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The Maximal-Density Mass Function
for Primordial Black Hole Dark Matter
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Abstract. The advent of gravitational wave astronomy has rekindled interest in primordial
black holes (PBH) as a dark matter candidate. As there are many different observational
probes of the PBH density across different masses, constraints on PBH models are dependent
on the functional form of the PBH mass function. This complicates general statements
about the mass functions allowed by current data, and, in particular, about the maximum
total density of PBH. We use analytical arguments to show that the mass function which
maximizes the fraction of the matter density in PBH subject to all constraints is a finite
linear combination of monochromatic mass functions. We explicitly compute the maximum
fraction of dark matter in PBH for different combinations of current constraints, and discuss
implications for the viability of models predicting extended mass functions.
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1 Introduction

The possibility that density fluctuations in the early universe collapsed into primordial black
holes (PBH) has been studied for several decades. Apart from their potential utility as a probe
of the primordial universe, PBH are an excellent candidate for cosmological dark matter, as
sufficiently large black holes are stable and dynamically cold. Further, with simple formation
mechanisms, they can be produced with a cosmological density matching the observed density
of dark matter.

If PBH account for a significant fraction of dark matter, it is possible that observed
gravitational wave signals have a primordial origin. Direct observations of binary black
hole mergers thus far all involve black holes with masses of several times 10M� [1–5], in a
range where microlensing constraints on the abundance of compact objects are ineffective.
The observed merger rate is compatible with PBH as dark matter, and other constraints
historically applied in the LIGO mass range are subject to large astrophysical uncertainties
[6, 7]. This has led to renewed interest in primordial production mechanisms, and it remains
possible that PBH in this mass window account for much or all of dark matter [8].

However, depending on the formation mechanism, PBH may exist today with masses
as small as 10−16M�, or as large as those of supermassive black holes. Thus, constraining
the total density contained in PBH requires the combination of constraints that span this
vast range of mass scales. Such observables include microlensing surveys [9–12], CMB data
[13], and the statistics of wide binaries [14]. In general, constraints from these observables
have been computed under the assumption of a single-valued (hereafter, monochromatic)
PBH mass function. However, as realistic production mechanisms necessarily result in an
extended mass function, it is essential to correctly combine constraints across all masses.

This problem has recently been studied by several authors [15–17]. In general, the
constraints depend non-trivially on the functional form of the mass function, and statements
about the implications of constraints for properties of the PBH population can be difficult
to generalize. In particular, the total fraction fPBH of dark matter that may be accounted
for by PBH varies with the form of the mass function, so fPBH = 1 is ruled out for some
forms of the mass function, and allowed for others. This has led to confusion regarding the
observational viability of the PBH dark matter scenario.
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Depending on the set of constraints considered, observational data may or may not
already rule out fPBH = 1 for monochromatic mass functions. Since the many constraints
span a wide mass range, and since several do not overlap significantly, some authors have
argued that broadening the mass function might relax constraints on PBH [18, 19], possibly
allowing for fPBH = 1 even if that possibility were excluded by constraints for monochromatic
mass functions. However, [16, 17] have evaluated the constraints numerically for several forms
of extended mass functions, and found that extended mass functions are typically subject to
stronger constraints than monochromatic mass functions.

These findings motivate the question we now pose: what is the theoretical maximum
density of PBH permitted by constraints for a fully general mass function? Our goal is
ultimately to clarify the observational status of PBH dark matter, and to understand the
circumstances under which extending the mass function can relax constraints. We also seek
a procedure which is flexible and simple enough to allow us to compare results for different
sets of constraints, and to elucidate the dependence of the maximal density on the form of
the constraints themselves. To that end, we derive the form of the mass function which
optimizes the density subject to all observational constraints. This allows us to obtain a
general bound on the density of PBH with minimal numerical computation, independently
of the true form of the PBH mass function. Our approach addresses a similar question to
that of [17]. However, while the approach of [17] must be applied separately to each chosen
functional form, here we consider the question from a mathematical standpoint, with no prior
prejudice on the form of the “optimal” mass function.

