultural
prices (unusually expensive inputs or unusually low prices for output). Table 3 reports
the incidence of these shocks across different rounds.

To get a notion of frequency from Table 3, there are about 2800 households observed
per year. Drought is by far the most frequently reported shock. Meteorologists regard
2005–08 as a period of major drought for Uganda, with 2010–11 and 2014–15 periods
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Table 3. Reported incidence of different kinds of shocks by year.

Shock 2005 2009 2010 2011 2013 2015 2018 2019 Total
Health 82 377 301 156 133 88 190 197 1524
Theft 349 233 96 55 76 62 75 83 1029
Death 423 74 58 35 66 35 44 49 784
Death of earner 99 27 17 19 30 19 20 19 250
Drought 1234 1344 710 560 914 598 736 529 6625
Floods 426 61 102 148 98 62 74 117 1088
Pests 475 219 77 92 71 53 130 84 1201
Prices 71 113 54 65 67 12 78 29 489

of minor drought (Byakatonda et al., 2021), consistent with the household reports in
Table 3. Health shocks (both illness and accidents) are the second most frequently
reported shocks, followed by pests (which includes both crop pests and livestock
disease), floods, death, theft, and adverse changes in agricultural prices.

While there’s important variation across years in the proportion of households that
report drought, we would like to know that the data are consistent with those shocks
being covariate, in the sense that if a person at one location reports drought, then
another nearby person is likely to report the same. Figure 2 documents all the drought
reports across the eight different LSMS-ISA countries over all the years (2005–20) for
which we have data. Dots correspond to sample clusters, and the “redder” the dot,
the higher the proportion of households which reported drought.

Casual observation of the figure suggests not only that there are many dark dots
(high proportions of households within a cluster agreeing that there’s drought), but
also that darker dots tend to be close to each other, consistent with the notion that
these reports really are reflecting covariate shocks.

5. Estimation of the CFE Expenditure System

With these data we estimate the βj parameters and the values of log λit for every
household-year. Figure 3 shows our estimates of the βj elasticities; note that we can
easily reject the hypothesis that these are all equal, as they would be in the nested
CRRA case—there’s a wide range of income elasticities across different goods, even
for the same household, and the least elastic (those with low values of βj) are what
we might expect (starchy staples, salt). Similarly, goods such as fresh milk, sweet
bananas, coffee, oranges, and passion fruit all exhibit high elasticities. The ratios of
the β coefficients are equal to rations of income elasticities, implying that passion
fruit is roughly three times as income elastic as cassava.
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Figure 2. Drought reports in the LSMS-ISA data across Africa. Each
dot corresponds to a sample cluster; the “redder” the dot the higher the
proportion of households in the cluster which reported drought. Note
that observations from later sample years often partly obscure data
from earlier years.

We estimate w = − log λit (we use the negative of the log MUE to make it easier
to interpret the sign of the result—bigger is better) for every household in every year.
Figure 4 presents kernel density estimates of the distribution of for every year and
year. There is some evidence of this distribution shifting across years, but this could
be due to changes in prices. And from these cross-sectional distributions we can’t tell
anything about how the position of a particular household changes over time.

Figure 5 uses our estimates of βj to describe expenditure shares for the different
goods in the demand system as a function of log total expenditures (omitting expen-
ditures on any goods or services not observed). These shares are for a household with
“average” observed characteristics, facing the relative prices prevailing in the initial
2005–06 wave of data. Thus, the circumference of the pie reports expenditures for
the household with the largest observed expenditures, while the other circles with
smaller radii report the expenditures of households at the 1%, 50%, and 99% quan-
tiles of log x. Labels for particular goods are provided where these fit (in this case,
where the share is greater than 1% for the household with the largest expenditures).
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Figure 3. Estimates of elasticities βj. These can be interpreted as
price elasticities, and (by Pigou’s Law) are proportional to income elas-
ticities. Horizontal bars are 95% confidence intervals.

6. Tests of Risk Sharing in the Face of Covariate Shocks

In this section we want to actually conduct the risk-sharing tests described above.
We’ll use two different approaches. The first is the classic test assuming CRRA utility:
for these the dependent variable is the log of total expenditures. The second is the
test assuming our more general CFE preferences; for these the dependent variable is
w = − log λ.

6.1. Effects of shocks on welfare. The risk-sharing test we’re concerned with is
meant to provide a test of the null hypothesis that E(log λ|p, d) = E(log λ|p, d, Shocks).
If demands are consistent with the CFE specification, then the welfare measures w
we’ve constructed are estimates of − log λ, and we are justified in using w as the
dependent variable in the two-way fixed effects regressions we’ve described. When
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Figure 4. Distribution of w by year.

