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ABSTRACT OF THE DISSERTATION

High-dimensional Inference for Dynamic Treatment Effects and Adaptive Split

Balancing for Optimal Random Forests

by

Weijie Ji

Doctor of Philosophy in Mathematics with a Specialization in Statistics

University of California San Diego, 2023

Professor Jelena Bradic, Chair

The first two chapters consider the estimation and inference of the dynamic treatment effect

when the confounders are possibly high dimensional. Chapter 1 proposes a sequential dou-

bly robust Lasso (S-DRL) estimator using ℓ1-regularized nuisance estimates with DR-type

imputations. The proposed method achieves consistency as long as at least one nuisance

function is appropriately parametrized for each exposure time and treatment path. The key

to achieving these results is the usage of DR representations for intermediate conditional

outcome models, which offers superior inferential performance while requiring weaker as-

xii



sumptions. We establish root-n inference based on the S-DRL estimator is guaranteed when

two product-sparsity conditions are satisfied. Chapter 2 further provides root-n inference for

the dynamic treatment effect even when model misspecification occurs. We provide valid in-

ference based on a “sequential model double robust” solution as long as one of the nuisance

models is correctly specified at each time spot. Chapter 3 proposes a novel construction

for random forests, incorporating cyclic modification of the selection of splitting directions

with the goal of achieving a faster consistency rate for the integrated mean squared error

(IMSE). Setting α = 0.5 leads to the proposed cyclic forest degenerating into cyclic median

forests, obtaining a minimax optimal rate for IMSE within the Lipschitz class. We further

extend our exploration to local polynomial regression within each leaf, formulating cyclic lo-

cal polynomial forests as generalizations of the cyclic forests. When α = 0.5, our cyclic local

polynomial forests attain a minimax rate for IMSE, marking the first instance of achieving

minimax optimal rates for random forests within the Hölder class. Furthermore, we establish

minimax optimal rates for the uniform convergence rate.
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Chapter 1

High-dimensional inference for

dynamic treatment effects

1.1 Introduction

The complexity of a given disease or economic policy often manifests in the diversity

and size of the personal characteristics pertaining to each individual or economy under con-

sideration, causing a considerable degree of heterogeneity in observed outcomes. However,

the utility of randomized control trials (RCTs), especially over time, is frequently curtailed

by prohibitive costs or ethical concerns. In contrast, the accessibility of time-varying ob-

servational studies has burgeoned of late. The ubiquity of data-driven decision-making is

evident in various aspects of daily life, such as the continuous monitoring of individuals’

health using mobile devices and consequential medical interventions, tracking of online pres-

ence and real-time measurement of economic and social policies implemented to enhance

1



public health. The present study contributes novel insights to the literature by proposing a

novel framework to construct confidence intervals pertaining to dynamic treatment effects

amid high-dimensional observations. In a Job Corps real-data analysis, our novel framework

provides more accurate estimates of the long-term impact of additional schooling over time

on wages, which has important practical implications for designing effective policies aimed

at increasing educational attainment and improving economic outcomes.

In light of intricate notational complexities, we exemplify our ideas and findings

for two-stage trials while affirming that the same theoretical framework and methodology

developed are extensible to multiple-stage trials; see, e.g., Section 1.5. Consider a two-

stage series of binary treatment assignments, denoted by A1 and A2, and an outcome of

interest, Y ∈ R. Alongside this, a set of possibly high-dimensional sequential pre-treatment

covariates S1 ∈ Rd1 and S2 ∈ Rd2 , possibly of different dimensions, are also observed. The

potential or counterfactual outcomes, Y (a), refer to the outcome that a participant would

have experienced had they followed a particular treatment sequence, a = (a1, a2) ∈ {0, 1}2,

which may differ from the treatment they were observed with. Our parameter of interest is

the dynamic treatment effect (DTE) between two treatment paths, a and a′, which is defined

as follows:

θ := E[Y (a)]− E[Y (a′)] = θa − θa′ , with θa := E[Y (a)]. (1.1)

Estimating the DTE is a challenging task when there are multiple exposures involved.

The influence of past treatments on future confounders and treatment choices complicates the

identifiability of θ [RR83]. Adjusting for confounders may not have a causal interpretation,

even when all confounders are measured and the regression is correctly specified [DCDS+13].

2



In this context, alternative methods such as Sequential Multiple Randomized Control Trials

(SMART) [HSHD+16], Structural Nested Mean (SNM) [Rob97], and Marginal Structural

Mean (MSM) models [MvdLRG01] have become the gold standard for addressing these

challenges. This paper contributes to the field by establishing robust MSMmodel estimations

with new effective rates.

1.1.1 The doubly robust representations

Throughout this work, we assume that any treatment-specific variable can only be

affected by past treatments or past covariates; and not the future. This is sometimes called

temporal ordering. We also assume a “no interference” setting and Assumption 1.1 below

[Rob87,Rob00a,Mur03].

Assumption 1.1. (a) (Sequential Ignorability) Y (a1, a2) ⊥⊥ A1 | S1 and Y (a1, a2) ⊥⊥ A2 |

S, A1 = a1 where S = (S⊤
1 ,S

⊤
2 )

⊤ ∈ Rd with d := d1 + d2. (b) (Consistency of potential

outcomes) Y = Y (A1, A2). (c) (Overlap) Let c0 ∈ (0, 1/2) be a positive constant, such that

P (c0 ≤ πa(S1) ≤ 1 − c0) = 1, and P (c0 ≤ ρa(S) ≤ 1 − c0) = 1. Here, the propensity scores

are defined as πa(s1) := P [A1 = a1|S1 = s1] and ρa(s) := P [A2 = a2|S = s, A1 = a1].

The following lemma provides a doubly robust (DR) representation of θa. This result

is consistent with previous studies in the literature, including works by [vdLG12,ORR10,

MvdLRG01,BR05]. We consider the MSM models where we adjust for confounding variables

that may affect both the treatment assignment and the outcome of interest. In an MSM, the

treatment assignment and the outcome of interest are modeled separately using propensity

scores πa(s1) and ρa(s) together with the first-time and second-time conditional means,

3



µa(s1) := E[Y (a)|S1 = s1] and νa(s) := E[Y (a)|S = s, A1 = a1]. Throughout this work,

we use π∗
a(·) and ρ∗a(·) as well as µ∗

a(·) and ν∗a(·) to refer to the working models, i.e., the

population-level approximations of the propensity scores and conditional means, respectively.

Lemma 1.1 (A DR representation of θa). Let Assumption 1.1 hold. Suppose that at least

one of µ∗
a(·) and π∗

a(·) is correctly specified, and at least one of ν∗a(·) and ρ∗a(·) is correctly

specified, i.e, (a) either µ∗
a(·) = µa(·) or π∗

a(·) = πa(·), but not necessarily both and (b) either

ν∗a(·) = νa(·) or ρ∗a(·) = ρa(·), but not necessarily both. Then

θa = E

[
µ∗
a(S1) + 1{A1=a1}

ν∗a(S)− µ∗
a(S1)

π∗
a(S1)

+ 1{A1=a1,A2=a2}
Y − ν∗a(S)
π∗
a(S1)ρ∗a(S)

]
. (1.2)

Based on Lemma 1.1, consistent estimates of θa are expected as long as at least one

nuisance model is correctly parametrized at each exposure time. However, this goal has not

been achieved yet; see [BRR19] for an overview. The main obstacle is the estimation of

interlocking nuisance functions, especially the first-time conditional mean, as it cannot be

identified directly through the observable variables as µa(s1) = E[Y (a)|S1 = s1] ̸= E[Y |S1 =

s1, A1 = a1]. Under Assumption 1.1, existing DTE literature typically considers the following

nested representation of µa(·),

µa(s1) = E[Y (a)|S1 = s1] = E[νa(S)|S1 = s1, A1 = a1], (1.3)

and suggests a nested regression (NR) of the conditional means – as long as an estimate

ν̂a(·) of νa(·) is obtained, one can use ν̂a(Si) as the imputed outcomes and perform re-

gression to construct µ̂a,NR(·); see, e.g., [MvdLRG01]. We formalize these properties under

high-dimensional linear working models, naming the resulting DTE estimator the “dynamic

treatment Lasso” (DTL) estimator. We show that the nested-regression approach faces cer-

tain limitations and fails to attain the DR property equivalent to Lemma 1.1. Among the

4



multiple factors contributing to this, the biggest one is arising from a peculiar model misspec-

ification that we identified arising from the nested representation in Equation (1.3). In the

event of a misspecified linear working model ν∗a(·), the corresponding µ∗
a(·) will inevitably

be misspecified as well, leading to µ∗
a(·) ̸= µa(·), even when µa(·) is itself linear. Besides

the linearity of µa(·), additional conditions on νa(·) are necessary for the correctness of the

nested-regression-based linear working model, as discussed in Section 1.2.3.

This issue necessitates the use of specialized methods for which we propose a new DR

representation of the first-time conditional mean function µa(·); see (1.4) below. It provides

tools to quantify the DR property of the resulting DTE estimate and to develop correction

techniques that can mitigate the DR gap by achieving the estimation under model conditions

equivalent to Lemma 1.1.

Theorem 1.1 (A DR representation of µa(·)). Suppose that either ν∗a(·) = νa(·) or ρ∗a(·) =

ρa(·) holds. Let Assumption 1.1 holds. Then, for any s1 ∈ Rd1,

µa(s1) = E

[
ν∗a(S) + 1{A2=a2}

Y − ν∗a(S)
ρ∗a(S)

| S1 = s1, A1 = a1

]
. (1.4)

Utilizing the two DR representations (1.2) and (1.4) simultaneously, we propose a

sequential doubly robust Lasso (S-DRL) estimator. The proposed estimator is consistent as

long as either the conditional mean function is truly linear or the propensity score function is

truly logistic (or both) for each exposure time. To the best of our knowledge, this is the first

estimator that matches Lemma 1.1 conditions empirically. The inverse probability weighting

(IPW) methods [Rob86,Rob00a,HBR01,Rob04] require all the propensity score models to

be correctly parametrized. The covariate balancing methods [KS18,YS18,VB21] require all

the conditional mean models to be correctly parametrized. Perhaps unexpectedly, the stan-

5



Table 1.1: Consistency of the S-DRL, DTL, and MR estimators in two-stage
trials.

Nuisance models Consistency

logistic ρa(·) logistic πa(·) linear µa(·) linear νa(·) S-DRL DTL MR

✓ ✓ ✓ ✓ ✓ ✓ ✓

✗ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✗ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✗ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✗ ✓ ✓ ✓

✗ ✗ ✓ ✓ ✓ ✓ ✓

✗ ✓ ✗ ✓ ✓ ✓ ✗

✓ ✗ ✓ ✗ ✓ ✗ ✓

✓ ✓ ✗ ✗ ✓ ✓ ✓

dard low-dimensional DR methods [Rob00b,MvdLRG01, BR05, YvdL06] and the targeted

maximum likelihood estimation (TMLE) [vdLG12] require either all the propensity score

functions or all the conditional mean (or density) functions to be correctly parametrized.

The “multiply robust” (MR) estimator of [BRR19] reaches better robustness than all of the

aforementioned methods. In general T -stage trials, they allow for the first t conditional mean

models and the last T − t propensity score models to be correctly parametrized for any t.

The DTL estimator allows the first t propensity score models and the last T − t conditional

mean models to be correctly parametrized. Our S-DRL estimator is strictly more robust in

terms of consistency; see Table 1.1 and Remark 1.1 for further details.

The S-DRL estimator demonstrates superior estimation rates in high-dimensional

contexts when compared to the DTL estimator; see Table 1.2 as well as Remark 1.5. Root-

sample-size inference based on the S-DRL estimator is guaranteed when two product-sparsity

6



conditions are satisfied, whereas the DTL method requires three product-sparsity conditions,

as demonstrated in Theorems 1.3 and 1.5. The errors in nuisance estimation at different

stages have a parallel effect on the estimation; see the consistency rate in Theorem 1.6.

The estimation of the in-between outcome models is intrinsically linked to regression

with imputed outcomes. We have developed a novel cone-set analysis of imputed Lasso

estimates that is of independent interest to other imputed, high-dimensional regressions.

Existing Lasso proof techniques provide conservative bounds only; see Section 1.4. Our

results are adaptive to the imputation error and can be used to guide the selection of tuning

parameters in high-dimensional regression models with imputed outcomes.

In the multi-stage exposure setting, we extend our method and develop DR represen-

tations to identify both the expected potential outcomes and conditional means, as shown in

Section 1.5. While the consistency rate and asymptotic normality require intricate proofs,

we anticipate they hold analogously to those in the two-stage case. It is worth noting that

Theorem 1.11 provides new DR representations that are independent of any specific para-

metric models, allowing the sequential doubly robust (S-DR) method to be utilized with

non-parametric nuisance estimates, which enhances its versatility.

1.1.2 Organization of the paper

In Section 1.2, we introduce the DR estimators of the DTE, including the proposed S-

DRL estimator, the DTL estimator, and a general DR estimator. The theoretical properties

of the considered DTE estimators are established in Section 1.3. In Section 1.4, we formalize

the supporting theoretical discoveries, including a general theory for imputed Lasso estima-

tion and the consistency results of the nuisance estimates. We further extend our setting
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to the case of multi-stage treatments and provide general DR representations for the inter-

mediate conditional means in Section 1.5. Section 1.6 presents numerical results, including

simulation studies and an application to the National Job Corps Study. Further discussion

is provided in Section 1.7.

1.1.3 Notation

For any α > 0, let ψα(·) denote the function given by ψα(x) := exp(xα)− 1, ∀x > 0.

Then the ψα-Orlicz norm ∥ · ∥ψα of a random variable X is defined as ∥X∥ψα := inf{c >

0 : E[ψα(|X|/c)] ≤ 1}. Two special cases of finite ψα−Orlicz norm are given by ψ2(x) =

exp(x2)− 1 and ψ1(x) = exp(x)− 1, which correspond to sub-Gaussian and sub-exponential

random variables, respectively. The notation aN ≪ bN denotes aN = o(bN), and aN ≫ bN

denotes bN ≪ aN as N →∞. The notation aN ≍ bN denotes cbN ≤ aN ≤ CbN for all N ≥ 1

and with constants c, C > 0. Define g(u) = exp(u)/{1+ exp(u)} as the logistic function and

ϕ(u) = log(1 + exp(u)) as the corresponding link function throughout.

1.2 The doubly robust estimators

We observe a collection of independent and identically distributed (i.i.d.) samples

D := {Wi}Ni=1 = (Yi,S1i, A1i,S2i, A2i)
N
i=1, drawn from the same distribution as (Y,S1, A1,S2,

A2). In the following subsections, we present three DTE estimators: the new sequential

doubly robust Lasso (S-DRL) estimator, the dynamic treatment Lasso (DTL) estimator,

and the general DR estimator.
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1.2.1 The sequential doubly robust Lasso (S-DRL) estimator

We focus on the high-dimensional scenario, and consider linear (working) models

for the conditional means µa(·) and νa(·), along with logistic (working) models for the

propensities πa(·) and ρa(·). The population minimizer approximating πa(s1) is defined as

π∗
a(s1) = g(v⊤γ∗

a) with v = (1, s⊤1 )
⊤, whereas that of approximating ρa(s) is ρ

∗
a(s) = g(u⊤δ∗

a)

with u = (1, s⊤)⊤. Here

γ∗
a = argmin

γ∈Rd1+1

E
[
ϕ(V⊤γ)− 1{A1=a1}V

⊤γ
]
, V = (1,S⊤

1 )
⊤ ∈ Rd1+1 and (1.5)

δ∗
a = argmin

δ∈Rd+1

E
[
1{A1=a1}

[
ϕ(U⊤δ)− 1{A2=a2}U

⊤δ
]]
, U = (1,S)⊤ ∈ Rd+1. (1.6)

One can also consider a feature map φ(s1) (e.g., a polynomial basis) and a working model

π∗
a(s1) = g(φ(s1)

⊤γ∗
a) with some γ∗

a defined correspondingly. We focus on φ(s1) = v,

although the results apply more broadly. The above working models can be estimated

with many regularizations. Throughout this work, we focus on the ℓ1-regularization, al-

beit the theoretical developments apply more broadly. With a subset of training data

DJ = {Wi}i∈J ⊂ D, where J ⊂ {1, . . . , N}, we define

γ̂a := γ̂a(DJ ) = argmin
γ∈Rd1+1

1

|J |
∑
i∈J

[
ϕ(V⊤

i γ)− 1{A1i=a1}V
⊤
i γ
]
+λγ∥γ∥1, (1.7)

δ̂a := δ̂a(DJ ) = argmin
δ∈Rd+1

1

|J |
∑
i∈J

1{A1i=a1}
[
ϕ(U⊤

i δ)− 1{A2i=a2}U
⊤
i δ
]
+λδ∥δ∥1, (1.8)

with tuning parameters λγ , λδ > 0. Observe that for γ̂a, we utilize all of the observations

regardless of its treatment path, whereas for δ̂a, only those whose treatment path matches

a1 regardless of what a2 is. The best linear working model for the second-time conditional
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mean νa(·) = E[Y |S, A1 = a1, A2 = a2] is denoted as

ν∗a(s) = u⊤α∗
a, α∗

a := argmin
α∈Rd+1

E
[
1{A1=a1,A2=a2}(Y −U⊤α)2

]
. (1.9)

An estimator of (1.9) can be obtained similarly with λα > 0:

α̂a := α̂a(DJ ) = argmin
α∈Rd+1

1

|J |
∑
i∈J

1{A1i=a1,A2i=a2}(Yi −U⊤
i α)2 + λα∥α∥1. (1.10)

Algorithm 1 Sequential Double Robust Lasso (S-DRL)

Require: Observations D := {Wi}Ni=1 = (Yi,S1i, A1i,S2i, A2i)
N
i=1, treatment path a, and

control a′.
1: For any K ≥ 2, let K = {1, 2, . . . , K}. Randomly split I = {1, . . . , N} into K equal-

sized |Ik| = n. Define I−k := I\Ik, and further split I−k into two equal-sized sets I−k,1
and I−k,2.

2: Let W−k := {Wi}i∈I−k
and W−k,j := {Wi}i∈I−k,j

for each j ∈ {1, 2}.
3: for k = 1, 2, ..., K do
4: for c ∈ {a, a′} do
5: Using W−k, construct estimates γ̂c, δ̂c, and α̂c through (1.7), (1.8), and (1.10),

respectively.
6: UsingW−k,1, construct estimates δ̃c and α̃c through (1.8) and (1.10), respectively.

7: For each i ∈ I−k,2, set Ŷ DR
i as defined in (1.14) with δ̃c and α̃c from Step 6.

8: Compute β̂c,1 through (1.15) based on the training samples W−k,2.

9: Exchange W−k,1 and W−k,2, repeat Steps 6-8 and obtain β̂c,2 analogously. Com-
pute

β̂c = (β̂c,1 + β̂c,2)/2. (1.11)

10: end for
11: Let η̂c = (α̂c, β̂c, γ̂c, δ̂c). Using the DR score (1.16), compute θ̌(k) as

θ̌(k) = |Ik|−1
∑
i∈Ik

[ψa(Wi; η̂a)− ψa′(Wi; η̂a′)] .

12: end for return The S-DRL estimator and the variance estimate

θ̂ := K−1
∑
k∈K

θ̌(k), σ̂2 := N−1
∑

k∈K,i∈Ik

[
ψa(Wi; η̂a)− ψa′(Wi; η̂a′)− θ̂

]2
. (1.12)
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Estimation of the first-time conditional mean µa(·) Recall that δ∗
a and α∗

a are defined

in Equations (1.6) and (1.9), respectively. We propose the following DR imputed outcome

Y DR := U⊤α∗
a + 1{A2=a2}

Y −U⊤α∗
a

g(U⊤δ∗
a)

.

With this in mind, we consider a linear working model for the first-time conditional mean

µ∗
a(s1) = v⊤β∗

a, β∗
a := argmin

β∈Rd1+1

E
[
1{A1=a1}(Y

DR −V⊤β)2
]
. (1.13)

To estimate the best linear slope β∗
a based on a subset of training data DJ ⊂ D, we consider

an additional sample splitting with DJ = DJ1 ∪ DJ2 , where J1 and J2 are disjoint subsets

of J . Using the first half of the subsamples DJ1 , we first obtain the second-time nuisance

estimates δ̃a := δ̂a(DJ1) and α̃a := α̂a(DJ1) as (1.8) and (1.10), respectively. Then, for each

i ∈ J2, we construct a DR imputed outcome

Ŷ DR

i := U⊤
i α̃a + 1{A2i=a2}

Yi −U⊤
i α̃a

g(U⊤
i δ̃a)

. (1.14)

Based on the DR imputed outcomes Ŷ DR
J2

:= {Ŷ DR
i }i∈J2 , we propose a DR estimate:

β̂a := β̂a(DJ2 , Ŷ
DR

J2
) = argmin

β∈Rd1+1

1

|J2|
∑
i∈J2

1{A1i=a1}

(
Ŷ DR

i −V⊤
i β
)2

+ λβ∥β∥1, (1.15)

where λβ > 0. To regain full sample size efficiency, we can always swap the samples DJ1 and

DJ2 , repeat the procedure, and average the results.

The S-DRL estimator of the DTE For each c ∈ {a, a′} and for any η = (α,β,γ, δ),

define the DR score function based on the DR representation (1.2):

ψc(W ; η) := V⊤β + 1{A1=c1}
U⊤α−V⊤β

g(V⊤γ)
+ 1{A1=c1,A2=c2}

Y −U⊤α

g(V⊤γ)g(U⊤δc)
. (1.16)
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We propose the sequential doubly robust Lasso (S-DRL) estimator of θ:

θ̂ := N−1

N∑
i=1

[ψa(Wi; η̂a)− ψa′(Wi; η̂a′)],

where η̂c := (α̂c, β̂c, γ̂c, δ̂c) are the nuisance estimates of (1.10), (1.15), (1.7), and (1.8),

respectively. A cross-fitting technique is used. The details are provided in Algorithm 1;

see [CCD+18,SRR19] where the cross-fitting leads to weaker sparsity restrictions than those

without it, such as [Far15,Tan20].

1.2.2 The dynamic treatment Lasso (DTL) estimator

Algorithm 2 Dynamic Treatment Lasso (DTL)

Require: Observations {Wi}Ni=1, number of cross-fitting subsets K ≥ 2, treatment path a,
and control a′.

1: For anyK ≥ 2, let K = {1, 2, . . . , K}. Randomly split I = {1, . . . , N} intoK equal-sized
|Ik| = n with I−k = I\Ik and W−k = {Wi}i∈I−k

.
2: for k = 1, 2, ..., K do
3: for c ∈ {a, a′} do
4: Using W−k, construct estimates γ̂c, δ̂c, and α̂c through (1.7), (1.8), and (1.10),

respectively.
5: Compute β̂c,NR as (1.19) based on the training samples W−k and the nuisance

estimate α̂c.
6: end for
7: Using the DR score (1.16) and let η̂c,NR = (α̂c, β̂c,NR, γ̂c, δ̂c), compute θ̌

(k)
DTL as

θ̌
(k)
DTL = |Ik|−1

∑
i∈Ik

[ψa(Wi; η̂a,NR)− ψa′(Wi; η̂a′,NR)] .

8: end for return The DTL estimator and the variance estimate

θ̂DTL := K−1
∑
k∈K

θ̌
(k)
DTL, σ̂2

DTL := N−1
∑

k∈K,i∈Ik

[
ψa(Wi; η̂a,NR)− ψa′(Wi; η̂a′,NR)− θ̂DTL

]2
.

(1.17)

In this section, we formally define a dynamic treatment Lasso (DTL) estimator based

on the DR score (1.2) of θa and the nested representation (1.3) of µa(·). Here, ℓ1-regularized

nuisance estimates γ̂a, δ̂a, and α̂a will be the same as before; see (1.7), (1.8), and (1.10)
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above. Estimation of the first-time conditional mean model is different. Based on the best

linear approximation ν∗a(s) = u⊤α∗
a, (1.9), of νa(·), we introduce the following nested “best

linear working model”:

µ∗
a,NR(s1) = v⊤β∗

a,NR, β∗
a,NR := argmin

β∈Rd1+1

E
[
1{A1=a1}(U

⊤α∗
a −V⊤β)2

]
. (1.18)

Note that the two linear working models µ∗
a,NR(·) and µ∗

a(·) are not necessarily the same; see

Section 1.2.3 for detailed comparisons. We consider the following imputed Lasso estimate of

β∗
a,NR, defined as β̂a,NR := β̂a,NR(DJ , α̂a) with

β̂a,NR := argmin
β∈Rd1+1

1

|J |
∑
i∈J

1{A1i=a1}
(
U⊤
i α̂a −V⊤

i β
)2
+λβ∥β∥1. (1.19)

Now we introduce the dynamic treatment Lasso (DTL) estimator of θ:

θ̂DTL := N−1

N∑
i=1

[ψa(Wi; η̂a,NR)− ψa′(Wi; η̂a′,NR)],

where ψc(·; ·) is defined in (1.16) and η̂c,NR := (α̂c, β̂c,NR, γ̂c, δ̂c) are the nuisance estimates as

in (1.10), (1.19), (1.7), and (1.8), respectively; see Algorithm 2 for details.

1.2.3 Comparisons between the first-time working models µ∗a(·)
and µ∗a,NR

(·)

In the dynamic treatment setting, the relationship between the linear conditional

mean function, µa(·), and its corresponding approximations, µ∗
a(·) and µ∗

a,NR(·), obtained via

different identification strategies, is not straightforward. Specifically, a linear µa(·) is only

a necessary condition for correctly specified linear working models; it does not guarantee

equality. Additional conditions are required to ensure that µ∗
a(·) = µa(·) and µ∗

a,NR(·) = µa(·).

In the following, we will discuss these necessary conditions in detail.
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The working model µ∗
a(·) The proposed S-DRL approach utilizes the following identifi-

cation µa(s1) = E[Y DR | S1 = s1, A1 = a1]. This representation remains valid for a linear

µa(·) as long as either ρa(·) is truly logistic or νa(·) is truly linear and not necessarily both.

In this case, we also have the following equivalent expressions of β∗
a:

β∗
a = argmin

β∈Rd1+1

E
[
(Y (a)−V⊤β)2 | A1 = a1

]
= argmin

β∈Rd1+1

E
[
(µa(S1)−V⊤β)2 | A1 = a1

]
.

That is, µ∗
a(s1) = v⊤β∗

a satisfies µ∗
a(·) = µa(·). Hence, µ∗

a(·) = µa(·) whenever (a) µa(·) is

a linear function and (b) either ρa(·) is a logistic function or νa(·) is a linear function. It

is worth noting that Condition (b) is already a prerequisite for the identification of DTE,

as stated in Lemma 1.1. Consequently, there is no need to introduce any other conditions

beyond those outlined in Condition (a).

The working model µ∗
a,NR(·) The DTL estimator relies on the nested-regression iden-

tification for which Conditions (a) and (b) above are insufficient for µ∗
a,NR(·) = µa(·); see

Example 1.1 below. Additional conditions are needed. For instance, µ∗
a,NR(·) = µa(·) if we

further assume the following:

(c) Under the treatment groups (A1, A2) = (a1, a2) and A1 = a1, the best linear slopes are

the same while regressing Y (a) on U, i.e., α∗
a = ᾱ∗

a, with α∗
a defined in (1.9) and

ᾱ∗
a := argmin

α∈Rd+1

E
[
(Y (a)−U⊤α)2|A1 = a1

]
.

One sufficient but not necessary condition for (c) is that the second-time conditional mean

function νa(·) is also linear; see further justifications in Section 1.8.1.
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The misspecification errors of µ∗
a(·) and µ∗

a,NR(·) Now we consider the case where µa(·)

is possibly non-linear and compare the misspecification (approximation) errors of the linear

working models µ∗
a(·) and µ∗

a,NR(·). As long as Condition (b) above holds, we have

ErrNR := E
[
(µa(S1)−V⊤β∗

a,NR)
2|A1 = a1

]
= E

[
(µa(S1)−V⊤β∗

a)
2|A1 = a1

]
+ E

[
(V⊤(β∗

a,NR − β∗
a))

2|A1 = a1
]

≥ ErrDR := E
[
(µa(S1)−V⊤β∗

a)
2|A1 = a1

]
.

Hence, we have the following conclusions. (1) When νa(·) is linear, µ∗
a,NR(·) = µ∗

a(·), and

both of them are the best linear approximations of the true conditional mean µa(·) among

the group A1 = a1, i.e., ErrNR = ErrDR. (2) When νa(·) is non-linear and ρa(·) is logistic,

µ∗
a,NR(·) ̸= µ∗

a(·) and β∗
a,NR ̸= β∗

a in general. If Assumption 1.3 holds, the strict inequality

above holds in that ErrNR > ErrDR as long as β∗
a,NR ̸= β∗

a. That is, the nested “best linear

approximation”, µ∗
a,NR(·), is in general sub-optimal. If we further consider the case where

µa(·) is linear, then we have ErrDR = 0 and possibly ErrNR > 0; see also an illustration in

Example 1.1 below.

Example 1.1 (A misspecified linear model when the truth is indeed linear). In what follows,

we turn our attention to the nested-regression approach and offer an illustrative example that

demonstrates how µ∗
a,NR(·) ̸= µa(·) for a linear µa(·), a logistic ρa(·), a non-linear νa(·), and

a non-logistic πa(·). To facilitate our discussion, we consider the case where both S1 and

S2 are one-dimensional covariates with supports in R. We assume S1 follows a uniform

distribution on [−1, 1], and consider an independent δ that follows a Bernoulli distribution
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with a probability of success 0.5. We further assume

P (A1 = a1 | S1) = S1/2 + 0.5, S2 = S1(2δ − 1),

P (A2 = a2 | S, A1 = a1) = g(S2) = exp(S2)/[1 + exp(S2)], Y (a) = 2δ − 1.

It is not difficult to verify that µa(·) ≡ 0 and µ∗
a,NR(s1) = v⊤β∗

a,NR, where β
∗
a,NR ≈ (−0.09, 0.3)⊤.

Notably, the nested-regression approach based on a linear working model µ∗
a,NR(·) is misspeci-

fied, even though the true conditional mean is linear. Furthermore, because both the first-time

conditional mean and propensity score models are misspecified, the DR representation of θa

in Equation (1.2) is no longer valid when the nested-regression-based working model µ∗
a,NR(·)

is considered. However, since the second-time propensity score ρa(·) is truly logistic, the S-

DRL approach leads to µ∗
a(·) = µa(·) ≡ 0 and the incidental validity of the DR representation

of θa through Equation (1.2).

1.2.4 The general DR DTE estimator

In this section, we present a general doubly robust (DR) estimator of the DTE. We

assume that we have access to estimators ν̂a(·), µ̂a(·), π̂a(·), and ρ̂a(·) of νa(·), µa(·), πa(·), and

ρa(·), respectively. The functions νa(s), πa(s1), and ρa(s) can be directly estimated using

observable variables, while the remaining nuisance function µa(·) can be identified using

either the proposed DR representation (1.4) or the usual nested representation (1.3). We

consider flexible estimation strategies for all nuisance functions, including both parametric

and non-parametric methods. Using the DR representation of θa given by (1.2), we propose

a general DR estimator of the DTE through a cross-fitting procedure. For any K ≥ 2,

randomly split I = {1, . . . , N} into K equal-sized parts with |Ik| = n = N/K. For the sake
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of simplicity, we consider n as an integer. Based on the training samples W−k, construct

ν̂c,−k(·), µ̂c,−k(·), π̂c,−k(·), and ρ̂c,−k(·) as estimates of the nuisance functions νc(·), µc(·), πc(·),

and ρc(·), respectively. For each c ∈ {a, a′}, let

ψ̂c,−k(W ) := µ̂c,−k(S1)+1{A1=c1}
ν̂c,−k(S)− µ̂c,−k(S1)

π̂c,−k(S1)
+1{A1=c1,A2=c2}

Y − ν̂c,−k(S)
π̂c,−k(S1)ρ̂c,−k(S)

. (1.20)

The general DR DTE estimator and the corresponding variance estimate are then defined

with ∆̂−k(·) = ψ̂a,−k(·)− ψ̂a′,−k(·) and K = {1, · · · , K} as

θ̂gen :=
1

N

∑
k∈K,i∈Ik

∆̂−k(Wi), σ̂2
gen :=

1

N

∑
k∈K,i∈Ik

[∆̂−k(Wi)− θ̂gen]2. (1.21)

1.3 Asymptotic properties

Here we establish consistency and asymptotic normality of the S-DRL, DTL, and the

general DR estimator.

1.3.1 Properties of the S-DRL estimator

We use sαa := ∥α∗
a∥0, sβa := ∥β∗

a∥0, sγa := ∥γ∗
a∥0, and sδa := ∥δ∗

a∥0 to denote sparsity

levels of the nuisance parameters as defined in (1.9) , (1.13), (1.5) and (1.6), respectively.

The number of covariates, d1 and d, are possibly much larger than N ; for simplicity, we

consider d1 ≍ d2 ≍ d := d1 + d2.

Assumption 1.2. Define ζa := 1{A1=a1,A2=a2}(Y (a)−ν∗a(S)), εa := 1{A1=a1}(ν
∗
a(S)−µ∗

a(S1))

and let ζ := ζa + ζa′, ε := εa + εa′. Suppose that there exist positive constants σζ < ∞ and

σε <∞, such that ζ and ε are sub-Gaussian, with ∥ζ∥ψ2 ≤ σσζ, ∥ε∥ψ2 ≤ σσε, and

σ2 := E[ψa(W ; η∗a)− ψa′(W ; η∗a′)− θ]2, (1.22)
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where ψc(·; ·) is defined in (1.16) and η∗c := (α∗
c ,β

∗
c ,γ

∗
c , δ

∗
c ).

Assumption 1.3. Let U be a sub-Gaussian vector such that ∥x⊤U∥ψ2 ≤ σu∥x∥2 for x ∈

Rd+1 and σu > 0. Let λmin(E[UU⊤
1{A1=a1}]) ≥ κl for any a1 ∈ {0, 1}, with κl > 0.

Assumptions 1.2 and 1.3 are fairly general even among the high-dimensional literature.

As N →∞, we allow ψ2-norm bounds of ζ and ε to diverge or to shrink to zero. When all

the nuisance models are correctly specified, under the overlap condition in Assumption 1.1,

σ2 ≍ E[ζ2] +E[ε2] +E[ξ2] ≥ max{E[ζ2], E[ε2]}, where ξ := µa(S1)−µa′(S1)− θ denotes the

centered conditional effect at the first exposure. A sufficient condition for Assumption 1.2 is

∥ζ/
√
E[ζ2]∥ψ2 ≤ σζ and ∥ε/

√
E[ε2]∥ψ2 ≤ σε, i.e., the “normalized” residuals have constant

ψ2-norms. Note that, we allow σ = σN to be dependent on N while assuming σζ and σε

to be constants independent of N ; σ → 0 and σ → ∞ are both allowed as N → ∞. The

following Assumption 1.4 is an overlap condition for the working propensity score models,

which is additionally required only when model misspecification occurs.

Assumption 1.4. Let π∗
a(·) and ρ∗a(·) be such that P (c0 ≤ π∗

a(S1) ≤ 1 − c0) = 1, P (c0 ≤

ρ∗a(S) ≤ 1− c0) = 1, for a fixed constant c0 > 0.

The following theorem characterizes the consistency rate of the S-DRL estimator of

θ.

Theorem 1.2 (Consistency of the S-DRL). Suppose that at least one of µ∗
a(·) and π∗

a(·) is

correctly specified, and at least one of the models ν∗a(·) and ρ∗a(·) is correctly specified. Let

Assumptions 1.1-1.4 hold. Assume that max{sαa , sβa , sγa , sδa} log(d) = o(N), and either (a)

∥S1∥∞ ≤ C almost surely, with a constant C > 0, or (b) sδa log
2(d) = O(N). Then the
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sequential DR Lasso (S-DRL) estimator, θ̂, as defined in Algorithm 1, satisfies

θ̂ − θ = Op

(
σ
s1 log(d)

N
+ σ

√
s2 log(d)

N
+

1√
N
σ

)
,

as N, d → ∞, with s1 := max{√sαasδa ,
√
sβasγa} and s′2 := max{sαa1{ρ∗a ̸=ρa}, sβa1{π∗

a ̸=πa},

sγa1{µ∗a ̸=µa}, sδa1{ν∗a ̸=νa}}.

We categorize bounded and unbounded covariate support and add a log(d) restriction

to sδa for the latter. The DR imputed outcome (1.14) has an unbounded ψα-Orlicz norm

for any α > 0. Yet, if S1 has bounded support, no extra sparsity condition is required as

the inverse probability weighting is stable and the DR imputation has a well-behaved tail

distribution.

Remark 1.1 (Comparison with low-dimensional DR DTE estimators). [LS21] applied debi-

ased machine learning and g-estimation techniques in the framework of SNM models. How-

ever, the “blip functions” γ1(s1, a1) and γ2(s, a1, a2) – which are defined as E[Y (a1, a2) −

Y (0, a2)|A1 = a1,S1 = s1] and E[Y (a1, a2) − Y (a1, 0)|A1 = a1, A2 = a2,S = s], respec-

tively – are considered low-dimensional and correctly specified for consistent estimation.

MSM models with low-dimensional confounders have been studied extensively, with signif-

icant theoretical advancements made in the seminal work of [TS12]. Additionally, [Rob00b],

[MvdLRG01], [BR05], and [YvdL06] explored DR DTE estimation with low-dimensional nui-

sances, proposing consistent and asymptotically normal DTE estimators given that either (a)

all conditional mean models are correctly parametrized or (b) all propensity score models are

correctly parametrized. More recently, [BRR19] proposed a multiple robust (MR) estimator

that allows for an additional model misspecification scenario (c), where only the first-time
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conditional mean model and second-time propensity score model are correctly parametrized.

However, all of the aforementioned approaches require low-dimensional, parametric nuisance

estimates that are root-N consistent.

Our proposed method accommodates high-dimensional and possibly non-parametric

nuisance estimates, which may not necessarily be root-N consistent. This approach allows

for a consistent estimate of the DTE even in challenging scenarios where only the second-

time conditional mean and first-time propensity score models are correctly specified (misspec-

ification scenario (d)). This scenario is more common in practice due to the difficulty of

identifying the first-time conditional mean model. When νa(s) = ν∗a(s) = u⊤α∗
a is linear, as

per (1.3), a linear µa(·) would require E[U⊤α∗
a|S1, A1 = a1] to be linear in S1 – an unlikely

scenario if any of the S2 are binary or discrete.

When all the nuisance models are correctly specified, we further establish asymptotic

normality results and the corresponding rate DR property of the S-DRL estimator.

Theorem 1.3 (Asymptotic normality of the S-DRL). Suppose that all the nuisance models

µ∗
a(·), ν∗a(·), π∗

a(·), and ρ∗a(·) are correctly specified. Let Assumptions 1.1-1.3 hold. Assume

that max{sαa , sβa , sγa , sδa} log(d) = o(N), and either (a) ∥S1∥∞ ≤ C almost surely, with

some constant C > 0, or (b) sδa log
2(d) = O(N). Additionally, assume the following product-

rate condition:

max{sγasβa , sδasαa} log2(d) = o(N). (1.23)

Then, with σ2 in (1.22) and σ̂2 in (1.12), the S-DRL estimator satisfies σ−1
√
N(θ̂ − θ) ;

N(0, 1) and σ̂−1
√
N(θ̂ − θ) ; N(0, 1) as N, d→∞.
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Theorem 1.3, as per [BR05], indicates that the S-DRL estimator achieves the semi-

parametric efficiency bound when all nuisance models are correctly specified.

Remark 1.2 (Comparison with static ATE estimators). We compare sparsity conditions

in Theorem 1.3 with the literature on estimating ATE through DR for a single exposure.

The ATE can be seen as a special case of the DTE where we assume that S1 and A1 are

completely random. This allows root-N estimation of µa(·) and πa(·). Consequently, Theorem

1.3 requires sαa + sδa = o(N/ log(d)) and sαasδa = o(N/ log2(d)), which are less restrictive

than [Far15,Tan20,DV21,DAV20,AV21] and are aligned with [CCD+18,SRR19].

1.3.2 Properties of the DTL estimator

With slight abuse of notation, let sβa = ∥β∗
a,NR∥0.

Theorem 1.4 (Consistency of the DTL). Suppose that at least one of µ∗
a,NR(·) and π∗

a(·) is

correctly specified, and at least one of the models ν∗a(·) and ρ∗a(·) is correctly specified. Let

Assumptions 1.1- 1.4 hold with µ∗
a(·) and β∗

a replaced by µ∗
a,NR(·) and β∗

a,NR. Assume that

max{sαa , sβa , sγa , sδa} log(d) = o(N). Then the DTL estimator satisfies, as N, d→∞,

θ̂DTL − θ = Op

(
σ
s′1 log(d)

N
+ σ

√
s′2 log(d)

N
+

1√
N
σ

)
, (1.24)

with s′1 := max{√sαasγa ,
√
sαasδa ,

√
sβasγa}

and s′2 := max{sαa1{π∗
a ̸=πa or ρ∗a ̸=ρa}, sβa1{π∗

a ̸=πa}, sγa1{µ∗a,NR ̸=µa}, sδa1{ν∗a ̸=νa}}.

Theorem 1.5 (Asymptotic normality of the DTL). Suppose that all the nuisance models

µ∗
a,NR(·), ν∗a(·), π∗

a(·), and ρ∗a(·) are correctly specified. Let Assumptions 1.1-1.3 hold with µ∗
a(·)

and β∗
a replaced by µ∗

a,NR(·) and β∗
a,NR. Assume that max{sαa , sβa , sγa , sδa} log(d) = o(N).
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Additionally, assume the following product-rate condition:

max{sγasβa , sδasαa , sγasαa} log2(d) = o(N). (1.25)

Then, with σ2 in (1.22) and σ̂2
DTL in (1.17), the DTL estimator satisfies σ−1

√
N(θ̂DTL− θ) ;

N(0, 1) and σ̂−1
DTL

√
N(θ̂DTL − θ) ; N(0, 1) as N, d→∞.

Remark 1.3 (Comparisons between the S-DRL and DTL estimators).

Consistency. Theorems 1.2 and 1.4 establish the consistency of two distinct estimators, S-

DRL and DTL. While both estimators necessitate correct specification of at least one of νa(·)

and ρa(·), their requirements on µa(·) and πa(·) differ due to their distinct conditional mean

models. Specifically, S-DRL mandates either µ∗
a(·) = µa(·) or π∗

a(·) = πa(·), which can be

guaranteed by the linearity of µa(·) or the logistic form of πa(·). In contrast, DTL imposes

the stricter condition of either µ∗
a,NR(·) = µa(·) or π∗

a(·) = πa(·), which may not be fulfilled

even when µa(·) is linear, as discussed in Section 1.2.3. For a comprehensive summary, see

Table 1.1.

Rate of estimation. Different rate of estimation of S-DRL and DTL are presented in Table

1.2. Table 1.2 reveals a symmetrical pattern in the rates of S-DRL, whereas DTL exhibits

an asymmetric behavior – the sparsity levels sαa and sγa appear to be more influential than

sβa and sδa. When either ρa(·) or µa(·) are misspecified, there is no difference in the rates.

However, when they are both correctly specified, the rate of DTL contains additional terms

that involve the sparsity level sαa (and sγa under certain circumstances). Notably, if sαa is

relatively large, S-DRL exhibits a faster consistency rate than DTL.

Asymptotic normality. The S-DRL and DTL estimators are both asymptotically normal, as

proven in Theorems 1.3 and 1.5. When µ∗
a,NR(·) = µa(·) = µ∗

a(·), their asymptotic efficiency
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is the same. However, they require different sparsity conditions. The DTL estimator requires

three product-sparsity conditions, specifically: (a) the first-time conditional mean µa(·) and

first-time propensity score πa(·), (b) the second-time conditional mean νa(·) and second-time

propensity score ρa(·), and (c) the second-time conditional mean νa(·) and first-time propen-

sity score πa(·), which are given in equation (1.25). On the other hand, the S-DRL estimator

only requires two product-sparsity conditions, as defined in (1.23). These correspond to (a)

and (b) above, with (c) becoming irrelevant. The S-DRL estimator is known as (sequen-

tial) rate DR because it is asymptotically normal when the product-sparsity of the nuisance

parameters is o(N/ log2(d)) for each exposure time; see more details in Remark 1.2.

1.3.3 Properties of the general DR estimator

In this section, we provide a new consistency result of the general DR DTE estimator.

Here we consider arbitrary working models π∗
a(·), ρ∗a(·), µ∗

a(·), and ν∗a(·), which may not follow

the logistic or linear forms as before. For each c ∈ {a, a′}, define the corresponding DR score

function as

ψ∗
c (W ) := µ∗

c(S1) + 1{A1=c1}
ν∗c (S)− µ∗

c(S1)

π∗
c (S1)

+ 1{A1=c1,A2=c2}
Y − ν∗c (S)
π∗
c (S1)ρ∗c(S)

, (1.26)

with

σ2 := E [ψ∗
a(W )− ψ∗

a′(W )− θ]2 . (1.27)

Assumption 1.5. For positive sequences aN = o(σ), bN = o(σ), cN = o(1), and dN = o(1),

let E[ν̂a(S) − ν∗a(S)]
2 = Op(a

2
N), E[µ̂a(S1) − µ∗

a(S1)]
2 = Op(b

2
N), E[π̂a(S1) − π∗

a(S1)]
2 =

Op(c
2
N), and E[ρ̂a(S) − ρ∗a(S)]

2 = Op(d
2
N). Moreover, for c0 ∈ (0, 1/2), P (c0 ≤ π̂a(S1) ≤
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Table 1.2: Consistency rates of θ̂ and θ̂DTL under various misspecification settings

when the conditions in Theorems 1.2 and 1.4 are satisfied with σ ≍ 1. Misspecified

and correctly specified models are denoted by ✗ and ✓, respectively. LHS below

corresponds to the consistency rate provided to the left of that position.

Correctly specified models
Consistency rate of θ̂ Consistency rate of θ̂DTL

ρa(·) πa(·) µa(·) νa(·)

✓ ✓ ✓ ✓ 1√
N

+

√
sαasδa

log d

N
+

√
sβa

sγa log d

N
LHS +

√
sαasγa log d

N

✗ ✓ ✓ ✓
√

sβa
sγa log d

N
+

√
sαa log d

N
LHS

✓ ✗ ✓ ✓
√

sαasδa
log d

N
+

√
sβa

log d

N

√
sαa log d

N
+

√
sβa

log d

N

✓ ✓ ✗ ✓
√

sαasδa
log d

N
+

√
sγa log d

N
LHS

✓ ✓ ✓ ✗
√

sβa
sγa log d

N
+

√
sδa

log d

N
LHS +

√
sαasγa log d

N

∗

✗ ✗ ✓ ✓
√

sαa log d

N
+

√
sβa

log d

N
LHS

✗ ✓ ✗ ✓
√

sαa log d

N
+

√
sγa log d

N
LHS

✓ ✗ ✓ ✗
√

sβa
log d

N
+

√
sδa

log d

N
LHS +

√
sαa log d

N

∗∗

✓ ✓ ✗ ✗
√

sγa log d

N
+

√
sδa

log d

N
LHS

*
This consistency rate requires µ∗

a,NR(·) = µa(·). Without it, the DTL’s rate is equal to the last row of the above table; see

Section 1.2.3.

** This consistency rate requires µ∗
a,NR(·) = µa(·). Otherwise, the DTL is inconsistent; see Table 1.1.
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1 − c0) = 1 and P (c0 ≤ ρ̂a(S) ≤ 1 − c0) = 1 with probability approaching one. For ζ and

ε defined in Assumption 1.2, max{E|ζ|q/[E|ζ|2]q/2, E|ε|q/[E|ε|2]q/2, E|ξ|q/[E|ξ|2]q/2} ≤ C,

P (E[ζ2|S] ≤ CE[ζ2]) = 1, and P (E[ε2|S1] ≤ CE[ε2]) = 1, for constants C > 0 and q > 2.

The probability measures and corresponding expectations above are with respect to

a fresh draw S (or S1). Note that Assumption 1.5 allows for ρ∗a(·) to differ from ρa(·) while

requiring a overlap condition consistent with the existing literature; see, e.g., [CCD+18]. The

max condition, satisfied by sub-Gaussian random variables, controls the tails of ζ, ε, and ξ.

The last two conditions of Assumption 1.5 aim to ensure the interpretability of the results

by bounding the “normalized” conditional second moments.

Theorem 1.6. (Consistency of the general DR estimator) Suppose that at least one of µ∗
a(·)

and π∗
a(·) is correctly specified, and at least one of ν∗a(·) and ρ∗a(·) is correctly specified. Let

Assumptions 1.1, 1.4, and 1.5 hold. Additionally, let E[1{A1=a1}(µa(S1)−µ∗
a(S1))

2] ≤ Cµσ
2,

for some Cµ > 0. Then the general DR estimator, θ̂gen, satisfies θ̂gen−θ = Op(qN) as N, d→

∞, where qN = bNcN+aNdN+bN1{π∗
a ̸=πa}+aN1{ρ∗a ̸=ρa}+cNσ1{µ∗a ̸=µa}+dNσ1{ν∗a ̸=νa}+σ/

√
N .

The aforementioned theorem yields two distinct conclusions that warrant discussion.

The first pertains to the conditions that are necessary for achieving root-N consistency,

while the second relates to the issue of consistency under model misspecification. If all the

models are correctly specified, θ̂gen−θ = Op(bNcN+aNdN+σN−1/2) and root-N consistency

happens as long as bNcN + aNdN = O(N−1/2) and σ = O(1).

If, on the other hand, at least one of the nuisance models is correctly specified at each

exposure time, θ̂gen is a consistent estimator as long as σ = O(1). Model misspecification can

take an asymmetric form in terms of estimation rates. Specifically, while qN is symmetric
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in the rates themselves, the dependence of bN on aN and/or dN can introduce potential

asymmetries. For example, when performing ℓ1-regularized nested regression, Theorem 1.10

indicates that bN depends additively on aN as bN = b∗N + aN , where {b∗N}2 = sβa log(d)/N

is the estimation error of µa(·) when νa(·) is known. As a result, the consistency rate of

θ̂gen includes an additional term aNcN + aN1{π∗
a ̸=πa}, as illustrated by the DTL estimator in

(1.24).

On the other hand, if we consider a new DR approach based on the DR represen-

tation (1.4) to estimate µa(·), the corresponding bN will depend on both aN and dN . For

instance, when all the nuisance models are correctly specified, Theorem 1.9 indicates that

ℓ1-regularized DR estimation leads to a symmetric rate with bN = b∗N + aNdN , resulting in

θ̂gen− θ = Op(b
∗
NcN +aNdN +1/

√
N) if σ ≍ 1 and aN , b

∗
N , cN , dN = o(1). The approach used

to estimate the first-time conditional mean µa(·) determines the persistence of the symmetry.

Theorem 1.7. (Asymptotic normality of the general DR estimator) Suppose that all the

nuisance models µ∗
a(·), ν∗a(·), π∗

a(·), and ρ∗a(·) are correctly specified. Whenever Assumptions

1.1, 1.5 hold and the rates of estimation satisfy the following product conditions

bNcN = o(σN−1/2), aNdN = o(σN−1/2), (1.28)

then the estimator θ̂gen satisfies σ−1
√
N(θ̂gen−θ) ; N(0, 1) and σ̂−1

gen

√
N(θ̂gen−θ) ; N(0, 1)

as N → ∞ (and potentially d → ∞), where σ2 and σ̂2
gen are defined in (1.27) and (1.21),

respectively.

Remark 1.4 (Rate double robustness). The topic of rate double robustness in the presence

of multiple exposures has been addressed in [BHL22], but the authors require three product-

rate conditions, including aNcN = o(N−1/2) as stated in their Assumption 3.1, in addition
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to the two product-rates (1.28). As a result, this does not allow for relatively large values of

aN and cN , which is permissible in our setting. For example, consider a special case where

A2 is completely random and µa(·) is a constant function. In conjunction with the sequential

ignorability condition of Assumption 1.1, we have µa(s1) = E[Y |S1 = s1, A1 = a1, A2 = a2],

allowing µa(·) to be identified directly through observable variables. In this scenario, both

µa(·) and ρa(·) can be estimated with a root-N rate. Therefore, Theorem 1.7 only requires

aN + cN = o(1), i.e., νa(·) and πa(·) are consistently estimated. In comparison, [BHL22]

additionally require aNcN = o(N−1/2), which may not be feasible when νa(·) and πa(·) are

only known to be Lipschitz continuous, and the covariate dimensions satisfy d ≥ d1 > 2.

Our proof relies on a nuanced decomposition of the second-order estimation bias

resulting from the estimation errors of ν̂c,−k(·) and π̂c,−k(·). Leveraging the Neyman or-

thogonality of the DR score (1.26), we reformulate the second-order bias as the product

E[1{A1=c1}(1−1{A2=c2}/ρ
∗
c(S))(ν̂c,−k(S)/π̂c,−k(S1)−ν∗c (S)/π∗

c (S1))]. In our analysis, we then

examine this product collectively rather than as separate terms, resulting in a cohesive flow of

the arguments. We show that the population effect of this term is exactly zero whenever the

model ρ∗c(·) is correctly specified – a condition fullfilled when discussing asymptotic normality

in high-dimensional regimes. We then showcase that the sample equivalent is negligible and

does not contribute to the estimation error.

1.4 Supporting theoretical discoveries

This section presents supplementary findings that, while not the primary focus of the

research, may nonetheless be informative or valuable.
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1.4.1 An adaptive theory for imputed Lasso with high-dimensional

covariates

Let S := (Y ∗
i ,Xi)

M
i=1 be i.i.d. observations and let (Y ∗,X) be an independent copy

with Y ∗ ∈ R and X ∈ Rd. Suppose that there exists, possibly random, Ŷi ∈ R. Note that

for some, and possibly all observations, outcomes Y ∗ are imputed, i.e., estimated using Ŷi.

The true population slope is defined as β∗ = argminβ∈RdE[Y ∗ −X⊤β]2. Then its estimator

is

β̂ := argminβ∈Rd

{
M−1

M∑
i=1

[Ŷi −X⊤
i β]

2 + λM∥β∥1

}
, (1.29)

for λM > 0. The following result delineates properties of such imputed-Lasso estimator, β̂.

Theorem 1.8 (General imputed Lasso estimators). Let s = ∥β∗∥0 and εi := Y ∗
i −X⊤

i β
∗.

Suppose that ∥a⊤X∥ψ2 ≤ σX∥a∥2 for a ∈ Rd, λmin(E[XX⊤]) > λX, and ∥ε∥ψ2 ≤ σ with

σX, λX > 0 and σ = σM > 0 potentially dependent on M . For some δM > 0, define the event

E1 := {M−1
∑M

i=1[Ŷi − Y ∗
i ]

2 < δ2M}. For any t > 0, let λM := 16σσX(
√

log(d)/M + t). Then

on the event E1, when M > max{log(d), 100κ22s log(d)}, we have

∥β̂ − β∗∥2 ≤ max

(
5κ2δ

2
M

4σσX
+ 4κ

−1/2
1 δM , 8κ

−1
1

√
sλM

)
,

with probability at least 1 − 2 exp(− 4Mt2

1+2t+
√
2t
) − c1 exp(−c2M), where κ1, κ2, c1, c2 > 0 are

constants independent of M and d. Moreover, if δM = o(σ), P (E1) = 1 − o(1), and M ≫

s log(d), then with λM ≍ σ
√
log(d)/M , as M,d→∞,

∥β̂ − β∗∥2 = Op

(
σ

√
s log(d)

M
+ δM

)
. (1.30)

The above result is of independent interests as it provides a general theory for any

Lasso estimators based on imputed outcomes. It contributes to the literature in three specific
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aspects: (a) The “imputation error”, Ŷi − Y ∗
i , can be dependent on and even possibly

correlated with covariates Xi; (b) We allow every Ŷi to be fitted using the same set of

observations (Xi, Yi)
M
i=1, i.e., Ŷis are also possibly dependent on each other; and (c) The

tuning parameter λM is of the same order as the one chosen for the fully observed data and

is independent of the imputation error or any sparsity parameter.

Compared with the existing literature, Theorem 1.8 requires weaker sparsity as-

sumptions and provides better rates of estimation. Imputed Lasso of [ZZS19] requires

s = o(M), log(d) = o(
√
M), and

√
sδM = o(1). That of [LS21] requires an ultra-sparse

setup s2 log(d) = o(M) and sδM = o(1). In contrast, we only require s log(d) = o(M)

and δM = o(1). Additionally, [ZZS19] choose a tuning parameter λM ≫
√
sδM and pro-

vide ∥β̂ − β∗∥2 = Op(
√
sδM +

√
s/M) upon requiring strict conditions for assuring model

selection consistency; see Theorem 2 therein. [LS21] take λM ≍
√
log(d)/M + δM and es-

tablish ∥β̂−β∗∥2 = Op(s
√

log(d)/M + sδM); see Theorem 13 therein. In contrast, we allow

λM ≍
√

log(d)/M . The imputation error δM only appears in our final estimation rate (1.30)

additively, and its effect does not explode as the sparsity level grows.

Theorem 1.8 requires development of new proof techniques: the standard Lasso in-

equality followed by the cone-set reduction are not valid in this instance. In fact, the error,

β̂ − β∗, no longer belongs to the accustomed cone set, C(S, k) := {∆ ∈ Rd : ∥∆Sc∥1 ≤

k∥∆S∥1}. Instead, we identify a new set, C̃(S) := {∆ ∈ Rd : ∥∆Sc∥1 ≤ 16λ−1
M δ2M , ∥∆S∥1 ≤

4λ−1
M δ2M}, and show that the error vector belongs to the union of the above two sets. This

enables us to avoid choosing a tuning parameter dependent on the imputation error, as is

done in the above literature. Moreover, our results are adaptive to the imputation error in
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that when there is no imputation, i.e., δM = 0, our result reaches the standard consistency

rate in the high-dimensional statistics literature, e.g., [BRT09,NRWY12,Wai19].

1.4.2 Theoretical characteristics of nuisance estimators with im-

puted outcomes

As a result of constraints on the length of the main file, we have included the

theoretical properties of the nuisance estimates α̂a, γ̂a, and δ̂a as defined by equations

(1.10), (1.7), and (1.8) respectively, in the Section 1.8.1, where we show ∥α̂a − α∗
a∥2 =

Op(σ
√
sαa log(d)/N), ∥γ̂a−γ∗

a∥2 = Op(
√
sγa log(d1)/N), and ∥δ̂a−δ∗

a∥2 = Op(
√
sδa log(d)/N).

Now we establish the properties of the first-time conditional mean model estimates, where

imputation is required. We first consider the DR-imputation-based estimator β̂a defined as

(1.11) and the corresponding conditional mean estimate µ̂a(s1) = v⊤β̂a.

Theorem 1.9. Let Assumptions 1.1-1.4 hold. Assume that max{sαa log(d), sβa log(d1),

sδa log(d)} = o(N), and either (a) ∥S1∥∞ ≤ C almost surely, with some constant C > 0, or

(b) sδa log(d1) log(d) = O(N). Choose some λα ≍ σ
√

log(d)/N , λβ ≍ σ
√

log(d1)/N , and

λδ ≍
√
log(d)/N . Then for any constant r ≥ 1, as N, d→∞, we have

∥β̂a − β∗
a∥2 + {E[µ̂a(S1)− µ∗

a(S1)]
r}1/r = Op (rn) ,

with rn being determined as follows (a) whenever ρ∗a(·) = ρa(·) and ν∗a(·) = νa(·), rn =

σ
√

sβa log(d1)

N
+

σ
√
sδasαa log(d)

N
, (b) whenever ρ∗a(·) = ρa(·), rn = σ

√
sβa log(d1)

N
+σ
√

sδa log(d)

N
, (c)

or whenever ν∗a(·) = νa(·), rn = σ
√

sβa log(d1)

N
+ σ
√

sαa log(d)
N

.

Theorem 1.9 elucidates that the consistency rate of β̂a is subject to the fidelity of
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the second-time nuisance models ρ∗a(·) and ν∗a(·). More specifically, when both models are

accurately specified, the DR imputation error contributes multiplicatively to the consistency

rate in Theorem 1.9(a). In contrast, when only one of ρ∗a(·) and ν∗a(·) is correctly specified, the

estimation error of the correctly specified model contributes additively to the rates presented

in Theorem 1.9(b) and Theorem 1.9(c). It is noteworthy that these results do not rely on

the correctness of the first-time conditional mean model per se.

In the following, we also provide the consistency results of the nested-regression-

based estimator, β̂a,NR, defined in Equation (1.19), and the corresponding conditional mean

estimate µ̂a,NR(s1) = v⊤β̂a,NR.

Theorem 1.10. Let Assumptions 1.1-1.3 hold. Assume that max{sαa log(d), sβa log(d1)} =

o(N). Choose some λα ≍ σ
√

log(d)/N and λβ ≍ σ
√

log(d1)/N . Then for any constant

r ≥ 1, as N, d→∞, we have with rn as in Theorem 1.9(c),

∥β̂a,NR − β∗
a,NR∥2 + {E[µ̂a,NR(S1)− µ∗

a,NR(S1)]
r}1/r = Op (rn) . (1.31)

Remark 1.5 (Comparison between β̂a and β̂a,NR). The present remark compares the con-

sistency rates of two estimators, β̂a and β̂a,NR, in different scenarios. (a) In the case where

νa(·) is nonlinear and ρa(·) is logistic, estimators converge to distinct targets, β∗
a and β∗

a,NR,

respectively. Here, β∗
a represents the optimal linear slope approximating the true conditional

mean function µa(·), while β∗
a,NR is the optimal linear slope approximating the misspecified

model ν∗a(·); see discussions in Section 1.2.3 above. When the first-time conditional mean

µa(·) is linear, β̂a converges to the true linear slope, and a consistent estimate of µa(·) is

obtained. However, β̂a,NR typically converges to some β∗
a,NR that differs from the true linear

slope, resulting in an inconsistent estimate of µ̂a,NR(·). (b) When νa(·) is linear and ρa(·) is
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logistic, β∗
a = β∗

a,NR. However, in this case, β̂a exhibits a faster consistency rate than β̂a,NR.

This can be attributed to the fact that the DR imputation error contributes to the consistency

rate of β̂a in a product form Theorem 1.9(a), while the imputation error from nested regres-

sion contributes in an additive form Theorem 1.9(c), which then dominates if sβa = o(sαa).

Consequently, the S-DRL estimator constructed based on β̂a has a faster convergence rate

than the DTL estimator, which is constructed based on β̂a,NR; see Table 1.2. The enhanced

convergence rate exhibited by the S-DRL estimator implies a reduction in the requisite level

of sparsity conditions necessary for the inferential guarantees. (c) In the scenario where νa(·)

is linear and ρa(·) is non-logistic, the targets β∗
a and β∗

a,NR are identical and β̂a and β̂a,NR

have the same consistency rates, as seen in Theorem 1.9(c) and (1.31).

In general, µa(·)−µa′(·) can be seen as a conditional average treatment effect (CATE)

parameter through the well established nested representation (1.3). Outside of dynamic set-

tings, DR approaches for CATE estimation typically rely on DR influence function repre-

sentation of the conditional means. When those conditional means independently are not

smooth enough, [Ken20] proposes to instead use DR imputations for the joint estimation

of the difference of the conditional means. Here, the nested structure of µa(·), where the

true outcome is never observed, prevents direct influence function approaches. Instead, our

approach leverages cases when µa(·) has sparser structure than νa(·).
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1.5 Advancing multi-stage treatment estimation with

DR methods

The objective of this section is to expand upon the methodology of sequential doubly

robust estimation by considering its application in multi-stage settings. Consider T ≥ 2 expo-

sure times and suppose that we observe i.i.d. samples {WT,i}Ni=1 = (S1i, A1i, . . . ,ST i, AT i, Y )Ni=1.

Let WT := (S1, A1, . . . ,ST , AT , Y ) be an independent copy of WT,i. For each t ≤ T , let

St ∈ Rdt and At ∈ {0, 1} denote the covariate vector and the treatment assignment at the t-

th exposure time, respectively. Let Y ∈ R denote the observed outcome variable at the final

stage. Denote St := (S1, . . . ,St) and Āt := (A1, . . . , At) for any 1 ≤ t ≤ T . Let Y (aT ) be the

counterfactual outcome corresponding to the treatment path aT = (a1, . . . , aT ) ∈ {0, 1}T .

The DTE between any treatment paths aT , a
′
T ∈ {0, 1}T is now defined as

θ := E[Y (aT )]− E[Y (a′T )] = θaT − θa′T .

We define the conditional mean and propensity score functions as

µt(s̄t, aT ) := E[Y (aT ) | St = s̄t, Āt−1 = at−1], for 1 ≤ t ≤ T + 1, (1.32)

πt(s̄t, at) := P [At = at | St = s̄t, Āt−1 = at−1], for 1 ≤ t ≤ T, (1.33)

where for the sake of simplicity, we denote with Ā0 = a0 = ∅ and ST+1 := (S1, . . . ,ST , Y ).

For each 1 ≤ t ≤ T , we denote µ∗
t (s̄t, aT ) and π∗

t (s̄t, at) as the working models for the

conditional mean and propensity score, respectively. Additionally, with S0 = s̄0 = ∅, we

set µ0(s̄0, aT ) := E[Y (aT )|S0 = s̄0] = θaT and µ∗
T+1(s̄T+1, aT ) := sT+1. Note that, under

the Assumption 1.6(b) below, we have µ∗
T+1(ST+1, aT ) = µT+1(ST+1, aT ) = Y . To identify
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θaT = E[Y (aT )] for any aT ∈ {0, 1}T , we assume a multi-stage version of Assumption 1.1 in

the following; see also, e.g., [Mur03,Rob00a,Rob87].

Assumption 1.6. (a) (Sequential Ignorability) Y (aT ) ⊥⊥ At | St, Āt−1 = at−1 for each 1 ≤

t ≤ T . (b) (Consistency of potential outcomes) Y = Y (ĀT ). (c) (Overlap) Let c0 ∈ (0, 1/2)

be a positive constant, such that P (c0 ≤ πt(s̄t, at) ≤ 1− c0) = 1 for each 1 ≤ t ≤ T .

The following proposition presents a well-known DR representation of E[Y (at)] under

the multi-stage dynamic setting; see, e.g., [BR05,MvdLRG01].

Proposition 1.1. Let Assumption 1.6 hold. For t ≤ T suppose that at least one of µ∗
t (·, aT )

and π∗
t (·, at) is correctly specified, i.e., either µ∗

t (·, aT ) = µt(·, aT ) or π∗
t (·, at) = πt(·, at).

Then

θaT = E

[
T∑
t=1

1{Āt=at}∏t
l=1 π

∗
l (Sl, al)

(µ∗
t+1(St+1, aT )− µ∗

t (St, aT )) + µ∗
1(S1, aT )

]
. (1.34)

According to Proposition 1.1, a consistent estimate of θaT should be achievable as long

as we can consistently estimate at least one of the nuisance functions µt(·, aT ) or πt(·, at)

for each exposure time t. In the present context, the propensity score functions of (1.33)

are identifiable via observable variables. Additionally, by Assumption 1.6, µT (s̄T , aT ) =

E[Y |ST = s̄T , ĀT = aT ], thereby facilitating its estimation using the corresponding samples.

However, the remaining conditional mean functions for stages t ≤ T − 1 cannot be identified

directly. To address this challenge, we propose DR representations of these intermediate

conditional means, as an alternative to the conventional nested representation of (1.35).

Theorem 1.11. Let Assumption 1.6 hold. For t ≤ T − 1 and t + 1 ≤ r ≤ T , suppose that

either π∗
r(·, ar) or µ∗

r(·, aT ) is correctly specified, i.e., either π∗
r(·, ar) = πr(·, ar) or µ∗

r(·, aT ) =
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µr(·, aT ). Then µt(s̄t, aT ) = E[ψ∗(WT , aT ) | St = s̄t, Āt = at], where

ψ∗(WT , aT ) :=
T∑

r=t+1

∏r
l=t+1 1{Al=al}∏r
l=t+1 π

∗
l (Sl, al)

(µ∗
r+1(Sr+1, aT )− µ∗

r(Sr, aT )) + µ∗
t+1(St+1, aT ).

Theorem 1.11 can be regarded as an overarching, comprehensive, umbrella result that

subsumes a range of components, particularly encompassing Proposition 1.1 as a specific case

when t = 0. Indeed, θaT = E[Y (aT )|S0 = s̄0] = µ0(s̄0, aT ) is a conditional mean function at

“stage zero”. Theorem 1.11 indicates that µt(·, aT ) can be identified through a DR repre-

sentation using all the conditional means and propensity scores at later stages. Therefore,

µt(·, aT ) can be estimated sequentially backward in time based on the DR imputations.

For example, if we use linear working models for the conditional means and logistic

models for the propensity scores, and either the true conditional mean µr(·, aT ) is linear

or the true propensity score πr(·, ar) is logistic at each later stage r ≥ t + 1, we can get a

consistent estimate of the µt(·, aT ) using DR imputed linear regression. By repeating this

process backwards, we conclude that if either the conditional means or propensity scores are

correctly parametrized at every stage t, we can estimate all nuisance functions consistently,

leading to a consistent estimate of θaT . An alternative approach to our proposed sequential

doubly robust method is the nested estimator [MvdLRG01]. This approach represents all

conditional means using the following equation:

µt(s̄t, aT ) = E[µt+1(St+1, aT ) | St = s̄t, Āt = at]. (1.35)

However, in order to ensure the consistency of the nested estimator for µt(·, aT ), it is essential

that all subsequent conditional mean functions exhibit true linearity. Interestingly, even the

multiply robust approach presented by [BRR19] falls short in achieving the same level of
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robustness as the S-DRL method. Further insights can be found in the comments following

Theorem 1.1 and Table 1.1. Our method demonstrates a growing advantage as the number

of exposure times increases. For instance, in the case of T exposure times, consider all the

cases including correctly or incorrectly parametrized π∗
t (·, at) and µ∗

t (·, aT ) for each t, our

method enables 3T out of 4T possible cases. In contrast, the nested-regression-based and

multiply robust approaches only allow for (T +2)2T−1 cases. This conclusion is independent

of the particular parametrization used – nonparametric, smooth models are permissible –

and extends to the difference of means θ = θaT − θa′T as well.

1.6 Numerical Experiments

1.6.1 Simulation studies

We illustrate the finite sample properties of the introduced estimators in several

simulated experiments; auxiliary settings are relegated to the Section 1.8.2. We consider

a = (1, 1) and a′ = (0, 0), and use 1(q) := (1, . . . , 1)⊤ ∈ Rq as well as 0(q) := (0, . . . , 0) ∈ Rq.

Below we use ζi ∼iid Uniform(−1, 1) and {δi}j ∼iid Uniform(−1, 1). We decompose αa

into two components as αa = (α⊤
a,1,α

⊤
a,2)

⊤ and consider αa′ = −αa and ηa′ = −ηa unless

specified differently. For each c ∈ {a, a′}, ρc(Si) = g(U⊤
i ηc) and A2i|(Si, A1i = c1) ∼

Bernoulli(ρc(Si)).

M1: Correctly parametrized models Consider S1i ∼iid Nd1(0, Id1) and A1i|S1i ∼

Bernoulli (πa(S1i)), with πa(S1i) = g(V⊤
i γa). Let δ1i ∼iid N(0, 1), δ1i ∼iid Nd1(0, Id1),
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and

S2i = S1i + A1i(1 + δ1i)1(d1) + δ1i.

