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Determining physical constraints in transcriptional
initiation complexes using DNA sequence analysis

Ryan K. Shultzaberger∗, Derek Y. Chiang∗, Alan M. Moses†, and Michael B. Eisen∗ ‡ §

version = 1.17 of space.tex 2007 June 29

1 Abstract

Eukaryotic gene expression is often under the control of cooperatively acting transcription factors
whose binding is limited by structural constraints. By determining these structural constraints,
we can understand the “rules” that define functional cooperativity. Conversely, by understanding
the rules of binding, we can infer structural characteristics. We have developed an information
theory based method for approximating the physical limitations of cooperative interactions by
comparing sequence analysis to microarray expression data. When applied to the coordinated
binding of the sulfur amino acid regulatory protein Met4 by Cbf1 and Met31, we were able to
create a combinatorial model that can correctly identify Met4 regulated genes.
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2 Introduction

The regulation of transcriptional initiation from individual eukaryotic promoters is often controlled
by multiple cooperatively interacting transcription factors. These factors bind to separate sites in
cis-regulatory sequences and physically interact with each other, either directly or through addi-
tional proteins, to activate or repress transcription [1, 2, 3]. These physical interactions among
transcription factors must constrain how their binding sites can be positioned relative to each other
and to the relevant promoters. Yet, there is often considerable variability in the order, orientation
and spacing of binding sites for interacting transcriptionfactors [4, 5, 6]. Understanding how the
arrangement of sites is related to the stability of these complexes and their regulatory activity is
essential if we are to understand the regulatory content of eukaryotic genomes.

To successfully model the binding of multi-meric complexesto different target sequences,
many energetic contributions need to be considered. The affinity of each transcription factor for
DNA varies considerably with the precise bound sequence, even among known in vivo targets
[7, 8]. The stability of the entire complex is also dependenton how compatible the positioning of
the sites are with the protein-protein interactions necessary to form the complex. Poorly positioned
sites presumably introduce clashes or strain into either the complex or DNA which will, in turn,
reduce the stability of the complex.

Here, we combine DNA sequence analysis and genome-wide expression data to discern the
constraints on the arrangement of binding sites for transcription factors involved in regulating the
synthesis of sulfur-containing amino acids in the yeastSaccharomyces cerevisiae. This work builds
on our previous modeling of bipartite prokaryotic ribosomeandσ70 binding sites [9, 10]. In both of
these cases, initiation requires the cooperative binding of two independent components separated
by a variable spacer, the Shine-Dalgarno and P site for ribosome binding sites, and the−10 and
−35 for σ70 binding sites [11, 12, 13, 14]. Since there were a large number of characterized sites
for these systems, we constructed a robust distribution of the allowable spacings between binding
components. Assuming that the spacing that would induce theleast amount of strain in the protein
or in the bound DNA upon binding would be the most commonly observed, and that the frequency
of occurrence of all other spacings would be directly related to the energetic consequence of using
that spacing, we could model the energetic contribution of different spacings to the formation of a
stable initiation complex.

Cooperatively acting transcription factors in eukaryotesare similar to the prokaryotic ribosome
andσ70 in that they have independent binding components separatedby variable spacers, but they
are different in that the components are not physically linked upon binding and therefore can bind
in different orders, orientations, and with greater variability in their spacing. We have devised
a method to determine these additional physical constraints by optimizing an information theory
based model against microarray data. We can use these optimized constraints to not only infer
structural characteristics of the regulatory complex, butalso to quantify the binding of these multi-
meric complexes to different DNA sequences, and to accurately predict target genes.

Met4 is the major transcriptional activator of sulfur utilization genes inSaccharomyces cere-
visiae even though it does not bind directly to DNA [15, 5]. Met4 stabilization is dependent upon
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at least two additional proteins. One of these is the centromere-binding factor (Cbf1) [15], whose
DNA binding activity is stimulated by association with Met28 [16]. It has been suggested that the
Cbf1-Met28-Met4 complex may be sufficient for activation ofsome genes, but coordination by a
second factor is necessary for others [4]. We are interestedin describing this coordinated system.
The second stabilizing factor that we will study is Met31, a factor unique to sulfur regulation [17].

Neither the distance between Cbf1 and Met31 in functional Met4 stabilizing complexes, nor
the distance between Met4 and the initiating polymerase is fixed [5]. We extended the information
theory-based method we used to study prokaryotic translational and transcriptional initiation to
model Cbf1 and Met31 interactions, allowing for the greaterflexibility present in this system.

