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A borehole array
data–based approach for
conducting 1D site response
analyses I: Damping and VS

randomization

Renmin Pretell, M.EERI1 , Norman A Abrahamson2,
and Katerina Ziotopoulou, M.EERI1

Abstract
One-dimensional site response analysis (1D SRA) remains the state of practice to
estimate site-specific seismic response, despite the ample evidence of discrepancies
between observations and 1D SRA-based predictions. These discrepancies are due
to errors in the input parameters, intrinsic limitations in the predicting capabilities of
1D SRAs even for sites relatively compliant with the 1D SRA assumptions, and the
inability of 1D SRAs to model three-dimensional (3D) wave propagation phenomena.
This article aims at reducing 1D SRA mispredictions using small-strain damping pro-
files factored by a damping multiplier (Dmul) and randomized shear-wave velocity (VS)
profiles. An approach for conducting 1D SRAs for site-specific site response assess-
ment is developed to reduce the 1D SRA errors in magnitude and variability. First,
sites from a database of 534 downhole sites are classified as 1D- or 3D-like, depend-
ing on the substructure conditions inferred from observed transfer functions.
Second, data from the 1D-like sites are compared against predictions from 1D SRAs
conducted using various trials of Dmul and VS standard deviations (slnVS

) for VS ran-
domization. Third, Dmul and slnVS

are selected based on their combined ability to
reduce the root mean square error (RMSE) in SRA predictions. Results indicate that
1D SRAs conducted with Dmul = 3 and slnVS

= 0:25 lead to an overall minimum
RMSE and thus provide more accurate site response estimates. The use of these
parameters in forward SRA predictions is discussed in a companion paper.

Keywords
Damping multiplier, VS randomization, borehole array site, transfer function, amplifi-
cation factor, site response analysis

Date received: 21 August 2022; accepted: 12 April 2023

1University of California, Davis, Davis, CA, USA
2University of California, Berkeley, Berkeley, CA, USA

Corresponding author:

Renmin Pretell, University of California, Davis, Davis, CA 95616, USA.

Email: rpretell@ucdavis.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/87552930231173445
journals.sagepub.com/home/eqs
http://crossmark.crossref.org/dialog/?doi=10.1177%2F87552930231173445&domain=pdf&date_stamp=2023-05-31


Introduction

One-dimensional site response analysis (1D SRA) remains the state of practice to estimate
site-specific seismic response, despite the ample evidence of discrepancies between
observations from borehole array sites and 1D SRA predictions. These discrepancies are
generally attributed to the lack of knowledge about the shear-wave velocity (VS) profile,
the breakdown of the 1D wave propagation assumptions, and three-dimensional (3D)
effects (Hu et al., 2021; Kaklamanos et al., 2020; Stewart and Afshari, 2021). The parame-
terization of linear elastic 1D SRAs consists of damping and VS profiles only. This simple
parameterization and the broad implementation of 1D SRAs in practice prevent the addi-
tion of new parameters or adopting more advanced numerical approaches for estimating
site response (e.g. Semblat, 2011). This situation leads to three alternatives for enhancing
1D SRA-based site response predictions: (1) altering the site response input parameters
(VS and damping); (2) post-processing 1D SRA estimates such that a more accurate site
response is obtained, for example, using scaling factors; and (3) a combination of (1) and
(2). In this work, an approach for conducting 1D SRAs for site-specific site response
assessments for infrastructure is proposed. This approach uses damping profiles increased
by a damping multiplier (Dmul), randomized VS profiles, and a specific post-processing
procedure to compute a site response that accounts for modeling limitations. This study
focuses on linear elastic SRAs, henceforth referred to as ‘‘1D SRAs,’’ and thus only the
small-strain damping is discussed and referred to as ‘‘damping’’ for brevity.

Current practices use geophysical testing and engineering correlations to define site
response input parameters. In principle, both VS and damping profiles could be measured
using geophysical testing (e.g. Foti et al., 2014). However, damping is commonly estimated
based on correlations with other geotechnical or seismological parameters (Boaga et al.,
2015), while VS profiles are often measured, although to an extent that is generally insuffi-
cient to understand and account for the VS spatial variability and the potential presence of
a complex geological structure underneath a site of interest. The approach for defining
damping profiles in forward site response predictions remains a choice based on the ana-
lyst’s preference and available secondary data. These approaches include correlations with
the site-specific attenuation parameter k0 (Xu et al., 2020); quality factors, Q (e.g. Cabas
et al., 2017; Campbell, 2009; Olsen et al., 2003); and laboratory-based damping formula-
tions (e.g. Darendeli, 2001; Menq, 2003). The latter are often scaled to better represent the
extent of energy dissipation in field conditions (e.g. Rodriguez-Marek et al., 2017; Ruigrok
et al., 2022; Tao and Rathje, 2019). The VS spatial variability is the only site-specific fea-
ture intended to be addressed when conducting 1D SRAs in engineering practice. To this
end, randomized VS profiles generated using the Toro (1995) model are used (e.g. Griffiths
et al., 2016a), and the mean response is considered as representative (e.g. Electric Power
Research Institute (EPRI), 2013). However, studies show that this approach underpredicts
the seismic response (Hallal et al., 2022; Kaklamanos et al., 2020; Pretell et al., 2022a; Tao
and Rathje, 2019; Teague and Cox, 2016). To prevent these underpredictions, Pretell et al.
(2022a) recommend using randomized VS profiles generated using the model by Toro with
VS standard deviation (slnVS

) = 0:25 and selecting the 84th percentile seismic response as
the representative at the site’s fundamental frequency.

The development of the approach herein proposed has two main parts. The first part
consists of the selection of a Dmul to scale damping and a slnVS

for VS randomization, that
together lead to the lowest minimum root mean square error (RMSE). The second part
consists of the quantification of the 1D SRA remaining errors such that they can be
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considered in forward site response predictions. This article focuses on the first part, and
the companion paper (Pretell et al., 2023) describes the second part.

Proposed approach for conducting 1D site response analyses

The state of practice for predicting site response uses 1D SRA as an approach that
condenses the complexities of 3D wave propagation to an horizontally polarized vertically
propagating shear (SH) wave traveling vertically through a soil column. Such simplification
leads to modeling errors, evident when comparing 1D SRA predictions and observations
(e.g. Bonilla et al., 2002; Kaklamanos and Bradley, 2018; Kaklamanos et al., 2013; Stewart
and Afshari, 2021; Zhu et al., 2022). For example, Figure 1 shows the theoretical and
observed transfer functions (TFs), defined as the ratio of the Fourier amplitude spectra at
surface and depth, for four borehole array sites. Theoretical TFs are estimated considering
a within boundary condition, to be consistent with observed TFs based on borehole array
data (e.g. Kwok et al., 2007), and smoothed after Konno and Ohmachi (1998). Key obser-
vations in Figure 1 are (1) the overprediction of the theoretical fundamental mode (Figure
1a to d), (2) the underprediction of the high-frequency modes (Figure 1b to d), (3) the misa-
lignment of the fundamental and higher frequency modes between the median observed
and theoretical TFs (Figure 1b to d), and (4) the overall smoother observed TFs compared
to the more sharply peaked theoretical TFs (Figure 1b to d). The commonly observed over-
prediction of the fundamental mode suggests that 1D SRAs have a consistent bias at the

Figure 1. Comparison of observed and theoretical transfer functions (TFs). TFs computed using the
measured VS profiles and small-strain damping after Darendeli (2001). TFs plotted within the range of
usable frequencies based on the signal-to-noise ratio.
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fundamental frequency, and less clearly so at higher frequencies (e.g. Kaklamanos et al.,
2013). These trends are also observed for amplification factors (AFs), herein defined as the
ratio of the pseudo-spectral acceleration (PSA) response spectra at surface and depth
(within), although with milder under- and overpredictions given that the PSA at a single
oscillator frequency has contributions from waves of multiple frequencies (Bora et al.,
2016). In this section, an approach for conducting 1D SRAs with Dmul and VS randomiza-
tion is described.

