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A B S T R A C T

Urban trees provide valuable ecosystem services but are at the same time under continuous pressure due to
unfavorable site conditions. In order to better protect and manage our natural capital, urban green managers
require frequent and detailed information on tree health at the city wide scale. In this paper we developed a
workflow to monitor tree defoliation and discoloration of broadleaved trees in Brussels, Belgium, through the
combined use of airborne hyperspectral and LiDAR data. Individual trees were delineated using an object-based
tree detection and segmentation algorithm primarily based on LiDAR data with an average accuracy of 91%. We
constructed Partial Least Squares Regression (PLSR) models to derive tree chlorophyll content (RMSE=2.8 μg/
cm²; R²= 0.77) and Leaf Area Index (LAI; RMSE=0.5; R²= 0.66) from the average canopy spectrum. Existing
spectral indices were found to perform significantly worse (RMSE > 7 μg/cm² and>1.5 respectively), mainly
due to contamination of tree spectra by neighboring background materials. In the absence of local calibration
data, the applicability of PLSR to other areas, sensors and tree species might be limited. Therefore, we identified
the best performing/least sensitive spectral indices and proposed a simple pixel selection procedure to reduce
disturbing background effects. For LAI, laser penetration metrics derived from LiDAR data attained comparable
accuracies as PLSR and were suggested instead. Detection of healthy and unhealthy trees based on remotely
sensed tree properties matched reasonably well with a more traditional visual tree assessment (93% and 71%
respectively). If combined with early tree stress detection methods, the proposed methodology would constitute
a solid basis for future urban tree health monitoring programs.

1. Introduction

Urban trees and forests are known to provide a wide range of eco-
system services (e.g. cooling, air filtering, water interception, recrea-
tion), thereby significantly improving the quality of life for urban re-
sidents (Bolund and Hunhammar, 1999; Salmond et al., 2016). At the
same time, urban trees are under continuous pressure due to several
factors that negatively affect their health (Berrang et al., 1985). Com-
pared to the surrounding rural areas, urban environments are char-
acterized by high peak temperatures (Cregg and Dix, 2001), high con-
centrations of air pollution and poor soil conditions due to human
activities. Urban soils typically contain high amounts of inert con-
struction materials, pollutants and de-icing salts, are characterized by
high bulk densities and poor soil structure due to soil compaction and
hence support little biological activity, in turn leading to low organic
matter content (Czerniawska-Kusza et al., 2004; Day and Bassuk, 1994;
Scharenbroch et al., 2005). All these factors increase the risk of nutrient
and water stress, in turn deteriorating a tree’s metabolism and growth

and decreasing its ability to provide ecosystem services. Particularly
low available rooting space due to soil compaction has been found to
negatively affect urban tree condition (Day and Bassuk, 1994; Sanders
and Grabosky, 2014; Scharenbroch et al., 2017). In addition, poor site
conditions increase the risk of infestation by insects and diseases (Cregg
and Dix, 2001). Severe tree health issues may eventually lead to tree
stability loss, in turn threatening public safety (Lonsdale, 1999). Given
their high value to society and the high pressure they are experiencing,
urban trees should be carefully managed, including prevention, re-
storation and replacement of dead or diseased trees. To facilitate this,
professional green managers ideally require frequent, reliable and
spatially-explicit information on the health status of all trees under
their care. Traditionally, tree health is monitored using the visual tree
assessment (VTA) method (Mattheck and Breloer, 1994), applied in-situ
by trained tree experts. Although this method has already been suc-
cessfully used in many cities (Fink, 2009), it is affected by a certain
degree of subjectivity, provides mostly qualitative information and is
limited in spatial extent and temporal frequency to time and labor
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constraints of tree experts. Remote sensing technology has the potential
to deliver quantitative, spatially continuous information covering entire
cities at once and can be easily replicated through time.

Tree health research employing remote sensing data has been
dominated by forestry studies linking vegetation indices like NDVI
(Normalized Difference Vegetation Index; Rouse et al., 1973), mostly
derived from multispectral satellite data, to different tree health aspects
like defoliation (Royle and Lathrop, 1997; Wang et al., 2010). Aside
from estimating vegetation abundance and cover (Van De Voorde et al.,
2008), the potential of this coarse (10–30m) multispectral data for
urban vegetation studies is limited by the high abundance of mixed
pixels in urban scenes compared to more uniform forest ecosystems.
The presence of background materials within a pixel negatively affects
the calculation of vegetation indices (Somers et al., 2009b; van Beek
et al., 2015). Researchers have therefore turned to color infrared ima-
gery, sacrificing spectral detail in favor of fine spatial resolution
(< 1m), for urban tree health mapping (Sari and Kushardono, 2016;
Xiao and McPherson, 2005). Such imagery however only provides
general measures of greenness (such as NDVI), typically sensitive to
multiple vegetation characteristics at once (e.g. chlorophyll content and
biomass), and hence enable us to locate problematic trees but without
identifying the underlying causes. Different types of stress trigger dif-
ferent physiological reactions in trees (Günthardt-Goerg and
Vollenweider, 2007), which are eventually expressed visually either via
leaf loss (drought, frost, insect damage) or via changes in leaf color
(nutrient stress, diseases). Both variables (defoliation and discoloration)
are often used in conjunction as tree health indicators (Lakatos et al.,
2014; Stone et al., 2000) and can, from a remote sensing perspective,
objectively be estimated by respectively determining Leaf Area Index
(LAI) and chlorophyll content. Airborne hyperspectral data provides the
spectral detail required to derive these individual tree characteristics
(e.g. Delalieux et al., 2008; Delegido et al., 2014). Its lower spatial
resolution (typically 2–4m) can be compensated through fusion with
airborne LiDAR data, providing highly detailed structural information.
The added value of the LiDAR component for urban tree health as-
sessment lies in its potential to estimate LAI (Alonzo et al., 2015;
Klingberg et al., 2017; Morsdorf et al., 2006; Oshio et al., 2015) and to
delineate individual tree objects in a highly accurate way (Alonzo et al.,
2014; Zhao et al., 2017; Zhen et al., 2016).

The main objective of this study was to develop a workflow to assess
urban tree health in a quick and cost-effective way using a combination
of airborne hyperspectral and LiDAR data as an alternative to the cur-
rently established VTA approach. Our workflow comprised three steps:
(1) detailed detection and delineation (segmentation) of individual
trees using airborne LiDAR data, (2) determination of chlorophyll
content and LAI of each individual tree from airborne hyperspectral and
LiDAR data and (3) integration of these two variables into an objective
tree health indicator. In this paper, an unhealthy tree is defined as a tree
featuring a decreased metabolism, visually expressed by significant
defoliation and/or leaf discoloration when compared to other trees
from the same species. The approach was tested on a set of trees in the
city of Brussels, Belgium. For the extraction of tree properties from
hyperspectral data we compared the performance of spectral indices (a
biophysically based approach) versus Partial Least Squares Regression
(PLSR; a regression approach relying on local calibration data). PLSR
was preferred here over other machine learning approaches as it is
widely recognized as one of the standardized approaches to retrieve
canopy biochemistry from hyperspectral data, uses the entire spectrum
to predict the variable of interest and results in a set of meaningful and
easily interpretable regression coefficients allowing to identify the most
important spectral zones with regard to this variable(Asner et al., 2011;
Martin et al., 2008; Meerdink et al., 2016; Singh et al., 2015; Townsend
et al., 2003). Many different spectral indices have already been devel-
oped to derive chlorophyll content (e.g. Dash and Curran, 2004;
Daughtry et al., 2000; Gitelson et al., 2003; Sims and Gamon, 2002) and
to a lesser extent LAI (Delalieux et al., 2008). With the exception of the

NAOC index (Delegido et al., 2014), all of these indices were designed
for relatively homogeneous forest canopies or plantations. An im-
portant objective of this study was, therefore, to test which of the ex-
isting indices can be safely applied to the complex urban environment,
with its high abundance of man-made materials. We additionally tested
a strategy to minimize background effects by gradually eliminating
contaminated or non-pure tree pixels from the analysis. Although many
studies exist on deriving individual tree properties from remote sensing
data, to our knowledge this study was the first attempt to integrate
these properties into an objective health indicator specifically for urban
trees.