3 Materials and Methods

3.1 Cbf1 and Met31 binding models

We built a weight matrix describing the sequence preferences of Cbf1 from 16 Cbf1 binding sites
characterized by Wielandet al.[18]. Binding matrices were built using the standardDelila pro-
grams [19, 20]. Since Cbf1 binds as a homodimer, we used each sequence and its complement
to build our model [21] (Fig. 1A). Because of the lack of experimentally verified binding sites for
Met31, we modeled its binding by analyzing 21 non-divergently transcribed genes identified in
a Met4 chromatin immuno-precipitation assay [3] (we selected genes with p< 0.001). We used
MEME [22] with the -tcm model and required at least 10 copies of a motif to identify sequences
enriched in these target genes, from which we computed an initial Met31 weight matrix. We then
scanned the entire genome for sites with greater than 10 bitsof information against this model,
identifying 209 sites, from which we constructed the Met31 weight matrix used in our analysis
(Fig. 1B).

3.2 Searching algorithm

Multi-component binding systems with variable spacing between components have previously
been modeled [9, 10]. In the case of the prokaryotic ribosomeandσ70, the binding components
are physically connected. In both instances, deviations inthe optimal spacing between components
introduces strain in the bound complex and affects the binding energy [11, 12, 13, 14]. To model
these multi-meric binders the following equation was used:

Flexible Site Information= Ri(A)+Ri(B)−GS(d) (bits/site) (1)

whereRi(A) is the relative strength, or individual information, of binding factor A, andRi(B) is the
relative strength of binding factor B according to [20].GS(d) is the gap surprisal (based on Tribus’
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surprisal function [23]), or penalty of having a spacing ofd between sites A and B as determined
by [9, 10]:

GS(d) = − log2
n(d)

n
+ e(n) (bits/spacing). (2)

n(d) is the number of occurrences at spacingd andn is the number of total occurrences over the
allowed values ofd. e(n) is a small sample correction value [24, 9]. For our initial analysis of Cbf1
and Met31, we used a flat spacing distribution, where all spacings have the same gap surprisal.

For the ribosome and the polymerase, the binding componentsare physically linked and can
only bind in one orientation relative to each other. For cooperatively acting transcription factors
though, there could be variation in the orientation of the sites relative to each other. To account for
this, we can adapt the gap surprisal function to:

OS(o) = − log2
n(o)

n
+ e(n) (bits/spacing). (3)

where we calculate an orientation surprisal (OS(o)) that is the logarithm of the frequency of oc-
currence at each orientation. For a system where both orientations occur at equal frequency, the
number of occurrences at either orientation would ben(o) = 1, and the total number of occurrences
is n = 2. The orientation surprisal for this system would therefore be 1 bit of information. In a
system where there is no variability in orientation, the frequency of occurrence at that orientation
would be n(o)

n = 1, and therefore the orientation surprisal would be 0 bits. The advantage of the
OS(o) calculation is that we can model the subtle energetic differences for systems that allow either
orientation, but favor one over the other.

To calculate the total information for Met4 coordination, we can now expand equation (1) to:

Flexible Site Information= Ri(Cb f 1)+Ri(Met31)−GSCb f 1−Met31(d)−OSMet31(o) (bits/site).
(4)

There is no orientation surprisal for Cbf1. Since Cbf1 is homodimeric and has a symmetric matrix,
the Cbf1-DNA complex would be identical for either orientation. In this case, the frequency of
occurrence of a given orientation would be 1, andOSCb f 1 = 0 bits. Therefore, the orientation
surprisal only applies to asymmetric binders.

Combinatorial scans were done usingmultiscan [10] to identify and quantify Cbf1/Met31
cooperatively acting binding sites in the genome. The individual information contribution for both
sites (Ri(Cb f 1) andRi(Met31)) were calculated over the range−4 to +5, since this is the range
of conservation for both logos (Fig. 1) [20]. Sites were onlyconsidered if each component had
an Ri > 0 bits (which would correspond to a−∆G of binding [20, 25]) and they have a flexible
site information> 0 bits. For a site to have a positive flexible site information, the ordering and
orientation of the pair have to be within the defined spacing and ordering parameters. For any
spacing or orientation outside of the specified range, the sites would have a surprisal penalty equal
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to infinity according to equations (2) and (3), and a flexible site information< 0 bits according to
equation (4).

All genes in the genome were then ranked based on the strengthof their strongest upstream site.
Microarray expression data for sulfur amino acid pathway-affected cells (see Microarray Datasets)
were then averaged for the top 20 genes in our ranking. This was done independently for induction
and repression experiments.

The physical constraints that we want to define are: the ordering of the sites relative to the
gene start, the orientation of the matrices, the maximum allowed distance between Met4 and the
polymerase binding site, and the spacing range between Cbf1and Met31 that can bind Met4.
We varied these constraints, and iteratively refined the model to get the optimal predictor. We
evaluated any given set of parameters by calculating the average expression change in the top 20
ranked genes. The greater the expression change the better the model.

