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1 Abstract

Eukaryotic gene expression is often under the control opeaatively acting transcription factors
whose binding is limited by structural constraints. By deti@ing these structural constraints,
we can understand the “rules” that define functional codpéna Conversely, by understanding
the rules of binding, we can infer structural charactasssti\we have developed an information
theory based method for approximating the physical linuteg of cooperative interactions by
comparing sequence analysis to microarray expression d&tzen applied to the coordinated
binding of the sulfur amino acid regulatory protein Met4 bgfC and Met31, we were able to
create a combinatorial model that can correctly identiffdregulated genes.

*Department of Molecular and Cell Biology, University of @ainia, Berkeley

TGraduate Group in Biophysics, University of CaliforniarBeley

*Department of Genome Sciences, Genomic Division, Erndan@o Lawrence Berkeley National Lab
8Corresponding author: 1 Cyclotron Road, Mailstop 84-17rkBley, CA 94720. mbeisen@Ibl.gov

1



2 Introduction

The regulation of transcriptional initiation from indiwidl eukaryotic promoters is often controlled
by multiple cooperatively interacting transcription facst. These factors bind to separate sites in
cis-regulatory sequences and physically interact witthedhber, either directly or through addi-
tional proteins, to activate or repress transcription [13]2 These physical interactions among
transcription factors must constrain how their bindingsitan be positioned relative to each other
and to the relevant promoters. Yet, there is often consderaariability in the order, orientation
and spacing of binding sites for interacting transcripf@ctors [4, 5, 6]. Understanding how the
arrangement of sites is related to the stability of theseptexes and their regulatory activity is
essential if we are to understand the regulatory contentikdirgotic genomes.

To successfully model the binding of multi-meric completxedifferent target sequences,
many energetic contributions need to be considered. Thatgfof each transcription factor for
DNA varies considerably with the precise bound sequencen emnong known in vivo targets
[7, 8]. The stability of the entire complex is also dependanhow compatible the positioning of
the sites are with the protein-protein interactions neargd® form the complex. Poorly positioned
sites presumably introduce clashes or strain into eitheectmplex or DNA which will, in turn,
reduce the stability of the complex.

Here, we combine DNA sequence analysis and genome-widessipn data to discern the
constraints on the arrangement of binding sites for trapisen factors involved in regulating the
synthesis of sulfur-containing amino acids in the y&astharomyces cerevisiae. This work builds
on our previous modeling of bipartite prokaryotic riboscamelo’® binding sites [9, 10]. In both of
these cases, initiation requires the cooperative binding@ independent components separated
by a variable spacer, the Shine-Dalgarno and P site foraibesbinding sites, and thel0 and
—35 for 0’0 binding sites [11, 12, 13, 14]. Since there were a large nummbeharacterized sites
for these systems, we constructed a robust distributioheoatlowable spacings between binding
components. Assuming that the spacing that would inducke#tst amount of strain in the protein
or in the bound DNA upon binding would be the most commonlyeobsd, and that the frequency
of occurrence of all other spacings would be directly reldtethe energetic consequence of using
that spacing, we could model the energetic contributionférent spacings to the formation of a
stable initiation complex.

Cooperatively acting transcription factors in eukaryatessimilar to the prokaryotic ribosome
ando’Cin that they have independent binding components sepabgtedriable spacers, but they
are different in that the components are not physicallydthkpon binding and therefore can bind
in different orders, orientations, and with greater valtigbin their spacing. We have devised
a method to determine these additional physical conssgr&yoptimizing an information theory
based model against microarray data. We can use these pgdiroonstraints to not only infer
structural characteristics of the regulatory complex.dsb to quantify the binding of these multi-
meric complexes to different DNA sequences, and to acdyratedict target genes.

Met4 is the major transcriptional activator of sulfur wdtion genes irsaccharomyces cere-
visiae even though it does not bind directly to DNA [15, 5]. Met4 sliahtion is dependent upon
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at least two additional proteins. One of these is the cerdgrerbinding factor (Cbfl) [15], whose
DNA binding activity is stimulated by association with M8tpL6]. It has been suggested that the
Cbfl-Met28-Met4 complex may be sufficient for activationsoime genes, but coordination by a
second factor is necessary for others [4]. We are interestéescribing this coordinated system.
The second stabilizing factor that we will study is Met31aetbr unique to sulfur regulation [17].

Neither the distance between Cbfl and Met31 in functionaidMabilizing complexes, nor
the distance between Met4 and the initiating polymeras&esl fi5]. We extended the information
theory-based method we used to study prokaryotic traoslatiand transcriptional initiation to
model Cbfl and Met31 interactions, allowing for the gredieeability present in this system.