This paper is organized as follows. In section 2, we establish conventions and notations,
and review the application of constraints from the monochromatic case to extended mass
functions. In section 3, we present a pedagogical derivation of our main results regarding
the maximum density of PBH, and we apply them to current data. We discuss these results
in section 4 and conclude in section 5. Finally, in appendix A we compare our analytical
results with direct numerical techniques.

2 Interpreting constraints for extended mass functions

We follow [16] to convert constraints for monochromatic mass functions to constraints for
extended mass functions. We denote the mass function by ψ and adopt their normalization
and conventions, such that

ψ ∝M dn

dM
,

∫
dM ψ(M) =

ΩPBH

ΩDM
≡ fPBH (2.1)

where n is the number density of PBH at fixed mass. Most observables that can constrain
primordial black holes are determined by the properties of single black holes, with no need
to consider relationships between them. In such a case, an observable quantity A receives a
linear combination of contributions from each mass bin, and the contribution from black holes
of mass M is proportional to ψ(M). As such, the observable can be written as a functional
of ψ in the form

A[ψ] = A0 +

∫
dM ψ(M)K1(M). (2.2)

We note in passing that there are some constraints for which relationships between black
holes are significant. For example, gravitational wave observations of mergers are dependent
on the properties of pairs of black holes, and so one must combine contributions from pairs of
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mass bins. In the simplest case, where the contributions scale linearly with number in each
mass bin, such an observable can clearly be written in the form

A[ψ] = A0 +

∫
dM ψ(M)K1(M) +

∫
dM dM ′ ψ(M)ψ(M ′)K2(M,M ′) (2.3)

and one can always express a generic observable by including higher-order terms of this form.
Note that higher-order terms also account for non-linear dependence of A on ψ at fixed mass.
For example, an observable which scales as ψ(M)2 can be expressed exactly at second order
by setting K2(M,M ′) ∝ δ(M −M ′).

All of the constraints that we consider in this work are of the simplest kind, and we
will find eq. (2.2) sufficient. In this case, it is straightforward to relate constraints for a
monochromatic mass function to constraints for a generic mass function, and we briefly review
the argument given in [16]. Let ψmono(M0;M) ≡ fmax(M0) δ(M −M0), where fmax(M0) is
the largest coefficient allowed by constraints for a mass function of this form. If we take
ψ(M) = ψmono(M0;M) in eq. (2.3), we obtain

K1(M0) =
A[ψmono]−A0

fmax(M0)
(2.4)

Suppose that the difference A[ψ]−A0 is observable with the desired significance when A[ψ]
crosses a threshold value Aobs. Then A[ψmono] = Aobs by definition of fmax, so eq. (2.4) gives
K1(M) independent of ψ. Substituting for K1(M) in eq. (2.3) while leaving ψ generic gives
the condition

C[ψ] ≡
∫

dM
ψ(M)

fmax(M)
≤ 1. (2.5)

This expresses the constraint on a mass function ψ(M) when the constraint for a monochro-
matic mass function is

∫
dM ψmono(M0;M) ≤ fmax(M0).

3 The optimal mass function

3.1 Single-constraint case

For pedagogical purposes, we first consider the case of a single constraining observable. For
such situations, when all observables can be expressed in the form of eq. (2.2), the constraint
on the mass function has the form C[ψ] ≤ 1, with C[ψ] as defined in eq. (2.5). The problem is
then to maximize

∫
dM ψ(M) subject to this constraint. The optimal mass function saturates

the constraint, so it suffices to require C[ψ] = 1.
Naively, this problem looks as though it can be solved using the method of Lagrange

multipliers, by finding stationary points of the functional

S[ψ, λ] =

∫
dM

(
ψ(M)− λ ψ(M)

fmax(M)

)
. (3.1)

However, the Euler-Lagrange equation in ψ admits no non-trivial solutions. This is because∫
dM ψ(M) can be made arbitrarily large, even subject to C[ψ] = 1, unless ψ(M) > 0 is

imposed. Positivity can be imposed by setting ψ = φ∗φ and performing an unconstrained
optimization in φ, but the corresponding Euler-Lagrange equation leads to the condition that
φ is, at every point, either zero or non-analytic.
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The variational approach does not generalize to the case of multiple constraints, so
we do not pursue it any further. Rather, we observe that since C[ψ] is linear, we have
C
[
C[ψ]−1ψ