Another approach could be to cluster genes based on similar trends in expression data across
several experiments, and then try to train our parameters based on this set of genes. One dis-
advantage of this is that it is difficult to discern directly from indirectly regulated genes in these
clusters. By scanning the genome and ranking the genes, we are selecting only for genes that are
directly regulated. Also this approach does not exclude genes that are regulated but had anomalous
expression data due to experimental error. Since there havebeen at least 20 genes implicated in
sulfur assimilation [5], we choose to average the top 20 geneexpression differences to evaluate our
model.

3.3 Microarray Datasets

We used microarray data from two sources for our analysis. Gaschet al. [26] reported amino acid
starvation data, where transcription of Met4 regulated genes was induced. Fauchonet al. [27]
reported Cd2+ addition experiments where Met4 regulated genes were induced, and Met4 deletion
experiments where Met4 regulated genes were repressed. Ourmodels were optimized against
these data as mentioned above. Microarray expression patterns were visualized usingTreeView
[28]. The yeast genome sequence and annotation that we used in our analysis came from Genbank
accession numbers NC001133 to NC001148.

4 Results

4.1 Cbf1 and Met31 logos

Since Cbf1 is a homodimeric protein, we used all sequences and their complements to build our
model [21]. Conservation at positions−2,−1 and+2,+3 is strong and does not match the helical
accessibility wave (Fig. 1A). Deviation of sequence conservation from the helical accessibility⇐Fig 1
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wave is generally an indicator of structural changes in the DNA substrate [29]. This may be
consistent with the observed bending of DNA by Cbf1 [30].

The Met31 model was built as described in Materials and Methods (Fig. 1B). Sequence con-
servation appeared to follow the helical accessibility wave well, and it was contained within one
major groove. Met31 has an asymmetric binding site, so it canpossibly bind with two different
orientations. We tested both orientations in our analysis.The information content for the Cbf1
logo is 12.9 bits over the range−4 to+5. The information content for the Met31 logo is 11.9 bits
over the range−4 to+5.

4.2 Orientation and ordering

Since Cbf1 and Met31 are not physically linked upon binding,it was not immediately obvious
what the ordering and orientation constraints on their binding are in functional Met4 docking com-
plexes. To determine this, we tested the predictive capabilities of all combinations of orientation
and ordering for Cbf1 and Met31 using the gene-ranking approach described in Materials and
Methods. Briefly, we determined the flexible information forthe cooperative model as determined
by equation (4) [9, 10], and ranked all genes in the genome based on the strength of the strongest
site in the intergenic region immediately upstream of theirstarts. We then calculated the average
expression fold change of the top 20 genes in this ranking based on Met4 induced and repressed
microarray experiments [26, 27]. We regarded those combinations that gave the highest average
microarray expression change to be the optimal organization for Met4 coordination. Fig. 2 shows⇐Fig 2
how well different combinations performed.

Cbf1 alone was not sufficient to identify the Met4 regulated genes. The average expression
fold change for the top 20 ranked genes was 0.11 and 0.23 for induction and repression data
respectively, we report corresponding values for all othercombinations. Met31 alone appeared
to be a better predictor than Cbf1, but was still weak (0.54 and−0.85). By searching for Cbf1
and Met31 sites together, with a maximum spacing of 100 basesbetween the zero positions of the
binding components (Fig. 1) and the downstream component could be a maximum of 1000 bases
upstream of the gene start, the prediction was better. If we searched with the order Cbf1-Met31-
gene start, we were able to identify more genes with the expected microarray pattern than with the
order Met31-Cbf1-gene start, even though the sites appeared to be low in the ranking (0.78 and
−1.49 vs. 0.28 and−0.64).

Since Cbf1 is a homodimer, its binding is independent of orientation. Since Met31 is
monomeric, its binding is orientation dependent. When we allowed for both orientations of Met31
downstream of Cbf1, we got the largest change of expression (0.99 and−1.70). This suggests that
transcriptional activation by Met4 requires a Met31 site with any orientation to fall between Cbf1
and the gene start (bottom right panel of Fig. 2). All models for the remainder of this analysis will
have these ordering and orientation requirements imposed on them. The designation of the Met31
model orientation as “normal” or “inverted” is arbitrary. We also tested the “inverted” Met31
model alone, and inverted Met31 upstream of Cbf1, but the results were similar to equivalent scans
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with the “normal” orientation (data not shown).