3 Materialsand Methods

3.1 Cbfland Met31 binding models

We built a weight matrix describing the sequence prefer@ot€bfl from 16 Cbfl binding sites
characterized by Wieland al.[18]. Binding matrices were built using the stand&dila pro-
grams [19, 20]. Since Cbfl binds as a homodimer, we used esiesce and its complement
to build our model [21] (Fig. 1A). Because of the lack of expentally verified binding sites for
Met31, we modeled its binding by analyzing 21 non-diverbetranscribed genes identified in
a Met4 chromatin immuno-precipitation assay [3] (we se&légenes with p< 0.001). We used
MEME [22] with the -tcm model and required at least 10 copika motif to identify sequences
enriched in these target genes, from which we computed #taliNlet31 weight matrix. We then
scanned the entire genome for sites with greater than 1@bitformation against this model,
identifying 209 sites, from which we constructed the Met3digit matrix used in our analysis
(Fig. 1B).

3.2 Searchingalgorithm

Multi-component binding systems with variable spacingwssn components have previously
been modeled [9, 10]. In the case of the prokaryotic ribosants’?, the binding components
are physically connected. In both instances, deviatiottsaroptimal spacing between components
introduces strain in the bound complex and affects the bondnergy [11, 12, 13, 14]. To model
these multi-meric binders the following equation was used:

Flexible Site Informatior= Ri(A) + Ri(B) —GS(d) (bits/site) (1)

whereR; (A) is the relative strength, or individual information, of Hing factor A, andR;(B) is the
relative strength of binding factor B according to [2@S(d) is the gap surprisal (based on Tribus’



surprisal function [23]), or penalty of having a spacingidfetween sites A and B as determined
by [9, 10]:

GS(d) = —log, @ +e(n) (bits/spacing) 2

n(d) is the number of occurrences at spacithgndn is the number of total occurrences over the
allowed values ofl. e(n) is a small sample correction value [24, 9]. For our initisghlysis of Cbfl
and Met31, we used a flat spacing distribution, where alliggadave the same gap surprisal.

For the ribosome and the polymerase, the binding compomeatghysically linked and can
only bind in one orientation relative to each other. For @apively acting transcription factors
though, there could be variation in the orientation of thessielative to each other. To account for
this, we can adapt the gap surprisal function to:

OS(0) = —log, @ +e(n) (bits/spacing) 3)

where we calculate an orientation surprisa§(o)) that is the logarithm of the frequency of oc-
currence at each orientation. For a system where both atiens occur at equal frequency, the
number of occurrences at either orientation would@® = 1, and the total number of occurrences
is n= 2. The orientation surprisal for this system would therefoe 1 bit of information. In a

system where there is no variability in orientation, thejfrency of occurrence at that orientation
would be@ = 1, and therefore the orientation surprisal would be 0 bitse &dvantage of the

OS(0) calculation is that we can model the subtle energetic d@iffees for systems that allow either

orientation, but favor one over the other.

To calculate the total information for Met4 coordinatiore wan now expand equation (1) to:

Flexible Site Informatior= Ri(Cbf1l)+R(Met31) — GSpi1-me31(d) —OSvas1(0) (bits/site).

(4)
There is no orientation surprisal for Cbfl. Since Cbfl is bdimeric and has a symmetric matrix,
the Cbf1-DNA complex would be identical for either oriembat In this case, the frequency of
occurrence of a given orientation would be 1, @&,:; = 0 bits. Therefore, the orientation
surprisal only applies to asymmetric binders.

Combinatorial scans were done usimgltiscan [10] to identify and quantify Cbfl/Met31
cooperatively acting binding sites in the genome. The iidial information contribution for both
sites R (Cbf1l) andR;(Met31)) were calculated over the ranget to +5, since this is the range
of conservation for both logos (Fig. 1) [20]. Sites were oobnsidered if each component had
anR; > 0 bits (which would correspond to-aAG of binding [20, 25]) and they have a flexible
site information> O bits. For a site to have a positive flexible site informatitte ordering and
orientation of the pair have to be within the defined spacing ardering parameters. For any
spacing or orientation outside of the specified range, ties giould have a surprisal penalty equal
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to infinity according to equations (2) and (3), and a flexible mformation< 0O bits according to
equation (4).

All genes in the genome were then ranked based on the streftgjgir strongest upstream site.
Microarray expression data for sulfur amino acid pathwiigeted cells (see Microarray Datasets)
were then averaged for the top 20 genes in our ranking. Theslae independently for induction
and repression experiments.

The physical constraints that we want to define are: the mglef the sites relative to the
gene start, the orientation of the matrices, the maximuowaltl distance between Met4 and the
polymerase binding site, and the spacing range between &flMet31 that can bind Met4.
We varied these constraints, and iteratively refined theehtmlget the optimal predictor. We
evaluated any given set of parameters by calculating theageeexpression change in the top 20
ranked genes. The greater the expression change the bettaotlel.