The outcomes are Yi(c) = U⊤
i αc + N(0, 1) with parameters αa = (−1,−1, 1,−1,0(d1−3),

−1,−1, 1,0(d2−3))
⊤, αa′ = (1, 1, 1,−1,0(d1−3), 1, 1, 1,0(d2−3))

⊤, γa = (0, 1, 1, 1,0(d1−3))
⊤, ηa =

(0, 1, 1,0(d1−2), 1,−1,0(d2−2))
⊤, and ηa′ = (0, 0.5, 0,−0.5,0(d1−3), 0.5, 0, 0.5,0(d2−3))

⊤.

M2: Weakly sparse νc(·) and dense πc(·) Let Di ∼iid Bernoulli(0.5) and

{S1i}j ∼ Di · Uniform(−1,−0.5) + (1−Di) · Uniform(0.5, 1).

Define {W}j = 0.5 ·0.9j and let S2i = S⊤
1iW1(d2)+δi. Let Yi(c) = U⊤

i αc+ζi. The parameter

αa,1 = (−1,0(d1))
⊤ and {αa,2}j = −0.3 · 0.99j−1, ηa = (3, 0.1,0(d1+d2−1))

⊤.

M3: Non-linear νc(·) and non-logistic πc(·) Consider {S1i}j ∼iid Uniform(−1, 1). Let

πa(S1i) = ḡ(V⊤
i γa), where

ḡ(u) = (|u|/(|u|+ 1))1{u>0} + (1/(|u|+ 1))1{u<0}.

Define {W̃ (a)}j = 0.7 ·0.8j and {W̃ (a′)}j = 0.5 ·0.9j. Let W2i = {W̃ (A1i)}⊤S1i1(d2)+δi and

{S2i}j =
√
|{W2i}j|. The parameter αa has the same αa,1 as M2 and {αa,2}j = −0.3·0.9j−1.

The parameter γa = 5 · 1⊤
(10), and ηa = (2, 0.1,0(d1−1), 0.1,0(d2−1))

⊤. Let

Yi(c) = V⊤
i αc,1 +

d2∑
j=1

{αc,2}jsgn({W2i}j){S2i}2j + ζi.

For M1, d1 = d2 = 100 and N ∈ {1000, 4000}; for M2, d2 = 500, (N, d1) are cho-

sen from (2000, 20), (4000, 20), and (4000, 50); for M3, d1 = 20, (N, d2) are chosen from

(500, 500), (1000, 500), (2000, 500), (4000, 500), (1000, 1000), and (2000, 1000). We replicate
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Table 1.3: Setting M1. Bias: empirical bias; RMSE: root mean square error; Length: average
length of the 95% confidence intervals; Coverage: average coverage of the 95% confidence
intervals; ESD: empirical standard deviation; ASD: average of estimated standard deviations.
All the reported values (except Coverage) are based on robust (median-type) estimates. Erra:
average estimation error of µa(·); Erra′ : average estimation error of µa′(·). N1 and N0 are
the expected number of observations in groups (1, 1) and (0, 0).

Method Bias RMSE Length Coverage ESD ASD Erra Erra′

N = 1000, N1 = 293, N0 = 282, d1 = 100, d2 = 100

empdiff 0.734 0.734 0.274 0.004 0.234 0.070 NA NA

oracle 0.003 0.220 1.091 0.954 0.325 0.278 0.000 0.000

IPW 0.864 0.865 1.342 0.346 0.319 0.342 NA NA

DTL 0.124 0.189 0.876 0.894 0.264 0.223 0.141 0.216

S-DRL 0.131 0.202 0.880 0.880 0.271 0.224 0.227 0.337

S-DRL’ 0.126 0.188 0.876 0.894 0.259 0.223 0.135 0.193

N = 4000, N1 = 1178, N0 = 1128, d1 = 100, d2 = 100

empdiff 0.731 0.731 0.137 0.000 0.111 0.035 NA NA

oracle -0.006 0.121 0.602 0.956 0.178 0.153 0.000 0.000

IPW 0.534 0.538 0.959 0.454 0.287 0.245 NA NA

DTL 0.033 0.097 0.488 0.930 0.136 0.125 0.032 0.052

S-DRL 0.031 0.098 0.489 0.930 0.142 0.125 0.050 0.070

S-DRL’ 0.028 0.098 0.489 0.932 0.138 0.125 0.033 0.044

settings 500 times. We report S-DRL as well as a version S-DRL’, which has β̂c constructed

with δ̂c and α̂c build on the whole sub-sample W−k = W−k,1 ∪W−k,2. We also present (a)

DTL, Algorithm 2, (b) IPW with ℓ1-regularized logistic PS, (c) an empirical difference esti-

mator (empdiff), θ̂empdiff :=
∑N

i=1A1iA2iYi/
∑N

i=1A1iA2i−
∑N

i=1(1−A1i)(1−A2i)Yi/
∑N

i=1(1−

A1i)(1−A2i), and (d) an oracle DR estimator constructed with the true nuisances. All meth-

ods use 10-fold cross validation for selection of tuning parameters.

Tables 1.3 and 1.4 show the estimation and inference results for the DTE estima-

tors, while Table 1.5 focuses on estimation performances, as valid inference is unlikely with

misspecified models. Our summarized findings, shown in Tables 1.3-1.5, reveal that the
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naive empirical difference estimator has large biases due to confounding between outcome

and treatment assignments. The IPW method also performs poorly, with large biases and

RMSEs, and confidence interval coverages far from the desired 95%. The DTL, S-DRL,

and S-DRL’ estimators behave similarly in Table 1.3 (under M1), with correctly specified

nuisance models and relatively low sparsity levels. The S-DRL method’s additional sam-

ple splitting in Algorithm 1 (Steps 5-7) leads to larger estimation errors in the first-time

conditional mean estimates than those in the DTL and S-DRL’ methods. Consequently,

when N = 1000, the S-DRL estimator’s RMSE is slightly larger than that of the DTL and

S-DRL’ estimators, but they have similar RMSEs when N = 4000. In terms of inference

behaviors, the corresponding confidence interval coverages are below the desired 95% when

N = 1000. However, increasing the total sample size to N = 4000 brings the coverages

closer to 95%. Estimating νc(·) under M2 is more challenging than estimating ρc(·). As

a result, the DR estimates of µc(·) in the S-DRL and S-DRL’ methods have significantly

smaller estimation errors compared to the nested regression used in the DTL method, as

shown in Table 1.4, leading to smaller RMSEs and coverages closer to 95%. Moving on to

M3, both νc(·) and πc(·) are misspecified. Table 1.5 shows that the estimation errors of µc(·)

with the S-DRL and S-DRL’ are substantially smaller than those of the DTL. Consequently,

we see an improvement of the RMSEs in the S-DRL and S-DRL’ estimators.

1.6.2 Application to National Job Corps Study (NJCS)

Job Corps (JC) is the largest and most comprehensive federal job training program

in the US for disadvantaged youth between 16 and 24 years old. Each year, about 50,000

participants receive vocational training and academic education at JC centers to improve
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Table 1.4: Setting M2. The rest of the caption details remain the same as those in Table
1.3.

Method Bias RMSE Length Coverage ESD ASD Erra Erra′

N = 2000, N1 = 954, N0 = 951, d1 = 20, d2 = 500

oracle -0.021 0.691 4.146 0.950 1.029 1.058 0.000 0.000

empdiff -0.204 0.601 1.576 0.636 0.848 0.402 NA NA

IPW -0.153 2.542 12.747 0.970 3.718 3.252 NA NA

DTL -0.013 0.714 4.151 0.950 1.060 1.059 0.361 0.365

S-DRL -0.023 0.686 4.144 0.952 1.008 1.057 0.139 0.136

S-DRL’ -0.027 0.689 4.145 0.952 1.019 1.057 0.126 0.122

N = 4000, N1 = 1909, N0 = 1901, d1 = 20, d2 = 500

oracle -0.029 0.572 2.942 0.936 0.835 0.751 0.000 0.000

empdiff -0.099 0.408 1.116 0.630 0.598 0.285 NA NA

IPW -0.101 2.510 11.928 0.978 3.643 3.043 NA NA

DTL -0.053 0.569 2.950 0.934 0.843 0.753 0.163 0.161

S-DRL -0.026 0.554 2.942 0.940 0.838 0.750 0.040 0.040

S-DRL’ -0.029 0.560 2.942 0.940 0.843 0.751 0.040 0.042

N = 4000, N1 = 1908, N0 = 1901, d1 = 50, d2 = 500

oracle -0.030 0.608 2.990 0.948 0.893 0.763 0.000 0.000

empdiff -0.156 0.485 1.260 0.608 0.683 0.322 NA NA

IPW -0.086 2.099 10.088 0.984 3.136 2.574 NA NA

DTL -0.019 0.607 2.983 0.940 0.903 0.761 0.273 0.275

S-DRL -0.013 0.565 2.988 0.948 0.854 0.762 0.082 0.083

S-DRL’ -0.012 0.574 2.987 0.948 0.863 0.762 0.080 0.081
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Table 1.5: Setting M3. The rest of the caption details remain the same as those in Table
1.3.

Method Bias RMSE Erra Erra′ Bias RMSE Erra Erra′

N = 500, d1 = 20, d2 = 500 N = 1000, d1 = 20, d2 = 500

oracle 0.013 0.119 0.000 0.000 0.007 0.098 0.000 0.000

empdiff 0.149 0.162 NA NA 0.157 0.159 NA NA

IPW -0.035 0.465 NA NA -0.164 0.493 NA NA

DTL -0.003 0.273 0.151 0.196 0.012 0.199 0.076 0.077

S-DRL 0.009 0.224 0.087 0.096 0.024 0.166 0.036 0.040

S-DRL’ -0.007 0.207 0.067 0.074 0.016 0.170 0.031 0.033

N = 2000, d1 = 20, d2 = 500 N = 4000, d1 = 20, d2 = 500

oracle 0.005 0.062 0.000 0.000 0.003 0.047 0.000 0.000

empdiff 0.142 0.142 NA NA 0.142 0.142 NA NA

IPW -0.276 0.525 NA NA -0.390 0.487 NA NA

DTL 0.010 0.126 0.038 0.040 -0.001 0.101 0.021 0.021

S-DRL 0.013 0.108 0.016 0.016 0.000 0.089 0.007 0.007

S-DRL’ 0.004 0.106 0.015 0.015 -0.007 0.090 0.007 0.007

N = 1000, d1 = 20, d2 = 1000 N = 2000, d1 = 20, d2 = 1000

oracle 0.001 0.096 0.000 0.000 0.011 0.059 0.000 0.000

empdiff 0.149 0.149 NA NA 0.143 0.143 NA NA

IPW -0.221 0.469 NA NA -0.249 0.478 NA NA

DTL -0.028 0.212 0.090 0.091 0.010 0.135 0.048 0.049

S-DRL -0.012 0.160 0.037 0.039 0.011 0.113 0.016 0.016

S-DRL’ -0.029 0.165 0.031 0.032 0.002 0.116 0.015 0.015
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their job prospects. On average, a JC student spends 8 months at a local center, completing

around 1,100 hours of instruction, which is roughly equivalent to one year of high school.

For a more detailed description, refer to [SBM08] and [Sch01].

Numerous studies have investigated the effects of Job Corps on wages. [Lee09] high-

lighted sample selection issues in their analysis. [ZRM08] separated the causal effects of JC

enrollment on wages from those on employment. [FFLGN12] found that longer exposure to

JC training is associated with higher future earnings. [CF15] separated the effects of sample

selection from noncompliance, while [HHLL20] distinguished between the causal direct and

indirect effects in the presence of mediators. In addition to studying the effects of Job Corps

in single-time treatment settings, researchers have also explored the dynamic treatment set-

ting offered by Job Corps. [BHL22] investigated the effects of JC’s educational and training

programs and found positive impacts on fourth-year employment compared to no program

participation. Meanwhile, [SXG21] analyzed the total, direct, and indirect dynamic dose

response of job training on employment. Their study concluded that a few class hours in the

first and second years significantly increase employment in the fourth year. In this section,

we will evaluate the effects of sequential job training programs on wages using the S-DRL

and DTL methods, as defined in Algorithms 1 and 2.

We analyze a dataset of 11,313 individuals, with 6,828 assigned to the Job Corps

and 4,485 not. They are interviewed 1, 2, and 4 years post-randomization. For each year

t ∈ 1, 2, Zt ∈ {0, 1, 2, 3} represents the treatment assignment in the t-th year. We assign

Zt = 0 for non-enrollment, Zt = 1 for enrollment without program participation, Zt = 2

for high-school-level education, and Zt = 3 for vocational training. The baseline covariate
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Table 1.6: Job Corps estimates. Here, Na and Na′ denote the number of observations in the
treatment groups a and a′, respectively. SE: the standard error; CI: 95% confidence interval;
p-value: H0 : θ = 0 vs. H1 : θ ̸= 0.

z z′ Nz Nz′ Method θ̂z θ̂z′ θ̂ SE CI p-value

(3, 3) (1, 1) 568 315
DTL 6.201 5.652 0.549 0.270 [0.020, 1.078] 0.042

S-DRL 6.208 5.641 0.567 0.273 [0.032, 1.102] 0.037

(3, 3) (2, 2) 568 336
DTL 6.200 5.424 0.776 0.313 [0.163, 1.389] 0.013

S-DRL 6.209 5.390 0.819 0.314 [0.204, 1.434] 0.009

(2, 2) (1, 1) 336 315
DTL 5.410 5.639 -0.229 0.335 [-0.886, 0.428] 0.493

S-DRL 5.371 5.626 -0.255 0.337 [-0.916, 0.406] 0.450

vector, S1, has 909 characteristics, while S2 includes 1,427 characteristics. In total, there

are 2,336 covariates. The outcome is the log-transformed wage Ỹ = log(wage + 1) ∈ R.

We exclude 2,610 individuals with missing treatment stages that are missing completely at

random [SBRJ+03] and an additional 133 with missing covariates or outcomes, resulting in

a final sample of 8,570 individuals.

Table 1.6 shows estimated DTEs between treatment paths (3, 3) vs. (1, 1), (3, 3) vs.

(2, 2), and (2, 2) vs. (1, 1). Both the S-DRL and DTL methods suggest that vocational

training has a positive impact on achieving higher wages by showing non-zero effects be-

tween the first two paths. On the other hand, the estimates between paths (2, 2) and (1, 1)

are negative, and their corresponding confidence intervals contain zero, making it impossi-

ble to determine if academic education is beneficial or detrimental. However, our analysis

does suggest that individuals seeking higher-paying jobs would benefit more from vocational

training compared to academic education, which only provides high school-level education

without any significant vocational training. The S-DRL estimates have a slightly greater dis-

tance from zero compared to DTL’s, with similar standard errors, leading to slightly smaller

p-values. Figure 1.1 examines the overlap of estimated propensity scores, displaying mirror
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(a) Estimates of P [Z1i = 1|Si].
Above: within the subgroup Z1i = 1;
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(b) Estimates of P [Z2i = 1|Si, Z1i = 1].
Above: within the subgroup Z1i = Z2i = 1;

Below: within the subgroup
Z1i = 1, Z2i ̸= 1.
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(c) Estimates of P [Z1i = 2|Si].
Above: within the subgroup Z1i = 2;
Below: within the subgroup Z1i ̸= 2.
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(d) Estimates of P [Z2i = 2|Si, Z1i = 2].
Above: within the subgroup Z1i = Z2i = 2;

Below: within the subgroup
Z1i = 2, Z2i ̸= 2.
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(e) Estimates of P [Z1i = 3|Si].
Above: within the subgroup Z1i = 3;
Below: within the subgroup Z1i ̸= 3.
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(f) Estimates of P [Z2i = 3|Si, Z1i = 3].
Above: within the subgroup Z1i = Z2i = 3;

Below: within the subgroup
Z1i = 3, Z2i ̸= 3.

Figure 1.1: Mirror histograms of propensity score overlaps.

histograms of estimated propensity scores within the treatment and control groups. The

substantial overlap seen in the mirror histograms indicates that the inverse propensity score

weights are relatively stable. Figure 1.1(d) displays bimodal patterns in the histograms due

to a binary confounder variable that significantly influences the propensity score estimate of

P [Z2 = 2 | S, Z1 = 2], with a close association between a participant’s decision to enroll in

second-year education and their attendance in the class during the final weeks of the first

year.

1.7 Discussion

This paper aims to enhance the understanding of estimating causal parameters in

multi-stage settings. While prior DR literature has recognized the importance of the stage-
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zero DR representation for the expected potential outcome, it has overlooked the fact that

all the intermediate conditional mean functions can also be identified in a DR manner. This

approach leads to better theoretical guarantees and greater flexibility in modeling dynamic

dependencies, which can be complex and involve multiple time exposures. Furthermore, our

findings have significant practical implications beyond parametric models, especially in sit-

uations where doctors or policymakers cannot rely on randomized treatments or simplistic

treatment rules. With the ability to model dynamic treatment effects using robust principles,

new avenues of discovery are emerging, including optimal treatment rules and determining

the best treatment times. Our approach also enables the exploration of further important

issues, such as mitigating network spillover effects through robustness perspectives and en-

riching balancing methods with better robustness properties. The significance of our work

lies in the fact that it allows researchers to estimate treatment effects in complex settings

more accurately and provides a valuable tool for policymakers seeking to make informed

decisions based on robust causal inference methods.

1.8 Supplementary Material

To simplify the exposition, we begin by listing some shorthand notations used through-

out the supplementary document. We let U = (1,S)⊤ ∈ Rd+1 and V = (1,S⊤
1 )

⊤ ∈ Rd1+1.

In the following it is important to follow the individuals with pre-specified treatment plan.

For that purpose we introduce the following shorthand notation: Ỹa = Y 1{A=a}, Ũa =

U1{A=a} where A = (A1, A2) = a. Additionally, we use Ȳa = Y 1{A1=a1}, Ūa = U1{A1=a1},

V̄a = V1{A1=a1} to denote individuals who have taken the treatment a1 regardless of which

treatment they received at the second exposure. Where possible, we suppress the sub-index
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a.

1.8.1 Further discussions on the nuisance models

Model correctness of DTL

We illustrate when will the two working outcome models ν∗a(s) = u⊤α∗
a and µ

∗
a,NR(s1) =

v⊤β∗
a,NR, the models used for DTL, be correctly specified. If the model ν∗a(·) is misspecified,

then the model µ∗
a,NR(·) is also very likely to be misspecified, but there are no guarantees

either way. A few comments are in order as the relationship between the two nested models

is often masked. The following four cases are of potential interest. Their justifications are

provided in Section 1.8.1 below.

(i) If we assume that the true outcome model, νa(·) is linear in that

νa(S) = E[Y (a)|S, A1 = a1, A2 = a2] = U⊤αa (1.36)

holds for some vector αa ∈ Rd+1, then it follows that α∗
a = αa and hence ν∗a(·) = νa(·),

i.e., ν∗a(·) is correctly specified.

(ii) Otherwise, if we assume that (only) the true outcome model, µa(·), is linear in that

µa(S1) = E[Y (a)|S1, A1 = a1] = V⊤βa (1.37)

holds for some vector βa ∈ Rd1+1, then it is possible that the working model is still not

linear, i.e., µ∗
a,NR(·) ̸= µa(·) making µ∗

a,NR(·) potentially misspecified.

(iii) Now, if the true outcome model (1.37) holds and in addition α∗
a, (3.2), is equal to ᾱ∗

a,

with ᾱ∗
a defined as

ᾱ∗
a := arg min

α∈Rd+1
E
[
(Y (a)−U⊤α)2|A1 = a1

]
=
[
E[ŪŪ⊤]

]−1
E[ŪY (a)],
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then, we have β∗
a,NR = βa and µ∗

a,NR(·) = µa(·), i.e., µ∗
a,NR(·) is correctly specified.

(iv) Lastly, if both of the true outcome models are linear, i.e., (1.36) and (1.37) hold

simultaneously, then, both ν∗a(·) and µ∗
a,NR(·) are correctly specified. Case (iv) is equiv-

alent to requiring E(S⊤
2 αa,2|S1) to be linear in S1; here, αa = (αa,1,αa,2)

⊤ where

αa,1 ∈ Rd1+1 and αa,2 ∈ Rd2 . This, in turn, occurs for any closed class of spherical

distributions, including normal and Student-t distributions, or any linear time-series

models of covariate dependence.

Some discussions are provided below. We can see that the correctness of the model µ∗
a,NR(·)

also depends on α∗
a, the slope parameter of ν∗a(·). A true linear outcome model µa(·) does

not guarantee a correctly specified µ∗
a,NR(·); however, if the true outcome model νa(·) is also

linear, then µ∗
a,NR(·) is correctly specified. Moreover, a linear νa(·) and µa(·) are sufficient

for a correctly specified ν∗a(·), but they are not required. Case (iii) provides an illustration

where a correctly specified µ∗
a,NR(·) does not require a correctly specified ν∗a(·). This occurs,

for example, whenever α∗
a = ᾱ∗

a.

For an illustration, consider a = (1, 1) and S1, S2, Z ∼iid Uniform(−1, 1) with a

nonlinear outcome model νa(·), Y (a) = S1 + S3
2 + Z. Let the treatment assignments satisfy

πa(s1) = |s1|, and ρa(s1, s2) = exp(s1 + s2)/{1 + exp(s1 + s2)},

for all s1, s2 ∈ R. Then, α∗
a = ᾱ∗

a and therefore guaranteeing correctness of the linear

working model µ∗
a,NR(·). Here, π∗

a(·) and ν∗a(·) are misspecified, ρ∗a(·) and µ∗
a,NR(·) are correctly

specified.
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Model correctness of S-DRL

Note that we consider the same working models ν∗a(·), π∗
a(·), and ρ∗a(·) for the DTL and

S-DRL estimators; only the outcome model at time two differs among these two estimators.

In the following, we illustrate when will the doubly robust working model µ∗
a(s1) = v⊤β∗

a be

misspecified and when will β∗
a = β∗

a,NR.

(i) Let either ν∗a(·) = νa(·) or ρ∗a(·) = ρa(·). Then, as long as µa(·) is linear in that (1.37)

holds for some vector βa ∈ Rd1+1, we have β∗
a = β and hence µ∗

a(s1) = v⊤β∗
a = µa(s1),

i.e., the doubly robust working model µ∗
a(·) is correctly specified.

(ii) If ν∗a(·) = νa(·), then β∗
a = β∗

a,NR.

The justifications of cases (i) and (ii) are also provided in Section 1.8.1 below.

Justifications

Justifications of cases (i)-(iv) in Section 1.8.1 For (i), under Assumption 1 and by

the tower rule, we have

α∗
a =

[
E
[
ŨŨ⊤

]]−1

E
[
ŨỸ

]
=
[
E
[
ŨŨ⊤

]]−1

E
[
1{A1=a1,A2=a2}UY (a)

]
=
[
E
[
ŨŨ⊤

]]−1

E [UE [Y (a)|U, A1 = a1, A2 = a2]P [A1 = a1, A2 = a2|U]]

=
[
E
[
ŨŨ⊤

]]−1

E
[
UU⊤αaE

[
1{A1=a1,A2=a2}|U

]]
=
[
E
[
ŨŨ⊤

]]−1

E
[
ŨŨ⊤

]
αa = αa.

It follows that

νa(S) = U⊤αa = U⊤α∗
a = ν∗a(S).
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Therefore, if the model (1.36) holds, the working model ν∗a(S) is correctly specified.

For (ii), it suffices to prove a counterexample. We refer to Example 1 in Section 2.3.

For (iii), if we assume that ᾱ∗
a = α∗

a, we have

β∗
a,NR =

[
E
[
V̄V̄⊤]]−1

E
[
V̄Ū⊤]α∗

a =
[
E
[
V̄V̄⊤]]−1

E
[
V̄Ū⊤] ᾱ∗

a

=
[
E
[
V̄V̄⊤]]−1

E
[
V̄Ū⊤] [E [ŪŪ⊤]]−1

E
[
ŪY (a)

]
.

By the fact that U = (V⊤,S⊤
2 )

⊤, we can write

V = QU where Q =

(
Id1+1 0(d1+1)×d2

)
, (1.38)

and hence V̄ = QŪ, which implies that

E
[
V̄Ū⊤] [E [ŪŪ⊤]]−1

E
[
ŪY (a)

]
= QE

[
ŪŪ⊤] [E [ŪŪ⊤]]−1

E
[
ŪY (a)

]
= QE

[
ŪY (a)

]
= E

[
V̄Y (a)

]
.

Therefore,

β∗
a,NR =

[
E
[
V̄V̄⊤]]−1

E
[
V̄Y (a)

]
=
[
E
[
V̄V̄⊤]]−1

E
[
1{A1=a1}VY (a)

]
.

By the tower rule,

β∗
a,NR =

[
E
[
V̄V̄⊤]]−1

E
[
VE [Y (a)|V, A1 = a1]E

[
1{A1=a1}|V

]]
=
[
E
[
V̄V̄⊤]]−1

E
[
1{A1=a1}VV⊤βa

]
= βa.

It follows that

µa(S1) = V⊤βa = V⊤β∗
a,NR = µ∗

a,NR(S1).
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Therefore, if the model (1.37) holds and ᾱ∗
a = α∗

a, the working model µ∗
a,NR(S1) is correctly

specified.

Regarding (iv), based on the results in (i), we have α∗
a = αa. Under Assumption 1

and (1.36), we have

νa(S) = E [Y (a)|S, A1 = a1] = U⊤αa.

Hence, we also have

ᾱ∗
a =

[
E
[
ŪŪ⊤]]−1

E
[
ŪY (a)

]
=
[
E
[
ŪŪ⊤]]−1

E
[
1{A1=a1}UY (a)

]
=
[
E
[
ŪŪ⊤]]−1

E [UE [Y (a)|U, A1 = a1]P [A1 = a1|U]]

=
[
E
[
ŪŪ⊤]]−1

E
[
UU⊤αaE

[
1{A1=a1}|U

]]
=
[
E
[
ŪŪ⊤]]−1

E
[
ŪŪ⊤]αa = αa.

Therefore,

α∗
a = ᾱ∗

a = αa.

Together with the results in (iii), we conclude that µ∗
a,NR(·) is correctly specified.

Justifications of cases (i)-(ii) in Section 1.8.1 For (i), by the definition of β∗
a and the

KKT condition, we have

β∗
a =

[
E
[
V̄V̄⊤]]−1

E
[
V̄Y DR

]
=
[
E
[
V̄V̄⊤]]−1

E

[
1{A1=a1}V

[
ν∗a(S) + 1{A2=a2}

Y − ν∗a(S)
ρ∗a(S)

]]
(i)
=
[
E
[
V̄V̄⊤]]−1

E

[
E
[
1{A1=a1} | S1

]
VE

[
ν∗a(S) + 1{A2=a2}

Y − ν∗a(S)
ρ∗a(S)

| S1, A1 = a1

]]
(ii)
=
[
E
[
V̄V̄⊤]]−1

E
[
E[1{A1=a1} | S1]Vµa(S1)

]
=
[
E
[
V̄V̄⊤]]−1

E
[
V̄µa(S1)

]
(iii)
=
[
E
[
V̄V̄⊤]]−1

E
[
V̄V̄⊤βa

]
= βa,
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where (i) holds by the tower rule; (ii) holds by Theorem 1 in Section 1.1; (iii) holds since

V̄µa(S1) = V̄V⊤βa = V̄V̄⊤βa.

For (ii), we observe that

β∗
a − β∗

a,NR =
[
E
[
V̄V̄⊤]]−1

E
[
V̄Y DR − V̄Ū⊤α∗

a

]
=
[
E
[
V̄V̄⊤]]−1

E

[
1{A1=a1,A2=a2}V

Y (a)− ν∗a(S)
ρ∗a(S)

]
(i)
=
[
E
[
V̄V̄⊤]]−1

E

[
E[A1 = a1 | S]VE

[
1{A2=a2}

Y (a)− ν∗a(S)
ρ∗a(S)

| S, A1 = a1

]]
(ii)
=
[
E
[
V̄V̄⊤]]−1

E

[
E[A1 = a1 | S]VE

[
ρa(S)

νa(S)− ν∗a(S)
ρ∗a(S)

| S, A1 = a1

]]
= 0,

as long as ν∗a(·) = νa(·). Here, (i) holds by the tower rule; (ii) holds since Y (a) ⊥⊥ A2 | S, A1 =

a1 under Assumption 1, ρa(S) = E[1{A2=a2} | S, A1 = a1], and νa(S) = E[Y (a) | S, A1 = a1].

Hence, β∗
a = β∗

a,NR as long as ν∗a(·) = νa(·).

1.8.2 Additional numerical experiments

In this section, we present additional simulation results under different data gener-

ating processes (DGPs) where all the nuisance functions are correctly parametrized. For

each i ≤ N , generate S1i ∼iid Nd1(0, Id1) and A1i|S1i ∼ Bernoulli(πa(S1i)), where πa(S1i) =

g(V⊤
i γa). Let δ1i ∼iid N(0, 1), δ1i ∼iid Nd1(0, Id1) and δ2i ∼iid Nd2(0, Id2). The following

models on S2i|(S1i, A1i) are considered:

M4. (Sparse linear) S2i = Ws(A1i)S1i + A1i(1 + δ1i)1d2×1 + δ2i.

M5. (Dense linear) S2i = Wd(A1i)S1i + A1i(1 + δ1i)1d2×1 + δ2i.

M6. (Dense quadratic) S2i = 0.5W̃d(A1i)(S
2
1i − 1) +Wd(A1i)S1i + A1i(1 + δ1i)1d2×1 + δ2i,

where S2
1i ∈ Rd1 is the coordinate-wise square of S1i.
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For each c = (c1, c2) ∈ {a, a′}, the matrices Ws(c),Wd(c), W̃d(c) ∈ Rd2×d1 are defined

as the following: for each i ≤ d2 and j ≤ d1,

{Ws(a)}i,j = 0.8|i−j|1{|i− j| ≤ 1}, {Wd(a)}i,j = 0.8|i−j|,

{Ws(a
′)}i,j = 0.7|i−j|1{|i− j| ≤ 2}, {Wd(a

′)}i,j = 0.7|i−j|,

{W̃d(c)}i,j = {Wd(c)}i,j1{j > 3} for each c ∈ {a, a′}.

The treatment indicators at time t = 2 are generated as

A2i|(Si, A1i = c1) ∼ Bernoulli(ρc(Si)), with

ρc(Si) = g(c1U
⊤
i ηa + (1− c1)U⊤

i ηa′), for each c = (c1, c2) ∈ {a, a′}.

The outcome variables are generated as

Yi = Yi(A1i, A2i), Yi(c) = U⊤
i αc + ζi, for each c ∈ {a, a′}, where ζi ∼iid N(0, 1).

The parameter values are chosen as αc = (α⊤
c,1,α

⊤
c,2)

⊤, for each c ∈ {a, a′}, αa,1 =

(−1,−1, 1,−1,0(d1−3))
⊤, αa,2 = (−1,−1, 1,0(d2−3))

⊤, αa′,1 = (1, 1, 1,−1,0(d1−3))
⊤, αa′,2 =

(1, 1, 1,0(d2−3))
⊤, γa = (0, 1, 1, 1,0(d1−3))

⊤, ηa = (0, 1, 1,0(d1−2), 1,−1,0(d2−2))
⊤, and ηa′ =

(0, 0.5, 0,−0.5, 0(d1−3), 0.5, 0, 0.5,0(d2−3))
⊤, where 0q := (0, . . . , 0) ∈ Rq for any q ≥ 1. Under

the above DGPs, we have the following nuisance functions: for each c ∈ {a, a′},

νc(S) = E[Y (c)|S, A1 = c1] = U⊤αc, (1.39)

µc(S1) = E[Y (c)|S1, A1 = c1] = V⊤αc,1 + E[S⊤
2 αc,2|S1, A1 = c1] = V⊤βc, (1.40)

where βc varies for different models on S2i|(S1i, A1i) as follows:

M4. βc = αc,1 + (
∑d2

j=1αa′,21{c = a′}, (Ws(c)αc,2)
⊤)⊤ with ∥βa∥0 = 4 and ∥βa′∥0 = 5.
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Table 1.7: Simulation under M4. Bias: empirical bias; RMSE: root mean square error;
Length: average length of the 95% confidence intervals; Coverage: average coverage of the
95% confidence intervals; ESD: empirical standard deviation; ASD: average of estimated
standard deviations. All the reported values (except Coverage) are based on robust (median-
type) estimates. Denote N1 and N0 as the expected number of observations in the treatment
groups (1, 1) and (0, 0), respectively.

Estimator Bias RMSE Length Coverage ESD ASD

N = 1000, N1 = 279, N0 = 312, d1 = 100, d2 = 50

empdiff 2.485 2.485 1.258 0.000 0.318 0.321

oracle -0.035 0.243 1.305 0.972 0.350 0.333

DTL 0.063 0.218 1.121 0.934 0.326 0.286

S-DRL 0.133 0.202 0.881 0.874 0.262 0.225

S-DRL’ 0.121 0.195 0.876 0.898 0.262 0.224

N = 4000, N1 = 1115, N0 = 1248, d1 = 100, d2 = 50

empdiff 2.484 2.484 0.627 0.000 0.162 0.160

oracle 0.003 0.125 0.706 0.946 0.185 0.180

DTL 0.029 0.119 0.600 0.928 0.171 0.153

S-DRL 0.031 0.122 0.601 0.926 0.169 0.153

S-DRL’ 0.030 0.119 0.598 0.922 0.173 0.153

M5-6. βc = αc,1 + (
∑d2

j=1αa′,21{c = a′}, (Wd(c)αc,2)
⊤)⊤ is weakly sparse in that ∥βa∥0 =

∥βa′∥0 = d1 + 1, ∥βa∥1 < 5.23, and ∥βa′∥1 < 7.24.

The following choices of parameters are implemented: N ∈ {1000, 4000}, d1 = 100,

and d2 = d1/2 = 50. For each of the DGPs, we repeat the simulation for 500 times. For each

replication, we consider the oracle estimator, the empirical difference estimator (empdiff),

the DTL estimator, the S-DRL estimator, and the S-DRL’ estimator as in Section 6.1. The

results are reported in Tables 1.7-1.5.

The considered DGPs are only different on the procedure of generating S2 based on

S1 and A1. Under M4, we consider a sparse linear dependence that S2 is linearly dependent

on S1 through a sparse and dense matrix operator, where the corresponding coefficient βc is
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a sparse vector. Under M5, we consider a dense linear dependence that the corresponding

coefficient βc is only weakly sparse that it’s ∥ ·∥1 norm is bounded. Under M6, we consider a

dense quadratic dependence between S2 and S1 but the nuisance function µc(·) is still linear

- we can see that the nuisance function can be linear even when S2 is not linearly dependent

on S1. Note that, although E(S2|S1, A1 = c1) is quadratic in S1, E(S
⊤
2 αc,2|S1, A1 = c1) is

still linear on S1 and hence the linear working models µ∗
c(·) = µ∗

c,NR(·) are both correctly

specified as the second-time conditional mean νc(·) is also linear.

Table 1.8: Simulation under M5. The rest of the caption details remain the same as those
in Table 1.7.

Estimator Bias RMSE Length Coverage ESD ASD

N = 1000, N1 = 296, N0 = 310, d1 = 100, d2 = 50

empdiff 2.921 2.921 1.239 0.000 0.317 0.316

oracle 0.002 0.245 1.346 0.962 0.364 0.343

DTL 0.084 0.219 1.139 0.920 0.322 0.291

S-DRL 0.097 0.225 1.140 0.922 0.323 0.291

S-DRL’ 0.084 0.224 1.138 0.926 0.321 0.290

N = 4000, N1 = 1184, N0 = 1240, d1 = 100, d2 = 50

empdiff 2.922 2.922 0.619 0.000 0.159 0.158

oracle -0.006 0.137 0.710 0.946 0.202 0.181

DTL 0.019 0.113 0.608 0.934 0.166 0.155

S-DRL 0.024 0.114 0.609 0.930 0.166 0.155

S-DRL’ 0.019 0.114 0.609 0.932 0.166 0.155

We first focus on the DTL, S-DRL, and S-DRL’ estimators and compare their behav-

iors. We can see that when the model is relatively easy (under M4), and the total sample size

is relatively small (N = 1000), the DTL method provides better coverage but with a worse

RMSE than the S-DRL and S-DRL’ methods; see Table 1.7. This is because, although the

DTL estimator has a smaller bias, it also has a larger ESD compared with the S-DRL and
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Table 1.9: Simulation under M6. The rest of the caption details remain the same as those
in Table 1.7.

Estimator Bias RMSE Length Coverage ESD ASD

N = 1000, N1 = 296, N0 = 310, d1 = 100, d2 = 50

empdiff 2.921 2.921 1.239 0.000 0.317 0.316

oracle 0.002 0.245 1.346 0.962 0.364 0.343

DTL 0.083 0.225 1.141 0.924 0.318 0.291

S-DRL 0.077 0.228 1.139 0.914 0.320 0.290

S-DRL’ 0.076 0.213 1.135 0.920 0.320 0.289

N = 4000, N1 = 1184, N0 = 1240, d1 = 100, d2 = 50

empdiff 2.922 2.922 0.619 0.000 0.159 0.158

oracle -0.006 0.137 0.710 0.946 0.202 0.181

DTL 0.019 0.114 0.610 0.936 0.166 0.156

S-DRL 0.021 0.115 0.610 0.928 0.166 0.156

S-DRL’ 0.020 0.112 0.608 0.932 0.166 0.155

S-DRL’ estimators. If we further increase the sample size (N = 4000), we can see that the

coverages based on DTL, S-DRL, and S-DRL’ estimators are close to each other and also

overall acceptable. When the estimation of the first-time conditional mean is relatively hard

as its linear parameter is only weakly sparse (under M4 and M5), we can see that the RMSEs

and confidence intervals’ coverages of the DTL, S-DRL, and S-DRL’ methods are relatively

close to each other for both N = 1000 and N = 4000; see Tables 1.8 and 1.9. In addition,

we can see that the considered estimators have very similar behaviors among DGPs M5 and

M6. Note that the nuisance functions, including the propensity score and conditional mean

functions, are the same under M5 and M6, although the conditional densities of S2 given

(S1, A1) are different. This observation indicates that the considered estimators’ behavior

mainly relies on the conditional means of the potential outcomes and treatment variables in-

stead of the conditional densities. Lastly, we can also see that the naive empirical difference
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estimator, θ̂empdiff, is not even consistent because of the appearance of confounders.

1.8.3 Proof of the results for the doubly robust representation

Proof of Lemma 1. By the tower rule and Y = Y (A1, A2) under Assumption 1,

E

[
1{A1=a1,A2=a2}

Y − ν∗a(S)
π∗
a(S1)ρ∗a(S)

]
= E

[
1{A1=a1,A2=a2}

Y (a)− ν∗a(S)
π∗
a(S1)ρ∗a(S)

]
= E

[
E

[
1{A1=a1,A2=a2}

Y (a)− ν∗a(S)
π∗
a(S1)ρ∗a(S)

| S, A1 = a1

]
P (A1 = a1 | S)

]
.

By Y (a) ⊥⊥ A2 | S, A1 = a1 under Assumption 1,

E

[
E

[
1{A1=a1,A2=a2}

Y (a)− ν∗a(S)
π∗
a(S1)ρ∗a(S)

| S, A1 = a1

]
P (A1 = a1 | S)

]
= E

[
E[1{A2=a2} | S, A1 = a1](E[Y (a) | S, A1 = a1]− ν∗a(S))

π∗
a(S1)ρ∗a(S)

E[1{A1=a1} | S]
]

(i)
= E

[
ρa(S)(νa(S)− ν∗a(S))

π∗
a(S1)ρ∗a(S)

E[1{A1=a1} | S]
]

(ii)
= E

[
1{A1=a1}

ρa(S)(νa(S)− ν∗a(S))
π∗
a(S1)ρ∗a(S)

]
,

where (i) holds since ρa(S) = P [A2 = a2 | S, A1 = a1] and νa(S) = E [Y (a) | S, A1 = a1]; (ii)
holds by the tower rule. Hence,

E

[
1{A1=a1,A2=a2}

Y − ν∗a(S)
π∗
a(S1)ρ∗a(S)

]
= E

[
1{A1=a1}

ρa(S)(νa(S)− ν∗a(S))
π∗
a(S1)ρ∗a(S)

]
.

Observe that

E

[
1{A1=a1,A2=a2}

Y − ν∗a(S)
π∗
a(S1)ρ∗a(S)

+ 1{A1=a1}
ν∗a(S)− µ∗

a(S1)

π∗
a(S1)

+ µ∗
a(S1)

]
− θa

= E

[
1{A1=a1}

ρa(S)(νa(S)− ν∗a(S))
π∗
a(S1)ρ∗a(S)

+ 1{A1=a1}
ν∗a(S)− µ∗

a(S1)

π∗
a(S1)

+ µ∗
a(S1)− µa(S1)

]
(i)
= G1 +G2 +G3, (1.41)

where

G1 :=E

[
1{A1=a1}

ν∗a(S)− νa(S)
π∗
a(S1)

(
1− ρa(S)

ρ∗a(S)

)]
,

G2 :=E

[
(µ∗

a(S1)− µa(S1))

(
1−

1{A1=a1}

π∗
a(S1)

)]
,

G3 :=E

[
1{A1=a1}

νa(S)− µa(S1)

π∗
a(S1)

]
.
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In the above, (i) holds by rearranging the terms after the following decomposition

ν∗a(S)− µ∗
a(S1) = (ν∗a(S)− νa(S)) + (νa(S)− µa(S1)) + (µa(S)− µ∗

a(S1)).

By assumption, either ν∗a(·) = νa(·) or ρ∗a(·) = ρa(·), we have

G1 = 0. (1.42)

For G2, by the tower rule,

G2 = E

[
E

[
(µa(S1)− µ∗

a(S1))

(
1−

1{A1=a1}

π∗
a(S1)

)
| S1

]]
(i)
= E

[
(µa(S1)− µ∗

a(S1))

(
1− πa(S1)

π∗
a(S1)

)]
(ii)
= 0, (1.43)

where (i) holds since πa(S1) = P [A1 = a1|S1]; (ii) holds since πa(S1) = P [A1 = a1|S1]; (ii)
holds since, by assumption, either µ∗

a(·) = µa(·) or π∗
a(·) = πa(·). For G3, by the tower rule,

G3 = E

[
E

[
1{A1=a1}

νa(S)− µa(S1)

π∗
a(S1)

| S1, A1 = a1

]
P (A1 = a1 | S1)

]
(i)
= E

[
πa(S1)

π∗
a(S1)

[E [νa(S) | S1, A1 = a1]− µa(S1)]

]
(ii)
= 0, (1.44)

where (i) holds since πa(S1) = P [A1 = a1|S1]; (ii) holds since µa(S1) = E[νa(S) | S1, A1 =
a1]. Combining (1.42)-(1.44) with (1.41), we have

θa = E

[
1{A1=a1,A2=a2}

Y − ν∗a(S)
π∗
a(S1)ρ∗a(S)

+ 1{A1=a1}
ν∗a(S)− µ∗

a(S1)

π∗
a(S1)

+ µ∗
a(S1)

]
.

Proof of Theorem 1. Observe that

E

[
ν∗a(S) + 1{A2=a2}

Y − ν∗a(S)
ρ∗a(S)

| S1, A1 = a1

]
− µa(S1)

(i)
= E

[
ν∗a(S)− νa(S) + 1{A2=a2}

Y (a)− ν∗a(S)
ρ∗a(S)

| S1, A1 = a1

]
= E

[
(ν∗a(S)− νa(S))

(
1−

1{A2=a2}

ρ∗a(S)

)
+ 1{A2=a2}

Y (a)− νa(S)
ρ∗a(S)

| S1, A1 = a1

]
,

where (i) holds since µa(S1) = E[νa(S) | S1, A1 = a1] and Y = Y (A1, A2) under Assumption
1. By the tower rule,

E

[
(ν∗a(S)− νa(S))

(
1−

1{A2=a2}

ρ∗a(S)

)
| S1, A1 = a1

]
= E

[
E

[
(ν∗a(S)− νa(S))

(
1−

1{A2=a2}

ρ∗a(S)

)
| S, A1 = a1

]
| S1, A1 = a1

]
(i)
= E

[
(ν∗a(S)− νa(S))

(
1− ρa(S)

ρ∗a(S)

)
| S1, A1 = a1

]
(ii)
= 0,
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where (i) holds since ρa(S) = P [A2 = a2 | S, A1 = a1]; (ii) holds since either ν∗a(·) = νa(·) or
ρ∗a(·) = ρa(·) by Assumption. In addition, by the tower rule, we also have

E

[
1{A2=a2}

Y (a)− νa(S)
ρ∗a(S)

| S1, A1 = a1

]
= E

[
E

[
1{A2=a2}

Y (a)− νa(S)
ρ∗a(S)

| S, A1 = a1

]
| S1, A1 = a1

]
(i)
= E

[
E
[
1{A2=a2} | S, A1 = a1

] E [Y (a) | S, A1 = a1]− νa(S)
ρ∗a(S)

| S1, A1 = a1

]
(ii)
= 0,

where (i) holds since Y (a) ⊥⊥ A2 | S, A1 = a1 under Assumption 1; (ii) holds since νa(S) =
E [Y (a) | S, A1 = a1]. Therefore, for any s1 ∈ Rd1 ,

µa(s1) = E

[
ν∗a(S) + 1{A2=a2}

Y − ν∗a(S)
ρ∗a(S)

| S1 = s1, A1 = a1

]
.

1.8.4 Convergence rates for nuisance estimators

Auxiliary Lemmas

The following lemmas will be helpful in our proofs.

Lemma 1.2 (Selection of Lemma D.1 of [CLCL19]). Let X, Y ∈ R be a random variable.

Then ∥cX∥ψ2 = |c|∥X∥ψ2 ∀c ∈ R. If |X| ≤ |Y | a.s., then ∥X∥ψ2 ≤ ∥Y ∥ψ2. Moreover, for

X and Y sub-Gaussian, ∥XY ∥ψ1 ≤ ∥X∥ψ2∥Y ∥ψ2. If X is bounded, i.e, |X| ≤ C a.s. for

some constant C, then ∥X∥ψ2 ≤ (log 2)−1/2C. If ∥X∥ψ2 ≤ σ, then E(|X|m) ≤ 2σmΓ(m/2 +

1) ∀ m ≥ 1, where Γ(a) :=
∫∞
0
xa−1 exp(−x)dx ∀a > 0 denotes the Gamma function. Hence,

E(|X|) ≤ σ
√
π and E(|X|m) ≤ 2σm(m/2)m/2 ∀ m ≥ 2. Let {Xi}ni=1 be random variables

(possibly dependent) with max1≤i≤n ∥Xi∥ψ2 ≤ σ, then ∥max1≤i≤n |Xi|∥ψ2 ≤ σ(log n+ 2)1/2.

Lemma 1.3. Let X ∈ R be a random variable. If E(|X|2k) ≤ 2σ2kΓ(k + 1) for any k ∈ N,

then ∥X∥ψ2 ≤ 2σ.
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The following lemma provides the same type of results as used in the Assumption 3

but now for covariates at different exposure time and different treatment paths.

Lemma 1.4. Let the overlap conditions of Assumption 1 and Assumption 3 hold. Consider

the constants c0, κl, σu defined as in Assumptions 1 and 3. Then, the following statements

hold:

(a) 0 < c0κl ≤ λmin(E[ŨŨ⊤]) ≤ λmax(E[ŨŨ⊤]) ≤ 2σ2
u < ∞ and Ũ is sub-Gaussian

with ∥x⊤Ũ∥ψ2 ≤ 2σu∥x∥2 for any x ∈ Rd+1;

(b) 0 < κl ≤ λmin(E[ŪŪ⊤]) ≤ λmax(E[ŪŪ⊤]) ≤ 2σ2
u < ∞ and Ū is sub-Gaussian

with ∥x⊤Ū∥ψ2 ≤ 2σu∥x∥2 for any x ∈ Rd+1;

c) 0 < κl ≤ λmin(E[UU⊤]) ≤ λmax(E[UU⊤]) ≤ 2σ2
u < ∞ and U is sub-Gaussian

with ∥x⊤U∥ψ2 ≤ σu∥x∥2 for any x ∈ Rd1+1;

d) 0 < κl ≤ λmin(E[V̄V̄⊤]) ≤ λmax(E[V̄V̄⊤]) ≤ 2σ2
u < ∞ and V̄ is sub-Gaussian

with ∥x⊤V̄∥ψ2 ≤ 2σu∥x∥2 for any x ∈ Rd1+1;

e) 0 < κl ≤ λmin(E[VV⊤]) ≤ λmax(E[VV⊤]) ≤ 2σ2
u < ∞ and V is sub-Gaussian

with ∥x⊤V∥ψ2 ≤ 2σu∥x∥2 for any x ∈ Rd1+1.

The second-time conditional mean model The following lemma characterizes the

estimation error of the second-time conditional mean model, ν∗a(·). The corresponding con-

ditional mean estimator is defined as ν̂a(S) = U⊤α̂a.

Lemma 1.5. Let Assumptions 1-3 hold. For any t > 0, choose λα := 32σσuσζ(t +√
log(d+ 1)/|J |). Let |J | ≥ max{log(d + 1), 100κ22sαa log(d + 1)}. Then α̂a, (2.6), sat-
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isfies

∥α̂a −α∗
a∥2 ≤ 8κ−1

1 λα
√
sαa ,

1

|J |
∑
i∈J

[Ũ⊤
i (α̂a −α∗

a)]
2 ≤ 32κ−1

1 λ2αsαa , (1.45)

with probability at least 1−2 exp
(
− 4|J |t2

1+2t+
√
2t

)
−c1 exp(−c2|J |) and some constants c1, c2, κ1,

κ2 > 0. In addition, assume |J | ≍ N and N ≫ sαa log(d). Choose some λα ≍ σ
√

log(d)/N .

Then for any constant r ≥ 1, as N, d→∞, we have

∥α̂a −α∗
a∥2 = Op

(
σ
√
sαa log(d)/N

)
, (1.46)

{E[ν̂a(S)− ν∗a(S)]r}1/r = Op

(
σ
√
sαa log(d)/N

)
. (1.47)

In the above, the expectation of the left-hand side of (1.47) is taken respect to the

distribution of a new observation’s covariate vector S.

The nested-regression-based estimator β̂a,NR proposed in Section 2.2 is constructed

based on α̂a and hence we need to first control the estimation error of α̂a. Note that, α̂a

and β̂a,NR are actually obtained based on overlapping but different sample groups. For α̂a,

we only utilize the samples satisfying A1i = a1 and A2i = a2; as for β̂a,NR , we are using the

samples such that A1i = a1 and there is no constraint on A2i. As a result, the in-sample error

(1.45) is not enough for our analysis. Instead, we require an upper bound for a “partially

in-sample” error. We show the prerequisite results in the following lemma.

Lemma 1.6. Let Assumptions of Lemma 1.5 hold. In addition, let |J | ≥ max{log(d +

1), (c3 + 100κ22)sαa log(d+ 1)}, with constant c3 > 0. Then

1

|J |
∑
i∈J

[Ū⊤
i (α̂a −α∗

a)]
2 ≤ 288σuκ

−2
1 λ2αsαa ,

with probability at least 1−2 exp
(
− 4|J |t2

1+2t+
√
2t

)
−c1 exp(−c2|J |)−2 exp(−c4|J |) and constants

c1, c2, c4 > 0.

60



The propensity score models The following lemma provides asymptotic upper bounds

on the estimation errors of the propensity score models, π∗
a(·) and ρ∗a(·). The correspond-

ing propensity score estimators are defined as π̂a(S1) = g(V⊤γ̂a) and ρ̂a(S) = g(U⊤δ̂a),

respectively.

Lemma 1.7. Let the overlap conditions of Assumption 1 and Assumptions 3-4 hold. Let

the sample size be such that |J | ≍ N and N ≫ max{sγa log(d1), sδa log(d)}. Then, as

N, d→∞, (a) the logistic Lasso (2.3) with λγ ≍
√
log(d1)/N satisfies

∥γ̂a − γ∗
a∥2 = Op

(√
sγa log(d1)/N

)
, (1.48)

E[π̂a(S1)− π∗
a(S1)]

2 = Op (sγa log(d1)/N) , (1.49)

whereas (b) the logistic Lasso (2.4) with λδ ≍
√
log(d)/N satisfies

∥δ̂a − δ∗
a∥2 = Op

(√
sδa log(d)/N

)
, (1.50)

E[ρ̂a(S)− ρ∗a(S)]2 = Op (sδa log(d)/N) . (1.51)

In the left-hand side of (1.49) and (1.51), the expectations are only taken w.r.t. the distri-

bution of the new observations S1 and S, respectively. Note that Assumption 4 holds under

Assumption 1 when π∗
a(S1) and ρ

∗
a(S) are correctly specified.

Lemma 1.8. Let Assumptions of Lemma 1.7 hold. Define the event A := {∥γ̂a − γ∗
a∥2 ≤

1, ∥δ̂a − δ∗
a∥2 ≤ 1}. Then, as N, d → ∞, P (A) = 1 − o(1). Moreover, on the event A,

as N, d → ∞, {E|π̂a(S1)|−r}1/r and {E|ρ̂a(S)|−r}1/r are both bounded uniformly by some
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constants independent of N and for r > 2,

{
E
∣∣π̂−1
a (S1)− π∗

a
−1(S1)

∣∣r}1/r = Op

(√
sγa log(d1)/N

)
,

{
E
∣∣ρ̂−1
a (S)− ρ∗a

−1(S)
∣∣r}1/r = Op

(√
sδa log(d)/N

)
,

{
E
∣∣π̂−1
a (S1)ρ̂

−1
a (S)− π∗

a
−1(S1)ρ

∗
a
−1(S)

∣∣r}1/r = Op

(√
(sγa log(d1) + sδa log(d))/N

)
.

In the left-hand side of the equations above, the expectations are only taken w.r.t.

the distribution of the new observations S1 or S.

Convergence rate for the general imputed Lasso estimator

Proof of Theorem 8. By the definition of β̂, we have

1

M

M∑
i=1

[Ŷi −X⊤
i β̂]

2 + λM∥β̂∥1 ≤
1

M

M∑
i=1

[Ŷi −X⊤
i β

∗]2 + λM∥β∗∥1,

or, expanding and rearranging,

1

M

M∑
i=1

[X⊤
i (β̂ − β∗)]2 + λM∥β̂∥1

≤ 2

M

M∑
i=1

[Ŷi −X⊤
i β

∗]X⊤
i (β̂ − β∗) + λM∥β∗∥1

=
2

M

M∑
i=1

εiX
⊤
i (β̂ − β∗) +

2

M

M∑
i=1

[Ŷi − Y ∗
i ]X

⊤
i (β̂ − β∗) + λM∥β∗∥1. (1.52)

For any t > 0, let λM := 16σσX(
√

log(d)
M

+ t). Define the event

E2 :=

{
max
1≤j≤d

∣∣∣∣∣ 1M
M∑
i=1

Xi,jεi

∣∣∣∣∣ ≤ λM
4

}
,

where Xi,j represents the j-th component of Xi. Note that

P

(
max
1≤j≤d

∣∣∣∣∣ 1M
M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ λM
4

)
= P

(
d⋃
j=1

{∣∣∣∣∣ 1M
M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ λM
4

})

≤
d∑
j=1

P

(∣∣∣∣∣ 1M
M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ λM
4

)
. (1.53)
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Let ej ∈ Rd be the vector whose j-th element is 1 and other elements are 0s, for each

1 ≤ j ≤ d. Since ∥e⊤
j X∥ψ2 ≤ σX and ∥ε∥ψ2 ≤ σ, by Lemma 1.2,

∥e⊤
j Xε∥ψ1 ≤ ∥e⊤

j X∥ψ2 · ∥ε∥ψ2 ≤ σσX.

Note that, here we do not make any assumption on the sample gram matrix Σ̂ :=M−1
∑M

i=1

XiX
⊤
i , e.g., sup1≤j≤d Σ̂j,j ≤ 1 as required in [Wai19,NRWY12]. Instead, we consider e⊤

j Xε as

a sub-exponential random variable, and the Bernstein’s inequality is applied in the following

to control (1.53). Recall the definition of β∗, we have E[Xε] = 0. By Bernstein’s inequality,

for each 1 ≤ j ≤ d,

P

(∣∣∣∣∣ 1M
M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ 2σσXϵ+ σσXϵ
2

)
≤ 2 exp

(
−Mϵ2

)
, for any ϵ > 0. (1.54)

Set ϵ =
√

log(d)
M

+
√
1+8t−1

2
for any t > 0. When M > log(d), we have

2ϵ+ ϵ2 ≤ 2

√
log(d)

M
+
√
1 + 8t− 1 +

(√
log(d)

M
+

√
1 + 8t− 1

2

)2

≤ 2

√
log(d)

M
+
√
1 + 8t− 1 +

2 log(d)

M
+ 2

(√
1 + 8t− 1

2

)2

= 2

√
log(d)

M
+
√
1 + 8t− 1 + 2

√
log(d)

M
·
√

log(d)

M
+ 1 + 4t−

√
1 + 8t

≤ 4

√
log(d)

M
+ 4t,

and hence

2σσXϵ+ σσXϵ
2 ≤ 4σσX

(√
log(d)

M
+ t

)
=
λM
4
. (1.55)

Additionally, we also have

ϵ2 =

(√
log(d)

M
+

√
1 + 8t− 1

2

)2

≥ log(d)

M
+

1 + 4t−
√
1 + 8t

2

=
log(d)

M
+

8t2

1 + 4t+
√
1 + 8t

≥ log(d)

M
+

4t2

1 + 2t+
√
2t
.
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Together with (1.54) and (1.55), we have, for each 1 ≤ j ≤ d,

P

(∣∣∣∣∣ 1M
M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ λM
4

)
≤ P

(∣∣∣∣∣ 1M
M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ 2σσXϵ+ σσXϵ
2

)

≤ 2 exp
(
−Mϵ2

)
≤ 2

d
exp

(
− 4Mt2

1 + 2t+
√
2t

)
.

Together with (1.53),

P (E2) = P

(
max
1≤j≤d

∣∣∣∣∣ 1M
M∑
i=1

Xi,jεi

∣∣∣∣∣ ≤ λM
4

)
≥ 1− 2 exp

(
− 4Mt2

1 + 2t+
√
2t

)
. (1.56)

On the event E2, we have∣∣∣∣∣ 2M
M∑
i=1

εiX
⊤
i (β̂ − β∗)

∣∣∣∣∣ ≤ 2∥β̂ − β∗∥1 max
1≤j≤d

∣∣∣∣∣ 1M
M∑
i=1

Xi,jεi

∣∣∣∣∣ ≤ λM∥β̂ − β∗∥1/2. (1.57)

As for the second term of (1.52), by the fact that 2ab ≤ a2 + b2 for any a, b ∈ R, and we set

a =
√
2[Ŷi − Y ∗

i ], b = X⊤
i (β̂ − β∗)/

√
2, we have∣∣∣∣∣ 2M

M∑
i=1

[Ŷi − Y ∗
i ]X

⊤
i (β̂ − β∗)

∣∣∣∣∣ ≤ 2

M

M∑
i=1

[Ŷi − Y ∗
i ]

2 +
1

2M

M∑
i=1

[
X⊤
i (β̂ − β∗)

]2
≤ 2δ2M +

1

2M

M∑
i=1

[
X⊤
i (β̂ − β∗)

]2
, (1.58)

on the event E1 = {M−1
∑M

i=1[Ŷi−Y ∗
i ]

2 < δ2M}. Multiplying the left-hand side and right-hand

side of (1.52) by 2, we have

2

M

M∑
i=1

[X⊤
i (β̂ − β∗)]2 + 2λM∥β̂∥1

≤ 4

M

M∑
i=1

εiX
⊤
i (β̂ − β∗) +

4

M

M∑
i=1

[Ŷi − Y ∗
i ]X

⊤
i (β̂ − β∗) + 2λM∥β∗∥1.

Together with (1.57) and (1.58), on the event E1 ∩ E2, we have

2

M

M∑
i=1

[X⊤
i (β̂ − β∗)]2 + 2λM∥β̂∥1

≤ λM∥β̂ − β∗∥1 +
1

M

M∑
i=1

[X⊤
i (β̂ − β∗)]2 + 4δ2M + 2λM∥β∗∥1. (1.59)
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Hence,

1

M

M∑
i=1

[X⊤
i (β̂ − β∗)]2 + 2λM∥β̂∥1 ≤ λM∥β̂ − β∗∥1 + 2λM∥β∗∥1 + 4δ2M

= λM∥β̂S − β∗
S∥1 + λM∥β̂Sc∥1 + 2λM∥β∗

S∥1 + 4δ2M , (1.60)

where S := {j ≤ d : β∗
j ̸= 0} and note that s = |S|, ∥β̂−β∗∥1 = ∥β̂S−β∗

S∥1+∥β̂Sc−β∗
Sc∥1 =

∥β̂S − β∗
S∥1 + ∥β̂Sc∥1, and ∥β∗∥1 = ∥β∗

S∥1. By the triangle inequality,

∥β̂∥1 = ∥β̂S∥1 + ∥β̂Sc∥1 ≥ ∥β∗
S∥1 − ∥β̂S − β∗

S∥1 + ∥β̂Sc∥1. (1.61)

By (1.60) and (1.61), on the event E1 ∩ E2, we get that

1

M

M∑
i=1

[X⊤
i (β̂ − β∗)]2 + λM∥β̂Sc∥1 ≤ 3λM∥β̂S − β∗

S∥1 + 4δ2M . (1.62)

By Lemma 4.5 of [ZCB21], there exist constants κ1, κ2 > 0, such that

1

M

M∑
i=1

(X⊤
i ∆)2 ≥ κ1∥∆∥2

{
∥∆∥2 − κ2

√
log(d)

M
∥∆∥1

}
for all ∥∆∥2 ≤ 1, (1.63)

with probability at least 1− c1 exp(−c2M) and some constants c1, c2 > 0. Note that Lemma

4.5 of [ZCB21] discusses logistic loss but applies more broadly and does include the least

squares loss as well.

Let δ = β̂ − β∗ and define

E3 :=

{
1

M

M∑
i=1

(X⊤
i δ)

2 ≥ κ1∥δ∥22 − κ1κ2

√
log(d)

M
∥δ∥1∥δ∥2

}
. (1.64)

Let ∆ = δ/∥δ∥2. Then, ∥∆∥2 = 1 and hence by (1.63),

P (E3) ≥ 1− c1 exp(−c2M).

We now condition on the event E1 ∩ E2 ∩ E3 and introduce two cases need to be separately

analyzed.
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Case 1. Case of ∥δS∥1 < 4λ−1
M δ2M . Then, by (1.62),

∥δSc∥1 ≤ 3∥δS∥1 + 4λ−1
M δ2M ≤ 16λ−1

M δ2M .

Hence,

∥δ∥1 = ∥δS∥1 + ∥δSc∥1 ≤ 20λ−1
M δ2M ,

and

1

M

M∑
i=1

(X⊤
i δ)

2 ≤ 3λM∥δS∥1 + 4δ2M ≤ 16δ2M .

In addition, on the event E3,

κ1∥δ∥22 − κ1κ2

√
log(d)

M
∥δ∥1∥δ∥2 ≤

1

M

M∑
i=1

(X⊤
i δ)

2 ≤ 16δ2M .

It follows that,

∥δ∥2 ≤
κ1κ2

√
log(d)
M
∥δ∥1 +

√
κ21κ

2
2
log(d)
M
∥δ∥21 + 64κ1δ2M

2κ1

≤ κ2

√
log(d)

M
∥δ∥1 + 4κ

−1/2
1 δM ≤ 20κ2

√
log(d)

M
λ−1
M δ2M + 4κ

−1/2
1 δM

≤ 5κ2δ
2
M

4σσX
+ 4κ

−1/2
1 δM ,

since λM = 16σσX(
√

log(d)
M

+ t) ≥ 16σσX

√
log(d)
M

.

Case 2. Case of ∥δS∥1 ≥ 4λ−1
M δ2M . Then, by (1.62),

1

M

M∑
i=1

(X⊤
i δ)

2 + λM∥δSc∥1 ≤ λM(3∥δS∥1 + 4λ−1
M δ2M) ≤ 4λM∥δS∥1, (1.65)

and hence

∥δSc∥1 ≤ 4∥δS∥1. (1.66)

Notice that, ∥δS∥1 ≤
√
s∥δS∥2. It follows that

∥δ∥1 = ∥δS∥1 + ∥δSc∥1 ≤ 5∥δS∥1 ≤ 5
√
s∥δS∥2 ≤ 5

√
s∥δ∥2.
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Hence, under the event E3, when M > 100κ2
2s log(d),

1

M

M∑
i=1

(X⊤
i δ)

2 ≥ κ1∥δ∥22 − 5κ1κ2

√
s log(d)

M
∥δ∥22

≥ κ1
2
∥δ∥22 ≥

κ1
2
∥δS∥22 ≥

κ1
2s
∥δS∥21. (1.67)

Together with (1.65), we have

κ1
2s
∥δS∥21 ≤

1

M

M∑
i=1

(X⊤
i δ)

2 ≤ 4λM∥δS∥1.

Hence, on the event E1 ∩ E2 ∩ E3,

∥δS∥1 ≤ 8κ−1
1 sλM . (1.68)

By (1.66),

∥δ∥1 ≤ ∥δS∥1 + ∥δSc∥1 ≤ 5∥δS∥1 ≤ 40κ−1
1 sλM .

Besides, by (1.65) and (1.68),

1

M

M∑
i=1

(X⊤
i δ)

2 ≤ 4λM∥δS∥1 ≤ 32κ−1
1 sλ2M .

Additionally, by (1.67), when M > 100κ2
2s log(d),

∥δ∥2 ≤

√√√√ 2

κ1M

M∑
i=1

(X⊤
i δ)

2 ≤ 8κ−1
1

√
sλM .

To sum up, on the event E1 ∩ E2 ∩ E3 and when M > max{log(d), 100κ22s log(d)},

∥β̂ − β∗∥2 ≤ max

(
5κ2δ

2
M

4σσX
+ 4κ

−1/2
1 δM , 8κ

−1
1

√
sλM

)
, (1.69)

∥β̂ − β∗∥1 ≤ max
(
20λ−1

M δ2M , 40κ
−1
1 sλM

)
, (1.70)

1

M

M∑
i=1

(X⊤
i δ)

2 ≤ max
(
16δ2M , 32κ

−1
1 sλ2M

)
. (1.71)
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Here,

P (E2 ∩ E3) ≥ 1− P (Ec2)− P (Ec3) = 1− 2 exp

(
− 4Mt2

1 + 2t+
√
2t

)
− c1 exp(−c2M).

The remaining claims follow by noticing that for some λM ≍ σ
√

log(d)
M

and δM = o(σ),

P (E1) = 1− o(1), and with M ≫ s log(d) as M,d→∞,

P (E1 ∩ E2 ∩ E3) ≥ 1− 2 exp

(
− 4Mt2

1 + 2t+
√
2t

)
− c1 exp(−c2M)− o(1).

Convergence rates for nuisance estimators with imputed outcomes

DR-imputation-based estimator

Proof of Theorem 9. We first consider the DR-imputation-based estimator β̂a,2 = β̂a(DJ2 ,

Ŷ DR
J2

) defined as (2.11). In this case, the expectations are taken w.r.t. the samples in DJ2 ;

with a slight abuse of notation, δ̃a := δ̂a(DJ1) and α̃a := α̂a(DJ1) are fitted using samples

in DJ1 and are treated as fixed or condition on. Repeat the same procedure as in (1.52), we

have

1

|J2|
∑
i∈J2

(V̄⊤
i ∆β)

2 + λβ∥β̂a,2∥1 ≤
2

|J2|
∑
i∈J2

1{A1i=a1}(Ŷ
DR

i −V⊤
i β

∗
a)V̄

⊤
i ∆β + λβ∥β∗

a∥1

=
2

|J2|
∑
i∈J2

(∆1i +∆2i +∆3i +∆4i +∆5i +∆6i)V̄
⊤
i ∆β + λβ∥β∗

a∥1

≤
3∑
l=1

∥∥∥∥∥ 2

|J2|
∑
i∈J2

∆liV̄i

∥∥∥∥∥
∞

∥∆β∥1 +
2

|J2|
∑
i∈J2

(
6∑
l=4

∆li

)2

+
1

2|J2|
∑
i∈J2

(V̄⊤
i ∆β)

2 + λβ∥β∗
a∥1,
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where ∆β := β̂a,2 − β∗
a,

∆1i :=Ū⊤
i α

∗
a +

Ỹi − Ũ⊤
i α

∗
a

g(U⊤
i δ

∗
a)
− V̄⊤

i β
∗
a,

∆2i :=

{
1−

1{A2i=a2}

g(U⊤
i δ

∗
a)

}
Ū⊤
i (α̃a −α∗

a)1{ρ∗a(·)=ρa(·)},

∆3i :=

{
1

g(U⊤
i δ̃a)

− 1

g(U⊤
i δ

∗
a)

}
(Ỹi − Ũ⊤

i α
∗
a)1{ν∗a(·)=νa(·)},

∆4i :=−

{
1

g(U⊤
i δ̃a)

− 1

g(U⊤
i δ

∗
a)

}
Ũ⊤
i (α̃a −α∗

a),

∆5i :=

{
1−

1{A2i=a2}

g(U⊤
i δ

∗
a)

}
Ū⊤
i (α̃a −α∗

a)1{ρ∗a(·)̸=ρa(·)},

∆6i :=

{
1

g(U⊤
i δ̃a)

− 1

g(U⊤
i δ

∗
a)

}
(Ỹi − Ũ⊤

i α
∗
a)1{ν∗a(·)̸=νa(·)},

and g(u) = exp(u)/{1 + exp(u)} is the logistic function. Let ∆l be an independent copy of

∆li for 1 ≤ l ≤ 6. We first show that ∆lV̄ are zero mean vectors for each l ∈ {1, 2, 3}. By

the definition of β∗
a, we have E[∆1V̄] = 0. By the tower rule, we have

E[∆2V̄]

= E

[
P (A1 = a1 | U)E

[
1−

1{A2=a2}

ρ∗a(S)
| U, A1 = a1

]
U⊤(α̃a −α∗

a)V1{ρ∗a(·)=ρa(·)}

]
= E

[
P (A1 = a1 | U)

{
1− ρa(S)

ρ∗a(S)

}
U⊤(α̃a −α∗

a)V1{ρ∗a(·)=ρa(·)}

]
= 0.
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Similarly, we also have

E[∆3V̄]

= E

[
P (A1 = a1 | U)

{
1

g(U⊤δ̃a)
− 1

g(U⊤δ∗
a)

}

· E[(Y (a)−U⊤α∗
a)1{A2=a2} | U, A1 = a1]V1{ν∗a(·)=νa(·)}

]
= E

[
P (A1 = a1 | U)

{
1

g(U⊤δ̃a)
− 1

g(U⊤δ∗
a)

}

· P (A2 = a2 | U, A1 = a1)[νa(S)− ν∗a(S)]V1{ν∗a(·)=νa(·)}

]
= 0.

Let ej ∈ Rd be the vector whose j-th element is 1 and other elements are 0s, for each

1 ≤ j ≤ d1 + 1. Under Assumption 4, we have |∆1V̄
⊤ej| = |(εa + g−1(U⊤δ∗

a)ζa)V̄
⊤ej| ≤

(|εa|+ c−1
0 |ζa|)|V̄⊤ej| for each 1 ≤ j ≤ d1 + 1. By Lemma 1.2,

∥∆1V̄
⊤ej∥ψ1 ≤ (∥εa∥ψ2 + c−1

0 ∥ζa∥ψ2)∥V̄⊤ej∥ψ2

(i)

≤ σ(σζ + c−1
0 σε)σu,

where (i) holds by Assumptions 2 and 3. By Lemma D.4 of [CLCL19], for each 1 ≤ j ≤ d1+1

and any t > 0,

P

(∣∣∣∣∣ 1

|J2|
∑
i∈J2

∆1iV̄
⊤
i ej

∣∣∣∣∣ > h(t)

)
≤ 2 exp(−t− log(d1 + 1)).

where h(t) = σ(σζ + c−1
0 σε)σu

(
2
√

t+log(d1+1)
|J2| + t+log(d1+1)

|J2|

)
. It follows that,

P

(∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆1iV̄i

∥∥∥∥∥
∞

> h(t)

)
≤

d1+1∑
j=1

P

(∣∣∣∣∣ 1

|J2|
∑
i∈J2

∆1iV̄
⊤
i ej

∣∣∣∣∣ > h(t)

)

≤ 2(d1 + 1) exp(−t− log(d1 + 1)) = 2 exp(−t).