βj = β̄ for all goods j, then CFE demands will coincide with the special case of
CRRA, and we will have − log λ proportional to log x.

Table 4 describes the effects of different shocks on both w (equation 4, the CFE
risk-sharing regression) and on log x (equation 5, the CRRA risk-sharing regression).
Reported standard errors here and elsewhere are robust (Arellano, 1987). These es-
timates provide strong additional evidence favoring the general CFE over the CRRA
specifications of the risk-sharing regression. Because the elasticities in the CFE de-
mand system take different values for different goods, the disturbance term in the
standard CRRA risk-sharing regression must be a function of relative prices, so that
a regression of log total food expenditures on shocks which increased food expendi-
tures would yield positive estimated values of δ. The same would not be true for a
regression with w as the dependent variable.

The results of Table 4 confirm this reasoning rather dramatically. In fact, every
covariate shock has a significant positive coefficient in the CRRA regressions, while
no covariate shock has a significant coefficient in the CFE regressions. This is strong
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Figure 5. Engel Pie: Estimated expenditure shares as a function of
log x. Inset circles indicate the 0.01, 0.5, and 0.99 quantiles of the
distribution of log x. Food labels are ordered alphabetically clockwise
(labels which won’t easily fit omitted).

evidence in favor of the view that these negative covariate shocks increase local con-
sumption expenditures by causing an increase in local prices, and that the CRRA
specfication does not control for these price effects correctly.

Among the idiosyncratic shocks, income is significant, has the expected sign, and
has a magnitude similiar to that found in other Townsend-style tests of full insurance.
No other coefficients in either specification are significant, with the sole exception of
Health for CFE. This last should not be a surprise, and neither should it be interpreted
as a rejection of the risk-sharing model, as our estimation of the CFE demands did
not include any information on health as a household characteristic. If health affects
demands, in our specification it can do so either via a shock to the budget and thus w
(which would be at odds with full insurance, but not the CFE demand specification)
or via the disturbance term in the demand equations, which explicitly depends on
unobserved household characteristics such as health.
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Table 4. Effects of different shocks on welfare measures w and log x.
Shocks in the top panel are idiosyncratic, and in the lower panel are
covariate. All regressions control for year-market effects, household
fixed effects, and a vector of household demographics.

Shock w (CFE) log x (CRRA)
Death 0.023 0.020

(0.050) (0.050)
Death of earner 0.033 0.007

(0.089) (0.089)
Health −0.057∗∗ −0.028

(0.024) (0.024)
Theft 0.023 0.022

(0.033) (0.033)
Income 0.056∗∗∗ 0.075∗∗∗

(0.007) (0.007)
Drought 0.007 0.043∗∗∗

(0.015) (0.015)
Floods 0.030 0.091∗∗∗

(0.033) (0.033)
Pests 0.042 0.094∗∗∗

(0.034) (0.034)
Prices −0.044 0.099∗∗∗

(0.038) (0.038)

The data we have on expenditures is for the past week; the data we have on shocks
is for the past year. Could this somehow cause the apparently abberant effects of
positive shocks on expenditures, rather than something to do with prices? What if we
considered only shocks that were in close temporal proximity to the expenditures? We
construct a dummy variable which takes the value one if there’s a reported covariate
shock within the m months prior to the interview, and then re-estimate our risk-
sharing regressions allowing m to vary from zero months up to twelve months.

Results are reported in Figure 6.
Figure 6 provides even stronger evidence favoring the CFE over the CRRA risk-

sharing specifications. For the CRRA (log x) specification, having had any covariate
shock within the last year has a significant positive effect on log consumption, in every
month. In contrast, for the CFE (w) specification, having any covariate shock within
the last month has a rather large and significant negative effect on w. In subsequent
months the magnitudes of the effects of shocks on w are uniformly smaller than
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Figure 6. Effects of any covariate shock within the last m months on
welfare measures, from a two-way panel regression. Scale is in standard
deviations of the dependent variable (w or log x). Error bars cover a
span of two standard errors about the point estimate.

the CRRA case, though some are positive and statistically significant. The full risk-
sharing hypothesis holds that covariate shocks should influence w only through prices,
so we could interpret the significant negative effect in the first month as evidence
against the full risk-sharing hypothesis.

To try to get a better understanding of these patterns, Table 5 reports the same
kind of regressions described by Figure 6 which allow for shock windows of zero
through twelve months, but keeps the different kinds of shocks separate, as in Table
4. As in that table, most of the covariate shock coefficients (the last four columns)
are significant and positive in the CRRA specification, while only two are significant
for the CFE specification reported in the subsequent Table 6.