Another approach could be to cluster genes based on simeladg in expression data across
several experiments, and then try to train our parametesadban this set of genes. One dis-
advantage of this is that it is difficult to discern directtprin indirectly regulated genes in these
clusters. By scanning the genome and ranking the genes,ensehlacting only for genes that are
directly regulated. Also this approach does not excludegémat are regulated but had anomalous
expression data due to experimental error. Since there ltese at least 20 genes implicated in
sulfur assimilation [5], we choose to average the top 20 gepeession differences to evaluate our
model.

3.3 Microarray Datasets

We used microarray data from two sources for our analysiscked al. [26] reported amino acid
starvation data, where transcription of Met4 regulatedegemas induced. Fauchahal. [27]
reported C&" addition experiments where Met4 regulated genes were ewjand Met4 deletion
experiments where Met4 regulated genes were repressed.m@uels were optimized against
these data as mentioned above. Microarray expressiommpatiere visualized usingreeView
[28]. The yeast genome sequence and annotation that werusadanalysis came from Genbank
accession numbers NC001133 to NC001148.

4 Results

4.1 Cbfland Met31logos

Since Cbfl is a homodimeric protein, we used all sequencgsheir complements to build our
model [21]. Conservation at positior®, —1 and+2, 43 is strong and does not match the helical
accessibility wave (Fig. 1A). Deviation of sequence cowagon from the helical accessibility«<=Fig 1
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wave is generally an indicator of structural changes in tiNMABubstrate [29]. This may be
consistent with the observed bending of DNA by Cbf1 [30].

The Met31 model was built as described in Materials and Migl{&ig. 1B). Sequence con-
servation appeared to follow the helical accessibility vaxell, and it was contained within one
major groove. Met31 has an asymmetric binding site, so itp@ssibly bind with two different
orientations. We tested both orientations in our analy$ise information content for the Cbfl
logo is 129 bits over the range-4 to +5. The information content for the Met31 logo is.2bits
over the range-4 to +5.

4.2 Orientation and ordering

Since Cbfl and Met31 are not physically linked upon bindibgyas not immediately obvious
what the ordering and orientation constraints on theiripigdre in functional Met4 docking com-
plexes. To determine this, we tested the predictive caipiabibf all combinations of orientation
and ordering for Cbfl and Met31 using the gene-ranking appralescribed in Materials and
Methods. Briefly, we determined the flexible information floe cooperative model as determined
by equation (4) [9, 10], and ranked all genes in the genomedoas the strength of the strongest
site in the intergenic region immediately upstream of ts&rts. We then calculated the average
expression fold change of the top 20 genes in this rankingdbas Met4 induced and repressed
microarray experiments [26, 27]. We regarded those conmibimathat gave the highest average
microarray expression change to be the optimal organizétioMet4 coordination. Fig. 2 shows<Fig 2
how well different combinations performed.

Cbfl alone was not sufficient to identify the Met4 regulatethes. The average expression
fold change for the top 20 ranked genes wakl0and 023 for induction and repression data
respectively, we report corresponding values for all ot@nbinations. Met31 alone appeared
to be a better predictor than Cbfl, but was still weal640and—0.85). By searching for Cbfl
and Met31 sites together, with a maximum spacing of 100 Hdastgeen the zero positions of the
binding components (Fig. 1) and the downstream componerd de a maximum of 1000 bases
upstream of the gene start, the prediction was better. Ifeaeched with the order Cbfl-Met31-
gene start, we were able to identify more genes with the eéggdeuicroarray pattern than with the
order Met31-Cbfl-gene start, even though the sites apgpearee low in the ranking (08 and
—1.49 vs. 028 and—0.64).

Since Cbfl is a homodimer, its binding is independent of rdagon. Since Met31 is
monomeric, its binding is orientation dependent. When waneadd for both orientations of Met31
downstream of Cbfl, we got the largest change of expresBi®a and—1.70). This suggests that
transcriptional activation by Met4 requires a Met31 sitéhwvany orientation to fall between Cbfl
and the gene start (bottom right panel of Fig. 2). All modelstihie remainder of this analysis will
have these ordering and orientation requirements impaségeon. The designation of the Met31
model orientation as “normal” or “inverted” is arbitrary. eMlso tested the “inverted” Met31
model alone, and inverted Met31 upstream of Cbfl, but thdtsewere similar to equivalent scans



with the “normal” orientation (data not shown).