Therefore, by |J | ≍ N , we have∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆1iV̄i

∥∥∥∥∥
∞

= Op

(
σ

√
log(d1)

N

)
. (1.72)
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In addition, note that |∆2V̄
Tej| ≤ (1 + c−1

0 )|UT
i (α̃a − α∗)VTej| under Assumption 4. By

Lemma 1.2, conditional on DJ1 , we have

∥∆2V̄
Tej∥ψ1 ≤ (1 + c−1

0 )∥UT
i (α̃a −α∗)∥ψ2∥VTej∥ψ2

(i)

≤ (1 + c−1
0 )∥α̃a −α∗∥2σ2

u.

where (i) holds by Assumption 3. By Lemma D.4 of [CLCL19] and the union bound, for any

t > 0, we have∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆2iV̄i

∥∥∥∥∥
∞

> (1 + c−1
0 )∥α̃a −α∗∥2σ2

u

(
2

√
t+ log(d1 + 1)

|J2|
+
t+ log(d1 + 1)

|J2|

)

with probability at most 2 exp(−t). Therefore, by |J | ≍ N , we have∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆2iV̄i

∥∥∥∥∥
∞

= Op

(
∥α̃a −α∗∥2

√
log(d1)

N

)
(i)
= op

(
σ

√
log(d1)

N

)
, (1.73)

where (i) holds by Lemma 1.5 with sαa log(d) = o(N).

Besides, by Corollary 2.3 of [DVDGVW10], we have

E

∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆3iV̄i

∥∥∥∥∥
2

∞

 ≤ (2e log(d1)− e)E[∥∆3iV̄i∥2∞]

|J2|
.

(a) If ν∗a(·) = νa(·) and ∥S1∥∞ ≤ C almost surely, we have ∥V̄i∥∞ ≤ ∥Vi∥∞ ≤

max{1, C}, which implies

E

∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆3iV̄i

∥∥∥∥∥
2

∞

 = O

(
E[∆2

3] log(d1)

N

)
,

since |J | ≍ N . Under Assumption 2, by Lemma 1.2, we have E[ζ8] ≤ 29σ8σ8
ζ . Together

with Lemma 1.8, we have

E[∆2
3] ≤

√
E[∆4

3] ≤
{
E[ζ8]E[g−1(U⊤

i δ̃a)− g−1(U⊤
i δ

∗
a)]

8
}1/4

= Op

(
σ2sδa log(d)

N

)
. (1.74)

Hence,

E

∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆3iV̄i

∥∥∥∥∥
2

∞

 = Op

(
σ2sδa log(d)

N
· log(d1)

N

)
= op

(
σ2 log(d)

N

)
, (1.75)
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since sδa log(d) = o(N).

(b) If ν∗a(·) = νa(·) and sδa log(d1) log(d) = O(N), by Lemma 1.2, we have ∥∥V̄i∥∞∥ψ2

≤ σu
√
log(d1 + 1) + 2, which implies that E∥V̄i∥4∞ ≤ 8σ4

u{log(d1 + 1) + 2}2 through the

moment bound of Lemma 1.2. By Hölder’s inequality with |J | ≍ N ,

E

∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆3iV̄i

∥∥∥∥∥
2

∞

 = O

(√
E[∆4

3]E∥V̄i∥4∞ log(d1)

N

)
= O

(√
E[∆4

3] log
2(d1)

N

)
.

Hence, we also have

E

∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆3iV̄i

∥∥∥∥∥
2

∞

 = Op

(
σ2sδa log(d) log

2(d1)

N2

)
= Op

(
σ2 log(d1)

N

)
,

since sδa log(d1) log(d) = O(N). Together with (1.75), we conclude that E[∥|J2|−1
∑

i∈J2
∆3i

V̄i∥2∞] = Op(σ
√
log(d1)/N) when ν∗a(·) = νa(·) and either (a) ∥S1∥∞ ≤ C almost surely or

(b) sδa log(d1) log(d) = O(N). By Markov’s inequality, we have∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆3iV̄i

∥∥∥∥∥
∞

= Op

(
σ

√
log(d1)

N

)
. (1.76)

Together with (1.72) and (1.73),

3∑
l=1

∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆liV̄i

∥∥∥∥∥
∞

= Op

(
σ

√
log(d1)

N

)
.

That is, for any t > 0, there exists some λβ ≍ σ
√
log(d1)/N such that E5 occurs with

probability at least 1− t, where

E5 :=

{
3∑
l=1

∥∥∥∥∥ 1

|J2|
∑
i∈J2

∆liV̄i

∥∥∥∥∥
∞

≤ λβ
4

}
.

Condition on the event E5. Then, now we have

1

|J2|
∑
i∈J2

(V̄⊤
i ∆β)

2 + λβ∥β̂a,2∥1

≤ λβ
2
∥∆β∥1 +

2

|J2|
∑
i∈J2

(
6∑
l=4

∆li

)2

+
1

2|J2|
∑
i∈J2

(V̄⊤
i ∆β)

2 + λβ∥β∗
a∥1.
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Since
(∑6

l=4∆li

)2 ≤ 3
∑6

l=4 ∆
2
li, we have

1

|J2|
∑
i∈J2

(V̄⊤
i ∆β)

2 + 2λβ∥β̂a,2∥1 ≤ λβ∥∆β∥1 +
12

|J2|
∑
i∈J2

6∑
l=4

∆2
li + 2λβ∥β∗

a∥1,

which reaches (1.59) in the proof of Theorem 1. Repeat the remaining steps therein, when

N ≫ sβa log(d1), with λβ ≍ σ
√
log(d1)/N , we have

∥β̂a,2 − β∗
a∥2 = ∥∆β∥2 = Op

σ√sβa log(d1)

N
+

(
1

|J2|
∑
i∈J2

6∑
l=4

∆2
li

)1/2
 .

In the following, we further control the term |J2|−1
∑

i∈J2
∆2
li for each l ∈ {4, 5, 6}. By

Lemmas 1.5 and 1.8 with the Hölder’s inequality, we have

E

[
1

|J2|
∑
i∈J2

∆2
4i

]
= E

[
∆2

4

]

≤

E
[{

1

g(U⊤δ̃a)
− 1

g(U⊤δ∗
a)

}]4
E
[
U⊤(α̃a −α∗

a)
]4

1/2

= Op

(
σ2sδasαa log

2(d)

N2

)
.

Under Assumption 4, by Lemma 1.5 with the Hölder’s inequality, we have

E

[
1

|J2|
∑
i∈J2

∆2
5i

]
= E

[[{
1−

1{A2i=a2}

g(U⊤
i δ

∗
a)

}
Ū⊤
i (α̃a −α∗

a)

]2
1{ρ∗a(·)̸=ρa(·)}

]

= Op

(
σ2sαa log(d)

N
1{ρ∗a(·)̸=ρa(·)}

)
.

Under Assumption 2, by Lemma 1.8 with the Hölder’s inequality, we have

E

[
1

|J2|
∑
i∈J2

∆2
6i

]
= E

[{ 1

g(U⊤
i δ̃a)

− 1

g(U⊤
i δ

∗
a)

}
(Ỹi − Ũ⊤

i α
∗
a)

]2
1{ν∗a(·)̸=νa(·)}


= Op

(
σ2sδa log(d)

N
1{ν∗a(·)̸=νa(·)}

)
.
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By Markov’s inequality,

1

|J2|
∑
i∈J2

6∑
l=4

∆2
li

= Op

(
σ2sδasαa log

2 d

N2
+
σ2sαa log(d)

N
1{ρ∗a(·)̸=ρa(·)} +

σ2sδa log(d)

N
1{ν∗a(·) ̸=νa(·)}

)
.

Therefore, we have

∥β̂a,2 − β∗
a∥2 = Op(rn),

with rn = σ
√

sβa log(d1)

N
+

σ
√
sδasαa log(d)

N
+σ
√

sαa log(d)
N

1{ρ∗a ̸=ρa}+σ
√

sδa log(d)

N
1{ν∗a ̸=νa}. Similarly,

we consider the DR-imputation-based estimator β̂a,1 = β̂a(DJ1 , Ŷ
DR
J1

) defined as (2.11). In

this case, the expectations are taken w.r.t. the samples in DJ1 ; δ̂a(DJ2) and α̂a(DJ2) are

fitted using samples in DJ2 and are treated as fixed or condition on. We also have the same

consistency rate for β̂a,1. Therefore, for β̂a = (β̂a,1 + β̂a,2)/2, we have

∥β̂a − β∗
a∥2 = Op(rn).

By Lemma 1.4, ∥V⊤(β̂a − β∗
a)∥ψ2 ≤ 2σu∥β̂a − β∗

a∥2. By Lemma 1.2, for any r ≥ 1,

{E[µ̂a(S1)− µ∗
a(S1)]

r}1/r =
{
E[V⊤(β̂a − β∗

a)]
r
}1/r

= O(∥β̂a − β∗
a∥2) = Op(rn).

Nested-regression-based estimator

Proof of Theorem 10. Let Ŷ = Ū⊤α̂a, Y
∗ = Ū⊤α∗

a, X = V̄, S = (V̄i)i∈J , M = |J |, and

δ2M = 288σuκ
−2
1 λ2αsαa . For any t > 0, let λα := 32σσuσζ(

√
log(d+ 1)/|J | + t) and λβ :=

32σσuσε(
√
log(d1 + 1)/|J |+ t). Suppose that |J | ≥ max{log(d+1), (c3+100κ22)sαa log(d+
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1), 100κ22sβa log(d1+1)}. Now, for the event E1 := {|J |−1
∑

i∈J [Ŷi−Y ∗
i ]

2 < δ2M}, by Lemma

1.6, we have

P (E1) ≥ 1− 2 exp

(
− 4|J |t2

1 + 2t+
√
2t

)
− c1 exp(−c2|J |)− 2 exp(−c4|J |).

By Lemma 1.4, λmin(E[V̄V̄⊤]) ≥ κl and V̄ is sub-Gaussian with ∥x⊤V̄∥ψ2 ≤ 2σu∥x∥2, for

any x ∈ Rd1+1. Additionally, under Assumption 2, ∥ε∥ψ2 ≤ σσε. Here, κl, σu, σε, and σ,

defined in Assumptions 2 and 3, are positive constants independent of N and d. Hence, the

estimation rates of β̂a,NR in Theorem 10 follow from Theorem 8. To show the esitmation rate

of µ̂a,NR(·), by Lemma 1.2, for any r ≥ 1,

{E[µ̂a,NR(S1)− µ∗
a,NR(S1)]

r}1/r = {E[V⊤(β̂a,NR − β∗
a,NR)]

r}1/r

= O(∥β̂a,NR − β∗
a,NR∥2) = Op

(
σ

√
sβa log(d1)

N
+ σ

√
sαa log(d)

N

)
,

since ∥V⊤(β̂a,NR − β∗
a,NR)∥ψ2 ≤ 2σu∥β̂a,NR − β∗

a,NR∥2 by Lemma 1.4. Here, the expectation is

only taken w.r.t. the distribution of the new observation S1.

Proofs of Auxiliary Lemmas

Proof of Lemma 1.3. By the definition of ∥X∥ψ2 = inf{c > 0 : E[exp(X2/c2)] ≤ 2} and

E

[
exp

(
X2

4σ2

)]
= E

[
∞∑
k=0

X2k

k!(4σ2)k

]
≤

∞∑
k=0

2kσ2kΓ(k + 1)

k!(4σ2)k
=

∞∑
k=0

1

2k
= 2,

therefore, leading to ∥X∥ψ2 ≤ 2σ.
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Proof of Lemma 1.4. (a) Observe that

λmin(E[ŨŨ⊤]) = min
x∈Rd+1:∥x∥2=1

x⊤E[UU⊤
1{A1=a1,A2=a2}]x

(i)
= min

x∈Rd+1:∥x∥2=1
E[E[(U⊤x)21{A1=a1,A2=a2}|U, A1 = a1]P [A1 = a1|U]]

= min
x∈Rd+1:∥x∥2=1

E[(U⊤x)2 · P [A2 = a2|U, A1 = a1]E[1{A1=a1}|U]]

(ii)
= min

x∈Rd+1:∥x∥2=1
E[(U⊤x)21{A1=a1} · P [A2 = a2|U, A1 = a1]], (1.77)

where (i) and (ii) hold by the tower rule. Under the overlap conditions of Assumption 1,

P (c0 ≤ P [A2 = a2|U, A1 = a1] ≤ 1− c0) = 1.

Together with (1.77), under Assumption 3, we have

λmin(E[ŨŨ⊤]) ≥ c0 min
x∈Rd+1:∥x∥2=1

E[(U⊤x)21{A1=a1}] ≥ c0κl > 0.

Additionally, we also have

λmax(E[ŨŨ⊤]) = max
x∈Rd+1:∥x∥2=1

x⊤E[UU⊤
1{A1=a1,A2=a2}]x

≤ max
x∈Rd+1:∥x∥2=1

x⊤E[UU⊤]x = λmax(E[UU⊤])
(i)

≤ 2σ2
u,

where (i) holds since, by Assumption 3 and Lemma 1.2,

λmax(E[UU⊤]) = max
∥x∥2=1

E[(x⊤U)2] ≤ max
∥x∥2=1

2σ2
u∥x∥22 = 2σ2

u <∞. (1.78)

Besides, for any x ∈ Rd+1 and k ∈ N,

E[|x⊤Ũ|2k] = E[|x⊤U|2k1{A1=a1,A2=a2}] ≤ E[|x⊤U|2k]
(i)

≤ 2(σu∥x∥2)2kΓ(k + 1),

where (i) holds by Assumption 3 and Lemma 1.2. By Lemma 1.3, we have

∥x⊤Ũ∥ψ2 ≤ 2σu∥x∥2, for any x ∈ Rd+1.
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(b) Under Assumption 3, we also have

λmin(E[ŪŪ⊤]) = min
x∈Rd+1:∥x∥2=1

E[(U⊤x)21{A1=a1}] ≥ κl > 0, (1.79)

and by (1.78),

λmax(E[ŪŪ⊤]) = max
x∈Rd+1:∥x∥2=1

x⊤E[UU⊤
1{A1=a1}]x

≤ max
x∈Rd+1:∥x∥2=1

x⊤E[UU⊤]x ≤ 2σ2
u <∞. (1.80)

In addition, for any x ∈ Rd+1 and k ∈ N,

E[|x⊤Ū|2k] = E[|x⊤U|2k1{A1=a1}] ≤ E[|x⊤U|2k]
(i)

≤ 2(σu∥x∥2)2kΓ(k + 1), (1.81)

where (i) holds by Assumption 3 and Lemma 1.2. By Lemma 1.3, we have

∥x⊤Ū∥ψ2 ≤ 2σu∥x∥2, for any x ∈ Rd+1.

(c) Note that

λmin(E[UU⊤]) = min
x∈Rd1+1:∥x∥2=1

x⊤E[UU⊤]x

≥ min
x∈Rd1+1:∥x∥2=1

x⊤E[UU⊤
1{A1=a1}]x = λmin(E[ŪŪ⊤])

(i)

≥ κl > 0,

where (i) holds by (1.79). By (1.78), we know λmax(E[UU⊤]) ≤ 2σ2
u < ∞. By Assumption

3, we have

∥x⊤U∥ψ2 ≤ σu∥x∥2, for any x ∈ Rd+1.

(d) Recall the representation (1.38), we also have

λmin(E[V̄V̄⊤]) = min
x∈Rd1+1:∥x∥2=1

x⊤E[VV⊤
1{A1=a1}]x

= min
x∈Rd1+1:∥x∥2=1

x⊤E[QUU⊤Q⊤
1{A1=a1}]x

(i)

≥ min
x∈Rd+1:∥x∥2=1

x⊤E[UU⊤
1{A1=a1}]x = λmin(E[ŪŪ⊤])

(ii)

≥ κl > 0, (1.82)
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where (i) holds since, for every ∥x∥2 = 1 and x ∈ Rd1+1, Q⊤x = (x⊤, 0, . . . , 0)⊤ ∈ Rd+1 and

hence ∥Q⊤x∥2 = ∥x∥2 = 1; (ii) follows from (1.79). Similarly,

λmax(E[V̄V̄⊤]) = max
x∈Rd1+1:∥x∥2=1

x⊤E[VV⊤
1{A1=a1}]x

= max
x∈Rd1+1:∥x∥2=1

x⊤E[QUU⊤Q⊤
1{A1=a1}]x

≤ max
x∈Rd+1:∥x∥2=1

x⊤E[UU⊤
1{A1=a1}]x = λmax(E[ŪŪ⊤])

(i)

≤ 2σ2
u <∞,

where (i) follows from (1.80). In addition, for any k ∈ N,

sup
x∈Rd1+1:∥x∥2=1

E[|x⊤V̄|2k] = sup
x∈Rd1+1:∥x∥2=1

E[|x⊤QŪ|2k]

(i)

≤ sup
x∈Rd+1:∥x∥2=1

E[|x⊤Ū|2k]
(ii)

≤ 2(σu∥x∥2)2kΓ(k + 1),

where (i) holds since, for every ∥x∥2 = 1 and x ∈ Rd1+1, ∥Q⊤x∥2 = ∥x∥2 = 1 ; (ii) follows

from (1.81). Hence, for any x ∈ Rd+1 and k ∈ N,

E[|x⊤V̄|2k] ≤ 2(σu∥x∥2)2kΓ(k + 1).

By Lemma 1.3, we have V̄ is sub-Gaussian with

∥x⊤V̄∥ψ2 ≤ 2σu∥x∥2, for any x ∈ Rd1+1.

(e) Lastly, note that

λmin(E[VV⊤]) = min
x∈Rd1+1:∥x∥2=1

x⊤E[VV⊤]x

≥ min
x∈Rd1+1:∥x∥2=1

x⊤E[VV⊤
1{A1=a1}]x = λmin(E[V̄V̄⊤])

(i)

≥ κl > 0,

where (i) holds by (1.82). Besides,

λmax(E[VV⊤]) = max
x∈Rd1+1:∥x∥2=1

x⊤E[VV⊤]x = max
x∈Rd1+1:∥x∥2=1

x⊤E[QUU⊤Q⊤]x

≤ max
x∈Rd+1:∥x∥2=1

x⊤E[UU⊤]x = λmax(E[UU⊤])
(i)

≤ 2σ2
u <∞,
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where (i) follows from (1.80). In addition, for any k ∈ N,

sup
x∈Rd1+1:∥x∥2=1

E[|x⊤V|2k] = sup
x∈Rd1+1:∥x∥2=1

E[|x⊤QU|2k]

(i)

≤ sup
x∈Rd+1:∥x∥2=1

E[|x⊤U|2k]
(ii)

≤ 2(σu∥x∥2)2kΓ(k + 1),

where (i) holds since, for every ∥x∥2 = 1 and x ∈ Rd1+1, ∥Q⊤x∥2 = ∥x∥2 = 1 ; (ii) follows

from (1.81). Hence, for any x ∈ Rd+1 and k ∈ N,

E[|x⊤V|2k] ≤ 2(σu∥x∥2)2kΓ(k + 1).

By Lemma 1.3, we have V is also sub-Gaussian with

∥x⊤V∥ψ2 ≤ 2σu∥x∥2, for any x ∈ Rd1+1.

Proof of Lemma 1.5. Now, we consider the Lasso estimator α̂a defined as (2.6), which is

constructed using the outcome Ỹ , covariates Ũ and training samples DJ . Note that α̂a is

a special case of β̂, (4.1). Let Ŷ = Y ∗ = Ỹ , X = Ũ, S = (Xi)i∈J , M = |J |, and δM = 0.

By Lemma 1.4, λmin(E[ŨŨ⊤]) ≥ c0κl and Ũ is sub-Gaussian with ∥x⊤Ũ∥ψ2 ≤ 2σu∥x∥2, for

any x ∈ Rd+1. Additionally, under Assumption 2, ∥ζ∥ψ2 ≤ σσζ . Here, c0, κl, σu, σζ , and σ,

defined in Assumptions 1, 2, and 3, are positive constants independent of N and d. Hence,

the estimation rates of α̂a in Lemma 1.5 follows from Theorem 8. To show the estimation

rate of ν̂a(·), by Lemma 1.2, for any r ≥ 1,

{E[ν̂a(S)− ν∗a(S)]r}1/r = {E[U⊤(α̂a −α∗
a)]

r}1/r

= O(∥α̂a −α∗
a∥2) = Op

(
σ

√
sαa log(d)

N

)
,
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since ∥U⊤(α̂a−α∗
a)∥ψ2 ≤ σu∥α̂a−α∗

a∥2 under Assumption 3. Here, the expectation is only

taken w.r.t. the joint distribution of the new observations S.

Proof of Lemma 1.6. Let Ŷ = Y ∗ = Ỹ , X = Ũ, S = (Xi)i∈J , M = |J |, and δM = 0.

Following the proof of Theorem 8, since δM = 0, we have ∥δS∥1 ≥ 4λ−1δ2M . That is, we are

under Case 2. Hence, δ is in the cone set as in (1.66). By Lemma 1.4, ∥a⊤Ū∥ψ2 ≤ 2σu∥a∥2

for any a ∈ Rd+1 and λmin(E[ŪŪ⊤]) ≥ κl. Here, σu and κl, defined in Assumption 3, are

positive constants independent of N and d. By Theorem 15 of [RZ12], with some constants

c3, c4 > 0, when |J | ≥ c3sαa log(d+ 1),

1

|J |
∑
i∈J

{
Ū⊤
i (α̂a −α∗

a)
}2 ≤ 1.52λmax(E[ŪŪ⊤])∥α̂a −α∗

a∥22 ≤ 4.5σu∥α̂a −α∗
a∥22,

with probability at least 1− 2 exp(−c4|J |). In addition, by Lemma 1.5, we have

∥α̂a −α∗
a∥2 ≤ 8κ−1

1 λα
√
sαa ,

with probability at least 1− 2 exp(− 4|J |t2
1+2t+

√
2t
)− c1 exp(−c2|J |). Therefore, with probability

at least 1− 2 exp(− 4|J |t2
1+2t+

√
2t
)− c1 exp(−c2|J |)− 2 exp(−c4|J |),

1

|J |
∑
i∈J

[Ū⊤
i (α̂a −α∗

a)]
2 ≤ 288σuκ

−2
1 λ2αsαa .

Proof of Lemma 1.7. In this Lemma, we provide estimation rates for γ̂a, π̂a(·), δ̂a, and ρ̂a(·).

We allow model misspecifications that π∗
a(·) ̸= πa(·) and ρ∗a(·) ̸= ρa(·). Note that, classi-

cal results for generalized linear models only consider correrctly specified cases; see, e.g.,

Corollary 9.26 of [Wai19] and Section 4.4 of [NRWY12].
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(a) We first show (1.48) and (1.49). In part (a), the expectations are only taken w.r.t.

the distribution of the new observation S1.

Consider the link function ϕ(u) = log(1 + exp(u)), we have

ϕ′′(V⊤γ∗
a) =

exp(V⊤γ∗
a)

(1 + exp(V⊤γ∗
a))

2
= π∗

a(S1)(1− π∗
a(S1)).

Under Assumption 4, we have P (c20 ≤ ϕ′′(V⊤γ∗
a) ≤ (1− c0)2) = 1. By Lemma 1.4,

λmin(E[VV⊤]) ≥ κl > 0, λmax(E[VV⊤]) ≤ 2σ2
u <∞, (1.83)

and V is sub-Gaussian with ∥x⊤V∥ψ2 ≤ 2σu∥x∥2 for any x ∈ Rd1+1.

Next, we control the gradient at the potentially misspecified location: recall that the

underlying model may be misspecified and π∗
a(·) not necessarily equal to πa(·); The true γa

may not exists such that π̂a(·) has a logistic form. Below we ensure and discuss the Restricted

Strong Convexity (RSC) as well as the properties of the gradient.

We first consider the RSC property. Note that, the RSC property (1.85) below only

depends on the distribution of S1 and does not depend on the distribution of A1|S1. This is

because δℓJ (∆,γ∗
a) defined in (1.84) can be written as

δℓJ (∆,γ∗
a) =

1

|J |
∑
i∈J

[
ϕ(V⊤

i (γ
∗
a +∆))− ϕ(V⊤

i γ
∗
a)−∆⊤Viϕ

′(V⊤
i γ

∗
a)
]
,

which is function of S1is, and A1is are not involved above. As a result, the model misspeci-

fication for πa(S1) = E(A1|S1) does not affect the RSC property. In below, we consider the

RSC property studied by [ZCB21]. For any γa,∆ ∈ Rd1+1, define

ℓJ (γa) :=
1

|J |
∑
i∈J

[
ϕ(V⊤

i γa)− 1{A1i=a1}V
⊤
i γa

]
,

δℓJ (∆,γ∗
a) := ℓJ (γ

∗
a +∆)− ℓJ (γ∗

a)−∆⊤∇ℓJ (γ∗
a). (1.84)
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By Lemma 4.5 of [ZCB21], we have the following RSC property holds:

δℓJ (∆,γ∗
a) ≥ κ1∥∆∥2

{
∥∆∥2 − κ2

√
log(d1 + 1)

|J |
∥∆∥1

}

≥ κ1
2
∥∆∥22 −

κ1κ
2
2 log(d1 + 1)

2|J |
∥∆∥21 for all ∥∆∥2 ≤ 1, (1.85)

with probability at least 1− c1 exp(−c2|J |), where c1, c2, κ1, κ2 > 0 are some constants.

Additionally, the gradient ∥∇ℓJ (γ∗
a)∥∞ is controlled in the following. We allow a

possibly misspecified model that π∗
a(·) ̸= πa(·). Note that, even under model misspecification,

we still have (1.87) below. Hence, ∥∇ℓJ (γ∗
a)∥∞ is the maximum of zero-mean random

variables. By the union bound, we have

P

(
∥∇ℓJ (γ∗

a)∥∞ ≥
λγ
2

)
= P

(
max

1≤j≤d1+1

∣∣∣∣∣ 1

|J |
∑
i∈J

(g(V⊤
i γ

∗
a)− 1{A1i=a1})Vi,j

∣∣∣∣∣ ≥ λγ
2

)

≤
d1+1∑
j=1

P

(∣∣∣∣∣ 1

|J |
∑
i∈J

(g(V⊤
i γ

∗
a)− 1{A1i=a1})Vi,j

∣∣∣∣∣ ≥ λγ
2

)
, (1.86)

where g(u) = exp(u)/{1 + exp(u)} is the logistic function. By definition, γ∗
a =

argminγa∈Rd1+1 E[ℓ(γa)], where for any γa ∈ Rd1+1,

ℓ(γa) := E
[
ϕ(V⊤γa)− 1{A1=a1}V

⊤γa
]
.

By the first-order optimality condition, we know that

∇E[ℓ(γ∗a)] = E
[
(g(V⊤γ∗

a)− 1{A1=a1})V
]
= 0 ∈ Rd1+1. (1.87)

Additionally, since |g(V⊤γ∗
a) − 1{A1=a1}| ≤ 1, by Lemma 1.2 and under Assumption 3, for

any i ∈ J and j ≤ d1 + 1,

∥(g(V⊤
i γ

∗
a)− 1{A1i=a1})Vi,j∥ψ2 ≤ ∥Vi,j∥ψ2 ≤ σu.
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That is, (g(V⊤
i γ

∗
a)−1{A1i=a1})Vi,j is a zero-mean sub-Gaussian random variable. Hence, by

Hoeffding’s inequality, for each j ≤ d1 + 1,

P

(∣∣∣∣∣ 1

|J |
∑
i∈J

(g(V⊤
i γ

∗
a)− 1{A1i=a1})Vi,j

∣∣∣∣∣ ≥ λγ
2

)
≤ 2 exp

(−|J |λ2γ
32σ2

u

)

≤ 2 exp
(
− log(d1 + 1)− |J |t2

)
=

2 exp(−|J |t2)
d1 + 1

,

where for any t > 0, we set λγ := 4
√
2σu(

√
log(d1+1)

|J | + t). Together with (1.86), it follows

that

P

(
∥ℓJ (γ∗

a)∥∞ ≤
λγ
2

)
≤ 1− 2 exp(−|J |t2).

Together with (1.85), when |J | ≥ 64κ22sγa log(d1 + 1) and 9sγaλ
2
γ ≤ κ21, by Corollary 9.20

of [Wai19], we conclude that

∥γ̂a − γ∗
a∥2 ≤

3
√
sγaλγ

κ1
, ∥γ̂a − γ∗

a∥1 ≤
6sγaλγ
κ1

,

with probability at least 1 − 2 exp(−|J |t2) − c1 exp(−c2|J |). Hence, when |J | ≍ N and

N ≫ sγa log(d1), with some λJ ≍
√

log(d1)
|J | ,

∥γ̂a − γ∗
a∥22 = Op

(
sγa log(d1)

N

)
. (1.88)

Now, we show the estimation rate for π̂a(·). In the following, we will use Taylor’s Theorem

to control the estimation error of π̂a(·) by the estimation error of γ̂a as in (1.90). Then, we

apply the estimation rate (1.88) proved above to obtain the rate for π̂a(·).

Recall that g(u) := exp(u)/{1 + exp(u)} = ϕ′(u) for any u ∈ R. Note that, for any

u∗,∆ ∈ R,

d(g(u∗ + t∆)− g(u∗))2

dt
= 2(g(u∗ + t∆)− g(u∗))g′(u∗ + t∆)∆,

d2(g(u∗ + t∆)− g(u∗))2

dt2
= 2(g′(u∗ + t∆))2∆2 + 2(g(u∗ + t∆)− g(u∗))g′′(u∗ + t∆)∆2,
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where, for any u ∈ R, since g(u) ∈ (0, 1), we have

g′(u) = g(u)(1− g(u)) ∈ (0, 1), g′′(u) = g(u)(1− g(u))(1− 2g(u)) ∈ (−1, 1). (1.89)

Set u∗ = V⊤γ∗
a and ∆ = V⊤(γ̂a − γ∗

a). By Taylor’s Theorem, with some t̃ ∈ (0, 1),

E[g(V⊤γ̂a)− g(V⊤γ∗
a)]

2 = E[g(u∗ + 1 ·∆)− g(u∗)]2

= E[g(u∗ + 0 ·∆)− g(u∗)]2 + dE(g(u∗ + t∆)− g(u∗))2

dt

∣∣∣∣
t=0

· 1

+
d2E(g(u∗ + t∆)− g(u∗))2

2dt2

∣∣∣∣
t=t̃

· 12

= 0 + E [2(g(u∗ + 0 ·∆)− g(u∗))g′(u∗ + 0 ·∆)∆]

+ E
[
(g′(u∗ + t̃∆))2∆2 + (g(u∗ + t̃∆)− g(u∗))g′′(u∗ + t̃∆)∆2

]
= E

[
(g′(u∗ + t̃∆))2∆2 + (g(u∗ + t̃∆)− g(u∗))g′′(u∗ + t̃∆)∆2

]
(i)

≤ 2E[∆2] = 2E[V⊤(γ̂a − γ∗
a)]

2,

where (i) holds since, by (1.89), (g′(u∗+ t̃∆))2 ≤ 1 and (g(u∗+ t̃∆)− g(u∗))g′′(u∗+ t̃∆) ≤ 1.

Hence,

E[π̂a(S1)− π∗
a(S1)]

2 = E[g(V⊤γ̂a)− g(V⊤γ∗
a)]

2 ≤ 2E[V⊤(γ̂a − γ∗
a)]

2. (1.90)

Then, from (1.83) and (1.88), we have

E[π̂a(S1)− π∗
a(S1)]

2 ≤ 2∥E[VV⊤]∥2∥γ̂a − γ∗
a∥22 = Op

(
sγa log(d1)

N

)
. (1.91)

(b) Now, we show (1.50) and (1.51). In part (b), the expectations are only taken

w.r.t. the distribution of the new observations S.

By Lemma 1.4, we know that the minimum and maximum eigenvalues of covariance

matrix E[UU⊤] satisfy

λmin(E[UU⊤]) ≥ κl > 0, λmax(E[UU⊤]) ≤ 2σ2
u <∞,
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and U is sub-Gaussian with ∥x⊤U∥ψ2 ≤ σu∥x∥2 for any x ∈ Rd+1. Additionally, we also

have P (c20 ≤ ϕ′′(U⊤δa) ≤ (1− c0)2) = 1 under Assumption 4. Repeating the same procedure

as in part (a), we also have

∥δ̂a − δ∗
a∥22 = Op

(
sδa log(d)

N

)
,

and

E[ρ̂a(S)− ρ∗a(S)]2 = E[g(U⊤δ̂a)− g(U⊤δ∗
a)]

2 ≤ 2E[U⊤(δ̂a − δ∗
a)]

2

≤ 2∥E[UU⊤]∥2∥δ̂a − δ∗
a∥22 = Op

(
sδa log(d)

N

)
.

Proof of Lemma 1.8. In this proof, the expectations are only taken w.r.t. the distribution

of the new observations S (or only S1 if S2 is not involved). By Lemma 1.7, we have

P (A) = 1− o(1). By Minkowski’s inequality, we have

{E|π̂a(S1)|−r}
1
r = {E|1 + exp(−V⊤γ̂a)|r}

1
r ≤ 1 + {E| exp(−V⊤γ̂a)|r}

1
r .

Under Assumption 4, we know that

P

(
c0

1− c0
≤ exp(−V⊤γ∗

a) ≤
1− c0
c0

)
= 1. (1.92)

which implies that

{E| exp(−V⊤γ̂a)|r}
1
r = {E| exp(−V⊤γ∗

a) exp(−V⊤(γ̂a − γ∗
a))|r}

1
r

≤ 1− c0
c0
{E| exp(−V⊤(γ̂a − γ∗

a))|r}
1
r .

Hence, to prove {E|π̂a(S1)|−r}
1
r is bounded uniformly, i.e., bounded by a constant indepen-

dent of N , it suffices to show {E| exp(−rV⊤(γ̂a − γ∗
a))|}

1
r is bounded uniformly.
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Let µ = E[|V⊤(γ̂a − γ∗
a)|]. By Lemma 1.4, we have

∥V⊤(γ̂a − γa)∥ψ2 ≤ 2σu∥γ̂a − γa∥2. (1.93)

Now, condition on the event A, we have

µ ≤
√
πaσu, ∥µ∥ψ2 ≤ (log 2)−1/2√πaσu, (1.94)

which follows from Lemma 1.2. Note that, in the above, the ψ2-norm is defined through the

probability measure of a new observation S1. By basic properties of Orlicz norm ∥X+Y ∥ψ2 ≤

∥X∥ψ2 + ∥Y ∥ψ2 , we have

∥|V⊤(γ̂a − γ∗
a)| − µ∥ψ2 ≤ ∥V⊤(γ̂a − γ∗

a)∥ψ2 + ∥µ∥ψ2 ≤ [1 + (log 2)−1/2√πa]σu,

and with it that the moment generating function can be bounded with

E[exp{r(|V⊤(γ̂a − γ∗
a)| − µ)}] ≤ exp{2r2[1 + (log 2)−1/2√πa]2σ2

u}.

Using (1.94), we get that

{E| exp(−rV⊤(γ̂a − γ∗
a))|}

1
r ≤ {E| exp(r|V⊤(γ̂a − γ∗

a)|)|}
1
r (1.95)

≤ exp{
√
πaσu + 2r[1 + (log 2)−1/2√πa]2σ2

u},

which is bounded and hence {E|π̂a(S1)|−r}
1
r is bounded uniformly. Repeating the same

procedure above, we can obtain that {E|π̂a(S1)|−2r} 1
2r is also bounded uniformly, which will

be used later on in the proof. By (1.92), we have

{
E

∣∣∣∣ 1

π̂a(S1)
− 1

π∗
a(S1)

∣∣∣∣r} 1
r

= {E| exp(−V⊤γ∗
a)[exp(−V⊤(γ̂a − γ∗

a))− 1]|r}
1
r

≤ 1− c0
c0
{E| exp(−V⊤(γ̂a − γ∗

a))− 1|r}
1
r . (1.96)
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For any u ∈ R, by Taylor’s theorem, exp(u) = 1 + exp(tu)u with some t ∈ (0, 1). Hence,

with some t ∈ (0, 1)

| exp(−V⊤(γ̂a − γ∗
a))− 1| = exp(−tV⊤(γ̂a − γ∗

a))|V⊤(γ̂a − γ∗
a)|

(i)

≤ [1 + exp(−V⊤(γ̂a − γ∗
a))]|V⊤(γ̂a − γ∗

a)|, (1.97)

where (i) holds since for any t ∈ (0, 1) and u ∈ R, exp(tu) ≤ exp(u) when u > 0 and

exp(tu) ≤ exp(0) = 1 when u ≤ 0, and it follows that exp(tu) ≤ 1 + exp(u).

Combining (1.96) and (1.97), we have{
E

∣∣∣∣ 1

π̂a(S1)
− 1

π∗
a(S1)

∣∣∣∣r} 1
r

≤ 1− c0
c0
{E| exp(−V⊤(γ̂a − γ∗

a))− 1|r}
1
r

≤ 1− c0
c0

{
E
∣∣[1 + exp(−V⊤(γ̂a − γ∗

a))]V
⊤(γ̂a − γ∗

a)
∣∣r} 1

r

(i)

≤ 1− c0
c0

{
E
∣∣V⊤(γ̂a − γ∗

a)
∣∣r} 1

r

+
1− c0
c0

{
E
∣∣exp(−V⊤(γ̂a − γ∗

a))V
⊤(γ̂a − γ∗

a)
∣∣r} 1

r

(ii)

≤ 1− c0
c0

{
E
∣∣V⊤(γ̂a − γ∗

a)
∣∣r} 1

r

+
1− c0
c0

{
E
∣∣exp(−V⊤(γ̂a − γ∗

a))
∣∣2r} 1

2r
{
E
∣∣V⊤(γ̂a − γ∗

a)
∣∣2r} 1

2r
,

where (i) holds by the Minkowski inequality; (ii) holds by Hölder’s inequality.

Recall the equation (1.95), we know that {E| exp(−V⊤(γ̂a − γ∗
a))|2r}

1
2r is bounded

uniformly. In addition, recall the equation (1.93), by Lemma 1.2, we have

{E|V⊤(γ̂a − γ∗
a)|r}

1
r = O(∥γ̂a − γ∗

a∥2)
(i)
= Op

(√
sγa log(d1)

N

)
,

where (i) holds by Lemma 1.7. Therefore, we obtain that{
E

∣∣∣∣ 1

π̂a(S1)
− 1

π∗
a(S1)

∣∣∣∣r} 1
r

= Op

(√
sγa log(d1)

N

)
. (1.98)
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Repeating the same procedure, we obtain that {E|ρ̂a(S)|−r}
1
r is bounded uniformly and{

E

∣∣∣∣ 1

ρ̂a(S)
− 1

ρ∗a(S)

∣∣∣∣r} 1
r

= Op

(√
sδa log(d)

N

)
. (1.99)

Therefore,{
E

∣∣∣∣ 1

π̂a(S1)ρ̂a(S)
− 1

π∗
a(S1)ρ∗a(S)

∣∣∣∣r} 1
r

(i)

≤
{
E

∣∣∣∣ 1

π̂a(S1)

(
1

ρ̂a(S)
− 1

ρ∗a(S)

)∣∣∣∣r} 1
r

+

{
E

∣∣∣∣ 1

ρ∗a(S)

(
1

π̂a(S1)
− 1

π∗
a(S1)

)∣∣∣∣r} 1
r

(ii)

≤ {E|π̂a(S1)|−2r}
1
2r

{
E

∣∣∣∣ 1

ρ̂a(S)
− 1

ρ∗a(S)

∣∣∣∣2r
} 1

2r

+
1

c0

{
E

∣∣∣∣ 1

π̂a(S1)
− 1

π∗
a(S1)

∣∣∣∣r} 1
r

(iii)
= Op

(√
sγa log(d1) + sδa log(d)

N

)
.

where (i) holds by the Minkowski inequality; (ii) holds by Hölder’s inequality; (iii) holds by

(1.98), (1.99), and the fact that {E|π̂a(S1)|−2r} 1
2r is bounded uniformly.

1.8.5 Asymptotic theory for general Dynamic Treatment Effect

(DTE)

In this section, we consider general nuisance estimators and general working models.

Below we introduce some shorthand notations that increase the readability of the proofs.

With a slight abuse of notation, ν̂c(·) = ν̂c,−k(·), µ̂c(·) = µ̂c,−k(·), π̂c(·) = π̂c,−k(·), and

ρ̂c(·) = ρ̂c,−k(·) are estimates of the nuisance functions νc(·), µc(·), πc(·), and ρc(·) using the

training samplesW−k. We also define ∆̂(·) = ∆̂−k(·) and ψ̂c(·) = ψ̂c,−k(·) for each c ∈ {a, a′}

and k = 1, ..., K. We suppress the dependence on k when possible. Note that we have

∆̂(W ) = ψ̂a(W )− ψ̂a′(W ), where for each c ∈ {a, a′},

ψ̂c(W ) := µ̂c(S1) + 1{A1=c1}
ν̂c(S)− µ̂c(S1)

π̂c(S1)
+ 1{A1=c1,A2=c2}

Y − ν̂c(S)
π̂c(S1)ρ̂c(S)

. (1.100)
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Define ∆∗(W ) = ψ∗
a(W )− ψ∗

a′(W ), where for each c ∈ {a, a′},

ψ∗
c (W ) := µ∗

c(S1) + 1{A1=c1}
ν∗c (S)− µ∗

c(S1)

π∗
c (S1)

+ 1{A1=c1,A2=c2}
Y − ν∗c (S)
π∗
c (S1)ρ∗c(S)

. (1.101)

Define θ̌
(k)
gen = n−1

∑
i∈Ik ∆̂(Wi), where n = N/K = |Ik|. Then θ̂gen = K−1

∑K
k=1 θ̌

(k)
gen. For

each k = 1, ..., K, we divide θ̌
(k)
gen − θ into four terms T1, T2, T3, T4,

θ̌(k)gen − θ = n−1
∑
i∈Ik

∆̂−k(Wi)− θ := T1 + T2 + T3 + T4, (1.102)

where

T1 := E[∆∗(W )]− θ, (1.103)

T2 := T
(k)
2 := E[∆̂(W )−∆∗(W )], (1.104)

T3 := T
(k)
3 :=

1

n

∑
i∈Ik

∆∗(Wi)− E[∆∗(W )], (1.105)

T4 := T
(k)
4 :=

1

n

∑
i∈Ik

[∆̂(Wi)−∆∗(Wi)]− E[∆̂(W )−∆∗(W )]. (1.106)

Auxiliary Lemmas

Lemma 1.9. Suppose that at least one of µ∗
a(·) and π∗

a(·) is correctly specified, and at least

one of the models ν∗a(·) and ρ∗a(·) is correctly specified. Let Assumption 1 hold. Then,

T1 = 0, (1.107)

where T1 is defined as (1.103).

Lemma 1.10. (a) Suppose that at least one of µ∗
a(·) and π∗

a(·) is correctly specified, and at

least one of the models ν∗a(·) and ρ∗a(·) is correctly specified. Let Assumptions 1, 4 and 5 hold.
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Then

T2 = Op

(
bNcN + aNdN + bN1{π∗

a ̸=πa} + aN1{ρ∗a ̸=ρa} (1.108)

+ cN
√
E[ζ2 + ε2]1{µ∗a ̸=µa} + dN

√
E[ζ2]1{ν∗a ̸=νa}

)
,

where T2 is defined as (1.104).

(b) Suppose that all the nuisance models µ∗
a(·), ν∗a(·), π∗

a(·), and ρ∗a(·) are correctly

specified. Let Assumptions 1 and 5 hold. Then

T2 = Op (bNcN + aNdN) . (1.109)

Lemma 1.11. (a) Suppose that at least one of µ∗
a(·) and π∗

a(·) is correctly specified, and at

least one of the models ν∗a(·) and ρ∗a(·) is correctly specified. Let Assumptions 1, 4 hold. Then

T3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
, (1.110)

where ξ := µa(S1)− µa′(S1)− θ and T3 is defined as (1.105).

(b) Suppose that all the nuisance models µ∗
a(·), ν∗a(·), π∗

a(·), and ρ∗a(·) are correctly

specified. Let Assumption 1 hold. Then we also have (1.110).

Lemma 1.12. (a) Suppose that at least one of µ∗
a(·) and π∗

a(·) is correctly specified, and at

least one of the models ν∗a(·) and ρ∗a(·) is correctly specified. Let Assumptions 1, 4 and 5 hold.

Then

T4 = Op

(
1√
N

[
aN + bN +

√
E[ζ2] +

√
E[ε2]

])
, (1.111)

where T4 is defined as (1.106).
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(b) Suppose that all the nuisance models µ∗
a(·), ν∗a(·), π∗

a(·), and ρ∗a(·) are correctly

specified. Let Assumptions 1 and 5 hold. Then

T4 = Op

(
1√
N
(aN + bN + cN(

√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2])

)
. (1.112)

Lemma 1.13. Suppose that at least one of µ∗
a(·) and π∗

a(·) is correctly specified, and at least

one of the models ν∗a(·) and ρ∗a(·) is correctly specified. Let Assumption 1 hold.

(a) Assume that E[1{A1=a1}(µa(S1)− µ∗
a(S1))

2] ≤ Cµσ
2, with some constant Cµ > 0.

Then

E[ζ2] + E[ε2] + E[ξ2] ≤
(
4

c20
+ 6Cµ

)
σ2,

where σ2 := E(∆∗(W )− θ)2.

(b) Let Assumption 2 hold. Then

E[ζ2] + E[ε2] + E[ξ2] ≤
(
1

c20
+ 2σ2

ε

)
σ2.

Lemma 1.14. Suppose that all the nuisance models µ∗
a(·), ν∗a(·), π∗

a(·), and ρ∗a(·) are correctly

specified. Let Assumption 1 hold. Then we have for some constants t > 0 and Ct > 0 possibly

dependent with t, such that

σ2 := E(∆∗(W )− θ)2 = E(∆(W )− θ)2 ≥ E[ζ2] + E[ε2] + E[ξ2], (1.113)

E|∆∗(W )− θ|2+t ≤ 2Ct

c4+2t
0

E

[
|ζ|2+t + |ε|2+t + |ξ|2+t

]
. (1.114)

Lemma 1.15. Suppose that all the nuisance models µ∗
a(·), ν∗a(·), π∗

a(·), and ρ∗a(·) are correctly

specified. Let Assumption 1 hold. Define σ̂2
gen = N−1

∑K
k=1

∑
i∈Ik(∆̂(Wi)− θ̂gen)2 and σ2 :=

E(∆∗(W )− θ)2. If

θ̂gen − θ = Op(σ/
√
N),

[
1

n

∑
i∈Ik

|∆̂(Wi)−∆∗(Wi)|2
] 1

2

= op(σ),
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for each k ≤ K, and [E|(∆∗(W )− θ)|2+t]
2

2+t < Cσ2 for some constant C, we have

σ̂2
gen − σ2 = op(σ

2). (1.115)

Proof of Theorem 6

Recall the representation (1.102). By Lemmas 1.9, 1.10, 1.11, and 1.12, we have

T1 = 0,

T
(k)
2 = Op

(
bNcN + aNdN + bN1{π∗

a ̸=πa} + aN1{ρ∗a ̸=ρa}

+ cN
√
E[ζ2 + ε2]1{µ∗a ̸=µa} + dN

√
E[ζ2]1{ν∗a ̸=νa}

)
,

T
(k)
3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
,

T
(k)
4 = Op

(
1√
N

[
aN + bN +

√
E[ζ2] +

√
E[ε2]

])
.

Together with Lemma 1.13 and further assume that E(µ∗
a(S1)−µa(S1))

2 ≤ Cµσ
2 with some

constant Cµ > 0, we obtain

θ̂gen − θ = K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 )

= Op

(
bNcN + aNdN + bN1{π∗

a ̸=πa} + aN1{ρ∗a ̸=ρa}

+ cNσ1{µ∗a ̸=µa} + dNσ1{ν∗a ̸=νa} +
1√
N
σ

)
.

Proof of Theorem 7

In this theorem, we consider correctly specified nuisance models.
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Consistency Recall the representation (1.102), by Lemmas 1.9, 1.10, 1.11, and 1.12, we

have

T1 = 0, (1.116)

T
(k)
2 = Op (bNcN + aNdN) , (1.117)

T
(k)
3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
,

T
(k)
4 = Op

(
1√
N
(aN + bN + cN(

√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2])

)
. (1.118)

By assumption, bNcN + aNdN = o(σN−1/2). Together with Lemma 1.14, we obtain that

θ̂gen − θ = K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 )

= Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

]
+ bNcN + aNdN

)
+Op

(
1√
N
(aN + bN + cN(

√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2])

)
= Op

(
1√
N
σ

)
. (1.119)

Asymptotic Normality Now, we demonstrate that
√
Nσ−1(θ̂gen − θ) ; N(0, 1). By

(1.116), (1.117), and (1.118), under Assumption 5 and bNcN + aNdN = o(σN−1/2), we have

√
nσ−1(T1 + T

(k)
2 + T

(k)
4 ) = op(1)

for each k ≤ K. Hence, we only need to show

√
Nσ−1K−1

K∑
k=1

T
(k)
3 =

√
Nσ−1

(
N−1

N∑
i=1

∆∗(Wi)− θ

)
; N(0, 1),

where T
(k)
3 is defined as (1.105). By Lyapunov’s central limit theorem, it suffices to show

the following Lyapunov’s condition holds: with some t > 0,

lim
n→∞

E|∆∗(W )− θ|2+t

n
t
2σ2+t

= 0. (1.120)
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Step 1 To check Lyapunov’s condition, it suffices to show that for some constant C ′ > 0,

E|∆∗(W )− θ|2+t

σ2+t
< C ′. (1.121)

By Lemma 1.14, we have, for some constants t > 0 and Ct > 0,

E|∆∗(W )− θ|2+t

σ2+t
≤ 2Ct

c4+2t
0

E[|ζ|2+t + |ε|2+t + |ξ|2+t]
(E[ζ2] + E[ε2] + E[ξ2])1+

t
2

≤ 2Ct

c4+2t
0

(
E[|ζ|2+t]
(E[ζ2])1+

t
2

+
E[|ε|2+t]
(E[ε2])1+

t
2

+
E[|ξ|2+t]
(E[ξ2])1+

t
2

)
≤ 2CCt

c4+2t
0

, (1.122)

where the last inequality follows from Assumption 4. Taking C ′ = 2CCt/c
4+2t
0 , we get (1.120)

and hence the Lyapunov’s condition holds.

Step 2 By (1.119), we have θ̂gen − θ = Op(σ/
√
N). Here, we show that, for each k ≤ K,[

1

n

∑
i∈Ik

|∆̂(Wi)−∆∗(Wi)|2
] 1

2

= op(σ). (1.123)

Note that

E

[
1

n

∑
i∈Ik

|∆̂(Wi)−∆∗(Wi)|2
] 1

2 (i)

≤
{
E

[
1

n

∑
i∈Ik

|∆̂(Wi)−∆∗(Wi)|2
]} 1

2

(1.124)

(ii)
= [E|∆̂(W )−∆∗(W )|2]

1
2 (1.125)

(iii)
= Op

(
aN + bN + cN(

√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2]

)
,

where in (1.124), the expectations are taken w.r.t. the joint distribution of (Wi)i∈Ik ; in

(1.125), the expectation is taken w.r.t. the joint distribution of a new W . In the above,

(i) holds by Jensen’s inequality; (ii) holds since the estimator of nuisance functions are

independent of {Wi}i∈Ik based on cross-fitting, {Wi}i∈Ik are i.i.d. distributed and W is an
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independent copy of them; (iii) holds by Lemma 1.12. By Markov’s inequality, we have[
1

n

∑
i∈Ik

|∆̂(Wi)−∆∗(Wi)|2
] 1

2

= Op

(
aN + bN + cN(

√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2]

)
= op(σ).

Together with (1.119), (1.120), (1.123), and Lemma 1.15, we conclude that

σ̂2
gen − σ2 = op(σ

2).

Proofs of Auxiliary Lemmas

Proof of Lemma 1.9. Recall the definition (1.103). Since θ = θa−θa′ and ∆∗(W ) = ψ∗
a(W )−

ψ∗
a′(W ), we have

T1 = (E[ψ∗
a(W )]− θa)− (E[ψ∗

a′(W )]− θa′).

By Lemma 1, we have θc = E[ψ∗
c (W )] for each c ∈ {a, a′}. Therefore, T1 = 0.

Proof of Lemma 1.10. In this proof, the expectations are taken w.r.t. the distribution of

new observations S (or only S1 if S2 is not involved). We only focus on the treatment paths

a = (1, 1) and a′ = (0, 0). We begin by decomposing T2, (1.104), as a sum of six terms

∆̂(W )−∆∗(W ) =
6∑
i=1

Qi, (1.126)
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where

Q1 :=
A1A2

π̂a(S1)ρ̂a(S)
(Y − ν̂a(S))−

A1A2

π∗
a(S1)ρ∗a(S)

(Y − ν∗a(S)), (1.127)

Q2 :=
A1

π̂a(S1)
(ν̂a(S)− µ̂a(S1))−

A1

π∗
a(S1)

(ν∗a(S)− µ∗
a(S1)), (1.128)

Q3 := µ̂a(S1)− µ∗
a(S1), (1.129)

Q4 := −
(1− A1)(1− A2)

π̂a′(S1)ρ̂a′(S)
(Y − ν̂a′(S))

+
(1− A1)(1− A2)

π∗
a′(S1)ρ∗a′(S)

(Y − ν∗a′(S)), (1.130)

Q5 := −
1− A1

π̂a′(S1)
(ν̂a′(S)− µ̂a′(S1)) +

1− A1

π∗
a′(S1)

(ν∗a′(S)− µ∗
a′(S1)), (1.131)

Q6 := −µ̂a′(S1) + µ∗
a′(S1). (1.132)

Hence, we have the following representation for T2:

T2 = E[∆̂(W )−∆∗(W )] =
6∑
i=1

E[Qi], (1.133)

where the expecatations are only taken w.r.t. the distribution of the new obseravtion W .

(a) We first obtain an upper bound for E[Q1 +Q2 +Q3]. By the tower rule,

E[Q1] = E

[
A1ρa(S)

π̂a(S1)ρ̂a(S)
(νa(S)− ν̂a(S))−

A1ρa(S)

π∗
a(S1)ρ∗a(S)

(νa(S)− ν∗a(S))
]
.

Through rearranging, we have the following representation:

E[Q1 +Q2 +Q3] =
8∑
i=1

Ri, (1.134)
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where

R1 :=E

[
A1ρ

∗
a(S)(ν̂a(S)− ν∗a(S))

π̂a(S1)

(
1

ρ∗a(S)
− 1

ρ̂a(S)

)]
, (1.135)

R2 :=E

[
π∗
a(S1)(µ̂a(S1)− µ∗

a(S1))

(
1

π∗
a(S1)

− 1

π̂a(S1)

)]
, (1.136)

R3 :=E

[
A1(ρ

∗
a(S)− ρa(S))(ν̂a(S)− ν∗a(S))

π̂a(S1)ρ̂a(S)

]
, (1.137)

R4 :=E

[
(π∗

a(S1)− A1)(µ̂a(S1)− µ∗
a(S1))

π̂a(S1)

]
(i)
=E

[
(π∗

a(S1)− πa(S1))(µ̂a(S1)− µ∗
a(S1))

π̂a(S1)

]
, (1.138)

R5 :=E

[
A1ρ

∗
a(S)(ν

∗
a(S)− νa(S))

π̂a(S1)

(
1

ρ∗a(S)
− 1

ρ̂a(S)

)]
, (1.139)

R6 :=E

[
A1(µ

∗
a(S1)− µa(S1))

(
1

π∗
a(S1)

− 1

π̂a(S1)

)]
, (1.140)

R7 :=E

[(
A1

π̂a(S1)ρ̂a(S)
− A1

π∗
a(S1)ρ∗a(S)

)
(ρ∗a(S)− ρa(S))(ν∗a(S)− νa(S))

]
(ii)
=0, (1.141)

R8 :=E

[
A1(π̂a(S1)− π∗

a(S1))(µa(S1)− νa(S))
π̂a(S1)π∗

a(S1)

]
(iii)
= 0. (1.142)

Here, (i) holds by the tower rule; (ii) holds since either ρ∗a(·) = ρa(·) or µ∗
a(·) = µa(·) by

assumption; (iii) holds by the tower rule and the fact that µa(S1) = E[νa(S)|S1, A1 = a1].

We condition on the following event

E4 := {P (c0 ≤ π̂a(S1) ≤ 1− c0) = 1, P (c0 ≤ ρ̂a(S) ≤ 1− c0) = 1} . (1.143)

Under Assumption 5, the event E4 occurs with probability approaching one. In the following,

we use Cauchy-Schwarz inequality to obtain an upper bound Ri (i ∈ {1, . . . , 6}). For R1+R2,
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on the event E4, we have

R1 +R2 ≤
1

c20
[E(ρ̂a(S)− ρ∗a(S))2]

1
2 [E(ν̂a(S)− ν∗a(S))2]

1
2

+
1

c0
[E(π̂a(S1)− π∗

a(S1))
2]

1
2 [E(µ̂a(S1)− µ∗

a(S1))
2]

1
2

= Op (bNcN + aNdN) , (1.144)

under Assumption 5. For R3 +R4, on the event E4, we have

R3 +R4 ≤
1

c20
[E(ρ∗a(S)− ρa(S))2]

1
2 [E(ν̂a(S)− ν∗a(S))2]

1
2

+
1

c0
[E(π∗

a(S1)− πa(S1))
2]

1
2 [E(µ̂a(S1)− µ∗

a(S1))
2]

1
2

≤
1{ρ∗a(·)̸=ρa(·)}

c20
[E(ν̂a(S)− ν∗a(S))2]

1
2 +

1{π∗
a(·) ̸=πa(·)}

c0
[E(µ̂a(S1)− µ∗

a(S1))
2]

1
2 ,

since

E(ρ∗a(S)− ρa(S))2 = 1{ρ∗a(·)̸=ρa(·)}E(ρ
∗
a(S)− ρa(S))2

(i)

≤ 1{ρ∗a(·) ̸=ρa(·)},

E(π∗
a(S1)− πa(S1))

2 = 1{π∗
a(·)̸=πa(·)}E(π

∗
a(S1)− πa(S1))

2
(ii)

≤ 1{π∗
a(·)̸=πa(·)},

where (i) and (ii) hold because ρa(S) = E(A2|S, A1 = a1) ∈ (0, 1), πa(S1) = E(A1|S1) ∈

(0, 1), and, under Assumption 4, ρ∗a(S), π
∗
a(S1) ∈ (0, 1) with probability one. Hence, under

Assumption 5, we have

R3 +R4 = Op

(
bN1{π∗

a(·)̸=πa(·)} + aN1{ρ∗a(·) ̸=ρa(·)}
)
. (1.145)

As for R5 +R6, similarly, we have

R5 +R6 ≤
1

c20
[E(ρ̂a(S)− ρ∗a(S))2]

1
2

[
E[A1(ν

∗
a(S)− νa(S))2]

] 1
2

+
1

c20
[E(π̂a(S1)− π∗

a(S1))
2]

1
2

[
E[A1(µ

∗
a(S1)− µa(S1))

2]
] 1

2 (1.146)
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Here, we need upper bound for [E[A1(ν
∗
a(S)− νa(S))2]]

1
2 and [E[A1(µ

∗
a(S1)− µa(S1))

2]]
1
2 .

By definition,

ζ = ζa + ζa′ , ε = εa + εa′ , Y = Y (a)A1A2 + Y (0, 0)(1− A1)(1− A2),

where

ζa = A1A2 (Y (a)− ν∗a(S)) , εa = A1 (ν
∗
a(S)− µ∗

a(S1)) .

Hence, we have

E[ζ2] ≥ E[A1A2ζ
2] = E[ζ2a ] = E[A1A2(Y − ν∗a(S))2] (1.147)

Note that

E[A1A2(Y − νa(S))(νa(S)− ν∗a(S))]

(i)
= E[E[A1A2(Y (a)− νa(S))(νa(S)− ν∗a(S))|S, A1 = a1]P (A1 = a1|S)]

(ii)
= E[E[A2|S, A1 = a1](E[Y (a)|S, A1 = a1]− νa(S))(νa(S)− ν∗a(S))P (A1 = a1|S)]

(iii)
= 0,

where (i) holds by the tower rule and the fact that A1A2Y = A1A2Y (a); (ii) holds under

Assumption 1; (iii) holds since νa(S) = E[Y (a)|S, A1 = a1]. Therefore,

E[A1A2(Y − ν∗a(S))2] = E[A1A2[(Y − νa(S))2 + (νa(S)− ν∗a(S))2]] (1.148)

≥ E[A1A2(ν
∗
a(S)− νa(S))2]

(i)
= E[A1ρa(S)(ν

∗
a(S)− νa(S))2]

(ii)

≥ c0E[A1(ν
∗
a(S)− νa(S))2],

where (i) holds by the tower rule; (ii) holds under Assumption 1. Together with (1.147), we

have

E[A1(ν
∗
a(S)− νa(S))2] ≤

1

c0
E[ζ2]. (1.149)
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Besides, note that

E[A1(νa(S)− µa(S1))(µa(S1)− µ∗
a(S1))]

= E[(µa(S1)− µ∗
a(S1))E[(νa(S)− µa(S1))|S1, A1 = a1]P (A1 = a1|S)] = 0,

since E[νa(S)|S1, A1 = a1] = µa(S1). Therefore, we have

E[A1(νa(S)− µ∗
a(S1))

2] = E[A1(νa(S)− µa(S1))
2] + E[A1(µa(S1)− µ∗

a(S1))
2]

≥ E[A1(µa(S1)− µ∗
a(S1))

2]. (1.150)

Additionally, observe that

E[A1(νa(S)− µ∗
a(S1))

2] ≤ 2E[A1(ν
∗
a(S)− νa(S))2] + 2E[ε2a]

(i)

≤ 2

c0
E[ζ2] + 2E[A1ε

2] ≤ 2

c0
E[ζ2] + 2E[ε2],

where (i) holds by (1.149) and the fact that ε2a = A1ε
2. Together with (1.150), we obtain

E[A1(µ
∗
a(S1)− µa(S1))

2] ≤ 2

c0
E[ζ2] + 2E[ε2]. (1.151)

Therefore, under Assumption 5,

R5 +R6 ≤
1

c20
[E(ρ̂a(S)− ρ∗a(S))2]

1
2 [E[A1(ν

∗
a(S)− νa(S))2]]

1
2

+
1

c20
[E(π̂a(S1)− π∗

a(S1))
2]

1
2 [E[A1(µ

∗
a(S1)− µa(S1))

2]]
1
2

= Op

(
cN
√
E[ζ2 + ε2]1{µ∗a(·)̸=µa(·)} + dN

√
E[ζ2]1{ν∗a(·)̸=νa(·)}

)
. (1.152)

Pluging (1.141), (1.142), (1.144),(1.145), and (1.152) into (1.134), we obtain

E[Q1 +Q2 +Q3] =Op

(
bNcN + aNdN + bN1{π∗

a(·)̸=πa(·)} + aN1{ρ∗a(·)̸=ρa(·)}

+ cN
√
E[ζ2 + ε2]1{µ∗a(·)̸=µa(·)} + dN

√
E[ζ2]1{ν∗a(·) ̸=νa(·)}

)
.
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By repeating all the previous steps, we can obtain the same result for E[Q4 + Q5 + Q6].

Therefore, (1.108) follows.

(b) When all the nuisance models are correct, Assumption 4 holds under Assumption

1. Hence, by part (a), we also have (1.108). Since all the nuisance models are correct, we

further conclude that (1.109) holds.

Proof of Lemma 1.11. (a) Recall the definition (1.105). By Chebyshev’s inequality, we have

for any t > 0,

P (|T3| > t) ≤ 1

t2
Var

(
1

n

∑
i∈Ik

∆∗(Wi)

)
≤ 1

nt2
E[∆∗(W )]2.

To prove (1.110), we only need to show [E(∆∗(W ))2]
1
2 = O(

√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]).

By Minkowski inequality, we have

[E(∆∗(W ))2]
1
2 ≤

5∑
i=1

T3,i, (1.153)

where

T3,1 :=

[
E

(
A1A2

π∗
a(S1)ρ∗a(S)

(Y − ν∗a(S))
)2
] 1

2

,

T3,2 :=

[
E

(
A1

π∗
a(S1)

(ν∗a(S)− µ∗
a(S1))

)2
] 1

2

,

T3,3 :=

[
E

(
(1− A1)(1− A2)

π∗
a′(S1)ρ∗a′(S)

(Y − ν∗a′(S))
)2
] 1

2

,

T3,4 :=

[
E

(
1− A1

π∗
a′(S1)

(ν∗a′(S)− µ∗
a′(S1))

)2
] 1

2

,

T3,5 :=
[
E (µ∗

a(S1)− µ∗
a′(S1)− θ)2

] 1
2 .

We bound each of the above terms in turn. Under Assumption 4 and recall the equation
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(1.147), we have

T3,1 ≤
1

c20
[E(A1A2(Y − ν∗a(S))2)]

1
2 ≤ 1

c20

√
E[ζ2]. (1.154)

Similarly, since E[ε2] ≥ E[A1ε
2] = E[ε2a] = E[A1(ν

∗
a(S)− µ∗

a(S1))
2], we have

T3,2 ≤
1

c0
[E(A1(ν

∗
a(S)− µ∗

a(S1))
2)]

1
2 ≤ 1

c0

√
E[ε2]. (1.155)

Repeating the same process for T3,3 and T3,4, we also have

T3,3 ≤
1

c20

√
E[ζ2], T3,4 ≤

1

c0

√
E[ε2]. (1.156)

Additionally,

2

c0
E[ζ2] + 2E[ε2]

(i)

≥ E[A1(µ
∗
a(S1)− µa(S1))

2]
(ii)
= E[πa(S1)(µ

∗
a(S1)− µa(S1))

2]

(iii)

≥ c0E[(µ
∗
a(S1)− µa(S1))

2],

where (i) holds by (1.151); (ii) holds by the tower rule; (iii) holds under Assumption 1.

Similarly, we also have

2

c0
E[ζ2] + 2E[ε2] ≥ c0E[(µ

∗
a′(S1)− µa′(S1))

2].

By Minkowski inequality,

T3,5 ≤ [E(µ∗
a(S1)− µa(S1))

2]
1
2 + [E(µ∗

a′(S1)− µa′(S1))
2]

1
2 + [E[ξ2]]

1
2

≤ 2

√
2

c20
E[ζ2] +

2

c0
E[ε2] +

√
E[ξ2] ≤ 2

√
2

c0

√
E[ζ2] +

2
√
2

√
c0

√
E[ε2] +

√
E[ξ2]. (1.157)

Plugging (1.154)-(1.157) into (1.153), we have

[E(∆∗(W ))2]
1
2 = O

(√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

)
.

(b) When all the models are correctly specified, Assumption 1 implies Assumption 4.

Hence, by part (a), we also have (1.110).
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Proof of Lemma 1.12. In this proof, the expectations are taken w.r.t. the distribution of

new observations S (or only S1 if S2 is not involved). Additionally, we condition on the

event E4, defined as (1.143). Under Assumption 5, such an event occurs with probability

approaching one.

(a) We first show (1.111). Recall the representation (1.126), by Minkowski inequality,

we have

[E(∆̂(W )−∆∗(W ))2]
1
2 ≤

6∑
i=1

[E(Q2
i )]

1
2 ,

where Qi (i ∈ {1, . . . , 6}) are defined as(1.127)-(1.132). Then, by Chebyshev’s inequality, it

suffices to show
6∑
i=1

[E(Q2
i )]

1
2 = Op

(
aN + bN +

√
E[ζ2] +

√
E[ε2]

)
.

Additionally, under Assumption 4, we also have

P (c0 ≤ π∗
a(S1) ≤ 1− c0) = 1, P (c0 ≤ ρ∗a(S) ≤ 1− c0) = 1.

For the first term [E(Q2
1)]

1
2 , under Assumption 4 and on the event E4,

[E(Q2
1)]

1
2

≤ 1

c40
{E[A1A2π

∗
a(S1)ρ

∗
a(S)(Y − ν̂a(S))− A1A2π̂a(S1)ρ̂a(S)(Y − ν∗a(S))]2}

1
2

(i)

≤ 1

c40
{E[π∗

a(S1)ρ
∗
a(S)(ν

∗
a(S) + ζ − ν̂a(S))− π̂a(S1)ρ̂a(S)ζ]

2}
1
2

(ii)

≤ 1

c40
{E[ν̂a(S)− ν∗a(S)]2}

1
2 +

1

c40
{E[(π̂a(S1)ρ̂a(S)− π∗

a(S1)ρ
∗
a(S))ζ]

2}
1
2 , (1.158)

where (i) holds by the fact that |A1| ≤ 1, |A2| ≤ 1 and A1A2Y = A1A2ν
∗
a(S) + A1A2ζ;

(ii) holds from Minkowski inequality and the fact that P (π∗
a(S1)ρ

∗
a(S) ≤ 1) = 1. Since

103



P (0 ≤ π∗
a(S1)ρ

∗
a(S) ≤ 1) = 1 and P (0 ≤ π̂a(S1)ρ̂a(S) ≤ 1) = 1 under E4, we have

[E(Q2
1)]

1
2 ≤ 1

c40
[E(ν̂a(S)− ν∗a(S))2]

1
2 +

1

c40
[E(ζ2)]

1
2 = Op

(
bN +

√
E[ζ2]

)
. (1.159)

Similarly, for the second term [E(Q2
2)]

1
2 , under Assumption 4 and on the event E4,

[E(Q2
2)]

1
2 ≤ 1

c20
{E[A1π

∗
a(S1)(ν̂a(S)− µ̂a(S1))− A1π̂a(S1)(ν

∗
a(S)− µ∗

a(S1))]
2}

1
2

(i)

≤ 1

c20
{E[π∗

a(S1)(ν̂a(S)− µ̂a(S1))− π̂a(S1)ε]
2}

1
2

(ii)

≤ 1

c20
[E(ν̂a(S)− ν∗a(S))2]

1
2 +

1

c20
[E(µ̂a(S1)− µ∗

a(S1))
2]

1
2

+
1

c20
{E[(π̂a(S1)− π∗

a(S1))ε]
2}

1
2 (1.160)

(iii)

≤ 1

c20
[E(ν̂a(S)− ν∗a(S))2]

1
2 +

1

c20
[E(µ̂a(S1)− µ∗

a(S1))
2]

1
2 +

1

c20
{E[ε2]}

1
2

= Op

(
aN + bN +

√
E[ε2]

)
, (1.161)

where (i) holds from the fact that |A1| ≤ 1 and A1ν
∗
a(S) = A1µ

∗
a(S1) + A1ε; (ii) holds from

Minkowski inequality and P (π∗
a(S1) ≤ 1) = 1; (iii) holds by the fact that P (0 ≤ π∗

a(S1) ≤

1) = 1 and P (0 ≤ π̂a(S1) ≤ 1) = 1 on E4. For the third term [E(Q2
3)]

1
2 , we have

[E(Q2
3)]

1
2 = Op (bN) , (1.162)

under Assumption 5. Combining (1.159), (1.161) and (1.162), we obtain that

[E(Q2
1)]

1
2 + [E(Q2

2)]
1
2 + [E(Q2

3)]
1
2 = Op

(
aN + bN +

√
E[ζ2] +

√
E[ε2]

)
.