Using a two-way fixed effects regression we’ve seen that covariate shocks have at
most a small effect on w, save for the first month. We’ve argued that this is because the
main mechanism by which covariate shocks affect MUEs is via prices, and the two-way
fixed effects regression controls for these. What if we don’t control for prices? A panel
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Table 5. Effects of different shocks within the last m months on log
consumption expenditures.

Months Health Theft Death Death of earner Drought Floods Pests Prices
0 0.013 0.058 0.088 0.779∗ −0.069 0.283 0.291∗ −0.220

(0.092) (0.116) (0.309) (0.454) (0.152) (0.210) (0.152) (0.172)
1 −0.008 0.007 −0.024 0.216 −0.016 0.104 0.203∗∗ 0.068

(0.050) (0.065) (0.147) (0.204) (0.063) (0.104) (0.098) (0.153)
2 −0.030 −0.010 0.015 0.345 −0.022 0.119 0.176∗∗ 0.090

(0.042) (0.053) (0.107) (0.214) (0.042) (0.074) (0.078) (0.115)
3 −0.019 −0.011 0.042 0.294∗ −0.001 0.172∗∗∗ 0.155∗∗ 0.104

(0.038) (0.048) (0.090) (0.176) (0.031) (0.059) (0.062) (0.087)
4 −0.032 −0.021 0.042 0.104 0.016 0.137∗∗∗ 0.134∗∗ 0.122∗

(0.035) (0.045) (0.075) (0.159) (0.025) (0.049) (0.056) (0.068)
5 −0.034 −0.022 0.048 0.046 0.050∗∗ 0.116∗∗∗ 0.158∗∗∗ 0.097∗

(0.032) (0.041) (0.069) (0.138) (0.022) (0.044) (0.051) (0.056)
6 −0.037 −0.007 0.026 0.037 0.059∗∗∗ 0.080∗ 0.142∗∗∗ 0.120∗∗

(0.030) (0.037) (0.064) (0.123) (0.019) (0.041) (0.047) (0.051)
7 −0.024 0.012 0.005 0.021 0.046∗∗∗ 0.061 0.130∗∗∗ 0.109∗∗

(0.029) (0.037) (0.062) (0.116) (0.018) (0.038) (0.043) (0.048)
8 −0.022 −0.001 0.018 0.048 0.051∗∗∗ 0.068∗ 0.129∗∗∗ 0.102∗∗

(0.028) (0.035) (0.058) (0.108) (0.016) (0.037) (0.042) (0.044)
9 −0.019 0.004 0.026 0.030 0.056∗∗∗ 0.065∗ 0.121∗∗∗ 0.097∗∗

(0.027) (0.034) (0.055) (0.101) (0.016) (0.036) (0.039) (0.042)
10 −0.018 0.009 0.028 0.020 0.049∗∗∗ 0.074∗∗ 0.118∗∗∗ 0.107∗∗∗

(0.026) (0.034) (0.053) (0.096) (0.015) (0.035) (0.037) (0.040)
11 −0.025 0.014 0.032 0.026 0.046∗∗∗ 0.072∗∗ 0.104∗∗∗ 0.098∗∗

(0.025) (0.033) (0.051) (0.093) (0.015) (0.034) (0.036) (0.038)
12 −0.028 0.022 0.020 0.007 0.043∗∗∗ 0.091∗∗∗ 0.094∗∗∗ 0.099∗∗∗

(0.024) (0.033) (0.050) (0.089) (0.015) (0.033) (0.034) (0.038)

regression incorporating only household fixed effects would then reveal the effects that
shocks have on MUEs via prices. Of course, attribution becomes problematical, since
the incidence of covariate shocks across years and markets will be correlated not only
with prices, but possibly other shocks. Accordingly, Figure 7 shows the results from a
series of regressions of w and log x on the number of reported covariate shocks within
the last m months, just as in Figure 6, but in this case only as a “one-way” panel
estimator, controlling for household fixed effects but not time-market effects.

Here w falls with reported “negative” covariate shocks (drought, floods, pests,
prices) in the way we would expect, with estimated coefficients significantly nega-
tive for both the month of the shock and at more distant intervals (anything from
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Table 6. Effects of different shocks within the last m months on cur-
rent w = − log λ

Months Health Theft Death Death of earner Drought Floods Pests Prices
0 −0.057 0.239∗∗ −0.072 1.013∗∗ −0.367∗∗ 0.357∗ −0.087 −0.528∗∗∗

(0.092) (0.116) (0.309) (0.454) (0.152) (0.210) (0.152) (0.172)
1 0.014 0.045 −0.079 0.406∗∗ −0.061 0.095 0.125 0.059