Damping multipliers and VS randomization in 1D SRAs

Various mechanisms lead to dissipation of energy during wave propagation, such as fric-
tion between particles and wave scattering, which are not modeled but can be captured by
damping in 1D SRAs. Laboratory-based damping models (e.g. Darendeli, 2001; Menq,
2003) provide estimates of the intrinsic material damping and do not account for energy
dissipation mechanisms existing in the field. As such, damping is underestimated, and the
site response amplitudes are overestimated. Various authors propose that laboratory-
based damping could be factored to improve site response predictions (Elgamal et al.,
2001; Kokusho, 2017; Stewart et al., 2014; Tao and Rathje, 2019; Tsai and Hashash, 2009;
Zalachoris and Rathje, 2015). For instance, Tao and Rathje (2019) find that Dmul = 3–5
applied to damping profiles after Darendeli (2001) reduces the discrepancies between
observations and 1D SRA predictions at four borehole array sites, and Ruigrok et al.
(2022) suggest that a Dmul = 0.65–1.6 can be used to scale laboratory damping-based k0

to match Q estimates at the Groningen gas field in the Netherlands.

Randomized VS profiles generated using the Toro (1995) model for 1D SRA applica-
tions are commonly used in the nuclear industry (e.g. Abrahamson et al., 2002, 2004;
Bommer et al., 2015; EPRI, 2013; Rodriguez-Marek et al., 2021). Toro recommends differ-
ent slnVS

values for VS randomization ranging from 0.27 to 0.37, depending on site classes
determined based on VS30, estimated as the inverse of the average slowness in a site’s top
30 m. Generally, VS profiles are randomized with the goals (1) to reduce the overpredic-
tions at the site’s fundamental mode (e.g. Figure 2c) and (2) to capture the VS spatial
variability across the footprint of a project site. However, it is unclear how the amount of
randomization mapped through slnVS

should vary for sites with different site-specific con-
ditions regardless of VS30 (e.g. VS variability, subsurface structure). Overall, various stud-
ies indicate that the slnVS

values recommended by Toro are excessively high and thus VS

randomization leads to unrealistically low site response estimates (e.g. Griffiths et al.,
2016b; Passeri et al., 2020; Stewart et al., 2014; Tao and Rathje, 2019; Teague et al., 2018).
Pretell et al. (2022a) show that not only slnVS

is generally too high, but site response under-
predictions also originate from considering the median site response as representative.
Based on a numerical investigation, Pretell et al. (2022a) suggest that the 84th percentile
site response from 1D SRAs conducted with randomized VS profiles (slnVS

= 0:25) is an
appropriate response that accounts for VS spatial variability at the site’s fundamental
frequency.

Increasing damping and randomizing VS profiles are both tools that affect the esti-
mated responses differently but can be used to improve 1D SRA predictions. For instance,
Figure 2 shows TFs calculated for various Dmul and slnVS

values applied to a baseline VS

profile generated after Kamai et al. (2016) for site conditions consistent with California.
As observed, both Dmul and slnVS

reduce the site response amplitudes at the fundamental
mode, but the Dmul causes a stronger reduction in the high-frequency range (Figure 2b),
whereas slnVS

leads to relatively stable minimum amplitudes (Figure 2c).

4 Earthquake Spectra 00(0)



Approach for improving site response predictions

In theory, 1D SRAs should provide the best possible site response predictions for sites that
are more compatible with 1D SRA assumptions (1D-like sites), while larger errors are
expected for sites that are more strongly affected by non-1D effects (3D-like sites).
However, the assumptions of the 1D SRA approach are unrealistic and thus 1D SRAs can-
not predict site response accurately even for 1D-like sites, or cases with VS profiles exempt
from measurement errors, as demonstrated in numerical investigations (e.g. de la Torre
et al., 2021; Pretell et al., 2022b). Such errors are herein referred to as ‘‘intrinsic errors.’’
Two major sources of such errors are (1) the unrealistic wave reverberations and spurious
resonances that lead to overpredictions of the amplitudes at the sites’ fundamental fre-
quency (Boore, 2013) and (2) the inability to simulate energy dissipation mechanisms, thus
leading to an overall overprediction of site response amplitudes. It is hypothesized that the
portion of 1D SRA mispredictions due to intrinsic 1D-SRA errors can be removed using
randomized VS profiles and an increased amount of damping. The remaining residuals can
then be attributed to 3D effects affecting the seismic response, the intrinsic complexity of
the wave propagation phenomena, and randomness of ground motion waveforms.

An approach for conducting 1D SRAs using increased damping and randomized VS

profiles is proposed with two objectives: (1) to remove the bias intrinsically carried by 1D
SRAs following the previously described hypothesis and (2) to obtain the minimum

Figure 2. Effects of increased damping and randomized VS profiles on transfer functions (TFs) in 1D site
response analyses: (a) Damping and randomized VS profiles. (b) Effect of damping on TFs for various
damping multipliers (Dmul). (c) Effect of VS randomization on TFs for various VS standard deviations
(sln VS

). Baseline TFs computed using the small-strain damping after Darendeli (2001). Baselined VS profile
randomized using the Toro (1995) VS model.
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variance in site response residuals and improve site response predictions across frequencies
overall. To achieve these goals, this study builds off the work by Tao and Rathje (2019)
and Pretell et al. (2022a) to find the most appropriate Dmul and slnVS

by comparing 1D
SRA predictions to ground motion data from 1D-like borehole array sites, whose intrinsic
errors in 1D SRAs are more clearly identified. Pretell et al. (2022a) hypothesized that VS

randomization can be treated as a multi-purpose tool used to capture site-specific features
affecting the seismic response such as (1) VS spatial variability (e.g. Assimaki et al., 2003;
de la Torre et al., 2021; El Haber et al., 2019; Nour et al., 2003; Pretell et al., 2022a); (2) a
dipping bedrock and topography (e.g. Katebi et al., 2018), wave inclination (e.g. Semblat
et al., 2000; Zhu et al., 2016); and (3) other features that cannot be explicitly modeled in
1D SRAs (e.g. edge effects). This approach is extended to find the right amount of slnVS

for VS randomization that along with Dmul (1) removes the intrinsic errors associated to
1D SRAs, and (2) reduces the amount of mispredictions caused by the effects of site-
specific features uncaptured by 1D SRAs. This does not prevent the potential for including
a higher or lower amount of VS randomization to capture specific features (e.g. VS varia-
bility, topographic effects), but further work is needed in this direction. The use of Dmul in
1D SRAs follows a similar reasoning, motivated by the inability to explicitly model energy
dissipation mechanisms in 1D SRAs.