4.3 Spacing constraints

There are two spacing constraints on this system, the distagtween the Met4 docking complex
and the initiating polymerase, and the distance betweemwbedinding components (Cbfl and
Met31) within the Met4 docking complex. To define what thgsacing ranges are for functional
Met4 binding sites, we systematically modeled differerstcipg ranges, and quantified the models
by the gene-ranking approach previously described. Istiegy, if we varied one of the spacing
constraints, the optimal spacing for the other would dikghtly. To identify which spacing
parameters define the optimal predictor, we varied bothisgasimultaneously, and quantified
their predictability by averaging the expression changgeir 20 highest ranking genes.

We increased the maximum allowed distance of the Met4 dgat@mplex from the gene start
in 50 base increments as measured by the distance betwddetBi site and the translational ini-
tiation codon. At each 50 bp increment, we varied the mininaund maximum allowed distance
between Cbfl and Met31 from 1 to 100 bases. These distaneeaslative to the zero position
of both matrices (Fig. 1). We then summed the average expressange for the induction and
repression experiments for all combinations of spacingd,determined which combination pre-
dicted the microarray data best.

For the first spacing constraint, the distance between Med4lze polymerase, we found the
optimal maximum spacing was 450 bases (Fig. 3). The prdiiityaof the model seemed to<Fig 3
increase linearly from 100 to 350 bases suggesting thatitdée a&re evenly distributed over this
range. There appeared to be few or no genes with sites clumerl00 bases upstream, or sites
farther than 450 bases upstream that had the expected sxjoreattern.

For the second spacing constraint, the distance betwedna@fMet31, we found the optimal
spacing range to be13 to —68 bases, the minimum to maximum spacing allowed betwedn eac
site (Fig. 4). This was the range used in the analysis in FigRanges close te-13 to —68 <«Fig4
appeared to have a similar level of predictability as ingidaby the redish semi-circle in Fig. 4,
but —13 to—68 had the highest expression change and the tightest rihgeaverage expression
changes for these two spacing parameters we&@ dnd—2.21 for induction and repression data
respectively.

4.4 Optimal model

Based on the analysis in Fig. 2, Fig. 3, and Fig. 4, the optmmadlel is shown in Fig. 5. This<Fig 5
model requires a Cbfl site to be 13 to 68 bases upstream of 31\dée with either orientation,
and for the Met31 site to be no more than 450 bases upstredra tinslational initiation codon.
When we scanned the genome with this model, we see that most ¢dp hits are genes known
to be involved in sulfur amino acid biosynthesis (Fig. 6).l{0mvo of the genes in the top twenty=Fig 6



hits, have an unexpected expression pattern (Rebl and.Gadtjtional analysis of these sites
show that they both have a strong Cbf1 site, but a “T” instdd@bdat position+1 of their Met31
site. This suggests that the information contribution agifoan +1 may be greater than that in
our current matrix. Several genes have both the expecte@ssipn profile and a predicted Met4
binding site, but their functions have not been biocheroeharacterized (DDR48, YILO74C,
YJLO60W, YHR112C). Clustering of co-regulated genes byghee-ranking method may have
identified other genes involved in sulfur utilization.

To ensure that we did not overfit our model, we used two jadkktasts. In the first, we
removed each of the top 20 ranked genes as determined by torabpnodel from our gene
list, recalculated the optimized parameters without tleiseggby the gene-rank method, and then
scanned and reranked the excluded gene based on the nevwepamariVe found that the ranking
of all genes except Met28 did not change by a ranking grelagéer2. Met28 went from a ranking of
510 1429, but this was expected because the Cbfl to Met3ingpaidMet28 was at the maximum
spacing allowed of 68 bases in our optimal model, and whemvenhit fell outside of the newly
determined maximum spacing of 64. In the second jackknike randomly removed 5 of the
top 20 sites from our gene list, determined the optimal sgpparameters, and then reranked the
excluded 5 genes based on these new parameters. Over Hiiterof this, again most of the
genes did not show a ranking change of more than 2, but 5 otihesat extreme spacings showed
noticeably larger rank differences.

To test whether there is a tendency for Cbfl and Met31 to bmthe same face of the DNA,
we plotted the relative spacing between the two sites on mewegave with the same period as
B-form DNA, 10.6 bases (Fig. 5). We plotted the spacing of iithe 20 top hits (all sites except
for Rebl and Garl) and YHR112C and Met10, which had both agtilexible information and
expression change. We determined the phase of the cosire thalvgave the highest average
helical location of these 20 spacings, and found the optphate to peak at13.24 bases relative
to the Met31 zero position. To see if the relative placeméttiese spacings on the cosine wave is
higher than expected, we determined the average helicidocof random sets of 20 Cbfl/Met31
pairs. Our set had an average helical positioning greader 3 percent of random sets.