(0.050) (0.065) (0.147) (0.204) (0.063) (0.104) (0.098) (0.153)
2 0.018 0.060 −0.087 0.485∗∗ 0.005 0.062 0.114 0.057

(0.042) (0.053) (0.107) (0.214) (0.042) (0.074) (0.078) (0.115)
3 0.015 0.005 0.037 0.367∗∗ −0.002 0.102∗ 0.111∗ −0.086

(0.038) (0.048) (0.090) (0.176) (0.031) (0.059) (0.062) (0.087)
4 −0.027 −0.008 0.020 0.107 0.008 0.115∗∗ 0.076 −0.064

(0.035) (0.045) (0.075) (0.159) (0.025) (0.049) (0.056) (0.068)
5 −0.033 −0.014 0.027 0.082 0.018 0.077∗ 0.104∗∗ −0.096∗

(0.032) (0.041) (0.069) (0.138) (0.022) (0.044) (0.051) (0.056)
6 −0.042 −0.007 0.036 0.066 0.015 0.038 0.089∗ −0.077

(0.030) (0.037) (0.064) (0.123) (0.019) (0.041) (0.047) (0.051)
7 −0.036 0.006 0.015 0.060 −0.000 0.014 0.053 −0.069

(0.029) (0.037) (0.062) (0.116) (0.018) (0.038) (0.043) (0.048)
8 −0.036 0.002 0.033 0.102 0.009 0.007 0.065 −0.071

(0.028) (0.035) (0.058) (0.108) (0.016) (0.037) (0.042) (0.044)
9 −0.036 0.003 0.073 0.084 0.006 0.020 0.065∗ −0.072∗

(0.027) (0.034) (0.055) (0.101) (0.016) (0.036) (0.039) (0.042)
10 −0.034 0.021 0.057 0.053 0.006 0.021 0.068∗ −0.052

(0.026) (0.034) (0.053) (0.096) (0.015) (0.035) (0.037) (0.040)
11 −0.049∗ 0.019 0.049 0.078 0.008 0.021 0.054 −0.043

(0.025) (0.033) (0.051) (0.093) (0.015) (0.034) (0.036) (0.038)
12 −0.057∗∗ 0.023 0.023 0.033 0.007 0.030 0.042 −0.044

(0.024) (0.033) (0.050) (0.089) (0.015) (0.033) (0.034) (0.038)

seven to twelve months). In contrast, “negative” covariate shocks have a uniformly
positive effect on expenditures, significant at all but the shortest intervals.

7. Conclusion

Using standard risk-sharing regressions to test for insurance against covariate shocks
(shocks that affect relative prices) can yield very surprising results—in the example
of Uganda, droughts, floods, pests, and adverse changes in prices appear to be at
least partially uninsured, but to improve welfare as measured by “real” consumption
expenditures.

We argue that these surprising results are a consequence of the standard risk-
sharing regressions actually being a joint test of full insurance along with preferences
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Figure 7. Effects of any covariate shock within the last m months
on welfare measures with household fixed effects. Scale is in standard
deviations of the dependent variable (w or log x). Error bars cover a
span of two standard errors about the point estimate.

being homothetic—in this case changes in relative prices affect welfare only via a
single scalar price index. There is extremely strong evidence against utility being
homothetic, starting with Engel (1857), since homothetic utility implies that all de-
mands must have an income elasticity of one. This doesn’t matter much when one
tests risk-sharing with respect to idiosyncratic shocks, since almost by definition these
won’t affect prices. But it can matter very much when prices change, since increases
in prices can very easily increase total “real” expenditures while utility actually falls.

There are two great virtues of the risk-sharing regression framework. The first is its
theoretical simplicity—it’s really a model of households’ marginal utilities of expen-
diture (MUEs), which in a world with full insurance have a simple factor structure
which is easily tested using panel methods with two-way fixed effects. The second is
that assuming homothetic utility allows us to write the MUE as a simple function
of nothing but total expenditures (typically x−γ). And there is plenty of carefully
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collected data on household expenditures which one can use to construct these MUEs
for dozens of countries over many years.

However, if we want to understand insurance against covariate shocks or price
changes, the evidence that we need to abandon homothetic utility is overwhelming. So
are there other ways to construct estimates of MUE that depend only on expenditures?
We show that there are. If we use data on item-level expenditures, instead of adding
these up to obtain a total, there’s information based on the composition of these
expenditures which can be used to estimate the MUE λ. A condition for being able to
use expenditure data to estimate λ is that the expenditure system must be separable
in λ and prices. When we imposing this separability and exploit the homogeneity of
expenditures in prices, we show that the expenditure system can be written in a form
called a generalized Pexider functional equation.