Framework of aleatory variability and epistemic uncertainty

One-dimensional SRAs, or more generally numerical simulations and analysis tools, inevi-
tably deal with sources of aleatory variability (AV) and epistemic uncertainty (EU) as
described by Abrahamson et al. (1990) and Roblee et al. (1996). AV and EU refer to varia-
bility due to apparent randomness of the natural phenomena caused by the features
uncaptured in a selected modeling approach, and the lack of knowledge about the optimal
input parameters, respectively (Abrahamson et al., 2004; Baecher and Christian, 2003).
Abrahamson et al. (1990) further partitioned the AV and EU into parametric and model-
ing components (Table 1). The parametric aleatory variability (PAV) results from the spa-
tial and temporal randomness of the input parameters, whereas the parametric epistemic
uncertainty (PEU) results from the lack of knowledge about the ranges of input para-
meters and the values sampled for analyses. The modeling aleatory variability (MAV) is
due to the site-specific features whose effects are not captured by the analysis tool, and the
modeling epistemic uncertainty (MEU) is due to the limited predictive capabilities of the
analysis tool.

Table 1. Matrix for the partition of sources of aleatory variability and epistemic uncertainty in numerical
simulations (Abrahamson et al., 1990)

Aleatory Variability Epistemic Uncertainty

Parametric PAV
Effect of the randomness in time and
space of input parameters on site
response

PEU
Distribution of values for input
parameters and alternative selected
representative input parameters

Modeling MAV
Randomness in predictions due to
inherent complexities in natural
phenomena not captured by the selected
modeling approach

MEU
Uncertainty in the predictions due to
limitations of the selected modeling
approach
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Generally, there is a trade-off between the complexity of the analysis tool and the
MAV. For instance, within the context of ground motion modeling, it is expected that
ground motion models (GMMs) that only account for magnitude and distance (i.e. a
simple parameterization) have a larger MAV than GMMs that also account for site
conditions mapped through VS30 and the depth to VS = 1 km/s, Z1 (i.e. a more complex
parameterization). The reduction in MAV for the second GMM comes with an additional
PEU associated with the VS30 and Z1 scaling in the model that can be reduced as larger
data sets are collected, or if additional investigations are conducted to better estimate such
parameters. Overall, there is a benefit in trading MAV for PEU as the latter can be
reduced, whereas the former can only be accounted for.

The framework proposed by Abrahamson et al. (1990) can be adapted to 1D SRA
applications. The PAV consists of random factors affecting site response that can be expli-
citly modeled. The PAV includes the ground motion waveforms, an example of random-
ness in time, and VS spatial variability, an example of randomness in space. The PEU
consists of the plausible alternative input parameters, selected based on some criteria, such
as a given mean and standard deviation of ground motion spectral accelerations, and best-
estimate, lower, and upper bound VS profiles. A part of MAV can be reduced as site-
specific terms are quantified (more complex model). Finally, the remaining part of MAV
consists in the variability of site response given its natural randomness that is not captured
by the selected modeling approach, for example, ground motion inclination within the
context of 1D SRAs.

Site response residual components

The errors carried by 1D SRA predictions can be quantified using borehole array data,
which consist of ground motion recordings at depth and ground surface. In 1D SRAs, the
ground motions recorded at depth are expected to explain the ground motions at surface
assuming that the site’s 1D VS profile is accurate. Thus, the recordings at depth can be used
as input motions and the resulting responses at surface be compared against the ground
surface recordings to evaluate the accuracy of 1D SRAs. For an intensity measure ‘‘IM’’
estimated using 1D SRAs, and the corresponding observed earthquake component ‘‘e’’ at
a site ‘‘s,’’ the following relation can be established:

IMobs
es = IMSRA

es + dSRA
es ð1Þ

where IMobs
es and IMSRA

es are, respectively, the observed and 1D SRA-predicted IM in natu-
ral logarithm units, and dSRA

es is the 1D site response residual. IM can represent TFs, AFs,
or any other metric of interest. Following the separation of residuals proposed by Al Atik
et al. (2010), adapted to the approach for conducting 1D SRAs herein proposed, the resi-
dual in Equation 1 can be expressed as follows:

dSRA
es = cSRA + d1DSRA

s + d3DSRA
es ð2Þ

where cSRA is the global 1D SRA bias, d1DSRA
s is the site-specific residual due to intrinsic

1D-SRA errors (e.g. the 1D SRA overprediction at the site’s fundamental mode), and

d3DSRA
es is the residual due to non-1D features affecting the site response and the effect of

different ground motion waveforms that are not accounted for by cSRA. The residual

d3DSRA
es can be further partitioned as follows:

Pretell et al. 7



d3DSRA
es = dS2SSRA

s + dAMPSRA
es ð3Þ

where dS2SSRA
s is the site-specific error in the analytical modeling, estimated as the mean

bias-corrected residual at a site ‘‘s,’’ and dAMPSRA
es is the unexplained remaining bias- and

site-corrected residual. The components dS2SSRA
s and dAMPSRA

es are considered random

variables with zero mean and standard deviations fSRA
S2S and fSRA

AMP, respectively. Replacing

Equation 3 into Equation 2,

dSRA
es = cSRA + d1DSRA

s + dS2SSRA
s + dAMPSRA

es ð4Þ

Equations 1, 2, and 4 correspond to 1D SRAs conducted with a single best-estimate VS

profile and an uncalibrated amount of damping (e.g. based on laboratory measurements
or correlations with Q). Following the hypothesis herein proposed, d1DSRA

s can be
removed using the right amount of (i.e. calibrated) damping and VS randomization
through Dmul and slnVS

, respectively. Therefore, using calibrated Dmul and slnVS
, Equation

4 reduces to the following:

dSRA
es = cSRA + dS2SSRA

s + dAMPSRA
es ð5Þ

Note that dSRA
es in Equations 2 to 4 is calculated from Equation 1 with IMSRA

es resulting

from a VS profile and an input ground motion. Differently, dSRA
es in Equation 5 is calcu-

lated from Equation 1 with IMSRA
es representing the median IM resulting from a suite of

randomized VS profiles and an input ground motion. Thus, cSRA in Equations 4 and 5 are
conceptually different. This article aims at finding the Dmul and slnVS

based on compari-

sons with borehole array data. Borehole array sites considered in the evaluation are those

identified as 1D-like, thus cSRA is expressed as cSRA
1D . The more common cSRA

3D , that is, the

bias associated with 3D-like sites, the residual components dS2SSRA
s and dAMPSRA

es are dis-

cussed in the companion paper. All the terms in Equations 1 to 5 are frequency-dependent.