4.3 Spacing constraints

There are two spacing constraints on this system, the distance between the Met4 docking complex
and the initiating polymerase, and the distance between thetwo binding components (Cbf1 and
Met31) within the Met4 docking complex. To define what these spacing ranges are for functional
Met4 binding sites, we systematically modeled different spacing ranges, and quantified the models
by the gene-ranking approach previously described. Interestingly, if we varied one of the spacing
constraints, the optimal spacing for the other would differslightly. To identify which spacing
parameters define the optimal predictor, we varied both spacings simultaneously, and quantified
their predictability by averaging the expression change oftheir 20 highest ranking genes.

We increased the maximum allowed distance of the Met4 docking complex from the gene start
in 50 base increments as measured by the distance between theMet31 site and the translational ini-
tiation codon. At each 50 bp increment, we varied the minimumand maximum allowed distance
between Cbf1 and Met31 from 1 to 100 bases. These distances are relative to the zero position
of both matrices (Fig. 1). We then summed the average expression change for the induction and
repression experiments for all combinations of spacings, and determined which combination pre-
dicted the microarray data best.

For the first spacing constraint, the distance between Met4 and the polymerase, we found the
optimal maximum spacing was 450 bases (Fig. 3). The predictability of the model seemed to⇐Fig 3
increase linearly from 100 to 350 bases suggesting that the sites are evenly distributed over this
range. There appeared to be few or no genes with sites closer than 100 bases upstream, or sites
farther than 450 bases upstream that had the expected expression pattern.

For the second spacing constraint, the distance between Cbf1 and Met31, we found the optimal
spacing range to be−13 to−68 bases, the minimum to maximum spacing allowed between each
site (Fig. 4). This was the range used in the analysis in Fig. 3. Ranges close to−13 to −68 ⇐Fig 4
appeared to have a similar level of predictability as indicated by the redish semi-circle in Fig. 4,
but−13 to−68 had the highest expression change and the tightest range.The average expression
changes for these two spacing parameters were 1.39 and−2.21 for induction and repression data
respectively.

4.4 Optimal model

Based on the analysis in Fig. 2, Fig. 3, and Fig. 4, the optimalmodel is shown in Fig. 5. This⇐Fig 5
model requires a Cbf1 site to be 13 to 68 bases upstream of a Met31 site with either orientation,
and for the Met31 site to be no more than 450 bases upstream of the translational initiation codon.
When we scanned the genome with this model, we see that most ofour top hits are genes known
to be involved in sulfur amino acid biosynthesis (Fig. 6). Only two of the genes in the top twenty⇐Fig 6
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hits, have an unexpected expression pattern (Reb1 and Gar1). Additional analysis of these sites
show that they both have a strong Cbf1 site, but a “T” instead of “G” at position+1 of their Met31
site. This suggests that the information contribution at position +1 may be greater than that in
our current matrix. Several genes have both the expected expression profile and a predicted Met4
binding site, but their functions have not been biochemically characterized (DDR48, YIL074C,
YJL060W, YHR112C). Clustering of co-regulated genes by thegene-ranking method may have
identified other genes involved in sulfur utilization.

To ensure that we did not overfit our model, we used two jackknife tests. In the first, we
removed each of the top 20 ranked genes as determined by our optimal model from our gene
list, recalculated the optimized parameters without this gene by the gene-rank method, and then
scanned and reranked the excluded gene based on the new parameters. We found that the ranking
of all genes except Met28 did not change by a ranking greater than 2. Met28 went from a ranking of
5 to 1429, but this was expected because the Cbf1 to Met31 spacing of Met28 was at the maximum
spacing allowed of 68 bases in our optimal model, and when removed it fell outside of the newly
determined maximum spacing of 64. In the second jackknife, we randomly removed 5 of the
top 20 sites from our gene list, determined the optimal spacing parameters, and then reranked the
excluded 5 genes based on these new parameters. Over 100 iterations of this, again most of the
genes did not show a ranking change of more than 2, but 5 of the genes at extreme spacings showed
noticeably larger rank differences.

To test whether there is a tendency for Cbf1 and Met31 to bind on the same face of the DNA,
we plotted the relative spacing between the two sites on a cosine wave with the same period as
B-form DNA, 10.6 bases (Fig. 5). We plotted the spacing of 18 of the 20 top hits (all sites except
for Reb1 and Gar1) and YHR112C and Met10, which had both a strong flexible information and
expression change. We determined the phase of the cosine wave that gave the highest average
helical location of these 20 spacings, and found the optimalphase to peak at−13.24 bases relative
to the Met31 zero position. To see if the relative placement of these spacings on the cosine wave is
higher than expected, we determined the average helical location of random sets of 20 Cbf1/Met31
pairs. Our set had an average helical positioning greater than 99 percent of random sets.