We exploit results from the theory of functional equations to obtain the entire
class of possible demand systems consistent with inferring the MUE from nothing
more than expenditures. These solutions fall into two families of semiparametric
demands—one corresponds to a generalization of CRRA utility we call “Constant
Frisch Elasticity” (CFE), while the other corresponds to a generalization of Stone-
Geary utility. Both admit non-homothetic preferences and very flexible responses to
changes in relative prices, but only the CFE system is easily estimated.

We use an eight round panel dataset from Uganda to estimate MUEs from ex-
penditure data. We also obtain estimates of elasticities which emphatically reject
the hypothesis of unitary income elasticities (a feature of CRRA demands). Us-
ing self-reported data on both covariate and idiosyncratic shocks, we estimate the
risk-sharing regressions, using as dependent variables (a) the logarithm of total ex-
penditures, as in the usual CRRA case; and (b) the values of w = − log λ estimated
from the CFE expenditure system in a two-way panel regression (which also includes
household demographics). As theory predicts, in this specification covariate shocks
and adverse price changes have significant effects on log total expenditures (even if
perfectly observed)10, and no significant effect on the CFE estimates of MUE, as these
are constructed to account for any changes in relative prices.

This paper has focused on the case of full risk-sharing. However, the construction of
estimates of MUE is independent of the efficient risk-sharing hypothesis, so estimated

10If in addition the expenditures we observe disproportionally omit certain goods or services with
high income elasticities, then covariate shocks will tend to have a positive effect on total expenditures,
as observed here.
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MUEs could be used to estimate and test any of a large variety of dynamic life-
cycle models, along lines suggested by Blundell (1998). The usual consumption Euler
equation is, after all, a statement about MUEs across time, and ratios of MUEs across
periods give us a way to calculate intertemporal marginal rates of substitution, free
of the usual homotheticity assumptions.
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Appendix A. Appendices

A.1. Data on Shocks. Data on self-reported shocks comes from a “shocks” module
in different rounds of the Ugandan LSMS surveys. There are minor differences in
elicitation and in the list of shocks reported in certain years. Table A.1 reports the
slight aggregation of shocks we use.

Table A.1. Different shock labels across eight rounds of Ugandan
data, with harmonized labels.

Existing Label Label
Conflict/Violence Conflict
Death of Income Earner(s) Death of earner
Death of Other Household Member(s) Death
Drought Drought
Drought/Irregular Rains Drought
Erosion Erosion
Fire Fire
Floods Floods
Irregular Rains Drought
Landslides Erosion
Landslides/Erosion Erosion
Loss of Employment of Previously Employed Household
Member(s) (Not Due to Illness or Accident)

Lost Earnings

Other (Specify) Other
Reduction in the Earnings of Currently (Off-Farm) Em-
ployed Household Member(s)

Lost Earnings

Serious Illness or Accident of Income Earner(s) Health
Serious Illness or Accident of Other Household Mem-
ber(s)

Health

Theft Theft
Theft of Agricultural Assets/Output (Crop or Livestock) Theft
Theft of Money/Valuables/Non-Agricultural Assets Theft
Unusually High Costs of Agricultural Inputs Prices
Unusually High Level of Crop Pests & Disease Pests
Unusually High Level of Crop Pests &amp; Disease Pests
Unusually High Level of Livestock Disease Pests
Unusually Low Prices for Agricultural Output Prices
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Table A.2. Incidence of shocks by round

Shock 2005 2009 2010 2011 2013 2015 2018 2019
Conflict/Violence 268 34 27 46 11 12 22 25
Death of Income Earner(s) 99 27 17 19 30 19 20 19
Death of Other Household
Member(s)

423 74 58 35 66 35 44 49

Drought 1234 — — — 735 526 556 360
Drought/Irregular Rains — 1344 710 560 — — — —
Erosion — — — — 15 3 19 13
Fire 105 26 21 20 17 18 12 9
Floods 426 61 102 148 98 62 74 117
Irregular Rains — — — — 179 72 180 169
Landslides — — — — 1 — 2 2
Landslides/Erosion — 21 5 17 — — — —
Loss of Employment of Pre-
viously Employed House-
hold Member(s) (Not Due to
Illness or Accident)

— 9 10 8 5 10 5 6

Other (Specify) 111 101 60 57 62 45 50 75
Reduction in the Earn-
ings of Currently (Off-Farm)
Employed Household Mem-
ber(s)

— 28 3 10 6 4 15 15

Serious Illness or Accident of
Income Earner(s)

82 189 152 91 86 56 107 119

Serious Illness or Accident of
Other Household Member(s)

— 188 149 65 47 32 83 78

Theft 349 — — — — — — —
Theft of Agricultural As-
sets/Output (Crop or Live-
stock)