Repeating the same procedure above, we also have the same result for [E(Q2
4)]

1
2 +[E(Q2

5)]
1
2 +

[E(Q2
6)]

1
2 . Then, (1.111) follows.
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(b) Now, we show (1.112). By (1.158), under Assumption 5, we have

[E(Q2
1)]

1
2 ≤ 1

c40
[E(ν̂a(S)− νa(S))2]

1
2

+
1

c40
{E[ζ2|S]}

1
2{E[(π̂a(S1)ρ̂a(S)− πa(S1)ρa(S))]

2}
1
2

≤ 1

c40
[E(ν̂a(S)− νa(S))2]

1
2 +

√
CE[ζ2]

c40
{E[(π̂a(S1)ρ̂a(S)− πa(S1)ρa(S))]

2}
1
2

By Minkowski inequality and under E4, we have

{E[π̂a(S1)ρ̂a(S)− πa(S1)ρa(S)]
2}

1
2

≤ {E[(π̂a(S1)− πa(S1))ρ̂a(S)]
2}

1
2 + {E[πa(S1)(ρ̂a(S)− ρa(S))]2}

1
2

≤ [E(π̂a(S1)− πa(S1))
2]

1
2 + [E(ρ̂a(S)− ρa(S))2]

1
2 = Op (cN + dN) .

Hence,

[E(Q2
1)]

1
2 = Op

(
aN + (cN + dN)

√
E[ζ2]

)
.

In addition, by (1.160), under Assumption 5, we have

[E(Q2
2)]

1
2 ≤ 1

c20
[E(ν̂a(S)− νa(S))2]

1
2 +

1

c20
[E(µ̂a(S1)− µa(S1)]

2]
1
2

+
1

c20
{E[ε2|S1]}

1
2{E[(π̂a(S1)− πa(S1))]

2}
1
2

≤ 1

c20
[E(ν̂a(S)− νa(S))2]

1
2 +

1

c20
[E(µ̂a(S1)− µa(S1)]

2]
1
2

+

√
CE[ε2]

c20
{E[(π̂a(S1)− πa(S1))]

2}
1
2

= Op

(
aN + bN + cN

√
E[ε2]

)
.

Besides, by Assumption 5,

[E(Q2
3)]

1
2 = Op (bN) .
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Repeating the same procedure above, we also have

[E(Q2
4)]

1
2 =Op

(
aN + (cN + dN)

√
E[ζ2]

)
,

[E(Q2
5)]

1
2 =Op

(
aN + bN + cN

√
E[ε2]

)
,

[E(Q2
6)]

1
2 =Op (bN) .

Now, we have

[E(∆̂(W )−∆∗(W ))2]
1
2 = OP

(
aN + bN + cN(

√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2]

)
.

By Chebyshev’s inequality, we conclude that (1.112) holds.

Proof of Lemma 1.13. (a) We notice the following representation:

∆∗(W )− θ =
8∑
i=1

Oi, (1.163)

where

O1 :=
A1A2(Y − νa(S))
π∗
a(S1)ρ∗a(S)

, (1.164)

O2 :=
A1

π∗
a(S1)

(
1− A2

ρ∗a(S)

)
(ν∗a(S)− νa(S)), (1.165)

O3 :=
A1(νa(S)− µa(S1))

π∗
a(S1)

, (1.166)

O4 := −
(1− A1)(1− A2)(Y − νa′(S))

π∗
a′(S1)ρ∗a′(S)

, (1.167)

O5 := −
1− A1

π∗
a′(S1)

(
1− 1− A2

ρ∗a′(S)

)
(ν∗a′(S)− νa′(S)), (1.168)

O6 := −
(1− A1)(νa′(S)− µa′(S))

π∗
a′(S1)

, (1.169)

O7 :=

(
1− A1

π∗
a(S1)

)
(µ∗

a(S1)− µa(S1))

−
(
1− 1− A1

π∗
a′(S1)

)
(µ∗

a′(S1)− µa′(S1)), (1.170)

O8 := µa(S1)− µa′(S1)− θ = ξ. (1.171)

106



In the following, we demonstrate that

σ2 = E(∆∗(W )− θ)2 =
8∑
i=1

E[O2
i ]. (1.172)

It suffices to show that E[OiOj] = 0 for all i ̸= j. Firstly, since A1(1− A1) = 0, we have

OiOj = 0, for each i ∈ {1, 2, 3}, and j ∈ {4, 5, 6}. (1.173)

Step 1 We show E[O1Oi] = 0 for each i ≥ 2. By (1.173), we know that O1Oi = 0 for

i ∈ {4, 5, 6}. Note that, O3, O7, O8 are all functions of (S, A1). Hence, for each i ∈ {3, 7, 8},

E[O1Oi] = E[OiE[O1|S, A1 = a1]P (A1 = a1|S)] = 0,

since

E[O1|S, A1 = a1]
(i)
=
E[A2|S, A1 = a1]E[Y (a)− µa(S1)|S, A1 = a1]

π∗
a(S1)ρ∗a(S)

(ii)
= 0,

where (i) holds under Assumption 1; (ii) holds because E[Y (a)|S, A1 = a1] = µa(S1). Be-

sides, we note that

E[O1O2] = E

[
A1A2(Y − νa(S))(ν∗a(S)− νa(S))(ρ∗a(S)− 1)

(π∗
a(S1)ρ∗a(S))

2

]
(i)
= E

[
E[A2(Y (a)− νa(S))|S, A1 = a1](ν

∗
a(S)− νa(S))(ρ∗a(S)− 1)

(π∗
a(S1)ρ∗a(S))

2
P (A1 = a1|S)

]
(ii)
= E

[
ρa(S)E[Y (a)− νa(S)|S, A1 = a1](ν

∗
a(S)− νa(S))(ρ∗a(S)− 1)

(π∗
a(S1)ρ∗a(S))

2
P (A1 = a1|S)

]
(iii)
= 0,

where (i) holds by the tower rule; (ii) holds under Assumption 1; (iii) holds because E[Y (a)|S,

A1 = a1] = µa(S1).
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Step 2 We show E[O2Oi] = 0 for each i ≥ 3. By (1.173), we know that O2Oi = 0 for

i ∈ {4, 5, 6}. Since O3, O7, O8 are all functions of (S, A1), it follows that, for each i ∈ {3, 7, 8},

E[O2Oi] = E[OiE[O2|S, A1 = a1]P (A1 = a1|S)] = 0,

since

E[O2|S, A1 = a1] =
ν∗a(S)− νa(S)

π∗
a(S1)

(
1− E[A2|S, A1 = a1]

ρ∗a(S)

)
=
ν∗a(S)− νa(S)

π∗
a(S1)

(
1− ρa(S)

ρ∗a(S)

)
(i)
= 0,

where (i) holds because either ν∗a(·) = ν1(·) or ρ∗a(·) = ρa(·) by assumption.

Step 3 We show E[O3Oi] = 0 for each i ≥ 4. By (1.173), we know that O3Oi = 0 for

i ∈ {4, 5, 6}. Since O7, O8 are all functions of (S1, A1), it follows that, for each i ∈ {7, 8},

E[O3Oi] = E[OiE[O3|S1, A1 = a1]P (A1 = a1|S1)] = 0,

since

E[O3|S1, A1 = a1] =
E[νa(S)|S1, A1 = a1]− µa(S1)

π∗
a(S1)

(i)
= 0,

where (i) holds because E[νa(S)|S1, A1 = a1] = µa(S1).

Step 4 By repeating the same procedure as in Steps 1-3, we also have E[OiOj] = 0 for

each i ∈ {4, 5, 6} and j ≥ i+ 1.

Step 5 We show E[O7O8] = 0. Since O8 is a function of S1, we have

E[O7O8] = E[O8E[O7|S1]] = 0,
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since

E[O7|S1] =

(
1− πa(S)

π∗
a(S1)

)
(µ∗

a(S1)− µa(S1))−
(
1− πa′(S)

π∗
a′(S1)

)
(µ∗

a′(S1)− µa′(S1))

(i)
= 0,

where (i) holds because, by assumption, 1) either π∗
a(·) = πa(·) or µ∗

a(·) = µa(·), and 2) either

π∗
a′(·) = πa′(·) or µ∗

a′(·) = µa′(·).

Based on all Steps 1-5, we conclude that (1.172) holds. Now, note that

E[O2
1] ≥ E[A1A2(Y (a)− νa(S))2],

E[O2
2] = E

[
A1((ρ

∗
a(S))

2 − 2A2ρ
∗
a(S) + A2)

(π∗
a(S1)ρ∗a(S))

2
(ν∗a(S)− νa(S))2

]
= E

[
A1((ρ

∗
a(S)− ρa(S))2 + ρa(S)(1− ρa(S)))

(π∗
a(S1)ρ∗a(S))

2
(ν∗a(S)− νa(S))2

]
≥ c20E[A1(ν

∗
a(S)− νa(S))2],

E[O2
3] = E

[
A1(νa(S)− µa(S1))

2

(π∗
a(S1))2

]
≥ E[A1(νa(S)− µa(S1))

2]

Hence,

E[A1A2ζ
2] = E[ζ2a ] = E[A1A2(Y (a)− ν∗a(S))2]

(i)
= E[A1A2((Y (a)− νa(S))2 + (νa(S)− ν∗a(S))2)] ≤ E[O2

1] +
1

c20
E[O2

2], (1.174)

where (i) holds as in (1.148). Additionally,

E[A1ε
2] = E[ε2a] = E[A1(ν

∗
a(S)− µ∗

a(S1))
2]

≤ 3
[
E[A1(ν

∗
a(S)− νa(S))2] + E[A1(νa(S)− µa(S1))

2] + E[A1(µa(S1)− µ∗
a(S1))

2]
]

≤ 3

c20
E[O2

2] + 3E[O2
3] + 3Cµσ

2.
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Repeating the process above, we also have

E[(1− A1)(1− A2)ζ
2] ≤ E[O2

4] +
1

c20
E[O2

5], (1.175)

E[(1− A1)ε
2] ≤ 3

c20
E[O2

5] + 3E[O2
6] + 3Cµσ

2.

Besides, we also have

E[ξ2] = E[O2
8]. (1.176)

Therefore, we conclude that

E[ζ2] + E[ε2] + E[ξ2]

= E[A1A2ζ
2] + E[(1− A1)(1− A2)ζ

2] + E[A1ε
2] + E[(1− A1)ε

2] + E[ξ2]

≤ E[O2
1 +

4

c20
O2

2 + 3O2
3 +O2

4 +
4

c20
O2

5 + 3O2
6 +O2

8] + 6Cµσ
2 ≤

(
4

c20
+ 6Cµ

)
σ2,

since c0 < 1 and (1.172) holds.

(b) Now, we assume Assumption 2 holds. Same as in part (a), we also have (1.172),

(1.174), (1.175), and (1.176) hold. Additionally, under Assumption 2, by Lemma 1.2, we

also have

E[ε2] ≤ 2σ2
εσ

2.

Therefore,

E[ζ2] + E[ε2] + E[ξ2]

= E[A1A2ζ
2] + E[(1− A1)(1− A2)ζ

2] + E[ε2] + E[ξ2]

≤ E[O2
1 +

1

c20
O2

2 +O2
4 +

1

c20
O2

5 +O2
8] + 2σ2

εσ
2 ≤

(
1

c20
+ 2σ2

ε

)
σ2.
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Proof of Lemma 1.14. We first show that (1.113) holds. By Lemma 1.13, we have

∆∗(W )− θ =
8∑
i=1

Oi, σ2 = E(∆∗(W )− θ)2 =
8∑
i=1

E[O2
i ],

where {Oi}8i=1 are defined as (1.164)-(1.171). Since now we assume that all the models are

correctly specified, we have Oi = 0 for i ∈ {2, 5, 7} and hence

∆∗(W )− θ = O1 +O3 +O4 +O6 +O8, (1.177)

σ2 = E[O2
1] + E[O2

3] + E[O2
4] + E[O2

6] + E[O2
8] =

5∑
i=1

Vi,

where

V1 :=E

[(
A1A2

πa(S1)ρa(S)
(Y − νa(S))

)2
]
,

V2 :=E

[(
A1

πa(S1)
(νa(S)− µa(S1))

)2
]
,

V3 :=E

[(
(1− A1)(1− A2)

πa′(S1)ρa′(S)
(Y − νa′(S))

)2
]
,

V4 :=E

[(
1− A1

πa′(S1)
(νa′(S)− µa′(S1))

)2
]
,

V5 :=E
[
(µa(S1)− µa′(S1)− θ)2

]
.

We lower bound each terms above:

V1
(i)
= E

[(
ζa

πa(S1)ρa(S)

)2
]

(ii)
= E

[(
A1A2

πa(S1)ρa(S)
ζ

)2
]

(iii)

≥ E[A1A2ζ
2],

V2
(iv)
= E

[(
εa

πa(S1)

)2
]

(v)
= E

[(
A1

πa(S1)
ε

)2
]

(vi)

≥ E[A1ε
2],

where (i) and (iv) hold since ν∗a(·) = νa(·) and µ∗
a(·) = µa(·); (ii) and (v) hold since ζa =

A1A2ζ and εa = A1ε; (iii) and (vi) hold since A1, A2 ∈ {0, 1}, πa(S1) ≤ 1 and ρa(S) ≤ 1

with probability 1 under Assumption 1. Similarly,

V3 ≥ E[(1− A1)(1− A2)ζ
2], V4 ≥ E[(1− A1)ε

2].
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Additionally, by definition, ξ = µa(S1)− µa′(S1)− θ. Hence,

V5 = E[ξ2].

Combining all the previous results, we have

σ2 : = E[∆∗(W )− θ]2

≥ E[A1A2ζ
2 + (1− A1)(1− A2)ζ

2] + E[A1ε
2 + (1− A1)ε

2] + E[ξ2]

= E[ζ2] + E[ε2] + E[ξ2].

Next, we show that (1.114) holds. Recall the representation (1.177). By the finite form of

Jensen’s inequality, and note that the function u 7→ |u|2+t is convex for any t > 0, we have

∣∣∣∣∆∗(W )− θ
5

∣∣∣∣2+t = ∣∣∣∣O1 +O3 +O4 +O6 +O8

5

∣∣∣∣2+t
≤ |O1|2+t + |O3|2+t + |O4|2+t + |O6|2+t + |O8|2+t

5

Therefore,

E|∆∗(W )− θ|2+t ≤ 51+tE[|O1|2+t + |O3|2+t + |O4|2+t + |O6|2+t + |O8|2+t]

= Ct

5∑
i=1

V ′
i ,
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where Ct = 51+t and

V ′
1 :=E

[∣∣∣∣ A1A2

πa(S1)ρa(S)
(Y − νa(S))

∣∣∣∣2+t
]
,

V ′
2 :=E

[∣∣∣∣ A1

πa(S1)
(νa(S)− µa(S1))

∣∣∣∣2+t
]
,

V ′
3 :=E

[∣∣∣∣(1− A1)(1− A2)

πa′(S1)ρa′(S)
(Y − νa′(S))

∣∣∣∣2+t
]
,

V ′
4 :=E

[∣∣∣∣ 1− A1

πa′(S1)
(νa′(S)− µa′(S1))

∣∣∣∣2+t
]
,

V ′
5 :=E

[
|µa(S1)− µa′(S1)− θ|2+t

]
.

Now, we upper bound each of the terms above.

V ′
1

(i)
=E

[∣∣∣∣ ζa
πa(S1)ρa(S)

∣∣∣∣2+t
]

(ii)
= E

[∣∣∣∣ A1A2

πa(S1)ρa(S)
ζ

∣∣∣∣2+t
]

(iii)

≤ 1

c4+2t
0

E[|ζ|2+t],

V ′
2

(iv)
=E

[∣∣∣∣ εa
πa(S1)

∣∣∣∣2+t
]

(v)
= E

[∣∣∣∣ A1

πa(S1)
ε

∣∣∣∣2+t
]

(vi)

≤ 1

c4+2t
0

E[|ε|2+t],

where (i) and (iv) hold since ν∗a(·) = νa(·) and µ∗
a(·) = µa(·); (ii) and (v) hold since ζa =

A1A2ζ and εa = A1ε; (iii) and (vi) hold since A1, A2 ∈ {0, 1}, πa(S1), ρa(S) ∈ [c0, 1 − c0]

with probability 1 under Assumption 1. Similarly, we also have

V ′
3 ≤

1

c4+2t
0

E[|ζ|2+t], V ′
4 ≤

1

c2+t0

E[|ε|2+t].

In addition, by definition, ξ = µa(S1)− µa′(S1)− θ. Hence,

V ′
5 = E[|ξ|2+t].

Therefore, we conclude that

E|∆∗(W )− θ|2+t ≤ Ct

[
2

c4+2t
0

E[|ζ|2+t] + 2

c2+t0

E[|ε|2+t] + E[|ξ|2+t]
]

≤ 2Ct

c4+2t
0

E[|ζ|2+t + |ε|2+t + |ξ|2+t],
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since 0 < c0 < 1 and t > 0.

Proof of Lemma 1.15. We show that for each k = 1, ..., K,

1

n

∑
i∈Ik

(∆∗(Wi)− θ)2 − σ2 = op(σ
2), (1.178)

1

n

∑
i∈Ik

(∆̂(Wi)− θ̂gen)2 −
1

n

∑
i∈Ik

(∆∗(Wi)− θ)2 = op(σ
2), (1.179)

We first show (1.178). Let ZN,i := σ−1(∆∗(Wi)− θ)2 − 1, note that Wi and nuisance

functions ν∗c (·), µ∗
c(·), π∗

c (·), and ρ∗c(·) are possibly dependent with (d1, d2) = (dN,1, dN,2).

Hence, (ZN,i)N,i forms a row-wise independent and identically distributed triangular array,

and (1.178) is equivalent to

1

n

∑
i∈Ik

Zi = o(1).

By Lemma 3 of [ZB22], it suffices to show that E(Zd,1) = 0 and E|Zd,1|q < C ′ with some

constants q > 1 and C ′ > 0. By definition,

E(Zd,1) = E

[
(∆∗(W )− θ)2

σ2
− 1

]
=
σ2

σ2
− 1 = 0.

In addition, by Minkowski inequality,[
E

∣∣∣∣(∆∗(W )− θ)2

σ2
− 1

∣∣∣∣ 2+t
2

] 2
2+t

≤
[
E|(∆∗(W )− θ)|2+t

σ2+t

] 2
2+t

+ 1 < C + 1.

It follows that

E|Zd,1|
2+t
2 = E

∣∣∣∣(∆∗(W )− θ)2

σ2
− 1

∣∣∣∣ 2+t
2

< (C + 1)
2+t
2 ,

with (2 + t)/2 > 1. Therefore, by Lemma 3 of [ZB22], we conclude that (1.178) holds.

Next, we show (1.179). Let ai = ∆̂(Wi)−∆∗(Wi)− (θ̂gen − θ) and bi = ∆∗(Wi)− θ.
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Then, it follows from the triangle inequality that∣∣∣∣∣ 1n∑
i∈Ik

(∆̂(Wi)− θ̂gen)2 −
1

n

∑
i∈Ik

(∆∗(Wi)− θ)2
∣∣∣∣∣

≤ 1

n

∑
i∈Ik

|ai| · |ai + 2bi|
(i)

≤

[
1

n

∑
i∈Ik

a2i

] 1
2

·

[
1

n

∑
i∈Ik

(ai + 2bi)
2

] 1
2

(ii)

≤

[
1

n

∑
i∈Ik

a2i

] 1
2

·

( 1

n

∑
i∈Ik

a2i

) 1
2

+ 2

(
1

n

∑
i∈Ik

b2i

) 1
2

 ,
where (i) follows from Cauchy-Schwarz inequality; (ii) follows from Minkowski inequality.

Recall the equation (1.178), we have

1

n

∑
i∈Ik

b2i =
1

n

∑
i∈Ik

(∆∗(Wi)− θ)2 = σ2(1 + op(1)).

Since, by assumption, θ̂gen−θ = Op(σ/
√
N) and

[
1
n

∑
i∈Ik |∆̂(Wi)−∆∗(Wi)|2

] 1
2
= op(σ), we

have [
1

n

∑
i∈Ik

a2i

] 1
2

≤

[
1

n

∑
i∈Ik

|∆̂(Wi)−∆∗(Wi)|2
] 1

2

+ |θ̂gen − θ| = op(σ).

Therefore, ∣∣∣∣∣ 1n∑
i∈Ik

(∆̂(Wi)− θ̂gen)2 −
1

n

∑
i∈Ik

(∆∗(Wi)− θ)2
∣∣∣∣∣

= op(σ) · [op(σ) + σ(1 + op(1))] = op(σ
2).

Now, by (1.178) and (1.179), we have

σ̂gen − σ2 =
1

K

K∑
k=1

1

n

∑
i∈Ik

(∆̂(Wi)− θ̂gen)2 − σ

=
1

K

K∑
k=1

(
1

n

∑
i∈Ik

(∆̂(Wi)− θ̂gen)2 − (∆∗(Wi)− θ)2 + (∆∗(Wi)− θ)2 − σ

)

= op(σ
2).
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1.8.6 Asymptotic theory for Sequential Double Robust Lasso (S-

DRL) estimator

In this section, we provide theoretical results for the S-DRL estimator. We consider

the following nuisance estimators: ν̂c(S) = U⊤α̂c, µ̂c(S) = V⊤β̂c, π̂c(S1) = g(V⊤γ̂c), and

ρ̂c(S) = g(U⊤δ̂c) for each c ∈ {a, a′}, where α̂c, β̂c, γ̂c, and δ̂c are defined in Section 2.1.

Then ψ̂c(·), defined as (1.100), can be written as

ψ̂c(W ) = V⊤β̂c + 1{A1=c1}
U⊤α̂c −V⊤β̂c

g(V⊤γ̂c)
+ 1{A1=c1,A2=c2}

Y −U⊤α̂c

g(V⊤γ̂c)g(U⊤δ̂c)
.

We consider the following target nuisance functions: ν∗c (S) = U⊤α∗
c , µ

∗
c(S) = V⊤β∗

c ,

π∗
c (S1) = g(V⊤γ∗

c ), and ρ∗c(S) = g(U⊤δ∗
c ) for each c ∈ {a, a′}, where α∗

c , β∗
c , γ∗

c , and

δ∗
c are defined in Section 2.1. Then ψ∗

c (·), defined as (1.101), can be written as

ψ∗
c (W ) = V⊤β∗

c + 1{A1=c1}
U⊤α∗

c −V⊤β∗
c

g(V⊤γ∗
c )

+ 1{A1=c1,A2=c2}
Y −U⊤α∗

c

g(V⊤γ∗
c )g(U

⊤δ∗
c )
.

Auxiliary Lemmas

Lemma 1.16. (a) Suppose that at least one of µ∗
a(·) and π∗

a(·) is correctly specified, and

at least one of the models ν∗a(·) and ρ∗a(·) is correctly specified. Let Assumptions 1-4 hold.

Assume that max{sαa , sβa , sγa , sδa} log(d) = o(N), and either (a) ∥S1∥∞ ≤ C almost surely,

with some constant C > 0, or (b) sδa log
2(d) = O(N). Then,

T2 = Op

(
σ
s1 log(d)

N
+ σ

√
s2 log(d)

N

)
, (1.180)

where T2 is defined as (1.104) and

s1 := max{√sαasδa ,
√
sβasγa},

s2 := max
{
sαa1{ρ∗a ̸=ρa}, sβa1{π∗

a ̸=πa}, sγa1{µ∗a ̸=µa}, sδa1{ν∗a ̸=νa}
}
.
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b) Suppose that all the nuisance models µ∗
a(·), ν∗a(·), π∗

a(·), and ρ∗a(·) are correctly

specified. Let Assumptions 1-3 hold. Assume that max{sαa , sβa , sγa , sδa} log(d) = o(N), and

either (a) ∥S1∥∞ ≤ C almost surely, with some constant C > 0, or (b) sδa log
2(d) = O(N).

Then, Then,

T2 = Op

(
σ
s1 log(d)

N

)
. (1.181)

Lemma 1.17. Suppose that at least one of µ∗
a(·) and π∗

a(·) is correctly specified, and at least

one of the models ν∗a(·) and ρ∗a(·) is correctly specified. Let Assumptions of Lemma 1.16 (a)

hold. Then,

[E(∆̂(W )−∆∗(W ))2]
1
2 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
, (1.182)

T4 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
, (1.183)

where T4 is defined as (1.106).

Proof of Theorem 2

Let ξ := µa(S1) − µa′(S1) − θ. Recall the representation (1.102). By Lemmas 1.9,

1.16, 1.11, and 1.17, we have

T1 = 0,

T
(k)
2 = Op

(
σ
s1 log(d)

N
+ σ

√
s2 log(d)

N

)
,

T
(k)
3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
,

T
(k)
4 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
.
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for each k ≤ K. Therefore, by Lemma 1.13 with max{sαa , sβa , sγa , sδa} log(d) = o(N), we

obtain

θ̂ − θ = K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 )

= Op

(
σ
s1 log(d)

N
+ σ

√
s2 log(d)

N
+

1√
N
σ

)
,

with s1 := max{√sαasδa ,
√
sβasγa} and

s2 := max
{
sαa1{ρ∗a ̸=ρa}, sβa1{π∗

a ̸=πa}, sγa1{µ∗a ̸=µa}, sδa1{ν∗a ̸=νa}
}
.

Proof of Theorem 3

In this theorem, we consider the setting where all the nuisance models are correctly

specified. Note that, Assumption 4 holds under Assumption 1 when all the nuisance models

are correct.

Consistency Let ξ := µa(S1)−µa′(S1)−θ. Recall the representation (1.102). By Lemmas

1.9, 1.16, 1.11, and 1.17, we have

T1 = 0,

T
(k)
2 = Op

(
σ
s1 log(d)

N

)
,

T
(k)
3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
,

T
(k)
4 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
.

for each k ≤ K. By Assumption, s1 log(d) = o(
√
N) and max{sαa , sβa , sγa , sδa} log(d) =

o(N). Together with Lemma 1.14 , we obtain that

θ̂ − θ = K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 ) = Op

(
1√
N
σ

)
. (1.184)
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Asymptotic Normality By Lemmas 1.9, 1.16 and 1.17 with s1 log(d) = o(
√
N) and

max{sαa , sβa , sγa , sδa} log(d) = o(N), we have

√
nσ−1(T1 + T

(k)
2 + T

(k)
4 ) = op(1)

for each k ≤ K. Hence, to demonstrate

√
Nσ−1(θ̂ − θ) =

√
Nσ−1K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 ) ; N(0, 1),

we need to show

√
Nσ−1K−1

K∑
k=1

T
(k)
3 =

√
Nσ−1

(
N−1

N∑
i=1

∆∗(Wi)− θ

)
; N(0, 1),

where T
(k)
3 is defined as (1.105). Here, ∆N,i := ∆∗(Wi) is possibly dependent with N

since both Wi and nuisance parameters (α∗
c ,β

∗
c ,γ

∗
c , δ

∗
c ) potentially depend on (d1, d2), and

(d1, d2) = (d1,N , d2,N) are allowed to grow with N . Hence, {∆N,i}N,i forms a triangular array.

By Lyapunov’s central limit theorem, it suffices to show that, for some t > 0, the following

Lyapunov’s condition holds:

lim
n→∞

E|∆∗(W )− θ|2+t

n
t
2σ2+t

= 0. (1.185)

Step 1 In order to check Lyapunov’s condition, we show that for some constant C ′,

E|∆∗(W )− θ|2+t

σ2+t
< C ′. (1.186)

By Lemma 1.14, we have, for some constants t > 0 and Ct > 0,

E|∆∗(W )− θ|2+t

σ2+t
≤ 2Ct

c4+2t
0

(
E[|ζ|2+t

σ2+t
+
E[|ε|2+t]
σ2+t

+
E|ξ|2+t

[E|ξ|2]1+ t
2

)
.
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Let e1 = (1,01×d1)
⊤, then we write ξ = µa(S1) − µa′(S1) − θ = V⊤(β∗

a − β∗
a′ − e1θ). By

Lemma 1.4, under Assumption 3, we have

∥ξ∥ψ2 = ∥(β∗
a − β∗

a′ − e1θ)
⊤V∥ψ2 ≤ 2σu∥β∗

a − β∗
a′ − e1θ∥2.

It follows from Lemma 1.2 that

E[|ξ|2+t] ≤ 23+tσ2+t
u ∥β∗

a − β∗
a′ − e1θ∥2+t2 Γ(2 + t/2). (1.187)

Similarly, by Assumption 2, we have

E[|ζ|2+t] ≤ 23+tσ2+tσ2+t
ζ Γ(2 + t/2), (1.188)

E[|ε|2+t] ≤ 23+tσ2+tσ2+t
ε Γ(2 + t/2). (1.189)

By Lemma 1.4, under Assumption 3, we also have

E[|ξ|2] = E[|V⊤(β∗
a − β∗

a′ − e1θ)|2] ≥ ∥β∗
a − β∗

a′ − e1θ∥22 · λmin(E[VV⊤]) (1.190)

≥ κl∥β∗
a − β∗

a′ − e1θ∥22.

Using (1.187) and (1.190), we get that

E|ξ|2+t

[E|ξ|2]1+ t
2

≤ 23+tσ2+t
u ∥β∗

a − β∗
a′ − e1θ∥2+t2 Γ(2 + t/2)

κ
1+t/2
l ∥β∗

a − β∗
a′ − e1θ∥2+t2

=
23+tσ2+t

u Γ(2 + t/2)

κ
1+t/2
l

. (1.191)

Using (1.188), (1.189) and (1.191), then we obtain that

E|∆∗(W )− θ|2+t

σ2+t

≤ 2Ct

c4+2t
0

(
23+tσ2+t

ζ Γ(2 + t/2) + 23+tσ2+t
ε Γ(2 + t/2) +

23+tσ2+t
u Γ(2 + t/2)

κ
1+t/2
l

)
=: C ′.

That is, (1.186) holds and hence the Lyapunov’s condition is satisfied.
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Step 2 Now, we show the consistency of the asymptotic variance’s estimator. In this step,

the expectations are taken w.r.t. the joint distribution of (Wi)i∈Ik . By (1.184), we have

θ̂ − θ = Op(σ/
√
N). Then, we show, for each k ≤ K,[

1

n

∑
i∈Ik

|∆̂(Wi)−∆∗(Wi)|2
] 1

2

= op(σ). (1.192)

It follows from Jensen’s inequality that

E

[
1

n

∑
i∈Ik

|∆̂(Wi)−∆∗(Wi)|2
] 1

2

≤
{
E

[
1

n

∑
i∈Ik

|∆̂(Wi)−∆∗(Wi)|2
]} 1

2

= [E|∆̂(W )−∆∗(W )|2]
1
2

(i)
= Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
,

where (i) follows from (1.182) in Lemma 1.17 with correctly specified nuisance models.

By Markov’s inequality with max{sαa , sβa , sγa , sδa} log(d) = o(N), we have[
1

n

∑
i∈Ik

|∆̂(Wi)−∆∗(Wi)|2
] 1

2

= Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
= op(σ).

Therefore, using (1.184), (1.186) and (1.192), we get σ̂2 − σ2 = op(σ
2) by Lemma 1.15.

Proofs of Auxiliary Lemmas

Proof of Lemma 1.16. In this proof, the expectations are taken w.r.t. the distribution of

a new observation W . Recall the representation (1.133) that T2 = E[∆̂(W ) − ∆∗(W )] =∑6
i=1E[Qi]. Here, we first upper bound E[Q1 + Q2 + Q3]. Same as in the proof of Lemma

1.10, we also have (1.134) holds, with Ris defined in (1.135)-(1.142). Same as in (1.141) and

(1.142), we have R7 = R8 = 0. Now, we obtain an upper bound for Ri (i ∈ {1, . . . , 6}). For
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R1 +R2, since |A1| ≤ 1, |π∗
a(S1)| ≤ 1 and |ρ∗a(S)| ≤ 1, we have

R1 +R2

(i)

≤ {E|π̂a(S1)|−3}
1
3

{
E

∣∣∣∣ 1

ρ̂a(S)
− 1

ρ∗a(S)

∣∣∣∣3
} 1

3

{E|ν̂a(S)− ν∗a(S)|3}
1
3

+

{
E

∣∣∣∣ 1

π̂a(S1)
− 1

π∗
a(S1)

∣∣∣∣2
} 1

2

{E|µ̂a(S1)− µ∗
a(S1)|2}

1
2

(ii)
= Op

(
σ
√
sαasδa log(d)

N
+
σ
√
sβasγa log(d)

N
(1.193)

+
σ
√
sαasγa log(d)

N
1{ρ∗a(·)̸=ρa(·)} +

σ
√
sδasγa log(d)

N
1{ν∗a(·)̸=νa(·)}

)
,

where (i) holds by Hölder’s inequality; (ii) follows from Lemmas 1.5, 1.8 and Theorem 9 with

sγa log(d) = o(N) and d1 ≍ d. Similarly, for R3 + R4, since |A1| ≤ 1, |ρ∗a(S) − ρa(S)| ≤ 1,

|π∗
a(S1)− πa(S1)| ≤ 1,

R3 +R4 ≤{E|π̂a(S1)|−3}
1
3{E|ρ̂a(S)|−3}

1
3{E|ν̂a(S)− ν∗a(S)|3}

1
31{ρ∗a(·) ̸=ρa(·)}

+ {E|π̂a(S1)|−2}
1
2{E|µ̂a(S1)− µ∗

a(S1)|2}
1
21{π∗

a(·) ̸=πa(·)}

(i)
= Op

(
σ

√
sβa log(d)

N
1{π∗

a(·)̸=πa(·)} + σ

√
sαa log(d)

N
1{ρ∗a(·)̸=ρa(·)} (1.194)

+
σ
√
sδasαa log(d)

N
1{π∗

a(·)̸=πa(·)} + σ

√
sδa log(d)

N
1{π∗

a(·) ̸=πa(·),ν∗a(·)̸=νa(·)}

)
,

where (i) holds by Lemmas 1.5, 1.8 and Theorem 9 with d1 ≍ d. For R5 + R6, since

|ρ∗a(S)| ≤ 1,

R5 +R6 ≤ {E|π̂a(S1)|−4}
1
4

{
E

∣∣∣∣ 1

ρ̂a(S)
− 1

ρ∗a(S)

∣∣∣∣4
} 1

4

{E[A1|ν∗a(S)− νa(S)|2]}
1
2

+

{
E

∣∣∣∣ 1

π̂a(S1)
− 1

π∗
a(S1)

∣∣∣∣2
} 1

2

E[A1|{µ∗
a(S1)− µa(S1)|2]}

1
2

(i)
= Op

(
σ

√
sγa log(d)

N
1{µ∗a(·) ̸=µa(·)} + σ

√
sδa log(d)

N
1{ν∗a(·)̸=νa(·)}

)
. (1.195)
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where (i) follows from Lemma 1.8, (1.149), (1.151), and Lemma 1.13. Combining (1.193)-

(1.195) with sγa log(d) = o(N), we have

E[Q1 +Q2 +Q3] = Op

(
σ
s1 log(d)

N
+ σ

√
s2 log(d)

N

)
.

Analogously to E[Q1 +Q2 +Q3], we have the same result for E[Q4 +Q5 +Q6]. Theorefore,

(1.180) follows.

(b) When all the models are correctly specified, we have s2 = 0. Hence, by part (a),

(1.181) holds.

Proof of Lemma 1.17. In this proof, the expectations are taken w.r.t. a new observation W ,

unless stated otherwise. We first show that (1.182) holds. Recall the representation (1.126),

by Minkowski inequality, we have

[E(∆̂(W )−∆∗(W ))2]
1
2 ≤

6∑
i=1

[E(Q2
i )]

1
2 ,

where Qi (i ∈ {1, . . . , 6}) are defined as(1.127)-(1.132). In the following, we show that

6∑
i=1

[E(Q2
i )]

1
2 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
.
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By Minkowski’s inequality,

[E(Q2
1)]

1
2 ≤

{
E

[
A1A2

π̂a(S1)ρ̂a(S)
(ν̂a(S)− ν∗a(S))

]2} 1
2

+

{
E

[(
A1A2

π̂a(S1)ρ̂a(S)
− A1A2

π∗
a(S1)ρ∗a(S)

)
(Y − ν∗a(S))

]2} 1
2

(i)

≤

{
E

[
1

π̂a(S1)ρ̂a(S)
(ν̂a(S)− ν∗a(S))

]2} 1
2

+

{
E

[(
1

π̂a(S1)ρ̂a(S)
− 1

π∗
a(S1)ρ∗a(S)

)
ζ

]2} 1
2

(ii)

≤ {E|π̂a(S1)|−6}
1
6{E|ρ̂a(S)|−6}

1
6{E|ν̂a(S)− ν∗a(S)|6}

1
6

+ {E|ζ|4}
1
4

{
E

∣∣∣∣ 1

π̂a(S1)ρ̂a(S)
− 1

π∗
a(S1)ρ∗a(S)

∣∣∣∣4
} 1

4

(iii)
= Op

(
σ

√
max{sαa , sγa , sδa} log(d)

N

)
, (1.196)

where (i) holds by the fact that |A1| ≤ 1, |A2| ≤ 1 and A1A2ζ = ζa = A1A2(Y − ν∗a(S)); (ii)

holds by Hölder’s inequality; (iii) follows from Lemmas 1.5, 1.8, and under Assumption 2,

by Lemma 1.2,

E[|ζ|4] ≤ 8σ4σ4
ζ , E[|ε|4] ≤ 8σ4σ4

ε . (1.197)
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Then, similarly as above, we obtain

[E(Q2
2)]

1
2 ≤

{
E

[
A1

π̂a(S1)
(ν̂a(S)− ν∗a(S))

]2} 1
2

+

{
E

[
A1

π̂a(S1)
(µ̂a(S1)− µ∗

a(S1))

]2} 1
2

+

{
E

[(
A1

π̂a(S1)
− A1

π∗
a(S1)

)
(ν∗a(S)− µ∗

a(S1))

]2} 1
2

≤

{
E

[
1

π̂a(S1)
(ν̂a(S)− ν∗a(S))

]2} 1
2

+

{
E

[
1

π̂a(S1)
(µ̂a(S1)− µ∗

a(S1))

]2} 1
2

+

{
E

[(
1

π̂a(S1)
− 1

π∗
a(S1)

)
ε

]2} 1
2

≤ {E|π̂a(S1)|−4}
1
4{E|ν̂a(S)− ν∗a(S)|4}

1
4 +

{
E

∣∣∣∣ 1

π̂a(S1)
− 1

π∗
a(S1)

∣∣∣∣4
} 1

4

{E|ε|4}
1
4

+ {E|π̂a(S1)|−4}
1
4{E|µ̂a(S1)− µ∗

a(S1)|4}
1
4

(i)
= Op

(
σ

√
max{sαa , sβa , sγa} log(d)

N
+ σ

√
sδa log(d)

N
1{ν∗a(·)̸=νa(·)}

)
, (1.198)

where (i) follows from Lemmas 1.5, 1.8, (1.197), and Theorem 9 with sδa log(d) = o(N) and

d1 ≍ d. By Theorem 9 , we also have

[E(Q2
3)]

1
2 =

{
E[µ̂a(S1)− µ∗

a(S1)]
2
}1/2

= Op

(
σ

√
sβa log(d1)

N
+
σ
√
sδasαa log(d)

N

+ σ

√
sαa log(d)

N
1{ρ∗a(·) ̸=ρa(·)} + σ

√
sδa log(d)

N
1{ν∗a(·) ̸=νa(·)}

)
. (1.199)

Combining (1.196)-(1.199), we have

[E(Q2
1)]

1
2 + [E(Q2

2)]
1
2 + [E(Q2

3)]
1
2 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
.

Repeating the procedure above, we obtain the same result for [E(Q2
4)]

1
2+[E(Q2

5)]
1
2+[E(Q2

6)]
1
2 .

Therefore, (1.182) holds. Now, we show (1.183). Recall the definition (1.106), we have
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T4 := n−1
∑

i∈Ik [∆̂(Wi)−∆∗(Wi)]−E[∆̂(W )−∆∗(W )]. By Chebyshev’s inequality, we have

for any t > 0,

P (|T4| > t) ≤ 1

t2
Var

[
1

n

∑
i∈Ik

(∆̂(Wi)−∆∗(Wi))

]
(1.200)

≤ 1

nt2
E[∆̂(W )−∆∗(W )]2.

In the righ-hand side of (1.200), the variance is taken over the joint distribution of (Wi)i∈Ik .

Note that, based on the sample-splitting, the nuisance estimates are independent of (Wi)i∈Ik .

Together with (1.182), we conclude that (1.183) holds.

1.8.7 Asymptotic theory for Dynamic Treatment Lasso (DTL) es-

timator

In this section, we provide theoretical results for the DTL estimator. The ℓ1-regul-

arized nuisance estimates α̂c, γ̂c, δ̂c and the target nuisance estimates α∗
c , γ

∗
c , δ

∗
c are the same

as in Section 1.8.6. For the first-time conditional mean function, we consider the nested-

regression-based estimator β̂c,NR defined in Section 2.2. With a slight abuse of notation, we

consider set the general nuisance estimates as ν̂c(S) = U⊤α̂c, µ̂c(S) = µ̂c,NR(S) = V⊤β̂c,NR,

π̂c(S1) = g(V⊤γ̂c), and ρ̂c(S) = g(U⊤δ̂c) for each c ∈ {a, a′}. Then ψ̂c(·), defined as (1.100),

can be written as

ψ̂c(W ) = V⊤β̂c,NR + 1{A1=c1}
U⊤α̂c −V⊤β̂c,NR

g(V⊤γ̂c)
+ 1{A1=c1,A2=c2}

Y −U⊤α̂c

g(V⊤γ̂c)g(U⊤δ̂c)
.

With a slight abuse of notations, we set the general working models as ν∗c (S) = U⊤α∗
c ,

µ∗
c(S) = µ∗

c,NR(S) = V⊤β∗
c,NR, π

∗
c (S1) = g(V⊤γ∗

c ), and ρ
∗
c(S) = g(U⊤δ∗

c ) for each c ∈ {a, a′}.
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Then ψ∗
c (·), defined as (1.101), can be written as

ψ∗
c (W ) = V⊤β∗

c,NR + 1{A1=c1}
U⊤α∗

c −V⊤β∗
c,NR

g(V⊤γ∗
c )

+ 1{A1=c1,A2=c2}
Y −U⊤α∗

c

g(V⊤γ∗
c )g(U

⊤δ∗
c )
.

Auxiliary Lemmas

Lemma 1.18. (a) Suppose that at least one of µ∗
a,NR(·) and π∗

a(·) is correctly specified, and

at least one of the models ν∗a(·) and ρ∗a(·) is correctly specified. Let Assumptions 1-4 hold.

Assume that max{sαa , sβa , sγa , sδa} log(d) = o(N). Then,

T2 = Op

(
σ
s′1 log(d)

N
+ σ

√
s′2 log(d)

N

)
, (1.201)

where T2 is defined as (1.104) and

s′1 := max{√sαasγa ,
√
sαasδa ,

√
sβasγa},

s′2 := max
{
sαa1{π∗

a ̸=πa or ρ∗a ̸=ρa}, sβa1{π∗
a ̸=πa}, sγa1{µ∗a,NR ̸=µa}, sδa1{ν∗a ̸=νa}

}
.

(b) Suppose that all the nuisance models µ∗
a,NR(·), ν∗a(·), π∗

a(·), and ρ∗a(·) are correctly

specified. Let Assumptions 1-3 hold. Assume that max{sαa , sβa , sγa , sδa} log(d) = o(N)

Then,

T2 = Op

(
σ
s′1 log(d)

N

)
. (1.202)

Lemma 1.19. Suppose that at least one of µ∗
a,NR(·) and π∗

a(·) is correctly specified, and at

least one of the models ν∗a(·) and ρ∗a(·) is correctly specified. Let Assumptions 1-4 hold.

Assume that max{sαa , sβa , sγa , sδa} log(d) = o(N). Then,

[E(∆̂(W )−∆∗(W ))2]
1
2 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
, (1.203)

T4 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
, (1.204)

where T4 is defined as (1.106).
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Proof of Theorem 4

Let ξ = µa,NR(S1) − µa′,NR(S1) − θ. Recall the representation (1.102). By Lemmas

1.9, 1.18, 1.11, and 1.19, we have

T1 = 0,

T
(k)
2 = Op

(
σ
s′1 log(d)

N
+ σ

√
s′2 log(d)

N

)
,

T
(k)
3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
,

T
(k)
4 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
.

for each k ≤ K. Therefore, by Lemma 1.13 with max{sαa , sβa , sγa , sδa} log(d) = o(N), we

obtain that

θ̂DTL − θ = K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 )

= Op

(
σ
s′1 log(d)

N
+ σ

√
s′2 log(d)

N
+

1√
N
σ

)
,

where

s′1 := max{√sαasγa ,
√
sαasδa ,

√
sβasγa},

s′2 := max
{
sαa1{π∗

a ̸=πa or ρ∗a ̸=ρa}, sβa1{π∗
a ̸=πa}, sγa1{µ∗a,NR ̸=µa}, sδa1{ν∗a ̸=νa}

}
.

Proof of Theorem 5

In this theorem, we consider the setting where all the nuisance models are correctly

specified. Note that, Assumption 4 holds under Assumption 1 when all the nuisance models

are correct.
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Consistency Let ξ = µa(S1)− µa′(S1)− θ. Recall the representation (1.102), by Lemmas

1.9, 1.18, 1.11, and 1.19 in that order we have

T1 = 0,

T
(k)
2 = Op

(
σ
s′1 log(d)

N

)
,

T
(k)
3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
,

T
(k)
4 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
.

for each k ≤ K. By Assumption, s′1 log(d) = o(
√
N) and max{sαa , sβa , sγa , sδa} log(d) =

o(N). Together with Lemma 1.14 , we obtain that

θ̂DTL − θ = K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 ) = Op

(
1√
N
σ

)
. (1.205)

Asymptotic Normality By Lemmas 1.9, 1.18, and 1.19 with s′1 log(d) = o(
√
N) and

max{sαa , sβa , sγa , sδa} log(d) = o(N), we have

√
nσ−1(T1 + T

(k)
2 + T

(k)
4 ) = op(1)

for each k ≤ K. In addition, repeating Section 1.8.6 in the proof of Theorem 3, we also have

√
Nσ−1K−1

K∑
k=1

T
(k)
3 ; N(0, 1),

which implies,

√
Nσ−1(θ̂DTL − θ) =

√
Nσ−1K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 ) ; N(0, 1).

By (1.203) and max{sαa , sβa , sγa , sδa} log(d) = o(N), we have[
1

n

∑
i∈Ik

|∆̂(Wi)−∆∗(Wi)|2
] 1

2

= op(σ).

Together with (1.205) and (1.186), we have σ̂2
DTL − σ2 = op(σ

2) by Lemma 1.15.
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Proofs of Auxiliary Lemmas

Proof of Lemma 1.18. In this proof, the expectations are taken w.r.t. the distribution of a

new observationW . We repeat the proof of Lemma 1.16, except here we consider the nested-

regression-based estimate µ̂c(·) = µ̂c,NR(·) and the corresponding target µ∗
c(·) = µ∗

c,NR(·). Note

that

T2 = E[∆̂(W )−∆∗(W )] =
6∑
i=1

E[Qi], (1.206)

with E[Q1 +Q2 +Q3] =
∑6

i=1Ri, where Ris are defined in (1.135)-(1.140). For R1 +R2, we

have

R1 +R2

(i)

≤ {E|π̂a(S1)|−3}
1
3

{
E

∣∣∣∣ 1

ρ̂a(S)
− 1

ρ∗a(S)

∣∣∣∣3
} 1

3

{E|ν̂a(S)− ν∗a(S)|3}
1
3

+

{
E

∣∣∣∣ 1

π̂a(S1)
− 1

π∗
a(S1)

∣∣∣∣2
} 1

2

{E|µ̂a,NR(S1)− µ∗
a,NR(S1)|2}

1
2

(ii)
= Op

(
σ
s′1 log(d)

N

)
, (1.207)

where (i) holds by Hölder’s inequality; (ii) follows from Lemmas 1.5, 1.8 and Theorem 10

with d1 ≍ d. Similarly, for R3 +R4,

R3 +R4 ≤{E|π̂a(S1)|−3}
1
3{E|ρ̂a(S)|−3}

1
3{E|ν̂a(S)− ν∗a(S)|3}

1
31{ρ∗a(·) ̸=ρa(·)}

+ {E|π̂a(S1)|−2}
1
2{E|µ̂a,NR(S1)− µ∗

a,NR(S1)|2}
1
21{π∗

a(·)̸=πa(·)}

=Op

(
σ

√
(sαa + sβa) log(d)

N
1{π∗

a(·)̸=πa(·)} + σ

√
sαa log(d)

N
1{ρ∗a(·)̸=ρa(·)}

)
. (1.208)

Repeating the similar procedure of (1.151), we have

E[A1(µ
∗
a,NR(S1)− µa,NR(S1))

2] ≤ 2

c0
E[ζ2] + 2E[ε2]. (1.209)
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For R5 +R6,

R5 +R6 ≤ {E|π̂a(S1)|−4}
1
4

{
E

∣∣∣∣ 1

ρ̂a(S)
− 1

ρ∗a(S)

∣∣∣∣4
} 1

4

{E[A1|ν∗a(S)− νa(S)|2]}
1
2

+

{
E

∣∣∣∣ 1

π̂a(S1)
− 1

π∗
a(S1)

∣∣∣∣2
} 1

2

{E[A1|µ∗
a,NR(S1)− µa,NR(S1)|2]}

1
2

(i)
= Op

(
σ

√
sγa log(d)

N
1{µ∗a,NR(·) ̸=µa,NR(·)} + σ

√
sδa log(d)

N
1{ν∗a(·)̸=νa(·)}

)
, (1.210)

where (i) follows from Lemma 1.8, (1.149), (1.209), and Lemma 1.13. Combining (1.207)-

(1.210), we have

E[Q1 +Q2 +Q3] =
6∑
i=1

Ri = Op

(
σ
s′1 log(d)

N
+ σ

√
s′2 log(d)

N

)
.

Note that E[Q4 +Q5 +Q6] can be controlled similarly as E[Q1 +Q2 +Q3]. By (1.206), we

have (1.201) holds.

(b) When all the models are correctly specified, we have s′2 = 0. Hence, by part (a),

(1.202) holds.

Proof of Lemma 1.19. In this proof, the expectations are taken w.r.t. a new observation

W , unless stated otherwise. We repeat the proof of Lemma 1.17, except here we consider

the nested-regression-based estimate µ̂c(·) = µ̂c,NR(·) and the corresponding target µ∗
c(·) =

µ∗
c,NR(·). Note that the estimation error of µ∗

c(·) only appears in steps (1.198) and (1.199)

when controlling the terms [E(Q2
2)]

1/2 and [E(Q2
3)]

1/2. By Lemmas 1.5, 1.8, (1.197), and
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Theorem 10 with with d1 ≍ d, we have

[E(Q2
2)]

1
2

≤ {E|π̂a(S1)|−4}
1
4{E|ν̂a(S)− ν∗a(S)|4}

1
4 +

{
E

∣∣∣∣ 1

π̂a(S1)
− 1

π∗
a(S1)

∣∣∣∣4
} 1

4

{E|ε|4}
1
4

+ {E|π̂a(S1)|−4}
1
4{E|µ̂a,NR(S1)− µ∗

a,NR(S1)|4}
1
4

= Op

(
σ

√
max{sαa , sβa , sγa} log(d)

N

)
.

By Theorem 10, we also have

[E(Q2
3)]

1
2 =

{
E[µ̂a,NR(S1)− µ∗

a,NR(S1)]
2
}1/2

= Op

(
σ

√
max{sαa , sβa} log(d)

N

)
.

Repeating the remaining steps of the proof of Lemma 1.17, we have

[E(∆̂(W )−∆∗(W ))2]
1
2 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
,

T4 = Op

(
σ

√
max{sαa , sβa , sγa , sδa} log(d)

N

)
.

1.8.8 Proof of the results for multi-stage treatment estimation

with DR methods

Proof of Theorem 11. By construction, we have µ∗
T+1(ST+1, aT ) = Y , and it follows that

E

[
T∑

r=t+1

∏r
l=t+1 1{Al=al}∏r
l=t+1 π

∗
l (Sl, al)

(µ∗
r+1(Sr+1, aT )− µ∗

r(Sr, aT )) | St, Āt = at

]

:= HT +
T−1∑
r=t+1

(Hr,1 +Hr,2 +Hr,3), (1.211)
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where

HT = E

[ ∏T
l=t+1 1{Al=al}∏T
l=t+1 π

∗
l (Sl, al)

(Y − µ∗
T (ST , aT )) | St, Āt = at

]
,

and for any r ∈ {t+ 1, . . . , T},

Hr,1 = E

[ ∏r
l=t+1 1{Al=al}∏r
l=t+1 π

∗
l (Sl, al)

(µ∗
r+1(Sr+1, aT )− µr+1(Sr+1, aT )) | St, Āt = at

]
,

Hr,2 = E

[ ∏r
l=t+1 1{Al=al}∏r
l=t+1 π

∗
l (Sl, al)

(µr+1(Sr+1, aT )− µr(Sr, aT )) | St, Āt = at

]
,

Hr,3 = E

[ ∏r
l=t+1 1{Al=al}∏r
l=t+1 π

∗
l (Sl, al)

(µr(Sr, aT )− µ∗
r(Sr, aT )) | St, Āt = at

]
.

Define Ãr = (At+1, At+2, . . . , Ar) and ãr = (at+1, at+2, . . . , ar) for t+ 1 ≤ r ≤ T . For HT , by

the tower rule with Y (ĀT ) = Y under Assumption 6, we have

HT = E

[
E

[ ∏T
l=t+1 1{Al=al}∏T
l=t+1 π

∗
l (Sl, al)

(Y (aT )− µ∗
T (ST , aT )) | ST , ĀT−1 = aT−1

]
· P (ÃT−1 = ãT−1 | ST , Āt = at) | St, Āt = at

]
(i)
= E

[
E[1{AT=aT } | ST , ĀT−1 = aT−1]∏T

l=t+1 π
∗
l (Sl, al)

(E[Y (aT ) | ST , ĀT−1 = aT−1]− µ∗
T (ST , aT ))

· E(1{ÃT−1=ãT−1} | ST , Āt = at) | St, Āt = at

]
(ii)
= E

[ ∏T−1
l=t+1 1{Al=al}πT (ST , aT )∏T−1
l=t+1 π

∗
l (Sl, al)π

∗
T (ST , aT )

(µT (ST , aT )− µ∗
T (ST , aT )) | St, Āt = at

]
(iii)
= E

[ ∏T−1
l=t+1 1{Al=al}∏T−1
l=t+1 π

∗
l (Sl, al)

(µT (ST , aT )− µ∗
T (ST , aT )) | St, Āt = at

]
= −HT−1,1, (1.212)

where (i) holds since Y (aT ) ⊥⊥ AT | ST , ĀT−1 = aT−1 under the Assumption 6; (ii) holds since

πT (ST , aT ) = P [AT = aT | ST , ĀT−1 = aT−1] and µT (ST , aT ) = E[Y (aT ) | ST , ĀT−1 = aT−1]

under the Assumption 6; (iii) holds since either π∗
T (·, aT ) = πT (·, aT ) or µ∗

T (·, aT ) = µT (·, aT )
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by assumption. For Hr,2, by the tower rule, we have

Hr,2 = E

[
E

[ ∏r
l=t+1 1{Al=al}∏r
l=t+1 π

∗
l (Sl, al)

(µr+1(Sr+1, aT )− µr(Sr, aT )) | Sr, Ār = ar

]
· P (Ãr = ãr | Sr, Āt = at) | St, Āt = at

]
= E

[
E[µr+1(Sr+1, aT ) | Sr, Ār = ar]− µr(Sr, aT )∏r

l=t+1 π
∗
l (Sl, al−1)

· P (Ãr = ãr | Sr, Āt = at) | St, Āt = at

]
. (1.213)

For any r ∈ {1, . . . , T}, we have

µr(Sr, aT ) = E[Y (aT ) | Sr, Ār−1 = ar−1]
(i)
= E[Y (aT ) | Sr, Ār = ar]

(ii)
= E[E[Y (aT ) | Sr+1, Ār = ar] | Sr, Ār = ar]

= E[µr+1(Sr+1, aT ) | Sr, Ār = ar], (1.214)

where (i) holds since Y (aT ) ⊥⊥ Ar | Sr, Ār−1 = ar−1 under the Assumption 6; (ii) holds by

the tower rule. Together with (1.213), we conclude that

Hr,2 = 0. (1.215)
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For Hr,3, by the tower rule, we have

Hr,3 = E

[
E

[ ∏r
l=t+1 1{Al=al}∏r
l=t+1 π

∗
l (Sl, al)

(µr(Sr, aT )− µ∗
r(Sr, aT )) | Sr, Ār−1 = ar−1

]
· P (Ãr−1 = ãr−1 | Sr, Āt = at) | St, Āt = at

]
= E

[
E[1{Ar=ar} | Sr, Ār−1 = ar−1]∏r

l=t+1 π
∗
l (Sl, al)

(µr(Sr, aT )− µ∗
r(Sr, aT ))

· E(1{Ãr−1=ãr−1} | Sr, Āt = at) | St, Āt = at

]
(i)
= E

[ ∏r−1
l=t+1 1{Al=al}πr(Sr, ar)∏r−1
l=t+1 π

∗
l (Sl, al)π

∗
r(Sr, ar)

(µr(Sr, aT )− µ∗
r(Sr, aT )) | St, Āt = at

]
(ii)
= E

[ ∏r−1
l=t+1 1{Al=al}∏r−1
l=t+1 π

∗
l (Sl, al)

(µr(Sr, aT )− µ∗
r(Sr, aT )) | St, Āt = at

]
= −Hr−1,1, (1.216)

where (i) holds by the tower rule and that πr(Sr, ar−1) = P [Ar = ar | Sr, Ār−1 = ar−1]; (ii)

holds since either π∗
r(·, aT ) = πr(·, aT ) or µ∗

r(·, aT ) = µr(·, aT ) by assumption. Combining

(1.212)-(1.216) with (1.211), we have

E

[ T∑
r=t+1

∏r
l=t+1 1{Al=al}∏r
l=t+1 π

∗
l (Sl, al)

(µ∗
r+1(Sr+1, aT )− µ∗

r(Sr, aT ))

+ µ∗
t+1(St+1, aT ) | St = s̄t, Āt = at

]
= HT +

T−1∑
r=t+1

(Hr,1 +Hr,2 +Hr,3) + E[µ∗
t+1(St+1, aT ) | St, Āt = at]

= −HT−1,1 +
T−1∑
r=t+1

(Hr,1 −Hr−1,1) + E[µ∗
t+1(St+1, aT ) | St, Āt = at]

= −Ht,1 + E[µ∗
t+1(St+1, aT ) | St, Āt = at]

(i)
= E

[
µt+1(St+1, aT ) | St, Āt = at

] (ii)
= µt(St, aT ), for any t ∈ {1, . . . , T},

where (i) holds since Ht,1 = E
[
µ∗
t+1(St+1, aT )− µt+1(St+1, aT ) | St, Āt = at

]
; (ii) holds since

(1.214) holds for any r ∈ {1, . . . , T}.
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Proof of Proposition 1. By Theorem 11 with t = 0, we have

E

[
T∑
t=1

1{Āt=at}∏t
l=1 π

∗
l (Sl, al)

(µ∗
t+1(St+1, aT )− µ∗

t (St, aT )) + µ∗
1(S1, aT )

]

= µ0(s̄0, aT ) = E[Y (aT )|S0 = s̄0] = θaT .
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Chapter 2

Dynamic treatment effects:

high-dimensional inference under

model misspecification

2.1 Introduction

Statistical inference and estimation of causal relationships have a long tradition. In

many applications, data is collected dynamically over time, and individuals are exposed to

treatments at multiple stages. Typical examples include mobile health datasets, electronic

health records, and many more ranging from biomedical studies and public health to po-

litical science. This work considers statistical inference of causal effects for dynamic and

observational data with possibly high-dimensional confounding. In dynamic treatment set-

tings, model misspecification is more likely to occur in practice due to the many possible
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dependencies; previous treatments can arbitrarily affect future treatments and/or outcomes.

High-dimensional confounding is a real possibility as multiple covariates collected over time

quickly outgrow the treatment-specific sample size. The double robust inference that allows

model misspecification has been a long-standing open problem; even in low-dimensional set-

tings, only a few separate advances have been successfully made. We hope to bring to the

literature a distinct double-robust solution.

We consider the dynamic setting with binary treatments at two exposure times, al-

though our results extend to finite exposure times, and collect independent and identically

distributed samples S = {Wi}Ni=1, Wi = (Yi, A1i, A2i,S1i,S2i), with W being an indepen-

dent copy of Wi. Here, Y ∈ R denotes the observed outcome at the final or last treatment

stage. The causal setting of interest is framed through potential outcomes Y (a1, a2) with

a1, a2 ∈ {0, 1} denoting treatment at first and second exposure time. We assume the consis-

tency of potential outcomes with Y = Y (A1, A2) and A1, A2 denoting the observed binary

treatment assignments at the first and the second exposure time, respectively. At each expo-

sure, we also observe covariates S1 ∈ Rd1 and S2 ∈ Rd2 . We let the first coordinate of S1 be

an intercept term. Covariate history up to time two is denoted with S̄2 := (S⊤
1 ,S

⊤
2 )

⊤ ∈ Rd,

where the dimension d := d1 + d2, is potentially much larger than N . The dynamic treat-

ment effect (DTE) is defined as DTE := θa1,a2 − θa′1,a′2 , where θa1,a2 := E{Y (a1, a2)} and

(a1, a2) and (a′1, a
′
2) denote the treatment and control paths. Without loss of generality,

we focus on the inference of the counterfactual mean θ1,1. To identify the parameter of

interest, we consider the marginal structural mean (MSM) models [MvdLRG01], where

π(s1) := P(A1 = 1 | S1 = s1) and ρ(s̄2) := P(A2 = 1 | S̄2 = s̄2, A1 = 1) denote the
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true treatment assignment probabilities, i.e., propensity scores (PS) at both exposure times,

and µ(s1) := E{Y (1, 1) | S1 = s1} and ν(s̄2) := E{Y (1, 1) | S̄2 = s̄2, A1 = 1} denote the true

outcome regressions (OR).

As naive average of the outcomes is biased due to confounding effects, a common

approach to consider is that of the inverse propensity weighting (IPW) [Rob86, Rob00a,

HBR01,Rob04]. Under standard identification conditions (see Assumption 2.1 below), the

IPW representation

θ1,1 = E{ψIPW(W; π∗, ρ∗)} holds when π∗ = π and ρ∗ = ρ, (2.1)

where with a little abuse in the notation, ψIPW(W; π∗, ρ∗) := A1A2Y/{π∗(S1)ρ
∗(S̄2)}, π∗ and

ρ∗ denote the working models for the PS at the first and second exposure times, respectively.

Here, we refer to working models as the population-level approximations of the true nuisance

functions. However, IPW requires correctly specified PS models, with model misspecification

leading to inconsistent estimators. In the following, we first propose a new, model-robust

IPW representation that is unbiased under model misspecification.

Lemma 2.1 (Model-robust IPW). Let Assumption 2.1 holds. Suppose that either the true

OR or PS model are linear or logistic, respectively, at each exposure time, i.e., 1) either

π(s1) = g(s⊤1 γ
0) or µ(s1) = s⊤1 β

0 with some γ0,β0 ∈ Rd1 and 2) either ρ(s̄2) = g(s̄⊤2 δ
0) or

ν(s̄2) = s̄⊤2 α
0 with some δ0,α0 ∈ Rd. Then we have

θ1,1 = E{ψIPW(W; π∗, ρ∗)} where π∗(s1) = g(s⊤1 γ
∗) and ρ∗(s̄2) = g(s̄⊤2 δ

∗), (2.2)

with γ∗ ∈ Rd1 and δ∗ ∈ Rd being the solutions of

E
[{

1− A1

π∗(S1)

}
S1

]
= 0, and E

[
A1

π∗(S1)

{
1− A2

ρ∗(S̄2)

}
S̄2

]
= 0. (2.3)
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Unlike the standard IPW literature [Rob86,Rob00a,HBR01,Rob04,BAWM18], new

representations (2.3) allow for misspecified PS models even within the IPW framework, as

long as the corresponding OR models are linear. We expect that root-N inferential results

follow easily when the working PS models are root-N estimable under the robustness setting

of Lemma 2.1, for example, when the covariates are low-dimensional. However, in high

dimensions or modern non-parametric settings, the nuisances’ estimation errors are typically

non-ignorable in general, and hence we cannot guarantee root-N inference for θ1,1. Therefore,

we consider a well-known double-robust representation of θ1,1 and propose novel estimators

of the outcome models, together with new PS estimators based on (2.3). We use the doubly

robust (DR) score [NBW21,TYWK+19,vdLG11,ORR10,MvdLRG01],

ψ(W;η∗) := µ∗(S1) +
A1{ν∗(S̄2)− µ∗(S1)}

π∗(S1)
+
A1A2{Y − ν∗(S̄2)}
π∗(S1)ρ∗(S̄2)

, (2.4)

for which we show DR properties whenever at least one of the nuisance models is correctly

specified at each exposure, i.e., whenever Assumption 2.2 holds, θ1,1 = E{ψ(W;η∗)}. Here,

η∗ = (γ∗⊤, δ∗⊤,α∗⊤,β∗⊤)⊤, where γ∗ and δ∗ are defined such that (2.3) holds. We in-

troduce working OR models µ∗(s1) = s⊤1 β
∗ and ν∗(s̄2) = s̄⊤2 α

∗ with newly proposed α∗

and β∗ below. Let η̂ be an estimator of η∗. Note that, ψ(W;η∗) = W1(η
∗) +W2(η

∗) +

ψIPW(W; π∗, ρ∗), where W1(η
∗) = {1−A1g

−1(S⊤
1 γ

∗)}S⊤
1 β

∗ and W2(η
∗) = A1g

−1(S⊤
1 γ

∗){1−

A2g
−1(S̄⊤

2 δ
∗)}S̄⊤

2 α
∗. The first two terms, W1(η

∗) and W2(η
∗) can be viewed as bias cor-

rection terms in the presence of model misspecification, and we propose moment-targeting

estimators that will remove it asymptotically. To set ideas, let us consider a special case

where γ̂ = γ∗, α̂ = α∗, β̂ = β∗, and we only focus on the estimation error coming from
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δ̂ − δ∗. Then the biases of the IPW and DR score are

E{ψIPW(W; π∗, ρ̂)− ψIPW(W; π∗, ρ∗)} = E

[
A1A2

g(S⊤
1 γ

∗)

{
1

g(S̄⊤
2 δ̂)
− 1

g(S̄⊤
2 δ

∗)

}
Y

]
, (2.5)

E{ψ(W; η̃)− ψ(W;η∗)} = E

[
A1A2

g(S⊤
1 γ

∗)

{
1

g(S̄⊤
2 δ̂)
− 1

g(S̄⊤
2 δ

∗)

}(
Y − S̄⊤

2 α
∗)] , (2.6)

where η̃ = (γ∗⊤, δ̂⊤,α∗⊤,β∗⊤)⊤. Consequently, the bias (2.6) is potentially much smaller

than (2.5); when ν(s̄2) = ν∗(s̄2) = s̄⊤2 α
∗, we have E{ψ(W; η̃) − ψ(W;η∗)} = 0. However,

when model misspecification occurs and ν(·) ̸= ν∗(·), E{ψ(W; η̃)−ψ(W;η∗)} ≠ 0 in general.

In the following, we design the nuisance parameters η∗ such that the bias, i.e. (2.6), is

asymptotically negligible even under such model misspecification. Whenever δ̂− δ∗ is small

enough, we can approximate (2.6) as

E
[ A1A2

g(S⊤
1 γ

∗)
exp(−S̄⊤

2 δ
∗)
(
Y − S̄⊤

2 α
∗)S̄⊤

2

]
(δ̂ − δ∗),

and mitigate the bias effects by constructing α∗, i.e., ν∗, as the solution of

E
[ A1A2

g(S⊤
1 γ

∗)
exp(−S̄⊤

2 δ
∗)
(
Y − S̄⊤

2 α
∗)S̄2

]
= E

[A1A2{1− ρ∗(S̄2)}
π∗(S1)ρ∗(S̄2)

{
Y − ν∗(S̄2)

}
S̄2

]
= 0.

(2.7)

Similar approximation of (2.6), whenever γ̂ − γ∗ is small enough, leads to a construction of

new moment defining β∗, i.e., µ∗ as the solution of

E
[
A1

{
1− 1

π∗(S1)

}{A2(Y − ν∗(S̄2))

ρ∗(S̄2)
+ ν∗(S̄2)− µ∗(S1)

}
S1

]
= 0. (2.8)

We name the parameters satisfying (2.3), (2.7), and (2.8) as the moment-targeted nuisance

parameters.

Double-robust literature, unlike IPW or covariate balancing approaches [KS18,YS18]

which require correctly specified PS and OR models, respectively, enables certain forgive-

ness: only one and not both of them need to be correctly specified. However, with dynamic
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treatment regimes, the equivalent of this forgiveness has not been achieved yet. With the

presence of high-dimensional covariates, DR estimators of the DTE have been recently stud-

ied by [BHL22,BJZ21,LS21]. However, statistical inference for the DTE under model mis-

specification has not been considered. We provide a new estimator establishing statistical

inference for the DTE allowing model misspecification in high dimensions. Specifically, we

allow for the following four settings:

The OR models at the first and second exposure are correctly specified; (2.9)

The PS models at the first and second exposure are correctly specified; (2.10)

The first OR model and the second PS model are correctly specified; (2.11)

The second OR model and the first PS model are correctly specified. (2.12)

Therefore, we require at least one of the models to be correctly specified at each exposure.

This property is named sequentially model doubly robust (SMDR); see Theorem 2.1. Even

in low dimensions, SMDR is the most generous conditions up to date: [Rob00b,MvdLRG01,

BR05,YvdL06] establish confidence intervals when either (2.9) or (2.10) holds, but (2.11) and

(2.12) are not allowed. [BRR19], arguably the best result up to date, proposed a “multiple

robust” estimator (also in low dimensions), which allows for (2.9), (2.10), or (2.11) but

does not allow for (2.12). This work, therefore, provides a solution to a long-standing open

problem of interest.

The average treatment effect (ATE) estimation problem is closely related to the DTE

– it can be seen as a special, degenerate DTE estimation problem. The ATE has a long

tradition [Rub74] and has attracted a significant amount of attention with the advent of high-

dimensional models [Far15, AIW18, CCD+18, SRR19, BWZ19, Tan20]. Statistical inference
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for the ATE under model misspecification has been studied recently by [SRR19, Tan20,

DV20, DAV20, AV21]. They propose “model doubly robust” estimators, which are shown

to be asymptotically normal as long as either the OR model or the PS model is correctly

specified, a condition that we successfully naturally mimic with the proposed SMDR; for

the first time in the dynamic setting. To achieve model DR, authors therein, similarly

to [BWZ19], discuss the construction of novel and not off-the-shelf ready nuisance estimates.

Our moment-targeting estimates are motivated by the above work. However, identification

of the DTE is non-trivially distinct from the problem of identifying an ATE, leading to

distinct functionals from those considered in the prior work. In turn, the estimation problem

here is differentiated and the estimators developed have sequential estimation structure.

Dynamic treatment effects rely on a key identification condition, regarding outcome models

in particular, which ensures that DTE quantifies the effect of a sequence of treatments on

the outcome of interest. Authors in previous work could not explicitly design a DR estimator

that meets this condition and have therefore resorted to particular relaxations of DR notions

for dynamic settings.