]
= 1. Thus, we can impose C[ψ] = 1 by rescaling ψ → C[ψ]−1ψ, and then the

problem is to maximize the functional

M[ψ] ≡
∫

dM
(
C[ψ]−1ψ(M)

)
=

∫
dM ψ(M)∫

dM ψ(M)
fmax(M)

(3.2)

subject only to positivity. We call M[ψ] the normalized mass of ψ.
It is now simple to show that M[ψ] is maximized by taking ψ to be a monochromatic

mass function. Let Mmax ≡ argmax fmax(M) and fmono ≡ fmax(Mmax), and define

ψ0(M) ≡ fmono δ(M −Mmax) (3.3)

so that ψ0(M) is the monochromatic mass function which maximizes the PBH density, and
fmono is the maximum PBH density allowed for a monochromatic mass function. Choose any
mass function ψ ≡ ψ0 + δψ. Since ψ0 vanishes everywhere except for Mmax, positivity of ψ
requires that δψ(M) ≥ 0 for all M 6= Mmax. Then we have

M[ψ] =

∫
dM

[
ψ0(M) + δψ(M)

]∫
dM

[
ψ0(M)/fmax(M) + δψ(M)/fmax(M)

] . (3.4)

Since ψ0 saturates the constraint of eq. (2.5), we must have
∫

dM [ψ0(M)/fmax(M)] = 1 and∫
dM ψ0(M) = fmono, so we write

M[ψ] =
fmono +

∫
dM δψ(M)

1 +
∫

dM δψ(M)/fmax(M)
(3.5)

but fmax(M) ≤ fmono by definition, so we have

M[ψ] =
fmono +

∫
dM δψ(M)

1 +
∫

dM δψ(M)/fmax(M)
≤ fmono +

∫
dM δψ(M)

1 +
∫

dM δψ(M)/fmono
= fmono. (3.6)

Thus we have shown that M[ψ] ≤ fmono ≡ M[ψ0], so no functional form allows a higher
total PBH density than does the Dirac delta. In particular, for fixed PBH density, we
conclude that an extended mass function is always more strongly constrained than the optimal
monochromatic mass function. While this will not hold for the case of multiple constraints,
it remains an excellent approximation if the constraints are weakest by far in a mass range
where a single observable dominates.

3.2 Combining constraints

Realistically, the single-constraint case is too simplistic. In general, a mass function is ruled
out on the basis of a χ2 test statistic. If PBH are constrained by multiple observables Aj ,
then the test statistic is found by adding the individual χ2 statistics in quadrature. That is,

χ2[ψ] =
N∑
j=1

χ2
j =

N∑
j=1

(
Aj [ψ]−Aobs,j

σj

)2

. (3.7)
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To fail to reject ψ at some significance level requires that χ2[ψ] ≤ γ2 for some threshold value
γ2, i.e.,

N∑
j=1

(∫
dM ψ(M)

K1,j(M)

γσj

)2

≤ 1. (3.8)

If we set N = 1, this reduces to ∫
dM ψ(M)

K1,1(M)

γσ1
≤ 1 (3.9)

so matching with eq. (2.5) gives K1,j(M)/(γσj) = 1/fmax,j(M), where fmax,j(M) is the
analogue of fmax(M) for the jth constraint alone. For general N , [16] show that the constraint
takes the form

N∑
j=1

(∫
dM

ψ(M)

fmax,j(M)

)2

≤ 1. (3.10)

Since the individual constraints are added in quadrature, the argument applied to the single-
constraint case does not extend to the case of multiple constraints, and indeed, there are
cases in which the density is not maximized by a monochromatic mass function. However,
we will show that the maximizer is in general a linear combination of N monochromatic mass
functions.