— 127 48 21 35 27 41 40

Theft of
Money/Valuables/Non-
Agricultural Assets

— 106 48 34 41 35 34 43

Unusually High Costs of
Agricultural Inputs

71 60 19 27 49 7 10 12

Unusually High Level of
Crop Pests & Disease

— 137 40 61 54 35 — —

Unusually High Level of
Crop Pests &amp; Disease

292 — — — — — 120 79

Unusually High Level of
Livestock Disease

183 82 37 31 17 18 10 5

Unusually Low Prices for
Agricultural Output

— 53 35 38 18 5 68 17
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A.2. Proof of Theorem 1. In this appendix we provide a proof of Theorem 1.
We first supply a lemma pertaining to the homogeneity of λ-separable expenditure
systems, and then provide solutions to the generalized Pexider equation. With these
preliminary results in hand we establish that any rationalizable system of expenditures
which is λ-separable takes the form of the generalized Pexider equation, and map the
general solutions of the equation into corresponding demands and utilities.

A Lemma Pertaining to Homogeneity.

Lemma A.1. If demand for good i satisfies Condition 1 and Condition 2, then the
functions ϕi, ai and bi are either all logarithmic or ϕi and ai are both positive homo-
geneous of some degree σi, while bi is positive homogeneous of degree −σi.

Proof. Any rationalizable expenditures xi must be homogeneous of degree one in
(p, 1/λ). Exploiting Condition 2 then implies that

xi = ϕ−1
i (ai(p) + bi(λ))

is similarly homogeneous of degree one. The function ϕi must then either be homo-
geneous of degree σi, with ϕi(xi) = xσi

i , or else ϕi(xi) = log(xi). In either case Frisch
quantities can be written as

ci = fi(pλ) =
1

pi
ϕ−1
i (ai(p) + bi(λ))− di(p)

for some function di homogeneous of degree zero.
We consider the power and logarithmic cases in turn.
First suppose that ϕi(x) = xσi . Then the sum ai + bi must also be homogeneous

of degree σi in (p, 1/λ), and the individual functions ai and bi respectively either
homogeneous of degree σi and −σi or else the zero function. It follows that fi(p, r) =
ϕ−1
i (ai(p)/p

σi
i + bi(λ)/p

σi
i )− di(p), and that ai(p)/pσi

i and bi(λ)/pσi
i are either zero or

positive homogeneous of degree zero, so that

(ai(pθ) + bi(λ/θ)) = θσi(ai(p) + bi(λ)) = θσiai(p) + θσibi(λ)

for any positive scalar θ. Differentiating this with respect to 1/λ establishes that b′i is
homogeneous of degree σi− 1, so that bi is homogeneous of degree σi (by Euler’s the-
orem of positive homogeneous functions). A similar argument involving the gradient
with respect to p establishes the same for ai.

For the logarithmic case, ϕ(xi) = log(xi) = log(pi) + log(ci) implies that

fi(p, λ) + di(p) = exp (ai(p) + bi(λ)− log(pi))
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which must be positive homogeneous of degree zero in (p, 1/λ). This implies that for
any θ > 0

ai(θp) + bi(λ/θ)− log(θpi) = ai(p) + bi(λ)− log(pi),

which in turn implies that

ai(θp) + bi(λ/θ) = ai(p) + bi(λ) + log(θ),

implying that both ai and bi are linear in logs of (p,λ). □

Generalized Pexider Equation Applied to Vector Spaces. We now introduce our main
tool for solving the functional equations implied by separability and rationalizability;
this tool is an application of what is called the generalized Pexider equation, when
the domain of application is limited to real vector spaces.

Consider the generalized Pexider equation

(10) k(x+ y) = g(x)l(y) + h(y)

where

g(x) =
k(x)− h(0)

l(0)
(11)

φ(y) =
l(y)

l(0)
(12)

ψ(y) = h(y)− h(0)
l(y)

l(0)
(13)

k(x+ y) = k(x)φ(y) + ψ(y)(14)

κ(x) = k(x)− k(0)(15)

κ(x+ y) = κ(x)φ(y) + κ(y).(16)

Next we give statements of two related lemmata. The first is just a statement of
the solution of the well-known functional equation of Cauchy applied to real vector
spaces; the second is a statement of the solution to what is sometimes called Cauchy’s
exponential equation, again for real vector spaces.

Lemma A.2. Let f : Rn → Rm, with f continuous at a point. Then if

(17) f(x+ y) = f(x) + f(y)

then f(x) = Cx for some constant m× n matrix C.

Also
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Lemma A.3. Let h : Rn → Rm. If

h(x+ y) = h(x)h(y)

then either h(x) = 0 or h(x)=ef(x), where f is an arbitrary solution to Cauchy’s
equation (17).