Various sets of SRAs are conducted for Dmul from 1 to 10 in increments of 1, and slnVS

from 0.05 to 0.40 in increments of 0.05, leading to a total of 80 Dmul-slnVS
trials. Ten addi-

tional sets of SRAs with Dmul from 1 to 10 and no VS randomization are conducted. When
randomization is used, a suite of 50 randomized VS profiles is generated per site, and the
median of the corresponding 50 theoretical TFs is compared against each of the observed
TFs. In the case of AFs, each ground motion recording is propagated through the 50 VS

profiles resulting in 50 AFs per recording available. The median of these 50 theoretical
AFs is compared against each of the observed AFs. In all cases, the randomized VS profiles
are generated using the model by Toro (1995) with the trial slnVS

and all the other para-

meters originally recommended by Toro for sites with VS30 from 180 to 360 m/s.

Several modeling decisions are considered for the damping and the VS profiles.
Damping profiles are calculated as a function of vertical effective stress following the for-
mulation by Darendeli (2001) considering the same layering as in the VS profiles. The
Darendeli model is used assuming a plasticity index (PI) = 0, a load frequency
(fload) = 1 Hz, and a coefficient of lateral pressure at rest (K0) = 0.5. The vertical effec-
tive stress is estimated considering the measured groundwater table level, when available,
or water table depths inferred based on the deepest location with a compressional-wave
velocity (VP) higher than 1500 m/s (Table 2) or site conditions (e.g. closeness to a body of
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water). The sites’ mean effective stresses at the borehole sensor locations range approxi-
mately from 4.5 to 53 atm (assuming a K0 = 0.5), with a 90th percentile of 27.6 atm,
which approximately falls within the range of isotropic confining pressures considered by

Table 2. 1D-like borehole array sites and main characteristics

No. Sitea Number
of eventsb

Depthc

(m)
GWTd

(m)
VS30

e

(m/s)
VS,average

e

(m/s)

1 Corona I-15 Highway 91 4 42 25 334 440
2 Delaney Park 7 61 21 266 320
3 El Centro 4 195 5 199 320
4 Hayward–San Mateo Bridge 4 91 11.5 184 255
5 San Bernardino 4 92 16 268 420
6 Treasure Island 22 122 2 160 295
7 Wildlife 20 100 1.2 198 240
8 AICH09 12 360 68 275 615
9 AICH16 16 101 3 365 740
10 CHBH17 12 822 5 525 907
11 FKIH05 7 122 22 190 370
12 FKSH16 35 300 0 530 840
13 GIFH18 21 107 6 555 935
14 GIFH28 11 400 5 370 785
15 IBRH11 120 103 10 245 650
16 IBRH13 120 100 16 335 795
17 IBRH17 18 510 10 277 550
18 IBUH01 48 101 12 310 520
19 IBUH05 41 177 4 380 525
20 IWTH04 120 106 15 460 935
21 IWTH08 84 100 10 305 685
22 KGSH03 32 100 0 1200 1635
23 KMMH08 23 103 10 525 790
24 KMMH13 22 177 12 405 585
25 KOCH10 10 101 2 1120 1470
26 MIEH07 8 207 8 620 1350
27 MYGH06 120 100 0 595 710
28 MYZH01 5 103 24 545 840
29 NGNH20 14 100 5 530 1115
30 NGNH21 12 180 8 510 765
31 NIGH15 26 100 0 685 890
32 NMRH03 22 228 4 190 335
33 NMRH04 23 216 8 170 290
34 NMRH05 37 220 8 210 370
35 SBSH06 5 130 0 480 640
36 SZOH25 7 450 7 330 695
37 TCGH12 54 120 4 340 505
38 TKSH04 9 100 7 475 950
39 YMTH12 10 203 4 365 675

aSite numbers 1 and 3–6 from the Center for Engineering Strong Motion Data (CESMD) database. Site numbers 2 and

7 from the Network for Earthquake Engineering Simulation (NEES) database. All other sites from the Kiban Kyoshin

Network (KiK-net) database (National Research Institute for Earth Science and Disaster Resilience (NIED), 2019).
bNumber of events after ground motion screening. Both horizontal recording components per event are used.
cIn case of multiple sensors, the deepest one is considered.
dDepth to groundwater table (GWT) based on the literature (Afshari et al., 2019; Holzer and Youd, 2007; Thornley

et al., 2019) or the ground motion databases. When unavailable, the groundwater table is assumed to be at a depth

with measured compressional-wave velocity (VP) . 1500 m/s. The groundwater table for the San Francisco Bridge

and Benicia–Martinez Bridge sites is assumed at 0 m, given their closeness to bodies of water.
eValues estimated based on measured VS profiles (Afshari et al., 2019; Gibbs et al., 2000; Thornley et al., 2019).
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Darendeli in the development of the model, from 0.3 to 27 atm. Sites with higher mean
effective stresses are AICH09, CHBH17, IBRH17, and SZOH25. Randomized VS profiles
are generated based on measured VS profiles using the VS model by Toro (1995) with a
with a constant slnVS

with depth, and the coefficients recommended for sites with
VS30 = 180–360 m/s, which are approximately the same as the coefficients for sites with
VS30 = 360–760 m/s, thus covering a wide range of shallow conditions. The correlation
between damping and VS is not considered in the estimation of damping or randomized
VS profiles. Instead, the same damping profile is used for all the randomized VS profiles,
given that VS is randomized to reduce the 1D-SRA intrinsic errors (e.g. spurious reso-
nances) rather than capturing the spatial variability of soil properties within a project foot-
print or an area of interest.

The theoretical TFs are computed using the computer code NRATTLE, while observed
TFs are based on borehole array data. NRATTLE is included in the SMSIM program
package (Boore, 2005). NRATTLE uses the Thomson–Haskell solution to compute the
1D SH-wave TF (Haskell, 1953; Thomson, 1950) based on profiles of VS, density, and the
inverse of the Q, estimated as half the inverse of damping (Joyner and Boore, 1988). PSAs
(5% damping) are computed using pyRotD (Kottke, 2018). Only data from borehole array
sites with measured VS profiles are used, and it is assumed that such profiles are accurate.
Ground motion recordings are screened and those with a shear strain index, Ig (Idriss,
2011) lower than 0.005%, expected to yield shear strains lower than 0.01% on average
(Kim et al., 2016), are considered appropriate for linear elastic SRAs (Kaklamanos et al.,
2013) and selected for this investigation. The ground motions are also screened to meet an
acceptable signal-to-noise ratio (SNR) within frequencies higher than half the site’s
fundamental frequency (f0) to a maximum frequency of 20 Hz. The maximum Ig and the
minimum frequency bandwidth criteria are relaxed for sites in the United States given the
limited amount of data available. For such sites, a maximum Ig of 0.01% and a maximum
frequency up to 10–12 Hz are considered acceptable for SNR screening. This Ig is not
uncommon in similar studies using ground motion data from the United States (e.g.
Stewart and Afshari, 2021; Tao and Rathje, 2020), whereas a maximum frequency of
10 Hz for SNR screening does not impact on the amount of data at the high-frequency
range (Figure 3a). The number of ground motions per usable (i.e. appropriate) SNR is
presented as a function of frequencies and normalized frequencies (f =f0) in Figure 3 and
summarized in Table 2. Note that the f0 corresponds to the first mode of the theoretical
TFs computed considering a within-motion boundary condition.