3.3 The general problem

For the case of several constraining observables, one hasN constraint functions fmax,1, . . . , fmax,N .
For brevity, we define gj(M) ≡ 1/fmax,j(M), and by analogy with eq. (2.5), we define

Cj [ψ] ≡
∫

dM ψ(M) gj(M). (3.11)

Then the problem is to find ψ to maximize

M[ψ] ≡
∫

dM ψ(M)(∑N
j=1 Cj [ψ]2

)1/2 =

∫
dM ψ(M)

‖C[ψ]‖ (3.12)

where C[ψ] denotes the vector with components Cj [ψ]. We define fmax,all = maxM[ψ].
Since rescaling ψ does not change M[ψ], we can always set

∫
dM ψ(M) = 1, and then

the problem is equivalent to minimizing ‖C[ψ]‖ subject to this constraint. When solving this
problem with real data, the integrals are arbitrarily well approximated by a discrete sum of
the form

‖C[ψQ]‖2 =

N∑
j=1

(
Q∑
k=1

akgj(Mk)

)2

=

∥∥∥∥∥
Q∑
k=1

akg(Mk)

∥∥∥∥∥
2

. (3.13)

Thus, the problem is to minimize the norm of a sum of akg(Mk) for some {Mk}k=1,...,Q, sub-

ject to our normalization condition, which now takes the form
∑Q

k=1 ak = 1. Geometrically,
this is the same as minimizing the norm over the convex hull of the g(M), i.e., to compute

min {‖x‖ | x ∈ conv {g(M) |M ∈ U}} . (3.14)

We henceforth denote conv {g(M) |M ∈ U} by conv(g). Since the minimizer is the projec-
tion of the origin onto a convex set, it is unique in the sense that any optimal mass function
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ψ must have the same C[ψ]. This does not require that the minimizing mass function is itself
unique.

Such a geometric formulation simplifies the interpretation of the problem. In partic-
ular, the result for the case of a single constraint is now immediate: the convex hull is
1-dimensional, so the point with minimum norm is simply the minimum value of g(M). The
corresponding mass function is monochromatic, with a peak at argmin g(M). It is also clear
that the monochromatic mass function is not generally the minimizer of the norm in the case
of multiple constraints: we have no guarantee that ‖g(M)‖ attains the minimum of the norm
on conv(g) for any single M .

Still, minimizing the norm over the convex hull of a discretization of g(M) is a simple
computational problem, and it is easy to validate the result. We find an optimal mass function
in three steps:

1. Choose a discretization of g(M) of the form G = {g(M1), . . . ,g(MR)}. We choose the
Mk using adaptive sampling to capture features of the constraint functions as precisely
as possible. The convex hull of G is now a polytope A.

2. Find the point pmin ∈ A with minimum norm. We implement the algorithm of [20],
which requires only the extreme points of A as inputs. To avoid computing the convex
hull in a high-dimensional space, we supply all of the points of G, of which the extreme
points of A form a subset. The algorithm determines the facet S of A which contains
pmin, and gives the barycentric coordinates of pmin in S as a vector w.

3. Define a mass function

ψopt(M) =

|w|∑
k=1

wkδ (M −Mk) (3.15)

where g(Mk) is the kth point of S. Note that g(Mk) ∈ G for each Mk since S ⊂ A.

Observe that C[ψopt] =
∑|w|

k=1wkg (Mk) ≡ pmin. Thus, ψopt is a mass function which attains
the maximum total dark matter fraction. In particular, for any mass function ψ, we have
M[ψ] ≤ M[ψopt] = ‖pmin‖−1, so fmax,all = ‖pmin‖−1 is an upper bound on the fraction of
dark matter in PBH irrespective of the functional form of the mass function. We will refer
to ψopt as the semi-analytical optimum mass function.

We can now explain geometrically why the maximizing mass function is a linear com-
bination of no more than N monochromatic mass functions. Observe that for any g(M),
the minimum of the norm must lie on the boundary of the convex hull conv(g), and since
g(Mk) ∈ RN , this boundary has dimension at most N − 1. One can construct an arbitrarily
refined triangulation of this boundary formed from (N − 1)-simplices, each with N points of
G as vertices. The minimizer of the norm is a linear combination of these vertices, each of
which is one of the original g(Mk), corresponding to a monochromatic mass function.