The manuscript is organized as follows. In Section 2.2, we introduce the doubly

robust representation for the counterfactual mean and further motivate the working nuisance

models, which are constructed to achieve inference under model misspecification. In Section

2.3, we propose a sequential model doubly robust estimator for the DTE based on the

moment-targeted nuisance estimators. Our main theoretical results, which demonstrate the

inference results under possible model misspecification, are provided in Theorems 2.1 and

2.2. The theoretical results for the nuisance estimators are further provided in Section 2.4.
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In Section 2.5, we illustrate the finite sample performance of the proposed estimator under

simulations and semi-synthetic experiments. Additional justifications and the proofs of the

main results are provided in the Supplementary Material.

We use the following notation throughout. Let P(·) and E(·) denote the probability

measure and expectation characterizing the joint distribution of the underlying random

vector W := ({Y (a1, a2)}a1,a2∈{0,1}, A1, A2,S1,S2) (independent of the observed samples),

respectively. For any α > 0, let ψα(x) := exp(xα)− 1, ∀x > 0. The ψα-Orlicz norm ∥ · ∥ψα of

a random variable X ∈ R is defined as ∥X∥ψα := inf{c > 0 : E[ψα(|X|/c)] ≤ 1}. Two special

cases are given by ψ2(x) = exp(x2)− 1 and ψ1(x) = exp(x)− 1. We use aN ≍ bN to denote

cbN ≤ aN ≤ CbN for all N ≥ 1 and constants c, C > 0. For any S̃ ⊆ S = (Zi)
N
i=1, define PS̃

as the joint distribution of S̃ and ES̃(f) =
∫
fdPS̃. For r ≥ 1, define the lr-norm of a vector

z with ∥z∥r := (
∑p

j=1 |zj|r)1/r, ∥z∥0 := |{j : zj ̸= 0}|, and ∥z∥∞ := maxj |zj|. We denote the

logistic function with g(u) = exp(u)/(1 + exp(u)), for all u ∈ R. A d dimensional vector of

all ones and zeros are denoted with 1(d) and 0(d), respectively.

2.2 Moment-targeted nuisance estimators

To identify the counterfactual mean θa1,a2 , we assume the standard sequential ignor-

ability, consistency, and overlap conditions; see, e.g., [IR15,LM10,Mur03,Rob00a,Rob87].

Assumption 2.1 (Basic assumptions). (a) Sequential ignorability: Y (a1, a2) ⊥⊥ A1 | S1,

Y (a1, a2) ⊥⊥ A2 | (S1,S2, A1 = a1). (b) Consistency: Y = Y (A1, A2). (c) Overlap: let

P(c0 < π(S1) < 1 − c0) = 1, P(c0 < ρ(S̄2) < 1 − c0) = 1 with some constant c0 ∈ (0, 1).

Additionally, let π∗(·) and ρ∗(·) be some functions satisfying P(c0 < π∗(S1) < 1 − c0) =
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1, P(c0 < ρ∗(S̄2) < 1− c0) = 1.

In this paper, we consider linear and logistic working models for the OR and PS

models as defined above in (2.4). The model correctness conditions, named sequential model

double robustness (SMDR), are introduced below.

Assumption 2.2 (Sequential model double robustness). Let (a) either π = π∗ or µ = µ∗

holds, but not necessarily both; and (b) either ρ = ρ∗ or ν = ν∗, but not necessarily both.

To reduce the bias under model misspecification, we construct the moment-targeted

nuisance parameters, η∗, as the solution of E{∇ηψ(W;η∗)} = 0 even when models are

possibly misspecified as in Assumption 2.2. Note that this is more ambitious task than the

Neyman orthogonality, which ensures E{∇ηψ(W;η∗)} = 0 but requires correctly specified

models. With that in mind, we introduce new estimators of γ∗, δ∗,α∗ and β∗, in that order;

nuisances are intertwined and require sequential estimation. Justifications of the claims

below are provided in equations (2.43)-(2.46) of the Supplementary Material.

The first is γ∗ and π∗(S1) = g(S⊤
1 γ

∗), introduced to balance the model misspecifica-

tion in PS models through equation (2.3) (the left-hand side). This, in turn, leads to a loss

function ℓ1 and a targeted parameter of interest

γ∗ := argminγ∈Rd1E{ℓ1(W;γ)}, for ℓ1(W;γ) := (1− A1)S
⊤
1 γ + A1 exp(−S⊤

1 γ). (2.13)

Additionally, we observe that E {∇βψ(W;η∗)} = ∇γE{ℓ1(W;γ∗)} with the later being

zero at γ∗ under the SMDR setting. The next parameter to be defined is δ∗, for which

ρ∗(S̄2) = g(S̄⊤
2 δ

∗), and which needs to satisfy the targeted moment condition (2.3) (the
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right-hand side). We show that this is then equivalent to the population M-estimator

δ∗ := arg min
δ∈Rd

E{ℓ2(W;γ∗, δ)}, for ℓ2(W;γ, δ) :=
A1

g(S⊤
1 γ)

{
(1− A2)S̄

⊤
2 δ + A2 exp(−S̄⊤

2 δ)
}
,

(2.14)

where δ∗ = δ∗(γ∗). Moreover, we show E {∇αψ(W;η∗)} = ∇δE{ℓ2(W;γ∗, δ∗)}, therefore

enabling vanishing the effect of the first order bias under SMDR. For the remainder two OR

models, we design moment conditions such that (2.7) and (2.8) hold. To do so, we observe

that the corresponding moments are

α∗ := arg min
α∈Rd

E{ℓ3(W;γ∗, δ∗,α)}, and β∗ := arg min
β∈Rd1

E{ℓ4(W;γ∗, δ∗,α∗,β)}, (2.15)

with the new loss functions ℓ3 and ℓ4:

ℓ3(W;γ, δ,α) :=
A1A2 exp(−S̄⊤

2 δ)

g(S⊤
1 γ)

(
Y − S̄⊤

2 α
)2
, (2.16)

ℓ4(W;γ, δ,α,β) := A1 exp(−S⊤
1 γ)

{
S̄⊤
2 α+

A2(Y − S̄⊤
2 α)

g(S̄⊤
2 δ)

− S⊤
1 β

}2

. (2.17)

For convenience, we suppress the intrinsic notation ofα∗ = α∗(γ∗, δ∗) and β∗ = β∗(α∗,γ∗, δ∗)

with γ∗, δ∗ (and α∗) defined in (2.13) and (2.14). The above losses enable us to re-

duce the estimation bias under SMDR assumptions by ensuring E {∇γψ(W;η∗)} = ∇β

E{ℓ4(W;γ∗, δ∗,α∗,β∗)}/2 and E {∇δψ(W;η∗)} = ∇αE{ℓ3(W;γ∗, δ∗,α∗)}/2. The loss

functions (2.13), (2.14), (2.16), and (2.17) are named as moment-targeting loss functions,

which ensure the SMDR property of the resulting estimator and therefore solving an open

problem of double-robustness in dynamic exposure times. Moment-targeting estimators

in non-dynamic settings [SRR19, Tan20, AV21, BWZ19] match up only with (2.13) above;

whereas, other losses, even in low-dimensional settings, are entirely new and are the first to

achieve SMDR.
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The uniqueness of the moment-targeted nuisance parameters is discussed in Section

2.7.1 of the Supplementary Material. We next discuss their identification. The nested models

are hard to interpret, especially the OR model at the first exposure, µ(·). This is not a caviat

of our representation but of a dynamic nature of the problem and is widely recognized; see,

e.g., [BRR19]. (a) We say π∗(·) is correctly specified when π∗(·) = π(·), which occurs if

and only if (iff) there exists some γ0 ∈ Rd1 , such that π(s1) = g(s⊤1 γ
0) holds. Additionally,

γ∗ = γ0. (b) We say ρ∗(·) is correctly specified when ρ∗(·) = ρ(·), which occurs iff there

exists some δ0 ∈ Rd, such that ρ(s̄2) = g(s̄⊤2 δ
0) holds. Additionally, δ∗ = δ0. (c) We say

ν∗(·) is correctly specified when ν∗(·) = ν(·), which occurs iff there exists some α0 ∈ Rd,

such that ν(s̄2) = s̄⊤2 α
0 holds. Additionally, α∗ = α0. (d) We say µ∗(·) is correctly specified

when µ∗(·) = µ(·), which occurs if there exists some β0 ∈ Rd, such that µ(s1) = s⊤1 β
0 and,

furthermore, either case (b) or (c) holds. Additionally, β∗ = β0. Note that, δ∗, (2.14), is

a function of γ∗. However, (b) specifies that the correctness of ρ∗(·) does not depend on

γ∗. Analogous result for π∗(·), ρ∗(·) and ν∗(·) can be found in (a)-(c) therefore establishing

that their correctness has no effect on each other. However, this is not the case for the

OR model at the first exposure time, µ(·). Namely, if µ(·) is linear with µ(s1) = s⊤1 β
0 for

some β0, this does not imply that µ∗(·) is correctly specified, as β∗ in (2.15) may not be

equal to β0. From (d), we see that µ∗(·) is correctly specified if additionally either ρ∗(·) or

ν∗(·) is (or both are) correctly specified, a condition that always assumed through SMDR

settings of Assumption 2.2. Further details and justifications can be found in Section 2.7.2 of

the Supplementary Material. Based on the moment-targeted nuisance estimators, and new

loss functions, ℓ1, ℓ2, ℓ3, and ℓ4 as defined in (2.13), (2.14), (2.16), and (2.17), we propose a
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sequential model doubly robust estimator for the counterfactual mean, θ1,1 = E{Y (1, 1)} in

Algorithm 3. Note that the estimators therein are sequential in that δ̂ = δ̂(γ̂), α̂ = α̂(γ̂, δ̂)

and β̂ = β̂(γ̂, δ̂, α̂). Whenever possible, we avoid arduous exposition for readability.

2.3 Sequential model doubly robust inference

In this section, we choose the tuning parameters as λγ ≍
√

log d1/N , λδ ≍
√

log d/N ,

λα ≍
√
log d/N , λβ ≍

√
log d1/N . Define sγ := ∥γ∗∥0, sδ := ∥δ∗∥0, sα := ∥α∗∥0, and

sβ := ∥β∗∥0 as the sparsity levels of the population nuisance parameters.

Assumption 2.3 (Sparsity). Let sγ + sβ = o(N/ log d1), sδ + sα = o(N/ log d), and sγ +

sδ + sα = O(N/(log d1 log d)).

The sparsity conditions of the type s = o (N/ log d) are very common in the high-

dimensional statistics literature and guarantee estimation consistency. If we further assume

that ∥S̄2∥∞ < C, as in, e.g., [BWZ19, Tan20, SRR19], then the condition sγ + sδ + sα =

O(N/(log d1 log d)) is no longer required. The following assumption imposes some standard

moment conditions.

Assumption 2.4 (Sub-Gaussianity). Let S̄2 be a sub-Gaussian random vector with ∥v⊤S̄2∥ψ2

≤ σS∥v∥2 for all v ∈ Rd. Let ε := Y (1, 1)− S̄⊤
2 α

∗ and ζ := S̄⊤
2 α

∗ − S⊤
1 β

∗ be sub-Gaussian

with ∥ε∥ψ2 ≤ σε and ∥ζ∥ψ2 ≤ σζ. In addition, let Var{Y (1, 1)} > cY and the smallest eigen-

value of E(A1S̄2S̄
⊤
2 ) is bounded bellow by cmin. Here, σS, σε, σζ , cY , cmin are some positive

constants.
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Algorithm 3 The sequential model doubly robust (SMDR) counterfactual mean estimator

Require: Observations S = (Wi)
N
i=1 and the treatment path (a1, a2) = (1, 1).

1: Let I = {1, 2, . . . , N} = ∪Kk=1Ik with equal sized splits n = N/K and K ≥ 2.

2: for k = 1, 2, ...,K do

3: I−k ← I \ Ik

4: Iγ , Iδ, Iα, Iβ ← size M disjoint partition of I−k with M = N(K− 1)/(4K).

5: Propensity at the first exposure

γ̂−k ← γ̂ := arg min
γ∈Rd1

{
M−1

∑
i∈Iγ

ℓ1(Wi;γ) + λγ∥γ∥1
}
, (2.18)

6: Propensity at the last/second exposure

δ̂−k ← δ̂ := arg min
δ∈Rd

{
M−1

∑
i∈Iδ

ℓ2(Wi; γ̂, δ) + λδ∥δ∥1
}
, (2.19)

7: Outcome at the last exposure

α̂−k ← α̂ := arg min
α∈Rd

{
M−1

∑
i∈Iα

ℓ3(Wi; γ̂, δ̂,α) + λα∥α∥1
}
, (2.20)

8: Outcome at the first exposure

β̂−k ← β̂ := arg min
β∈Rd1

{
M−1

∑
i∈Iβ

ℓ4(Wi; γ̂, δ̂, α̂,β) + λβ∥β∥1
}
, (2.21)

9: end for

10: return SMDR estimator is

θ̂1,1 = N−1
K∑

k=1

∑
i∈Ik

ψ(Wi; η̂−k), (2.22)

where η̂−k = (γ̂⊤
−k, δ̂

⊤
−k, α̂

⊤
−k, β̂

⊤
−k)

⊤ and ψ(Wi; η̂−k) is defined through (2.4) as

{
1− A1i

g(S⊤
1iγ̂−k)

}
S⊤
1iβ̂−k +

A1i

g(S⊤
1iγ̂−k)

{
1− A2i

g(S̄⊤
2iδ̂−k)

}
S̄⊤
2iα̂−k +

A1iA2iYi

g(S⊤
1iγ̂−k)g(S̄⊤

2iδ̂−k)
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Theorem 2.1 (Inference under model misspecification). Let Assumptions 2.1-2.4 hold. Let

the following product sparsity conditions hold

sγsβ = o

(
N

(log d1)2

)
, sδsα = o

(
N

(log d)2

)
. (2.23)

We assume the following additional conditions if model misspecification occurs:

if ρ(·) ̸= ρ∗(·), further let sγsα = o

(
N

log d1 log d

)
; (2.24)

if ν(·) ̸= ν∗(·), further let sγsδ = o

(
N

log d1 log d

)
, sδ = o

(√
N

log d

)
; (2.25)

if µ(·) ̸= µ∗(·), further let sγ = o

( √
N

log d1

)
, sγsδ + sγsα = o

(
N

log d1 log d

)
. (2.26)

Then, as N, d1, d2 →∞, in distribution,

σ−1N−1/2(θ̂1,1 − θ1,1) → N (0, 1), where σ2 := E {ψ(W;η∗)− θ1,1}2 . (2.27)

In addition, define

σ̂2 := N−1

K∑
k=1

∑
i∈Ik

{
ψ(Wi; η̂−k)− θ̂1,1

}2

. (2.28)

Then, as N, d1, d2 →∞, σ̂2 = σ2{1 + op(1)}.

Remark 2.1 (Sequential model double robustness). In Theorem 2.1, we demonstrate the

“sequential model double robustness” (SMDR) property of our proposed estimator: root-N

inference is provided as long as at least one nuisance model is correctly specified at each

exposure; see Assumption 2.2. To the best of our knowledge, this is the first result that

establishes DR property in its full generality. In high-dimensional dynamic settings, no

inferential guarantees exist up to date that allow model misspecification. Among the low-

dimensional literature, the recent work of [BRR19] provides the best results so far on model
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robustness. The estimator therein is asymptotically normal when either (2.9), (2.10) or

(2.11) holds. However, our Assumption 2.2 allows an additional case (2.12) therefore filling

in the important gap.

Remark 2.2 (Required sparsity conditions under model misspecification). Here we discuss

the sparsity conditions required in Theorem 2.1 for root-N inference. We can see that the

correctness of π∗(·) does not affect the sparsity conditions; in addition, the more model mis-

specification occurs among ρ∗(·), ν∗(·), and µ∗(·), the more sparsity conditions we require.

When ρ∗(·), ν∗(·), and µ∗(·) are all correctly specified, we require Assumption 2.3 and (2.23).

Whenever a model at time t ∈ {1, 2} is misspecified, we require a product condition between

1) the sparsity level of the other (correctly specified) model at the same time t and 2) the

summation of sparsity levels corresponds to all the nuisance estimators that such a misspec-

ified estimator is constructed based on. Recall that we construct the nuisance estimators

sequentially in the order: γ̂ then δ̂ followed by α̂ and β̂. For instance, when µ∗(·) is mis-

specified, as shown in (2.26), we need a product condition between 1) sγ and 2) sγ + sδ + sα.

Moreover, whenever OR model at the exposure time t is misspecified, based on the pattern

we discussed above, we always require an ultra-sparse PS parameter at that exposure. More

details are listed in Table 2.1.

In addition, consider the degenerate case with one exposure time. Then we require

sγsβ = o(N/(log d1)
2) when ν(·) = ν∗(·); or, sγsβ = o(N/(log d1)

2) and sγ = o(
√
N/ log d1)

when ν(·) ̸= ν∗(·). Such conditions coincide with [SRR19] and are weaker than the sparsity

conditions in [Tan20, AV21], where both sγ = o(
√
N/ log d1) and sβ = o(

√
N/ log d1) are

required. [BWZ19] imposed different conditions with either 1) sβ = o(
√
N/ log d1) and sγ =
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o(N/ log d1) or 2) sβ = o(N3/4/ log d1) and sγ = o(
√
N/ log d1).

Table 2.1: Let ∥S̄2∥∞ < C, d1 ≍ d, and sγ + sδ + sα + sβ = o(N/ log d). Sparsity condi-
tions required for the sequential model doubly robust counterfactual mean estimator to be
consistent and asymptotically normal

Model correctness
Required sparsity conditions

π∗(·) ρ∗(·) ν∗(·) µ∗(·)
✓ ✓ ✓ ✓ sγsβ + sδsα = o

(
N

(log d)2

)
✓ ✓ ✓ ✗ sγ = o

( √
N

log d

)
, sγsδ + sγsα + sγsβ + sδsα = o

(
N

(log d)2

)
✓ ✓ ✗ ✓ sδ = o

( √
N

log d

)
, sγsδ + sγsβ + sδsα = o

(
N

(log d)2

)
✓ ✓ ✗ ✓ sγsα + sγsβ + sδsα = o

(
N

(log d)2

)
✗ ✓ ✓ ✓ sγsβ + sδsα = o

(
N

(log d)2

)
✓ ✓ ✗ ✗ sγ + sδ = o

( √
N

log d

)
, sγsα + sγsβ + sδsα = o

(
N

(log d)2

)
✓ ✗ ✗ ✓ sγ = o

( √
N

log d

)
, sγsδ + sγsα + sγsβ + sδsα = o

(
N

(log d)2

)
✗ ✓ ✗ ✓ sδ = o

( √
N

log d

)
, sγsδ + sγsβ + sδsα = o

(
N

(log d)2

)
✗ ✗ ✓ ✓ sγsα + sγsβ + sδsα = o

(
N

(log d)2

)

Whenever all the nuisance models are correctly specified, we have the following result.

Theorem 2.2 (Inference under correctly specified models). Suppose all the nuisance models

are correctly specified. Let Assumptions 2.1, 2.3 and 2.4 hold, as well as the product sparsity

(2.23). Then, as N, d1, d2 →∞,

σ−1N−1/2(θ̂1,1 − θ1,1) → N (0, 1)

in distribution, where σ2 is defined in (2.27).With σ̂2 as in (2.28), we also have σ̂2 = σ2{1+

op(1)}.

Remark 2.3 (Sequential rate double robustness). As shown in Theorem 2.2, root-N infer-

ence requires product sparsity conditions between the nuisance parameters’ sparsity levels at
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each exposure, i.e., (2.23); we name such a property as “sequential rate double robustness”.

We need the same product sparsity conditions as the Sequential Double Robust Lasso esti-

mator proposed by [BJZ21]; such conditions are weaker than [BHL22] where an additional

product sparsity condition sγsα = o(N/(log d1 log d)) is imposed. With one time exposure,

our conditions coincide with the “rate double robustness” of [CCD+18] and [SRR19] and is

weaker than, e.g., the sparsity conditions in [Far15,Tan20,AV21].

2.4 Theoretical results for the nuisance estimators

We develop theoretical properties of the proposed moment-targeted nuisance esti-

mators, γ̂, δ̂, α̂, and β̂, defined in (2.18)-(2.21). In Section 2.4.1, we demonstrate the

consistency of the nuisance estimators allowing all the models to be misspecified. In Section

2.4.2, we provide faster consistency rates for the nuisance estimators assuming some models

being correctly specified.

2.4.1 Results for misspecified models

We first demonstrate the asymptotic results for the moment-targeted nuisance esti-

mators when all the nuisance models are possibly misspecified. Note that the estimators

δ̂, α̂, and β̂ are constructed based on previously constructed nuisance estimators, i.e., they

are all inter-dependent. We carefully control the errors originated from the previous steps’

estimation.

Theorem 2.3. Let Assumptions 2.1 and 2.4 hold. Then, as N, d1, d2 → ∞, the following

holds: (a) If sγ = o(N/ log d1) and λγ ≍
√
log d1/N , then ∥γ̂−γ∗∥2 = Op

(√
sγ log d1/N

)
.
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(b) In addition to (a), if sδ = o(N/ log d) and λδ ≍
√
log d/N , then ∥δ̂ − δ∗∥2 = Op(√

(sγ log d1 + sδ log d)/N
)
. (c) In addition to (a) and (b), if sα = o(N/ log d) and λα ≍√

log d/N , then ∥α̂ − α∗∥2 = Op

(√
(sγ log d1 + sδ log d+ sα log d)/N

)
. (d) In addition

to (a), (b), and (c), if sβ = o(N/ log d1) and λβ ≍
√
log d1/N , then ∥β̂ − β∗∥2 = Op(√

sγ log d1 + sδ log d+ sα log d+ sβ log d1/N

)
.

To establish the convergence rates in Theorem 2.3, we show the restricted strong con-

vexity (RSC) conditions in Lemma 2.17 and control the loss functions’ gradients in Lemma

2.18; see the Supplementary Material. Among the results in Theorem 2.3, part (b) is the

most challenging to show. Notice that δ̂ is constructed based on a first-stage estimate γ̂.

Due to the occurrence of the imputation error γ̂ − γ∗, the estimation error δ̂− δ∗ no longer

belongs to the usual cone set C(S, k) := {∆ ∈ Rd : ∥∆Sc∥1 ≤ k∥∆S∥1}. A similar problem

has been recently studied by [BJZ21], where their Theorem 8 provides consistency rates of

imputed Lasso estimates. The problem we consider here is even more technically challenging

in that the loss function (2.14) is non-quadratic with respect to δ. We consider a cone set

C̃(s, k) := {∆ ∈ Rd : ∥∆∥1 ≤ k
√
s∥∆∥2} that is “larger” than the usual C(S, k) and also

different from the cone set studied by [BJZ21]. We show that δ̂ − δ∗ ∈ C̃(s, k) with high

probability and some k, s > 0; see details in Lemma 2.10. Together with some empirical

process results as in Lemma 2.8, we control the imputation error’s effect and finally reach the

consistency rates introduced above; see Lemma 2.9 and the proof of Theorem 2.3. Although

we focus on a specific loss function (2.14), the results of part (b) in fact apply more broadly

to other smooth and convex loss functions. As for parts (c) and (d), the corresponding loss

functions are (weighted) least squares. By controlling all the imputation errors from multiple
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stages, we show the consistency rates of the nested estimators. Since the nuisance estimators

γ̂, δ̂, α̂, β̂ are constructed sequentially, and the later estimators depend on all the previous

ones, the estimation errors of the nuisance parameters are cumulative, i.e., the consistency

rate depends on the sparsity levels of all the nuisance parameters up to the current one.

2.4.2 Results for correctly specified models

If we have additional information that some of the nuisance models are correctly

specified, we are able to achieve better consistency results than Theorem 2.3.

Theorem 2.4. As N, d1, d2 → ∞, the following holds: (a) Let ρ(·) = ρ∗(·). Let the as-

sumptions in part (b) of Theorem 2.3 hold. Additionally, let sγ = O(N/(log d1 log d)). Then

∥δ̂ − δ∗∥2 = Op

(√
sδ log d/N

)
. (b) Let ν(·) = ν∗(·). Let the assumptions in part (c)

of Theorem 2.3 hold. Additionally, let sγ = O(N/(log d1 log d)) and sδ = O(N/(log d)2).

Then ∥α̂ − α∗∥2 = Op

(√
sα log d/N

)
. (c) Let ν(·) = ν∗(·) and µ(·) = µ∗(·). Let the as-

sumptions in part (d) of Theorem 2.3 hold. Additionally, let sγ = O(N/(log d1 log d)) and

sδ = O(N/(log d)2). Then ∥β̂−β∗∥2 = Op

(√
(sα log d+ sβ log d1)/N

)
. (d) Let ρ(·) = ρ∗(·)

and µ(·) = µ∗(·). Let the assumptions in part (d) of Theorem 2.3 hold. Additionally, let

sγ + sδ + sα = O(N/(log d1 log d)). Then ∥β̂ − β∗∥2 = Op

(√
(sδ log d+ sβ log d1)/N

)
.

(e) Let ρ(·) = ρ∗(·), ν(·) = ν∗(·), and µ(·) = µ∗(·). Let the assumptions in part (d) of

Theorem 2.3 hold. Additionally, let sγ = O(N/(log d1 log d)) and sδ = O(N/(log d)2). Then

∥β̂ − β∗∥2 = Op

(√
sδsα log d/N +

√
sβ log d1/N

)
. Further, if sδsα = o(N/(log d)2), then

∥β̂ − β∗∥2 = Op

(√
sβ log d1/N

)
.

The new convergence rates in Theorem 2.4 are established through Lemmas 2.17 and
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2.19 of the Supplementary Material. Assuming certain nuisance models being correct, unlike

Theorem 2.3 and Lemma 2.18, we can control the gradients involving the estimated nuisance

parameters and control the imputation errors from the previous steps’ nuisances in a more

efficient way; see more details in Lemma 2.19. As a result, we obtain faster convergence rates

than Theorem 2.3 given additional model correctness information. For the “first” nuisance

estimator γ̂, as shown in case (a) of Theorem 2.3, we have ∥γ̂ − γ∗∥2 = Op(
√
sγ log d1/N)

regardless of the correctness of π∗(·). When ρ∗(·) is correctly specified, the convergence rate

of δ̂ depends only on sδ; see part (a) of Theorem 2.4 and part (b) of Theorem 2.3 where

ρ∗(·) is possibly misspecified. When ν∗(·) is correctly specified, the convergence rate of α̂

depends only on sα; see parts (b) and (c) of Theorems 2.4 and Theorem 2.3, respectively.

As for the convergence rate of β̂, apart from µ∗(·), it also depends on the correctness of ρ∗(·)

and ν∗(·). If only one of ρ∗(·) and ν∗(·) is correctly specified, as shown in cases (c) and (d),

the consistency rate of β̂ depends on sβ and also the nuisance paramter’s sparsity level of

the correct model among ρ∗(·) and ν∗(·). If both of ρ∗(·) and ν∗(·) are correctly specified,

as in case (e), the consistency rate of β̂ depends on sβ and a product sparsity sδsα. When

a product sparsity condition, sδsα = o(N/(log d)2), is assumed as in (2.23) of Theorem 2.1,

the product sparsity sδsα can also be omitted.

Remark 2.4 (Bounded covariates). If we further assume that ∥S̄2∥∞ < C < ∞, then the

following conditions can be omitted: sγ = O((N/ log d1 log d)) in case (a); sγ = O(N/(log d1

log d)) and sδ = O(N/(log d)2) in cases (b), (c), and (e); sγ + sδ + sα = O(N/(log d1 log d))

in case (d).
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2.5 Numerical Experiments

2.5.1 Simulation studies

We illustrate the finite sample properties of the introduced estimator on a number of

simulated experiments. We focus on the estimation of θ = θa−θa′ where a = (a1, a2) = (1, 1)

and a′ = (a′1, a
′
2) = (0, 0). We describe the considered data generating processes below. The

outcome variables are generated as Yi = A1iA2iYi(1, 1) + (1− A1i)(1− A2i)Yi(0, 0).

Setting (a): Non-linear µ(·) and non-logistic ρ(·) Generate covariates at the first

exposure: for each i ≤ N , S1i ∼iid Nd1(0, Id1). The treatment indicators of the first ex-

posure are generated as A1i|S1i ∼ Bernoulli(g(S⊤
1iγ)). Covariates at the second exposure

satisfy S2i = 0.5Q(A1i)(S
2
1i − 1) + Q(A1i)S1i + Ai(1 + δ1i)1(d2) + δ1i, where S2

1i ∈ Rd1

is the coordinate-wise square of S1i, δ1i ∼iid Nd2(0, Id2), and a matrix Q is defined with

{Q(1)}i,j = 0.8|i−j|1{|i − j| ≤ 1} and {Q(0)}i,j = 0.7|i−j|1{|i − j| ≤ 2} for i ≤ d2 and

j ≤ d1. The treatment indicators at the second exposure are generated as A2i|(S̄2i, A1i) ∼

Bernoulli(A1ig̃(S̄
⊤
2iδ) + (1 − A1i)g̃(−S̄⊤

2iδ)), where g̃(u) := (|u + 1| + 0.1)/(|u + 1| + 1).

Lastly, Yi(1, 1) = S̄⊤
2iα + 1 + ϵi, Yi(0, 0) = −S̄⊤

2iα − 1 + ϵi and ϵi ∼iid N(0, 1). We consider

α = (1,0(d1−1), 0.5, 0.5, 0.5, 0.5,0(d2−4))
⊤, γ = (1, 1,0(d1−2))

⊤ and δ = (1,0(d1−1), 0.5, 0.5, 0.5,

0.5,0(d2−4))
⊤.

Setting (b): Non-linear µ(·) and non-linear ν(·) At the first exposure, generate co-

variates from a centered Beta distribution, i.e., S1ij ∼iid Beta(1, 2) − 1/3 for each i ≤ N

and j ≤ d1; generate A1i|S1i ∼ Bernoulli(g(S⊤
1iγ)). At the second exposure, generate S2i =
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W (A1i)S1i+A2i1(d2)+δi and A2i|(S̄2i, A1i) ∼ Bernoulli(A1ig(S̄
⊤
2iδ)+(1−A1i)g(−S̄⊤

2iδ)), where

δij ∼iid Beta(1, 4)−1/5, {W (1)}i,j = 0.2|i−j|1{|i−j| ≤ 1} and {W (0)}i,j = 0.2|i−j|1{|i−j| ≤

2}+0.11{|i−j| = 2} for each i ≤ d2 and j ≤ d1. Here, Yi(1, 1) = S̄⊤
2iα−1+2ri+ϵi, Yi(0, 0) =

−S̄⊤
2iα+ 1− 2ri + ϵi and ϵi ∼iid N(0, 1). Here, we consider non-linear signals with ri as the

standardized version of S1i1S1i21{S1i2 > 0.3}+S1i1S1i31{S1i1 > 0.3}+S1i2S1i31{S1i1 > 0.3}.

The parameters areα = (−1, 0, 0, 1/18,0(d1−4),−1,−1,−1,0(d2−3))
⊤, γ = (1, 1,0(d1−2))

⊤ and

δ = (−2,−2,0(d1+d2−2))
⊤.

For each of the settings, we consider the following choices of the dimensions: (d1, d2) ∈

{(10, 10), (100, 50)}, with sample sizes N varying from 4000 to 16000. The experiments are

repeated 200 times. The proposed SMDR estimator is denoted as SMDR1; see Algorithm 3

with K = 5. We also report a slightly different version, SMDR2, which constructs all the nui-

sances on the whole sub-sample of I−k in Steps 4-7 of Algorithm 3. We also report the stan-

dard IPW estimator, where PS and OR models are estimated using ℓ1-regularized logistic and

Lasso estimators and no cross-fitting is performed. In addition, we consider the Sequential

Doubly Robust Lasso (S-DRL) estimator [BJZ21] and two version of the Dynamic Treatment

Lasso estimator [BJZ21,BHL22] (also with K = 5), denoted as DTL2 and DTL1; DTL2’s

nuisances use samples in I−k, whereas, DTL1’s use different sub-samples in Iγ , Iδ, Iα, Iβ.

Here, DTL1 and SMDR1 share the same type of sample splitting; DTL2 and SMDR2 share

the same type of sample splitting. The tuning parameters are all chosen through 5-fold cross-

validations. In addition, we also consider a naive empirical difference estimator (empdiff),

θ̂empdiff :=
∑N

i=1A1iA2iYi/
∑N

i=1A1iA2i−
∑N

i=1(1−A1i)(1−A2i)Yi/
∑N

i=1(1−A1i)(1−A2i), as

well as an oracle DR estimator, θ̂oracle, which uses DR score with correct nuisance functions.
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The results are reported in Tables 2.2-2.5.

Table 2.2: Simulation under Setting (a) with d1 = d2 = 10. Bias: empirical bias; RMSE: root
mean square error; Length: average length of the 95% confidence intervals; Coverage: average
coverage of the 95% confidence intervals; ESD: empirical standard deviation; ASD: average
of estimated standard deviations. All the reported values (except Coverage) are based on
robust (median-type) estimates. N1 and N0 denote the expected numbers of observations in
the treatment groups (1, 1) and (0, 0), respectively.

Method Bias RMSE Length Coverage Bias RMSE Length Coverage

N = 4000, N1 = 1368, N0 = 678 N = 8000, N1 = 2736, N0 = 1355

oracle -0.002 0.087 0.534 0.940 -0.005 0.070 0.387 0.955

empdiff -0.393 0.393 0.155 0.015 -0.402 0.402 0.110 0.000

IPW 0.977 0.977 0.706 0.055 0.959 0.959 0.530 0.010

DTL1 0.181 0.193 0.591 0.760 0.143 0.144 0.430 0.735

DTL2 0.108 0.137 0.620 0.890 0.071 0.097 0.449 0.900

S-DRL 0.102 0.133 0.621 0.900 0.071 0.099 0.450 0.905

SMDR1 0.049 0.127 0.558 0.900 0.018 0.078 0.401 0.945

SMDR2 0.004 0.098 0.553 0.935 0.004 0.064 0.400 0.935

Due to the confounding factors, the naive empirical difference estimator θ̂empdiff is

not consistent with large biases and poor coverage; see Tables 2.2-2.5. The IPW estimator

also has very large biases and provides bad coverage results under Setting (a), where the

PS model at the second exposure is misspecified. In Setting (b) where both PS models are

correctly specified, surprisingly, the IPW estimator provides acceptable coverages although

there is no theoretical guarantees from existing work in high dimensions. However, whenever

d1 = 100 and d2 = 50, the RMSEs of IPW are comparable with SMDR1 and SMDR2 when

N = 12000, and worse than SMDR1 and SMDR2 when N = 16000; see Table 2.5.

The DTL1 estimator has relatively poor performance overall, especially when d1 =

100 and d2 = 50: bias is often close to RMSE and coverages are far below the desired 95%.

The bad performance mainly results from two reasons: 1) The DTL2 estimators are only

159



Table 2.3: Simulation under Setting (a) with d1 = 100, d2 = 50. The rest of the caption
details remain the same as those in Table 2.2.

Method Bias RMSE Length Coverage Bias RMSE Length Coverage

N = 12000, N1 = 4103, N0 = 2033 N = 16000, N1 = 5471, N0 = 2710

oracle -0.002 0.053 0.317 0.945 0.007 0.056 0.276 0.955

empdiff -0.401 0.401 0.090 0.000 -0.397 0.397 0.078 0.000

IPW 0.946 0.946 0.418 0.000 0.957 0.957 0.369 0.000

DTL1 0.243 0.243 0.329 0.260 0.212 0.212 0.293 0.235

DTL2 0.137 0.141 0.355 0.670 0.122 0.122 0.314 0.655

S-DRL 0.143 0.143 0.356 0.650 0.123 0.123 0.313 0.670

SMDR1 0.053 0.075 0.311 0.890 0.048 0.069 0.269 0.920

SMDR2 0.020 0.058 0.319 0.935 0.013 0.053 0.277 0.925

shown to be consistent when model misspecification occurs [BJZ21], they are not necessarily

√
N -consistent nor asymptotically normal; 2) The sample splitting method of DTL1 is not

efficient in finite samples – only 1/5 of the samples are used to obtain each nuisance estimator

when K = 5. DTL2 is constructed using a more efficient sample splitting. It provides smaller

biases than DTL1, however fails to reach satisfactory coverage guarantees in high dimensions;

see Tables 2.3 and 2.5. The S-DRL estimator is constructed similarly as DTL2, except with

a different doubly robust estimation strategy for the first OR model. The S-DRL method

provides RMSEs similar to (see Tables 2.2-2.4) or smaller than (see Tables 2.5) the DTL2

estimator. It also provides relatively satisfactory coverages when d1 = d2 = 10 (see Tables

2.2 and 2.4), but in high dimensions, the coverages are far below the desired 95% (see Tables

2.3 and 2.5).

The proposed SMDR1 estimator outperforms DTL1, DTL2, S-DRL, and IPW in the

sense of estimation – smaller biases as well as RMSEs are observed in all considered settings;

see Tables 2.2-2.5. As for the inference results, SMDR1 outperforms DTL1, DTL2, and
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Table 2.4: Simulation under Setting (b) with d1 = 10 = d2 = 10. The rest of the caption
details remain the same as those in Table 2.2.

Method Bias RMSE Length Coverage Bias RMSE Length Coverage

N = 4000, N1 = 1088, N0 = 909 N = 8000, N1 = 2176, N0 = 1817

oracle -0.005 0.056 0.332 0.950 0.003 0.042 0.235 0.955

empdiff -0.095 0.107 0.119 0.290 -0.100 0.101 0.085 0.210

IPW 0.027 0.076 0.469 0.975 0.014 0.049 0.337 0.980

DTL1 -0.096 0.104 0.436 0.845 -0.074 0.078 0.308 0.850

DTL2 -0.057 0.081 0.434 0.925 -0.047 0.064 0.312 0.935

S-DRL -0.053 0.081 0.431 0.940 -0.039 0.063 0.309 0.935

SMDR1 -0.033 0.073 0.404 0.915 -0.017 0.050 0.285 0.945

SMDR2 -0.005 0.071 0.397 0.960 -0.004 0.048 0.281 0.950

Table 2.5: Simulation under Setting (b) with d1 = 100, d2 = 50. The rest of the caption
details remain the same as those in Table 2.2.

Method Bias RMSE Length Coverage Bias RMSE Length Coverage

N = 12000, N1 = 3264, N0 = 2726 N = 16000, N1 = 4352, N0 = 3634

oracle -0.005 0.034 0.192 0.950 0.002 0.030 0.166 0.960

empdiff -0.103 0.103 0.069 0.135 -0.094 0.094 0.060 0.125

IPW 0.034 0.048 0.274 0.945 0.033 0.045 0.237 0.965

DTL1 -0.123 0.123 0.237 0.475 -0.100 0.100 0.210 0.540

DTL2 -0.072 0.073 0.246 0.775 -0.060 0.062 0.217 0.880

S-DRL -0.060 0.069 0.246 0.790 -0.048 0.051 0.215 0.815

SMDR1 -0.035 0.051 0.227 0.890 -0.018 0.037 0.198 0.950

SMDR2 -0.013 0.047 0.228 0.940 0.000 0.034 0.199 0.935

S-DRL in Setting (a) overall, whereas coverages of DTL2, S-DRL, and SMDR1 are close to

each other when N = 4000 and d1 = d2 = 10; however, note that DTL2 and S-DRL uses

more samples than SMDR1 in nuisances’ estimation. In high-dimensional settings, coverage

of SMDR1 outperforms DTL1, DTL2, and S-DRL. Overall, we can see that SMDR1 provides

coverages close to 95% for large enough N (N = 8000 when d1 = d2 = 10 and N = 16000
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when d1 = 100, d2 = 50) – such a result coincides with our theory. Here, although the

total sample size N = 16000 looks large compared with the dimension d = d1 + d2 when

d1 = 100 and d2 = 50, the “effective sample size” in nuisance parameters estimation is only,

e.g., N0/5 = 542 for the treatment path (0, 0) under Setting (a). Lastly, as the SMDR2

estimator uses samples more efficiently, it outperforms SMDR1 in finite samples. However,

from the theoretical perspective, we believe that the SMDR2 estimator may require more

stringent sparsity conditions compared with SMDR1.

2.5.2 A semi-synthetic analysis based on the National Job Corps
Study (NJCS)

In this section, we compare the estimation and inference performance of the DTE

estimators through semi-synthetic experiments. We consider a dataset from the National

Job Corps Study, which is the largest and most comprehensive job training program in the

US established in 1964, and serves approximately 50,000 disadvantaged youths aged 16-24

each year by providing vocational training and academic education. A detailed description

of the original design and main effects can be found in [SBM08] and [Sch01].

We consider a dataset of 11,313 individuals, with 6,828 assigned to the Job Corps

and 4,485 not. Treatments, denoted as Zti ∈ {0, 1, 2, 3} (t ∈ 1, 2), are assigned to the

ith individual in the first and second years after the initial randomization, where Zti = 0

represents non-enrollment, Zti = 1 enrollment without program participation, Zti = 2 high-

school-level education, and Zti = 3 vocational training. The baseline covariate vector, S1i,

has 909 characteristics, while S2i includes 1,427 characteristics that are evaluated before the

second-year treatment assignment. We exclude 2,610 individuals whose treatment stages are
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missing completely at random [SBRJ+03], resulting in a final sample of 8,703 individuals.

We also exclude the binary characteristics, if the 0/1 groups are extremely unbalanced in

that the minority group’s size is less than 10 within the 8703 individuals, resulting in the

final S1i with 891 characteristics and S2i with 1350 characteristics. After standardizing

the covariates, we generate the potential outcomes Ỹi(z) corresponding to treatment paths

z = (z1, z2) ∈ {0, 1, 2, 3}2 based on Settings (a) and (b) below. The observed outcome is

generated as Yi = Yi(Zi1, Zi2) =
∑

z∈{0,1,2,3}2 1{(Z1i,Z2i)=z}Yi(z).

We consider estimation of the DTE, θ = E{Ỹi(z)} − E{Ỹi(z′)}, focusing on the

treatment path z = (z1, z2) = (3, 3) and the control path z′ = (z′1, z
′
2) = (1, 1). To es-

timate the expected potential outcome E{Ỹi(z)}, we set A1i = 1{Z1i=z1}, A2i = 1{Z2i=z2},

and Yi(1, 1) = Ỹi(z). Then E{Ỹi(z)} = E{Yi(1, 1)} can be estimated using Algorithm 3.

The control arm E{Ỹi(z′)} = E{Yi(0, 0)} can be estimated analogously, and the final DTE

estimator is constructed as the difference of the obtained estimates. Let ϵi ∼iid N(0, 1). The

potential outcomes Yi(1, 1) = Ỹi(z) and Yi(0, 0) = Ỹi(z
′) are generated as below.

Setting (a): Linear ν(·). Yi(1, 1) = S̄⊤
2iα + ϵi and Yi(0, 0) = −S̄⊤

2iα + ϵi, where α =

0.5 · (α0,1(8),0(d1−8),1(4),0(d2−4))
⊤ with α0 varying from 0.15 to 0.3.

Setting (b): Non-linear ν(·) Yi(1, 1) = S⊤
1iα1+(S2

2i−1)⊤α2+ϵi and Yi(0, 0) = −S⊤
1iα1−

(S2
2i−1)⊤α2+ϵi, where S

2
2i is the coordinate-wise square of S2i, α1 = 0.5 ·(α0,1(8),0(d1−8))

⊤,

α2 = 0.05 · (1(4),0(d2−4))
⊤, and α0 varies from 0.25 to 0.5.

For each setting, we implement the DTL2, S-DRL, and the proposed SMDR1 estima-

tors (see Section 2.5.1). The results are reported in Table 2.6, where the biases are calculated
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based on the oracle difference-in-mean estimates θ̂O := N−1
∑N

i=1{Yi(1, 1) − Yi(0, 0)} = α0.

Recall that under our simulated outcome setting, we get to see all potential outcomes: two

per individual. Under both Settings (a) and (b), the proposed SMDR1 method provides

smaller absolute biases than the DTL2 and S-DRL estimators. In addition, under Setting

(a), where the OR model at the second exposure is truly linear, all the constructed con-

fidence intervals contain the oracle estimate θ̂O. However, when the potential outcome is

generated through a quadratic function (under Setting (b)), the oracle estimate θ̂O does not

lie in the confidence intervals based on the DTL2 and S-DRL methods; on the other hand,

the proposed SMDR1 method leads to confidence intervals containing the oracle estimate.

Moreover, considering the hypothesis testing problem with the null H0 : θ = 0 and the alter-

native H1 : θ ̸= 0, the reported p-values decay as θ̂O = α0 grows; see Figure 2.1. When α0

is large enough, all the methods return p-values smaller than 0.05; however, different meth-

ods require different signal levels to detect the causal effect and reject the null successfully.

Under Setting (a), the proposed SMDR1 method is able to detect the causal effect with a

significance level of 95% when α0 = 0.2; however, under the same signal level, both the DTL2

and S-DRL methods fail to reject the null as the corresponding p-values are larger than 0.05.

Similarly, under Setting (b) with θ̂O = α0 = 0.3, the proposed SMDR1 method is able to

detect the causal effect, whereas the p-value based on the DTL2 and S-DRL methods are

both very large. Therefore, we observed a significantly better power in the SMDR1 method

than both DTL2 and S-DRL.
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Table 2.6: Semi-synthetic analysis. Bias: empirical bias; SE: the standard error; CI: the 95%
confidence interval; p-value: the p-value of H0 : θ = 0 v.s. H1 : θ ̸= 0.

Method θ̂O θ̂ Bias SE CI p-value θ̂O θ̂ Bias SE CI p-value

Setting (a)

DTL2

0.15

0.103 -0.047 0.099 [-0.090, 0.297] 0.295

0.20

0.153 -0.047 0.099 [-0.040, 0.347] 0.120

S-DRL 0.092 -0.058 0.104 [-0.101, 0.308] 0.378 0.142 -0.058 0.104 [-0.051, 0.358] 0.173

SMDR1 0.180 0.030 0.102 [-0.019, 0.380] 0.076 0.230 0.030 0.102 [0.031, 0.430] 0.024

DTL2

0.25

0.203 -0.047 0.099 [0.010, 0.397] 0.039

0.30

0.253 -0.047 0.099 [0.060, 0.447] 0.010

S-DRL 0.192 -0.058 0.104 [-0.001, 0.408] 0.066 0.241 -0.059 0.104 [0.049, 0.458] 0.021

SMDR1 0.280 0.030 0.102 [0.080, 0.480] 0.005 0.330 0.030 0.102 [0.131, 0.530] 0.001

Setting (b)

DTL2

0.25

-0.027 -0.277 0.100 [-0.223,0.168] 0.783

0.30

0.023 -0.277 0.100 [-0.172,0.218] 0.817

S-DRL 0.013 -0.237 0.105 [-0.232, 0.178] 0.902 0.063 -0.237 0.105 [-0.182,0.228] 0.548

SMDR1 0.141 -0.109 0.091 [-0.038, 0.320] 0.123 0.192 -0.108 0.091 [0.013, 0.371] 0.035

DTL2

0.35

0.072 -0.278 0.100 [-0.123,0.268] 0.468

0.40

0.122 -0.278 0.100 [-0.074,0.317] 0.222

S-DRL 0.113 -0.237 0.105 [-0.133,0.277] 0.281 0.162 -0.238 0.105 [-0.083,0.327] 0.121

SMDR1 0.242 -0.108 0.091 [0.063, 0.421] 0.008 0.291 -0.109 0.091 [0.111, 0.470] 0.001

DTL2

0.45

0.172 -0.278 0.100 [-0.023,0.367] 0.084

0.50

0.223 -0.277 0.100 [0.028,0.418] 0.025

S-DRL 0.212 -0.238 0.105 [-0.033,0.377] 0.043 0.263 -0.237 0.105 [0.018,0.428] 0.012

SMDR1 0.340 -0.110 0.091 [0.161, 0.519] 0.000 0.406 -0.094 0.092 [0.225, 0.586] 0.000

2.6 Discussion

This paper develops new techniques to establish statistical inference for treatment ef-

fects under dynamic, high-dimensional, and possibly misspecified settings. Based on a set of

newly proposed loss functions for the nuisance models, we establish root-N inference results

as long as at least one nuisance model is correctly specified at each exposure. To the best

of our knowledge, this result is more robust than the existing literature, even those focused

on low-dimensional cases. Our results indicate the importance of nuisance parameters’ esti-

mation – naive, off-the-shelf estimators cannot reach desired robustness level even if coupled

with double-robust loss functions. We allow non-parametric regression methods based on

linear/logistic forms with basis functions, e.g., B-splines. However, due to the challenge of

estimating the nested outcome regression models, the treatment effect’s estimation based

on other non-parametric estimators, such as random forests and boosting, still needs to be

studied.
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Figure 2.1: The p-value of the estimators as θ varies.

In the context of dynamic treatment regimes, a related but different DR property

have been explored. However, existing results additionally require correctly specified con-

trast models at all the later stages of the estimation – such a condition is very restrictive

when multiple time exposures are involved and is unnecessary in our work. How should

we make decisions if the contrast models cannot be correctly specified at later stages? Our

results indicate that the nested OR model µ(·) can be estimated consistently under such

a circumstance (see Theorem 2.3) and hence optimizing µ̂(·) seems to be a feasible but

conservative option.

2.7 Supplementary Material

We begin by introducing some additional notation used throughout the document.

Constants c, C > 0, independent of N and d, may change from one line to the other. For

any r > 0, let ∥f(·)∥r,P := {E|f(Z)|r}1/r. Denote ej as the vector whose j-th element is

1 and other elements are 0s. For any symmetric matrices A and B, A ≻ B denotes that

A − B is positive definite and A ⪰ B denotes that A − B is positive semidefinite; denote
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λmin(A) as the smallest eigenvalue of A. For the sake of simplicity, we denote Y1,1 := Y (1, 1)

in this supplementary document. Let Sγ = (Wi)i∈Iγ , Sδ = (Wi)i∈Iδ , Sα = (Wi)i∈Iα , and

Sβ = (Wi)i∈Iβ be the subsets of S corresponding to the index sets Iγ , Iδ, Iα, and Iβ,

respectively.

2.7.1 Uniqueness of moment-targeted parameters

In this section, we discuss the uniqueness of moment-targeted nuisance parameters

γ∗, δ∗,α∗,β∗ defined in Section 2.2. Note that the parameters are defined through opti-

mization problems, (2.13)-(2.15). We first consider the Hessian matrices of the objective

functions:

∇2
γE{ℓ1(W;γ)} = E

[
A1{g−1(S⊤

1 γ)− 1}S1S
⊤
1

]
,

∇2
δE{ℓ2(W;γ∗, δ)} = E

[
A1A2g

−1(S⊤
1 γ

∗){g−1(S̄⊤
2 δ)− 1}S̄2S̄

⊤
2

]
,

∇2
αE{ℓ3(W;γ∗, δ∗,α)} = 2E

[
A1A2g

−1(S⊤
1 γ

∗){g−1(S̄⊤
2 δ

∗)− 1}S̄2S̄
⊤
2

]
,

∇2
βE{ℓ4(W;γ∗, δ∗,α∗,β)} = 2E

[
A1{g−1(S⊤

1 γ
∗)− 1}S1S

⊤
1

]
,

where g(u) = exp(u)/{1 + exp(u)} is the logistic function. In the following, we prove by

contradiction

∇2
γE{ℓ1(W;γ)} ≻ 0, ∀γ ∈ Rd1 . (2.29)

Assume there exists some a,γ ∈ Rd1 such that a⊤∇2
γE{ℓ1(W;γ)}a = 0 and ∥a∥2 = 1. Then

A1{g−1(S⊤
1 γ)−1}(S⊤

1 a)
2 = 0 almost surely. Since g(u) ∈ (0, 1) for all u ∈ R, g−1(s⊤1 γ)−1 > 0

for all s1 ∈ Rd1 and hence A1(S
⊤
1 a)

2 = 0 almost surely. It follows that E{A1(S
⊤
1 a)

2} = 0 and

hence λmin(E(A1S̄2S̄
⊤
2 )) ≤ λmin(E(A1S1S

⊤
1 )) = 0, which conflicts Assumption 2.4. Therefore,
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(2.29) holds, the solution γ∗ is unique and can be equivalently defined as the solution of the

first-order optimality condition ∇γE{ℓ1(W;γ)} = 0.

In addition, we also note that

∇2
δE{ℓ2(W;γ∗, δ)} = E

(
E
[
A2g

−1(S⊤
1 γ

∗){g−1(S̄⊤
2 δ)− 1}S̄2S̄

⊤
2 | S̄2, A1 = 1

]
E(A1 | S̄2)

)
= E

[
A1ρ(S̄2)g

−1(S⊤
1 γ

∗){g−1(S̄⊤
2 δ)− 1}S̄2S̄

⊤
2

]
⪰ c0E

[
A1g

−1(S⊤
1 γ

∗){g−1(S̄⊤
2 δ)− 1}S̄2S̄

⊤
2

]
under Assumption 2.1. In the following, we also prove by contradiction to show that

∇2
δE{ℓ2(W;γ∗, δ)} ≻ 0, ∀δ ∈ Rd. (2.30)

Assume there exists some a, δ ∈ Rd such that a⊤∇2
δE{ℓ2(W;γ∗, δ)}a = 0 and ∥a∥2 = 1.

Then A1g
−1(S⊤

1 γ
∗){g−1(S̄⊤

2 δ)−1}(S̄⊤
2 a)

2 = 0 almost surely. Since g(u) ∈ (0, 1) for all u ∈ R,

g−1(s⊤1 γ
∗){g−1(s̄⊤2 δ) − 1} > 0 for all s̄2 ∈ Rd and hence A1(S̄

⊤
2 a)

2 almost surely. It follows

that E{A1(S̄
⊤
2 a)

2} = 0 and hence λmin(E(A1S̄2S̄
⊤
2 )) = 0, which conflicts Assumption 2.4.

Therefore, (2.30) holds, the solution δ∗ is unique and can be equivalently defined as the

solution of ∇δE{ℓ2(W;γ∗, δ)} = 0.

Besides, we note that

∇2
αE{ℓ3(W;γ∗, δ∗,α)} = 2∇2

δE{ℓ2(W;γ∗, δ∗)} ≻ 0, ∀α ∈ Rd, (2.31)

∇2
βE{ℓ4(W;γ∗, δ∗,α∗,β)} = 2∇2

γE{ℓ1(W;γ∗)} ≻ 0, ∀β ∈ Rd1 . (2.32)

Therefore, the solutions α∗ and β∗ are also unique.
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2.7.2 Justifications for Section 2.2

In this section, we provide justifications for identification in Section 2.2. Before we

provide detailed justifications, we first introduce equivalent expressions for the OR functions

µ(·) and ν(·): under Assumption 2.1,

µ(s1) :=E(Y1,1 | S1 = s1)
(i)
= E(Y1,1 | S1 = s1, A1 = 1)

(ii)
=E{ν(S̄2) | S1 = s1, A1 = 1}, (2.33)

ν(s̄2) :=E(Y1,1 | S̄2 = s2, A1 = 1)
(iii)
= E(Y1,1 | S̄2 = s2, A1 = 1, A2 = 1).

Here, (i) holds since Y1,1 ⊥⊥ A1 | S1; (ii) holds by the tower rule; (iii) holds since Y1,1 ⊥⊥ A2 |

S1, A1 = 1.

Now, the justifications of the cases (a)-(d) for identification are provided below:

(a.1) Assume π∗(·) = π(·). Then π(s1) = π∗(s1) = g(s⊤1 γ
∗) and hence π(s1) = g(s⊤1 γ

0)

with γ0 = γ∗.

(a.2) Assume there exists some γ0 ∈ Rd1 such that π(s1) = g(s⊤1 γ
0). By the construction

of γ∗ and note that the Hessian matrix satisfies (2.29), γ = γ∗ is the unique solution of

∇γE{ℓ1(W;γ)} = E
[
{1− A1g

−1(S⊤
1 γ)}S1

]
= 0 ∈ Rd1 .

Meanwhile, we also have

E
[
{1− A1g

−1(S⊤
1 γ

0)}S1

]
= E

(
E
[
{1− A1g

−1(S⊤
1 γ

0)}S1 | S1

])
= E

[
{1− π(S1)g

−1(S⊤
1 γ

0)}S1

]
= 0 ∈ Rd1 .

By the uniqueness of γ∗, we conclude that γ0 = γ∗ and hence π(·) = π∗(·).
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(b.1) Assume ρ∗(·) = ρ(·). Then ρ(s̄2) = ρ∗(s̄2) = g(s̄⊤2 δ
∗) and hence ρ(s̄2) = g(s̄⊤2 δ

0)

with δ0 = δ∗.

(b.2) Assume there exists some δ0 ∈ Rd such that ρ(s̄2) = g(s̄⊤2 δ
0). By the construction

of δ∗ and note that the Hessian matrix satisfies (2.30), δ = δ∗ is the unique solution of

∇δE{ℓ2(W;γ∗, δ)} = E
[
A1g

−1(S⊤
1 γ

∗){1− A2g
−1(S̄⊤

2 δ)}S̄2

]
= 0 ∈ Rd.

Meanwhile, we also have

E
[
A1g

−1(S⊤
1 γ

∗){1− A2g
−1(S̄⊤

2 δ
0)}S̄2

]
= E

(
E
[
g−1(S⊤

1 γ
∗){1− A2g

−1(S̄⊤
2 δ

0)}S̄2 | S̄2, A1 = 1
]
E(A1 | S̄2)

)
= E

[
A1g

−1(S⊤
1 γ

∗){1− ρ(S̄2)g
−1(S̄⊤

2 δ
0)}S̄2

]
= 0 ∈ Rd.

By the uniqueness of δ∗, we conclude that δ0 = δ∗ and hence ρ(·) = ρ∗(·).

(c.1) Assume ν∗(·) = ν(·). Then ν(s̄2) = ν∗(s̄2) = s̄⊤2 α
∗ and hence ν(s̄2) = s̄⊤2 α

0 with

α0 = α∗.

(c.2) Assume there exists some α0 ∈ Rd such that ν(s̄2) = s̄⊤2 α
0. By the construction

of α∗ and note that the Hessian matrix satisfies (2.31), α = α∗ is the unique solution of

∇αE{ℓ3(W;γ∗, δ∗,α)} = 2E
[
A1A2g

−1(S⊤
1 γ

∗){g−1(S̄⊤
2 δ

∗)− 1}(S̄⊤
2 α− Y )S̄2

]
= 0 ∈ Rd.
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Meanwhile, we also have

E
[
A1A2g

−1(S⊤
1 γ

∗){g−1(S̄⊤
2 δ

∗)− 1}(S̄⊤
2 α

0 − Y )S̄2

]
= E

(
E
[
A2g

−1(S⊤
1 γ

∗){g−1(S̄⊤
2 δ

∗)− 1}{S̄⊤
2 α

0 − Y1,1}S̄2 | S̄2, A1 = 1
]
E(A1 | S̄2)

)
= E

(
E
[
A2{S̄⊤

2 α
0 − Y1,1} | S̄2, A1 = 1

]
E
[
A1g

−1(S⊤
1 γ

∗){g−1(S̄⊤
2 δ

∗)− 1}S̄2 | S̄2

])
(i)
= E

[
A1ρ(S̄2)g

−1(S⊤
1 γ

∗){g−1(S̄⊤
2 δ

∗)− 1}{S̄⊤
2 α

0 − ν(S̄2)}S̄2

]
= 0 ∈ Rd,

where (i) holds since Y1,1 ⊥⊥ A2 | (S̄2, A1 = 1) under Assumption 2.1. By the uniqueness of

α∗, we conclude that α0 = α∗ and hence ν(·) = ν∗(·).

(d) Assume there exists some β0 ∈ Rd1 such that µ(s1) = s⊤1 β
0 and either ρ∗(·) = ρ(·)

or ν∗(·) = ν(·) holds. By the construction of β∗ and note that the Hessian matrix satisfies

(2.32), β = β∗ is the unique solution of

∇βE{ℓ4(W;γ∗, δ∗,α∗,β)}

= 2E
[
A1{g−1(S⊤

1 γ
∗)− 1}

{
S⊤
1 β − S̄⊤

2 α
∗ − A2g

−1(S̄⊤
2 δ

∗)(Y − S̄⊤
2 α

∗)
}
S1

]
= 0 ∈ Rd1 .

Meanwhile, note that

E
[
exp(−S⊤

1 γ
∗)
{
S⊤
1 β

0 − S̄⊤
2 α

∗ − A2g
−1(S̄⊤

2 δ
∗)(Y − S̄⊤

2 α
∗)
}
S1 | S̄2, A1 = 1

]
= E

(
exp(−S⊤

1 γ
∗)

[
µ(S1)− ν∗(S̄2)−

A2{Y1,1 − ν∗(S̄2)}
ρ∗(S̄2)

]
S1 | S̄2, A1 = 1

)
(i)
= exp(−S⊤

1 γ
∗)

[
µ(S1)− ν∗(S̄2)−

ρ(S̄2){ν(S̄2)− ν∗(S̄2)}
ρ∗(S̄2)

]
S1

= exp(−S⊤
1 γ

∗)

[
µ(S1)− ν(S̄2) +

{
1− ρ(S̄2)

ρ∗(S̄2)

}{
ν(S̄2)− ν∗(S̄2)

}]
S1

(ii)
= exp(−S⊤

1 γ
∗){µ(S1)− ν(S̄2)}S1,
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where (i) holds since Y1,1 ⊥⊥ A2 | (S̄2, A1 = 1) under Assumption 2.1; (ii) follows since either

ρ∗(·) = ρ(·) or ν∗(·) = ν(·) holds. Hence, by the tower rule,

E
[
A1{g−1(S⊤

1 γ
∗)− 1}

{
S⊤
1 β

0 − S̄⊤
2 α

∗ − A2g
−1(S̄⊤

2 δ
∗)(Y − S̄⊤

2 α
∗)
}
S1

]
= E

[
exp(−S⊤

1 γ
∗){µ(S1)− ν(S̄2)}S1E(A1 | S̄2)

]
= E

[
A1 exp(−S⊤

1 γ
∗){µ(S1)− ν(S̄2)}S1

]
= E

(
E
[
exp(−S⊤

1 γ
∗){µ(S1)− ν(S̄2)}S1 | S1, A1 = 1

]
E(A1 | S1)

)
(i)
= 0 ∈ Rd1 ,

where (i) follows from (2.33). By the uniqueness of β∗, we conclude that β0 = β∗ and hence

µ(·) = µ∗(·).

2.7.3 Auxiliary lemmas

The following Lemmas will be useful in the proofs.

Lemma 2.2 (Lemma A.1 of [ZCB21]). Let (XN)N≥1 and (YN)N≥1 be sequences of random

variables in R. If E(|XN |r|YN) = Op(1) for any r ≥ 1, then XN = Op(1).

Lemma 2.3 (Lemma S.4 of [BJZ21]). Let Assumptions 2.1 and 2.4 hold. Then the small-

est eigenvalues of E(A1S1S
⊤
1 ) and E(A1A2S̄2S̄

⊤
2 ) are both lower bounded by some constant

c′min > 0. Additionally, ∥v⊤S1∥ψ2 ≤ σ′
S∥v∥2, ∥A1v

⊤S1∥ψ2 ≤ σ′
S∥v∥2 for all v ∈ Rd1 and

∥A1A2v
⊤S̄2∥ψ2 ≤ σ′

S∥v∥2 for all v ∈ Rd, with some constant σ′
S > 0.

Lemma 2.4 (Lemma D.1 (ii), (iv) and (vi) of [CLCL19]). Let X, Y ∈ R be a random

variable. If |X| ≤ |Y | a.s., then ∥X∥ψ2 ≤ ∥Y ∥ψ2. Then ∥cX∥ψ2 = |c|∥X∥ψ2 ∀c ∈ R. If

∥X∥ψ2 ≤ σ, then E(X) ≤ σ
√
π and E(|X|m) ≤ 2σm(m/2)m/2 for all m ≥ 2. Let {Xi}ni=1 be
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random variables (possibly dependent) with max1≤i≤n ∥Xi∥ψ2 ≤ σ, then ∥max1≤i≤n |Xi|∥ψ2 ≤

σ(log n+ 2)1/2.

Lemma 2.5 (Corollary 2.3 of [DVDGVW10]). Let {Xi}ni=1 be identically distributed, then

E

∥∥∥∥∥n−1

n∑
i=1

Xi

∥∥∥∥∥
2

∞

 ≤ n−1(2e log d− e)E
[
∥Xi∥2∞

]
.

Lemma 2.6. Suppose that S′ = (Ui)i∈J are independent and identically distributed (i.i.d.)

sub-Gaussian random vectors, i.e., ∥a⊤U∥ψ2 ≤ σU∥a∥2 for all a ∈ Rd with some constant

σU > 0. Additionally, suppose the smallest eigenvalue of E(UU⊤) is bounded bellow by some

constant λU > 0. Let M = |J |. For any continuous function ϕ : R → (0,∞), v ∈ [0, 1],

and η ∈ Rd satisfying E{|U⊤η|c} < C with some constants c, C > 0, there exists constants

κ1, κ2, c1, c2 > 0, such that

PS′

(
M−1

∑
i∈J

ϕ(U⊤
i (η + v∆))(U⊤

i ∆)2 ≥ κ1∥∆∥22 − κ2
log d

M
∥∆∥21, ∀∥∆∥2 ≤ 1

)

≥ 1− c1 exp(−c2M). (2.34)

Lemma 2.6 follows directly by repeating the proof of Lemma 4.3 of [ZCB21]; see also

for other slightly different versions in Proposition 2 of [NRWY10] and Theorem 9.36 and

Example 9.17 of [Wai19].

Lemma 2.7. Suppose (Xi)
m
i=1 are i.i.d. sub-Gaussian random vectors in Rd and X is an

independent copy of Xi. Let S ⊆ {1, . . . , d1} and s = |S|. Then, as m, d→∞,

sup
∆∈{∆Sc=0,∥∆∥2=1}

∣∣∣∣∣m−1

m∑
i=1

(X⊤
i ∆)2 − E{(X⊤∆)2}

∣∣∣∣∣ = Op

(√
s

m

)
.

If we further assume that S ⊂ {1, . . . , d}. Then, as m, d→∞,

sup
∆∈C(S,3)∩∥∆∥2=1

∣∣∣∣∣m−1

m∑
i=1

(X⊤
i ∆)2 − E{(X⊤∆)2}

∣∣∣∣∣ = Op

(√
s

m

)
,

173



where C(S, 3) := {∆ ∈ Rd : ∥∆Sc∥1 ≤ 3∥∆S∥1}.

Lemma 2.7 is an analog of Lemmas 15 and 16 of [BWZ19]. It can be shown by

repeating the proof of [BWZ19], with replacing X̃iX̃
⊤
i therein by E(XX⊤).

Lemma 2.8. Suppose (Xi)
m
i=1 are i.i.d. sub-Gaussian random vectors. Then, for any (pos-

sibly random) ∆ ∈ Rd, as m, d→∞,

sup
∆∈Rd/{0}

m−1
∑m

i=1(X
⊤
i ∆)2

m−1∥∆∥21 + ∥∆∥22
= Op(1).

We introduce notation needed for the next set of results. For any s, k > 0, define

C̃(s, k) := {∆ ∈ Rd : ∥∆∥1 ≤ k
√
s∥∆∥2} and K̃(s, k, 1) := C̃(s, k) ∩ {∆ ∈ Rd : ∥∆∥2 = 1}.

For any ∆ ∈ Rd, define

F(∆) := δℓ̄2(γ̂, δ
∗,∆) + λδ∥δ∗ +∆∥1 +∇δ ℓ̄2(γ̂, δ

∗)⊤∆− λδ∥δ∗∥1,

where ℓ̄2(γ, δ) and δℓ̄2(γ, δ,∆) are defined in (2.56) and (2.59), respectively. Instead of the

usual cone set C(S, k) = {∥∆ ∈ Rd : ∥∆Sc∥1 ≤ k∥∆S∥1}, we work with a different cone set

C̃(s, k) (and K̃(s, k, 1)) defined above.

Lemma 2.9. Let Assumptions 2.1 and 2.4 hold, sγ = o(N/ log d1), sδ = o(N/ log d), and

consider some λγ ≍
√

log d1/N . For any 0 < t < κ21M/(162σ2
δsδ), let λδ = 2σδ

√
(t+ log d)/M .

Define

A1 :={∥∇δ ℓ̄2(γ
∗, δ∗)∥∞ ≤ λδ/2}, (2.35)

A2 :=

{
|R1(∆)| ≤ c

√
sγ log d1

N

(
∥∆∥1√
N

+ ∥∆∥2
)
, ∀∆ ∈ Rd

}
, (2.36)

A3 :=

{
δℓ̄2(γ̂, δ

∗,∆) ≥ κ1∥∆∥22 − κ2
log d

M
∥∆∥21, ∀∆ ∈ Rd : ∥∆∥2 ≤ 1

}
, (2.37)
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where R1(∆) :=
{
∇δ ℓ̄2(γ̂, δ

∗)−∇δ ℓ̄2(γ
∗, δ∗)

}⊤
∆ and c > 0 is some constant. Let s̄δ :=

sγ log d1/ log d + sδ. Then, on the event A1 ∩ A2 ∩ A3, for all ∆ ∈ K̃(s̄δ, k0, 1), we have

F(∆) > 0, when N > N1 with some constant N1 > 0, and PSγ∪Sδ(A1∩A2) ≥ 1−t−2 exp(−t).

As the nuisance estimator δ̂ is constructed based off of γ̂, using the standard proof

techniques developed for Lasso-type estimators, we would need to take care of the term

∇δ ℓ̄2(γ̂, δ
∗)⊤∆δ as in (2.101), where ∆δ = δ̂ − δ∗ and the gradient ∇δ ℓ̄2(γ̂, δ

∗) is evalu-

ated at the target value δ∗ and the estimated value γ̂. Under a possible model misspec-

ification, where ρ(·) ̸= ρ∗(·), unlike part (a) of Lemma 2.19 below, we cannot provide a

small enough upper bound for the infinity norm ∥∇δ ℓ̄2(γ̂, δ
∗)∥∞ as ESδ{∇δ ℓ̄2(γ̂, δ

∗)} might

be different from zero. Hence, instead of directly using the inequality |∇δ ℓ̄2(γ̂, δ
∗)⊤∆δ| ≤

∥∇δ ℓ̄2(γ̂, δ
∗)∥∞∥∆δ∥1, here we consider |∇δ ℓ̄2(γ̂, δ

∗)⊤∆δ| = |∇δ ℓ̄2(γ
∗, δ∗)⊤∆δ+R1(∆δ)| ≤

∥∇δ ℓ̄2(γ
∗, δ∗)∥∞∥∆δ∥1 + |R1(∆δ)|. In Lemma 2.9, we can show that ∥∇δ ℓ̄2(γ

∗, δ∗)∥∞ =

Op(
√

log d/N) and the term R1(∆δ) can be controlled through the imputation error origi-

nated from the estimation of γ∗ as well as the ℓ1- and ℓ2-norms of ∆δ. Together with the

restricted strong convexity (RSC) condition developed in (2.37), we further show that the

error term ∆δ belongs to a cone set C̃(s, k) in the following lemma.

Lemma 2.10. Let Assumptions 2.1 and 2.4 hold. Let sγ = o(N/ log d1) and consider some

λγ ≍
√

log d1/N . Define ∆δ := δ̂− δ∗. For any t > 0, let λδ = 2σδ
√

(t+ log d)/M . Events

A1 and A2 are defined in (2.35) and (2.36). Then, on the event A1 ∩ A2, when N > N0,

4δℓ̄2(γ̂, δ
∗,∆δ) + λδ∥∆δ∥1 ≤

(
8λδ
√
sδ + 4c

√
sγ log d1

N

)
∥∆δ∥2,

∥∆δ∥1 ≤k0
√
s̄δ∥∆δ∥2,
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where N0, k0 and c > 0 are some constants and s̄δ := sγ log d1/ log d+ sδ.

