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Assessing the Bonding Properties of Individual Molecular Orbitals
Paul J. Robinson† and Anastassia N. Alexandrova*,†,‡

†Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095, United States
‡California NanoSystems Institute, Los Angeles, California 90095, United States

ABSTRACT: Molecular orbitals (MOs), while one of the
most widely used representations of the electronic structure of
a system, are often too complex to intuit properties. Aside
from the simplest of cases, it is not necessarily possible to
visually tell which orbitals are bonding or antibonding along
particular directions, especially in cases of highly delocalized
and nontrivial bonding like metal clusters or solids. We
propose a method for easily assessing and comparing the
relative bonding contributions of MOs, by calculating their
response to stress (e.g., compression). We find that this
approach accurately describes relative bonding or antibonding
character in both the simplest cases and provides new insight in more complex cases. We test the approach on four systems: H2,
Am2, benzene, and the Pt4 cluster. In exploring this methodology, a scheme became elucidated, for predicting changes in the
ground electronic configuration upon compression, including changes in bonding order, angular momenta of occupied MOs, and
trends in MO ordering. We note that the applications of this work go beyond simple molecules and could be straightforwardly
extended to, for example, solids and their response to stress along the specific crystallographic plane. Additionally, predictions of
structures and properties of chemical systems under stress could result from the emerging intuition about changes in the
electronic structure.

I. INTRODUCTION

Depending on the electronic geometry of a molecular orbital
(MO), it can be considered bonding, nonbonding, or
antibonding. Of course, this classification is not discrete, and
there is variation in the bonding strength of orbitals. What
really determines the bonding character of an orbital is its
eigenenergy at the stable geometry of the system as compared
to the eigenenergy of the same orbital in a greatly expanded
geometry. Therefore, by sampling the MOs at two points along
the right compression or expansion coordinate of a system one
can semiquantitatively rank the orbitals by bonding character
while only incurring the computational cost of two single point
calculations.
The core of this approach depends on the predictable

response of orbitals in systems under compression and can be
traced back to a general chemistry exercise: we teach that in
normal circumstances, the two-center-two-electron (2c-2e)
bonds in simple diatomics fill in the order of σ, π, δ, φ,
because of the diminishing quality of the atomic orbital (AO)
overlap in this series. This pattern holds true even in very heavy
diatomics, such as U2, as demonstrated by Gagliardi and Roos.1

The delocalized MOs in polyatomic molecules and clusters can
also exhibit these types of overlap, i.e. σ, π, δ, φ.2−8 Recall now
that in the B2 diatomic, an inversion of the σ2px and π2pz MOs is
observed. This inversion happens because of the proximity of
the nuclei in B2. The 2p electrons avoid the most congested
area of the already crowded internuclear space by populating
the MO of higher angular momentum (π instead of σ).
Noticeably, the effect goes beyond the simple diatomic and is

reflected also in the electronic structures of more complicated
boron systems, such as clusters, when compared to the clusters
of, for example, carbon or metals.9,10 This beavior of AOs in B
is representative of the general rule governing MO energy
crossings, which we can take advantage of to facilitate bonding
analysis.
To explore this methodology, we study the electronic states

of a diverse set of diatomic and polyatomic molecules and
clusters composed of main group-, d-, and f-elements. We show
the manner in which the bonding pattern changes is
predictable, quantifiable, and the result is a rapid way to
determine which orbitals are most important to the bonding
properties of a molecule. Additionally, we suggest an intuitive
way to predict the qualitative changes in electronic config-
urations upon applied stress.
In our calculations, simple symmetry-preserving compres-

sions and expansions of model molecules are employed in order
not to favor any states through a sort of Jahn−Teller distortion.
We do not go deeply into the treatment of multireference and
relativistic effects, only pursuing a qualitative bonding picutre.
We start from two extremes of diatomic molecules, H2 and
Am2. The former is the simplest diatomic, and the latter can
exhibit many different kinds of bonds formed by the seven
unpaired f-electrons in Am. The electronic configurations of
most diatomics under normal conditions are predictable in a
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back-of-the-envelope fashion. We expect to be able to
qualitatively reproduce the obvious bond strength ordering: σ
> π > δ > ϕ. In more complex systems, this approach should
allow us to both confirm the bonding properties of obvious
bonding or antibonding orbitals and reveal the properties of
orbitals in less obvious cases.

II. COMPUTATIONAL METHODS
The H2 bond was treated in Gaussian 09 with CISD and a cc-
pV5Z basis set. An NBO analysis was performed on each of the
H2 calculations. For Am2, the BLYP functional with the
Stuttgart 1997 ECP basis set were used as implemented in
NWChem.11 The work of Takagi et al. demonstrated that the
BLYP is quite accurate in predicting electronic structure for
transition metal compounds.12 The Stuttgart 1997 basis set was
chosen because of a recent study on the uranium−uranium
bond in U2(OH)10.