To calculate the flexible individual information for eacnding site, we used equation (4).
Since we did not know the energetic effect of different spgsion the complex initially, we treated
all spacings equally. That is, over the range 13 to 68 (56dakeariability) all positions had the
same gap surprisal @S(d) = —Iogz(5—16) = 5.81 bits according to equation (2). We also assumed
an equiprobable occurrence of each orientation of Met31thabOSy31(0) = —Iogz(%) =1
bit of information according to equation (3). Therefore B8 andOS variables in equation (4)
effectively become constants summing t8X bits of uncertainty for each site. Because of the
small number of target genes, and the already strong preslicapabilities of our model, we
cannot determine the individual spacing constraints fisrglistem. If we had a system with more
sites, robust spacing and orientation distributions cdagdddetermined and individual penalties
could be assigned.

We can use these values to predict Baguence Or average information content for this system



which is:
Reequence(M€t4) = Rssquence(Cb f 1) 4 Rssquence(Met31) — GS(d) — OS(0)  (bits). (5)

GS(d) is the mearGS(d) value for all sites, an®S(0) is the mearDS(0) value. According to this
equationRsequence(Met4) = 129+ 11.9—-5.81— 1.0 = 180 bits of information.

For each gene we plotted the strength of its strongest @stMet4 binding site according
to the model in Fig. 5 and its average expression change doiction and repression experiments
(Fig. 7). At aboutR, > 14 bits, the number of genes that showed no, or an unexpeqbeelssion «<Fig 7
difference was significantly lower. This is about the s&Rnas the site upstream of Met10 (14.1
bits), the lowest ranking sulfur assimilation protein irr analysis.

5 Discussion

Transcriptional initiation in eukaryotes is often regelhby multiple cooperatively acting factors.
Often these factors can only positively affect transooipif they physically interact either directly
or indirectly through additional proteins with the basalnscriptional machinery. Understanding
the physical constraints that determine functional coaipety is essential for us to be able to
model, predict, and engineer genetic control systems.elt@sstraints generally are not rigid, but
allow for variability in the arrangement of sites in functad complexes and subsequently there is
variability in the stability of the complexes. Here, we havieoduced a way to include orientation
and order into the information theoretic description oft@at recognition at the promoter. This
combined with weight matrix based binding models [20] analcgpg constraints [9, 10] gives us
guantitative tools to model the sequence basis of eukaryratnscriptional regulation.

The simplest constraint of Met4 coordination to define isdhgering of the sites within the
complex. For Met4, our model matches microarray data poshgn the order is Met31-Cbfl-
gene start, but matches well with the order Cbfl-Met31-g&tae (Fig. 2). This is consistent
with experimentally determined ordering constraints [3These results suggest that the Met4-
Cbfl binding surface is distinct from the Met4-Met31 suegaand that the Met4-TFIID binding
surface is closer to the Met4-Met31 surface, placing the4MdtlID binding surface near the
3’ edge of the complex. Domain mapping from yeast two-hybrigeeixnents identified several
protein interaction domains on Met4 [4]. The transcripéibactivation domain (residues 95144)
is closer to the Met31 interaction domain (residues 3403) than the Cbfl/Met28 interaction
domain (residues 616 666) in one-dimension, but these domains are far apart,esoreiative
positioning in the native form of Met4 could be different. &8a on our findings, we suggest that
the relative positioning is the same.

It appears as though either orientation of Met31 can be us#dmwhe docking complex
(Fig. 2). Stabilization of Met4 has been shown when Met31thadnverted orientation [4]. For
Met31 to be able to stabilize Met4 with either orientatiamust either have two Met4 interaction
surfaces, or it has a centrally located interaction surfaatis accessible no matter what orienta-
tion it binds {.e. flexible). Interestingly, the top 5 genes in our ranking hamenverted Met31 site
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(Fig. 6). The total information of these sites might be higlcduse stronger Cbfl and Met31 sites
may be necessary to compensate for the strain of the inveriatation, but could decrease once
we take into account the orientation surprisal.

The maximum distance between the Met4 docking site, as mexhsnithe zero coordinate of
the Met31 site, and the gene start is 450 bases. As the TFHairg site is not at the gene start,
this distance is farther than the maximum allowed distaretevéen Met4 and the polymerase.
It is difficult to determine the distance of the Met4 dockirgmplex to the transcriptional start
since the starts have not been biochemically proven, anguatationally it is difficult to predict
transcription initiation because of the varied modes dfation by the polymerase [2]. Basehoar
et al. found an enrichment of TATAs between 50 and 200 bases upséthe translational start
[32]. This could explain why we did not observe any sites wmittD0 bases of the gene start.