Lemma 2.11. Let the assumptions in Lemma 2.9 hold and also that ∆δ ∈ C̃(s̄δ, k0). Then,

on the event A1 ∩ A2 ∩ A3, we have ∥∆δ∥2 ≤ 1.

Lemma 2.12. Suppose a, b, c, x ∈ R, a > 0, and b, c > 0. Let ax2 − bx− c ≤ 0. Then

x ≤ b

a
+

√
c

a
.

Lemma 2.13. Let the assumptions in part (a) of Theorem 2.3 hold. Let r > 0 be any

positive constant. Then, as N, d1, d2 →∞,

∥∥S⊤
1 (γ̂ − γ∗)

∥∥
P,r = O (∥γ̂ − γ∗∥2) = Op

(√
sγ log d1

N

)
,

and

∥∥exp(−S⊤
1 γ̂)− exp(−S⊤

1 γ
∗)
∥∥
P,r =

∥∥g−1(S⊤
1 γ̂)− g−1(S⊤

1 γ
∗)
∥∥
P,r

= O (∥γ̂ − γ∗∥2) = Op

(√
sγ log d1

N

)
. (2.38)

Define

E1 :=
{
∥γ̂ − γ∗∥2 ≤ 1 and

∥∥g−1(S⊤
1 γ)

∥∥
P,12 ≤ C, ∀γ ∈ {wγ∗ + (1− w)γ̂ : w ∈ [0, 1]}

}
.

(2.39)

Then, as N, d1, d2 →∞,

PSγ (E1) = 1− o(1).

On the event E1, for any r′ ∈ [1, 12] and γ ∈ {wγ∗ + (1− w)γ̂ : w ∈ [0, 1]}, we also have

∥∥g−1(S⊤
1 γ)

∥∥
P,r′ ≤ C,

∥∥exp(−S⊤
1 γ)

∥∥
P,r′ ≤ C,

∥∥exp(S⊤
1 γ)

∥∥
P,r′ ≤ C ′,

with some constant C ′ > 0.

176



Lemma 2.14. Let r > 0 be any positive constant.

(a) Let the assumptions in part (b) of Theorem 2.3 hold. Then, as N, d1, d2 →∞,

∥∥∥S̄⊤
2 (δ̂ − δ∗)

∥∥∥
P,r

= O
(
∥δ̂ − δ∗∥2

)
= Op

(√
sγ log d1 + sδ log d

N

)
,

and

∥∥∥exp(−S̄⊤
2 δ̂)− exp(−S̄⊤

2 δ
∗)
∥∥∥
P,r

=
∥∥∥g−1(S̄⊤

2 δ̂)− g−1(S̄⊤
2 δ

∗)
∥∥∥
P,r

= O
(
∥δ̂ − δ∗∥2

)
= Op

(√
sγ log d1 + sδ log d

N

)
. (2.40)

(b) Let the assumptions in part (a) of Theorem 2.4 hold. Then, as N, d1, d2 →∞,

∥∥∥S̄⊤
2 (δ̂ − δ∗)

∥∥∥
P,r

= O
(
∥δ̂ − δ∗∥2

)
= Op

(√
sδ log d

N

)
,

and

∥∥∥exp(−S̄⊤
2 δ̂)− exp(−S̄⊤

2 δ
∗)
∥∥∥
P,r

=
∥∥∥g−1(S̄⊤

2 δ̂)− g−1(S̄⊤
2 δ

∗)
∥∥∥
P,r

= O
(
∥δ̂ − δ∗∥2

)
= Op

(√
sδ log d

N

)
. (2.41)

Let either (a) or (b) holds. Let C > 0 be some constant, define

E2 :=
{
∥δ̂ − δ∗∥2 ≤ 1 and

∥∥g−1(S̄⊤
2 δ)
∥∥
P,6 ≤ C, ∀δ ∈

{
wδ∗ + (1− w)δ̂ : w ∈ [0, 1]

}}
.

(2.42)

Then, as N, d1, d2 →∞,

PSγ∪Sδ(E2) = 1− o(1).

On the event E2, for any r′ ∈ [1, 12] and δ ∈ {wδ∗ + (1− w)δ̂ : w ∈ [0, 1]}, we also have

∥∥g−1(S̄⊤
2 δ)
∥∥
P,r′ ≤ C,

∥∥exp(−S̄⊤
2 δ)
∥∥
P,r′ ≤ C,

∥∥exp(S̄⊤
2 δ)
∥∥
P,r′ ≤ C ′,

with some constant C ′ > 0.
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Lemma 2.15. Let r > 0 be any positive constant.

(a) Let the assumptions in part (c) of Theorem 2.3 hold. Then, as N, d1, d2 →∞,

∥∥S̄⊤
2 (α̂−α∗)

∥∥
P,r = O (∥α̂−α∗∥2) = Op

(√
sγ log d1 + sδ log d+ sα log d

N

)
.

(b) Let the assumptions in part (b) of Theorem 2.4 hold. Then, as N, d1, d2 →∞,

∥∥S̄⊤
2 (α̂−α∗)

∥∥
P,r = O (∥α̂−α∗∥2) = Op

(√
sα log d

N

)
.

Let either (a) or (b) holds. For any v1 ∈ [0, 1], let α̃ = v1α
∗ + (1 − v1)α̂. Define

ε̃ := Y1,1 − S̄⊤
2 α̃. Then, for any constant r > 0, ∥ε̃∥P,r = Op(1).

Lemma 2.16. Let r > 0 be any positive constant.

(a) Let the assumptions in part (d) of Theorem 2.3 hold. Then, as N, d1, d2 →∞,

∥∥∥S⊤
1 (β̂ − β∗)

∥∥∥
P,r

= O
(
∥β̂ − β∗∥2

)
= Op

(√
(sγ + sβ) log d1 + (sδ + sα) log d

N

)
.

(b) Let the assumptions in part (c) or part (d) or part (e) of Theorem 2.4 hold. Then,

as N, d1, d2 →∞, ∥∥∥S⊤
1 (β̂ − β∗)

∥∥∥
P,r

= O
(
∥β̂ − β∗∥2

)
Let either (a) or (b) holds, and let either (a) or (b) of 2.15 holds. For any v1, v2 ∈

[0, 1], let α̃ = v1α
∗ + (1− v1)α̂ and β̃ = v1β

∗ + (1− v1)β̂. Define ζ̃ := S̄⊤
2 α̃− S⊤

1 β̃. Then,

for any constant r > 0, ∥ζ̃∥P,r = Op(1).
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2.7.4 Proofs of the main results

Proofs of the results in Section 2.1

Proof of Lemma 2.1. We first notice that

E
{

A1A2Y

π∗(S1)ρ∗(S̄2)

}
(i)
= E

{
A1A2Y1,1

π∗(S1)ρ∗(S̄2)

}
(ii)
= E

[
E
{

A2Y1,1
π∗(S1)ρ∗(S̄2)

| S̄2, A1 = 1

}
E(A1 | S̄2)

]
(iii)
= E

{
ρ(S̄2)ν(S̄2)

π∗(S1)ρ∗(S̄2)
E(A1 | S̄2)

}
(iv)
= E

{
A1ρ(S̄2)ν(S̄2)

π∗(S1)ρ∗(S̄2)

}
,

where (i) holds since A1A2Y = A1A2Y1,1 under Assumption 2.1; (ii) and (iv) hold by the

tower rule; (iii) holds since A2 ⊥⊥ Y1,1 | S̄2, A1 = 1 under Assumption 2.1. We consider the

following four cases:

(a) Both PS models are logistic, i.e., π(s1) = g(s⊤1 γ
0) and ρ(s̄2) = g(s̄⊤2 δ

0) with some

γ0 ∈ Rd1 and δ0 ∈ Rd. Then

E
{

A1A2Y

π∗(S1)ρ∗(S̄2)

}
= E

{
A1ρ(S̄2)ν(S̄2)

π∗(S1)ρ∗(S̄2)

}
(i)
= E

{
A1ν(S̄2)

π(S1)

}
(ii)
= E

[
E
{
ν(S̄2)

π(S1)
| S1, A1 = 1

}
E(A1 | S1)

]
(iii)
= E {µ(S1)}

(iv)
= θ1,1,

where (i) holds by π∗(·) = π(·) and ρ∗(·) = ρ(·) since (a.2) and (b.2); (ii) and (iv) hold by

the tower rule; (iii) holds by (2.33).

(b) The OR model at time 1 is linear and the PS model at time 2 is logistic, i.e.,

µ(s1) = s⊤1 β
0 and ρ(s̄2) = g(s̄⊤2 δ

0) with some β0 ∈ Rd1 and δ0 ∈ Rd1 . Then

E
{

A1A2Y

π∗(S1)ρ∗(S̄2)

}
= E

{
A1ρ(S̄2)ν(S̄2)

π∗(S1)ρ∗(S̄2)

}
(i)
= E

{
A1ν(S̄2)

π∗(S1)

}
(ii)
= E

[
E
{
ν(S̄2)

π∗(S1)
| S1, A1 = 1

}
E(A1 | S1)

]
(iii)
= E

{
A1µ(S1)

π∗(S1)

}
= E

{
A1S

⊤
1

π∗(S1)

}
β0 (iv)

= E
(
S⊤
1 β

0
)
= E{µ(S1)}

(v)
= θ1,1,
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where (i) holds by ρ∗(·) = ρ(·) since (b.2); (ii) and (v) hold by the tower rule; (iii) holds by

(2.33); (iv) holds since E[{1− A1/π
∗(S1)}S1] = 0 ∈ Rd1 .

(c) The PS model at time 1 is logistic and the OR model at time 2 is linear, i.e.,

π(s1) = g(s⊤1 γ
0) and ν(s̄2) = s̄⊤2 α

0 with some γ0 ∈ Rd1 and α0 ∈ Rd. Then

E
{

A1A2Y

π∗(S1)ρ∗(S̄2)

}
= E

{
A1ρ(S̄2)ν(S̄2)

π∗(S1)ρ∗(S̄2)

}
= E

{
A1ρ(S̄2)S̄

⊤
2

π∗(S1)ρ∗(S̄2)

}
α0

(i)
= E

{
A1S̄

⊤
2

π∗(S1)

}
α0 (ii)

= E
{
A1ν(S̄2)

π(S1)

}
(iii)
= θ1,1,

where (i) holds since E
[
A1/π

∗(S1){1− A2/ρ
∗(S̄2)}S̄2

]
= 0 ∈ Rd and by the tower rule,

E
[
A1/π

∗(S1){1− ρ(S̄2)/ρ
∗(S̄2)}S̄2

]
= 0 ∈ Rd; (ii) holds by π∗(·) = π(·) since (a.2); (iii)

holds following the steps (ii)-(iv) of part (a).

(d) Both OR models are linear, i.e., µ(s1) = s⊤1 β
0 and ν(s̄2) = s̄⊤2 α

0 with some

β0 ∈ Rd1 and α0 ∈ Rd. Then

E
{

A1A2Y

π∗(S1)ρ∗(S̄2)

}
= E

{
A1ρ(S̄2)ν(S̄2)

π∗(S1)ρ∗(S̄2)

}
= E

{
A1ρ(S̄2)S̄

⊤
2

π∗(S1)ρ∗(S̄2)

}
α0

(i)
= E

{
A1S̄

⊤
2

π∗(S1)

}
α0 = E

{
A1ν(S̄2)

π∗(S1)

}
(ii)
= θ1,1,

where (i) holds following the step (i) of part (c); (ii) holds following the steps (ii)-(iv) of

part(b).
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Proofs of the results in Section 2.3

Proof of Theorem 2.1. Recall the definition of the score function, (2.4). Observe that

∇γψ(W;η) =− A1 exp(−S⊤
1 γ)

{
A2(Y − S̄⊤

2 α)

g(S̄⊤
2 δ)

+ S̄⊤
2 α− S⊤

1 β

}
S1,

∇δψ(W;η) =− A1A2 exp(−S̄⊤
2 δ)(Y − S̄⊤

2 α)

g(S⊤
1 γ)

S̄2,

∇αψ(W;η) =
A1

g(S⊤
1 γ)

{
1− A2

g(S̄⊤
2 δ)

}
S̄2,

∇βψ(W;η) =

{
1− A1

g(S⊤
1 γ)

}
S1.

By the constructions in (2.13)-(2.15), we have

E {∇γψ(W;η∗)} = −E
[
A1 exp(−S⊤

1 γ
∗)

{
A2(Y − S̄⊤

2 α
∗)

g(S̄⊤
2 δ

∗)
+ S̄⊤

2 α
∗ − S⊤

1 β
∗
}
S1

]
=

1

2
∇βE{ℓ4(W;γ∗, δ∗,α∗,β∗)} = 0 ∈ Rd1 , (2.43)

E {∇δψ(W;η∗)} = −E
[
A1A2 exp(−S̄⊤

2 δ
∗)(Y − S̄⊤

2 α
∗)

g(S⊤
1 γ

∗)
S̄2

]
=

1

2
∇αE{ℓ3(W;γ∗, δ∗,α∗)} = 0 ∈ Rd, (2.44)

E {∇αψ(W;η∗)} = E
[

A1

g(S⊤
1 γ

∗)

{
1− A2

g(S̄⊤
2 δ

∗)

}
S̄2

]
= ∇δE{ℓ2(W;γ∗, δ∗)} = 0 ∈ Rd,

(2.45)

E {∇βψ(W;η∗)} = E
[{

1− A1

g(S⊤
1 γ

∗)

}
S1

]
= ∇γE{ℓ1(W;γ∗)} = 0 ∈ Rd1 , (2.46)

Note that,

θ̂1,1 − θ1,1 = N−1

K∑
k=1

∑
i∈Ik

ψ(Wi; η̂−k)− θ1,1

= K−1

K∑
k=1

n−1
∑
i∈Ik

{ψ(Wi; η̂−k)− ψ(Wi;η
∗)}+N−1

N∑
i=1

ψ(Wi;η
∗)− θ1,1

= N−1

N∑
i=1

ψ(Wi;η
∗)− θ1,1 +K−1

K∑
k=1

(∆k,1 +∆k,2),
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where

∆k,1 = n−1
∑
i∈Ik

{ψ(Wi; η̂−k)− ψ(Wi;η
∗)} − E {ψ(W; η̂−k)− ψ(W;η∗)} ,

∆k,2 = E {ψ(W; η̂−k)− ψ(W;η∗)} .

Step 1. We demonstrate that

E{ψ(W;η∗)} − θ1,1 = 0. (2.47)

Here, (2.47) can be shown under the Assumption 2.2:

E{ψ(W;η∗)} − θ1,1

= E
[{

1− A1

g(S⊤
1 γ

∗)

}
{S⊤

1 β
∗ − Y1,1}

]
+ E

[
A1

g(S⊤
1 γ

∗)

{
1− A2

g(S̄⊤
2 δ

∗)

}
{S̄⊤

2 α
∗ − Y1,1}

]
(i)
= E

[{
1− π(S1)

g(S⊤
1 γ

∗)

}
{S⊤

1 β
∗ − µ(S1)}

]
+ E

[
π(S1)

g(S⊤
1 γ

∗)

{
1− ρ(S̄2)

g(S̄⊤
2 δ

∗)

}
{S̄⊤

2 α
∗ − ν(S̄2)}

]
(ii)
= 0,

where (i) holds by the tower rule, (ii) holds under the Assumption 2.2.

Step 2. We demonstrate that, for each k ≤ K and any θ ∈ R, as N, d1, d2 →∞,

∆k,2 = op(N
−1/2). (2.48)

Note that,

∆k,2 = ∆k,3 +∆k,4 +∆k,5 +∆k,6 +∆k,7 +∆k,8 +∆k,9,
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where

∆k,3 = E

[
A1

g(S⊤
1 γ̂−k)

{
1− g(S̄⊤

2 δ
∗)

g(S̄⊤
2 δ̂−k)

}
S̄⊤
2 (α̂−k −α∗)

]
,

∆k,4 = E
[{

1− g(S⊤
1 γ

∗)

g(S⊤
1 γ̂−k)

}
S⊤
1 (β̂−k − β∗)

]
,

∆k,5 = E
[

1

g(S⊤
1 γ̂−k)

{
g(S⊤

1 γ
∗)− A1

}
S⊤
1 (β̂−k − β∗)

]
,

∆k,6 = E

[
A1

g(S⊤
1 γ̂−k)g(S̄⊤

2 δ̂−k)

{
g(S̄⊤

2 δ
∗)− A2

}
S̄⊤
2 (α̂−k −α∗)

]
,

∆k,7 = E

[
A1

g(S⊤
1 γ̂−k)

{
A2

g(S̄⊤
2 δ̂−k)

− A2

g(S̄⊤
2 δ

∗)

}
(Y1,1 − S̄⊤

2 α
∗)

]
,

∆k,8 = E
[{

A1

g(S⊤
1 γ̂−k)

− A1

g(S⊤
1 γ

∗)

}
(Y1,1 − S⊤

1 β
∗)

]
,

∆k,9 = E
[{

A1

g(S⊤
1 γ̂−k)

− A1

g(S⊤
1 γ

∗)

}{
A2

g(S̄⊤
2 δ

∗)
− 1

}
(Y1,1 − S̄⊤

2 α
∗)

]
.

By the tower rule, we have

∆k,5 = E
(
E
[
π∗(S1)− A1

g(S⊤
1 γ̂−k)

S⊤
1 (β̂−k − β∗) | S1

])
= E

[
π∗(S1)− π(S1)

g(S⊤
1 γ̂−k)

S⊤
1 (β̂−k − β∗)

]
= 0, when π(·) = π∗(·);

∆k,6 = E

(
E

[
ρ∗(S̄2)− A2

g(S⊤
1 γ̂−k)g(S̄⊤

2 δ̂−k)
S̄⊤
2 (α̂−k −α∗) | S̄2, A1 = 1

]
E(A1 | S̄2)

)

= E

[
A1{ρ∗(S̄2)− ρ(S̄2)}
g(S⊤

1 γ̂−k)g(S̄⊤
2 δ̂−k)

S̄⊤
2 (α̂−k −α∗)

]
= 0, when ρ(·) = ρ∗(·);

∆k,7 = E

(
E

[
A2{Y1,1 − ν∗(S̄2)}

g(S⊤
1 γ̂−k)

{
1

g(S̄⊤
2 δ̂−k)

− 1

g(S̄⊤
2 δ

∗)

}
| S̄2, A1 = 1

]
E(A1 | S̄2)

)
(i)
= E

[
A1ρ(S̄2){ν(S̄2)− ν∗(S̄2)}

g(S⊤
1 γ̂−k)

{
1

g(S̄⊤
2 δ̂−k)

− 1

g(S̄⊤
2 δ

∗)

}]
= 0, when ν(·) = ν∗(·);

∆k,8 = E
(
E
[{

A1

g(S⊤
1 γ̂−k)

− A1

g(S⊤
1 γ

∗)

}
{Y1,1 − µ∗(S1)} | S1

])
(ii)
= E

(
E
[{

π(S1)

g(S⊤
1 γ̂−k)

− π(S1)

g(S⊤
1 γ

∗)

}
{µ(S1)− µ∗(S1)} | S1

])
= 0, when µ(·) = µ∗(·).
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Here, (i) holds since Y1,1 ⊥⊥ A2 | (S̄2, A1 = 1) under Assumption 2.1; (ii) holds since Y1,1 ⊥⊥

A1 | S1 under Assumption 2.1. Note that, the expectation E(·) corresponds to the joint

distribution of the underlying random vector W := ({Y (a1, a2)}a1,a2∈{0,1}, A1, A2,S1,S2),

which is independent of the observed samples (Wi)
N
i=1 and hence also independent of the

nuisance estimators η̂−k. Such an expectation will be used throughout the document unless

otherwise stated.

Additionally, we also have

∆k,9 = E
(
E
[{

Y1,1 − ν∗(S̄2)

g(S⊤
1 γ̂−k)

− Y1,1 − ν∗(S̄2)

g(S⊤
1 γ

∗)

}
A2 − ρ∗(S̄2)

ρ∗(S̄2)
| S̄2, A1 = 1

]
E(A1 | S̄2)

)
(i)
= E

[{
A1

g(S⊤
1 γ̂−k)

− A1

g(S⊤
1 γ

∗)

}
ρ(S̄2)− ρ∗(S̄2)

ρ∗(S̄2)

{
ν(S̄2)− ν∗(S̄2)

}] (ii)
= 0,

where (i) holds since Y1,1 ⊥⊥ A2 | (S̄2, A1 = 1) under Assumption 2.1; (ii) holds since either

ρ(·) = ρ∗(·) or ν(·) = ν∗(·) under Assumption 2.2. Therefore,

∆k,2 = ∆k,3 +∆k,4 +∆k,51π ̸=π∗ +∆k,61ρ ̸=ρ∗ +∆k,71ν ̸=ν∗ +∆k,81µ ̸=µ∗ ,

Now, condition on the event E1 ∩ E2, where E1 and E2 are defined as (2.39) and (2.42),

respectively. By Lemmas 2.13 and 2.14, E1∩E2 occurs with probability 1−o(1). By Hölder’s

inequality,

|∆k,3| ≤
∥∥g−1(S⊤

1 γ̂−k)
∥∥
P,4

∥∥∥g−1(S̄⊤
2 δ̂−k)

∥∥∥
P,4

∥∥∥g−1(S̄⊤
2 δ̂−k)− g−1(S̄⊤

2 δ
∗)
∥∥∥
P,4

·
∥∥S̄⊤

2 (α̂−k −α∗)
∥∥
P,4

(i)
= Op

(
∥δ̂−k − δ∗∥2∥α̂−k −α∗∥2

)
,
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where (i) follows from Lemmas 2.13, 2.14 and 2.15. Similarly,

|∆k,4| ≤
∥∥g−1(S⊤

1 γ̂−k)
∥∥
P,4

∥∥g−1(S⊤
1 γ̂−k)− g−1(S⊤

1 γ
∗)
∥∥
P,4

∥∥∥S⊤
1 (β̂−k − β∗)

∥∥∥
P,2

(i)
= Op

(
∥γ̂−k − γ∗∥2∥β̂−k − β∗∥2

)
,

where (i) follows from Lemmas 2.13 and 2.16. In addition,

|∆k,5|
(i)
=

∣∣∣∣E [{ 1

g(S⊤
1 γ̂−k)

− 1

g(S⊤
1 γ

∗)

}{
g(S⊤

1 γ
∗)− A

}
S⊤
1 (β̂−k − β∗)

]∣∣∣∣
(ii)
=
∥∥g−1(S⊤

1 γ̂−k)− g−1(S⊤
1 γ

∗)
∥∥
P,2

∥∥∥S⊤
1 (β̂−k − β∗)

∥∥∥
P,2

(iii)
= Op

(
∥γ̂−k − γ∗∥2∥β̂−k − β∗∥2

)
,

where (i) follows from (2.46); (ii) holds by Hölder’s inequality and the fact that |g(S⊤
1 γ

∗)−

A| ≤ 1; (iii) follows from Lemmas 2.13 and 2.16. Besides,

|∆k,6|
(i)
=

∣∣∣∣∣E
([

A1

{
g(S̄⊤

2 δ
∗)− A2

}
g(S⊤

1 γ̂−k)g(S̄⊤
2 δ̂−k)

−
A1

{
g(S̄⊤

2 δ
∗)− A2

}
g(S⊤

1 γ
∗)g(S̄⊤

2 δ
∗)

]
S̄⊤
2 (α̂−k −α∗)

)∣∣∣∣∣
(ii)

≤
∥∥∥g−1(S⊤

1 γ̂−k)g
−1(S̄⊤

2 δ̂−k)− g−1(S⊤
1 γ

∗)g−1(S̄⊤
2 δ

∗)
∥∥∥
P,2

∥∥S̄⊤
2 (α̂−k −α∗)

∥∥
P,2

(iii)
= Op

((
∥γ̂−k − γ∗∥2 + ∥δ̂−k − δ∗∥2

)
∥α̂−k −α∗∥2

)
,

where (i) follows from (2.45); (ii) holds by Hölder’s inequality and the fact that |A1{g(S̄⊤
2 δ

∗)−

A2}| ≤ 1; (iii) follows from Lemma 2.15 and the fact that

∥∥∥g−1(S⊤
1 γ̂−k)g

−1(S̄⊤
2 δ̂−k)− g−1(S⊤

1 γ
∗)g−1(S̄⊤

2 δ
∗)
∥∥∥
P,2

= Op

(
∥γ̂−k − γ∗∥2 + ∥δ̂−k − δ∗∥2

)
. (2.49)
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We verify (2.49) below:

∥∥∥g−1(S⊤
1 γ̂−k)g

−1(S̄⊤
2 δ̂−k)− g−1(S⊤

1 γ
∗)g−1(S̄⊤

2 δ
∗)
∥∥∥
P,2

(i)

≤
∥∥∥g−1(S⊤

1 γ̂−k)
{
g−1(S̄⊤

2 δ̂−k)− g−1(S̄⊤
2 δ

∗)
}∥∥∥

P,2

+
∥∥g−1(S̄⊤

2 δ
∗)
{
g−1(S⊤

1 γ̂−k)− g−1(S⊤
1 γ

∗)
}∥∥

P,2

(ii)

≤
∥∥g−1(S⊤

1 γ̂−k)
∥∥
P,4

∥∥∥g−1(S̄⊤
2 δ̂−k)− g−1(S̄⊤

2 δ
∗)
∥∥∥
P,4

+
∥∥g−1(S̄⊤

2 δ
∗)
∥∥
P,4

∥∥g−1(S⊤
1 γ̂−k)− g−1(S⊤

1 γ
∗)
∥∥
P,4

= Op

(
∥γ̂−k − γ∗∥2 + ∥δ̂−k − δ∗∥2

)
,

where (i) holds by Minkowski inequality; (ii) holds by (generalized) Hölder’s inequality; (iii)

follows from Lemmas 2.13 and 2.14. As for the term ∆k,7, with some γ̃1 lies between γ∗ and

γ̂−k, some δ̃ lies between δ∗ and δ̂−k, we have

|∆k,7|
(i)
=

∣∣∣∣∣E
[

A2

g(S⊤
1 γ̂−k)

{
A1

g(S̄⊤
2 δ̂−k)

− A1

g(S̄⊤
2 δ

∗)

}
ε

]∣∣∣∣∣
(ii)

≤
∣∣∣∣E{ A1A2

g(S⊤
1 γ

∗)
exp(−S̄⊤

2 δ
∗)εS̄⊤

2

}
(δ̂−k − δ∗)

∣∣∣∣
+
∣∣∣E{A1A2 exp(−S⊤

1 γ̃1) exp(−S̄⊤
2 δ̃)εS̄

⊤
2 (δ̂−k − δ∗)S⊤

1 (γ̂−k − γ∗)
}∣∣∣

+

∣∣∣∣E [ A1A2

g(S⊤
1 γ̃1)

exp(−S̄⊤
2 δ̃)ε

{
S̄⊤
2 (δ̂−k − δ∗)

}2
]∣∣∣∣

(iii)

≤
∥∥exp(−S⊤

1 γ̃1)
∥∥
P,4

∥∥∥exp(−S̄⊤
2 δ̃)
∥∥∥
P,4
∥ε∥P,4

∥∥∥S̄⊤
2 (δ̂−k − δ∗)

∥∥∥
P,8

∥∥S⊤
1 (γ̂−k − γ∗)

∥∥
P,8

+
∥∥g−1(S⊤

1 γ̃1)
∥∥
P,4

∥∥∥exp(−S̄⊤
2 δ̃)
∥∥∥
P,4
∥ε∥P,4

∥∥∥S̄⊤
2 (δ̂−k − δ∗)

∥∥∥2
P,8

(iv)
= Op

(
∥γ̂−k − γ∗∥2∥δ̂−k − δ∗∥2 + ∥δ̂−k − δ∗∥22

)
,

where (i) holds since either ρ(·) = ρ∗(·) or ν(·) = ν∗(·); (ii) holds by Taylor’s theorem; (iii)

holds by (2.44) and Hölder’s inequality; (iv) holds by Lemmas 2.13 and 2.14. Similarly, by
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Taylor’s theorem, with some γ̃2 lies between γ∗ and γ̂−k, we have

|∆k,8| ≤
∣∣E{A1 exp(−S⊤

1 γ
∗)(Y1,1 − S⊤

1 β
∗)S⊤

1 (γ̂−k − γ∗)
}∣∣

+
∣∣∣E{A1 exp(−S⊤

1 γ̃2)(Y1,1 − S⊤
1 β

∗)
{
S⊤
1 (γ̂−k − γ∗)

}2}∣∣∣
(i)
=

∣∣∣∣E [A1 exp(−S⊤
1 γ

∗)

{
A2(Y − S̄⊤

2 α
∗)

g(S̄⊤
2 δ

∗)
+ S̄⊤

2 α
∗ − S⊤

1 β
∗
}
S⊤
1 (γ̂−k − γ∗)

]∣∣∣∣
+
∣∣∣E [A1 exp(−S⊤

1 γ̃2)(ε+ ζ)
{
S⊤
1 (γ̂−k − γ∗)

}2]∣∣∣
(ii)

≤ 0 +
∥∥exp(−S⊤

1 γ̃2)
∥∥
P,4 ∥ε+ ζ∥P,4

∥∥S⊤
1 (γ̂−k − γ∗)

∥∥2
P,4

(iii)
= Op

(
∥γ̂−k − γ∗∥22

)
,

where (i) holds since either ρ(·) = ρ∗(·) or ν(·) = ν∗(·); (ii) holds by (2.43) and Hölder’s

inequality; (iii) holds by Lemma 2.13. To sum up, we have

∆k,2 = Op

(
∥γ̂−k − γ∗∥2∥β̂−k − β∗∥2 + ∥δ̂−k − δ∗∥2∥α̂−k −α∗∥2

)
+ 1ρ ̸=ρ∗Op (∥γ̂−k − γ∗∥2∥α̂−k −α∗∥2)

+ 1ν ̸=ν∗Op

(
∥γ̂−k − γ∗∥2∥δ̂−k − δ∗∥2 + ∥δ̂−k − δ∗∥22

)
+ 1µ̸=µ∗Op

(
∥γ̂−k − γ∗∥22

)
. (2.50)

Define

rγ :=

√
sγ log d1

N
, rδ :=

√
sδ log d

N
, rα :=

√
sγ log d

N
, rβ :=

√
sβ log d1

N
.

By Theorems 2.3 and 2.4,

∥γ̂−k − γ∗∥2 = Op (rγ) ,

∥δ̂−k − δ∗∥2 = ∥δ̂−k − δ∗∥21ρ=ρ∗ + ∥δ̂−k − δ∗∥21ρ̸=ρ∗ = Op (rδ + rγ1ρ ̸=ρ∗) ,

∥α̂−k −α∗∥2 = ∥α̂−k −α∗∥21ν=ν∗ + ∥α̂−k −α∗∥21ν ̸=ν∗ = Op (rα + (rγ + rδ)1ν ̸=ν∗) .
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Additionally, note that either ρ(·) = ρ∗(·) or ν(·) = ν∗(·) (or both) holds. By Theorems 2.3

and 2.4, we have

∥β̂−k − β∗∥2 = ∥β̂−k − β∗∥21ρ=ρ∗,ν=ν∗,µ=µ∗ + ∥β̂−k − β∗∥21ρ=ρ∗,ν ̸=ν∗,µ=µ∗

+ ∥β̂−k − β∗∥21ρ̸=ρ∗,ν=ν∗,µ=µ∗ + ∥β̂−k − β∗∥21µ̸=µ∗

= Op (rβ + rδ1ν ̸=ν∗ + rα1ρ̸=ρ∗ + (rγ + rδ + rα)1µ ̸=µ∗) .

Therefore,

∆k,2 = Op (rγ {rβ + rδ1ν ̸=ν∗ + rα1ρ̸=ρ∗ + (rγ + rδ + rα)1µ̸=µ∗})

+Op ((rδ + rγ1ρ ̸=ρ∗) (rα + (rγ + rδ)1ν ̸=ν∗))

+ 1ρ ̸=ρ∗Op (rγ {rα + (rγ + rδ)1ν ̸=ν∗})

+ 1ν ̸=ν∗Op ((rγ + rδ + rγ1ρ ̸=ρ∗) (rδ + rγ1ρ̸=ρ∗)) + 1µ̸=µ∗Op

(
r2γ
)

(i)
= Op (rγrβ + rγrδ1ν ̸=ν∗ + rγrα1ρ ̸=ρ∗ + rγ(rγ + rδ + rα)1µ ̸=µ∗)

+Op (rδrα + rγrα1ρ ̸=ρ∗ + rδ(rγ + rδ)1ν ̸=ν∗)

+ 1ρ ̸=ρ∗Op(rγrα) + 1ν ̸=ν∗Op ((rγ + rδ) rδ) + 1µ̸=µ∗Op

(
r2γ
)

= Op(rγrβ + rδrα) + 1ρ ̸=ρ∗Op(rγrα) + 1ν ̸=ν∗Op(rγrδ + r2δ)

+ 1µ̸=µ∗Op(r
2
γ + rγrδ + rγrα),
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where (i) holds since 1ρ ̸=ρ∗1ν ̸=ν∗ = 0 that either ρ(·) = ρ∗(·) or ν(·) = ν∗(·) holds. Note that,

rγrβ + rδrα =

√
sγsβ log d1

N
+

√
sδsα log d

N

= o(N−1/2), when (2.23) is assumed;

1ρ̸=ρ∗rγrα = 1ρ̸=ρ∗

(√
sγsβ log d1

N
+

√
sγsα log d1 log d

N

)

= o(N−1/2), when (2.24) is assumed;

1ν ̸=ν∗(rγrδ + r2δ) = 1ν ̸=ν∗

√
sδ log d(sγ log d1 + sδ log d)

N

= o(N−1/2), when (2.25) is assumed;

1µ ̸=µ∗rγ(rγ + rδ + rα) = 1µ̸=µ∗

√
sγ log d1{sγ log d1 + (sδ + sα) log d}

N

= o(N−1/2), when (2.26) is assumed.

Hence, we conclude that

∆k,2 = op(N
−1/2).

Step 3. We demonstrate that, for each k ≤ K and any θ ∈ R, as N, d1, d2 →∞,

∆k,1 = op(N
−1/2).

By construction, we have ESk(∆k,1) = 0, where ESk(·) denotes the expectation corresponding

to the joint distribution of the sub-sample Sk. In addition, by Taylor’s theorem, with some

η̃ = (γ̃⊤, δ̃⊤, α̃⊤, β̃⊤)⊤ lies between η∗ and η̂−k,

ESk(∆
2
k,1) = n−1E

[
{ψ(W; η̂−k)− ψ(W;η∗)}2

]
= 2n−1E

[
{ψ(W; η̃)− ψ(W;η∗)}∇ηψ(W; η̃)⊤(η̂−k − η∗)

]
(i)

≤ 2n−1
{∥∥ψ(W; η̃)− S⊤

1 β
∗∥∥

P,2 +
∥∥ψ(W;η∗)− S⊤

1 β
∗∥∥

P,2

}∥∥∇ηψ(W; η̃)⊤(η̂−k − η∗)
∥∥
P,2 ,

189



where (i) holds by Hölder’s inequality and Minkowski inequality. Note that, with probability

1,

∥∥ψ(W;η∗)− S⊤
1 β

∗∥∥
P,2 ≤ c−1 ∥ζ∥P,2 + c−2 ∥ε∥P,2 = O(1).

Define

ε̃ := Y1,1 − S̄⊤
2 α̃, ζ̃ := S̄⊤

2 α̃− S⊤
1 β̃.

Condition on the event E1 ∩ E2. By Hölder’s inequality and Lemmas 2.15 and 2.16, we also

have

∥∥ψ(W; η̃)− S⊤
1 β

∗∥∥
P,2

≤
∥∥g−1(S⊤

1 γ̃)
∥∥
P,4

∥∥∥ζ̃∥∥∥
P,4

+
∥∥g−1(S⊤

1 γ̃)
∥∥
P,6

∥∥∥g−1(S̄⊤
2 δ̃)
∥∥∥
P,6
∥ε̃∥P,6 +

∥∥∥S⊤
1 (β̃ − β∗)

∥∥∥
P,2

= Op

(
1 + ∥β̃ − β∗∥2

)
= Op

(
1 + ∥β̂−k − β∗∥2

)
= Op(1).

In addition, by Minkowski inequality,

∥∥∇ηψ(W; η̃)⊤(η̂−k − η∗)
∥∥
P,2

≤
∥∥∇γψ(W; η̃)⊤(γ̂−k − γ∗)

∥∥
P,2 +

∥∥∥∇δψ(W; η̃)⊤(δ̂−k − δ∗)
∥∥∥
P,2

+
∥∥∇αψ(W; η̃)⊤(α̂−k −α∗)

∥∥
P,2 +

∥∥∥∇βψ(W; η̃)⊤(β̂−k − β∗)
∥∥∥
P,2
.

By Hölder’s inequality, Minkowski inequality, and Lemma 2.13,

∥∥∇γψ(W; η̃)⊤(γ̂−k − γ∗)
∥∥
P,2

≤
∥∥exp(−S⊤

1 γ̃)
∥∥
P,6

{∥∥∥g−1(S̄⊤
2 δ̃)
∥∥∥
P,6
∥ε̂∥P,6 +

∥∥∥ζ̂∥∥∥
P,3

}∥∥S⊤
1 (γ̂−k − γ∗)

∥∥
P,6

= Op (∥γ̂−k − γ∗∥2) .
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Similarly, for the second term, using Lemmas 2.14 and 2.15,

∥∥∥∇δψ(W; η̃)⊤(δ̂−k − δ∗)
∥∥∥
P,2

≤
∥∥g−1(S⊤

1 γ̃)
∥∥
P,6

∥∥∥exp(−S̄⊤
2 δ̃)
∥∥∥
P,6
∥ε̃∥P,12

∥∥∥S̄⊤
2 (δ̂−k − δ∗)

∥∥∥
P,12

= Op

(
∥δ̂−k − δ∗∥2

)
.

For the third term, using Lemma 2.15,

∥∥∇αψ(W; η̃)⊤(α̂−k −α∗)
∥∥
P,2

≤
∥∥g−1(S⊤

1 γ̃)
∥∥
P,6

{
1 +

∥∥∥g−1(S̄⊤
2 δ̃)
∥∥∥
P,6

}∥∥S̄⊤
2 (α̂−k −α∗)

∥∥
P,6

= Op (∥α̂−k −α∗∥2) .

Lastly, using Lemma 2.16,

∥∥∥∇βψ(W; η̃)⊤(β̂−k − β∗)
∥∥∥
P,2

≤
{
1 +

∥∥g−1(S⊤
1 γ̃)

∥∥
P,4

}∥∥∥S⊤
1 (β̂−k − β∗)

∥∥∥
P,4

= Op

(
∥β̂−k − β∗∥2

)
.

To sum up, we have

∥∥∇ηψ(W; η̃)⊤(η̂−k − η∗)
∥∥
P,2

= Op

(
∥γ̂−k − γ∗∥2 + ∥δ̂−k − δ∗∥2 + ∥α̂−k −α∗∥2 + ∥β̂−k − β∗∥2

)
.

It follows that

ESk(∆
2
k,1) = n−1E

[
{ψ(W; η̂−k)− ψ(W;η∗)}2

]
= N−1Op

(
∥γ̂−k − γ∗∥2 + ∥δ̂−k − δ∗∥2 + ∥α̂−k −α∗∥2 + ∥β̂−k − β∗∥2

)
. (2.51)
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By Lemma 2.2,

∆k,1 = Op

(
N−1/2

√
∥γ̂−k − γ∗∥2 + ∥δ̂−k − δ∗∥2 + ∥α̂−k −α∗∥2 + ∥β̂−k − β∗∥2

)
= op(N

−1/2).

Step 4. We show that, as N, d1, d2 →∞,

σ−1N−1/2

N∑
i=1

ψ(Wi;η
∗)− θ1,1 → N (0, 1). (2.52)

By Lyapunov’s central limit theorem, it suffices to show that, for some t > 2,

σ−tE
{
|ψ(W;η∗)− θ1,1|t

}
< C, (2.53)

with some constant C > 0. Note that

σ2 = E [{Y1,1 − θ1,1}]2 + E

([{
1− A1

g(S⊤
1 γ

∗)

}
{S⊤

1 β
∗ − Y1,1}

]2)

+ E

([
A1

g(S⊤
1 γ

∗)

{
1− A2

g(S̄⊤
2 δ

∗)

}
{S̄⊤

2 α
∗ − Y1,1}

]2)

≥ E
[
{Y1,1 − θ1,1}2

] (i)

≥ E
[
{Y1,1 − θ1,1}2

]
/2 + E[{µ(S1)− θ1,1}2]/2

(ii)

≥ cY /2 + c0(1− c0)−1E[A1 exp(−S⊤
1 γ

∗){µ(S1)− θ1,1}2]/2,

where (i) holds since E [{Y1,1 − θ1,1}2] = E [{Y1,1 − µ(S1)}2] + E [{µ(S1)− θ1,1}2]; (ii) holds

since exp(S⊤
1 γ

∗) > c0(1− c0)−1 under Assumption 2.1, E[{Y1,1− θ1,1}]2 ≥ cY under Assump-

tion 2.4, and A1 ≤ 1. Based on the construction of β∗ as in (2.15), and since either ρ∗(·) or

ν∗(·) is correctly specified, we have

β∗ = arg min
β∈Rd1

E
[
A1 exp(−S⊤

1 γ
∗)
{
ν(S̄2)− S⊤

1 β
}2]

= arg min
β∈Rd1

E
[
A1 exp(−S⊤

1 γ
∗)
{
µ(S1)− S⊤

1 β
}2]

,
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which implies that

E
[
A1 exp(−S⊤

1 γ
∗)
{
µ(S1)− S⊤

1 β
∗}S1

]
= 0 ∈ Rd1 .

Under Assumptions 2.1 and 2.4, it follows that

E[A1 exp(−S⊤
1 γ

∗){µ(S1)− θ1,1}2]

(i)
= E[A1 exp(−S⊤

1 γ
∗){µ(S1)− S⊤

1 β
∗}2] + E[A1 exp(−S⊤

1 γ
∗){S⊤

1 β
∗ − θ1,1}2]

≥ E[A1 exp(−S⊤
1 γ

∗){S⊤
1 β

∗ − θ1,1}2] = E[π(S1) exp(−S⊤
1 γ

∗){S⊤
1 β

∗ − θ1,1}2]

≥ c0(c
−1
0 − 1)E[{S⊤

1 β
∗ − θ1,1}2] ≥ (1− c0)cmin∥β∗∥22,

where (i) holds since

E[A1 exp(−S⊤
1 γ

∗){µ(S1)− S⊤
1 β

∗}{S⊤
1 β

∗ − θ1,1}]

= E[A1 exp(−S⊤
1 γ

∗){µ(S1)− S⊤
1 β

∗}S⊤
1 {β∗ − θ1,1e1}] = 0.

Therefore, we have

σ2 ≥ cY /2 + c0cmin∥β∗∥22/2.

Additionally, for any r > 0, by Minkowski inequality,

∥ψ(W;η∗)− θ1,1∥P,r

≤ ∥Y1,1 − θ1,1∥P,r +
∥∥∥∥{1− A1

g(S⊤
1 γ

∗)

}
{S⊤

1 β
∗ − Y1,1}

∥∥∥∥
P,r

+

∥∥∥∥ A1

g(S⊤
1 γ

∗)

{
1− A2

g(S̄⊤
2 δ

∗)

}
{S̄⊤

2 α
∗ − Y1,1}

∥∥∥∥
P,r

≤ ∥S⊤
1 β

∗∥P,r + ∥ε∥P,r + ∥ζ∥P,r + |θ1,1|+ (1 + c−1
0 ) ∥ε+ ζ∥P,r

+ c−1
0 (1 + c−1

0 ) ∥ε∥P,r

(i)
= O (∥β∗∥2 + 1) ,
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where (i) holds by |θ1,1| = |E(S⊤
1 β

∗)| ≤ ∥S⊤
1 β

∗∥P,1. Therefore,

σ ≍ ∥β∗∥2 + 1, (2.54)

and

σ−tE
{
|ψ(W;η∗)− θ1,1|t

}
=

{
∥ψ(W;η∗)− θ1,1∥P,t

σ

}t

= O

(
∥β∗∥2 + 1

cY /2 + cmin∥β∗∥22/2

)
= O(1),

and (2.53) follows.

Step 5. Finally, we prove that, as N, d1, d2 →∞,

σ̂2 = σ2{1 + op(1)}. (2.55)

Note that

ES

{N−1

N∑
i=1

ψ(Wi;η
∗)− θ1,1

}2
 = N−1σ2 ≍ ∥β

∗∥22 + 1

N
,

where ES(·) denotes the expectation corresponding to the whole observed samples S =

(Wi)
N
i=1. By Lemma 2.2,

N−1

N∑
i=1

ψ(Wi;η
∗)− θ1,1 = Op

(
∥β∗∥2 + 1√

N

)
.

By (2.51), (2.53), (2.54), and Lemma A.4 of [ZCB21], we have (2.55) holds.

Proof of Theorem 2.2. Theorem 2.2 follows directly from Theorem 2.1 as a special case that

all the nuisance models are correctly specified.

Proofs of the results in Section 2.4.1

To begin with, we first demonstrate some useful lemmas before we obtain the asymp-

totic results for the moment-targeted nuisance estimators. For any γ,β ∈ Rd1 and δ,α ∈ Rd,
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define

ℓ̄1(γ) :=M−1
∑
i∈Iγ

ℓ1(Wi;γ), ℓ̄2(γ, δ) :=M−1
∑
i∈Iδ

ℓ2(Wi;γ, δ), (2.56)

ℓ̄3(γ, δ,α) :=M−1
∑
i∈Iα

ℓ3(Wi;γ, δ,α), ℓ̄4(γ, δ,α,β) :=M−1
∑
i∈Iβ

ℓ4(Wi;γ, δ,α,β),

where the loss functions are defined as (2.13), (2.14), (2.16), and (2.17). For any γ,β,∆ ∈

Rd1 and α, δ ∈ Rd, define

δℓ̄1(γ,∆) := ℓ̄1(γ +∆)− ℓ̄1(γ)−∇γ ℓ̄1(γ)
⊤∆, (2.57)

δℓ̄4(γ, δ,α,β,∆) := ℓ̄4(γ, δ,α,β +∆)− ℓ̄4(γ, δ,α,β)−∇β ℓ̄4(γ, δ,α,β)
⊤∆. (2.58)

Similarly, for any γ ∈ Rd1 and α, δ,∆ ∈ Rd, define

δℓ̄2(γ, δ,∆) := ℓ̄2(γ, δ +∆)− ℓ̄2(γ, δ)−∇δ ℓ̄2(γ, δ)
⊤∆, (2.59)

δℓ̄3(γ, δ,α,∆) := ℓ̄3(γ, δ,α+∆)− ℓ̄3(γ, δ,α)−∇αℓ̄3(γ, δ,α)⊤∆. (2.60)

We demonstrate the following restricted strong convexity (RSC) conditions. Note

that, the nuisance estimators are constructed based on different samples, and the probability

measures in (2.61)-(2.64) are different.

Lemma 2.17. Let Assumptions 2.1 and 2.4 hold. Define fM,d1(∆) := κ1∥∆∥22 − κ2∥∆∥21

log d1/M for any ∆ ∈ Rd1 and fM,d(∆) := κ1∥∆∥22 − κ2∥∆∥21 log d/M for any ∆ ∈ Rd.

Then, with some constants κ1, κ2, c1, c2 > 0 and note that M ≍ N , we have

PSγ
(
δℓ̄1(γ

∗,∆) ≥ fM,d1(∆), ∀∥∆∥2 ≤ 1
)
≥ 1− c1 exp(−c2M). (2.61)

Further, let ∥γ̂ − γ∗∥2 ≤ 1. Then

PSδ
(
δℓ̄2(γ̂, δ

∗,∆) ≥ fM,d(∆), ∀∥∆∥2 ≤ 1
)
≥ 1− c1 exp(−c2M), (2.62)

PSβ

(
δℓ̄4(γ̂, δ̂, α̂,β

∗,∆) ≥ fM,d1(∆), ∀∆ ∈ Rd1
)
≥ 1− c1 exp(−c2M). (2.63)
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In (2.62), we only consider the randomness in Sδ, and γ̂ is treated as fixed (or conditional

on). Similarly, in (2.64), γ̂, δ̂, and α̂ are all treated as fixed.

Moreover, let ∥δ̂ − δ∗∥2 ≤ 1. Then

PSα

(
δℓ̄3(γ̂, δ̂,α

∗,∆) ≥ fM,d(∆), ∀∆ ∈ Rd
)
≥ 1− c1 exp(−c2M), (2.64)

where γ̂ and δ̂ are treated as fixed.

Proof of Lemma 2.17. We show that, with high probability, the RSC property holds for each

of the loss functions. By Taylor’s theorem, with some v1, v2 ∈ (0, 1),

δℓ̄1(γ
∗,∆) = (2M)−1

∑
i∈Iγ

A1i exp{−S⊤
1i(γ

∗ + v1∆)}(S⊤
1i∆)2,

δℓ̄2(γ̂, δ
∗,∆) = (2M)−1

∑
i∈Iδ

A1iA2ig
−1(S⊤

1iγ̂) exp{−S̄⊤
2i(δ

∗ + v2∆)}(S̄⊤
2i∆)2, (2.65)

δℓ̄3(γ̂, δ̂,α
∗,∆) =M−1

∑
i∈Iα

A1iA2ig
−1(S⊤

1iγ̂) exp(−S̄⊤
2iδ̂)(S̄

⊤
2i∆)2, (2.66)

δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) =M−1

∑
i∈Iβ

A1i exp(−S⊤
1iγ̂)(S

⊤
1i∆)2. (2.67)

Part 1. Let U = A1S1, S′ = (A1iS1i)i∈Iγ , ϕ(u) = exp(−u), v = v1, and η = γ∗.

Under Assumption 2.1, |U⊤η| ≤ |S⊤
1 γ

∗| < C with some constant C > 0. By Lemmas 2.3

and 2.6, we have (2.61) holds. Note that, PSγ , PSδ , PSα , and PSβ are the probability measures

corresponding to disjoint (and independent) sub-samples Sγ , Sδ, Sα, and Sβ, respectively.

Part 2. Now we treat γ̂ as fixed (or conditional on) and suppose that ∥γ̂−γ∗∥2 ≤ 1.

Note that g−1(u) = 1 + exp(−u) and S = (S⊤
1 ,S

⊤
2 )

⊤. Hence,

δℓ̄2(γ̂, δ
∗,∆) = (2M)−1

∑
i∈Iδ

A1iA2i exp{−S̄⊤
2i(δ

∗ + v2∆)}(S̄⊤
2i∆)2

+ (2M)−1
∑
i∈Iδ

A1iA2i exp{−S̄⊤
2i(δ

∗ + γ̌ + v2∆)}(S̄⊤
2i∆)2,
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where γ̌ = (γ̂⊤, 0, . . . , 0)⊤ ∈ Rd. Let U = A1A2S, S′ = (A1iA2iS̄2i)i∈Iδ , ϕ(u) = exp(−u),

v = v2, and η = δ∗. Note that, under Assumption 2.1, we have |U⊤η| ≤ |S̄⊤
2 δ

∗| < C with

some constant C > 0. By Lemmas 2.3 and 2.6, we have

(2M)−1
∑
i∈Iδ

A1iA2i exp{−S̄⊤
2i(δ

∗ + v2∆)}(S̄⊤
2i∆)2

≥ κ′1∥∆∥22 − κ′2
log d

M
∥∆∥21, ∀∥∆∥2 ≤ 1, (2.68)

with probability PSδ at least 1− c′1 exp(−c′2M) and some constants κ′1, κ
′
2, c

′
1, c

′
2 > 0.

Similarly, let U = A1A2S, S′ = (A1iA2iS̄2i)i∈Iδ , ϕ(u) = exp(−u), v = v2, and η =

δ∗ + γ̌. On the event ∥γ̂ − γ∗∥2 ≤ 1, under Assumptions 2.1 and 2.4, we have E{|U⊤η|} ≤

E(|S⊤
1 γ

∗|) + E(|S̄⊤
2 δ

∗|) + E{|S⊤
1 (γ̂ − γ∗)|} < C with some constant C > 0. By Lemmas 2.3

and 2.6, we have

(2M)−1
∑
i∈Iδ

A1iA2i exp{−S̄⊤
2i(δ

∗ + γ̌ + v2∆)}(S̄⊤
2i∆)2

≥ κ′1∥∆∥22 − κ′2
log d

M
∥∆∥21, ∀∥∆∥2 ≤ 1, (2.69)

with probability PSδ at least 1− c′1 exp(−c′2M). Hence, (2.62) follows from (2.68) and (2.69).

Part 3. We treat both γ̂ and δ̂ as fixed (or conditional on) and suppose that

∥γ̂ − γ∗∥2 ≤ 1, ∥δ̂ − δ∗∥2 ≤ 1. Note that

δℓ̄3(γ̂, δ̂,α
∗,∆) =M−1

∑
i∈Iα

A1iA2i exp(−S̄⊤
2iδ̂)(S̄

⊤
2i∆)2

+M−1
∑
i∈Iα

A1iA2i exp{−S̄⊤
2i(δ̂ + γ̌)}(S̄⊤

2i∆)2. (2.70)

LetU = A1A2S, S′ = (A1iA2iS̄2i)i∈Iα , ϕ(u) = exp(−u), v = 0, and η = δ̂. Here, E(|U⊤η|) ≤

E(|S̄⊤
2 δ

∗|) + E{|S̄⊤
2 (δ̂ − δ∗)|} < C with some constant C > 0. By Lemmas 2.3 and 2.6, we
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have

M−1
∑
i∈Iα

A1iA2i exp(−S̄⊤
2iδ̂)(S̄

⊤
2i∆)2 ≥ κ′1∥∆∥22 − κ′2

log d

M
∥∆∥21, ∀∥∆∥2 ≤ 1, (2.71)

with probability PSα at least 1− c′1 exp(−c′2M).

Similarly, let U = A1A2S, S′ = (A1iA2iS̄2i)i∈Iα , ϕ(u) = exp(−u), v = 0, and η =

δ̂ + γ̌. Then E(|U⊤η|) ≤ E(|S⊤
1 γ

∗|) + E(|S̄⊤
2 δ

∗|) + E{|S⊤
1 (γ̂ − γ∗)|}+ E{|S̄⊤

2 (δ̂ − δ∗)|} < C

with some constant C > 0. By Lemmas 2.3 and 2.6, we have

M−1
∑
i∈Iα

A1iA2i exp{−S̄⊤
2i(δ̂ + γ̌)}(S̄⊤

2i∆)2 ≥ κ′1∥∆∥22 − κ′2
log d

M
∥∆∥21, ∀∥∆∥2 ≤ 1, (2.72)

with probability PSα at least 1− c′1 exp(−c′2M). Note that, the function δℓN(γ̂, δ̂,α
∗,∆) is

based on a weighted squared loss, and hence the lower bounds in (2.71) and (2.72) can be

extended to any ∆ ∈ Rd. For any ∆′ ∈ Rd, we let ∆ = ∆′/∥∆′∥2. Then ∥∆∥2 = 1. The

lower bounds in (2.71) and (2.72) hold if we multiply the LHS and RHS by a factor ∥∆′∥22.

Therefore, (2.64) holds by combining the lower bounds with (2.70) .

Part 4. Lastly, treat γ̂ as fixed (or conditional on) and suppose that ∥γ̂ − γ∗∥2 ≤ 1.

Let U = A1S1, S′ = (A1iS1i)i∈Iβ , ϕ(u) = exp(−u), v = 0, and η = γ̂. Here, E{|U⊤η|} ≤

E(|S⊤
1 γ

∗|)+E{|S⊤
1 (γ̂−γ∗)|} < C with some constant C > 0. Then (2.63) holds by Lemmas

2.3 and 2.6. Here, similarly as in part 3, the lower bound can be extended to any ∆ ∈ Rd,

since δℓN(γ̂, δ̂, α̂,β
∗,∆) is also constructed based on a weighted squared loss.

Additionally, we upper bound the gradients of the loss functions evaluated at the

target population parameter values. Note that the nuisance parameters γ∗, δ∗, α∗, and β∗

are defined as the minimizers of the corresponding loss functions, (2.13), (2.14), (2.16), and

(2.17). By the KKT condition, the gradients of the loss functions’ expectations are zero
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vectors; see also (2.73), (2.74), (2.75), and (2.76). Therefore, the gradients of the loss func-

tions’ empirical averages∇γ ℓ̄1(γ
∗),∇δ ℓ̄2(γ

∗, δ∗),∇αℓ̄3(γ
∗, δ∗,α∗), and∇β ℓ̄4(γ

∗, δ∗,α∗,β∗)

are averages of i.i.d. random vectors with zero means even under model misspecification.

Hence, we can use the union bound techniques to control the infinite norms by the usual

rates Op(
√

log d/M) or Op(
√

log d1/M).

Lemma 2.18. Let Assumption 2.4 holds. Let σγ , σδ, σα, σβ > 0 be some constants and note

that M ≍ N . Then, for any t > 0,

PSγ

(∥∥∇γ ℓ̄1(γ
∗)
∥∥
∞ ≤ σγ

√
t+ log d

M

)
≥ 1− 2 exp(−t).

Further, let the Assumption 2.1 holds. Then, for any t > 0,

PSδ

(∥∥∇δ ℓ̄2(γ
∗, δ∗)

∥∥
∞ ≤ σδ

√
t+ log d

M

)
≥ 1− 2 exp(−t),

PSα

(∥∥∇αℓ̄3(γ
∗, δ∗,α∗)

∥∥
∞ ≤ σα

(
2

√
t+ log d

M
+
t+ log d

M

))
≥ 1− 2 exp(−t),

PSβ

(∥∥∇β ℓ̄4(γ
∗, δ∗,α∗,β∗)

∥∥
∞ ≤ σβ

(
2

√
t+ log d1

M
+
t+ log d1

M

))
≥ 1− 2 exp(−t).

Proof of Lemma 2.18. Now, we control the gradients of the loss functions.

Part 1. Note that

∇γ ℓ̄1(γ
∗) =M−1

∑
i∈Iγ

{1− A1ig
−1(S⊤

1iγ
∗)}S1i.

By the construction of γ∗, we have

E
[
{1− A1g

−1(S⊤
1 γ

∗)}S1

]
= 0 ∈ Rd1 . (2.73)

Also, for each 1 ≤ j ≤ d1, |{1−A1g
−1(S⊤

1 γ
∗)}S⊤

1 ej| ≤ (1+ c−1
0 )|S⊤

1 ej| and hence, by Lemma

2.4,

∥{1− A1g
−1(S⊤

1 γ
∗)}S⊤

1 ej∥ψ2 ≤ (1 + c−1
0 )∥S⊤

1 ej∥ψ2 ≤ (1 + c−1
0 )σS.
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Let σγ :=
√
8(1 + c−1

0 )σS. By Lemma D.2 of [CLCL19], for each 1 ≤ j ≤ d1 and any t > 0,

PSγ

(∣∣∇γ ℓ̄1(γ
∗)⊤ej

∣∣ > σγ

√
t+ log d1

M

)
≤ 2 exp(−t− log d1).

It follows that,

PSγ

(∥∥∇γ ℓ̄1(γ
∗)
∥∥
∞ > σγ

√
t+ log d1

M

)
≤

d1∑
j=1

PSγ

(∣∣∇γ ℓ̄1(γ
∗)⊤ej

∣∣ > σγ

√
t+ log d1

M

)

≤ 2d1 exp(−t− log d1) = 2 exp(−t).

Part 2. Note that

∇δ ℓ̄2(γ
∗, δ∗) =M−1

∑
i∈Iδ

A1ig
−1(S⊤

1iγ
∗){1− A2ig

−1(S̄⊤
2iδ

∗)}S̄2i.

By the construction of δ∗, we have

E
[
A1g

−1(S⊤
1 γ

∗){1− A2g
−1(S̄⊤

2 δ
∗)}S̄2

]
= 0 ∈ Rd. (2.74)

Under Assumption 2.1, we have |A1g
−1(S⊤

1 γ
∗){1−A2g

−1(S̄⊤
2 δ

∗)}S̄⊤
2 ej| ≤ c−1

0 (1+ c−1
0 )|S̄⊤

2 ej|

for each 1 ≤ j ≤ d. By Lemma D.1 (i) and (ii),

∥A1g
−1(S⊤

1 γ
∗){1− A2g

−1(S̄⊤
2 δ

∗)}S̄⊤
2 ej∥ψ2 ≤ (c−2

0 + c−1
0 )∥S̄⊤

2 ej∥ψ2 ≤ (c−2
0 + c−1

0 )σS.

Let σδ :=
√
8(c−2

0 + c−1
0 )σS. By Lemma D.2 of [CLCL19], for each 1 ≤ j ≤ d and any t > 0,

PSδ

(∣∣∇δ ℓ̄2(γ
∗, δ∗)⊤ej

∣∣ > σδ

√
t+ log d

M

)
≤ 2 exp(−t− log d).

It follows that,

PSδ

(∥∥∇δ ℓ̄2(γ
∗, δ∗)

∥∥
∞ > σδ

√
t+ log d

M

)
≤

d∑
j=1

PSδ

(∣∣∇δ ℓ̄2(γ
∗, δ∗)⊤ej

∣∣ > σδ

√
t+ log d

M

)

≤ 2d exp(−t− log d) = 2 exp(−t).
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Part 3. Note that

∇αℓ̄3(γ
∗, δ∗,α∗) = −2M−1

∑
i∈Iα

A1iA2ig
−1(S⊤

1iγ
∗) exp(−S̄⊤

2iδ
∗)εiS̄2i.

By the construction of α∗, we have

E
{
−2A1A2g

−1(S⊤
1 γ

∗) exp(−S̄⊤
2 δ

∗)εS̄2

}
= 0 ∈ Rd. (2.75)

Under Assumption 2.1, we have |−2A1A2g
−1(S⊤

1 γ
∗) exp(−S̄⊤

2 δ
∗)εS̄⊤

2 ej| ≤ 2c−1
0 (c−1

0 −1)|εS̄⊤
2

ej| for each 1 ≤ j ≤ d. By Lemma D.1 (i), (ii), and (v),

∥ − 2A1A2g
−1(S⊤

1 γ
∗) exp(−S̄⊤

2 δ
∗)εS̄⊤

2 ej∥ψ1

≤ 2c−1
0 (c−1

0 − 1)∥ε∥ψ2∥S̄⊤
2 ej∥ψ2 ≤ 2c−1

0 (c−1
0 − 1)σεσS.

Let σα := 2c−1
0 (c−1

0 − 1)σεσS. By Lemma 2.4 and Lemma D.4 of [CLCL19], for each j ≤ d

and any t > 0,

PSα

(∣∣∇αℓ̄3(γ
∗, δ∗,α∗)⊤ej

∣∣ > σα

(
2

√
t+ log d

M
+
t+ log d

M

))
≤ 2 exp(−t− log d).

It follows that,

PSα

(∥∥∇αℓ̄3(γ
∗, δ∗,α∗)

∥∥
∞ > σα

(
2

√
t+ log d

M
+
t+ log d

M

))

≤
d∑
j=1

PSα

(∣∣∇αℓ̄3(γ
∗, δ∗,α∗)⊤ej

∣∣ > σα

(
2

√
t+ log d

M
+
t+ log d

M

))

≤ 2d exp(−t− log d) = 2 exp(−t).

Part 4. Note that

∇β ℓ̄4(γ
∗, δ∗,α∗,β∗) = −2M−1

∑
i∈Iβ

A1i exp(−S⊤
1iγ

∗)
{
ζi + A2ig

−1(S̄⊤
2iδ

∗)εi
}
S1i.
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By the construction of β∗, we have

E
[
−2A1 exp(−S⊤

1 γ
∗)
{
ζ + A2g

−1(S̄⊤
2 δ

∗)ε
}
S1

]
= 0 ∈ Rd1 . (2.76)

Under Assumption 2.1, we have | − 2A1 exp(−S⊤
1 γ

∗)
{
ζ + A2g

−1(S̄⊤
2 δ

∗)ε
}
S⊤
1 ej| ≤ 2(c−1

0 −

1)(|ζ|+ c−1
0 |ε|)|S⊤

1 ej| for each 1 ≤ j ≤ d. By Lemma D.1 (i), (ii), and (v),

∥ − 2A1 exp(−S⊤
1 γ

∗)
{
ζ + A2g

−1(S̄⊤
2 δ

∗)ε
}
S⊤
1 ej∥ψ1

≤ 2(c−1
0 − 1)(∥ζ∥ψ2 + c−1

0 ∥ε∥ψ2)∥S⊤
1 ej∥ψ2 ≤ 2(c−1

0 − 1)(σζ + c−1
0 σε)σS.

Let σβ := 2(c−1
0 − 1)(σζ + c−1

0 σε)σS. By Lemma 2.4 and Lemma D.4 of [CLCL19], for each

1 ≤ j ≤ d1 and any t > 0,

PSβ

(∣∣∇β ℓ̄4(γ
∗, δ∗,α∗,β∗)⊤ej

∣∣ > σβ

(
2

√
t+ log d1

M
+
t+ log d1

M

))

≤ 2 exp(−t− log d1).

It follows that,

PSβ

(∥∥∇β ℓ̄4(γ
∗, δ∗,α∗,β∗)

∥∥
∞ > σβ

(
2

√
t+ log d1

M
+
t+ log d1

M

))

≤
d1∑
j=1

PSβ

(∣∣∇β ℓ̄4(γ
∗, δ∗,α∗,β∗)⊤ej

∣∣ > σβ

(
2

√
t+ log d1

M
+
t+ log d1

M

))

≤ 2d1 exp(−t− log d1) = 2 exp(−t).

Proof of Theorem 2.3. We proof the consistency rates of the nuisance parameter estimators

when the models are possibly misspecified.

(a) By Lemmas 2.17 and 2.18, as well as Corollary 9.20 of [Wai19], we have

∥γ̂ − γ∗∥2 = Op

(√
sγ log d1
M

)
, ∥γ̂ − γ∗∥1 = Op

(
sγ

√
log d1
M

)
.
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(b) By Lemma 2.9, PSγ∪Sδ(A1∩A2) ≥ 1− t−2 exp(−t), where A1 and A2 are defined

in (2.35) and (2.36), respectively. By Lemma 2.10, conditional on A1 ∩ A2, we have ∆δ =

δ̂ − δ∗ ∈ C̃(s̄δ, k0) = {∆ ∈ Rd : ∥∆∥1 ≤ k0
√
s̄δ∥∆∥2}, where s̄δ =

√
sγ log d1/ log d+ sδ

and k0 > 0 is a constant. Additionally, by Lemma 2.11, we also have ∥∆δ∥2 ≤ 1. By (a),

we have PSγ ({∥γ̂ − γ∗∥2 ≤ 1}) = 1 − o(1). Then, by (2.62) in Lemma 2.17, PSγ∪Sδ(A3) ≥

1 − o(1) − c1 exp(−c2M) = 1 − o(1), where A3 is defined in (2.37). Now, also condition on

A3. Then we have, for large enough N ,(
2λδ
√
sδ + c

√
sγ log d1

N

)
∥∆δ∥2

(i)

≥ δℓ̄2(γ̂, δ
∗,∆δ) +

λδ
4
∥∆δ∥1

(ii)

≥ κ1∥∆δ∥22 − κ2
log d

M
∥∆δ∥21 +

λδ
4
∥∆δ∥1

(iii)

≥
(
κ1 − κ2k20

s̄δ log d

M

)
∥∆δ∥22

(iv)

≥ κ1
2
∥∆δ∥22,

where (i) holds by Lemma 2.10; (ii) holds by the construction of A3 and also that ∥∆δ∥2 ≤ 1;

(iii) holds since ∆δ ∈ C̃(s̄δ, k0) and λδ∥∆δ∥1/4 ≥ 0; (iv) holds for large enough N , since

s̄δ log d/M = sγ log d1/M + sδ log d/M = o(1). Therefore, conditional on A1 ∩ A2 ∩ A3,

∥∆δ∥2 ≤
4λδ
√
sδ

κ1
+

2c

κ1

√
sγ log d1

N
= O

(√
sγ log d1 + sδ log d

N

)
,

with some λδ = 2σδ
√
(t+ log d)/M ≍

√
log d/N . Since ∆δ ∈ C̃(s̄δ, k0), it follows that

∥∆δ∥1 ≤ k0
√
s̄δ∥∆δ∥2 = O

(
sγ

√
(log d1)2

N log d
+ sδ

√
log d

N

)
.

Therefore, we conclude that

∥δ̂ − δ∗∥2 =Op

(√
sγ log d1 + sδ log d

N

)
,

∥δ̂ − δ∗∥1 =Op

(
sγ

√
(log d1)2

N log d
+ sδ

√
log d

N

)
.

203



(c) For any t > 0, let λα = 2σα{2
√

(t+ log d)/M + (t + log d)/M}. Choose some

λγ ≍
√
log d1/N and λδ ≍

√
log d/N . Define

A4 :={∥∇αℓ̄3(γ
∗, δ∗,α∗)∥∞ ≤ λα/2}, (2.77)

A5 :=

{
δℓ̄3(γ̂, δ̂,α

∗,∆) ≥ κ1∥∆∥22 − κ2
log d

M
∥∆∥21, ∀∆ ∈ Rd

}
. (2.78)

By Lemma 2.18, we have PSα(A4) ≥ 1 − 2 exp(−t). Let ∆ = α̂ − α∗. Similar to the proof

of Lemma 2.10 for obtaining (2.102), we have, on the event A4,

2δℓ̄3(γ̂, δ̂,α
∗,∆) + λα∥∆∥1 ≤ 4λα∥∆Sα∥1 + 2|R2|. (2.79)

where

R2 =
{
∇αℓ̄3(γ̂, δ̂,α

∗)−∇αℓ̄3(γ
∗, δ∗,α∗)

}⊤
∆

= 2M−1
∑
i∈Iα

A1iA2i

{
g−1(S⊤

1iγ̂) exp(−S̄⊤
2iδ̂)− g−1(S⊤

1iγ
∗) exp(−S̄⊤

2iδ
∗))
}
εiS̄

⊤
2i∆.

By the fact that 2ab ≤ a2/2 + 2b2,

|R2| ≤
1

2
δℓ̄3(γ̂, δ̂,α

∗,∆) + 2R3,

where

R3 =M−1
∑
i∈Iα

(
exp(−S̄⊤

2iδ̂)

g(S⊤
1iγ̂)

− exp(−S̄⊤
2iδ

∗)

g(S⊤
1iγ

∗)

)2
g(S⊤

1iγ̂)

exp(−S̄⊤
2iδ̂)

ε2i .

By (a) and (b) of Theorem 2.3, we have PSγ∪Sδ({∥γ̂ − γ∗∥2 ≤ 1, ∥δ̂− δ∗∥2 ≤ 1}) = 1− o(1).