Corollary 1. Any solution to the functional equation of Lemma A.3 which is con-
tinuous and non-constant is of the form

h(x) = exp(Cx),

where C is a constant matrix and the exp operator is element by element.

The following is just a restatement of Theorem 15.1 of Aczél and Dhombres, 1989,
and describes all solutions to the generalized Pexider equation (10) over the general
domain of Abelian groupoids.

Theorem 2. For any x, y in an Abelian groupoid, solutions to (10) will satisfy one
of:

(1) If φ(x) = 1 for all x, then κ(x) is an arbitrary function; ψ(x) = κ(x); and
k(x) = κ(x) +B. Or;

(2) if φ(x0) ̸= 1 for some x0, then we have C = κ(x0)
φ(x0)−1

; and κ(x) = C[φ(x)− 1];
and two sub-cases:
(a) C = 0; κ(x) = 0; φ(x) arbitrary; k(x) = B; ψ(y) = B(1− φ(y)); or
(b) C ̸= 0; k(x) = Cφ(x) + B; ψ(x) = B(1 − φ(x)); where φ(x) satisfies

φ(x + y) = φ(x)φ(y) (Cauchy’s exponential equation); and where κ(x)
satisfies κ(x+ y) = κ(x) + κ(y) (Cauchy’s equation).

If we restrict the domain under consideration to a real vector space, then we can
give explicit solutions to (10), as follows:

Proposition 1. For any x, y ∈ Rn, solutions to (10) will satisfy one of:

(1) If φ(x) = 1 for all x, then κ(x) = ψ(x) = Cx and k(x) = Cx + B, where
B ∈ Rm. Or;

(2) if φ(x0) ̸= 1 for some x0, then we have C = κ(x0)
φ(x0)−1

; and κ(x) = C[φ(x)− 1];
and two sub-cases:
(a) C = 0; κ(x) = 0; φ(x) arbitrary; k(x) = B; ψ(y) = B(1− φ(y)); or
(b) C ̸= 0; k(x) = Cφ(x) +B; ψ(x) = B(1− φ(x)); κ(x) = Cx; and one of:

(i) φ(x) = 0;
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(ii) φ(x) = exp(Ax); or
(iii) φ(x) = exp(f(x)), f nowhere continuous.

Proof. Just a specialization of Theorem 2 to the case in which domain is a real vector
space, which then allows subsequent application of Lemma A.3 and Lemma A.2. □

Proof of Theorem.

Proof. First, Lemma A.1 establishes that (ϕj, aj, bj) in (8) are all either logarithmic
or positive homogeneous of some degree (−)σj.

In the logarithmic case the logarithm of demand for good j can be written log fj(λp) =

[− log pj +aj(p)]+ bj(λ), which not only has expenditures λ-separable, but also quan-
tities λ-separable. Then the main result of Ligon (2016a) applies, with ϕj = log,
yielding the result that log(fj(λp)) = α̃j − βj log(pjλ). Let cj = fj(λp) and solve for
pjλ, obtaining pjλ = αjc

−1/βj

j , where αj = eα̃j must be positive.
In the homogeneous case, we have

(pjfj(λp))
σj = aj(p) + bj(λ),

or
fj(λp)

σj = p
−σj

j aj(p) + p
−σj

j bj(λ).

This takes the form of the generalized Pexider equation (10), with x = log λ and
y the vector log p, when the vector-valued function k(x + y) = [fj(exp(x + y))σj ],
h(y) = [aj(exp(y))e

−σjyj ], g(x) = [bj(exp(x))], and ℓ(y) = [e−σjyj ]. Now, we seek to
apply Proposition 1, which gives solutions to the system of functional equations 10–
16. Part of this system is the function φ(y). Using our knowledge that ℓj(y) = e−σjyj

and (13), it follows that in this equation the function φ(y) = ℓ(y) = [e−σjyj ]. Now,
consulting the different possible cases of Proposition 1 we see that with this solution
of φ the only cases that can apply are the cases indicated by 2a and 2bii. The former
implies that fj(λp)σj is a constant, so that (to be consistent with the properties of
Frisch demands) σj = 0. But then the function ϕj isn’t increasing, and the only
solutions that are relevant to our problem are the solutions 2bii. These imply that
k(z) = Cz + B, with C and B constant matrices, and φ(y) = exp(Cy). Thus C is
a diagonal matrix, with diagonal elements −σj. Using equations (14) and (15) we
obtain k(x+ y) = (Cx+B)eCy + [h(y)− h(0)φ(y)]; then using our definition of h(y)
in terms of p gives us fj(λp)σj = αj/(pjλ)