13 We explicitly included the 8s, 7p, 6d, and
4f atomic orbitals and assigned core potentials to 60 inner

orbitals. Fermi−Dirac smearing was included because of the
close spacing of energy levels in metal systems. Pt4 was treated
with the PBE functional and the aug-cc-pVTZ-PP basis set. For
benzene, single-point and optimization calculations were
performed using Gaussian 09. CCSD(T) theory was used
with a 6-31G basis set. Visualizatons of MOs were performed
using the VESTA program.14

III. RESULTS AND DISCUSSION

1. Orbital Force Constant: kψ. Central to our method-
ology is a simple quantification of bonding. Each MO can be
characterized by a constant; we call it kψ, describing the change
in orbital eigenenergy when the molecular geometry is shifted
away from equilibrium:
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Figure 1. Valence MOs of Am2 at equilibrium (eq) bond length (energies are not to scale). Red MOs are occupied, blue are unoccupied, yellow
show partial occupancies (see section 2), and gray are off-scale-high in energy. All orbital energies are not to scale.
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It is defined as the change in energy of a specific MO as the
molecule is compressed completely symmetrically. It is, in fact,
just a representation of the slope of the correlation diagram but
in symmetric scaling space. It is sometimes more desirable,
depending on the system, to construct kψ values by expanding
the molecule and changing the signs.
We must note that this method only works in conjunction

with methods yielding orbital eigenenergies and thus cannot
work with multiconfigurational methods. This is the case simply
because our method directly analyzes the eigenenergies.
kψ is a quantitative measure of bonding character and is easily

obtained from just two calculations near the equilibrium. The
individual values of kψ are different at different geometric
displacements and carry no meaning in isolation; however, the
comparisons between the kψ values of different MOs provide a
useful metric for determining relative bonding character/
strength. Even for MOs that look too complicated for an
examination by the naked eye, the bonding or antibonding
character can be revealed by the value of kψ.
One consequence of the fully symmetric scaling is that there

is no prior knowledge of the types of bonds being compressed,
meaning both weak and strong bonds will be compressed
equally. This has the potential (as the stronger bonds get
distorted into stranger shapes) to lead to errors in the results;
however, in the current examples, this was not observed
because our compressions and expansions were kept small.
The constant kψ is, in fact, related to the work of Pauling et

al.,15 who demonstrated that the bond order of a molecule is
proportional to exp((r − r0)/b)), where b is an experimentally
fitted parameter. By invoking kψ, the aspect of nature behind
this classical result is described.
2. H2. H2 is the smallest interesting entity we can consider.

Although H2
+ is smaller, it contains only one electron, and thus,

our method of orbital analysis is not relevant. The effect of
compression is modeled here by scaling the H−H distance
down to a miniscule 0.1 Å (clearly not achievable in any
modernly conceivable experimental setting). To follow the
trend in electronic behavior, we also stretched the molecule to
R(H−H) = 1 Å. Because there is only one occupied orbital in
the natural singlet case of H2, it is not a meaningful test of this
method; however, the artificial triplet state of H2 provides the
simplest case for testing. This state is optimal for ranking the
orbitals because it has 2 electrons and 2 orbitals. Its electronic
configuration, σ(1s)1 σ*(1s)1, gives a very weak bonding effect
due to the 2p-AOs mixing into the valence MOs. This mixing is
stronger in the 1σ*(1s)-MO. As compression occurs, the
energies of the 1σ(1s)- and 1σ*(1s)-MOs change, and they do
so at slightly different rates. In fact, all bonding orbitals
(occupied and virtual) decrease in energy (up to a point of a
very tight contraction), and antibonding orbitals increase. This
energy spread is to be expected based on a simple particle-in-a-
box model. The rising antibonding orbitals and the falling
bonding orbitals of different angular momenta eventually cross,
such that below 0.33 Å, the electronic configuration becomes
σ(1s)1 σ(2s)1. Hence, the formal bond order increases from
zero to 1. Overall, the effect in H2 is fairly predictable and
modest. It serves as a primitive preliminary verification that
symmetric compression may be used to determine bonding
strength. Bond order goes up, and therefore, the bonding states
become relatively more stable and the antibonding state
become relatively less stable.
3. Am2. Am2 is a more exciting example. It is optimal for

examining simple higher order bonds because of the half-full f-

shell in Am,16 and the resultant ability of the f-AOs to exhibit all
kinds of bonding overlaps up to ϕ. It is understood that a
multireference and truly relativistic treatment of Am2 would be
more accurate, but that is an involved study in its own right.
Here, our purpose is a qualitative analysis of simple high-order
bonding rather than specific properties of Am2; therefore, we
rely on DFT and modest basis sets for the current pursuit.
We examined the structures of Am2 between the equilibrium

bond length (calculated to be 2.12 Å) and 1.00 Å. At
equilibrium, the structure takes on a form that matches the
back-of-the-envelope predictions, filling the MOs in the order
of σ → π → δ → ϕ-: (σ(p))2 (π(p))4 (π*(p))4 (σ*(p))2