Note that

ESα [R3] = E

(exp(−S̄⊤
2 δ̂)

g(S⊤
1 γ̂)

− exp(−S̄⊤
2 δ

∗)

g(S⊤
1 γ

∗)

)2
g(S⊤

1 γ̂)

exp(−S̄⊤
2 δ̂)

ε2


≤

∥∥∥∥∥exp(−S̄⊤
2 δ̂)

g(S⊤
1 γ̂)

− exp(−S̄⊤
2 δ

∗)

g(S⊤
1 γ

∗)

∥∥∥∥∥
2

P,6

∥∥∥∥∥ g(S⊤
1iγ̂)

exp(−S̄⊤
2iδ̂)

∥∥∥∥∥
P,3

∥ε∥2P,6

(i)
= Op

(
sγ log d1 + sδ log d

N

)
.
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where (i) holds by Lemma 2.4, as well as the fact that∥∥∥∥∥exp(−S̄⊤
2 δ̂)

g(S⊤
1 γ̂)

− exp(−S̄⊤
2 δ

∗)

g(S⊤
1 γ

∗)

∥∥∥∥∥
P,6

≤
∥∥∥g−1(S⊤

1 γ
∗)
{
exp(−S̄⊤

2 δ̂)− exp(−S̄⊤
2 δ

∗)
}∥∥∥

P,6

+
∥∥∥exp(−S̄⊤

2 δ̂)
{
g−1(−S⊤

1 γ̂)− g−1(−S⊤
1 γ

∗)
}∥∥∥

P,6

= Op

(√
sγ log d1 + sδ log d

N

)
(2.80)

using Minkowski inequality, (generalized) Hölder’s inequality, and Lemmas 2.13 and 2.14.

Hence,

R3 = Op

(
sγ log d1 + sδ log d

N

)
. (2.81)

Because of the inequality (2.79), we have

δℓ̄3(γ̂, δ̂,α
∗,∆) + λα∥∆∥1 ≤ 4λα∥∆Sα∥1 + 2R3.

Note that ∥∆Sα∥1 ≤
√
sα∥∆Sα∥2 ≤

√
sα∥∆∥2. Hence,

δℓ̄3(γ̂, δ̂,α
∗,∆) + λα∥∆∥1 ≤ 4λα

√
sα∥∆∥2 + 2R3.

Recall the equation (2.66). We have δℓ̄3(γ̂, δ̂,α
∗,∆) ≥ 0. Then

∥∆∥1 ≤ 4
√
sα∥∆∥2 +

2R3

λα
(2.82)

Then, by Lemma 2.17, PSγ∪Sδ∪Sα(A5) ≥ 1 − o(1) − c1 exp(−c2M) = 1 − o(1), where A5 is

defined in (2.78). Now, conditional on A4 ∩ A5, for large enough N ,

4λα
√
sα∥∆∥2 + 2R3

(i)

≥ δℓ̄3(γ̂, δ̂,α
∗,∆)

(ii)

≥ κ1∥∆∥22 − κ2
log d

M
∥∆∥21

(iii)

≥ κ1∥∆∥22 − 2κ2
log d

M

(
16sα∥∆∥22 +

4R2
3

λ2α

)
(iv)

≥ κ1
2
∥∆∥22 − 8κ2R

2
3

log d

Mλ2α
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where (i) holds by ∥∆∥1 ≥ 0; (ii) holds by the construction of A5; (iii) holds by (2.82) and

the fact that (a + b)2 ≤ 2a2 + 2b2; (iv) holds for large enough N , since sα log d/M = o(1).

Hence, on the event A4 ∩ A5, for large enough N ,

κ1∥∆∥22 − 8λα
√
sα∥∆∥2 − 16κ2R

2
3

log d

Mλ2α
− 4R3 ≤ 0.

Choose some λα = 2σα{2
√

(t+ log d)/M + (t + log d)/M} ≍
√

log d/N . It follows from

Lemma 2.12 that

∥∆∥2 ≤
8λα
√
sα

κ1
+

√
16R2

3

κ2 log d

κ1Mλ2α
+

4R3

κ1

(i)
= Op

(√
sα log d

N
+
sγ log d1 + sδ log d

N
+

√
sγ log d1 + sδ log d

N

)

= Op

(√
sγ log d1 + sδ log d+ sα log d

N

)

where (i) holds by λα
√
sα ≍

√
sα log d/N and (2.81). Recall the inequality (2.82). We have

∥∆∥1 = Op

(
sγ

√
(log d1)2

N log d
+ sδ

√
log d

N
+ sα

√
log d

N

)
.

(d) For any t > 0, let λβ = 2σβ{2
√

(t+ log d1)/M + (t + log d1)/M}. Choose some

λγ ≍
√
log d1/N , λδ ≍

√
log d/N , and λα ≍

√
log d/N . Define

A6 :=
{∥∥∇β ℓ̄4(γ

∗, δ∗,α∗,β∗)
∥∥
∞ ≤ λβ/2

}
, (2.83)

A7 :=

{
δℓ̄4(γ̂, δ̂, α̂,β

∗,∆) ≥ κ1∥∆∥22 − κ2
log d1
M
∥∆∥21, ∀∆ ∈ Rd1

}
. (2.84)

By Lemma 2.18, we have PSα(A6) ≥ 1− 2 exp(−t). Let ∆ = β̂ − β∗. Similar to the

proof of Lemma 2.10 for obtaining (2.102), we have, on the event A6,

2δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) + λβ∥∆∥1 ≤ 4λβ∥∆Sβ

∥1 + 2|R4|. (2.85)
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where

R4 =
{
∇β ℓ̄4(γ̂, δ̂, α̂,β

∗)−∇β ℓ̄4(γ
∗, δ∗,α∗,β∗)

}⊤
∆

= 2M−1
∑
i∈Iβ

A1i

{
exp(−S⊤

1iγ̂)

(
S̄⊤
2iα̂− S⊤

1iβ
∗ +

A2i(Yi − S̄⊤
2iα̂)

g(S̄⊤
2iδ̂)

)

− exp(−S⊤
1iγ

∗)

(
S̄⊤
2iα

∗ − S⊤
1iβ

∗ +
A2i(Yi − S̄⊤

2iα
∗)

g(S̄⊤
2iδ

∗)

)}
S⊤
1i∆.

By the fact that 2ab ≤ a2/2 + 2b2,

|R4| ≤
1

2
δℓ̄4(γ̂, δ̂, α̂,β

∗,∆) + 2R5,

where

R5 =M−1
∑
i∈Iβ

1

exp(−S⊤
1iγ̂)

{
exp(−S⊤

1iγ̂)

(
S̄⊤
2iα̂− S⊤

1iβ
∗ +

A2i(Yi − S̄⊤
2iα̂)

g(S̄⊤
2iδ̂)

)

− exp(−S⊤
1iγ

∗)

(
S̄⊤
2iα

∗ − S⊤
1iβ

∗ +
A2i(Yi − S̄⊤

2iα
∗)

g(S̄⊤
2iδ

∗)

)}2

Note that

ESβ [R5] = E
[

1

exp(−S⊤
1 γ̂)

(Q1 +Q2 +Q3)
2

]
where

Q1 = exp(−S⊤
1 γ̂)

(
1− A2

g(S̄⊤
2 δ̂)

)
S̄⊤
2 (α̂−α∗),

Q2 =
{
exp(−S⊤

1 γ̂)− exp(−S⊤
1 γ

∗)
}
ζ,

Q3 = B

{
exp(−S̄⊤

2 γ̂)

g(S⊤
1 δ̂)

− exp(−S̄⊤
2 γ

∗)

g(S⊤
1 δ

∗)

}
ε.

By (a) and (b) of Theorem 2.3, we have PSγ∪Sδ({∥γ̂ − γ∗∥2 ≤ 1, ∥δ̂− δ∗∥2 ≤ 1}) = 1− o(1).

Then by Hölder’s inequality,

ESβ [R5] ≤
∥∥∥∥ 1

exp(−S⊤
1 γ̂)

∥∥∥∥
P,2

(∥Q1∥P,4 + ∥Q2∥P,4 + ∥Q3∥P,4)2

207



and

∥Q1∥P,4 ≤
∥∥exp(−S⊤

1 γ̂)
∥∥
P,12

∥∥∥∥∥
(
1− A2

g(S̄⊤
2 δ̂)

)∥∥∥∥∥
P,12

∥∥S̄⊤
2 (α̂−α∗)

∥∥
P,12

(i)
= Op

(√
sγ log d1 + sδ log d+ sα log d

N

)
,

∥Q2∥P,4 ≤
∥∥{exp(−S⊤

1 γ̂)− exp(−S⊤
1 γ

∗)
}∥∥

P,8 ∥ζ∥P,8
(ii)
= Op

(√
sγ log d1

N

)
,

∥Q3∥P,4 ≤

∥∥∥∥∥exp(−S̄⊤
2 γ̂)

g(S⊤
1 δ̂)

− exp(−S̄⊤
2 γ

∗)

g(S⊤
1 δ

∗)

∥∥∥∥∥
P,8

∥ε∥P,8
(iii)
= Op

(√
sγ log d1 + sδ log d

N

)
,

where (i) and (ii) hold by Lemmas 2.13, 2.14, 2.15 and Lemma 2.4; (iii) holds analogously

as in (2.80). Hence,

R5 = Op

(
sγ log d1 + sδ log d+ sα log d

N

)
(2.86)

Recall the inequality (2.85). We have

δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) + λβ∥∆∥1 ≤ 4λβ∥∆Sβ

∥1 + 2R5.

Note that ∥∆Sβ
∥1 ≤

√
sβ∥∆Sβ

∥2 ≤
√
sβ∥∆∥2. Hence,

δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) + λβ∥∆∥1 ≤ 4λβ

√
sβ∥∆Sβ

∥1 + 2|R5|.

Recall the equation (2.67). We have δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) ≥ 0. Then

∥∆∥1 ≤ 4
√
sβ∥∆∥2 +

2R3

λβ
(2.87)

Then, by Lemma 2.17, PSγ∪Sδ∪Sβ(A7) ≥ 1 − o(1) − c1 exp(−c2M) = 1 − o(1), where A7

is defined in (2.84). The remaining parts of the proof can be shown analogously as (c) of
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Theorem 2.3. Now, conditional on A6 ∩ A7, for large enough N ,

∥∆∥2 ≤
8λβ
√
sβ

κ1
+

√
16R2

3

κ2 log d1
κ1Mλ2β

+
4R3

κ1

= Op

(√
sγ log d1 + sδ log d+ sα log d+ sβ log d1

N

)
.

with some λβ = 2σβ{2
√

(t+ log d1)/M+(t+log d1)/M} ≍
√
log d1/M . Recall the inequality

(2.87). We have

∥∆∥1 = Op

(
sγ

√
log d1
N

+ sδ

√
(log d)2

N log d1
+ sα

√
(log d)2

N log d1
+ sβ

√
log d1
N

)
.

Proofs of the results in Section 2.4.2

Assuming correctly specified models, we control the gradients in Lemma 2.19 below

(approximately) by the usual rate Op(
√

log d/N) or Op(
√
log d1/N). Note that, different

from Lemma 2.18, we can upper bound the gradients involving the estimated nuisance pa-

rameters. For instance, in part (a) of Lemma 2.19 below, we can control ∥∇δ ℓ̄2(γ̂, δ
∗)∥∞

and the estimation error of γ̂ is ignorable as long as sγ = Op(N/(log d1 log d)).

Lemma 2.19. (a) Let ρ(·) = ρ∗(·). Let the assumptions in part (a) of Theorem 2.3 hold.

Then, as N, d1, d2 →∞,

∥∥∇δ ℓ̄2(γ̂, δ
∗)
∥∥
∞ = Op

((
1 +

√
sγ log d1 log d

N

)√
log d

N

)
.

(b) Let ν(·) = ν∗(·). Let the assumptions in part (b) of Theorem 2.3 hold. Then, as

N, d1, d2 →∞,

∥∥∥∇αℓ̄3(γ̂, δ̂,α
∗)
∥∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d) log d

N

)√
log d

N

)
.
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(c) Let ν(·) = ν∗(·) and µ(·) = µ∗(·). Let the assumptions in part (c) of Theorem 2.3

hold. Then, as N, d1, d2 →∞,

∥∥∥∇β ℓ̄4(γ̂, δ̂,α
∗,β∗)

∥∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d) log d1

N

)√
log d1
N

)
.

(d) Let ρ(·) = ρ∗(·) and µ(·) = µ∗(·). Let the assumptions in part (c) of Theorem 2.3

hold. Then, as N, d1, d2 →∞,

∥∥∇β ℓ̄4(γ̂, δ
∗, α̂,β∗)

∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d+ sα log d) log d1

N

)√
log d1
N

)
.

(e) Let ρ(·) = ρ∗(·), ν(·) = ν∗(·), and µ(·) = µ∗(·). Let the assumptions in part (c)

of Theorem 2.3 hold. Then, as N, d1, d2 →∞,

∥∥∇β ℓ̄4(γ̂, δ
∗,α∗,β∗)

∥∥
∞ = Op

((
1 +

√
sγ(log d1)2

N

)√
log d1
N

)
.

Proof of Lemma 2.19. By Lemma 2.18, we have

∥∥∇δ ℓ̄2(γ
∗, δ∗)

∥∥
∞ =Op

(√
log d

N

)
, (2.88)

∥∥∇αℓ̄3(γ
∗, δ∗,α∗)

∥∥
∞ =Op

(√
log d

N

)
, (2.89)

∥∥∇β ℓ̄4(γ
∗, δ∗,α∗,β∗)

∥∥
∞ =Op

(√
log d1
N

)
. (2.90)

(a) Let ρ(·) = ρ∗(·). Note that

∇δ ℓ̄2(γ̂, δ
∗)−∇δ ℓ̄2(γ

∗, δ∗) =M−1
∑
i∈Iδ

Wδ,i,

where

Wδ,i := A1i{g−1(S⊤
1iγ̂)− g−1(S⊤

1iγ
∗)}{1− A2ig

−1(S̄⊤
2iδ

∗)}S̄2i.
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Let Wδ be an indepenent copy of Wδ,i. Then, by the tower rule,

E(Wδ) = 0 ∈ Rd.

By Lemma 2.5, we have

ESδ

∥∥∥∥∥M−1
∑
i∈Iδ

Wδ,i

∥∥∥∥∥
2

∞

 ≤M−1(2e log d− e)E(∥Wδ∥2∞)

(i)

≤ (1 + c−1
0 )M−1(2e log d− e)E

{∣∣g−1(S⊤
1 γ̂)− g−1(S⊤

1 γ
∗)
∣∣2 ∥S̄2∥2∞

}
(ii)

≤ (1 + c−1
0 )M−1(2e log d− e)

∥∥g−1(S⊤
1 γ̂)− g−1(S⊤

1 γ
∗)
∥∥2
P,4

∥∥∥S̄2∥∞
∥∥2
P,4

(iii)
= Op

(
sγ log d1(log d)

2

N2

)
,

where (i) holds since |A1{1−A2g
−1(S̄2δ

∗)}| ≤ 1 + c−1
0 almost surely under Assumption 2.1;

(ii) holds by Hölder’s inequality; (iii) holds by Lemma 2.13 and Lemma 2.4. By Lemma 2.2,

∥∥∇δ ℓ̄2(γ̂, δ
∗)−∇δ ℓ̄2(γ

∗, δ∗)
∥∥
∞ =

∥∥∥∥∥M−1
∑
i∈Iδ

Wδ,i

∥∥∥∥∥
∞

= Op

(√
sγ log d1 log d

N

)
.

Together with (2.88), we have

∥∥∇δ ℓ̄2(γ̂, δ
∗)
∥∥
∞ = Op

((
1 +

√
sγ log d1 log d

N

)√
log d

N

)
.

The remaining parts of the proof can be shown analogously as in (a).

(b) Let ν(·) = ν∗(·). Note that

∇αℓ̄3(γ̂, δ̂,α
∗)−∇αℓ̄3(γ

∗, δ∗,α∗) =M−1
∑
i∈Iα

Wα,i,

where

Wα,i := −2A1iA2i{g−1(S⊤
1iγ̂) exp(−S̄⊤

2iδ̂)− g−1(S⊤
1iγ

∗) exp(−S̄⊤
2iδ

∗)}εiS̄2i.
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Let Wα be an indepenent copy of Wα,i. Then, by the tower rule,

E(Wα) = 0 ∈ Rd.

By Lemma 2.5, we have

ESα

∥∥∥∥∥M−1
∑
i∈Iα

Wα,i

∥∥∥∥∥
2

∞

 ≤M−1(2e log d− e)E(∥Wα∥2∞)

(i)

≤ 2M−1(2e log d− e)E


∣∣∣∣∣exp(−S̄⊤

2 δ̂)

g(S⊤
1 γ̂)

− exp(−S̄⊤
2 δ

∗)

g(S⊤
1 γ

∗)

∣∣∣∣∣
2

ε2∥S̄2∥2∞


(ii)

≤ 2M−1(2e log d− e)

∥∥∥∥∥exp(−S̄⊤
2 δ̂)

g(S⊤
1 γ̂)

− exp(−S̄⊤
2 δ

∗)

g(S⊤
1 γ

∗)

∥∥∥∥∥
2

P,6

∥∥ε∥2P,6∥∥S̄2∥∞
∥∥2
P,6

(iii)
= Op

(
(sγ log d1 + sδ log d)(log d)

2

N2

)
,

where (i) holds since |A1A2| ≤ 1; (ii) holds by Hölder’s inequality; (iii) holds by Lemma 2.4

and (2.80). By Lemma 2.2,

∥∥∥∇αℓ̄3(γ̂, δ̂,α
∗)−∇δ ℓ̄3(γ

∗, δ∗,α∗)
∥∥∥
∞

= Op

(√
sγ log d1 log d

N

)
.

Together with (2.89), we have

∥∥∥∇αℓ̄3(γ̂, δ̂,α
∗)
∥∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d) log d

N

)√
log d

N

)
.

(c) Let ν(·) = ν∗(·) and µ(·) = µ∗(·). Note that

∇β ℓ̄4(γ̂, δ̂,α
∗,β∗)−∇β ℓ̄4(γ

∗, δ∗,α∗,β∗) =M−1
∑
i∈Iβ

(Wβ,1,i +Wβ,2,i),

where

Wβ,1,i :=− 2A1i{exp(−S⊤
1iγ̂)− exp(−S⊤

1iγ
∗)}ζiS1i,

Wβ,2,i :=− 2A1iA2i{exp(−S⊤
1iγ̂)g

−1(S̄⊤
2iδ̂)− exp(−S⊤

1iγ
∗)g−1(S̄⊤

2iδ
∗)}εiS1i.
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Let Wβ,1 and Wβ,2 be indepenent copies of Wβ,1,i and Wβ,1,i, respectively. Then, by the

tower rule,

E(Wβ,1) = E(Wβ,2) = 0 ∈ Rd1 .

By Lemma 2.5, we have

ESβ

∥∥∥∥∥∥M−1
∑
i∈Iβ

Wβ,1,i

∥∥∥∥∥∥
2

∞

 ≤M−1(2e log d1 − e)E(∥Wβ,1∥2∞)

(i)

≤ 4M−1(2e log d1 − e)E
{∣∣exp(−S⊤

1 γ̂)− exp(S⊤
1 γ

∗)
∣∣2 ζ2∥S1∥2∞

}
(ii)

≤
−1

(2e log d1 − e)
∥∥exp(−S⊤

1 γ̂)− exp(S⊤
1 γ

∗)
∥∥2
P,6

∥∥ζ∥2P,6∥∥S1∥∞
∥∥2
P,6

(iii)
= Op

(
sγ log d1(log d1)

2

N2

)
,

where (i) holds since |A1| ≤ 1; (ii) holds by Hölder’s inequality; (iii) holds by Lemma 2.13

and Lemma 2.4. Similarly, by Lemma 2.5, we also have

ESβ

∥∥∥∥∥∥M−1
∑
i∈Iβ

Wβ,2,i

∥∥∥∥∥∥
2

∞

 ≤M−1(2e log d1 − e)E(∥Wβ,2∥2∞)

(i)

≤ 4M−1(2e log d1 − e)E


∣∣∣∣∣exp(−S⊤

1 γ̂)

g(S̄⊤
2 δ̂)

− exp(−S⊤
1 γ

∗)

g(S̄⊤
2 δ

∗)

∣∣∣∣∣
2

ε2∥S1∥2∞


(ii)

≤ 4M−1(2e log d1 − e)

∥∥∥∥∥exp(−S⊤
1 γ̂)

g(S̄⊤
2 δ̂)

− exp(−S⊤
1 γ

∗)

g(S̄⊤
2 δ

∗)

∥∥∥∥∥
2

P,6

∥∥ε∥2P,6∥∥S1∥∞
∥∥2
P,6

(iii)
= Op

(
(sγ log d1 + sδ log d)(log d1)

2

N2

)
,

where (i) holds since |A1A2| ≤ 1; (ii) holds by Hölder’s inequality; (iii) holds by Lemma 2.4

and, analogously as in (2.80),∥∥∥∥∥exp(−S⊤
1 γ̂)

g(S̄⊤
2 δ̂)

− exp(−S⊤
1 γ

∗)

g(S̄⊤
2 δ

∗)

∥∥∥∥∥
P,6

= Op

(√
sγ log d1 + sδ log d

N

)
.
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Hence, it follows that

ESβ

{∥∥∥∇β ℓ̄4(γ̂, δ̂,α
∗,β∗)−∇αℓ̄4(γ

∗, δ∗,α∗,β∗)
∥∥∥2
∞

}
= Op

(
(sγ log d1 + sδ log d)(log d1)

2

N2

)
.

By Lemma 2.2,

∥∥∥∇β ℓ̄4(γ̂, δ̂,α
∗,β∗)−∇β ℓ̄4(γ

∗, δ∗,α∗,β∗)
∥∥∥
∞

= Op

(√
sγ log d1 + sδ log d log d1

N

)
.

Together with (2.90), we have

∥∥∥∇β ℓ̄4(γ̂, δ̂,α
∗,β∗)

∥∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d) log d1

N

)√
log d1
N

)
.

(d) Let ρ(·) = ρ∗(·) and µ(·) = µ∗(·). Note that

∇β ℓ̄4(γ̂, δ
∗, α̂,β∗)−∇β ℓ̄4(γ

∗, δ∗,α∗,β∗) =M−1
∑
i∈Iβ

(Wβ,3,i +Wβ,4,i),

where

Wβ,3,i := −2A1i exp(−S⊤
1iγ̂)

{
1− A2i

g(S̄⊤
2iδ

∗)

}
S̄⊤
2i(α̂−α∗)S1i,

Wβ,4,i := −2A1i{exp(−S⊤
1iγ̂)− exp(−S⊤

1iγ
∗)}
{

A2i

g(S̄⊤
2iδ

∗)
εi + ζi

}
S1i. (2.91)

Let Wβ,3 and Wβ,4 be independent copies of Wβ,3,i and Wβ,4,i, respectively. Then,

by the tower rule,

E(Wβ,3) = E(Wβ,4) = 0 ∈ Rd1 .
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By Lemma 2.5, we have

ESβ

∥∥∥∥∥∥M−1
∑
i∈Iβ

Wβ,3,i

∥∥∥∥∥∥
2

∞

 ≤M−1(2e log d1 − e)E(∥Wβ,3∥2∞)

(i)

≤ (2e log d1 − e)(1 + c−1
0 )2E

{
exp(S⊤

1 γ̂)
{
S̄⊤
2 (α̂−α∗)

}2 ∥S1∥2∞
}

(ii)

≤ (2e log d1 − e)(1 + c−1
0 )2

∥∥exp(S⊤
1 γ̂)

∥∥2
P,3

∥∥S̄⊤
2 (α̂−α∗)

∥∥2
P,6 ∥∥S1∥∞∥2P,6

(iii)
= Op

(
(sγ log d1 + sδ log d+ sα log d)(log d1)

2

N2

)
,

where (i) holds since |A1{1 − A2/g(S̄
⊤
2 δ

∗)}| ≤ (1 + c−1
0 ) under Assumption 2.1; (ii) holds

by Hölder’s inequality; (iii) holds by Lemmas 2.13, 2.15, and Lemma 2.4. Similarly, we also

have

ESβ

∥∥∥∥∥∥M−1
∑
i∈Iβ

Wβ,4,i

∥∥∥∥∥∥
2

∞

 ≤M−1(2e log d1 − e)E(∥Wβ,4∥2∞)

≤ 4M−1(2e log d1 − e)E
[{

exp(S⊤
1 γ̂)− exp(S⊤

1 γ
∗)
}2 (

c−1
0 |ε|+ |ζ|

)2 ∥S1∥2∞
]

≤ 8M−1(2e log d1 − e)
∥∥exp(S⊤

1 γ̂)− exp(S⊤
1 γ

∗)
∥∥2
P,6

(
c−2
0 ∥ε∥2P,6 + ∥ζ∥2P,6

)
∥∥S1∥∞∥2P,6

(i)
= Op

(
sγ log d1(log d1)

2

N2

)
, (2.92)

where (i) holds by Lemmas 2.13 and Lemma 2.4. Hence, it follows that

ESβ

{∥∥∇β ℓ̄4(γ̂, δ
∗, α̂,β∗)−∇β ℓ̄4(γ

∗, δ∗,α∗,β∗)
∥∥2
∞

}
= Op

(
(sγ log d1 + sδ log d+ sα log d)(log d1)

2

N2

)
.

By Lemma 2.2,

∥∥∇β ℓ̄4(γ̂, δ
∗, α̂,β∗)−∇β ℓ̄4(γ

∗, δ∗,α∗,β∗)
∥∥
∞

= Op

(√
sγ log d1 + sδ log d+ sα log d log d1

N

)
.
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Together with (2.90), we have

∥∥∇β ℓ̄4(γ̂, δ
∗, α̂,β∗)

∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d+ sα log d) log d1

N

)√
log d1
N

)
.

(e) Let ρ(·) = ρ∗(·), ν(·) = ν∗(·), and µ(·) = µ∗(·). Note that

∇β ℓ̄4(γ̂, δ
∗,α∗,β∗)−∇β ℓ̄4(γ

∗, δ∗,α∗,β∗) =M−1
∑
i∈Iβ

Wβ,4,i,

where Wβ,4,i is defined in (2.91). By (2.92) and Lemma 2.2,

∥∥∇β ℓ̄4(γ̂, δ
∗,α∗,β∗)−∇β ℓ̄4(γ

∗, δ∗,α∗,β∗)
∥∥
∞ = Op

(√
sγ log d1 log d1

N

)
.

Together with (2.90), we have

∥∥∇β ℓ̄4(γ̂, δ
∗, α̂,β∗)

∥∥
∞ = Op

((
1 +

√
sγ(log d1)2

N

)√
log d1
N

)
.

Proof of Theorem 2.4. We show the consistency rate of the nuisance estimators under cor-

rectly specified models.

(a) Let ρ(·) = ρ∗(·). Then, by Lemma 2.19, when sγ = O(N/(log d1 log d)),

∥∥∇δ ℓ̄2(γ̂, δ
∗)
∥∥
∞ = Op

(√
log d

N

)
.

By Lemma 2.17, we have (2.62) when ∥γ̂ − γ∗∥2 ≤ 1. In addition, by Lemma 2.13, we also

have PSγ (∥γ̂ − γ∗∥2 ≤ 1) = 1− o(1). By Corollary 9.20 of [Wai19], we have

∥δ̂ − δ∗∥2 = Op

(√
sδ log d

N

)
, ∥δ̂ − δ∗∥1 = Op

(
sδ

√
log d

N

)
.
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(b) Let ν(·) = ν∗(·). Then, by Lemma 2.19, when sγ = O(N/(log d1 log d)) and

sδ = O(N/(log d)2), ∥∥∥∇αℓ̄3(γ̂, δ̂,α
∗)
∥∥∥
∞

= Op

(√
log d

N

)
.

By Lemma 2.17, we have (2.64) when ∥γ̂ − γ∗∥2 ≤ 1 and ∥δ̂ − δ∗∥2 ≤ 1. In addition, by

Lemmas 2.13 and 2.14, we also have PSγ∪Sδ(∥γ̂ − γ∗∥2 ≤ 1 ∩ ∥δ̂ − δ∗∥2 ≤ 1) = 1− o(1). By

Corollary 9.20 of [Wai19], we have

∥α̂−α∗∥2 = Op

(√
sα log d

N

)
, ∥α̂−α∗∥1 = Op

(
sα

√
log d

N

)
.

(c) Let ν(·) = ν∗(·) and µ(S1) = S⊤
1 β. Then, by Lemma 2.19, when sγ = O(N/(log d1)

2)

and sδ = O(N/(log d1 log d)),∥∥∥∇β ℓ̄4(γ̂, δ̂,α
∗,β∗)

∥∥∥
∞

= Op

(√
log d1
N

)
.

That is, for any t > 0, there exists some λ3 ≍
√

log d1/N such that

E3 := {∥∇β ℓ̄4(γ̂, δ̂,α
∗,β∗)∥∞ ≤ λ3}

holds with probability at least 1− t. Condition on the event E3, and choose some λβ > 2λ3.

By the construction of β, we have

ℓ̄4(γ̂, δ̂, α̂, β̂) + λβ∥β̂∥1 ≤ ℓ̄4(γ̂, δ̂, α̂,β
∗) + λβ∥β∗∥1.

Let ∆ = α̂−α∗ and S = {j ∈ {1, . . . , d1} : β∗
j ̸= 0}. Note that,

δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) = ℓ̄4(γ̂, δ̂, α̂, β̂)− ℓ̄4(γ̂, δ̂, α̂,β∗)−∇β ℓ̄4(γ̂, δ̂, α̂,β

∗)⊤∆.

Hence,

δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) + λβ∥β̂∥1 ≤ −∇β ℓ̄4(γ̂, δ̂, α̂,β

∗)⊤∆+ λβ∥β∗∥1

≤
∥∥∥∇β ℓ̄4(γ̂, δ̂,α

∗,β∗)
∥∥∥
∞
∥∆∥1 + λβ∥β∗∥1 + |R6| ≤ λβ∥∆∥1/2 + λβ∥β∗∥1 + |R6|,
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where

R6 :=
{
∇β ℓ̄4(γ̂, δ̂, α̂,β

∗)−∇β ℓ̄4(γ̂, δ̂,α
∗,β∗)

}⊤
∆.

Note that ∥β∗∥1 = ∥β∗
S∥1 ≤ ∥β̂S∥1 + ∥∆S∥1, ∥β̂∥1 = ∥β̂S∥1 + ∥β̂Sc∥1 = ∥β̂S∥1 + ∥∆Sc∥1,

and ∥∆∥1 = ∥∆S∥1 + ∥∆Sc∥1. Hence, we have

2δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) + λβ∥∆Sc∥1 ≤ 3λβ∥∆S∥1 + 2|R6|.

Observe that

|R6| =

∣∣∣∣∣∣2M−1
∑
i∈Iβ

A1i exp(−S⊤
1iγ̂)

{
1− A2i

g(S̄⊤
2iδ̂)

}
S̄⊤
2i(α̂−α∗)S⊤

1i∆

∣∣∣∣∣∣
≤ δℓ̄4(γ̂, δ̂, α̂,β

∗,∆)

2
+R7,

where δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) =M−1

∑
i∈Iβ A1i exp(−S⊤

1iγ̂)(S
⊤
1i∆)2 and

R7 := 2M−1
∑
i∈Iβ

exp(−S⊤
1iγ̂)

{
1− A2i

g(S̄⊤
2iδ̂)

}2 {
S̄⊤
2i(α̂−α∗)

}2
.

It follows that

δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) + λβ∥∆Sc∥1 ≤ 3λβ∥∆S∥1 + 2R7. (2.93)

Condition on ∥γ̂ − γ∗∥2 ≤ 1, where by Lemma 2.13, ∥γ̂ − γ∗∥2 ≤ 1 holds with probability

1− o(1). Also, condition on the event that

δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) ≥ κ1∥∆∥22 − κ2

log d1
M
∥∆∥21, (2.94)

which, by Lemma 2.17, holds with probability 1 − o(1). Since δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) ≥ 0, by

(2.93), we have

∥∆∥1 ≤ 4∥∆S∥1 + 2λ−1
β R7. (2.95)
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Note that ∥∆S∥1 ≤
√
sβ∥∆S∥2 ≤

√
sβ∥∆∥2. Hence,

3λβ
√
sβ∥∆∥2 + 2R7 ≥ 3λβ∥∆S∥1 + 2R7

(i)

≥ δℓ̄4(γ̂, δ̂, α̂,β
∗,∆)

(ii)

≥ κ1∥∆∥22 − κ2
log d1
M
∥∆∥21

(iii)

≥ κ1∥∆∥22 − κ2
log d1
M

(
4∥∆S∥1 + 2λ−1

β R7

)2
≥ κ1∥∆∥22 − 4κ2

log d1
M

(
4∥∆S∥21 + λ−2

β R2
7

)
≥ κ1∥∆∥22 − 4κ2

log d1
M

(
4sβ∥∆∥22 + λ−2

β R2
7

)
≥ κ1

2
∥∆∥22 −

4κ2 log d1
λ2βM

R2
7,

when M > 32κ2sβ log d1/κ1. Here, (i) follows from (2.93) and the fact that λβ∥∆Sc∥1 ≥ 0;

(ii) holds under the event that (2.94) occurs; (iii) follows from (2.95). By Lemma 2.12,

∥∆∥2 ≤
6λβ
√
sβ

κ1
+

√
8κ2R2

7 log d1
κ1λ2βM

+
4R7

κ1
. (2.96)

Now, we upper bound the term R7. Observe that

ESβ(R7) = 2E

exp(−S⊤
1 γ̂)

{
1− A2

g(S̄⊤
2 δ̂)

}2 {
S̄⊤
2 (α̂−α∗)

}2
(i)

≤ 2
∥∥exp(−S⊤

1 γ̂)
∥∥
P,3

∥∥∥∥∥1− A2

g(S̄⊤
2 δ̂)

∥∥∥∥∥
2

P,6

∥∥S̄⊤
2 (α̂−α∗)

∥∥2
P,6

(ii)

≤ 2
∥∥exp(−S⊤

1 γ̂)
∥∥
P,3

{
1 +

∥∥∥g−1(S̄⊤
2 δ̂)
∥∥∥
P,6

}2 ∥∥S̄⊤
2 (α̂−α∗)

∥∥2
P,6

(iii)
= Op

(
sα log d

N

)
,

where (i) holds by Hölder’s inequality; (ii) holds by Minkowski inequality; (iii) holds by

Lemmas 2.13, 2.14, and 2.15. By Lemma 2.2,

R7 = Op

(
sα log d

N

)
.

By (2.96) and since λβ ≍
√
log d1/N , we have

∥∆∥2 = Op

(√
sβ log d1

N
+
sα log d

N
+

√
sα log d

N

)
= Op

(√
sα log d+ sβ log d1

N

)
.

219



By (2.95),

∥∆∥1 ≤ 4
√
sβ∥∆∥2 + 2λ−1

β R7 = Op

(
sβ

√
log d1
N

+ sγ

√
(log d)2

N log d1

)
.

(d) Let ρ(·) = ρ∗(·) and µ(·) = µ∗(·). Then, by Lemma 2.19, when sγ = o(N/(log d1)
2),

sδ = o(N/(log d1 log d)), and sα = o(N/(log d1 log d)),

∥∥∇β ℓ̄4(γ̂, δ
∗, α̂,β∗)

∥∥
∞ = Op

(√
log d1
N

)
.

That is, for any t > 0, there exists some λ4 ≍
√

log d1/N such that

E4 := {∥∇β ℓ̄4(γ̂, δ
∗, α̂,β∗)∥∞ ≤ λ4}

holds with probability at least 1− t. Condition on the event E4, and choose some λβ > 2λ4.

Similarly as in part (c), we obtain

2δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) + λβ∥∆Sc∥1 ≤ 3λβ∥∆S∥1 + 2|R8|,

where

|R8| =
∣∣∣∣{∇β ℓ̄4(γ̂, δ̂, α̂,β

∗)−∇β ℓ̄4(γ̂, δ
∗, α̂,β∗)

}⊤
∆

∣∣∣∣
=

∣∣∣∣∣∣2M−1
∑
i∈Iβ

A1iA2i exp(−S⊤
1iγ̂)

{
g−1(S̄⊤

2iδ̂)− g−1(S̄⊤
2iδ

∗)
}
ε̂iS

⊤
1i∆

∣∣∣∣∣∣
≤ δℓ̄4(γ̂, δ̂, α̂,β

∗,∆)

2
+R9.

Here, ε̂i := Yi(1, 1)− S̄⊤
2iα̂,

δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) =M−1

∑
i∈Iβ

A1i exp(−S⊤
1iγ̂)(S

⊤
1i∆)2,

R9 :=2M−1
∑
i∈Iβ

A2i exp(−S⊤
1iγ̂)

{
g−1(S̄⊤

2iδ̂)− g−1(S̄⊤
2iδ

∗)
}2

ε̂2i .
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Observe that

ESβ(R9) = 2E
[
A2 exp(−S⊤

1 γ̂)
{
g−1(S̄⊤

2 δ̂)− g−1(S̄⊤
2 δ

∗)
}2

ε̂2
]

≤ 2
∥∥exp(−S⊤

1 γ̂)
∥∥
P,3

∥∥∥g−1(S̄⊤
2 δ̂)− g−1(S̄⊤

2 δ
∗)
∥∥∥2
P,6
∥ε̂∥2P,6

(i)
= Op

(
sδ log d

N

)
,

where (i) holds by Lemmas 2.13, 2.14, and 2.15. By Lemma 2.2,

R9 = Op

(
sδ log d

N

)
.

Repeat the same procedure as in part (c), we have

∥∆∥2 ≤
6λβ
√
sβ

κ1
+

√
8κ2R2

9 log d1
κ1λ2βM

+
4R9

κ1
,

∥∆∥1 ≤ 4
√
sβ∥∆∥2 + 2λ−1

β R9,

with probability at least 1− t− o(1). Hence,

∥∆∥2 = Op

(√
sδ log d+ sβ log d1

N

)
,

∥∆∥1 = Op

(
sδ

√
(log d)2

N log d1
+ sβ

√
log d1
N

)
.

(e) Let ρ(·) = ρ∗(·), ν(·) = ν∗(·), and µ(·) = µ∗(·). Then, by Lemma 2.19, when

sγ = o(N/(log d1)
2), sδ = o(N/(log d1 log d)), and sα = o(N/(log d1 log d)),

∥∥∥∇β ℓ̄4(γ̂, δ̂,α
∗,β∗)

∥∥∥
∞

= Op

(√
log d1
N

)
,

∥∥∇β ℓ̄4(γ̂, δ
∗, α̂,β∗)

∥∥
∞ = Op

(√
log d1
N

)
,

∥∥∇β ℓ̄4(γ̂, δ
∗,α∗,β∗)

∥∥
∞ = Op

(√
log d1
N

)
.
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Define

a := ∇β ℓ̄4(γ̂, δ̂,α
∗,β∗) +∇β ℓ̄4(γ̂, δ

∗, α̂,β∗)−∇β ℓ̄4(γ̂, δ
∗,α∗,β∗).

Then ∥a∥∞ = Op(
√

log d1
N

). Hence, for any t > 0, there exists some λ5 ≍
√
log d1/N such

that E5 := {∥a∥∞ ≤ λ5} holds with probability at least 1 − t. Condition on the event E5,

and choose some λβ > 2λ5. Similarly as in parts (c) and (d), we obtain

2δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) + λβ∥∆Sc∥1 ≤ 3λβ∥∆S∥1 + 2|R10|,

where

R10 =
{
∇β ℓ̄4(γ̂, δ̂, α̂,β

∗)− a
}⊤

∆

=
{
∇β ℓ̄4(γ̂, δ̂, α̂,β

∗)−∇β ℓ̄4(γ̂, δ̂,α
∗,β∗)

}⊤
∆

−
{
∇β ℓ̄4(γ̂, δ

∗, α̂,β∗)−∇β ℓ̄4(γ̂, δ
∗,α∗,β∗)

}⊤
∆

= 2M−1
∑
i∈Iβ

A1iA2i exp(−S⊤
1iγ̂)

{
g−1(S̄⊤

2iδ̂)− g−1(S̄⊤
2iδ

∗)
}
S̄⊤
2i(α̂−α∗)S⊤

1i∆.

By Young’s inequality for products,

|R10| ≤
δℓ̄4(γ̂, δ̂, α̂,β

∗,∆)

2
+R11,

where δℓ̄4(γ̂, δ̂, α̂,β
∗,∆) =M−1

∑
i∈Iβ A1i exp(−S⊤

1iγ̂)(S
⊤
1i∆)2 and

R11 := 2M−1
∑
i∈Iβ

A2i exp(−S⊤
1iγ̂)

{
g−1(S̄⊤

2iδ̂)− g−1(S̄⊤
2iδ

∗)
}2 {

S̄⊤
2i(α̂−α∗)

}2
.

Observe that

ESβ(R11) = 2E
[
A2 exp(−S⊤

1 γ̂)
{
g−1(S̄⊤

2 δ̂)− g−1(S̄⊤
2 δ

∗)
}2 {

S̄⊤
2 (α̂−α∗)

}2]
≤ 2

∥∥exp(−S⊤
1 γ̂)

∥∥
P,3

∥∥∥g−1(S̄⊤
2 δ̂)− g−1(S̄⊤

2 δ
∗)
∥∥∥2
P,6

∥∥S̄⊤
2 (α̂−α∗)

∥∥2
P,6

(i)
= Op

(
sδsα(log d)

2

N2

)
,

222



where (i) holds by Lemmas 2.13, 2.14, and 2.15. By Lemma 2.2,

R11 = Op

(
sδsα(log d)

2

N2

)
.

Repeat the same procedure as in parts (c) and (d), we have

∥∆∥2 ≤
6λβ
√
sβ

κ1
+

√
8κ2R2

11 log d1
κ1λ2βM

+
4R11

κ1
,

∥∆∥1 ≤ 4
√
sβ∥∆∥2 + 2λ−1

β R11,

with probability at least 1− t− o(1). Hence,

∥∆∥2 = Op

(√
sδsα log d

N
+

√
sβ log d1

N

)
,

∥∆∥1 = Op

(
sδsα log d

N

√
(log d)2

N log d1
+ sβ

√
log d1
N

)
.

2.7.5 Proofs of the auxiliary Lemmas

Proof of Lemma 2.8. We prove the lemma by considering two cases separately.

(a) If d ≤ m. Choose S = {1, . . . , d}. Since X is a sub-Gaussian vector, we have

sup
∥β∥2=1

E{(X⊤β)2} = O(1). (2.97)

For any ∆ ∈ Rd, by triangle inequality, we have

m−1

m∑
i=1

(X⊤
i ∆)2 ≤ ∥∆∥22 sup

∥β∥2=1

m−1

m∑
i=1

(X⊤
i β)

2

≤ ∥∆∥22

[
sup

∥β∥2=1

E{(X⊤β)2}+ sup
∥β∥2=1

∣∣∣∣∣m−1

m∑
i=1

(X⊤
i β)

2 − E{(X⊤β)2}

∣∣∣∣∣
]
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It follows that

sup
∆∈Rd/{0}

m−1
∑m

i=1(X
⊤
i ∆)2

∥∆∥22

≤

[
sup

∥β∥2=1

E{(X⊤β)2}+ sup
∥β∥2=1

∣∣∣∣∣m−1

m∑
i=1

(X⊤
i β)

2 − E{(X⊤β)2}

∣∣∣∣∣
]

By Lemma 2.7 and (2.97), we have, as m, d→∞,

sup
∆∈Rd/{0}

m−1
∑m

i=1(X
⊤
i ∆)2

∥∆∥22
= Op

(
1 +

√
d

m

)
(i)
= Op(1)

where (i) holds since d ≤ m. Hence,

sup
∆∈Rd/{0}

m−1
∑m

i=1(X
⊤
i ∆)2

m−1∥∆∥21 + ∥∆∥22
≤ sup

∆∈Rd/{0}

m−1
∑m

i=1(X
⊤
i ∆)2

∥∆∥22
= Op(1)

(b) If d > m. Choose any set S ⊆ {1, . . . , d} such that s := |S| ≍ m. For any

∆ ∈ Rd, define ∆̃ = (∆̃⊤
S , ∆̃

⊤
Sc)⊤ ∈ Rd such that

∆̃S = s−1∥∆∥1(1, . . . , 1)⊤ ∈ Rs, ∆̃Sc = ∆Sc ∈ Rd−s.

Then

∥∆̃Sc∥1 = ∥∆Sc∥1 ≤ ∥∆∥1 = ∥∆̃S∥1.

Hence, ∆̃ ∈ C(S, 3) := {∆ ∈ Rd : ∥∆Sc∥1 ≤ 3∥∆S∥1}. In addition, since (∆̃−∆)Sc = 0 ∈

Rd−s, we also have ∆̃ −∆ ∈ C(S, 3). Therefore, by the fact that (a + b)2 ≤ 2a2 + 2b2, we

have

m−1

m∑
i=1

(X⊤
i ∆)2 ≤ 2m−1

m∑
i=1

(X⊤
i ∆̃)2 + 2m−1

m∑
i=1

{
X⊤
i (∆̃−∆)

}2

≤ 2
(
∥∆̃∥22 + ∥∆̃−∆∥22

)
sup

β∈C(S,3)∩∥β∥2=1

m−1

m∑
i=1

(X⊤
i β)

2.
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Now, we observe that

∥∆̃∥22 = ∥∆̃S∥22 + ∥∆̃Sc∥22 = s−1∥∆∥21 + ∥∆Sc∥22,

∥∆̃−∆∥22 = ∥∆̃S −∆S∥22 ≤ 2∥∆̃S∥22 + 2∥∆S∥22 = 2s−1∥∆∥21 + 2∥∆S∥22.

Hence, we have

m−1

m∑
i=1

(X⊤
i ∆)2 ≤ 2

(
3s−1∥∆∥21 + 2∥∆∥22

)
sup

β∈C(S,3)∩∥β∥2=1

m−1

m∑
i=1

(X⊤
i β)

2, ∀∆ ∈ Rd,

since ∥∆̃∥22 + ∥∆̃−∆∥22 ≤ 3s−1∥∆∥21 + 2∥∆∥22. It follows that

sup
∆∈Rd/{0}

m−1
∑m

i=1(X
⊤
i ∆)2

6s−1∥∆∥21 + 4∥∆∥22
≤ sup

β∈C(S,3)∩∥β∥2=1

m−1

m∑
i=1

(X⊤
i β)

2,

By Lemma 2.7 and (2.97), as m, d→∞,

sup
∆∈Rd/{0}

m−1
∑m

i=1(X
⊤
i ∆)2

s−1∥∆∥21 + ∥∆∥22
= Op

(
1 +

√
s

m

)
.

Besides, note that s ≍ m and hence 1 +
√
s/m = O(1). It follows that

sup
∆∈Rd/{0}

m−1
∑m

i=1(X
⊤
i ∆)2

m−1∥∆∥21 + ∥∆∥22
= Op(1).

Proof of Lemma 2.9. Note that

F(∆) :=δℓ̄2(γ̂, δ
∗,∆) + λδ∥δ∗ +∆∥1 +∇δ ℓ̄2(γ̂, δ

∗)⊤∆− λδ∥δ∗∥1

=δℓ̄2(γ̂, δ
∗,∆) + λδ∥δ∗ +∆∥1 +∇δ ℓ̄2(γ

∗, δ∗)⊤∆+R1(∆)− λδ∥δ∗∥1, (2.98)

where

R1(∆) : =
{
∇δ ℓ̄2(γ̂, δ

∗)−∇δ ℓ̄2(γ
∗, δ∗)

}⊤
∆

=M−1
∑
i∈Iδ

A1i

{
g−1(S⊤

1iγ̂)− g−1(S⊤
1iγ

∗)
}{

1− A2ig
−1(S̄⊤

2iδ
∗)
}
S̄⊤
2i∆.
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Let λδ = 2σδ
√
(t+ log d)/M with some t > 0. By Lemma 2.18, we have PSδ(A1) ≥ 1 −

2 exp(−t). On the event A1, we have |∇δ ℓ̄2(γ
∗, δ∗)⊤∆| ≤ λδ∥∆∥1/2. Note that ∥δ∗∥1 =

∥δ∗
Sδ
∥1 ≤ ∥δ∗

Sδ
+ ∆Sδ

∥1 + ∥∆Sδ
∥1, ∥∆∥1 = ∥∆Sδ

∥1 + ∥∆Sc
δ
∥1, and ∥δ∗ + ∆∥1 = ∥δ∗

Sδ
+

∆Sδ
∥1 + ∥∆Sc

δ
∥1. Recall the equation (2.98). It follows that

2F(∆) ≥ 2δℓ̄2(γ̂, δ
∗,∆) + λδ∥∆Sc

δ
∥1 − 3λδ∥∆Sδ

∥1 − 2|R1(∆)|.

Hence,

2F(∆) ≥ 2δℓ̄2(γ̂, δ
∗,∆) + λδ∥∆∥1 − 4λδ∥∆Sδ

∥1 − 2|R1(∆)|. (2.99)

Under the overlap condition in Assumption 2.1 and since |A1| ≤ 1,

|R1(∆)| ≤ (1 + c−1
0 )M−1

∑
i∈Iδ

A1i

{
g−1(S⊤

1iγ̂)− g−1(S⊤
1iγ

∗)
}
S̄⊤
2i∆

(i)

≤ (1 + c−1
0 )

√
M−1

∑
i∈Iδ

{
g−1(S⊤

1iγ̂)− g−1(S⊤
1iγ

∗)
}2√

M−1
∑
i∈Iδ

(S̄⊤
2i∆)2,

where (i) holds by the Cauchy–Schwarz inequality. It follows that

sup
∆∈Rd/{0}

|R1(∆)|
∥∆∥1/

√
N + ∥∆∥2

≤ (1 + c−1
0 )

√
M−1

∑
i∈Iδ

{
g−1(S⊤

1iγ̂)− g−1(S⊤
1iγ

∗)
}2√

sup
∆∈Rd/{0}

M−1
∑

i∈Iδ(S̄
⊤
2i∆)2

N−1∥∆∥21 + ∥∆∥22
,

since (∥∆∥1/
√
N + ∥∆∥2)2 > N−1∥∆∥21 + ∥∆∥22. Note that

ESδ

[
M−1

∑
i∈Iδ

{
g−1(S⊤

1iγ̂)− g−1(S⊤
1iγ

∗)
}2]

= E
[{
g−1(S⊤

1 γ̂)− g−1(S⊤
1 γ

∗)
}2]

(i)
= Op

(
sγ log d1

N

)
,

where (i) holds by Lemma 2.13. By Lemma 2.2,

M−1
∑
i∈Iδ

{
g−1(S⊤

1iγ̂)− g−1(S⊤
1iγ

∗)
}2

= Op

(
sγ log d1

N

)
.
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Besides, by Lemma 2.8, we also have

sup
∆∈Rd/{0}

M−1
∑

i∈Iδ(S̄
⊤
2i∆)2

N−1∥∆∥21 + ∥∆∥22
= Op(1).

Hence,

sup
∆∈Rd/{0}

|R1(∆)|
∥∆∥1/

√
N + ∥∆∥2

= Op

(√
sγ log d1

N

)
.

That is, with any t > 0, when N is large enough, there exists some constant c > 0 such that

PSγ∪Sδ(A2) ≥ 1− t. Hence,

PSγ∪Sδ(A1 ∩ A2) ≥ 1− t− 2 exp(−t).

Recall the definitions (2.35) and (2.36). Now, conditional on A1 ∩ A2, we have

2F(∆) ≥ 2δℓ̄2(γ̂, δ
∗,∆) + λδ∥∆∥1 − 4λδ∥∆Sδ

∥1 − 2c

√
sγ log d1

N

(
∥∆∥1√
N

+ ∥∆∥2
)
.

Since λδ = 2σδ
√

(t+ log d)/M ≥ 2σδ
√

log d1/M , M ≍ N , and sγ = o(N), we have√
sγ log d1/N2 = o(λδ). Hence, with some N0 > 0, when N > N0, we have 4c

√
sγ log d1/N2

≤ λδ. It follows that

4F(∆) ≥ 4δℓ̄2(γ̂, δ
∗,∆) + λδ∥∆∥1 − 8λδ∥∆Sδ

∥1 − 4c

√
sγ log d1

N
∥∆∥2.

Note that ∥∆Sδ
∥1 ≤

√
sδ∥∆Sδ

∥2 ≤
√
sδ∥∆∥2. Hence,

4F(∆) ≥ 4δℓ̄2(γ̂, δ
∗,∆) + λδ∥∆∥1 −

(
8λδ
√
sδ + 4c

√
sγ log d1

N

)
∥∆∥2. (2.100)

For any ∆ ∈ K̃(s̄δ, k0, 1), we have

4F(∆) ≥ 4δℓ̄2(γ̂, δ
∗,∆) + λδ∥∆∥1 −

(
8λδ
√
sδ + 4c

√
sγ log d1

N

)
,
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on the event A1 ∩ A2 and when N > N0. Here, on the event A3, we have

δℓ̄2(γ̂, δ
∗,∆) ≥ κ1∥∆∥22 − κ2

log d

M
∥∆∥21

(i)

≥ κ1 − κ2k20
s̄δ log d

M
,

where (i) holds since ∆ ∈ K̃(s̄δ, k0, 1). Therefore, conditional on the event A1 ∩ A2 ∩ A3,

when N > N1 with some constant N1 > 0,

F(∆) ≥ κ1 − κ2k20
s̄δ log d

M
− 2λδ

√
sδ −

c

2

√
sγ log d1

N
≥ κ1/2,

since as N → ∞, we have s̄δ log d/M = sγ log d1/M + sδ log d/M = o(1),
√
sγ log d1/N =

o(1), and 2λδ
√
sδ = 4σδ

√
sδ(t+ log d)/M ≤ 4σδ

√
sδt/M + 4σδ

√
sδ log d/M ≤ κ1/4 + o(1)

when t < κ21M/(162σ2
δsδ).

Proof of Lemma 2.10. Based on the construction of δ̂, we have

ℓ̄2(γ̂, δ̂) + λδ∥δ̂∥1 ≤ ℓ̄2(γ̂, δ
∗) + λδ∥δ∗∥1.

By definition (2.59), we have δℓ̄2(γ̂, δ
∗,∆δ) = ℓ̄2(γ̂, δ̂) − ℓ̄2(γ̂, δ

∗) − ∇δ ℓ̄2(γ̂, δ
∗)⊤∆δ. It

follows that

F(∆δ) = δℓ̄2(γ̂, δ
∗,∆δ) + λδ∥δ̂∥1 +∇δ ℓ̄2(γ̂, δ

∗)⊤∆δ − λδ∥δ∗∥1 (2.101)

= δℓ̄2(γ̂, δ
∗,∆δ) + λδ∥δ∗ +∆δ∥1 +∇δ ℓ̄2(γ

∗, δ∗)⊤∆δ +R1(∆δ)− λδ∥δ∗∥1 ≤ 0,

where

R1(∆δ) =
{
∇δ ℓ̄2(γ̂, δ

∗)−∇δ ℓ̄2(γ
∗, δ∗)

}⊤
∆δ

=M−1
∑
i∈Iδ

A1i

{
g−1(S⊤

1iγ̂)− g−1(S⊤
1iγ

∗)
}{

1− A2ig
−1(S̄⊤

2iδ
∗)
}
S̄⊤
2i∆δ.
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Repeat the same procedure in the proof of Lemma 2.9 for obtaining (2.99) and (2.100).

Then, conditional on A1, we have

0 ≥ 2F(∆δ) ≥ 2δℓ̄2(γ̂, δ
∗,∆δ) + λδ∥∆δ∥1 − 4λδ∥∆δ,Sδ

∥1 − 2|R1(∆δ)|. (2.102)

Conditional on A1 ∩ A2, we further have

0 ≥ 4F(∆δ) ≥ 4δℓ̄2(γ̂, δ
∗,∆δ) + λδ∥∆δ∥1 −

(
8λδ
√
sδ + 4c

√
sγ log d1

N

)
∥∆δ∥2.

Hence,

4δℓ̄2(γ̂, δ
∗,∆δ) + λδ∥∆δ∥1 ≤

(
8λδ
√
sδ + 4c

√
sγ log d1

N

)
∥∆δ∥2.

Recall the equation (2.65). We have δℓ̄2(γ̂, δ
∗,∆δ) ≥ 0. Since λδ = 2σδ

√
(t+ log d)/M ≥

2σδ
√

log d/M and N ≍M , there exists some constant k0 > 0, such that

∥∆δ∥1 ≤ k0

√
sγ log d1
log d

+ sδ∥∆δ∥2 = k0
√
s̄δ∥∆δ∥2,

on A1 ∩ A2 and when N > N0 with some N0 > 0.

Proof of Lemma 2.11. We prove by contradiction. Suppose that ∥∆δ∥2 > 1. Let ∆̃ =

∆δ/∥∆δ∥2. Then ∥∆̃∥2 = 1. When ∆δ ∈ C̃(s̄δ, k0), we have

∥∆̃∥1 = ∥∆δ∥1/∥∆δ∥2 ≤ k0
√
s̄δ = k0

√
s̄δ∥∆̃∥2.

That is, ∆̃ ∈ C̃(s̄δ, k0), and hence ∆̃ ∈ K̃(s̄δ, k0, 1). Let u = ∥∆δ∥−1
2 . Then 0 < u < 1.

Note that F(·) is a convex function. Hence, when N > N1,

F(∆̃) = F(u∆δ + (1− u)0) ≤ uF(∆δ) + (1− u)F(0) (i)
= uF(∆δ)

(ii)

≤ 0,

where (i) holds since F(0) = 0 by construction of F(·); (ii) holds by the construction of δ̂.

However, by Lemma 2.9, F(∆̃) > 0. Thus, we conclude that ∥∆δ∥2 ≤ 1.
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Proof of Lemma 2.12.

x ≤ b+
√
b2 + 4ac

2a
≤ b+

√
b2 +

√
4ac

2a
=
b

a
+

√
c

a
.

Proof of Lemma 2.13. Let X the support of S1. Under Assumption 2.1, for all S1 ∈ X , there

exists some constant c > 0 such that

exp(S⊤
1 γ

∗) ≤ c, exp(−S⊤
1 γ

∗) < g−1(S⊤
1 γ

∗) ≤ c.

By Theorem 2.3,

∥γ̂ − γ∗∥2 = Op

(√
sγ log d1

N

)
.

Since S1 is a sub-Gaussian random vector under Assumption 2.4, by Theorem 2.6 of [Wai19],

∥∥S⊤
1 (γ̂ − γ∗)

∥∥
P,r = O (∥γ̂ − γ∗∥2) = Op

(√
sγ log d1

N

)
.

Additionally, note that sγ = o(N/ log d1). It follows that

PSγ (∥γ̂ − γ∗∥2 ≤ 1) = 1− o(1).

For any γ ∈ {wγ∗ + (1− w)γ̂ : w ∈ [0, 1]}, we have

∥∥g−1(S⊤
1 γ)− g−1(S⊤

1 γ
∗)
∥∥
P,r =

∥∥exp(−S⊤
1 γ

∗)
[
exp

{
−S⊤

1 (γ − γ∗)
}
− 1
]∥∥

P,r

≤ c
∥∥exp{−S⊤

1 (γ − γ∗)
}
− 1
∥∥
P,r (2.103)

By Taylor’s Thorem, for any S1 ∈ X , with some v ∈ (0, 1),

∣∣exp{−S⊤
1 (γ − γ∗)

}
− 1
∣∣ = exp

{
−vS⊤

1 (γ − γ∗)
} ∣∣S⊤

1 (γ − γ∗)
∣∣

≤
[
1 + exp

{
−S⊤

1 (γ − γ∗)
}] ∣∣S⊤

1 (γ − γ∗)
∣∣ . (2.104)
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Condition on the event ∥γ̂−γ∗∥2 ≤ 1. Note that γ−γ∗ = (1−w)(γ̂−γ∗) and 1−w ∈ [0, 1],

we have

∥∥g−1(S⊤
1 γ)− g−1(S⊤

1 γ
∗)
∥∥
P,r

(i)

≤ c
∥∥[1 + exp

{
−S⊤

1 (γ − γ∗)
}]

S⊤
1 (γ − γ∗)

∥∥
P,r

(ii)

≤ c
∥∥S⊤

1 (γ − γ∗)
∥∥
P,r + c

∥∥exp{−S⊤
1 (γ − γ∗)

}∥∥
P,2r

∥∥S⊤
1 (γ − γ∗)

∥∥
P,2r

(iii)
= O (∥γ̂ − γ∗∥2) , (2.105)

where (i) holds by (2.103) and (2.104); (ii) holds by Minkowski inequality and Hölder’s

inequality; (iii) holds by Theorem 2.6 of [Wai19] under Assumption 2.4. It follows that,

∥∥g−1(S⊤
1 γ)

∥∥
P,r ≤

∥∥g−1(S⊤
1 γ

∗)
∥∥
P,r +O (∥γ̂ − γ∗∥2) ≤ C,

with some constant C > 0, since ∥γ̂ − γ∗∥2 ≤ 1. Therefore, we conclude that PSγ (E1) =

1− o(1). Moreover, by the fact that exp(−u) = g−1(u)− 1 < g−1(u) and ∥X∥P,r′ ≤ ∥X∥P,12

for any X ∈ R and 1 ≤ r′ ≤ 12, we have

∥∥g−1(S⊤
1 γ)

∥∥
P,r′ ≤ C,

∥∥exp(−S⊤
1 γ)

∥∥
P,r′ ≤ C.

Moreoever, we have (2.38), since γ̂ ∈ {wγ∗ + (1−w)γ̂ : w ∈ [0, 1]}, PSγ (E1) = 1− o(1), and

(2.105) holds. Besides, note that

∥∥exp(S⊤
1 γ)− exp(S⊤

1 γ
∗)
∥∥
P,r′ ≤ c

∥∥exp{S⊤
1 (γ − γ∗)} − 1

∥∥
P,r′

≤ c
[∥∥exp{S⊤

1 (γ − γ∗)}
∥∥
P,r′ + 1

]
= O(1),

since S1 is sub-Gaussian and ∥γ − γ∗∥2 ≤ 1. Therefore,

∥∥exp(S⊤
1 γ)

∥∥
P,r′ ≤

∥∥exp(S⊤
1 γ

∗)
∥∥
P,r′ +

∥∥exp(S⊤
1 γ)− exp(S⊤

1 γ
∗)
∥∥
P,r′

≤ c+O(1) = O(1).
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Proof of Lemma 2.14. Let S the support of S̄2. Under Assumption 2.1, there exists some

constant c > 0, such that, for all S̄2 ∈ S,

exp(S̄⊤
2 δ

∗) ≤ c, exp(−S̄⊤
2 δ

∗) < g−1(S̄⊤
2 δ

∗) ≤ c.

(a) By Theorem 2.3,

∥δ̂ − δ∗∥2 = Op

(√
sγ log d1 + sδ log d

N

)
= op(1).

By Assumption 2.4 and Theorem 2.6 of [Wai19],

∥∥∥S̄⊤
2 (δ̂ − δ∗)

∥∥∥
P,r

= O
(
∥δ̂ − δ∗∥2

)
= Op

(√
sγ log d1 + sδ log d

N

)
.

(b) By Theorem 2.4,

∥δ̂ − δ∗∥2 = Op

(√
sδ log d

N

)
= op(1).

Similarly, by Assumption 2.4 and Theorem 2.6 of [Wai19],

∥∥∥S̄⊤
2 (δ̂ − δ∗)

∥∥∥
P,r

= O
(
∥δ̂ − δ∗∥2

)
= Op

(√
sδ log d

N

)
.

The remaining proof is an analog of the proof of Lemma 2.13.

Proof of Lemma 2.15. The upper bounds for ∥S̄⊤
2 (α̂−α∗)∥P,r follow directly from Theorems

2.3, 2.4, Theorem 2.6 of [Wai19], and the sub-Gaussianity of S̄2 assumed in Assumption

2.4. Let either (a) or (b) holds. Then we have ∥S̄⊤
2 (α̂ − α∗)∥P,r = op(1). Note that,

α̃−α∗ = (1− v1)(α̂−α∗). Therefore,

∥ε̃∥P,r ≤ ∥ε∥P,r + ∥S̄⊤
2 (α̃−α∗)∥P,r = ∥ε∥P,r + (1− v1)∥S̄⊤

2 (α̂−α∗)∥P,r

= O(1) + op(1) = Op(1).
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Proof of Lemma 2.16. The upper bounds for
∥∥∥S⊤

1 (β̂ − β∗)
∥∥∥
P,r

follow directly by Theorems

2.3, 2.4, Theorem 2.6 of [Wai19], and the sub-Gaussianity of S1 assumed in Assumption 2.4.

Let either (a) or (b) of Lemma 2.16 holds, and let either (a) or (b) of 2.15 holds. Then we have

∥S⊤
1 (β̂−β∗)∥P,r = op(1) and ∥S̄⊤

2 (α̂−α∗)∥P,r = op(1). Note that, α̃−α∗ = (1−v1)(α̂−α∗)

and β̃ − β∗ = (1− v2)(β̂ − β∗). Therefore,

∥ζ̃∥P,r ≤ ∥ζ∥P,r + ∥S⊤
1 (β̃ − β∗)∥P,r + ∥S̄⊤

2 (α̃−α∗)∥P,r

= ∥ζ∥P,r + (1− v1)∥S⊤
1 (β̂ − β∗)∥P,r + (1− v2)∥S̄⊤

2 (α̂−α∗)∥P,r

= O(1) + op(1) = Op(1).
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Chapter 3

Adaptive split balancing for optimal

random forests

The random forests method, introduced by [BFSO84,Bre01], currently stands as one

of the most popular approaches for tackling classification and regression problems, exhibiting

significant empirical success across a diverse range of real-world applications. Extensions of

random forests to address other statistical challenges have also been extensively investigated,

encompassing quantile estimation [MR06], survival analysis [IKBL08, IK10], and feature

selection or importance evaluation [GPB11,MH14,LWSG13,LWB+19,BWLY22]. However,

despite its widespread use, the theoretical analysis of this method remains incomplete.

Let SN := (Yi,Xi)
N
i=1 be independent and identically distributed (i.i.d.) samples, and

denote (Y,X) as an independent copy of (Yi,Xi). Here, Y ∈ R is the response variable and

X ∈ [0, 1]d denotes the covariate vector. Consider the estimation of the conditional mean

function m(x) := E[Y | X = x] for any x ∈ [0, 1]d. In this paper, we mainly focus on the

234



integrated mean squared error (IMSE) Ex[m̂(x) −m(x)]2, where m̂(·) denotes the random

forest constructed based on SN , and the expectation above is only taken with respect to the

new observation x.

The consistency of Breiman’s original algorithm has been demonstrated by [SBV15];

nevertheless, they did not provide a specific consistency rate. Recently, [CVFL22] established

the consistency rate of the original algorithm under a ”sufficient impurity decrease” (SID)

condition. Their findings indicate that Breiman’s original algorithm maintains consistency

even in scenarios where the regression function is discontinuous. However, the established

consistency rate is slow for smooth functions, as illustrated in Table 3.1.

Due to the theoretical challenges associated with analyzing Breiman’s original ran-

dom forests, [Bia12] investigated a simplified version named ”centered random forests.” In

centered random forests, splitting directions are chosen randomly, and splitting points are

selected as the midpoint of the parent nodes. Centered forests fall under the category of

”purely random forests” [MGS20,OT21,Bia12,BDL08,AG14,Klu21], where the trees grow

independently from all the samples. Among these studies, [MGS20] achieved the minimax

rate for the Hölder class H0,β (β ∈ (0, 1]), and [OT21] further attained the minimax rate

for the class H1,β. However, all purely random forests methods grow trees independently

of the observed samples, limiting the utilization of information from the data during the

tree-growing process. Recently, [GXZ22] analyzed the usage of random forests for classifi-

cation problems and established nearly optimal rates for the classification error when the

conditional probability function is Lipschitz continuous. They considered a modified version

of centered forests employing an ”early stopping” technique to prevent overfitting; however,

235



their proposed method is applicable only when the outcome variable is discrete.

A slightly more sophisticated variant, termed ”median forests”, has been investigated

by [Klu21, DS18]. In median forests, the splitting directions are also randomly chosen.

However, in contrast to centered forests, the sample medians are selected as the splitting

points rather than the center points. The splitting rules of such methods depend on the

covariates but are independent of the outcomes. Notably, the achieved consistency rates are

relatively slow, with minimax optimal rates only attained when d = 1; refer to Table 3.1.

In a recent line of work, [ATW19,WW15,WA18,FTAW20] explored another variant

known as “honest forests”, which differs from the original algorithm in three aspects: (a)

similarly to centered and median forests, the splitting directions are randomly chosen; (b)

the splitting point is determined such that child nodes contain at least a fraction of α ≤ 0.5

of the samples in the parent nodes; and (c) the forest is “honest” in that two independent

sub-sampless are chosen for each tree – only the outcomes from one sub-samples, along with

all the covariates, are used for splitting, while the outcomes from the other sub-samples

are used solely for local averaging. Unlike other variants, their proposed methods allow

the splits to depend on both the covariates and outcomes (when α < 0.5). The splitting

points can be determined through minimizing the empirical mean squared error within each

node, as long as the α-fraction constraint is satisfied. In fact, the α-fraction constraint

is crucial for achieving a fast convergence rate. As discussed by [Ish15, BFSO84, CKT22],

without an such a constraint, the splits tend to concentrate along the endpoints of the parent

node, resulting in slow convergence rates for the single trees, as certain leaves only contain

a very small number of samples, making local averaging inaccurate. By imposing the α-
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fraction constraint, the child nodes are ensured to contain a certain fraction of the parents,

stabilizing the local averaging procedure. However, the consistency rates established for

honest forests were also relatively slow; see Table 3.1. We make a further modification to

the above approach. Instead of picking a direction uniformly, as in the above aspect (a), we

choose the splitting directions in a cyclic way; see details in Algorithm 4.

In the following, we present the rationale behind the cyclic splitting procedure. Let

us initially consider a straightforward case with α = 0.5, where the proposed method de-

generates into splitting at the median each time. In such a degenerate example, the only

distinction between the proposed algorithm and standard median forests is how we choose

the splitting directions – randomly or cyclically. When the splitting directions are chosen

randomly, there is a non-negligible probability that some directions are over-selected while

others are barely selected. Consequently, the terminal leaves tend to be too wide in certain

directions and too narrow in others. It should be noted that the appearance of this long

and narrow leaf structure is entirely determined by auxiliary randomness and has nothing

to do with the data – indeed, the splittings are even independent of outcome variables when

α = 0.5. To avoid the adverse effects of such unnecessary (and even harmful) randomness, we

consider a cyclic splitting procedure. When the directions are chosen cyclically, the lengths

of leaves in different directions tend to be balanced. This results in better control for the

leaves’ diameter (see Lemma 3.1), ensuring better control for the algorithm’s bias. As shown

in Theorem 3.1, the cyclic method leads to a minimax optimal rate for Lipschitz functions

and is faster than existing median forests (as long as d > 1), where directions are randomly

chosen [Klu21,DS18]. Our results indicate that the sub-optimal rates in the existing litera-

237



ture originated from the inappropriate method of selecting splitting directions. Indeed, when

d = 1, the cyclic and random methods are the same as there is no need to choose the split-

ting directions. As a result, the minimax rates have been achieved by [Klu21,DS18]. When

d > 1, the existing results are sub-optimal, and a simple but essential cyclic modification of

the splitting directions’ selection leads to a minimax optimal rate.

When α < 0.5, we permit CART-like splitting criteria, and the splitting points are

allowed to depend on both the covariates and outcomes. In this case, it is possible for the

terminal leaves to be relatively wide in certain directions and narrow in others. However,

unlike the centered and median forests with random splitting directions [Klu21,DS18], the

appearance of the long and narrow leaf structure depends on the data. This distinguishes

it from other methods with data-independent splitting rules (e.g., [MGS20,OT21,GXZ22]),

allowing us to leverage information from the data during the tree-growing process. This

enhancement in empirical performance is particularly notable when different covariates have

distinct local effects on the outcome. The tuning parameter α controls the desired balance

in the lengths of the leaves. Any constant α > 0 prevents making splits near any endpoints

of the parent node. In other words, although we allow a certain gap between the lengths of

different sides of the leaves, such a gap cannot be too extreme, and the lengths still need to

be relatively balanced among different directions.