3.4 Results

We perform the maximization explicitly for several sets of constraints. Set A includes robust
constraints from evaporation [21]; GRB lensing [22]; microlensing from HSC [9], Kepler [10],
EROS [11], and MACHO [12]; and CMB limits from Planck [13]. Set B includes dynami-
cal constraints from Segue I [23], Eridanus II [24], and non-disruption of wide binaries [14].
Set C includes a constraint from white dwarf explosions [25], a constraint from neutron star
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fmono fmax,all 〈M/M�〉 σ[ψ]/M�
A 27.17 27.25 31.09 2.259
AB 1.372 1.965 0.009 0.162
AC 1.371 1.443 1.807 7.294
ABC 1.371 1.402 0.015 0.220
Ā 0.991 1.502 1.492 4.827
ĀB 0.991 1.437 0.017 0.221
ĀC 0.330 0.484 5.430 7.963
ĀBC 0.330 0.405 0.182 0.741

Table 1. Optimal mass function properties for each of several sets of constraints. The column fmono

gives the maximum DM fraction allowed for a monochromatic mass function, and the column fmax,all

gives the maximum DM fraction across all functional forms. Also given here are the mean PBH mass
and the standard deviation for the semi-analytical optimum mass function.

capture [26] and a recently claimed constraint from SNe lensing in the LIGO window [27].
The constraints from evaporation and from Planck in A have been estimated differently
in the literature, with important consequences for our analysis. Set A itself contains rela-
tively non-restrictive estimates of these constraints. We incorporate more stringent versions
(see section 4) of these constraints in a set Ā, which is otherwise identical to A.

We determine optimal mass functions for sets A, Ā, and all of their combinations with
sets B and C. The results are summarized in table 1 and illustrated in fig. 1. We do not
include cosmological constraints on the total matter density, so these values of fmax,all may
exceed 1. In particular, note that all combinations containing A have fmax,all > 1, while all
combinations containing Ā and C have fmax,all < 1. The set Ā on its own has marginal status
if only monochromatic mass functions are considered, but clearly fmax,all > 1 in this case.
With the constraints we consider in this work, fPBH = 1 is always allowed when using the
less stringent set A, regardless of additional constraints.

4 Discussion

With the maximization procedure introduced in section 3.3, it is simple to determine the
maximum PBH density consistent with constraints. We stress that this is a bound that
applies for mass functions of all forms. Thus, given a set of observational constraints, we can
determine a model-independent bound on the density of PBH.

Further, the functional form of the optimal mass function elucidates the dependence of
constraints on the variance of the mass function. In the single-constraint case, we showed
that an extended mass function never outperforms the optimal monochromatic mass func-
tion. Indeed, in this case, increasing the variance of a narrow mass function will only relax
constraints if fmax is concave-up in the neighborhood of interest. When multiple constraints
are considered, the relationship between the variance of the mass function and the allowed
density is less obvious. Our semi-analytical optimum mass functions all exhibit some non-
zero spread, and they definitively allow higher PBH densities than any zero-variance (i.e.,
monochromatic) mass function. However, extending a monochromatic mass function only
slightly, without overlapping additional points of the semi-analytical optimum mass func-
tion, is not useful for relaxing constraints. In this respect, our findings are consistent with
those of [16, 17].

– 7 –



10−17 10−14 10−11 10−8 10−5 10−2 101

MPBH [M�]

10−3

10−2

10−1

100
Ω

P
B

H
/Ω

D
M EROS

ev
ap

FL

HSC

K M

C
M

B
E

riII

S
egI

WB

Set AB

10−17 10−14 10−11 10−8 10−5 10−2 101

MPBH [M�]

10−3

10−2

10−1

100

Ω
P

B
H
/Ω

D
M EROS

FL

HSC

K M

ev
ap

C
M

B

Set Ā
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Figure 1. The semi-analytical optimum mass function for four sets of constraints. Constraint
functions for monochromatic mass functions are shown in blue (A), red (Ā), green (B), and yellow
(C). Vertical lines denote the locations of Dirac deltas in the semi-analytical optimum mass function,
with height indicating the weight given to each one.