2. Data

2.1. Airborne hyperspectral data

On June, 30 2015 a hyperspectral image was acquired over the city
of Brussels, Belgium using the Airborne Prism Experiment (APEX)
sensor mounted in an airplane. The flight took place around solar noon
at an altitude of 3600m above sea level. APEX records the spectral
response in 285 spectral bands within the 412–2431 nm range, of which
218 were retained for analysis after removal of atmospheric absorption
bands (412–450 nm, 1340–1500 nm, 1760–2020 nm, 2350–2431 nm).
Image pre-processing was done using an automated processing chain at
the Flemish Institute for Technological Research (Biesemans et al.,
2007), consisting of geometric correction via direct georeferencing
(Vreys et al., 2016), projection in the Belgian Lambert 72 coordinate
system and atmospheric correction using a MODTRAN4 radiative
transfer model (Berk et al., 1999; Sterckx et al., 2016). The resulting
image had a spatial resolution of 2m and mainly covered the Eastern
part of the Brussels capital area (Fig. 1), comprising a wide range of
urban structure types (i.e. dense and sparse residential, commercial and
urban green zones).

2.2. Airborne LiDAR data and derived surface models

The eastern part of our study area was covered by an airborne
LiDAR dataset collected in Summer 2015 by Aerodata Surveys
Nederland BV (yellow rectangle in Fig. 1) with an average point density
of 15 points/m². For the remainder of the study area not covered by the

Fig. 1. Location of urban trees used in this study within the Brussels Capital
Region, Belgium, and in relation to the coverage of the APEX hyperspectral
dataset (black rectangles), LiDAR 2015 (yellow rectangle) and LiDAR 2012
datasets (entire region). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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2015 dataset, we relied on a LiDAR dataset acquired in winter 2012
over the entire Brussels Capital Region with an average point density of
35 points/m² (data provided by the Brussels Regional Informatics
Centre). For both datasets a digital terrain model (DTM; elevation of
ground level) and canopy height model (CHM; height of objects) were
derived at a resolution of 0.25m using LAStools software. The proces-
sing chain included the detection and removal of noisy returns, the
detection of ground returns, creation of the DTM through interpolation,
deriving height of all non-ground returns and creation of a CHM by
extracting the maximum height for each cell (full code in Supplement
I).

2.3. Urban tree dataset

2.3.1. Tree selection
Validation data were collected for a total of 118 trees, selected by

stratified random sampling across our study area (Fig. 1). We only
considered trees located on public property and focused on the four
most dominant tree genera occurring along public roads in the city of
Brussels, i.e. Acer (mainly A. pseudoplatanus and A. platanoides; n= 24),
Aesculus (A. hippocastanum; n= 26), Platanus (P. x acerifolia; n= 30)
and Tilia (mainly T. x euchlora and T. x europaea; n= 38). The study
area was first stratified into four urban structure types (dense re-
sidential, sparse residential, industrial and urban green zone) based on
the type and density of buildings, derived visually from an orthophoto.
We then randomly selected our trees during several field visits to dif-
ferent zones and made sure to include trees of various sizes, health
conditions and spatial contexts (park versus street). The trees’ locations
were recorded using a Garmin GPSMAP 64S (+/− 3m) and their
context was meticulously described allowing their identification on a
7.5 cm RGB orthophoto. Tree height was measured using a Silva CM-
360 clinometer.

2.3.2. Chlorophyll
Based on an independent tree leaf dataset, we established a relation

between leaf spectral measurements and leaf chlorophyll content
(Gitelson et al., 2003; Sims and Gamon, 2002). The dataset comprised
31 Platanus leaves and 26 Aesculus leaves collected in Leuven (Belgium)
from 12 different individuals showing a clear gradient in tree health.
After harvesting, leaves were stored in an ice chest and transported to
the lab where three spectra per leaf (350–2500 μm) were measured
using a SpectraVista spectroradiometer (SVC HR1024) equipped with a
leaf clip containing an internal illumination source. Chlorophyll content
was determined by dissolving a known area fraction of the leaf in
(80:20) aceton-H2O solvent (as suggested by Porra, 2002), measuring
the reflectance of the resulting fluid in a spectrophotometer and ap-
plying the equations from Lichtenthaler (1987). A PLSR model (Helland
and Helland, 2006) was constructed by randomly dividing the leaf data
into 80% calibration and 20% validation sets and running PLSR using 5
components (latter based on evaluation of the PRESS statistic). This
process was repeated a thousand times and the resulting model coef-
ficients were averaged to yield the final model (R²= 0.82;
RMSE=4.40). By comparing the performance of this pooled model
with two species-specific models (trained only with data from the re-
spective species), we concluded the species effect to be negligible for
chlorophyll prediction of these deciduous broadleaf trees. Therefore,
we used the pooled PLSR model to estimate the true chlorophyll content
of each tree in the Brussels dataset based on spectral measurements (see
above) of twenty individual leaves per tree.

2.3.3. Leaf area index (LAI)
The LAI of each individual tree was measured using two different

methods, which were averaged to obtain one value per tree. The first
method was based on a set of four upward facing photographs taken
from below the canopy (one in each of the four cardinal directions) at a
distance of 1m from the stem and a height of 1m above the ground

surface using a Canon EOS 5D camera. After manually cropping the
images for removing unwanted features (e.g. buildings), Gap Light
Analyzer software was used to derive LAI. The second method made use
of the Sunscan system (Type SS1-COM-R4), consisting of two sensors
(one BF5 sunshine sensor placed outside the canopy and the actual
Sunscan sensor positioned underneath the canopy) simultaneously
measuring incident photosynthetically active radiation. LAI was sub-
sequently derived based on the fraction of radiation transmitted
through the canopy (Wirion et al., 2017).

2.3.4. Visual tree assessment (VTA)
The health status of all trees was assessed on site by two in-

dependent researchers using the FAO guidelines for the assessment of
forest crown condition (Lakatos et al., 2014). Both defoliation and
discoloration of leaves were estimated on a 0–3 scale through com-
parison to a healthy reference tree. The final damage score per tree was
obtained through integration of the two variables (Table 1). As the
amount of foliage (and hence LAI) of a healthy tree varies significantly
depending on its size, we grouped our data not only by species, but also
into two size classes (lower and higher than 13m). For each group, we
visually selected 2–3 healthy trees from our sampled tree dataset that
served as a reference to estimate defoliation and discoloration.