To calculate the flexible individual information for each binding site, we used equation (4).
Since we did not know the energetic effect of different spacings on the complex initially, we treated
all spacings equally. That is, over the range 13 to 68 (56 bases of variability) all positions had the
same gap surprisal ofGS(d) = −log2(

1
56) = 5.81 bits according to equation (2). We also assumed

an equiprobable occurrence of each orientation of Met31, sothat OSMet31(o) = − log2(
1
2) = 1

bit of information according to equation (3). Therefore theGS andOS variables in equation (4)
effectively become constants summing to 6.81 bits of uncertainty for each site. Because of the
small number of target genes, and the already strong predictive capabilities of our model, we
cannot determine the individual spacing constraints for this system. If we had a system with more
sites, robust spacing and orientation distributions couldbe determined and individual penalties
could be assigned.

We can use these values to predict theRsequence or average information content for this system
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which is:

Rsequence(Met4) = Rsequence(Cb f 1)+Rsequence(Met31)− ḠS(d)− ŌS(o) (bits). (5)

ḠS(d) is the meanGS(d) value for all sites, andŌS(o) is the meanOS(o) value. According to this
equationRsequence(Met4) = 12.9+11.9−5.81−1.0= 18.0 bits of information.

For each gene we plotted the strength of its strongest upstream Met4 binding site according
to the model in Fig. 5 and its average expression change for induction and repression experiments
(Fig. 7). At aboutRi > 14 bits, the number of genes that showed no, or an unexpected expression ⇐Fig 7
difference was significantly lower. This is about the sameRi as the site upstream of Met10 (14.1
bits), the lowest ranking sulfur assimilation protein in our analysis.

5 Discussion

Transcriptional initiation in eukaryotes is often regulated by multiple cooperatively acting factors.
Often these factors can only positively affect transcription if they physically interact either directly
or indirectly through additional proteins with the basal transcriptional machinery. Understanding
the physical constraints that determine functional cooperativity is essential for us to be able to
model, predict, and engineer genetic control systems. These constraints generally are not rigid, but
allow for variability in the arrangement of sites in functional complexes and subsequently there is
variability in the stability of the complexes. Here, we haveintroduced a way to include orientation
and order into the information theoretic description of pattern recognition at the promoter. This
combined with weight matrix based binding models [20] and spacing constraints [9, 10] gives us
quantitative tools to model the sequence basis of eukaryotic transcriptional regulation.

The simplest constraint of Met4 coordination to define is theordering of the sites within the
complex. For Met4, our model matches microarray data poorlywhen the order is Met31-Cbf1-
gene start, but matches well with the order Cbf1-Met31-genestart (Fig. 2). This is consistent
with experimentally determined ordering constraints [31]. These results suggest that the Met4-
Cbf1 binding surface is distinct from the Met4-Met31 surface, and that the Met4-TFIID binding
surface is closer to the Met4-Met31 surface, placing the Met4-TFIID binding surface near the
3′ edge of the complex. Domain mapping from yeast two-hybrid experiments identified several
protein interaction domains on Met4 [4]. The transcriptional activation domain (residues 95−144)
is closer to the Met31 interaction domain (residues 374−403) than the Cbf1/Met28 interaction
domain (residues 616−666) in one-dimension, but these domains are far apart, so their relative
positioning in the native form of Met4 could be different. Based on our findings, we suggest that
the relative positioning is the same.

It appears as though either orientation of Met31 can be used within the docking complex
(Fig. 2). Stabilization of Met4 has been shown when Met31 hasthe inverted orientation [4]. For
Met31 to be able to stabilize Met4 with either orientation, it must either have two Met4 interaction
surfaces, or it has a centrally located interaction surfacethat is accessible no matter what orienta-
tion it binds (i.e. flexible). Interestingly, the top 5 genes in our ranking havean inverted Met31 site
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(Fig. 6). The total information of these sites might be high because stronger Cbf1 and Met31 sites
may be necessary to compensate for the strain of the invertedorientation, but could decrease once
we take into account the orientation surprisal.

The maximum distance between the Met4 docking site, as measured to the zero coordinate of
the Met31 site, and the gene start is 450 bases. As the TFIID binding site is not at the gene start,
this distance is farther than the maximum allowed distance between Met4 and the polymerase.
It is difficult to determine the distance of the Met4 docking complex to the transcriptional start
since the starts have not been biochemically proven, and computationally it is difficult to predict
transcription initiation because of the varied modes of initiation by the polymerase [2]. Basehoar
et al. found an enrichment of TATAs between 50 and 200 bases upstream of the translational start
[32]. This could explain why we did not observe any sites within 100 bases of the gene start.