The spacing range between the Cbfl and Met31 site is 13 tog&pas determined in Fig. 4.
Presumably, it could be larger than this, but our observegeas limited by the spacings in our top
20 hits. DNase | footprint analysis of the Cbfl1-Met28 comydaowed protection up to position
+8 on the top strand relative to our Cbfl zero position in F#y.[16]. If we assume that Met31
can not contact any residues occluded by the Cbfl-Met28 mague to steric hindrance, then
the closest allowed spacing between the Met31 and Cbfl zitigns would be 13 bases, since
the Met31 zero position is the fifth conserved base in our in@adlg. 1B). This is the lower bound
determined by our analysis (gene YJLO60W in Fig. 6).

A minimum spacing of 13 is also consistent with our observptinal helical phasing of
—13.24 bases (Fig. 5). This would place the closest Cbfl site stiexactly on the same face as
its respective Met31 site, one helical turn away. A maximpaceng of 68 bases would correspond
to 6 helical turns according to our phasing. The relativégjipositioning of these spacings on the
helical accessibility curve suggests that docking of Mstdapendent upon the helical phasing of
DNA.

The experimentally determined range by Chiabgl. was 21 to 53 bases according to our
numbering system [31]. Unfortunately, spacings as largé8dsases were not tested experimen-
tally. The experimentally determined minimum spacing ofi2inuch larger than the minimum
we found here. Interestingly, only the “inverted” oriembat of Met31 was tested, whereas the
shortest distance in this paper corresponds to a Met31 ghehe opposite orientation. If helical
phasing of the sites is important, then the orientation of3llenay be more constrained at shorter
distances, and this may account for the disparity betwesexperimentally and computationally
determined minimums.

When the constraints inferred from our analysis were imgasethe cooperative binding of
Cbfl and Met31, our ability to predict Met4 regulation waghi Of the top 20 ranked genes$n
cerevisiae (according to our model), 18 had the expected microarrayesgon pattern for Met4
regulation. Many of the sites had also been previously dtaraed as sulfur utilization genes
(Fig. 6). The 2 anomalous genes in the top 20 (Rebl and Gatth)had Met31 sites with a “T”
instead of “G” at position+1 (data not shown), suggesting that this position may behtetymore
strongly in a more refined Met31 model. Additionally, nudemes could play a large inhibitory
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role against spurious combinations of sites, which our rhddes not account for.

When the microarray data from experiments that affectediMigiding were directly compared
to our information evaluation of each gene (Fig. 7), we satvafmost all genes with Met4 binding
sites above 14 bits of information have the expected exipreshange. This suggests that our
approach is giving some reasonable estimate of the enesgatiMet4 binding, with a clearly
defined threshold for functional binding sites. Presumaipiyes that do not have a strong Met4
site, but have the expected microarray data are presunmadihgctly regulated. Interestingly the
strengths of the Met4 sites are not mainly determined byttleagth of Met31 or Cbfl, but by the
sum of these sites. This suggests that for cooperativeilygabinding sites, a decrease in strength
for one site can be compensated for by an increase in str@idtie other. Compensation for
a decrease in the strength of one binding site by increabim@ffinity for another site has been
shown experimentally for activation of Pol Il by the Epst8iarr virus protein ZEBRA [33].

Our relative site strength for a given Met4 docking compkerierely the sum of its Cbfl and
Met31 binding sites. We cannot determine the individuacspaeffect on binding because we
had few sites covering a large spacing range, and our mode&Veli without taking into account
varied gap surprisals. If we did have these individual effewe would expect to see an improved
correlation between our information value and the relagixpression difference. What we can
draw from this analysis is that the sum of individual enamgyedbmponents, as determined by an
information theory approach, gives a reasonably accuratiehof a multimeric complex.

It is difficult to say what energetic effect the gap surprisakpresenting. It could be related to
strain at protein-protein interaction surfaces or straia tb DNA bending. What we are suggesting
is that the conserved spacings observed are indicative@frtargetics of the system, this of course
is the same tenant which seems reasonable in informatiamyttamalysis of single transcription
factor binding sites [24, 20, 25]. The gap surprisal that veecalculating is most likely a sum of
several energetic strains associated with spacing.

We could have determined these physical constraints byeclnog co-regulated genes and
training the rules of binding for their regulators. The db@aek of this approach is that it is not
obvious which genes are directly and indirectly regulated a given gene may or may not have a
binding site. Our approach selects only for genes that aeettlf regulated, and does not exclude
sites that have poor expression data due to experimentel &e are also optimizing our model
against all genes in the genome, so we are selecting for altmadeepresents Met4 binding well,
in that it can identify a small subset of sites from all site¢he genome. Presumably the opti-
mal binding site, based on the flexible information theorgrapch, is the most stable site and the
easiest to crystalize. These results could be used to grydetographic experiments.