3. Methodology

3.1. Overview of tree health workflow

Our workflow to derive tree health information from airborne hy-
perspectral and LiDAR data is summarized in Fig. 2. LiDAR pre-pro-
cessing has already been covered in Section 2.2. Each of the next steps
will be thoroughly discussed in the following sections.

3.2. Tree identification and segmentation

We developed an object-based tree classification algorithm in
eCognition software (see Supplement 2 for the detailed algorithm),
mainly relying on a LiDAR based tree index proposed by O’Neil-Dunne
et al. (2014) (Eq. (1); Fig. 3). This index was calculated for our study
area with a spatial resolution of 25 cm. All objects taller than 3m and
having a tree index> 1 were initially labeled as trees (Fig. 4a,b,c).
Building edges however tended to have high tree index values, causing
them to be wrongly classified as trees (Fig. 4c). This problem was solved
by reclassifying tree or unclassified objects with similar NDVI values
compared to neighboring building objects (Fig. 4d,e). In cases where
multiple trees were spatially connected into large asymmetric tree ob-
jects, we used a watershed segmentation algorithm in order to isolate
individual trees (Fig. 4f).

= −Tree index H Hfirst last (1)

where Hfirst and Hlast represent the height of the first and last LiDAR
return in a pixel relative to the ground surface.

The accuracy of the tree identification and segmentation algorithm

Table 1
Final damage score of an individual tree as a function of defoliation and dis-
coloration percentages and scores.
Adopted from Lakatos et al. (2014).

Discoloration

Defoliation 0 – 10 % 10 – 25 % 25 – 60 % 60 – 100 %
0 1 2 3

0 – 10 % 0 0 0 1 2
10 – 25 % 1 1 1 2 2
25 – 60 % 2 2 2 3 3
60 – 100 % 3 3 3 3 3
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was evaluated by directly comparing the resulting polygons to manu-
ally-drawn tree polygons based on visual interpretation of the CHM and
high-resolution RGB imagery (7.5 cm resolution). The fraction of
overlapping area between the two sets was calculated both from the
viewpoint of the reference and segmentation result (see Formulas in
Table 2 and Zhao et al., 2017). Based on both fractions, segmentation
results were classified as a good match, over- or underestimated and
mismatch (Table 2). The average fraction of overlapping area was used
as a general measure of accuracy.

3.3. Deriving quantitative variables: chlorophyll content and LAI

After individual tree crown delineation, the spectral information of
each tree segment was extracted from the APEX imagery and was used
to derive chlorophyll content and LAI. By computing the average signal
per tree object, we specifically accounted for intra-crown variability.
This is in contrast to Delegido et al. (2014), who used only the central
pixel per tree crown. In this study we compared two conceptually dif-
ferent approaches for tree property extraction, i.e. spectral indices
(Section 3.3.1) and PLSR (Section 3.3.2). In addition, we also tested the
potential of LiDAR data to derive LAI (Section 3.3.3). Given the highly
heterogeneous nature of urban environments, combined with a high
material diversity and hence high spectral complexity (Heiden et al.,
2007), urban tree spectra are especially prone to contamination by
background materials. Despite the 2m spatial resolution, mixed pixels
still occur, particularly near tree edges and in case of low foliage den-
sity. Signal contamination is additionally aggravated by multiple scat-
tering effects, resulting in complex nonlinear spectral mixtures (Somers
et al., 2009a). Moreover, small errors in the tree identification and
segmentation procedure or a slight geometric mismatch between the
hyperspectral and LiDAR datasets can cause pixels not containing any
vegetation to be wrongly labeled as part of a tree canopy (Fig. 5). We
developed a multi-criteria pixel selection procedure to minimize these
background effects (Section 3.3.4). Finally, the sensitivity of the dif-
ferent methods to remaining background contamination is assessed
(Section 3.3.5).

3.3.1. Spectral indices
We tested a wide range of spectral indices for chlorophyll content

Fig. 2. Overview of the proposed workflow to derive tree health information from airborne hyperspectral and LiDAR data.

Fig. 3. Illustration of the concept of the tree index (Eq. (1)) derived from air-
borne LiDAR data. Laser pulses can penetrate tree canopies, but cannot pene-
trate buildings. For the former, the difference between first and last return will
be much higher compared to the latter.

Fig. 4. Illustration of the tree identification and seg-
mentation algorithm. (a) Canopy height model (CHM;
25 cm resolution); (b) tree index (Eq. (1); 25 cm re-
solution); (c) initial classification based on CHM and
tree index, note that edges of buildings are wrongly
classified as trees due to high tree index values; (d)
NDVI derived from APEX data (2m resolution); (e)
corrected classification based on NDVI thresholds,
which resolved the misclassification of building edges;
(f) final tree segments after watershed segmentation
(red polygons). (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)
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and LAI (Table 3). The NAOC index is particularly worth mentioning
since it was specifically designed for heterogeneous environments and
has already been successfully applied in an urban context (Delegido
et al., 2014). In addition to these existing indices, an optimized nor-
malized index was designed using the OMNBR approach (Thenkabail
et al., 2000). In this approach, all normalized vegetation indices were
generated using every possible combination of two spectral bands and
the one showing the highest correlation to the variable of interest was
retained. A linear relation was fitted between each spectral index and
measured chlorophyll/LAI, except for the NAOC index where we used a
log-linear relation (Delegido et al., 2014).

3.3.2. Partial least squares regression (PLSR)
PLSR is a data fitting approach typically used in cases where more

predicting variables are available compared to observations (in our case
218 spectral bands versus 118 trees available for calibration) and has
been widely used to assess tree variables in forests based on hyper-
spectral data (Singh et al., 2015; Townsend et al., 2003). PLSR was
applied as outlined in Section 2.3.2, i.e. by creating and subsequently
averaging 1000 individual models (each based on a different random
subset of calibration/validation data in a 80:20 ratio). This approach
allowed us to assess the sensitivity of the model towards the actual
calibration data used and to estimate model accuracy (Singh et al.,
2015). Both a global (based on all data/all species) and species-specific

PLSR models were generated for chlorophyll and LAI. The contribution
of each spectral band to the final regression model, as expressed by the
regression coefficients (or beta values), was used to identify the most
relevant spectral zones for chlorophyll and LAI.

3.3.3. LAI from LiDAR
As an alternative to the use of spectral data, many studies have

focused on extracting LAI from airborne LiDAR data via laser pene-
tration metrics, including in urban areas (Alonzo et al., 2015; Klingberg
et al., 2017; Oshio et al., 2015). Here, we briefly tested the potential of
this approach on the 84 trees imaged by LiDAR in summer (Fig. 1). For
each of these crown objects, we extracted the number of first canopy
returns and first and last ground returns using OPALS software, and
used these numbers to calculate a specific laser penetration metric
(LPMlasts, formula specified in Alonzo et al., 2015). LPMlasts was con-
verted to LAI using an inverse logarithmic formula (Alonzo et al., 2015)
and related to measured LAI using linear regression.