Figure 3. Number of usable ground motion recordings per frequency (a) and per frequency normalized
by the site’s fundamental frequency (b).
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Identification of 1D-like sites

Several approaches for identifying sites compatible with the 1D SRA assumptions are
available in the literature (Afshari and Stewart, 2019; Laurendeau et al., 2018; Pilz and
Cotton, 2019; Pilz et al., 2022; Tao and Rathje, 2020; Thompson et al., 2012) as summar-
ized by Hallal et al. (2022). For instance, Thompson et al. (2012) assessed a site’s compli-
ance with the 1D SRA assumptions through the inter-event variability (s) and Pearson’s
correlation coefficient (r) between observed and theoretical TFs. The authors suggested
that sites with s\0:35 and r.0:6 are less exposed to 3D effects, and thus appropriately
modeled using 1D SRAs.

In this work, sites with theoretical TFs estimated using Dmul = 1 and no randomiza-
tion whose peaks align well with those in observed TFs are considered 1D-like. To evalu-
ate this, an approach similar to the one proposed by Thompson et al. (2012) is followed,
with the difference that only Pearson’s correlation coefficient is used. The goal of the eva-
luation is to find 1D-like sites that can be used for the calibration of Dmul and slnVS

and
thus remove the d1DSRA

s component in Equation 4. Therefore, the inter-event variability,
indicative of the azimuthal variations in the velocity structure (Pilz et al., 2022; Ramos-
Sepúlveda and Cabas, 2021), is not used in the evaluation. The correlation coefficient is
computed at five frequency ranges: (1) from the first to the second TF peak, (2) from the
first to the third TF peak (e.g. Figure 4b), (3) from the first to the fourth TF peak, (4)
from the second to the third TF peak, and (5) from the third to the fourth TF peak. In all

Figure 4. Example of 1D- and 3D-like sites. Pearson’s correlation coefficient (r) between the observed
and theoretical transfer functions from the first to the third peak of the theoretical transfer functions.
No specific correlation coefficient threshold is used to distinguish 1D- from 3D-like sites.
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cases, the maximum frequency was limited to the maximum usable frequency, based on
the SNR. Multiple frequency intervals are used as opposed to a single broad range to pre-
vent a single highly or negligibly correlated first mode from dominating the site selection,
and thus identify 1D-like sites with a proper alignment of TF peaks across frequencies. A
hundred sites with the highest Pearson’s correlation coefficients in at least three frequency
intervals are initially selected as 1D-like candidates from a database of 534 borehole array
sites from Japan and the United States. After a visual inspection, 39 sites are identified as
1D-like, which represents about 7% of the database. Examples of 1D- and 3D-like sites’
TFs are presented in Figure 4. A summary of the main characteristics of the 1D-like sites
is presented in Table 2, the correlation coefficients in Supplemental Appendix A, and TFs
and AFs estimated using Dmul = 1 and no randomization in Supplemental Appendices B
and C.

Selection of Dmul and sln VS

Both Dmul and slnVS
can be used to improve 1D-SRA predictions in terms of TFs and

AFs. The effect of increasing the small-strain damping by two Dmul, the effect of using VS

randomization with two slnVS
, and the combined effect of Dmul and slnVS

on TFs and AFs
are presented in Figures 5 to 7 for the Delaney Park and the AICH16 sites. Several global

Figure 5. Effect of damping multipliers (Dmul) on 1D-like sites and comparison against observations.
(a) and (b) Effect on the median theoretical transfer functions (TFs). (c) and (d) Effect on the median
amplification factors (AFs). The median TFs result from TFs corresponding to 50 randomized VS profiles,
whereas the median AFs result from AFs from all the ground motion recordings, each one propagated
through 50 randomized VS profiles.
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trends are observed in these examples. For instance, increasing the small-strain damping
by Dmul reduces the overprediction of TFs and AFs at the fundamental mode (e.g. Figure
5a and b), but it might also lead to underpredictions (e.g. Figure 5a for Dmul = 5). This is
often the case for the high-frequency range, which is commonly underpredicted even for a
non-scaled small-strain damping (or Dmul = 1) and no VS randomization (e.g. Figure 5b
around 13 Hz). Meanwhile, VS randomization reduces the fundamental mode without sig-
nificantly reducing the high-frequency range (e.g. Figure 6a to d), but it might not reduce
enough the amount of overprediction observed at some sites (e.g. Figure 6c). The effective-
ness of VS randomization in reducing the site response is due to the averaging of the indi-
vidual TFs or AFs from each VS realization, whose peaks and troughs cancel each other
out at common frequencies. This does not happen to the same extent at high frequencies
given that high-frequency modes tend to not have peaks as pronounced or as broad as the
fundamental mode. Examples of this averaging effect of multiple TFs can be observed in
Figure 2c and Supplemental Appendix D, the latter shows all the TFs and AFs resulting
from a suite of 50 randomized VS profiles for Delaney Park and AICH16. The trends
resulting from using Dmul and VS randomization suggest that a combination of the two
could lead to a better site response prediction, balanced between the amount of under- and
overpredictions. For instance, this is observed in Figure 7d for Dmul = 3 and slnVS

= 0:25

compared to results in Figures 5d and 6d where either Dmul or slnVS
alone are used. Any

Figure 6. Effect of VS standard deviation (sln VS
) for VS randomization on 1D-like sites and comparison

against observations. (a) and (b) Effect on the median theoretical transfer functions (TFs). (c) and
(d) Effect on the median amplification factors (AFs). The median TFs result from TFs corresponding to
50 randomized VS profiles, whereas the median AFs correspond to the median of all the median AFs
estimated from each ground motion recording propagated through 50 randomized VS profiles.

Pretell et al. 13



remaining under- and overpredictions should then be dealt with at the post-processing
stage, as discussed in the companion paper.