The information content of a given DNA-binding proteRyguence) is a function of the variabil-
ity within its binding targets [24]. A more stringent bindeould have a higher information con-
tent, since the variability in its binding targets would Ineadler. To be able to distinguigtbinding
sites within a random DNA of some leng@, those sites must have &irequency = —10092(Y/G)
bits of information to be identified [24]. It has been shownrwany systems th&squence CON-
verges tRtrequency [24, 34]. This suggests that if the size of the genome ineasd the number
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of binding sites remains constant, the information of th&ises would have to increase in order to
be distinguishable.

As eukaryotic genomes are generally larger than prokargainomes, the amount of informa-
tion needed to identify sites would have to be greater. This can be achieved eithercbyasing
the information content of a single factor, or by using npléifactors combinatorially.

Assuming no individual spacing or orientation preferendfs information for this system
would be 129+ 11.9—-5.8— 1= 18.0 bits according to equation (4). This would correspond to
1 site every 20 =262 x 10° bases, or about 98 times in ti%e cerevisiae genome of length
12.8 MB. Our calculation is the number of sites ik 2Zhe genome length, since the complex
could associate with either strand. This is a reasonablebrumf genes according to known
sulfur assimilation genes ¥ 20 genes) [5], the number of predicted regulated genes based
expression difference due to &dtreatment (66 genes) [27], and multiple sites per gene asisee
several cases. This suggests that like single acting tgtisa factors, the information contained
in combinatorial binders is related to threquency for that system [24]. Others have suggested
that this relationship will be maintained for cooperatwatting factors [35]. Interestingly, this
information is distributed through individual binding cponents, as well as the spacing between
components, and if one component changed, the others wawlkl th compensate accordingly.
This is a complicated process, since Cbfl can also funchdependently of Met4 and Met31
[36].
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Figure 1: Cbfl and Met31 sequence logos.
Sequence logos were made as described in Materials and t#etAde height of each letter is
proportional to the frequency of that base at that positibhe height of the letter stack is the
information content at that position. The cosine wave regmés the helical twist of B-form DNA.
The sequence logos were generated using the stabatitd programs [19, 21].
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Figure 2: Met4 binding by Cbfl and Met31 is dependent upoeand but not orientation.
We scanned all intergenic regions in yeast with the mode&sented in Fig. 1 with different orien-
tations and orderings relative to the gene start point. \We tanked all genes in the genome based
on the strength of their strongest upstream binding sitd,ve@ present here the corresponding
expression changes as determined by microarrays. Theimgres that each column represent
correspond to those in Fig. 6. For columns @ (marked with a gray box) we expect regulated
genes to have increased expression and therefore to be oeatolemns 10- 13 (marked with
a blue box) we expect regulated genes to have a decreasessexpr and therefore to be green.
Since the Met31 matrix is asymmetric, it could bind with twifetent orientations. Those cir-
cles labeled “Met31” have the same orientation as the Meai§a Iin Fig. 1. Those circles labeled
“Inverted” have the opposite orientation (see Fig. 5). Thamal combination in the lower right
corner allows for either orientation of Met31. The arrowrsigs the gene start. The average
expression change for the top 20 genes was calculated fbraeaebination of sites for both the
induced (columns 1 to 9) and repressed (column 10 to 13) empets and are reported next to
their respective columns. 17
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Figure 3: Met4 binding is within 450 bases of the gene staitnbt within 100 bases.

We varied the allowed distance that the Met31 binding site lma from the gene start point in
our models, and quantified how this spacing constraint tfteour ability to predict microarray
expression data. A) We plotted the average expression ehaindpe top 20 hits in the genome
for different maximum spacings from the gene start. The itop ¢orresponds to data from exper-
iments where we expected increased expression (column8 intB), and the lower line is from
experiments where we expected decreased expression f@®lidnto 13 in B). The microarray
data that corresponds to our gene-ranking are shown in Bcoheitions for each column in the
microarrays correspond to the labeled columns in Fig. 6.
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Figure 4. The optimal spacing range between Cbfl and Met32 te 68 bases.
We varied the minimum (X axis) and maximum (Y axis) distarfeat Cbfl and Met31 could be
from each other in our model, and calculated the averagessgiom change within the correspond-
ing top 20 hits, according to these ranges. We show here #rage expression change for only
those experiments that we expected to have an increasesksiqor (columns 1 to 9 in Fig. 6). The
colors correspond to the key in lower portion of the plot.