3.3.4. Dealing with background signals using canopy pixel selection
We developed a multi-criteria canopy pixel selection procedure

(Fig. 5) in order to detect and remove contaminated canopy pixels. The
procedure first deleted all pixels which intersect with the tree crown
border. Next, the NDVI and a newly developed grass index were cal-
culated for each remaining pixel to estimate the contamination by man-
made materials and grass respectively. The grass index was created
based on the observation that grass spectra reach their maximum re-
flectance in the NIR region around 1050 nm, whereas in tree spectra,
this peak is less pronounced or even lower compared to the reflectance
around 805 nm (Fig. 6; Eq. (2)). We used a conservative NDVI threshold
of 0.3 in order to conserve unhealthy tree spectra and a grass index
threshold (git) of 0.87 to distinguish grass (< git) from tree (> git)
pixels. A test on two independent spectral libraries from the cities of
Brussels (APEX 2015 dataset) and Berlin (3.6 m resolution HyMap data)
(Degerickx et al., 2017a,b) showed this approach to yield a total ac-
curacy of 87.7 and 76.2% respectively for differentiating grass from
tree pixels. The number of pure tree and grass spectra amounted to
486/255 for Brussels and 1265/1112 for Berlin. Finally, we removed all
shaded canopy pixels using a brightness criterion: canopy pixels with a
brightness value less than 75% of the maximum brightness within the
canopy were discarded. After each stage of the canopy pixel selection
procedure (no selection - edge removal - NDVI criterion - grass index
criterion - brightness criterion) we computed the average canopy signal
based on the remaining pixels per tree. By applying our chlorophyll and
LAI retrieval methods (Sections 3.3.1 and 3.3.2) on each of these five
resulting sets of canopy spectra, we tested the added value of our
suggested background removal approach.

=Grass index R
R

805

1050 (2)

where Rx is the reflectance at wavelength x (in nm).

Table 2
Classification of tree segmentation results based on fraction of overlapping area between reference polygons (ref) and segmentation results (result).

Overlap (reference perspective) Overlap (result perspective) Percentage of trees classified as…
[Aref – A(ref – result)] / Aref [Aresult – A(resut – ref)] / Aresult

1 - Good match > 90 % >90 % 52 %
2 - Low overestimation > 90 % <90 % &>75 % 6 %
3 - Low underestimation < 90 % &>75 % >90 % 28 %
4 - Medium overestimation > 90 % <75 % &>25 % 1 %
5 - Medium underestimation < 75 % &>25 % >90 % 8 %
6 - Severe overestimation > 90 % <25% –
7 - Severe underestimation < 25% >90 % –
8 - Low mismatch < 90 % &>75 % <90 % &>75 % 5 %
9 - Medium mismatch < 75 % &>25 % <75 % &>25 % –
10 - Severe mismatch < 25% <25% –

A=area ; x – y= shapefile generated by a difference operation using x as first input and y as second input.

Fig. 5. Illustration of canopy pixel selection procedure applied on one tree
canopy. The red line shows the extent of the tree canopy as delineated by our
tree segmentation algorithm. The pixels represent the true-color RGB version of
the APEX image (2m resolution). A geometric shift is visible between the
LiDAR-based extent and the APEX image (non-vegetated pixels are included in
the canopy on the left). Pixels containing a number/letter are originally in-
cluded in the analysis. Pixels marked by a number are removed during canopy
pixel selection (1 = edge pixels; 2 = non-vegetated pixels; 3 = grass pixels; 4
= shaded pixels). Pixels marked by “x” are the ones retained after the entire
procedure. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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3.3.5. Sensitivity to background signals
In order to test for remaining sensitivity to background signals, we

classified our trees in categories depending on their background ma-
terial (impervious surface, bare soil, grass, shrubs, wood chips) and
tested for significant differences in the prediction error of chlorophyll
and LAI (Kruskall Wallis test). Additionally, we applied all indices and
PLSR models on a random sample of pure spectra of common non-ve-
getated background materials in the city of Brussels (asphalt, concrete,
soil and water; spectra drawn from the Brussels APEX spectral library
from Degerickx et al. (2017a,b)).

3.4. Integrated tree health indicator

The central concept behind this study was to move beyond the
traditional assessment of vegetation properties from remote sensing
data by integrating the acquired information into a meaningful and
practical tree health indicator. Instead of visually estimating defoliation
and discoloration (Lakatos et al., 2014, see Section 2.3.4), the two
variables were derived by directly comparing LAI and chlorophyll va-
lues between the tree of interest and a set of healthy reference trees of

the same species and within the same height category (Fig. 7, Eqs. (3),
(4); see Section 2.3.4 for definition of reference trees). Defoliation,
discoloration and final damage scores were defined using the thresholds
mentioned in Table 1.

=

−

defoliation
LAI LAI

LAI
[%] * 100ref tree

ref (3)

=

−

discoloration
chlor chlor

chlor
[%] * 100ref tree

ref (4)

Where LAI= leaf area index, chlor= chlorophyll content, Xref =
average value of variable X for all reference trees, Xtree = variable X for
tree of interest.

4. Results

4.1. Tree segmentation

Our segmentation results were visually inspected to remove obvious
errors. Manual corrections were required for 11 out of 118 trees, mainly

Table 3
Performance comparison of various spectral indices, PLSR and LiDAR-based approach for retrieving chlorophyll and Leaf Area Index from average tree canopy
spectra (n= 102, except for LPMlasts where n=84). R² and RMSE values are reported for the linear fit between reference and estimated chlorophyll content / LAI.
Results shown here represent the best results found along the pixel selection procedure (step 4 for chlorophyll and step 5 for LAI). More information on the effect of
canopy pixel selection can be found in Section 4.4 and Supplement III.