σj +βj. Noting that uj(c) = pjλ and solving
for this gives us the solution for marginal utilities. □
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A.3. Details of Estimation. Here we describe the steps involved in our estimation
of the demands given by (9). We assume that observed household characteristics zit
affect log expenditures linearly, and that all households within a given region-year in
Uganda face the same relative prices.11 The latter assumption allows us to estimate
the influence of prices by using region-year dummy variables, while the former allows
us to express the influence of household characteristics on demand for good j as γjzit,
where γj is a vector of parameters to be estimated, and where t is understood to
index region-years. Substitute wit = − log λit, and let yjit = log xjit. Then (9) becomes

(18) yjit = γ′jzit + ajt + βjwit + ϵjit.

If we observed either βj or wit this would be an entirely standard linear regression
problem. We do not, making this what Hansen (2022) calls a factor model with
additional regressors.12

We make four standard assumptions. First, that (zit, wit) are orthogonal to the
error ϵjit, the usual identifying assumption in a linear regression context. Second, that
wit is orthogonal to zit. While not necessary for identification (see Williams, 2020),
this assumption simplifies both the interpretation and estimation of wit. Third, that
errors ϵjit are homoskedastic across goods, though we allow clustering at the region-
year level, so that Var(ϵjit) = Var(ϵj

′

it). Both the second and third assumptions are
testable, and can be relaxed. Finally, as with any factor analysis some normalization
is required for identification; here it’s convenient to take Var(wit) = 1.

Estimation is straight-forward, but requires three steps:

(1) Regress log expenditures on observed characteristics and time-region dummies

yjit = ajt + γ′jzit + ejit,

yielding estimates of the vector of the parameter vector γ and residuals êjit.
(2) The residuals êjit provide an unbiased estimate of βjwit+ϵ

j
it. Let êit denote the

J-vector of residuals for household i at t, and let Σ = E eite
⊤
it be its covariance

matrix. From (18) and our assumptions above this implies

Σ = ββ⊤ + σI.

11Our data includes four regions over eight years, resulting in a total of 32 different relative price
vectors. If levels of prices differ within a region this will be reflected in marginal utilities of expen-
diture.
12Our estimation approach follows Hansen’s procedure, though by assuming that wit is orthogonal
to zit we avoid the need for iteration.
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This is a classical factor analysis problem, and the (quasi-) maximum like-
lihood estimate of β is proportional to the first principal component of Σ̂

(Anderson & Rubin, 1956). Our normalization Var(wit) = 1 supplies the
missing factor of proportionality.

(3) Finally, we use a standard “regression” method (Bartholomew et al., 2011)
to estimate the wit. We return to (18), but now treat the wit as unknown
parameters to be estimated in the regression

yjit = ajt + γ′jzit + β̂jwit + ϵ̃jit,

where the difference from the original (18) is that now we can include the
estimated β̂j as (generated) regressors.

Observations.

• Of the three steps outlined above, two are least squares regressions, the prop-
erties of which will be familiar to economists. The second step employs factor
analysis—a widely used procedure in other fields but less common in econom-
ics. A key consideration in factor analysis concerns the assumed structure of
the disturbance covariance matrix, say Ψ = 1

NT
E
∑

i,t ϵitϵ
⊤
it . Here we assume a

form of homoskedasticity, with Ψ = σI, in which case the first principal com-
ponent of Σ̂ provides an unbiased and efficient estimate of β. Some alternative
assumptions:

– If Ψ is diagonal, the standard approach (Anderson & Rubin, 1956) uses
maximum likelihood estimation assuming normally distributed distur-
bances. Even when this distributional assumption isn’t satisfied, the
(quasi-) maximum likelihood estimator retains good properties and can
be implemented through a simple iterative procedure.

– If Ψ is unrestricted, Bai (2003) provides conditions under which our
principal components estimator still possesses desirable properties. The
caveat is that the argument is asymptotic, requiring both J and TN to
approach infinity. In our application, while TN is reasonably large, J is
measured only in dozens.

– Connor and Korajczyk (1986) establish consistency of our principal com-
ponents estimator under a weaker sufficient and (Bai, 2003) necessary
condition than our assumption that Ψ = σI. Instead, they require only
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an asymptotic version of this, requiring that errors across goods be un-
correlated and homoskedastic as NT grows large, but holding the number
of goods J fixed.

– Williams (2020) establishes identification results for linear factor models
for fixed J and very modest restrictions on Ψ. However, to our knowledge,
no practical estimators have yet been developed for this case.

• With a consistent estimator of Σ, we can estimate β. Notably, it is possible
to estimate Σ consistently even when some food expenditure data is missing,
as is the case in our application.

University of California, Berkeley
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