(σ(f))2 (π(f))4 (σ(s))2 (δ(f))4 (φ(f))4 (σ*(f))2. Aside from
having a calculated Mulliken bond order of 7.17, there is
nothing novel about this molecule. However, as the Am−Am
distance shrinks, the same pattern which appeared in H2
appears. Again, the bonding MOs generally become more
stable and antibonding MOs become less stable, and the rate of
the MO-energy change depends on the angular momentum of
the MO. The electron−electron repulsion becomes unfavorably
high in lower angular momentum MOs upon compression,
while an increased number of nodes in an MO becomes more
favorable, allowing for a greater radial spread of electrons.
Orbital shifts due to these changes are reported in Figure 1.
There is a clear pattern underlying this behavior. As the

internuclear distance shrinks, the bonding MOs with a greater
spread away from the bond axis become more stable, and they
do so faster than the bonding orbitals of lower angular
momenta. The higher angular momentum bonding MOs
generally get populated more readily, displacing several lower
angular momentum antibonding states out of the valence
manifold, sometimes favoring a high-nodality ϕ bond over σ*
formed by the same type of AOs. The bond order then
increases accordingly.
The kψ values of Am2 (Table 1) clearly show the equilibrium

bonding character of σ, π, δ, and ϕ-bonds. The σ-bond has a kψ

value about 6 times more than the ϕ-bond. Valence orbitals of
higher angular momenta also show smaller kψ, because the AO-
overlap becomes increasingly weaker.

4. C6H6−Benzene. We now move to 2-D polyatomic
structures using benzene to further demonstrate the usefullness
of symmetry-preserving expansion in determining bonding
character.
Figure 2 depicts the familiar valence MOs of benzene at its

calculated optimal geometry, R(C−C) = 1.417 Å, and R(H−C)
= 1.096 Å, and the changes in the MO order under stress. To
observe the orbital transfers, the optimized bond lengths were

Table 1. Selected kψ Valuesa

Am2 C6H6 Pt4

MO kψ (eV/Å) MO kψ (eV/Å) MO kψ (eV/Å)

σ(f) 10.096 e2g 17.355 3a1 3.4951
π(f) 8.837 e1g 19.375 2a1 3.1441
δ(f) 7.286 e1u 29.211 a2 −2.6976
ϕ(f) 1.702 a2u 35.912 e1 −2.9076

aIn the case of Am2, they accurately reproduce the obvious trend in
bond strength. For the benzene system, note the decrease in bonding
character between the different MO components of the aromatic
system. Finally, the relative energies of Pt4 at different R(Pt−Pt),
approximated forces acting on Pt4 to lead to the given compression,
and selected-MO ordering.
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scaled both up and down. Consistent with the previous
discussion, upon geometric contraction, the more antibonding
orbitals tend to rise in energy, and bonding MOs sink in energy.
The inverse is true when the system is expanded. At the
dissociation limit, the energy differences between the bonding
and corresponsing antibonding states vanish. We restricted the
compressions to a minimum value of 0.5 Å. Within this range,
we did not observe any previously virtual orbitals entering into
the valence manifold. This is not surprising, because for main
group elements, the orbitals of large angular momenta are very
high in energy at equilibrium. However, the observed trends
suggest that upon even further compression, we could see the
switching of occupied and vacant MOs, perhaps even breaking
the aromatic character of the system.
The e2g MO is the least bonding valence MO formed by in-

plane σ-overlap, and it rises by 0.025 eV when R(C−C) is
compressed to 1.00 Å. Conversly, the more bonding e1u orbital
decreases by 0.098 eV under the same compression. Neither
the e1u nor the e2g MO are strongly bonding, and so their
energy shifts are moderate. The b2u and b1u MOs are visually
similar and yet they exhibit very different bonding properties
when the C−C bond is compressed to 1.00 Å. The b2u MO is
part of the system of MOs that make up what would be simply
described as C−C single bonds. This MO sinks by 0.163 eV
because of its fully C−C bonding character. The b1u orbital, on
the other hand, increases in energy by 0.028 eV. This is, of
course, because it is fully antibonding with respect to the
carbon ring. The bonding character it exhibits with the
hydrogens is dwarfed in comparison to the repulsion between
the carbon atoms. Finally, we consider the e1g and a2u orbitals,
which together are responsible for the aromaticity of benzene.
Under compression, the e1g MO sinks by 0.098 eV, though it
remains the HOMO of the system under both expansion and

Figure 2. Relative orderings of valence MOs of benzene at
equilibrium, expansion, and compression. Orbital energies are not to
scale.