Abbreviation Full name Leaf or canopy level? Source R² RMSE

Chlorophyll
VOG1 Vogelmann red edge index 1 Leaf Vogelmann et al. (1993) 0.41 7.9
VOG2 Vogelmann red edge index 2 Leaf Vogelmann et al. (1993) 0.41 7.8
VOG3 Vogelmann red edge index 3 Leaf Vogelmann et al. (1993) 0.41 7.9
SIPI Structure Insensitive Pigment Index Leaf Penuelas et al. (1995) 0.04 29.5
PRI Photochemical Reflectance Index Leaf Gamon et al. (1997) 0.18 13.7
GitGreen Gitelson Index Green Leaf Gitelson and Merzlyak (1997) 0.31 9.7
GitRed Gitelson Index Red Leaf Gitelson and Merzlyak (1997) 0.32 9.5
RGRI Red Green Ratio Index Leaf Gamon and Surfus (1999) 0.02 37.9
PSRI Plant Senescence Reflectance Index Leaf Merzlyak et al. (1999) 0.01 47.8
CIgreen Chlorophyll Index Green Leaf Gitelson et al. (2003) 0.40 8.0
CIrededge Chlorophyll Index Red Edge Leaf Gitelson et al. (2003) 0.42 7.7
SR680 Simple Ratio 680 Leaf Sims and Gamon (2002) 0.06 23.6
SR705 Simple Ratio 705 Leaf Sims and Gamon (2002) 0.37 8.5
mSR705 Modified SR705 Leaf Sims and Gamon (2002) 0.40 8.1
ND680 Normalized Difference 680 Leaf Sims and Gamon, (2002) 0.04 28.0
ND705 Normalized Difference 705 Leaf Sims and Gamon, (2002) 0.37 8.4
mND705 Modified ND705 Leaf Sims and Gamon (2002) 0.43 7.5
DDn Double Deference Index Leaf Wang and Li (2012) 0.34 9.1
NDVI Normalized Difference Vegetation Index Canopy Rouse et al. (1973) 0.04 29.2
REP Red Edge Position Canopy Horler et al. (1983) 0.44 7.4
1DL_DGVI First-order derivative green vegetation index with local baseline Canopy Elvidge and Chen (1995) 0.03 30.7
NDRE Normalized Difference Red Edge Canopy Barnes et al. (2000) 0.41 7.9
CARI Chlorophyll Absorption in Reflectance Index Canopy Daughtry et al. (2000) 0.31 9.7
MCARI Modified CARI Canopy Daughtry et al. (2000) 0.31 9.7
ZM Zarco and Miller Canopy Zarco-Tejada et al. (2001) 0.41 7.8
MTCI MERIS Terrestrial Chlorophyll Index Canopy Dash and Curran (2004) 0.46 7.1
NAOC Normalized Area Over Reflectance Curve Canopy Delegido et al. (2010) 0.29 11.0
OMNBR Spectral index developed using the OMNBR approach Canopy This study 0.46 7.0
PLSR Partial least squares model Canopy This study 0.77 2.8
PLSR_spp Species-specific PLSR model Canopy This study 0.83 2.4
Leaf Area Index
SR Simple Ratio Canopy Jordan (1969) 0.10 3.1
NDVI Normalized Difference Vegetation Index Canopy Rouse et al. (1973) 0.12 2.8
SAVI Soil Adjusted Vegetation Index Canopy Huete (1988) 0.25 1.8
ARVI Atmospherically Resistant Vegetation Index Canopy Kaufman and Tanré (1992) 0.11 3.0
1DL_DGVI First-order derivative green vegetation index with local baseline Canopy Elvidge and Chen (1995) 0.27 1.8
EVI Enhanced Vegetation Index Canopy Huete et al. (1997) 0.25 1.9
VARI Visible Atmospherically Resistant Index Canopy Gitelson et al. (2002a,2000b) 0.01 7.7
VIgreen Vegetation Index using Green Band Canopy Gitelson et al. (2002a,2000b) 0.01 8.3
sLAIDi Standardized LAI Determining Index Canopy Delalieux et al. (2008) 0.27 1.8
OMNBR Spectral index developed using the OMNBR approach Canopy This study 0.33 1.5
PLSR Partial least squares model Canopy This study 0.66 0.5
PLSR_spp Species-specific PLSR model Canopy This study 0.74 0.4
LPMlasts Laser penetration metric from LiDAR Canopy Alonzo et al. (2015) 0.56 0.4
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due to over-segmentation of large trees (segments were merged) and
under-segmentation of small trees adjacent to high objects (additional
segments were created). The average overlap between the resulting
polygons and their references totaled 91% with a standard deviation of
6% and a minimum value of 64.5%. A good match was obtained for

more than half of our trees (Table 2). The spatial extent of tree canopies
was more under- than over-estimated by our algorithm. For 16 out of
118 trees, not a single pure tree pixel could be identified during the
subsequent canopy pixel selection procedure due to their small canopy
size. These trees were removed from all further analyses.

4.2. Deriving chlorophyll content

PLSR outperformed both existing and locally calibrated spectral
indices for deriving leaf chlorophyll content based on average canopy
spectra (Table 3). Fifteen components were retained to run the global
PLSR model, whereas seven components were used for the species-
specific PLSR models (due to lower number of observations for in-
dividual species). Calibration performances (R²/RMSE) for the global
model over 1000 iterations varied between 0.71/1.8 and 0.86/1.5 with
average values of 0.78/1.7. Worse, best and average accuracy metrics
for the subsequent validation stage amounted to 0.06/2.9, 0.89/1.2 and
0.48/2.1 respectively. Performance of the species-specific models was
very similar compared to the global PLSR model, with average cali-
bration and validation accuracies of 0.91/1.3 and 0.33/2.4 for Acer,
0.89/1.5 and 0.50/2.5 for Aesculus, 0.93/1.2 and 0.62/1.9 for Platanus,
0.77/1.7 and 0.42/2.4 for Tilia. The global PLSR model mainly relied on
the red absorption feature (around 650 nm) and red edge feature
(680–750 nm) to predict chlorophyll (Fig. 8). Additionally, the model
used more information from across the entire spectrum, with clear

Fig. 6. Twenty random tree spectra (left) and grass spectra (right) from our APEX 2015 dataset with an indication of the wavelengths used to calculate the grass index
(805 nm= red; 1050 nm=green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Conceptual representation of deriving defoliation and discoloration by
comparing respectively LAI and chlorophyll content between a particular tree
(grey dots) and a cluster of known healthy trees (green dots). (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 8. Contribution of each spectral band
(expressed as normalized regression coefficient
or beta; red dots) in the global PLSR model
derived in this study to estimate chlorophyll
content (left) and LAI (right) based on average
canopy spectra. The blue line represents a ty-
pical tree canopy spectrum and enables easier
interpretation of the results. (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article.)
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peaks at 1200 and 2250 nm. The same regions were found to be im-
portant for the species-specific PLSR models (not shown).

The normalized difference index generated using the OMNBR ap-
proach consisted of bands around 708 nm and 1666 nm and was the
best performing chlorophyll index (Table 3). This approach was closely
followed by a number of existing indices all making use of the red edge
feature: MTCI, REP, mND705, ND705, SR705, CIrededge, CIgreen,
NDRE, ZM and the Vogelmann red edge indices. GitGreen, GitRed, DDn,
CARI, MCARI and NAOC showed weak correlations with chlorophyll,
whereas SIPI, PRI, RGRI, PSRI, SR680, ND680, NDVI and 1DL_DGVI
showed no correlation at all.

4.3. Deriving LAI

LAI of urban trees proved more difficult to derive from spectral data,
with accuracies that were generally lower than those for chlorophyll
(Table 3). LAI was best predicted using PLSR. Fifteen and seven com-
ponents were used to build the global and species-specific PLSR models.
Calibration of the global model resulted in model accuracies (R²/RMSE)
between 0.56/0.76 and 0.77/0.67 with average values of 0.67/0.73.
Subsequent validation yielded an average accuracy of 0.27/0.93 with a
minimum of 0.01/1.25 and a maximum of 0.82/0.58. Species-specific
PLSR models achieved similar but slightly better results, with average
calibration and validation model accuracies of 0.87/0.66 and 0.27/1.37
for Acer, 0.82/0.68 and 0.25/1.14 for Aesculus, 0.70/0.60 and 0.21/
0.93 for Platanus and 0.80/0.69 and 0.51/0.92 for Tilia. Compared to
the chlorophyll model, more bands received high weights in the final
PLSR model predicting LAI, including regions near the red absorption
and red edge features, as well as large parts of the SWIR1
(1500–1750 nm) and SWIR2 (2000–2350 nm) regions (Fig. 8). The NIR
plateau (750–1250 nm) also contributed more to the LAI model than to
the chlorophyll model.

Of all spectral indices tested, the OMNBR index (consisting of bands
around 873 nm and 2240 nm) showed the lowest LAI prediction error.
Similar accuracies were attained using different zones of the spectrum,
i.e. NIR region (sLAIDi), red region (1DL_DGVI) and combinations of
NIR and red (EVI, SAVI). With R² values lower than 0.2, SR, NDVI,
ARVI, VARI and VIgreen failed to predict LAI. Laser penetration metrics
derived from LiDAR data generally outperformed all spectral indices
and approached the accuracies attained using PLSR.