Our results quantify the risks of using monochromatic mass functions to assess the
overall status of the PBH dark matter paradigm. So long as one window in the constraint
functions dominates over the others, the difference between fmax,all and fmono is generally
very small. Set A is a clear example of such a case, and the correction is of order 0.1%.
On the other hand, if PBH are constrained to a similar extent in two distinct windows, the
correction can be large. The most dramatic example is provided by set Ā, for which fmax,all

is larger than fmono by 52%. We conclude that, at worst, the bound on the total PBH density
is related to the monochromatic version by a factor of O(1).

The optimal mass functions themselves (fig. 1) do not correspond to any well-motivated
production scenario that we are aware of, and we certainly do not claim that the maximal
density can be attained by producing PBH monochromatically at a discrete collection of
masses spanning 15 orders of magnitude. Instead, the panels of fig. 1 should be interpreted
as tool to relate monochromatic constraint functions to their impact on the allowed total
density of PBH. In particular, an immediate and non-trivial conclusion that can be drawn
from the figures is that the addition of any new constraint which does not overlap the peaks
of the optimal mass function will not reduce fmax,all.

The most substantial differences in fmax,all arise from differences between A and Ā. Set
Ā contains more stringent forms of constraints from CMB anisotropy and PBH evaporation.
The CMB constraint is strongly dependent on modeling poorly-understood accretion pro-
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cesses. Both versions of the constraint used in this work are drawn from [13]: the version
in set A is obtained by considering only collisional ionization of the accreted gas, while the
version in set Ā is obtained by including photoionization as well. The evaporation constraint
is sensitive to uncertainties in the spectrum of extragalactic background radiation. We adopt
the extreme cases considered by [16], with the relaxed form contained in set A and the more
stringent form in set Ā. The values of fmax,all in table 1 demonstrate that the present observa-
tional status of PBH dark matter is strongly dependent on the constraints adopted. However,
to rule out fPBH = 1, it is necessary to both take the more stringent constraints Ā in place
of A, and to include at least one of the constraints from set C: supernova microlensing [27],
neutron star capture [26], and white dwarf explosions [25].

The supernova microlensing constraint is the most recent of those we consider, and
its robustness is the subject of ongoing discussion in the literature [see e.g. 8]. We note
that this constraint is dominant in the LIGO window only when dynamical constraints from
set B are neglected, so the addition of this constraint alone to set AB or ĀB will have
a small impact on fmax,all. The constraint from neutron star capture is also subject to
astrophysical uncertainties, since it is dependent on the dark matter density in the cores of
galactic clusters [26]. We consider the relatively restrictive constraint obtained by taking
ρDM = 104 GeVcm−3. The strength of the constraint scales linearly with ρDM, and more
conservative estimates take ρDM smaller by an order of magnitude or more. However, this
constraint is most effective in a window shared with constraints from white dwarf explosions,
so even if one of the two is subject to substantial uncertainties, the effect of set C on fmax,all

remains large.

5 Conclusions

We have found the form of the mass function which maximizes the PBH density subject to
observational constraints, and we have used this to calculate an upper bound on the fraction
of dark matter in PBH. Depending on the constraints adopted, we find fmax,all as large as
27.25 (set A) or as small as 0.405 (set ĀBC). The scenario in which all dark matter is
composed of PBH is ruled out by stringent limits from evaporation and Planck if combined
with the constraints from white dwarf explosions, neutron star capture and SNe lensing (set
C). However, if relaxed constraints from evaporation and Planck are adopted, PBH dark
matter is not ruled out by the addition of any other constraints we consider in this work.

Our method provides a fast and robust technique to determine the total allowed density
of PBH given a set of constraints (fmax,all), independent of the form of the PBH mass function.
The optimal mass function itself allows an easy test of the impact of additional constraints on
fmax,all. While the optimal mass function is not exactly monochromatic, it is very nearly so
for realistic constraints. The optimal mass function corresponding to each set of constraints
we consider is approximately monochromatic, with additional components scaling the total
allowed fraction by no more than an O(1) factor. Our results explain the findings of [16, 17]
that extended mass functions are generally more strongly constrained than monochromatic
mass functions, and confirm that the monochromatic maximum density fmono is a good
approximation of the allowed density across all mass functions.