19



209 Met31 binding sites
—

32 Cbf1 bindipg sites

3 <450 '
bases

Figure 5. The Met4 activation model based on our analysis.
We summarize here the spacing, ordering, and orientatiostiants we used to define functional
Met4 binding sites. Since Met31 can bind with either oriéiotg we show logos for both Met31
orientations. The distances between each set of Cbfl an8lIMées were plotted with red boxes
on a cosine wave for 20 high-ranking genes to show helicdepraces. The arrow represents
the translational start, and the allowed distance betweerMet4 stabilization complex and the

translational start is written above it. The expressioadatthe right is what was predicted by this
model, and is described in Fig. 6.
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Name Ri Coord Or Cbf1  ATG Gene Function
Met30 22.99 268492 -1 -17 158 YIL046W  SULFUR AMINO ACID METBOLISM
RAD59 21.99 345105 -1 -a4 152 YDL059C  DNA REPATR AND RECOMBINATION
SUL2 21.72 323262 -1 -23 283 YLRO92W  TRANSPORT
cys3 21.54 130615 -1 -27 187 YALO12W METHIONINE BIOSYNTHESIS
MET28 20.59 384265 -1 -68 149 YIR017C  SULFUR AMINO ACID METBOLISM
MET14 20.45 439220 +1 -34 192 YKL001C  SULFATE ASSIMILATION
MET32 20.15 964883 -1 -54 322 YDR253C  METHIONINE METABOLISM
MUP3 19.55 26061 +1 -22 178 YHLO36W  TRANSPORT
YAPS 19.08 384396 +1 -64 210 YIRO18W  TRANSCRIPTION
REB1 17.46 337088 +1 -19 272 YBR049C  TRANSCRIPTION
DDR48 17.42 608356 -1 -55 332 YMR173W  UNKNOWN
MET17 17.41 732271 +1 -50 273 YLR303W METHIONINE BIOSYNTHESIS
GAR1 17.21 283463 +1 -27 163 YHR089C  RRNA PROCESSING
YIL074C  16.80 222725 -1 -57 238 YILO74C  UNKNOWN
MET1 16.67 571003 +1 -15 251 YKRO69W  METHIONINE BIOSYNTHESIS
IDH1 16.46 559446 -1 -15 443 YNL037C  TCA CYCLE
MET2 16.30 117046 +1 -a8 303 YNL277W  METHIONINE BIOSYNTHESIS
YJLO60W  15.91 323243 +1 -13 138 YJILO60W  UNKNOWN
MET6 15.66 342606 +1 -50 443 YER091C  METHIONINE BIOSYNTHESIS
SAM2 15.65 1454752 +1 -25 296 YDR502C  METHIONINE BIOSYNTHESIS
HHF2 15.44 576370 +1 -33 358 YNLO30W  CHROMATIN STRUCTURE
ARPS 15.26 592917 +1 -16 329 YOR141C  CYTOSKELETON PUTATIVE
YHR112C  15.15 335839 +1 -26 173 YHR112C  UNKNOWN
oPY2 14.73 697205 -1 -22 389 YPRO75C  SIGNALING PUTATIVE
MXR1 14.70 234775 -1 -68 161 YER042W  OXIDATIVE STRESS RESPONSE
ACP1 14.67 80710 -1 -15 168 YKL192C  FATTY ACID BIOSYNTHESIS
LCB3 14.65 158052 -1 -50 133 YJL134W  SPHINGOLIPID METABOLISM
SFH1 14.63 778313 +1 -a7 449 YLR321C  CHROMATIN STRUCTURE
PAN1 14.53 370029 -1 -40 124 YIR006C  CYTOSKELETON AND ENDOCYTOSIS
SNC2 14.20 931319 +1 -51 241 YOR327C  SECRETION
MET10 14.09 213095 +1 -24 205 YFRO30W  SULFATE ASSIMILATION
YMLO18C  14.08 236206 +1 -25 254 YMLO18C  UNKNOWN

Figure 6: The top hits are involved in sulfur amino acid biusesis.

These are the top hits according to our optimal spacing salli@e first 9 columns are data for
experiments that should induce the expression of Met4 a¢gdligenes and give a red pattern.
The last 4 columns we expect to see a decrease in expresdibetdiregulated genes and give a
green pattern. Experiment information for each columnpereed vertically above each column.
Each row corresponds to a different gene followed by its commame, its flexible information
(R), the coordinate of the Met31 binding site in t8ecerevisiae genome, the orientation of the
Met31 matrix, the distance Cbfl is upstream of Met31, theadise the gene start is downstream
of Met31, the gene name according to its annotation in thetygenome, and a description of its
function.
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Figure 7: Rivs. expression change.
The flexible information ) of the strongest site for each gene is on the abscissa arsd¢nage
induction or repression expression change is on the oelirkair each gene, induction data were
averaged from the first nine experiments in Fig. 6 (red ci#)cland repression data were averaged
from the last four experiments in Fig. 6 (black circles).
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