4.4. Effect of pixel selection

The accuracy of chlorophyll content determination via spectral in-
dices in general benefitted from extensive canopy pixel selection, ex-
cept for the last step (Fig. 9; detailed results in Supplement III). The
magnitude of the effect however varied greatly between different
spectral indices, with the least performing indices showing the highest
gains in accuracy (NAOC, GitGreen, GitRed, DDn, ND705), whereas
others (MTCI, REP) seemed not to be affected. PLSR was able to pro-
duce highly accurate results at every stage of the procedure. Spectral
indices related to LAI also attained their highest accuracy after step 4
(OMNBR) or step 5 (all others). PLSR once again performed well at each
step, which cannot be said for the other methods.

4.5. Sensitivity to remaining background signals

The sensitivity of chlorophyll estimation to the substrate beneath
the canopy was found to be highly variable among methods (Fig. 10).
Existing spectral indices underestimated the chlorophyll content of low
LAI trees located above impervious surfaces, whereas chlorophyll
tended to be overestimated for trees above grass surfaces. This trend
was found for all spectral indices tested, but was only significant for
NAOC (Fig. 10), ZM, VOG1, VOG2, VOG3, DDn and NDRE. Methods
involving model training based on local data (i.e. OMNBR and PLSR) on
the other hand did not show this sensitivity (Fig. 10). The same tests

were also run for LAI, but no significant effect of background material
could be found (not shown).

Many indices resulted in chlorophyll values close to or just below
zero when applied on pure spectra of background materials (Table 4),
particularly the NAOC index. Our PLSR model, CARI and MCARI
however consistently predicted chlorophyll values for background
materials that one would expect for (unhealthy) vegetation. Results for
OMNBR, MTCI and REP were inconsistent, containing both large po-
sitive and negative values. Hence, the presence of these background
signals in tree spectra can potentially have a major impact on the
chlorophyll value extracted using these methods. Results for LAI show
more reasonable values. Except for the PLSR model, all indices tested
result in clear negative LAI values for non-vegetated surfaces.

4.6. Integrated urban tree health indicator

We selected the global (non-species specific) PLSR model to com-
pute a final chlorophyll and LAI value for each tree in our dataset.
Based on these, we derived a final defoliation, discoloration and tree
damage score (0–3) and directly compared this outcome to the same
scores obtained through a purely visual assessment (Section 2.3.4)
using a confusion matrix approach (Table 5). Agreement between the
remote sensing based and the visual analysis was slightly lower for
discoloration compared to defoliation. For about 60% of the trees, the
scores provided by the two methods matched perfectly. A strong dis-
agreement between the methods (> 1 class) only occurred for 6% of the
trees. In general, the remote sensing based method was more con-
servative regarding tree health compared to the visual analysis, i.e. the
chance of a tree being labeled as unhealthy was lower. This observation
was more pronounced for discoloration compared to defoliation. As a
result, accuracies for the healthy class (0) were higher compared to the
unhealthy classes. If trees having scores of 0 or 1 were considered
healthy, the chance for a visually healthy tree being labeled as healthy
using our method was 93%. Visually unhealthy trees had a chance of
71% of being identified as unhealthy. Detailed accuracy reports per tree
species are included in Supplement IV, but did not deviate significantly
from the overall results presented in Table 5.

5. Discussion

5.1. Tree segmentation

Compared to forests, cities host a large diversity of trees with re-
spect to species, size, shape and local context. Defining one set of cri-
teria that enables perfect delineation of such a diverse set of urban trees
proved to be challenging. Using a relatively simple classification and
segmentation algorithm, we generated segmentation results of accep-
table quality that, given some minor manual corrections, could easily
be fed into the remainder of our tree health workflow. Recently, many
advanced tree segmentation techniques have been proposed (Zhao
et al., 2017; Zhen et al., 2016), which could be used to improve our
results even further. One specific suggestion would be to locate in-
dividual tree stems using the LiDAR data, which could then be used as
an additional constraint in the canopy segmentation process (Reitberger
et al., 2009). This was however beyond the scope of this paper. We
tended to underestimate actual tree extents, but given the particular
purpose of tree segmentation in this study (i.e. defining regions for
extracting spectral information), we believe this bias did not affect
further analyses as it merely caused (contaminated) tree edges to be
excluded.

5.2. Tree property retrieval

In general, approaches which require local calibration (PLSR,
OMNBR) were found to perform better compared to existing spectral
indices for deriving tree properties from average canopy spectra
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(Table 3). An important prerequisite for using these techniques is the
availability of an extensive local calibration dataset. Ideally, this da-
taset contains all species occurring within the study area, allowing the
construction of species-specific PLSR models, as these performed best.
Based on our results in Table 3 however, pooling similar species to-
gether in one generic model represents an acceptable alternative. Given
the large variation we observed in the PLSR model calibration and
validation accuracies, we conclude PLSR to be highly sensitive to the
specific calibration data fed into the model. Although not specifically
tested, this leads us to believe that the portability of our models gen-
erated for broadleaf tree species in Brussels to other tree species and
cities is rather limited. The strength of data fitting approaches such as
PLSR is its reduced sensitivity to data artefacts introduced due to the

specific conditions at the time of data acquisition (e.g. sensor used,
atmosphere, sun-sensor geometry, pre-processing). This adds to their
reduced portability, as opposed to existing spectral indices which
generally have a solid physical basis and in theory should be more
widely applicable. Therefore, the PLSR models created here should not
be blindly applied to different regions, species and sensors not included
in the present study without additional collection of local calibration
data. The construction of more transferable, or generalizable, PLSR
models for the prediction of urban tree chlorophyll and LAI would re-
quire the use of multiple datasets from various sources during the
model calibration stage, as was illustrated by Martin et al. (2008) for
forest nitrogen content, but was beyond the scope of this paper.

A second reason why PLSR significantly outperformed spectral

Fig. 9. Comparison of accuracy (RMSE) for deriving chlor-
ophyll content (left) and leaf area index (lower right) as a
function of canopy pixel selection (1: no selection, 2: removal
of edge pixels, 3: NDVI threshold, 4: grass index threshold, 5:
brightness threshold). Methods showing no correlation with
the variable of interest have been omitted from this figure.
Detailed results for all methods can be consulted in
Supplement III. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version
of this article.)

Fig. 10. Difference between estimated and measured chlor-
ophyll content of a tree in relation to its LAI and the material
situated underneath the tree (indicated by colors). Negative
values indicate underestimation of chlorophyll, whereas po-
sitive values imply overestimation. Results are only shown for
four methods used to estimate chlorophyll content.
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indices lays in the number of bands used. Unlike spectral indices, PLSR
makes use of the entire wealth of information contained in the spectra
(Fig. 8) to account for additional confounding factors such as differing
backgrounds. Using a relatively simple pixel selection procedure, we
were able to remove some of these background effects (Fig. 9), but
definitely not all (Fig. 10). For instance, distinction between grass and
tree spectra is known to be challenging due to high spectral similarity
(e.g. Degerickx et al., 2017a). Our grass index relied on the NIR region
(Fig. 6), known to be correlated with the 3D arrangement of individual
leaves (especially the 1050 nm band; Delalieux et al., 2008), and

therefore did a reasonable but not perfect job of separating the two.
Complete elimination of background signals from tree spectra would
ideally require advanced ray-tracing techniques (Somers et al., 2014;
Stuckens et al., 2009), which are typically computationally and data
intensive and hence not suitable to be applied at the city scale. Alter-
natively, signal unmixing (Somers et al., 2009b; Tits et al., 2013, 2012)
could be used, which theoretically allows for the reconstruction of the
spectra of the pure materials within a mixed pixel. Although success-
fully applied in homogeneous plantations (Tits et al., 2014), this
method would need some adaptations as some of its key assumptions
(i.e. uniformity of background) are not valid in complex urban scenes.
Instead of attempting to completely eliminate all background con-
tamination, we would rather opt for an approach like PLSR which is
able to cope with this interference (Fig. 10; Supplement III).