The spacing range between the Cbf1 and Met31 site is 13 to 68 bases, as determined in Fig. 4.
Presumably, it could be larger than this, but our observed range is limited by the spacings in our top
20 hits. DNase I footprint analysis of the Cbf1-Met28 complex showed protection up to position
+8 on the top strand relative to our Cbf1 zero position in Fig. 1A [16]. If we assume that Met31
can not contact any residues occluded by the Cbf1-Met28 complex due to steric hindrance, then
the closest allowed spacing between the Met31 and Cbf1 zero positions would be 13 bases, since
the Met31 zero position is the fifth conserved base in our model (Fig. 1B). This is the lower bound
determined by our analysis (gene YJL060W in Fig. 6).

A minimum spacing of 13 is also consistent with our observed optimal helical phasing of
−13.24 bases (Fig. 5). This would place the closest Cbf1 site almost exactly on the same face as
its respective Met31 site, one helical turn away. A maximum spacing of 68 bases would correspond
to 6 helical turns according to our phasing. The relatively high positioning of these spacings on the
helical accessibility curve suggests that docking of Met4 is dependent upon the helical phasing of
DNA.

The experimentally determined range by Chianget al. was 21 to 53 bases according to our
numbering system [31]. Unfortunately, spacings as large as68 bases were not tested experimen-
tally. The experimentally determined minimum spacing of 21is much larger than the minimum
we found here. Interestingly, only the “inverted” orientation of Met31 was tested, whereas the
shortest distance in this paper corresponds to a Met31 site with the opposite orientation. If helical
phasing of the sites is important, then the orientation of Met31 may be more constrained at shorter
distances, and this may account for the disparity between the experimentally and computationally
determined minimums.

When the constraints inferred from our analysis were imposed on the cooperative binding of
Cbf1 and Met31, our ability to predict Met4 regulation was high. Of the top 20 ranked genes inS.
cerevisiae (according to our model), 18 had the expected microarray expression pattern for Met4
regulation. Many of the sites had also been previously characterized as sulfur utilization genes
(Fig. 6). The 2 anomalous genes in the top 20 (Reb1 and Gar1) both had Met31 sites with a “T”
instead of “G” at position+1 (data not shown), suggesting that this position may be weighted more
strongly in a more refined Met31 model. Additionally, nucleosomes could play a large inhibitory
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role against spurious combinations of sites, which our model does not account for.

When the microarray data from experiments that affected Met4 binding were directly compared
to our information evaluation of each gene (Fig. 7), we saw that almost all genes with Met4 binding
sites above 14 bits of information have the expected expression change. This suggests that our
approach is giving some reasonable estimate of the energetics of Met4 binding, with a clearly
defined threshold for functional binding sites. Presumably, genes that do not have a strong Met4
site, but have the expected microarray data are presumably indirectly regulated. Interestingly the
strengths of the Met4 sites are not mainly determined by the strength of Met31 or Cbf1, but by the
sum of these sites. This suggests that for cooperatively acting binding sites, a decrease in strength
for one site can be compensated for by an increase in strengthof the other. Compensation for
a decrease in the strength of one binding site by increasing the affinity for another site has been
shown experimentally for activation of Pol II by the Epstein-Barr virus protein ZEBRA [33].

Our relative site strength for a given Met4 docking complex is merely the sum of its Cbf1 and
Met31 binding sites. We cannot determine the individual spacing effect on binding because we
had few sites covering a large spacing range, and our model did well without taking into account
varied gap surprisals. If we did have these individual effects, we would expect to see an improved
correlation between our information value and the relativeexpression difference. What we can
draw from this analysis is that the sum of individual energetic components, as determined by an
information theory approach, gives a reasonably accurate model of a multimeric complex.

It is difficult to say what energetic effect the gap surprisalis representing. It could be related to
strain at protein-protein interaction surfaces or strain due to DNA bending. What we are suggesting
is that the conserved spacings observed are indicative of the energetics of the system, this of course
is the same tenant which seems reasonable in information theory analysis of single transcription
factor binding sites [24, 20, 25]. The gap surprisal that we are calculating is most likely a sum of
several energetic strains associated with spacing.

We could have determined these physical constraints by clustering co-regulated genes and
training the rules of binding for their regulators. The drawback of this approach is that it is not
obvious which genes are directly and indirectly regulated,and a given gene may or may not have a
binding site. Our approach selects only for genes that are directly regulated, and does not exclude
sites that have poor expression data due to experimental error. We are also optimizing our model
against all genes in the genome, so we are selecting for a model that represents Met4 binding well,
in that it can identify a small subset of sites from all sites in the genome. Presumably the opti-
mal binding site, based on the flexible information theory approach, is the most stable site and the
easiest to crystalize. These results could be used to guide crystallographic experiments.