A Comparison to numerical optimization

Given a set of constraints, it is also possible to use numerical methods to find a mass function
which maximizes the PBH density. There are significant caveats to such an approach. Most
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Figure 2. Left: fPBH attained in each step during numerical maximization, shown as a fraction of
the semi-analytical fmax,all. The dashed red line indicates fPBH = fmax,all. Right top: L2 norm of
the difference between ψN (numerical) and ψSA (semi-analytical) mass functions for each step, shown
as a fraction of ‖ψSA‖. In computing the norm, ψSA is treated as a step function on the mass bins.
Right bottom: acceptance rate in bins of 104 steps.

importantly, a maximization algorithm may converge to a local optimum rather than a global
optimum. Additionally, computational costs may render numerical approaches impractical
unless the functions involved are discretized sparsely. Even so, numerical optimization can be
used to validate our analytical results: if the same set of masses is used for discretization, then
the numerical result should never reach a greater normalized mass (cf. eq. (3.12)) than that
of our corresponding semi-analytical result. Numerical methods can also be used to check
that our semi-analytical optimum is a stationary point of the normalized mass functional.

We implement these validation steps using a simple Monte Carlo algorithm, as follows:
we begin with an initial mass function of the form ψ0(M) ∝M−1, which assigns equal PBH
density to each log-spaced mass bin. We then perturb the value of ψ0 in a random bin k by
a value selected from a Gaussian distribution with mean 0 and variance σ2ψ0(Mk)

2, where
σ is a parameter of the maximization. We denote the resulting mass function by ψ1(M).
If ψ1(Mk) ≥ 0 and M[ψ1] > M[ψ0], we accept the step, replace ψ0 by ψ1, and repeat.
For simplicity, we do not accept any steps which reduce the normalized mass. This is not
necessary in order to test whether our semi-analytical optimum mass function is a stationary
point. We also reject steps which increase the normalized mass by less than 10−10 to avoid
exceeding the numerical precision of the semi-analytical result.

In order to make the problem numerically tractable, we use only 102 log-spaced mass
bins. This discretization is different from the one used in table 1, and it does not capture
sharp features of the constraints. Consequently, in order to compare the numerical results
with semi-analytical results, we regenerate the semi-analytical mass function with the same
discretization. Note that this affects both the form of the optimal mass function and the
calculated fmax,all.

We implement the numerical optimization with σ = 10−2. In what follows, we denote
the numerical mass function by ψN, and the semi-analytical optimum by ψSA. The left-hand
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Figure 3. Blue: numerically-optimized mass function ψN after 106 steps. Red: semi-analytical opti-
mum ψSA. Each curve shows the integral of the mass function in each bin, i.e., the total contribution
of that bin to fPBH.

side of fig. 2 shows fPBH for the numerical mass function at each step as a fraction of the
semi-analytical fmax,all. The numerical fPBH converges to fmax,all and immediately stabilizes,
and in particular, in no step does fPBH exceed fmax,all.

In principle, ψN need not converge to ψSA even given that fPBH converges to fmax,all,
since the mass function with maximal density is not necessarily unique. However, in the
top-right panel of fig. 2, we show that ψN tends to ψSA in the L2 norm. To compute this
distance consistently, we treat the Dirac deltas of ψSA as constant functions in their respective
bins. As an additional test of convergence, we compute the acceptance rate, i.e., the fraction
of steps which are accepted, during each window of 104 iterations. The acceptance rate
vanishes as ψN approaches ψSA, which further demonstrates that ψSA is a stationary point
of the normalized mass.

The numerical and semi-analytical mass functions are shown in fig. 3. In order to
compare Dirac deltas with the smooth mass function ψN, the figure shows the integral of the
mass function in each bin rather than ψN and ψSA themselves. It is clear that in this case,
the numerical algorithm converges to the semi-analytical optimum. We have established via
analytical arguments that this is not simply a local optimum, but indeed the global maximum
of the normalized mass.
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