In absence of local calibration data, this study suggests which
spectral indices should (and should not) be used to derive chlorophyll
content and LAI from urban trees (Table 3). In general, indices speci-
fically incorporating the red edge feature all performed equally well
and are to be recommended for chlorophyll prediction, irrespective
whether designed for leaf spectra (CIGreen, CIRededge, VOG1-3,
mSR705, mND705) or canopy spectra (MTCI, NDRE, ZM, REP). Notable
exceptions are the PSRI and NAOC indices, which yielded significantly
lower accuracies. PSRI was specifically created to detect the onset of
leaf senescence (Merzlyak et al., 1999), whereas NAOC likely in-
corporates too many irrelevant bands (Delegido et al., 2010). CIgreen
and CIrededge (Gitelson et al., 2003) outperformed the related indices
GitGreen and GitRed (Gitelson and Merzlyak, 1997), confirming the
recommendation from the former authors of using broad spectral re-
gions instead of narrow bands for calculating chlorophyll indices to
reduce sensitivity to leaf thickness. The well-known relation between
the red edge feature and chlorophyll content, and its low sensitivity to
ground cover, biomass and background (Horler et al., 1983; Vogelmann
et al., 1993), were additionally confirmed by its presence in the OMNBR

Table 4
Predicted chlorophyll concentration and Leaf Area Index of different background materials. Results are presented as ‘average’ [‘minimum’,’maximum’]. Results
deviating greatly from zero or approaching values typically found for vegetation are marked in bold. Methods consistently showing such values are also marked in
bold.

Asphalt
(n= 24)

Concrete
(n= 38)

Soil
(n=19)

Water
(n= 21)

Chlorophyll
GitGreen −5.3 [−6.4,−3.7] −5.0 [−6.4,−3.5] −0.5 [−5.1, 7.8] −8.9 [−14.4,17.7]
GitRed −1.1 [−1.6, 0.4] −1.0 [−1.6,−0.1] 0.1 [−1.1, 4.0] −5.0 [−9.4,10.5]
CIgreen 8.8 [7.0,14.6] 7.9 [5.8,11.1] 10.5 [7.2,18.0] 2.8 [−3.2,21.0]
CIrededge −4.7 [−9.3, 5.5] −5.5 [−11.8, 6.3] −4.5 [−8.5, 5.7] −29.0 [−856.4,320.8]
ZM −0.9 [−1.9, 1.5] −0.8 [−1.9, 0.5] 0.8 [−1.2, 6.2] −11.6 [−20.3, 4.8]
VOG1 −6.5 [−8.1,−2.7] −5.9 [−7.6,−4.2] −3.9 [−6.8, 4.0] −32.9 [−54.6,−5.0]
VOG2 2.3 [0.2, 4.5] 2.5 [0.6, 5.1] 4.4 [1.6,10.5] −5.2 [−17.0, 3.2]
VOG3 4.3 [2.6, 6.1] 4.4 [2.9, 6.4] 6.0 [3.7,11.1] −1.3 [−8.9, 5.1]
DDn 7.6 [4.4,10.0] 3.2 [−3.2,13.6] −0.6 [−13.5,13.8] 4.6 [−15.9,10.8]
mND705 −32.4 [−44.4,−9.3] −33.3 [−43.8,−15.6] −31.0 [−39.1,−10.6] −8.2 [−1130.8,719.7]
ND705 −37.5 [−40.8,−29.4] −36.9 [−40.7,−32.2] −31.3 [−38.0,−14.5] −84.0 [−138.9,−2.8]
SR705 −0.6 [−1.3, 1.1] −0.5 [−1.2, 0.5] 0.8 [−0.7, 5.0] −6.5 [−11.8, 8.9]
mSR705 4.7 [2.9, 9.2] 4.5 [2.9, 7.7] 4.9 [3.6, 8.9] −32.6 [−400.8,50.9]
REP 252.4 [32.0,3905.2] 41.4 [0.8,176.7] 23.6 [−30.5,59.2] 145.5 [−14.0,1553.7]
NAOC 0.2 [0.1, 0.4] 0.2 [0.1, 0.4] 0.7 [0.1, 2.7] 12.4 [1.1,38.3]
CARI 68.6 [65.7,69.8] 69.3 [62.9,73.9] 63.1 [38.6,74.6] 57.1 [31.2,68.7]
MCARI 72.0 [68.6,73.5] 73.0 [65.5,78.4] 66.9 [40.9,79.6] 59.8 [32.2,72.6]
MTCI −228.4 [−4919.0,1022.0] 17.5 [−250.6,214.8] 28.2 [7.1,55.4] −282.9 [−7440.3,848.4]
NDRE −15.7 [−18.8,−9.2] −15.4 [−20.7,−9.9] −10.2 [−16.4, 3.3] −57.2 [−112.2,−6.2]
OMNBR −9.7 [−22.5, 0.5] −3.3 [−29.1,39.8] −15.8 [−35.3,16.6] 62.3 [29.9,98.0]
PLSR 31.2 [26.9,36.5] 26.9 [14.3,39.7] 14.4 [−3.0,30.5] 22.3 [6.6,27.9]
Leaf Area Index
1DL_DGVI −5.4 [−5.9,−4.9] −5.4 [−6.2,−4.4] −4.8 [−5.9,−2.3] −5.3 [−6.1,−2.5]
EVI −9.1 [−9.6,−8.3] −9.0 [−10.5,−7.6] −7.5 [−9.2,−4.1] −9.7 [−11.1,−6.1]
SAVI −11.2 [−11.7,−10.1] −11.1 [−12.7,−9.2] −8.8 [−11.3,−4.0] −11.9 [−13.8,−6.9]
sLAIDi −6.1 [−8.3,−4.0] −4.4 [−10.1, 1.8] −6.9 [−13.9, 1.3] −6.5 [−7.8,−3.6]
OMNBR −12.5 [−14.5,−10.5] −14.6 [−25.7,−10.5] −13.7 [−21.8,−7.5] −13.4 [−34.4,−1.0]
PLSR 1.4 [−0.5, 3.5] 3.5 [−4.5, 8.9] 3.1 [−5.3, 9.6] 3.0 [−0.0, 4.0]

Table 5
Accuracy metrics derived from the confusion matrices comparing defoliation,
discoloration and tree damage scores between visually based and remote sen-
sing based assessment. PA=producer accuracy. UA=user accuracy. “n Δ
class= x” = number of trees for which the variable at hand is over- or un-
derestimated by x classes. “n RS > visual” = number of trees for which the
score is larger for the remote sensing approach compared to the visual ap-
proach, meaning tree health is underestimated.