The information content of a given DNA-binding protein (Rsequence) is a function of the variabil-
ity within its binding targets [24]. A more stringent binderwould have a higher information con-
tent, since the variability in its binding targets would be smaller. To be able to distinguishγ binding
sites within a random DNA of some lengthG, those sites must have anR f requency = −log2(γ/G)
bits of information to be identified [24]. It has been shown for many systems thatRsequence con-
verges toR f requency [24, 34]. This suggests that if the size of the genome increases and the number
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of binding sites remains constant, the information of thosesites would have to increase in order to
be distinguishable.

As eukaryotic genomes are generally larger than prokaryotic genomes, the amount of informa-
tion needed to identifyγ sites would have to be greater. This can be achieved either byincreasing
the information content of a single factor, or by using multiple factors combinatorially.

Assuming no individual spacing or orientation preferences, the information for this system
would be 12.9+ 11.9−5.8−1 = 18.0 bits according to equation (4). This would correspond to
1 site every 218.0 = 2.62× 105 bases, or about 98 times in theS. cerevisiae genome of length
12.8 MB. Our calculation is the number of sites in 2× the genome length, since the complex
could associate with either strand. This is a reasonable number of genes according to known
sulfur assimilation genes (> 20 genes) [5], the number of predicted regulated genes basedon
expression difference due to Cd2+ treatment (66 genes) [27], and multiple sites per gene as seen in
several cases. This suggests that like single acting transcription factors, the information contained
in combinatorial binders is related to theR f requency for that system [24]. Others have suggested
that this relationship will be maintained for cooperatively acting factors [35]. Interestingly, this
information is distributed through individual binding components, as well as the spacing between
components, and if one component changed, the others would have to compensate accordingly.
This is a complicated process, since Cbf1 can also function independently of Met4 and Met31
[36].
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Figure 1: Cbf1 and Met31 sequence logos.
Sequence logos were made as described in Materials and Methods. The height of each letter is
proportional to the frequency of that base at that position.The height of the letter stack is the
information content at that position. The cosine wave represents the helical twist of B-form DNA.
The sequence logos were generated using the standardDelila programs [19, 21].
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Figure 2: Met4 binding by Cbf1 and Met31 is dependent upon ordering but not orientation.
We scanned all intergenic regions in yeast with the models presented in Fig. 1 with different orien-
tations and orderings relative to the gene start point. We then ranked all genes in the genome based
on the strength of their strongest upstream binding site, and we present here the corresponding
expression changes as determined by microarrays. The experiments that each column represent
correspond to those in Fig. 6. For columns 1−9 (marked with a gray box) we expect regulated
genes to have increased expression and therefore to be red. For columns 10− 13 (marked with
a blue box) we expect regulated genes to have a decreased expression and therefore to be green.
Since the Met31 matrix is asymmetric, it could bind with two different orientations. Those cir-
cles labeled “Met31” have the same orientation as the Met31 logo in Fig. 1. Those circles labeled
“Inverted” have the opposite orientation (see Fig. 5). The optimal combination in the lower right
corner allows for either orientation of Met31. The arrow signifies the gene start. The average
expression change for the top 20 genes was calculated for each combination of sites for both the
induced (columns 1 to 9) and repressed (column 10 to 13) experiments and are reported next to
their respective columns. 17
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Figure 3: Met4 binding is within 450 bases of the gene start, but not within 100 bases.
We varied the allowed distance that the Met31 binding site can be from the gene start point in
our models, and quantified how this spacing constraint affected our ability to predict microarray
expression data. A) We plotted the average expression change of the top 20 hits in the genome
for different maximum spacings from the gene start. The top line corresponds to data from exper-
iments where we expected increased expression (columns 1 to9 in B), and the lower line is from
experiments where we expected decreased expression (columns 10 to 13 in B). The microarray
data that corresponds to our gene-ranking are shown in B. Theconditions for each column in the
microarrays correspond to the labeled columns in Fig. 6.
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Figure 4: The optimal spacing range between Cbf1 and Met31 is13 to 68 bases.
We varied the minimum (X axis) and maximum (Y axis) distance that Cbf1 and Met31 could be
from each other in our model, and calculated the average expression change within the correspond-
ing top 20 hits, according to these ranges. We show here the average expression change for only
those experiments that we expected to have an increased expression (columns 1 to 9 in Fig. 6). The
colors correspond to the key in lower portion of the plot.
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Figure 5: The Met4 activation model based on our analysis.
We summarize here the spacing, ordering, and orientation constraints we used to define functional
Met4 binding sites. Since Met31 can bind with either orientation, we show logos for both Met31
orientations. The distances between each set of Cbf1 and Met31 sites were plotted with red boxes
on a cosine wave for 20 high-ranking genes to show helical preferences. The arrow represents
the translational start, and the allowed distance between the Met4 stabilization complex and the
translational start is written above it. The expression data on the right is what was predicted by this
model, and is described in Fig. 6.
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 Met30     22.99    268492    -1    -17    158    YIL046W   SULFUR AMINO ACID METBOLISM 