The most appropriate Dmul and slnVS
, assumed to remove the intrinsic 1D-SRA error

component (d1DSRA
s ), is selected using data from 1D-like sites. Such a Dmul-slnVS

pair is
found by minimizing the RMSE or ‘‘L2 error,’’ defined as follows:

RMSE=
1

Nsite

XNsite

s = 1

1

23Nevent

X23Nevent

e= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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XNfreq

i = 1
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2
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0
@

1
A ð6Þ

where Nfreq, Nevent, and Nsite are the number of frequencies, the number of earthquake
events (Table 2), and the number of sites available in the 1D-like site database
(Nsite = 39), respectively. The residual dSRA

es is computed using Equation 1, where IM
corresponds to the single 1D SRA–based TF or AF for cases with no VS randomization
or the median TF or AF otherwise. The number of earthquake events is factored by 2 as
both horizontal components of the ground motion records are used independently. The
frequency is normalized by each site’s fundamental frequency (f0) from the theoretical
TFs, such that overpredictions at the site’s fundamental mode align at a common value of

Figure 7. Combined effect of damping multiplier (Dmul) and VS standard deviation (sln VS
) for VS

randomization, and comparison against ground motion recordings. (a) and (b) Effect on the median
theoretical transfer functions (TFs). (c) and (d) Effect on the median amplification factors (AFs). The
median TFs result from TFs corresponding to 50 randomized VS profiles, whereas the median AFs
correspond to the median of all the median AFs estimated from each ground motion recording
propagated through 50 randomized VS profiles.
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f =f0 = 1. Only the normalized frequencies from 0.5 (i.e. half f0) to 20 times f0, or the maxi-
mum usable frequency in the borehole or surface recording, are used. The L2 error is com-
puted for 200 natural logarithmically spaced values (i.e. Nfreq = 200) sampled from
f =f0 = 0.5–20 to allow for a fair comparison across multiple sites. Complementary to the
L2 error, the errors in site response predictions are also quantified as the mean absolute
error (MAE) or ‘‘L1 error,’’ defined as follows:

MAE=
1

Nsite

XNsite

s = 1

1

23Nevent

X23Nevent

e= 1

1

Nfreq

XNfreq

i = 1

dSRA
es

�� �� !" #
ð7Þ

The L2 and L1 errors are computed from total residuals dSRA
es as opposed to bias-corrected

residuals (dSRA
es � cSRA

1D ). Results not included herein for brevity showed that using bias-
corrected residuals in the minimization of the L2 and L1 errors leads to optimum Dmul val-
ues associated with significantly high cSRA

1D across frequencies, which is undesirable.

Results

Independent effects of Dmul and slnVS
on the seismic response

The L1 errors in TFs and AFs are calculated at individual f =f0 and presented in Figures 8
and 9 for various Dmul and slnVS

. These results are presented in terms of standardized
errors, that is, L1 errors shifted and scaled to vary from 0 to 1 for better clarity. The sharp
contrasts observed starting at f =f0’5 are partly due to the lower number of records avail-
able at high normalized frequencies (Figure 3b). These results indicate that increased
damping and randomized VS profiles can both improve 1D SRA predictions for 1D-like
sites, but this improvement is not equally favorable across frequencies and neither for TFs
and AFs simultaneously. For example, the predictions at the fundamental mode, f =f0 = 1,
can be improved with Dmul . 6 for TFs and Dmul’ 5 for AFs, but lower Dmul are more
appropriate at higher frequencies for TFs and AFs. Similarly, Figure 9 suggests that using
slnVS

’0:2 and slnVS
’0:35 can improve the predictions in TFs and AFs at f =f0 = 1, respec-

tively, but lower slnVS
are more appropriate at other f =f0. Based on these results, 1D

SRAs with frequency-dependent damping are expected to be better suited to accurately

Figure 8. Standardized L1 error in (a) transfer functions and (b) amplification factors across normalized
frequencies (f =f0) for various damping multipliers (Dmul).
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estimate site response, as suggested in previous studies focused on nonlinear 1D SRAs
(Assimaki and Kausel, 2002; Huang et al., 2020; Kausel and Assimaki, 2002; Kuo et al.,
2021; Meite et al., 2020; Yoshida et al., 2002). Finally, the L1 error patterns for TFs are
narrower, whereas they are broader for AFs. This is due to the wider range of frequencies
that affects the response of a single degree of freedom oscillator with a given frequency in
AFs (Bora et al., 2016), whereas TFs vary more independently, although with some inter-
frequency correlation (e.g. Bayless and Abrahamson, 2019).

The L2 errors in TFs and AFs resulting from the independent use of Dmul and slnVS
are

presented in Figure 10 (darker lines labeled as ‘‘All data’’), and a summary table for key
Dmul-slnVS

combinations in Supplemental Appendix E. There is a stronger effect of Dmul

on TFs and AFs compared to slnVS
. Overall, an initial reduction of the L2 with higher

Dmul and slnVS
values is observed, followed by an increase in L2 error starting at Dmul’ 3,

and slnVS
’0:25. The minor contribution of slnVS

on the reduction of residual variability in

Figure 10. Variation of L2 error with damping multiplier (Dmul) and VS standard deviation (sln VS
) for VS

randomization. Results labeled as ‘‘All data’’ based on the data from all the 39 1D-like sites from Japan
and the United States, and results labeled as ‘‘California’’ based on the data from six 1D-like sites from
California.

Figure 9. Standardized L1 error in (a) transfer functions and (b) amplification factors across normalized
frequencies (f =f0) for various VS standard deviations (sln VS

) for VS randomization.
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AFs presented as L2 errors is likely due to the averaging effect of using data from multiple
sites, ground motion recordings, and frequencies. At a specific site, the influence of slnVS

on AFs, even though less pronounced compared to TFs, is not negligible (e.g. Figure 6c
and d). Based on Figure 10, 1D SRA predictions could be improved by Dmul’ 3 and no
VS randomization, or VS randomization with slnVS

= 0:25 and Dmul = 1. A Dmul = 3 is
consistent with results by Tao and Rathje (2019), who estimated Dmul based on the varia-
tion of measured values of k at borehole array sites. A slnVS

= 0:2� 0:3 is consistent with
findings by Pretell et al. (2022a), who compared results from 2D SRAs and 1D SRAs with
VS randomization to identify the most appropriate slnVS

to capture the effects of VS spatial
variability of soils on the site response.

The independent effects of various Dmul and slnVS
on the bias in TFs and AFs are

presented in Figure 11. As previously observed, increases in Dmul lead to a reduction of the
TF amplitudes that affects more strongly the high-frequency range, thus leading to a higher
bias at high f =f0 (Figure 11a and c). Importantly, the bias in TF at high f =f0 values for
Dmul = 1 is low, whereas a low bias in TF at f =f0 = 1 is achieved with Dmul’ 8 (Figure 11a).
The variability of bias with slnVS

mostly affects the low-frequency range, around f =f0 = 1

(Figure 11b and d). Again, the variation of AF amplitudes is smoother compared to TFs.

Combined effect of Dmul and slnVS
on the seismic response

The previous section shows the independent impact of Dmul and slnVS
on site response pre-

dictions in terms of TFs and AFs. Here, the combined effect of Dmul and slnVS
is

Figure 11. Bias in 1D site response estimates for 1D-like sites (cSRA
1D ): (a) bias in transfer functions (TFs)

for various damping multipliers (Dmul). (b) Bias in TFs for various VS standard deviations (sln VS
). (c) Bias

in amplification factors (AFs) for various Dmul. (d) Bias in AFs for various sln VS
values.