Metric Defoliation Discoloration Damage

Total accuracy 0.62 0.60 0.62
Kappa 0.46 0.38 0.48
PA / UA class 0 0.73 / 0.79 0.79 / 0.73 0.75 / 0.83
PA / UA class 1 0.62 / 0.47 0.47 / 0.42 0.71 / 0.45
PA / UA class 2 0.61 / 0.52 0.59 / 0.56 0.33 / 0.35
PA / UA class 3 0.25 / 1 0 / - 0.52 / 0.75
PA / UA class 0+1 0.91 / 0.85 0.94 / 0.86 0.93 / 0.83
PA / UA class 2+3 0.69 / 0.8 0.52 / 0.72 0.71 / 0.88
n Δ class = 0 63 61 63
n Δ class = 1 33 35 32
n Δ class = 2 6 4 6
n Δ class = 3 0 2 1
n RS > visual 16 14 17
n RS < visual 23 27 22
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chlorophyll index and its dominance in the PLSR model for chlorophyll
(Fig. 8).

No clear relationship existed between the performance of a chlor-
ophyll index (Table 3) and its sensitivity to background materials
(Table 4). The NAOC index was found to be least sensitive to non-ve-
getation materials, but performed poorly compared to the highly sen-
sitive MTCI and REP. CARI and MCARI, on the other hand, showed
chlorophyll values for impervious surfaces one would expect for healthy
vegetation, potentially explaining their poor performance. As discussed
above, the removal of all background artefacts from urban tree spectra
is considered a complex challenge, therefore we would recommend
avoiding the use of spectral indices showing a high sensitivity, despite
their reasonable performances here. The fact that OMNBR and espe-
cially PLSR showed high sensitivity was caused by the fact that these
signals were not completely removed from our tree spectra using pixel
selection (Fig. 10) and hence were partly used as training information
during the construction of a chlorophyll index/PLSR model.

Identifying the most prominent spectral region to derive LAI was
less straightforward, as multiple regions contributed equally well to this
property (most notably the red edge and SWIR1 regions, Fig. 8). Out of
all indices tested, sLAIDi was found to perform best. This index, ori-
ginally produced for fruit orchards, combines specific bands in the NIR
and SWIR1 regions which were found to be insensitive to species and
various stress factors at the leaf level (Delalieux et al., 2008; in turn
explaining the significance of these spectral zones in the PLSR results).
The additional correction for water content lead to an index solely
sensitive to LAI. Still, accuracies for LAI retrieval based on spectral data
were significantly lower than those for chlorophyll (Table 3). Our test
using laser penetration metrics has however clearly shown the potential
of LiDAR data in this respect. Given that this approach yielded similar
accuracies compared to PLSR, has a solid physical basis and hence does
not suffer from potential transferability issues discussed above, we
would recommend using LiDAR data instead of hyperspectral data for
deriving LAI from urban trees in future work.

5.3. Potential applications of our tree health workflow

Application of the proposed urban tree health workflow at the city
scale would generate spatially extensive tree maps showing defoliation,
discoloration and an integrated tree damage indicator, all closely re-
lated to a traditional visual assessment (Table 5). As visual leaf color is
not solely driven by chlorophyll concentration, but affected by many
more leaf pigments (e.g. anthocyanin, carotenes), the match for dis-
coloration between the two suites of methods was found to be lower
compared to defoliation. An important difference to note is that defo-
liation and discoloration derived from remote sensing data are con-
tinuous variables and can therefore provide more detail and nuance as
opposed to the ordinal scores retrieved from visual analysis. Moreover,
if applied at the pixel level instead of the canopy level (as was done
here), these data could provide additional insight in the spatial varia-
tion of tree health within individual canopies. Given that imagery is
collected (bi-) annually at the peak of the vegetation season, our pro-
ducts can provide a detailed indication of urban tree health status and
possible underlying causes at the city-wide scale and could form a solid
basis of a long term urban tree health monitoring program. The tradi-
tional VTA approach however includes other aspects of tree health that
are hard to assess using airborne remote sensing data (e.g. root damage,
soil compaction, trunk deformation, stability, identification of pests and
diseases). We therefore would argue for an integration of both ap-
proaches (as also suggested by Lawley et al. (2016) for monitoring of
natural vegetation), where remote sensing is used to identify proble-
matic areas with regard to tree health, thus allowing urban green
managers to set their management and monitoring priorities in a more
efficient way. The produced tree health maps also provide a valuable
tool for further scientific research. By correlating our maps with spatial
information on e.g. imperviousness (Plowright et al., 2017), air

pollution or traffic intensity (Delegido et al., 2014), the dominant dri-
vers of urban tree health could be assessed, in turn contributing to a
better understanding of tree functioning in urban environments.

Aside from the final tree health map, our intermediate results also
represent valuable products. Delineated tree segments provide a city
wide estimation of tree coverage and can serve as a basis for deriving
various other tree properties, either directly (e.g. tree dimensions) or
indirectly using additional data sources (e.g. hyperspectral or thermal
data). Maps of chlorophyll content and LAI can additionally be used as
inputs to conduct a spatially-explicit assessment of ecosystem services
provided by urban trees. In particular, LAI is frequently used in eco-
system service models (e.g. iTree Eco) as it is linked to a tree’s capacity
to intercept water (Xiao et al., 2000), filter air pollution (Nowak et al.,
1998) and mitigate extreme temperatures (Lin and Lin, 2010).

5.4. Further recommendations

This study was limited to two tree properties, chlorophyll content
and LAI, for tree health prediction, since our goal was to develop a
remote sensing based alternative for the established VTA approach.
Since hyperspectral data contain a wealth of information with regard to
plant properties such as water content (Clevers et al., 2010) and ni-
trogen content (Townsend et al., 2003), our approach could be ex-
tended to account for additional aspects of tree health, particularly
water and nutrient stress. Due to the large array of natural defense
mechanisms of trees to respond to stress (Günthardt-Goerg and
Vollenweider, 2007), there can be significant time lags between the
onset of a particular stress factor and the moment when a tree becomes
visually unhealthy. Solely relying on defoliation and discoloration
could therefore decrease the chance that any remediation attempt could
be undertaken by urban green managers, or that those attempts would
be successful. Our approach should therefore be complemented with
methods allowing early detection of tree stress. Regular and detailed
quantification of additional plant pigments, like anthocyanin and car-
otenes (both linked to tree stress; Gitelson et al., 2009, 2002), using
hyperspectral data could be a valuable strategy. Various other ap-
proaches based on hyperspectral, thermal and/or fluorescence data,
have already shown their potential in this respect (Carter et al., 1996;
Chaerle and Van Der Straeten, 2000; López-López et al., 2016). More
research is needed to test these approaches in the complex urban en-
vironment.

6. Conclusion

In this paper we proposed a workflow to derive urban tree health
information based on airborne remote sensing data. After delineating
each individual tree using airborne LiDAR data, we successfully created
local PLSR models to retrieve both chlorophyll content and LAI from
hyperspectral data. Existing spectral indices showed lower accuracies
due to contamination of the tree spectra by background materials, but
are believed to be better transferable to other cities, sensors and species
compared to PLSR. Laser penetration metrics derived from LiDAR
constitute a decent alternative to PLSR for LAI retrieval. By comparing
chlorophyll content and LAI with species-specific reference values, we
were able to accurately retrieve information on discoloration and de-
foliation respectively, yielding similar results as the traditional visual
tree health assessment. Although our approach would by no means
eliminate the need for visual assessment, constructing spatially explicit
maps of discoloration and defoliation on an annual basis at the city
scale would provide an excellent tool for urban green managers, al-
lowing them to set monitoring priorities and manage the valuable
natural capital of our cities in a more efficient way. Future research
efforts should be devoted to early detection methods of tree stress in
urban areas.
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