 RAD59     21.99    345105    -1    -44    152    YDL059C   DNA REPAIR AND RECOMBINATION 

 SUL2      21.72    323262    -1    -23    283    YLR092W   TRANSPORT 

 CYS3      21.54    130615    -1    -27    187    YAL012W   METHIONINE BIOSYNTHESIS 

 MET28     20.59    384265    -1    -68    149    YIR017C   SULFUR AMINO ACID METBOLISM

 MET14     20.45    439220    +1    -34    192    YKL001C   SULFATE ASSIMILATION

 MET32     20.15    964883    -1    -54    322    YDR253C   METHIONINE METABOLISM 

 MUP3      19.55    26061     +1    -22    178    YHL036W   TRANSPORT           

 YAP5      19.08    384396    +1    -64    210    YIR018W   TRANSCRIPTION         

 REB1      17.46    337088    +1    -19    272    YBR049C   TRANSCRIPTION 

 DDR48     17.42    608356    -1    -55    332    YMR173W   UNKNOWN 

 MET17     17.41    732271    +1    -50    273    YLR303W   METHIONINE BIOSYNTHESIS 

 GAR1      17.21    283463    +1    -27    163    YHR089C   RRNA PROCESSING 

 YIL074C   16.80    222725    -1    -57    238    YIL074C   UNKNOWN 

 MET1      16.67    571003    +1    -15    251    YKR069W   METHIONINE BIOSYNTHESIS 

 IDH1      16.46    559446    -1    -15    443    YNL037C   TCA CYCLE 

 MET2      16.30    117046    +1    -48    303    YNL277W   METHIONINE BIOSYNTHESIS 

 YJL060W   15.91    323243    +1    -13    138    YJL060W   UNKNOWN  

 MET6      15.66    342606    +1    -50    443    YER091C   METHIONINE BIOSYNTHESIS  

 SAM2      15.65    1454752   +1    -25    296    YDR502C   METHIONINE BIOSYNTHESIS

 HHF2      15.44    576370    +1    -33    358    YNL030W   CHROMATIN STRUCTURE    

 ARP8      15.26    592917    +1    -16    329    YOR141C   CYTOSKELETON PUTATIVE 

 YHR112C   15.15    335839    +1    -26    173    YHR112C   UNKNOWN 

 OPY2      14.73    697205    -1    -22    389    YPR075C   SIGNALING PUTATIVE

 MXR1      14.70    234775    -1    -68    161    YER042W   OXIDATIVE STRESS RESPONSE

 ACP1      14.67    80710     -1    -15    168    YKL192C   FATTY ACID BIOSYNTHESIS  

 LCB3      14.65    158052    -1    -50    133    YJL134W   SPHINGOLIPID METABOLISM

 SFH1      14.63    778313    +1    -47    449    YLR321C   CHROMATIN STRUCTURE

 PAN1      14.53    370029    -1    -40    124    YIR006C   CYTOSKELETON AND ENDOCYTOSIS

 SNC2      14.20    931319    +1    -51    241    YOR327C   SECRETION 

 MET10     14.09    213095    +1    -24    205    YFR030W   SULFATE ASSIMILATION 

YML018C 14.08 236206 +1 -25 254 YML018C UNKNOWN
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Figure 6: The top hits are involved in sulfur amino acid biosynthesis.
These are the top hits according to our optimal spacing values. The first 9 columns are data for
experiments that should induce the expression of Met4 regulated genes and give a red pattern.
The last 4 columns we expect to see a decrease in expression ofMet4 regulated genes and give a
green pattern. Experiment information for each column is reported vertically above each column.
Each row corresponds to a different gene followed by its common name, its flexible information
(Ri), the coordinate of the Met31 binding site in theS. cerevisiae genome, the orientation of the
Met31 matrix, the distance Cbf1 is upstream of Met31, the distance the gene start is downstream
of Met31, the gene name according to its annotation in the yeast genome, and a description of its
function.
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Figure 7: Ri vs. expression change.
The flexible information (Ri) of the strongest site for each gene is on the abscissa and theaverage
induction or repression expression change is on the ordinate. For each gene, induction data were
averaged from the first nine experiments in Fig. 6 (red circles), and repression data were averaged
from the last four experiments in Fig. 6 (black circles).
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