Pretell et al. 17



investigated by conducting SRAs with various Dmul-slnVS
combinations and comparing

the results against observations. The L2 errors in TFs and AFs are presented in Figure
12a and b, respectively, and their combined effect computed as the standardized averaged
L2 error is presented in Figure 13. The 1D SRA bias associated with the most appropriate
Dmul-slnVS

trial is compared in Figure 11 against the bias resulting from scenarios with
either Dmul or slnVS

alone.

Results from the analyses indicate that a different combination of Dmul and slnVS
is

required to improve predictions for TFs and AFs. A slnVS
= 0:25 leads to the minimum L2

error in TFs and no Dmul is needed (Figure 12a). Meanwhile, a slnVS
’ 0.2–0.3 and a

Dmul’ 3–4 both lead to the lowest L2 error in AFs (Figure 12b). Overall, considering that
TFs and AFs are equally important, the combination Dmul = 3 and slnVS

= 0:25 leads to
most appropriate site response predictions (Figure 13). Therefore, 1D SRAs conducted

Figure 12. Standardized L2 error for combinations of damping multiplier (Dmul) and VS standard
deviation (sln VS

) for VS randomization. (a) Standardized L2 error in transfer functions (TFs). (b)
Standardized L2 error in amplification factors (AFs). Minimum standardized L2 error in TFs for Dmul = 1,
and sln VS

= 0:25, and minimum standardized L2 error in AFs for Dmul = 3 and sln VS
= 0:25.

Figure 13. Standardized averaged L2 errors in transfer functions (Figure 11a) and amplification factors
(Figure 11b) for combinations of damping multiplier (Dmul) and VS standard deviation (sln VS

) for VS

randomization. Minimum standardized L2 error for Dmul = 3 and sln VS
= 0:25.
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with a Dmul = 3 and randomized VS profiles generated using the model by Toro with
slnVS

= 0:25 lead to (1) removing the intrinsic 1D SRA error 1DSRA
s , and (2) the lowest var-

iance in site response residuals. The removed d1DSRA
s is the difference between the cSRA

1D

corresponding to Dmul = 3 with slnVS
= 0:25, and the cSRA

1D corresponding to Dmul = 1
with no randomization (Figure 11). A similar Dmul-slnVS

pair is obtained if the L1 error is
considered as the decision metric instead of the L2 error (Supplemental Appendix F). For
sites in the United States, damping profiles based on Darendeli (2001) with Dmul = 3 are
similar or slightly higher in the top 10 m to those obtained based on the commonly used
correlation with Q, Model 1 by Campbell (2009), but consistently lower at deeper
locations.

As previously mentioned, the selection of the Dmul-slnVS
pair focuses on minimizing the

variance in residuals and improving site response predictions across frequencies on aver-

age, as opposed to reducing the systematic bias cSRA
1D . Figure 11 shows that as Dmul = 3

and slnVS
= 0:25 leads to an overall reduction in cSRA

1D , but there is an increase of it at high

frequencies for TFs. This increase results from a compromise between (1) selecting a single
Dmul-slnVS

pair that works for TFs and AFs across a wide range of frequencies and (2)
using a different pair for TFs and AFs. This increase in bias must be addressed by bias-
correcting site response predictions, as explained in the companion paper.

Sensitivity of the results

The previous results are based on the comparisons of 1D SRA predictions against data
from 39 1D-like sites from Japan and the United States, and damping profiles developed
after Darendeli (2001) assuming PI = 0, fload = 1 Hz, and K0 = 0.5. In this section, the
regional differences between data from sites in California and Japan, and the effect of
damping variables on the resulting Dmul-slnVS

recommendation are investigated.

Regional differences

The selection of the most appropriate Dmul and slnVS
leading to improved site response

predictions of TFs and AFs is based on comparisons against data from six sites in
California, one site in Alaska, and 32 sites in Japan. In this section, regional differences in
the most appropriate Dmul-slnVS

and the resulting cSRA
1D are investigated for California and

Japan.

The most appropriate Dmul and slnVS
to reduce the L2 error in TFs are the same for

California and Japan (Dmul = 1 and slnVS
= 0:25). However, differences are found in the

case of AFs. Figure 14 shows the standardized L2 errors for TFs (a and b), AFs (c and d),
and the average between the two (e and f). Figure 14c and d indicate that higher Dmul and
slnVS

are required to improve predictions in AFs in Japan. In particular, there is a clear
need for a higher Dmul (also Figure 10) that is attributed to the overall more uniform
amplification of seismic waves across frequencies observed in the data from Japan, with
flatter TFs or median TFs with lower peak-to-trough ratios, for example, compare the
observed TFs for Treasure Island and GIFH28 in Figure B1 (Supplemental Appendix B).
The lower peak-to-trough ratio is indicative of a higher VS spatial variability (e.g. de la
Torre et al., 2021) and less compliance with 1D SRA assumptions. Such flatter response in
TFs exacerbates the overamplification of AFs given the influence of the low-frequency
waves across various oscillators’ frequencies. For instance, the TFs and AFs for SBSH06
in Figures B3 (Supplemental Appendix B) and C3 (Supplemental Appendix C),
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respectively, show how over- and underpredictions observed in TFs can turn into consis-
tent overpredictions in AFs caused by the dominance of the overpredicted TF fundamen-
tal mode.

The appropriate Dmul-slnVS
combination for TFs and AFs are Dmul = 1 and

slnVS
= 0:25 for California, and Dmul = 3 and slnVS

= 0:25 for Japan (Figure 14). The latter

is also the global recommendation based on all 39 1D-like sites (Figure 13). The cSRA
1D for

California are shown in Figure 15, whereas the corresponding ones for Japan are very

Figure 14. Standardized L2 errors for various combinations of damping multipliers (Dmul) and VS

standard deviations (sln VS
) for VS randomization. (a), (c), and (e) Standardized L2 errors for sites in

California. (b), (d) and (f) Standardized L2 errors for sites in Japan.
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similar to the global estimates in Figure 11 and thus not presented. Figure 15 shows that
SRAs for California generally underpredict the seismic response, consistent with previous
studies (e.g. Stewart and Afshari, 2021). The observed differences indicate potential for
improving site response predictions for regions that share similar features affecting site
response (e.g. topography, subsurface conditions, soil deposition). However, the data
available for California (Table 2) do not currently allow for region-specific recommenda-
tions of Dmul, slnVS

, or the terms in Equation 5.

Effect of small-strain damping parameters

From the previously discussed evaluation, SRAs conducted with Dmul = 3 and rando-
mized VS profiles generated using slnVS

= 0:25 lead to improved site response predictions.