Figure 3. (a) Valence MOs of Pt4. The expansion over the same distance creates a great effect, whereas the considered compression led to MO shifts
but no orbital switching. Orbital energies are not to scale. (b) The kψ values of each MO.
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compression. The a2u decreases in energy by 0.252 eV, more
than double the change in the partially bonding e1g. This
relationship is in-line with the increased bonding character in
a2u over e1g.
If we use kψ as a measure, the character of orbitals is much

more easily intuitied (see Table 1). For example, among the
delocalized π-MOs in benzene, the highest value of kψ belongs
to the a2u orbital (the fully bonding π-MO of the aromatic
system). The e1g HOMO orbitals have a kψ of approximately
half the a2u orbitals. This decrease in kψ correlates directly to the
greater antibonding character of the e1g MO.
5. Pt4. Pt4 is an example of a 3-D system with delocalized

bonding formed by d- and s-AOs.17 The goal of studying it is to
elucidate the changes in the bonding pattern in 3-D. Pt4 at
equilibrium is tetrahedral. There is a single bonding σ-MO
formed by the 6s-AOs on all four atoms, and the electron pair
in this MO is promoted from the formerly full set of 5d-AOs, as
is shown in Figure 3a. This type of delocalized bonding can be
labeled as 3-D σ-aromatic, according to the (4n + 2) Huckel’s
electron counting rule (n = 0).17,18 The hole remaining in the
set of MOs formed by 5d-AOs is also bonding.17 We note that
it is important not take into account the possible changes in
geometry or spin state of the cluster upon compression.
In general, delocalized MOs in 3-D start looking more

complicated, and it is not always clear whether an MO is
bonding or antibonding. However, just as in the case of Am2,
the orbitals of compressed Pt4 begin to diverge, and it is
anticipated that the antibonding MOs become less energetically
favorable, and all (occupied and virtual) bonding MOs become
more favorable. Table 1 shows the relative energies and orbitals
ordering at compression and also expansion of the cluster
geometry. At the considered compression, no new orbital
recruitment was found, and further compression resulted in
poor SCF convergence, possibly indicating the onset of strong
multireference character. Under expansion, however, the MO-
rearrangements can be seen. As shown in Figure 3b, even at
small compression and expansion values, the shifts in orbital
energies are remarkable. For example, the a2 MO, a fully
antibonding MO with four nodal planes, increases in energy by
0.072 eV under compression. The 3a1 MO is the bonding σ-
MO in the cluster that contributes to its σ-aromaticity. Upon
compression to R(Pt−Pt) = 2.49, its energy lowers by 0.234
eV. Upon even a small expansion, however, it rises in energy
dramatically. As the molecule begins to be compressed more,
additional bonding character is provided by the 2a1 and 5e
MOs.
A clear and intuitive pattern emerges from the preceding case

studies: MOs that are bonding along the direction of distortion
in a molecule should decrease in energy upon compression and
rise in energy upon expansion along that direction, and
antibonding MOs should exhibit the opposite behavior. The
speed with which the MO-energies change depends on the
angular momentum of the MO.
Now, it is also apparent that it is possible to engage in the

reverse activity: by knowing how the energy of an orbital
behaves upon a small compression or expansion, one can guess
its bonding character along the direction of distortion. For
example, the convoluted-appearing 3e MO in Pt4 responds to
expansion by becoming more stable. This indicates that it has
more antibonding character than bonding character.

IV. CONCLUSIONS
In conclusion, we devised a descriptor for MOs, kψ, which
contains the information about the relative bonding character
of a particular MO. In addition, kψ is a convenient quantity in
that it is trivially calculated.
The constant is expected to be especially useful for bonding

analysis of complex systems, including materials, where bonding
or antibonding character are often hard to understand from
visual examination. If applied to a solid-state system, kψ could
accurately predict the bonding character of a specific band or
localized orbital. Additionally, although in this work the applied
stress was isotropic, it does not generally have to be. The
bonding character of an MO can be also elucidated along a
particular direction in a molecule or a specific crystallographic
plane in a material, elucidating the anisotropy of materials
response to stress and chemical bonding reasons for it.
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