In this study, Dmul is applied to damping profiles developed after Darendeli (2001) assum-
ing PI = 0, fload = 1 Hz, and K0 = 0.5, hereafter referred to as ‘‘default parameters’’
yielding the baseline damping (Dbaseline). These parameters must be used when following
the proposed approach; nevertheless, it is worth evaluating the effect of using different val-
ues to calculate the damping profiles. Henceforth, if parameters other than the default ones
are used, the resulting damping is denominated Dsite-specific. The overconsolidation ratio
(OCR) has an effect when PI is higher than 0, thus it is also considered in this evaluation.
The effect of any given parameter on the ultimate Dmul is quantified through the damping
scaling factor (DSF):

Figure 15. Bias in 1D site response estimates for 1D-like sites (cSRA
1D ) in California. (a) Bias in transfer

functions (TFs) for various damping multipliers (Dmul). (b) Bias in TFs for various VS standard deviations
(sln VS

). (c) Bias in amplification factors (AFs) for various Dmul. (d) Bias in AFs for various sln VS
.
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DSF =
Dsite-specific

Dbaseline
ð8Þ

Different scenarios are considered to evaluate the effect of the Darendeli model para-
meters on the resulting DSF. The effect of these parameters on the damping values are
studied at a single arbitrary depth, but the DSF is the same at any depth of a given profile.
The results are presented in Figure 16 as DSF and the corresponding 33DSF, that is, the
impact on the damping resulting after applying Dmul = 3. These scenarios include results
for various PI (Figure 16a), fload (Figure 16b), and K0 (Figure 16c). For the evaluation of
K0, various geotechnically consistent scenarios for OCR and PI are considered based on
the data reported by Brooker and Ireland (1965) and Mayne and Kulhawy (1982).

Unsurprisingly, results from the parametric evaluation indicate that PI and fload have an
important effect on the Dmul, whereas K0 leads to milder variations in Dmul. These findings
are consistent with previous studies on clayey soils (e.g. Vucetic and Dobry, 1991). Variations
of PI, OCR, fload, and K0 lead to DSF values from 0.3 to 1.8, and thus 33DSF from 0.9 to 5.4.
This means that applying a Dmul = 3 on damping profiles developed using values that differ
from the recommended in this study can excessively increase damping (Figure 16), and lead
to higher L2 errors (e.g. Figure 13 for Dmul = 3–5). The ultimate impact on TFs and AFs
might be milder as not all layers in a given damping profile are likely to simultaneously differ
from the default parameters. Nevertheless, it is recommended that the default parameters
(PI = 0, fload = 1 Hz, and K0 = 0.5) be used in all cases when estimating the seismic site
response following the proposed approach. Engineering problems involving materials that
significantly deviate from the assumed values are expected to require analyses more advanced
than 1D SRAs.

Figure 16. Effect of various parameters of the damping model by Darendeli (2001) on damping
multiplier (Dmul). (a) Effect of plasticity index (PI). (b) Effect of loading frequency (fload). (c) Effect of
coefficient of lateral pressure at rest (K0) and overconsolidation ratio (OCR).
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Conclusions

An approach is developed for improving site response predictions using one-dimensional
site response analyses (1D SRAs). This approach combines damping multipliers (Dmul),
and randomized shear-wave velocity (VS) profiles with a VS standard deviation slnVS

,
where Dmul and slnVS

are calibrated based on the data from borehole array sites. This arti-
cle discussed (1) the approach and framework for quantifying site response residuals and
(2) the selection of the most appropriate Dmul-slnVS

combination by comparing observed
and theoretical transfer functions (TFs) and amplification factors (AFs) from sites rela-
tively compatible with 1D SRA assumptions, denominated 1D-like sites. The companion
paper discusses the use of Dmul and slnVS

in forward predictions of site response for the
more commonly encountered 3D-like sites and addresses the underprediction of high-
frequency TF amplitudes caused by increasing the small-strain damping.

The results indicate that using a Dmul = 3 and slnVS
= 0:25 leads to an overall minimum

root mean square error (RMSE) in site response predictions. However, different values
are obtained if the focus is placed on TFs or AFs separately or the available data are sepa-
rated by region. A lower Dmul = 1 is required if TFs are the only metric of interest, and
Dmul = 2 and 4 are, respectively, required for AFs for California and Japan when ana-
lyzed independently. The higher Dmul values required for AFs compared to TFs result
from the wide range of ground motion frequencies affecting the spectral ordinates of a sin-
gle-degree-of-freedom oscillator (Bora et al., 2016), and thus the AFs. The factor making
a difference between Dmul for AFs in California and Japan is similar. The ground motions
from the sites in Japan present a more uniform and generally higher amplification of
waves across frequencies, suggested by flatter TF shapes (Supplemental Appendix B).
These characteristics observed in TFs turn into larger contributions to the oscillators’
spectral ordinates and thus AF amplitudes (Supplemental Appendix C).

The analyses showed that the effects of Dmul and slnVS
on the predicted TFs and AFs

vary with frequency, and thus any Dmul-slnVS
combination does not lead to a uniform

reduction of the RMSE across frequencies. This suggests that frequency-dependent SRAs
are better suited for site response predictions, which is consistent with findings from stud-
ies using nonlinear SRAs (Assimaki and Kausel, 2002; Kausel and Assimaki, 2002).
Frequency-dependent SRAs have yet to make their way into practice.

A total of 39 1D-like sites from a database of 534 borehole array sites were identified
based on the alignment of peaks and troughs of the median observed and the theoretical
TFs measured using Pearson’s correlation coefficient, followed by a visual screening. The
results indicate that only 39 of the 534 sites can be considered as 1D-like, which represents
about 7% of the database. It is unclear whether the calibrated Dmul = 3 and slnVS

= 0:25
would change with larger data sets of 1D-like sites, but it is expected that these recommen-
dations will be revised as ground motion databases become larger. Similarly, the number
of sites and ground motion recordings from California do not allow for providing region-
specific recommendations, but there is potential for doing so as more data become
available.

The Dmul and slnVS
were estimated considering damping profiles after Darendeli (2001),

and randomized VS profiles generated using the VS model by Toro (1995), without prior
layer discretization. Therefore, following the proposed approach involves using these mod-
els and corresponding assumed parameters. The Darendeli model is used assuming a plas-
ticity index (PI) = 0, a load frequency (fload) = 1 Hz, and a coefficient of lateral pressure
at rest (K0) = 0.5. Using site-specific values that differ from these assumptions might lead

Pretell et al. 23



to damping values higher by a factor of 2. It is expected that engineering problems involv-
ing soils that significantly deviate from the assumed values would require analyses more
advanced than 1D SRAs. The VS model by Toro is used with slnVS

= 0:25 and the other
parameters recommended for sites with VS30 = 180–360 m/s, which are very similar to
those for sites with VS30 = 360–760 m/s, thus covering a wide range of VS30.

The proposed approach focuses on linear elastic SRAs, the framework can be extended
to nonlinear site response applications. The extension to equivalent linear 1D SRAs could
involve using damping curves (e.g. Seed and Idriss, 1970) increased by an amount equivalent
to the difference between the recommended and default laboratory-based damping, as
opposed to Dmul applied to the entire damping curve. Alternatively, the low-strain tail of the
damping curves could be scaled up (e.g. Kaklamanos et al., 2020). Further research needs to
be conducted on the application of the proposed approach for equivalent linear and non-
linear 1D SRAs.
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