As an extension of the proposed method, we further consider local polynomial re-

gression within each leaf and provide faster convergence rates when higher-order smoothness

conditions are satisfied. The proposed method differs from the local linear forests studied

by [FTAW20] in two aspects: (a) the splitting directions are chosen cyclically instead of
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randomly, and (b) we allow more general q-th order local polynomial forests with any q ≥ 1.

The proposed method ensures a faster convergence rate even when q = 1 – this corresponds

to the local linear forests; however, the cyclic splitting procedure leads to a better result.

Other methods that can exploit the higher-order smoothness of regression func-

tions include [CMDY23, CKU23], where data-independent splitting rules are considered.

[CMDY23] proposed an extrapolated random tree method. If the regression function be-

longs to the Hölder class Hq,β with some q ∈ N and β ∈ (0, 1], their method has a nearly

optimal in-sample excess risk; however, they did not provide any upper bounds for the

out-of-sample errors. Additionally, [CKU23] proposed a debiased technique based on Mon-

drian forests and established minimax optimal rates in the point-wise mean squared error

E [m̂(x)−m(x)]2 for any interior point x. However, as pointed out in their Section 5.3,

their debiasing procedure is only designed to handle interior bias and does not provide any

correction for boundary bias. Indeed, since their splitting locations are chosen uniformly

from a leaf’s side, there is a non-negligible probability that the terminal leaves nearby the

boundary only contain a small number of samples. In contrast, the α-constraint imposed

in our method avoids making splits near the boundaries. When we set α = 0.5, our pro-

posed method yields a minimax rate for the IMSE – marking the first instance of achieving

minimax optimal rates for random forests when the Hölder smoothness condition holds with

q > 1. Furthermore, we establish minimax optimal rates for the uniform convergence rate,

as detailed in Section 3.3; these findings represent a novel contribution to the literature for

any q ∈ N.

Of particular significance, when we choose any tuning parameter α < 0.5, in contrast
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to [CMDY23, CKU23], we harness information from the data, encompassing both Xi and

Yi, to enhance the empirical performance of the forests. Notably, data-dependent splitting

emerges as a crucial factor for random forests to excel in practical applications, surpassing

the performance of traditional kernel methods.

Moreover, we employ the proposed methods to estimate the average treatment effect

(ATE) using the double machine learning (DML) technique [CCD+17]. The DML method

involves the estimation of three nuisance functions: two outcome regression functions and

one propensity score function. We leverage the proposed forests to estimate these nuisance

functions and scrutinize the performance of forests-based ATE estimator. Although random

forests have found extensive applications in causal inference problems, to the best of our

knowledge, we are the first to provide theoretical underpinnings for their utilization in ATE

estimation and inference; refer to the inherent challenges outlined in Remark 3.1. In contrast

to [WA18], which focuses on the estimation of conditional average treatment effect (CATE),

we concentrate on the population-level parameter ATE.

3.0.1 Notation

We use the following notations throughout. For any vector x ∈ Rd, let ||x|| denote

the Euclidean norm. Let multi-index α := (α1,α2, . . . ,αd) denote a d-tuple of nonnegative

integers, and x = (x1,x2, . . . ,xd) ∈ Rd denote a d-dimensional random variable. We define

the following multi-index notations: |α| :=
∑d

i=1αi, α! := Πd
i=1αi!, and xα := Πd

i=1x
αi
i .

Moreover, we denote the partial derivative as Dαf := ∂|α|f(x)

∂x
α1
1 ∂x

α2
2 ···∂xαd

d

. For any a ∈ R, ⌊a⌋

denotes the largest integer no larger than a.
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Table 3.1: Comparison of random forests’ consistency rates. The reported rates correspond to the

integrated mean squared error (IMSE), except that [CKU23] only provided the point-wise mean

squared error at interior points, [FTAW20] established normal results at a given x and established

upper bounds for the asymptotic variance, and [CMDY23] considered the in-sample excess risk.

Methods Consistency rate Functional class Algorithm Splitting criterion

[Bia12] N
− 3/4

q log(2)+3/4 q-sparse H0,1 Centered forests Data-independent

[Gen12] N−2/3, d = 1 H0,1 Purely uniform RFs Data-independent

[AG14]
N

−2 log(1−1/(2d))
2 log(1−1/(2d))−log(2) H1,1, d ≤ 3

Centered forests Data-independent
Nδ−2 log( 2d−1

2d
), δ > 0 H1,1, d ≥ 4

[MGS20]

N
− 2

d+2 H0,β , β ∈ (0, 1]

Mondrian forests Data-independentN
− 2(1+β)

d+2(1+β) H1,β , β ∈ (0, 1/2]

N
− 3

d+3 H1,β , β ∈ (1/2, 1]

[OT21] N
− 2(q+β)

d+2(q+β) Hq,β , q ∈ {0, 1}, β ∈ (0, 1] Tessellation forests Data-independent

[CKU23] N
− 2(q+β)

d+2(q+β) Hq,β , q ∈ N, β ∈ (0, 1] Debiased Mondrian forests Data-independent

[CMDY23] (N/ log(N))
− 2(q+β)

d+2(q+β) Hq,β , q ∈ N, β ∈ (0, 1] Extrapolated random tree Data-independent

[Klu21]

(N(log(N))(d−1)/2)−r,
H0,β , β = 1 Centered forests Data-independent

r =
2 log(1−1/(2d))

2 log(1−1/(2d))−log(2)

N
− 2 log(1−1/(2d))

2 log(1−1/(2d))−log(2) H0,β , β = 1 Median forests Depends on Xi

[DS18] N
− log(1−3/(4d))

log(1−3/(4d))−log(2) H0,1 Median forests Depends on Xi

[WW15] N
− log(1−3/(4q))

log(1−3/(4q))−log(2) q-sparse H0,1 Median forests Depends on Xi

[SBV15] Only op(1)
Additive model with

Breiman’s original forests
Depends on both

continuous components Xi and Yi

[KT22] Op(1/ log(N))
Additive model with

Breiman’s original forests
Depends on both

bounded total variation Xi and Yi

[CVFL22]
N

− c
α1α2 +N−η , α2 > 1,

SID(α1), α1 ≥ 1 Breiman’s original forests
Depends on both

c ∈ (0, 1/4), η ∈ (0, 1/8) Xi and Yi

[FTAW20]
N

δ−
(
1+

d log(α)
1.3π log(1−α)

)−1

,
H1,1 Local linear forests

Depends on both

α ≤ 0.2, π ≤ 1/d, δ > 0 Xi and Yi

Ours

N
−2 log(1−α)

d log(α)+2 log(1−α) ,
H0,1 Cyclic forests Depends on Xi,

α ∈ (0, 0.5]
also depends on Yi

N
−2(q+β) log(1−α)

d log(α)+2(q+β) log(1−α) ,
Hq,β , q ∈ N, β ∈ (0, 1]

Cyclic q-th order local
when α < 0.5

α ∈ (0, 0.5] polynomial forests
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3.1 Cyclic Forest

Consider the regression model

Y = m(X) + ε, (3.1)

where m(x) := E[Y | X = x] is the true conditional mean and ε := Y −m(X) is the noise

variable. We aim to estimate the function m(·) using i.i.d. samples SN := (Yi,Xi)
N
i=1.

The regression tree models the function m(·) by recursively partitioning the feature

space [0, 1]d into non-overlapping rectangles, generally called leaves. For any given point

x ∈ [0, 1]d, a regression tree estimates m(x) using the average of responses for those samples

in the same leaf as x:

T(x, ξ) =
∑
i∈I

1{Xi∈L(x,ξ)}

# {l : Xl ∈ L(x, ξ)}
Yi, (3.2)

where ξ ∈ Ξ denotes all the auxiliary randomness in the tree-growing process and is inde-

pendent of the samples, I ⊆ {1, . . . , N} is the indices of training samples used for local

averaging and possibly depends on ξ, L(x, ξ) represents the terminal leaf containing the

point x ∈ [0, 1]d, and # {l : Xl ∈ L(x, ξ)} =
∑N

l=1 1{Xl∈L(x,ξ)} is the number of samples in

this leaf.

To mitigate the impact from the auxiliary randomness, random forests consider en-

sembles of regression trees, where the forests’ predictions are the average of all the tree

predictions. Let {T(x, ξj), j = 1, . . . , B} denote the collection of regression trees in a forest,

where B is the number of trees and ξ1, . . . , ξB ∈ Ξ are i.i.d. auxiliary variables. For any

B ≥ 1, random forests estimate the conditional mean as

m̂(x) := B−1

B∑
j=1

T(x, ξj) = Eξ[T(x, ξ)],
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where for any function f(·), Eξ[f(x)] = B−1
∑B

j=1 f(ξj) denotes the empirical average over

the auxiliary variables, and we omit the dependence of such an expectation on B for the

sake of notation simplicity.

Random forests can also be represented as a weighted average of the outcomes:

m̂(x) = Eξ

[∑
i∈I

ωi(x, ξ)Yi

]
, where ωi(x, ξ) :=

1{Xi∈L(x,ξ)}

# {l : Xl ∈ L(x, ξ)}
. (3.3)

To study the estimation behavior of random forests, we consider the following decom-

position of the integrated mean squared error (IMSE):

Ex [m̂(x)−m(x)]2 ≤ 2R1 + 2R2,

where R1 := Ex

[
Eξ
[∑

i∈I ωi(x, ξ)εi
]]2

is the estimation error originating from the random

noise εi, and R2 := Ex

[
Eξ
[∑

i∈I ωi(x, ξ)(m(Xi)−m(x))
]]2

can be viewed as the approxi-

mation error of the tree models. Let k be the minimum leaf size. Standard techniques lead

to R1 = Op(1/k) for the estimation error, as shown in (3.29) of the Supplement, and similar

results can also be found in [Klu21,DS18,Bia12]. The control of the remaining approximation

error is the key to reaching an optimal overall estimation error.

In this section, we restrict our attention to the class of Lipschitz continuous functions;

see Assumption 3.1 below. The more general Hölder smooth functions will be further studied

in Section 3.2.

Assumption 3.1 (Lipschitz continuous). Assume that m(·) satisfies |m(x) − m(x′)| ≤

L0∥x− x′∥ for all x,x′ ∈ [0, 1]d with some constant L0 > 0.

For any leaf L ⊆ [0, 1]d, denote diam(L) := supx,x′∈L ∥x− x′∥ as its diameter. Under
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the Lipschitz condition, the approximation error can be controlled by the leaves’ diameters:

R2 ≤ L2
0Ex

[
Eξ
[
diam2(L(x, ξ))

]]
. (3.4)

Therefore, it suffices to obtain an upper bound for the diameters. When the splitting direc-

tions are chosen randomly, [Klu21] showed that both center and median forests lead to an

upper bound (k/N)2 log2(
2d

2d−1) for the right-hand side of (3.4); a lower bound with the same

rate has also been established for center forests. By choosing an optimal k that balances the

estimation and approximation error, their methods lead to an overall IMSE with the rate

N
−2 log(1−1/(2d))

2 log(1−1/(2d))−log(2) – this is not minimax optimal for Lipschitz functions. The sub-optimality

stems from the excessive dependence of the forests on auxiliary randomness, rendering a

substantial portion of the splits redundant and inefficient. This, in turn, leads to a relatively

large approximation error. Indeed, as discussed in Section 2.1, choosing splitting directions

randomly leads to a non-negligible fraction of terminal leaves becoming long and narrow.

However, as leaves’ diameters mainly depend on the longest side, these long and narrow

leaves lead to large diameters and hence result in a relatively large approximation error for

the forests method.

3.1.1 A cyclic approach

In order to reduce the large approximation error caused by auxiliary randomness,

we propose a simple yet crucial modification to the existing methods. Instead of choosing

splitting directions randomly, we adopt a more controlled and less random approach. Each

time a leaf is split, we only randomly select a direction from one of the sides that has been

split the least times. In other words, the splitting directions are chosen in a cyclic fashion –
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id
0 0 0 0 0 1 0
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Figure 3.1: Probabilities of making splits on each direction within a round.

we have to split once in each direction before proceeding to the next round of splitting; see

illustrations in Figure 3.1. This approach helps reduce the impact of auxiliary randomness

and enables more efficient splitting.

To further enhance the practical performance of forests, we permit data-dependent

splitting rules contingent on both Xi and Yi. This flexibility proves particularly valuable

when the local smoothness level varies in different directions and locations. We consider a

sample splitting procedure: for each tree, partition the samples into two sets, denoted by I

and J . The outcomes (Yi)i∈I are exclusively used for local averaging and are independent

of the leaves. This structure is commonly referred to as “honest”, as initially proposed

by [AI16]. Additionally, we also impose constraints on the child node fraction and terminal

leaf size, as observed in [MR06,WW15,WA18,FTAW20]. Specifically, with tuning parameters

α ∈ (0, 0.5] and k ∈ N, we require the following conditions to hold for the I sample: (a)
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each child node contains at least an α-fraction of observations within the parent node, and

(b) the number of observations within terminal leaves is between k and 2k−1. The splitting

locations are then determined to minimize the empirical mean squared error within each

parent node, selecting from the set of points satisfying the above conditions. For more

details on the proposed method, refer to Algorithm 4.

3.1.2 Theoretical results

For the sake of simplicity, we consider uniformly distributed X with support [0, 1]d.

We first demonstrate the advantage of the cyclic splitting rule in the following lemma.

Lemma 3.1. For any r ≥ 1 and α ∈ (0, 0.5], the leaves’ diameters of cyclic tree satisfy

sup
x∈[0,1]d,ξ∈Ξ

ESI [diam
r(L(x, ξ))] < dr/2 exp(r2)

(
⌊wN⌋
2k − 1

)− r log(1−α)
d log(α)

. (3.5)

By Lemma 3.1, the proposed forests’ approximation error (3.4) can be upper bounded

by Op((k/N)
2 log(1−α)
d log(α) ). When α = 0.5, the algorithm degenerates into a cyclic version of

median forests and results in an optimal rate (k/N)
2
d . For standard median forests where

splitting directions are chosen randomly, Lemma 1 of [WA18] showed that at a given x ∈

[0, 1]d and ξ ∈ Ξ, P(diam2(L(x, ξ)) ≥ C(k/N)
1.98(1−δ)

d ) = O((k/N)
δ2

2d log 2 ) for any δ > 0 and

some C > 0. Their result implies that for any given leaf, the diameter has a nearly optimal

rate diam(L(x, ξ)) = Op((k/N)
1.98(1−δ)

d ). However, the corresponding tail probability is not

small enough; in other words, there is a non-negligible probability that the leaf’s diameter is

large. As a result, integrating over both x and ξ (or taking the supremum as in our Lemma

3.1) leads to a slower rate. Indeed, as shown in [Klu21], the integrated square diameter (3.4)

of both standard center and median forests are of the order (k/N)2 log2(
2d

2d−1) – this is strictly
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Algorithm 4 Cyclic Forest

Require: Observations SN = (Xi, Yi)
N
i=1, with parameters B ≥ 1, α ∈ (0, 0.5], w ∈ (0, 1],

and k ≤ ⌊wN⌋.

1: for b = 1, . . . , B do

2: Divide SN into two disjoint sets S(b)
I and S(b)

J , indexed by I(b) and J (b), with sizes

#I(b) = ⌊wN⌋ and #J (b) = N − ⌊wN⌋.

3: repeat

4: For each current node L ⊆ [0, 1]d, randomly select a direction j along which the

node has been split the least number of times.

5: Partition the node along the j-th direction by minimizing the empirical mean

squared error using samples S(b)
J . That is, find the splitting point that minimizes

∑
i∈J (b)

(Yi − Y 1)
2
1{Xi ∈ L1}+

∑
i∈J (b)

(Yi − Y 2)
2
1{Xi ∈ L2},

where L1 and L2 are the resulting child nodes, Y 1 and Y 2 are the average responses

within the nodes L1 and L2, respectively. The splitting points are chosen such that

#{i ∈ S(b)
I : Xi ∈ Lj} ≥ α#{i ∈ S(b)

I : Xi ∈ L} for each j ∈ {1, 2}.

6: until The number of samples S(b)
I contained within each current node is between k

and 2k − 1.

7: The b-th cyclic tree estimates m(x) using observations of S(b)
I within the terminal leaf

containing x as in (3.2).

8: end for

9: return The cyclic forest is the average of B cyclic trees.
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slower than our cyclic version as long as k/N → 0 and d > 1. When d = 1, the rates are the

same as there is no need to choose a splitting direction under such a degenerate situation.

Clearly, choosing splitting directions randomly is sub-optimal as over-reliance on auxiliary

randomness in the tree-growing process brings in a large approximation error.

To characterize the forests’ overall IMSE, we further assume the following standard

condition for the noise variable.

Assumption 3.2. Assume that E[ε2 | X] ≤M almost surely with some constant M > 0.

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Suppose that w ∈ (0, 1] and α ∈ (0, 0.5]

are both constants. Choose any B ∈ N and k ≤ ⌊wN⌋. Then, as N →∞,

Ex [m̂(x)−m(x)]2 = Op

(
1

k
+

(
k

N

) 2 log(1−α)
d log(α)

)
. (3.6)

Moreover, let k ≍ N
2 log(1−α)

d log(α)+2 log(1−α) , we have

Ex [m̂(x)−m(x)]2 = Op

(
N− 2 log(1−α)

d log(α)+2 log(1−α)

)
. (3.7)

The results established in Theorem 3.1 are applicable for any α ∈ (0, 0.5]. As long as

α < 0.5, the splitting locations are not restricted to the medians. Instead, we can leverage

information from bothXi and Yi to further enhance the empirical performance of the method.

It is important to note that any regression tree can be regarded as a weighted average of

response variables, using the weights defined in (3.3). Unlike standard kernel methods, the

response variables affect the weights by influencing the leaves. This data-dependent learning

aspect is shared with neural networks, which are also widely popular today. Neural networks

learn representations in a data-dependent way, while random forests learn weights in a data-
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dependent manner. This similarity might partially explain why both random forests and

neural networks perform well in various complex applications.

Furthermore, our results provide additional insights into median forests. As indicated

by (3.7), cyclic median forests (with α = 0.5) achieve a minimax optimal rate of N− 2
d+2 . The

reason existing results [Klu21,DS18,Bia12] fall short of reaching the minimax optimal rate is

mainly attributed to the inappropriate splitting rule considered in the current literature. We

argue that random forests should not be excessively random, as an over-reliance on auxiliary

randomness leads to poor estimation efficiency. It is noteworthy that the above results hold

for any B ≥ 1. With careful control of the impact of auxiliary randomness through the cyclic

procedure, each individual cyclic median tree achieves minimax optimality for the Lipschitz

class. Although averaging over multiple trees does not result in a faster convergence rate,

we believe it is still worthwhile to do so to enhance finite-sample performance in practical

applications.

3.2 Cyclic Local Polynomial Forest

In this section, we extend our focus to Hölder smooth functions and introduce cyclic

forests capable of exploiting higher-order smoothness levels.

Assumption 3.3 (Hölder smooth). Assume that m(·) ∈ Hq,β with some q ∈ N and β ∈

(0, 1]. The Hölder class Hq,β contains all functions f : [0, 1]d → R that are q times continu-

ously differentiable, with (a) |Dαf(x)| ≤ L0 for all x ∈ [0, 1]d and multi-index α satisfying

|α| ≤ q, and (b) |Dαf(x) −Dαf(x′)| ≤ L0∥x − x′∥β for all x,x′ ∈ [0, 1]d and α satisfying

|α| = q, where L0 > 0 is a constant.
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3.2.1 Cyclic local polynomial forest

To capture the higher-order smoothness of the conditional mean functionm(·), we pro-

pose to fit a local polynomial regression within the leaves. We first introduce the polynomial

basis with order q ∈ N. For any x ∈ [0, 1]d and j ∈ {0, 1, . . . , q}, let gj(x) := (xα)α∈Aj
∈ Rdj ,

where Aj := {α = (α1, . . . ,αd) ∈ Nd : |α| = j}. For instance, g0(x) = 1, g1(x) =

(x1,x2, . . . ,xd)
⊤, and g2(x) = (x2

1,x1x2, . . . ,x
2
d)

⊤. Denote G(x) := (g0(x),g1(x)
⊤, . . . ,

gq(x)
⊤)⊤ ∈ Rd̄ as the q-th order polynomial basis, where d̄ :=

∑q
j=0 d

j.

For any ξ ∈ Ξ, define the weights ωi(x, ξ) as in (3.3), where we postpone the detailed

tree-growing process for later. Using the training samples indexed by I, consider the weighted

polynomial regression:

β̂(x, ξ) := argmin
β∈Rd̄

∑
i∈I

ωi(x, ξ)(Yi −G(Xi)
⊤β)2. (3.8)

The cyclic q-th order local polynomial forest is proposed as

m̂CLPF(x) := Eξ[G(x)⊤β̂(x, ξ)]. (3.9)

Now, let us delve into the tree-growing process. The cyclic q-th order local polynomial

forests are formulated as generalizations of the cyclic forests introduced in Algorithm 4. We

incorporate a sample splitting mechanism to ensure the “honesty” of the forests and adopt a

cyclic approach for selecting splitting directions, as elaborated in Section 3.1.1. In contrast to

Algorithm 4, where local averages serve as tree predictions, our approach involves performing

polynomial regressions within the terminal leaves. Consequently, our objective is to construct

leaves that optimize the behavior of the final polynomial regressions.

For any current node L ⊆ [0, 1]d, the ideal approach is to find the optimal splitting
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point that minimizes

∑
i∈J (b)

(Yi −G(Xi)
⊤β̂1)

2
1{Xi ∈ L1}+

∑
i∈J (b)

(Yi −G(Xi)
⊤β̂2)

2
1{Xi ∈ L2}, (3.10)

where L1 and L2 are the resulting child nodes, and β̂j is the least squares estimate (using

the polynomial basis) within the node Lj for each j ∈ {1, 2}. However, this procedure

requires calculating the least squares estimates for each candidate splitting point, making it

computationally intractable. Drawing inspiration from [FTAW20], we minimize

∑
i∈J (b)

(Ŷi − Ỹ1)21{Xi ∈ L1}+
∑
i∈J (b)

(Ŷi − Ỹ1)21{Xi ∈ L2}, (3.11)

where Ŷi := Yi − G(Xi)
⊤β̂ with β̂ denoting the least squares estimate within the parent

node L, and Ỹj is the average of Ŷi within the node Lj for each j ∈ {1, 2}. As discussed in

Section 3.1.1, we also require that both child nodes contain at least an α-fraction of samples

from the parent node. Additional specifics are outlined in Algorithm 5. It is noteworthy

that Algorithm 4 is a special case of Algorithm 5 when q = 0.

To minimize (3.11), we only need to obtain the least squares estimate once, and the

same β̂ is used to calculate the error for each candidate splitting point within the node.

Note that (3.11) can be viewed as an approximation of (3.10), where we substitute β̂j with

β̃j = (β̃1j, β̂
⊤
−1)

⊤, and β̃1j = argminβ∈R
∑

i∈J (b)(Y ⊤
i − G(Xi)

⊤(β, β̂⊤
−1)

⊤)21{Xi ∈ Lj}. In

essence, we replace the slope coefficients in the child nodes with those in the parent node

and find the least squares solution only for the intercept term.

3.2.2 Theoretical results

The following theorem characterizes the convergence rate of the proposed cyclic q-th

order local polynomial forests under Hölder smooth conditions.
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Algorithm 5 Cyclic q-th order Local Polynomial Forest

Require: Observations SN = (Xi, Yi)
N
i=1, with parameters B ≥ 1, α ∈ (0, 0.5], w ∈ (0, 1],

k ≤ ⌊wN⌋, and q ∈ N.

1: Calculate the polynomial basis G(Xi) ∈ Rd̄ for each i ≤ N .

2: for b = 1, . . . , B do

3: Divide SN into two disjoint sets S(b)
I and S(b)

J , indexed by I(b) and J (b), with sizes

#I(b) = ⌊wN⌋ and #J (b) = N − ⌊wN⌋.

4: repeat

5: For each current node L, randomly select a direction j along which the node has

been split the least number of times.

6: Partition the node along the j-th direction by minimizing (3.11) using samples

S(b)
J , ensuring that #{i ∈ S(b)

I : Xi ∈ Lj} ≥ α#{i ∈ S(b)
I : Xi ∈ L} for each j ∈ {1, 2}.

7: until The number of samples S(b)
I contained within each current node is between k

and 2k − 1.

8: The b-th cyclic polynomial tree estimates m(x) using observations of S(b)
I as

TCLPF(x, ξb) := G(x)⊤β̂(x, ξb), where β̂(x, ξb) is defined as (3.8).

9: end for

10: return The cyclic q-th order local polynomial forest is the average of B cyclic polynomial

trees.

Theorem 3.2. Let Assumptions 3.2 and 3.3 hold. Suppose that w ∈ (0, 1] and α ∈ (0, 0.5]

are both constants. Choose any B ∈ N and k ≤ ⌊wN⌋ satisfying k ≫ log(N). Then, as
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N →∞,

Ex [m̂CLPF(x)−m(x)]2 = Op

(
1

k
+

(
k

N

) 2(q+β) log(1−α)
d log(α)

)
. (3.12)

Moreover, let k ≍ N
2(q+β) log(1−α)

d log(α)+2(q+β) log(1−α) , we have

Ex [m̂CLPF(x)−m(x)]2 = Op

(
N− 2(q+β) log(1−α)

d log(α)+2(q+β) log(1−α)

)
. (3.13)

When α = 0.5, (3.13) leads to the minimax optimal rate N− 2(q+β)
d+2(q+β) for the Hölder

class Hq,β. To the best of our knowledge, this is the first random forest method shown to

achieve an IMSE reaching minimax optimality when q > 1; see Table 3.1.

In the following, we compare with existing results that have exploited Hölder smooth

functions with q ≥ 1. For q = 1, [OT21] proposed Tessellation forests and demonstrated

that the corresponding IMSE reaches the minimax rate N− 2(1+β)
d+2(1+β) . For arbitrary q ∈ N,

[CMDY23] provided a nearly optimal rate of (N/ log(N))−
2(q+β)

d+2(q+β) ; however, they only ob-

tained results for the in-sample excess risk, lacking theoretical guarantees for prediction per-

formance on new observations. Additionally, [CKU23] obtained a minimax rate of N− 2(q+β)
d+2(q+β)

for point-wise mean squared error at interior points; however, their results do not lead to

an optimal rate for the IMSE, as their debiased method is only valid for interior points.

It is worth mentioning that all the aforementioned works grow the trees completely

independent of the samples. In contrast, we allow supervised splitting rules to further

improve the forests’ practical performance, as long as α < 0.5 after appropriate tuning.

Only [BTYW16,FTAW20] considered data-dependent splitting rules and studied local lin-

ear forests under the special case q = 1. However, [BTYW16] only demonstrated the con-

sistency of their method, without providing any explicit rate of convergence. [FTAW20]
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provided asymptotic normal results at a given x ∈ [0, 1]d. However, their asymptotic

variance is relatively large since the splitting directions are chosen randomly. In addi-

tion, their results rely on a technical condition that κN := (1 − d⊤S−1d)−1 = O(1),

where d :=
∑

i∈I ωi(x, ξ)G−1(Xi − x), S :=
∑

i∈I ωi(x, ξ)G−1(Xi − x)G−1(Xi − x)⊤, and

G(x) = (1,G−1(x)
⊤)⊤ for any x ∈ [0, 1]d. However, it is unclear when such a condition

holds. Instead of forcing an upper bound for the random quantity κN by assumption, we

prove that this quantity is bounded above with high probability; see Lemma 3.7.

3.3 Uniform results

In this section, we extend our analysis to encompass uniform-type results for the

estimation error of the forests. As the cyclic forest introduced in Algorithm 4 constitutes

a specific instance of the more general cyclic q-th order local polynomial forest outlined in

Algorithm 5, we focus on presenting results for the latter.

To commence, we establish a uniform bound on the leaves’ diameter as follows.

Lemma 3.2. Suppose that r ≥ 1, w ∈ (0, 1], and α ∈ (0, 0.5] are constants. Choose any

k ≤ ⌊wN⌋ satisfying k ≫ log2(N). Then, as N →∞,

sup
x∈[0,1]d,ξ∈Ξ

{diamr(L(x, ξ))} ≤ C

(
N

k

)− r log(1−α)
d log(α)

, (3.14)

with probability at least 1− log(⌊wN⌋/k)/(
√
k log ((1− α)−1)) and some constant C > 0.

The requirement k ≫ log2(N) is slightly more stringent than the one assumed in

Theorem 3.12, where we need k ≫ log(N). Under this slightly stronger restriction on the

minimum leaf size, we establish a uniform upper bound for the diameters, which holds with
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high probability. It is important to note that we cannot directly apply Markov’s inequality

based on Lemma 3.1 to obtain uniform-type results, as the expectation ESN (·) is taken before

the supremum, not after.

Subsequently, we present a uniform upper bound for the estimation error of the forests.

Theorem 3.3. Let Assumption 3.3 hold. Suppose that |Y | ≤ M . Let M > 0, w ∈ (0, 1],

and α ∈ (0, 0.5] be constants. Choose any B ∈ N and k ≤ ⌊wN⌋ satisfying k ≫ log2(N).

Then, as N →∞,

sup
x∈[0,1]d

|m̂CLPF(x)−m(x)| = Op

(√
log(N)

k
+

(
k

N

) (q+β) log(1−α)
d log(α)

)
. (3.15)

Moreover, let k ≍ N
2(q+β) log(1−α)

d log(α)+2(q+β) log(1−α) (log(N))
d log(α)

d log(α)+2(q+β) log(1−α) , we have

sup
x∈[0,1]d

|m̂CLPF(x)−m(x)| = Op

((
log(N)

N

) (q+β) log(1−α)
d log(α)+2(q+β) log(1−α)

)
. (3.16)

Comparing with the results in Theorem 3.2, the rates in (3.15)-(3.16) consist of ad-

ditional logarithm terms. This is due to the cost of seeking uniform bounds. When α = 0.5,

an optimally tuned k leads to the rate (log(N)/N)
q+β

d+2(q+β) , which is minimax optimal for

sup-norms; see, e.g., [Sto82]. To the best of our knowledge, we are the first to establish

minimax optimal uniform bounds for forests over the Hölder class Hq,β for any q ∈ N.

3.4 Application to ATE estimation in causal inference

In this section, we apply the proposed forests to estimate the average treatment

effect (ATE) in the context of causal inference. Let us consider i.i.d. samples (Wi)
N
i=1 :=

(Yi,Xi, Ai)
N
i=1, and denote W = (Y,X, A) as its independent copy. Here, Y ∈ R denotes
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the outcome of interest, A ∈ {0, 1} is a binary treatment variable, and X ∈ Rd represents a

vector of covariates uniformly distributed in [0, 1]d. We operate within the potential outcome

framework and assume the existence of potential outcomes Y (1) and Y (0), where Y (a)

represents the outcome that would be observed if an individual receives treatment a ∈ {0, 1}.

The ATE is defined as θ := E[Y (1)− Y (0)], representing the average effect of the treatment

A on the outcome Y .

In order to identify causal effects, we make the following standard assumptions:

Assumption 3.4. (a) Unconfoundedness: {Y (0), Y (1)} ⊥⊥ A | X. (b) Consistency: Y =

Y (A). (c) Overlap: P(c0 < π∗(X) < 1 − c0) = 1, where c0 ∈ (0, 1/2) is a constant and the

propensity score (PS) function is defined as π∗(x) := P(A = 1 | X = x) for any x ∈ [0, 1]d.

Define the true outcome regression function µ∗
a(x) := E[Y (a) | X = x] for a ∈ {0, 1}

and consider the doubly robust score function: for any η = (µ1, µ0, π),

ψ(W; η) := µ1(X)− µ0(X) +
A(Y − µ1(X))

π(X)
− (1− A)(Y − µ0(X))

1− π(X)
. (3.17)

As the ATE parameter can be represented as θ = E[ψ(W; η∗)], it can be estimated

as the empirical average of the score functions as long as we plug in appropriate estimates

of the nuisance functions η∗ = (µ∗
1, µ

∗
0, π

∗). In the following, we consider the double ma-

chine learning (DML) method of [CCD+17] and apply the proposed forests in Section 3.2 to

estimate the nuisance functions.

For any fixed integer K ≥ 2, split the samples into K equal-sized parts, indexed by

(Ik)Kk=1. For the sake of simplicity, we assume n := #Ik = N/K ∈ N. For each k ≤ K,

denote I−k = I \ Ik. Under Assumption 3.17, we can identify the outcome regression

256



function as µ∗
a(x) = E(Y | X = x, A = a) for each a ∈ {0, 1}. Hence, we construct µ̂−k

a (·)

using Algorithm 5, based on samples (Yi,Xi)i∈{i∈I−k:Ai=a}. Additionally, we also construct

π̂−k(·) using Algorithm 5, based on samples (Ai,Xi)i∈I−k
. For the sake of simplicity, we

denote µ2(·) := π(·). The number of trees B and the orders of polynomial forests are chosen

in advance, where we use qj to denote the polynomial orders considered in the estimation

of µj(·) for each j ∈ {0, 1, 2}. Further denote hj := (αj, wj, kj) as the hyperparameters for

estimating µj(·). To appropriately select hj, we further split the samples indexed by I−k into

training and validation sets. We train the forests based on the training samples and use the

validation set to find the optimal tuning parameters that offer the smallest mean squared

error. Note that the number of trees B is not a tuning parameter and is selected in advance

– it essentially controls the computation error and should be large enough as long as the

computing power allows. After obtaining the nuisance estimates η̂−k := (µ̂−k
1 , µ̂−k

0 , π̂−k) for

each k ≤ K, we define the ATE estimator as

θ̂ := N−1

K∑
k=1

∑
i∈Ik

ψ(Wi; η̂
−k).

In the following, we first show that the proposed forests provide stable PS estimates

that are away from zero and one with high probability.

Lemma 3.3. Let Assumptions 3.4(c) hold and π∗ ∈ Hq2,β2, where q2 ∈ N and β2 ∈ (0, 1].

Let M > 0, w2 ∈ (0, 1], and α2 ∈ (0, 0.5] be constants. Choose any B ≥ 1 and k2 ≫ log2(N).

Then, as N →∞,

PX(c1 < π̂−k(X) ≤ 1− c1) = 1, for each k ≤ K, (3.18)

with probability approaching one and some constant c1 ∈ (0, 1/2). Note that the left-hand-

side of (3.18) is a random quantity as the probability is only taken with respect to a new
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observation X.

Lemma 3.3 demonstrates the stability of the inverse PS estimates, a requirement often

assumed in the context of non-parametric nuisance estimates, as discussed in [CCD+17]. The

above results suggest that, under the assumption of overlap, there is typically no necessity

to employ any form of trimming or truncation techniques on the estimated propensities,

provided the chosen tuning parameters α and k are not too small.

Now, we are ready to introduce theoretical properties of the ATE estimator.

Theorem 3.4. Let Assumption 3.4 hold, |Y | ≤M , and E[1{A=a}(Y (a)−µ∗
a)]

2 ≥ C0 for each

a ∈ {0, 1}, with some positive constants M and C0. Suppose that µ∗
0 ∈ Hq0,β0, µ∗

1 ∈ Hq1,β1,

and π∗ ∈ Hq2,β2, where qj ∈ N and βj ∈ (0, 1] for each j ∈ {0, 1, 2}. Let wj ∈ (0, 1] and

αj ∈ (0, 0.5] be constants. Choose any B ≥ 1 and kj ≍ N
2(qj+βj) log(1−αj)

d log(αj)+2(qj+βj) log(1−αj) . Moreover, let

d2 ≤ 4(qa+βa)(q2+β2) log(1−αa) log(1−α2)
log(αa) log(α2)

for each a ∈ {0, 1}. Then, as N →∞, σ−1
√
N(θ̂ − θ) ;

N(0, 1) and σ̂−1
√
N(θ̂ − θ) ; N(0, 1), where σ̂2 := N−1

∑N
k=1

∑
i∈Ik [ψ(Wi; η̂

−k)− θ̂]2.

Remark 3.1 (Technical challenges of forests-based ATE estimation). It is worth emphasizing

that the following aspects are the main challenges in our analysis:

(a) Establish convergence rates for the integrated mean squared error (IMSE) of the

nuisance estimates. As the ATE is a parameter defined through integration over the en-

tire population, we require convergence results for the IMSE; point-wise mean squared error

results are insufficient. This distinguishes our work from [WA18], which focused on the

estimation and inference for the conditional average treatment effect (CATE).

(b) Develop sufficiently fast convergence rates through higher-order smoothness. The

asymptotic normality of the DML method [CCD+17] requires a product-rate condition for
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the nuisance estimation errors. If we only utilize the Lipschitz continuity of the nuisance

functions, root-N inference is ensured only when d = 1. In other words, we need to establish

methods that can exploit the higher-order smoothness of nuisance functions as long as d > 1.

As shown in Theorem 3.4, the higher the smoothness levels are, the larger dimension d we

allow for.

(c) Construct stable propensity score (PS) estimates. The construction of the DML

ATE estimator involves the inversion of PS estimates. Using an early stopping technique

that ensures a sufficiently large minimum leaf size, we guarantee that each terminal leaf

contains a non-negligible fraction of samples in both treatment groups, as long as the overlap

condition holds for the true PS function. Therefore, the early stopping technique stabilizes

the PS estimates, and consequently, the ATE estimate.

3.5 Numerical Experiments

In this section, we assess the numerical performance of the proposed methods through

simulation studies. We focus on the estimation of conditional mean function m(x) = E[Y |

X = x]. Generate i.i.d. covariates Xi ∼ Uniform[0, 1]d and noise εi ∼ N(0, 1) for each

i ≤ N . Consider the following outcome regression models:

(a) Yi = 10 sin(πXi1Xi2) + 20(Xi3 − 5)2 + 10Xi4 + 5Xi5 + εi,

(b) Yi = 20 exp((
∑s

j=1Xij − 0.5s)/
√
s) + εi.

In setting (a), we employ the well-known Friedman function proposed by [Fri91],

a commonly used benchmark for assessing non-parametric regression methods [ZL12,HZ21,
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LH21]. We set the covariates’ dimension to d = 5 and consider sample sizes N ∈ {500, 1000}.

Additionally, we investigate the performance of the forests under various sparsity levels,

maintaining d = 10, N = 1000, and choosing s ∈ {2, 6, 10}.

We implement the proposed cyclic forest (CF), local linear cyclic forest (LLCF), and

local quadratic cyclic forest (LQCF), where LLCF and LQCF correspond to the cyclic q-th

order local polynomial forests with q = 1 and q = 2, respectively. We choose B = 200 and

use 80% of samples for training purposes, reserving the remaining 20% for validation to find

the optimal tuning parameters (α, k). For the sake of simplicity, we fix w = 0.5.

We also consider Breiman’s original forest (BOF), honest random forest (HRF), local

linear forest (LLF), and Bayesian additive regression trees (BART). BOF is implemented

using the R package ranger [WWPW19], HRF and LLF are implemented using the R

package grf [TAF+23], and BART is implemented by the BART package [SSM19]. HRF

and LLF methods involve an additional tuning parameter mtry, denoting the number of

directions tried for each split. For comparison purposes, we also consider modified versions

with fixed mtry = 1. This corresponds to the case where splitting directions are randomly

chosen and is the only case that has been thoroughly studied theoretically [WA18,FTAW20].

We denote the modified versions of HRF and LLF as HRF1 and LLF1, respectively. The

only difference between HRF1 and CF is that CF considers a cyclic splitting rule; a parallel

difference exists between LLF1 and LLCF. Additionally, we introduce a modified version of

BOF, denoted as BOF1.

We evaluate the considered methods’ root mean square error (RMSE) within 1000 test

points and repeat the procedure 200 times. Figures 3.2 and 3.3 depict boxplots comparing
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Figure 3.2: Boxplots of log(RMSE + 1) under Setting (a) with a varying sample size.

the log-transformed RMSE, log(RMSE + 1), of all the considered methods across various

settings introduced above. From the boxplot figures, it is evident that LQCF always exhibits

the best performance across all settings. Additionally, both our methods, LLCF and CF,

consistently outperform LLF1 and HRF1, respectively, highlighting the distinct advantages

offered by our cyclic method in contrast to random direction selection.

In dense scenarios, the proposed CF method demonstrates superior performance com-

pared to all the existing local averaging methods, including BOF, BOF1, HRF, and HRF1;

refer to Figure 3.2 and Figure 3.3(c). Additionally, LLCF also outperforms both the existing

local linear methods LCF and LCF1. Under sparse scenarios, BOF and HRF demonstrate

superior performance compared to BOF1, HRF1, and CF, as seen in Figure 3.3(a)-(b). This

is because their splitting directions are chosen in a data-dependent fashion, which is more

suitable when redundant covariates are included. However, we can still see that both the

proposed LLCF and LQCF methods outperform all the existing ones in Figure 3.3(b). Even

when the sparsity level is small in Figure 3.3(a), the LQCF remains to provide the smallest
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(b) Sparsity level s = 6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

BOF BOF1 BART HRF HRF1 CF LLF LLF1 LLCF LQCF

lo
g(

R
M

S
E

+
1)

Methods

BOF

BOF1

BART

HRF

HRF1

CF

LLF

LLF1

LLCF

LQCF

(c) Sparsity level s = 10

Figure 3.3: Boxplots of log(RMSE + 1) under Setting (b) with a varying sparsity level.

RMSE.

3.6 Supplement

Notation We denote rectangles L ∈ [0, 1]d by R =
⊗d

j=1[aj, bj], where 0 ≤ aj < bj ≤ 1 for

all j = 1, . . . , d, writing the Lebesgue measure of L as λ(L) =
∏d

j=1(bj − aj). The indicator

function of a subset A of a set X is a function 1A defined as 1A = 1 if x ∈ A, and 1A = 0 if
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x /∈ A. For any rectangle L ∈ [0, 1]d, we denote µ(L) := E[1{X∈L}] as the expected fraction

of training examples falling within L. Denote #L :=
∑

i∈I 1{Xi∈L} as the number of training

samples Xi falling within L. For any n× n matrix A, let Λmin(A) and Λmax(A) denote the

smallest and largest eigenvalues of the matrix A, respectively. A d-dimensional vector of all

ones is denoted with 1d. A tree grown by recursive partitioning is called (α, k)-regular for

some α ∈ (0, 0.5] and k ∈ N if the following conditions to hold for the I sample: (a) each

child node contains at least an α-fraction of observations within the parent node, and (b)

the number of observations within terminal leaves is between k and 2k − 1.

3.6.1 Proof of the results for Cyclic Forest

Proof of Lemma 3.1. For any x ∈ [0, 1]d and ξ ∈ Ξ, let c(x, ξ) be the number of splits leading

to the leaf L(x, ξ), and let cj(x, ξ) be the number of such splits along the j-th coordinate.

Let t = min1≤j≤d cj(x, ξ). By the cyclic splitting rule, we know that the number of splits

along different coordinates differs by at most one. That is, cj(x, ξ) ∈ {t, t + 1} for all

1 ≤ j ≤ d. Since c(x, ξ) =
∑d

j=1 cj(x, ξ), c(x, ξ) can be written as c(x, ξ) = td+ l, with some

0 ≤ l ≤ d − 1. Let n0 ≥ n1 ≥ · · · ≥ ntd+l be the number of points in the successive nodes

containing x, where n0 = ⌊wN⌋. By (α, k)-regular, we know that αni−1 ≤ ni ≤ (1− α)ni−1

for each 1 ≤ i ≤ td+ l. Hence, for any 1 ≤ i ≤ td+ l,

αin0 ≤ ni ≤ (1− α)in0, and (3.19)

αtd+l−ini ≤ ntd+l ≤ (1− α)td+l−ini. (3.20)

For any 1 ≤ j ≤ d and closed set L ⊂ [0, 1]d, let diamj(L) be the length of the longest segment

parallel to the j-th axis that is a subset of L. For any 1 ≤ i ≤ t+1 and 1 ≤ j ≤ d, let ki,j be
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the number of splits after the j-th coordinate has been split for i times, then by the cyclic

splitting rule, we have (i− 1)d+ 1 ≤ ki,j ≤ id for each 1 ≤ i ≤ t. Let Lki,j(x, ξ) be the node

containing x after ki,j splits, then the node Lki,j(x, ξ) contains nki,j samples of SI . Denote

n̄j = (nk1,j−1, nk1,j , . . . , nkt,j−1, nkt,j). Then, for the i-th time splitting a node along the j-th

coordinate, conditional on n̄j and Lki,j−1(x, ξ), diamj(Lki,j(x, ξ))/diamj(Lki,j−1(x, ξ)) is at

most the (nki,j + 1)-th order statistic of nki,j−1 i.i.d. uniform random variables with support

[0, 1]. Note that for any i.i.d. uniform random variables U1, . . . , Un0 ∼ Uniform[0, 1], the i-th

order statistic follows a beta distribution U(i) ∼ Beta(i, n0 − i+ 1). Hence, we have

diamj(Lki,j(x, ξ))

diamj(Lki,j−1(x, ξ))
≤ Bi,j,

with some Bi,j | n̄j ∼ Beta(nki,j +1, nki,j−1−nki,j) and (Bi,j)
t
i=1 are independent conditional

on n̄j. Additionally, note that diamj(Lk1,j−1(x, ξ)) = 1. Therefore, for any x ∈ [0, 1]d, ξ ∈ Ξ,

and 1 ≤ j ≤ d, we have diamj(L(x, ξ)) ≤ diamj(Lkt,j(x, ξ)) and

diamj(Lkt,j(x, ξ)) ≤
t∏
i=1

Bi,j.

By the conditional independency, we have

ESI
[
diamr

j(L(x, ξ)) | n̄j
]
≤

t∏
i=1

ESI
[
Br
i,j | n̄j

]
.

For any 1 ≤ j ≤ d and 1 ≤ i ≤ t, note that

ESI
[
Br
i,j | n̄j

]
=

(nki,j + 1) · · · (nki,j + r)

(nki,j−1 + 1) · · · (nki,j−1 + r)

(i)

≤ (1− α)r
(
1 +

α/(1− α)
nki,j−1 + 1

)(
1 +

2α/(1− α)
nki,j−1 + 2

)
· · ·
(
1 +

rα/(1− α)
nki,j−1 + r

)
,
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where (i) holds as nki,j ≤ (1− α)nki,j−1 by (α, k)-regular . Since ki,j ≤ id for any 1 ≤ j ≤ d

and 1 ≤ i ≤ t, we have

ESI
[
Br
i,j | n̄j

]
≤ (1− α)r

(
1 +

α/(1− α)
nid−1 + 1

)(
1 +

2α/(1− α)
nid−1 + 2

)
· · ·
(
1 +

rα/(1− α)
nid−1 + r

)
.

It follows that, for any x ∈ [0, 1]d, ξ ∈ Ξ and 1 ≤ j ≤ d,

ESI
[
diamr

j(L(x, ξ)) | n̄j
]

≤ (1− α)tr
t∏
i=1

(
1 +

α/(1− α)
nid−1 + 1

)(
1 +

2α/(1− α)
nid−1 + 2

)
· · ·
(
1 +

rα/(1− α)
nid−1 + r

)

≤ (1− α)tr
t∏
i=1

(
1 +

rα/(1− α)
nid−1 + r

)r
. (3.21)

Since log(1 + x) < x for all x > 0, we have

log

(
t∏
i=1

(
1 +

rα/(1− α)
nid−1 + r

)r)
= r

t∑
i=1

log

(
1 +

rα/(1− α)
nid−1 + r

)
< r2

t∑
i=1

α/(1− α)
nid−1 + r

.

By r ≥ 1 and (3.20), we have for each i ≤ t,

1

nid−1 + r
≤ 1

nid−1

≤ (1− α)l+1 (1− α)(t−i)d

ntd+l
,

which implies that

log

(
t∏
i=1

(
1 +

rα/(1− α)
nid−1 + r

)r)
<
r2α(1− α)l

ntd+l

t∑
i=1

(1− α)(t−i)d = r2α(1− α)l

ntd+l

1− (1− α)td

1− (1− α)d
.

By t, d > 0 and α ∈ (0, 0.5], we have

log

(
t∏
i=1

(
1 +

rα/(1− α)
nid−1 + r

)r)
<
r2(1− α)l

ntd+l

(i)

≤ r2(1− α)l

k

(ii)

≤ r2,

where (i) holds by (α, k)-regular; (ii) holds since k ≥ 1, α ∈ (0, 0.5), and l ≥ 0. Together

with (3.21), for any x ∈ [0, 1]d, ξ ∈ Ξ, and 1 ≤ j ≤ d,

ESI
[
diamr

j(L(x, ξ))
]
< (1− α)tr exp(r2). (3.22)
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By (α, k)-regular and (3.19), we have ntd+l ∈ [k, 2k − 1] for some k ∈ N and αtd+l⌊wN⌋ ≤

ntd+l ≤ (1 − α)td+l⌊wN⌋. Hence, we have k ≤ (1 − α)td+l⌊wN⌋ and αtd+l⌊wN⌋ ≤ 2k − 1,

which implies that

log((2k − 1)/⌊wN⌋)
d log(α)

− l

d
≤ t ≤ log(k/⌊wN⌋)

d log(1− α)
− l

d
. (3.23)

It follows that

(1− α)tr ≤ (1− α)
lr
d

(
⌊wN⌋
2k − 1

)− r log(1−α)
d log(α) (i)

≤
(
⌊wN⌋
2k − 1

)− r log(1−α)
d log(α)

,

where (i) holds since 0 ≤ l ≤ d− 1. By (3.22), for any x ∈ [0, 1]d, ξ ∈ Ξ, and 1 ≤ j ≤ d,

ESI
[
diamr

j(L(x, ξ))
]
<

(
⌊wN⌋
2k − 1

)− r log(1−α)
d log(α)

exp(r2). (3.24)

By the finite form of Jensen’s inequality, we have for any r ≥ 1,(∑d
j=1 1 · diam

2
j(L(x, ξ))

d

)r/2

≤
∑d

j=1 1 · diam
r
j(L(x, ξ))

d
,

which implies that

ESI [diam
r(L(x, ξ))] = ESI

[
d∑
j=1

diam2
j(L(x, ξ))

]r/2
≤ d(r−2)/2ESI

[
d∑
j=1

diamr
j(L(x, ξ))

]
.

By (3.24), for any r ≥ 1, x ∈ [0, 1]d, and ξ ∈ Ξ,

ESI [diam
r(L(x, ξ))] < dr/2 exp(r2)

(
⌊wN⌋
2k − 1

)− r log(1−α)
d log(α)

.

Proof of Theorem 3.1. By Jensen’s inequality and the fact that (a− b)2 ≤ 2a2 + 2b2 for any

a, b ∈ R,

Ex [m̂(x)−m(x)]2 = Ex

[
Eξ

[∑
i∈I

ωi(x, ξ)(Yi −m(x))

]]2

≤ Ex

Eξ [∑
i∈I

ωi(x, ξ)(Yi −m(x))

]2 ≤ 2Ex [T1(x)] + 2Ex [T2(x)] , (3.25)
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where for any x ∈ [0, 1]d,

T1(x) := Eξ

[∑
i∈I

ωi(x, ξ)εi

]2
, (3.26)

T2(x) := Eξ

[∑
i∈I

ωi(x, ξ) (m(Xi)−m(x))

]2
, (3.27)

with εi = Yi −m(Xi). By Fubini’s theorem,

ESI [Ex [T1(x)]] = Eξ

Ex

ESI

[∑
i∈I

ωi(x, ξ)εi

]2 .
Note that

ESI

[∑
i∈I

ωi(x, ξ)εi

]2
= ESI

[∑
i∈I

[ωi(x, ξ)]
2 ε2i

]
+ ESI

[ ∑
i,j∈I,i ̸=j

ωi(x, ξ)ωj(x, ξ)εiεj

]
.

For any i, j ∈ I with i ̸= j,

ESI [ωi(x, ξ)ωj(x, ξ)εiεj]
(i)
= ESI

[
ωi(x, ξ)ωj(x, ξ)ESI

[
εiεj | {Xl}Nl=1, {Yl}l∈J

]]
(ii)
= ESI [ωi(x, ξ)ωj(x, ξ)ESI [εi | Xi]ESI [εj | Xj]]

(iii)
= 0,

where (i) holds by the tower rule and “honesty” of the forests; (ii) holds by the independence

of the samples; (iii) holds since E[ε | X] = 0. Therefore, we have

ESI [Ex [T1(x)]] = Eξ

[
Ex

[
ESI

[∑
i∈I

[ωi(x, ξ)]
2 ε2i

]]]
.

By the tower rule,

Eξ

[
Ex

[
ESI

[∑
i∈I

[ωi(x, ξ)]
2 ε2i

]]]
(i)
= Eξ

[
Ex

[
ESI

[∑
i∈I

[ωi(x, ξ)]
2 ESI

[
ε2i | {Xl}Nl=1, {Yl}l∈J

]]]]
(ii)
= Eξ

[
Ex

[
ESI

[∑
i∈I

[ωi(x, ξ)]
2 ESI

[
ε2i | Xi

]]]]
(iii)

≤ MEξ

[
Ex

[
ESI

[∑
i∈I

[ωi(x, ξ)]
2

]]]
,
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where (i) holds by “honesty” of the forests; (ii) holds by the independence of the samples;

(iii) holds by Assumption 3.2. Therefore, we have

ESI [Ex [T1(x)]] ≤MEξ

[
Ex

[
ESI

[∑
i∈I

[ωi(x, ξ)]
2

]]]
.

Since
(
1{Xi∈L(x,ξ)}

)2
= 1{Xi∈L(x,ξ)}, we have

ω2
i (x, ξ) =

ωi(x, ξ)

# {l : Xl ∈ L(x, ξ)}
(i)

≤ ωi(x, ξ)

k
, (3.28)

where (i) holds by (α, k)-regular. By
∑

i∈I ωi(x, ξ) = 1, we have ESI [Ex [T1(x)]] ≤M/k. By

Markov’s inequality, as N →∞, we have

Ex [T1(x)] = Op

(
1

k

)
. (3.29)

Additionally, note that Ex [T2(x)] = Ex

[
Eξ
[∑

i∈I ωi(x, ξ) (m(Xi)−m(x))
]2]

. By Cauchy-

Schwarz inequality and the fact that
∑

i∈I ωi(x, ξ) = 1,[∑
i∈I

ωi(x, ξ) (m(Xi)−m(x))

]2
≤

[∑
i∈I

ωi(x, ξ)

][∑
i∈I

ωi(x, ξ) (m(Xi)−m(x))2
]

=
∑
i∈I

ωi(x, ξ) (m(Xi)−m(x))2 .

Then, we have

Ex [T2(x)] ≤ Ex

[
Eξ

[∑
i∈I

ωi(x, ξ) (m(Xi)−m(x))2
]]

.

By the Lipschitz continuity of m(·), we have

Ex

[
Eξ

[∑
i∈I

ωi(x, ξ) (m(Xi)−m(x))2
]]
≤ Ex

[
Eξ

[∑
i∈I

ωi(x, ξ) (L0∥Xi − x∥)2
]]

≤ L2
0Ex

[
Eξ

[∑
i∈I

ωi(x, ξ)diam
2(L(x, ξ))

]]
,
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where L0 is the Lipschitz constant. Then, we have

Ex [T2(x)] ≤ L2
0Ex

[
Eξ

[∑
i∈I

ωi(x, ξ)diam
2(L(x, ξ))

]]
(i)
= L2

0Ex

[
Eξ
[
diam2(L(x, ξ))

]]
,

where (i) holds by
∑

i∈I ωi(x, ξ) = 1. By Fubini’s theorem,

ESI [Ex [T2(x)]] ≤ L2
0ESI

[
Ex

[
Eξ
[
diam2(L(x, ξ))

]]]
= L2

0Eξ
[
Ex

[
ESI

[
diam2(L(x, ξ))

]]]
.

By Lemma 3.1,

Eξ
[
Ex

[
ESI

[
diam2(L(x, ξ))

]]]
≤ sup

x∈[0,1]d,ξ∈Ξ
ESI

[
diam2(L(x, ξ))

]
< d exp(4)

(
⌊wN⌋
2k − 1

)− 2 log(1−α)
d log(α)

.

Therefore, we have

ESI [Ex [T2(x)]] < L2
0d exp(4)

(
⌊wN⌋
2k − 1

)− 2 log(1−α)
d log(α)

.

By Markov’s inequality, as N →∞, we have

Ex [T2(x)] = Op

((
N

k

)− 2 log(1−α)
d log(α)

)
. (3.30)

Combining (3.25), (3.29), and (3.30), we conclude that (3.6) holds.

3.6.2 Proofs of the results for Cyclic Polynomial Forest

Proof of Theorem 3.2. Recall the definition of m̂CLPF(x), (3.9),

Ex [m̂CLPF(x)−m(x)]2 = Ex

[
Eξ
[
G(x)⊤

(
β̂(x, ξ)− β

)]]2
(i)

≤ Ex

[
Eξ
[
G(x)⊤

(
β̂(x, ξ)− β

)]2] (ii)
= Eξ

[
Ex

[
G(x)⊤

(
β̂(x, ξ)− β

)]2]
, (3.31)
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where (i) holds by Jensen’s inequality and (ii) holds by Fubini’s theorem. In the following,

we condition on the event B ∩ C defined as (3.56) and (3.58). By Lemmas 3.7 and 3.8, we

know that SL − dLd
⊤
L , SL, S,

∑
i∈I ωi(x, ξ)∆i∆

⊤
i and

∑
i∈I ωi(x, ξ)G(Xi)G(Xi)

⊤ are all

positive-definite, with PSI (B ∩ C) = 1− o(1). Recall the definition of β̂(x, ξ), (3.8),

β̂(x, ξ) =

(∑
i∈I

ωi(x, ξ)G(Xi)G(Xi)
⊤

)−1(∑
i∈I

ωi(x, ξ)G(Xi)Yi

)
.

Let α := (α1,α2, . . . ,αd) be the multi-index, where each αi is a nonnegative integer. Define

ri = Yi −G(Xi)
⊤β − εi with G(Xi)

⊤β =
∑q

|α|=0D
αm(x)(X− x)α/α!. Then, we have

β̂(x, ξ)− β =

(∑
i∈I

ωi(x, ξ)G(Xi)G(Xi)
⊤

)−1(∑
i∈I

ωi(x, ξ)G(Xi)(εi + ri)

)
.

Note that there exists some d̄ × d̄ lower triangular matrix T with 1 on main diagonal such

that

G(Xi − x) = TG(Xi), (3.32)

which implies

β̂(x, ξ)− β

= T⊤

(∑
i∈I

ωi(x, ξ)G(Xi − x)G(Xi − x)⊤

)−1(∑
i∈I

ωi(x, ξ)G(Xi − x)(εi + ri)

)
.

To simplify the exposition, we let ∆i := G(Xi − x). By TG(x) = G(0) = e1,

G(x)⊤
(
β̂(x, ξ)− β

)
= e⊤1

(∑
i∈I

ωi(x, ξ)∆i∆
⊤
i

)−1(∑
i∈I

ωi(x, ξ)∆i(εi + ri)

)
. (3.33)

By (3.31), we have

Ex [m̂CLPF(x)−m(x)]2

≤ Eξ

Ex

e⊤1
(∑

i∈I

ωi(x, ξ)∆i∆
⊤
i

)−1(∑
i∈I

ωi(x, ξ)∆i(εi + ri)

)2 .
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Define Ui :=
(
g1(Xi − x)⊤,g2(Xi − x)⊤, . . . ,gq(Xi − x)⊤

)⊤
= (Zi1, . . . , Zid, Z

2
i1, Zi1Zi2, . . . ,

Z2
id, . . . , Z

q
id)

⊤ ∈ Rd̄ with Zij := Xij − xj for any i ∈ I and j ≤ d, and d̄ =
∑q

i=1 d
i. Since

∆i = (1,U⊤
i )

⊤, we have

∑
i∈I

ωi(x, ξ)∆i∆
⊤
i =

1 d⊤

d S

 ,

where d :=
∑

i∈I ωi(x, ξ)Ui and S :=
∑

i∈I ωi(x, ξ)UiU
⊤
i . By Schur decomposition,

e⊤1

(∑
i∈I

ωi(x, ξ)∆i∆
⊤
i

)−1

=

(
(1− d⊤S−1d)−1 (1− d⊤S−1d)−1d⊤S−1

)
, (3.34)

Since ∆i = (1,U⊤
i )

⊤, we also have

∑
i∈I

ωi(x, ξ)∆i(εi + ri) =

(∑
i∈I ωi(x, ξ)(εi + ri)

∑
i∈I ωi(x, ξ)U

⊤
i (εi + ri)

)⊤

. (3.35)

It follows that

Ex [m̂CLPF(x)−m(x)]2 ≤ Eξ
[
Ex

[
(1− d⊤S−1d)−1

∑
i∈I

ωi(x, ξ)(εi + ri)

+ (1− d⊤S−1d)−1d⊤S−1
∑
i∈I

ωi(x, ξ)Ui(εi + ri)

]2]
. (3.36)

Define UL
i :=

(
ZL
i1, . . . , Z

L
id, (Z

L
i1)

2, ZL
i1Z

L
i2, . . . , (Z

L
id)

2, . . . , (ZL
i1)

q
)⊤ ∈ Rd̄ with ZL

ij := (Xij −

xj)/diamj(L(x, ξ)) for any i ∈ I and j ≤ d. Define a d̄ × d̄ diagonal matrix DL :=

diag (diam1(L(x, ξ)), . . . , diamd(L(x, ξ)), diam
2
1(L(x, ξ)), diam1(L(x, ξ))diam2(L(x, ξ)), . . . ,

diam2
1(L(x, ξ)), . . . , diam

q
d(L(x, ξ))). Then,

Ui = DLU
L
i , d = DLdL, and S = DLSLDL, where (3.37)

dL :=
∑
i∈I

ωi(x, ξ)U
L
i and SL :=

∑
i∈I

ωi(x, ξ)U
L
i (U

L
i )

⊤. (3.38)
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Plugging (3.37) into (3.36), we have

Ex [m̂CLPF(x)−m(x)]2 ≤ Eξ
[
Ex

[
(1− d⊤

LS
−1
L dL)

−1
∑
i∈I

ωi(x, ξ)(εi + ri)

+ (1− d⊤
LS

−1
L dL)

−1d⊤
LS

−1
L

∑
i∈I

ωi(x, ξ)U
L
i (εi + ri)

]2]
. (3.39)

Let cL := SL−dLd⊤
L . On the event B, the matrix cL is invertible. Since dL

(
d⊤
Lc

−1
L dL + 1

)
=(

dLd
⊤
L + cL

)
c−1
L dL and d⊤

Lc
−1
L dL ≥ 0, we have dL =

(
d⊤
Lc

−1
L dL + 1

)−1 (
dLd

⊤
L + cL

)
c−1
L dL.

It follows that

d⊤
LS

−1
L dL = d⊤

L

(
dLd

⊤
L + cL

)−1
dL

= d⊤
L

(
dLd

⊤
L + cL

)−1 (
d⊤
Lc

−1
L dL + 1

)−1 (
dLd

⊤
L + cL

)
c−1
L dL

=
d⊤
Lc

−1
L dL

d⊤
Lc

−1
L dL + 1

≤ 1. (3.40)

Then, we have
(
1− d⊤

LS
−1
L dL

)−1
= 1 + d⊤

L

(
SL − dLd

⊤
L

)−1
dL. Therefore,

Ex [m̂CLPF(x)−m(x)]2 ≤ Eξ

Ex

[
4∑
i=1

∆i(x, ξ)

]2
sup

x∈[0,1]d

{
1 + d⊤

L

(
SL − dLd

⊤
L

)−1
dL

} ,
where for any x ∈ [0, 1]d and ξ ∈ Ξ,

∆1(x, ξ) := d⊤
LS

−1
L

∑
i∈I

ωi(x, ξ)U
L
i ri, ∆2(x, ξ) :=

∑
i∈I

ωi(x, ξ)ri, (3.41)

∆3(x, ξ) := d⊤
LS

−1
L

∑
i∈I

ωi(x, ξ)U
L
i εi, ∆4(x, ξ) :=

∑
i∈I

ωi(x, ξ)εi. (3.42)

By the finite form of Jensen’s inequality, we have[
1

4

4∑
i=1

∆i(x, ξ)

]2
≤ 1

4

4∑
i=1

[∆i(x, ξ)]
2 ,

which implies that

Ex [m̂CLPF(x)−m(x)]2 ≤ Eξ

[
4

4∑
i=1

Ex [∆i(x, ξ)]
2 sup
x∈[0,1]d

{
1 + d⊤

L

(
SL − dLd

⊤
L

)−1
dL

}]
.

(3.43)
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By Lemma 3.7, we have

sup
x∈[0,1]d,ξ∈Ξ

{
1 + d⊤

L

(
SL − dLd

⊤
L

)−1
dL

}
= Op(1). (3.44)

Since m ∈ Hq,β, by the Taylor’s theorem, we have

m(Xi) = Pq−1(Xi) +Rq−1(Xi), where Pq−1(Xi) :=

q−1∑
|α|=0

Dαm(x)

α!
(Xi − x)α

and Rq−1(Xi) :=
∑

|α|=qD
αm(ξ)(Xi − x)α/α! for some ξi between x and Xi. By defini-

tion, ri = m(Xi) −G(Xi)
⊤β = Rq−1(Xi) − (G(Xi)

⊤β − Pq−1(Xi)) =
∑

|α|=q(D
αm(ξi) −

Dαm(x))(Xi− x)α/α! since G(Xi)
⊤β =

∑q
|α|=0D

αm(x)(X− x)α/α!. By Assumption 3.3,

we have

ri ≤
∑
|α|=q

L0

α!
∥ξi − x∥β∥Xi − x∥q ≤

∑
|α|=q

L0

α!
∥Xi − x∥q+β. (3.45)

It follows that, for any ξ ∈ Ξ,

Ex [∆1(x, ξ)]
2 ≤

∑
|α|=q

L0

α!

2

Ex

[∑
i∈I

ωi(x, ξ)d
⊤
LS

−1
L UL

i ∥Xi − x∥q+β
]2
.

By Cauchy-Schwarz inequality,(∑
i∈I

ωi(x, ξ)d
⊤
LS

−1
L UL

i ∥Xi − x∥q+β
)2

≤

(∑
i∈I

ωi(x, ξ)d
⊤
LS

−1
L UL

i (U
L
i )

⊤S−1
L dL

)(∑
i∈I

ωi(x, ξ)∥Xi − x∥2(q+β)
)

(i)
= d⊤

LS
−1
L dL

∑
i∈I

ωi(x, ξ)∥Xi − x∥2(q+β)
(ii)

≤
∑
i∈I

ωi(x, ξ)∥Xi − x∥2(q+β), (3.46)

where (i) holds by the fact that SL =
∑

i∈I ωi(x, ξ)U
L
i (U

L
i )

⊤; (ii) holds by (3.40). Then, we

have

Ex [∆1(x, ξ)]
2 ≤

∑
|α|=q

L0

α!

2

Ex

[∑
i∈I

ωi(x, ξ)∥Xi − x∥2(q+β)
]
.
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By construction, we have

∑
i∈I

ωi(x, ξ)∥Xi − x∥2(q+β) ≤
∑
i∈I

ωi(x, ξ)diam
2(q+β)(L(x, ξ))

(i)
= diam2(q+β)(L(x, ξ)), (3.47)

where (i) holds by
∑

i∈I ωi(x, ξ) = 1. By Lemma 3.1, for any ξ ∈ Ξ,

ESI

[
Ex

[
diam2(q+β)(L(x, ξ))

]]
≤ sup

x∈[0,1]d
ESI

[
diam2(q+β)(L(x, ξ))

]
≤ dq+β exp

(
4(q + β)2

)( ⌊wN⌋
2k − 1

)− 2(q+β) log(1−α)
d log(α)

By Markov’s inequality, as N →∞, we have

Ex

[
diam2(q+β)(L(x, ξ))

]
= Op

((
N

k

)− 2(q+β) log(1−α)
d log(α)

)
. (3.48)

Therefore, for any ξ ∈ Ξ,

Ex [∆1(x, ξ)]
2 ≤

∑
|α|=q

L0

α!

2

Ex

[
diam2(q+β)(L(x, ξ))

]

= Op

((
N

k

)− 2(q+β) log(1−α)
d log(α)

)
. (3.49)

In addition, by (3.45), for any ξ ∈ Ξ,

Ex [∆2(x, ξ)]
2 ≤

∑
|α|=q

L0

α!

2

Ex

[∑
i∈I

ωi(x, ξ)∥Xi − x∥q+β
]2
.

By Cauchy-Schwarz inequality,[∑
i∈I

ωi(x, ξ)∥Xi − x∥q+β
]2
≤
∑
i∈I

ωi(x, ξ)
∑
i∈I

ωi(x, ξ)∥Xi − x∥2(q+β)

(i)
=
∑
i∈I

ωi(x, ξ)∥Xi − x∥2(q+β)
(ii)

≤ diam2(q+β)(L(x, ξ)), (3.50)

where (i) holds by
∑

i∈I ωi(x, ξ) = 1; (ii) holds by (3.47). Therefore, we have

Ex [∆2(x, ξ)]
2 ≤

∑
|α|=q

L0

α!

2

Ex

[
diam2(q+β)(L(x, ξ))

]
.
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Together with (3.48), for any ξ ∈ Ξ, we have

Ex [∆2(x, ξ)]
2 = Op

((
N

k

)− 2(q+β) log(1−α)
d log(α)

)
. (3.51)

As for the term ∆3(x, ξ), for any ξ ∈ Ξ,

ESI
[
Ex [∆3(x, ξ)]

2] = Ex

[
ESI [∆3(x, ξ)]

2]
= Ex

[
ESI

[
d⊤
LS

−1
L

∑
i∈I

ω2
i (x, ξ)U

L
i (U

L
i )

⊤ε2iS
−1
L dL

]]

+ Ex

[
ESI

[ ∑
i,j∈I,i ̸=j

d⊤
LS

−1
L UL

i U
⊤
L,jS

−1
L dLωi(x, ξ)ωj(x)εiεj

]]
.

By the tower rule, for any i, j ∈ I with i ̸= j, we have

ESI
[
d⊤
LS

−1
L UL

i U
⊤
L,jS

−1
L dLωi(x, ξ)ωj(x)εiεj

]
(i)
= ESI

[
d⊤
LS

−1
L UL

i U
⊤
L,jS

−1
L dLωi(x, ξ)ωj(x)ESI

[
εiεj | {Xl}Nl=1, {Yl}l∈J

]]
(ii)
= ESI

[
d⊤
LS

−1
L UL

i U
⊤
L,jS

−1
L dLωi(x, ξ)ωj(x)ESI [εi | Xi]ESI [εj | Xj]

] (iii)
= 0,

where (i) holds by “honesty” of the forests; (ii) holds by the independency of the samples;

(iii) holds since E[ε | X] = 0. Therefore, we have

ESI
[
Ex [∆3(x, ξ)]

2] = Ex

[
ESI

[
d⊤
LS

−1
L

∑
i∈I

ω2
i (x, ξ)U

L
i (U

L
i )

⊤ε2iS
−1
L dL

]]
.

By the tower rule, we have

ESI
[
Ex [∆3(x, ξ)]

2]
(i)
= Ex

[
ESI

[
ESI

[
d⊤
LS

−1
L

∑
i∈I

ω2
i (x, ξ)U

L
i (U

L
i )

⊤ε2iS
−1
L dL | {Xl}Nl=1, {Yl}l∈J

]]]
(ii)
= Ex

[
ESI

[
ESI

[
d⊤
LS

−1
L

∑
i∈I

ω2
i (x, ξ)U

L
i (U

L
i )

⊤S−1
L dLE[ε2i | Xi]

]]]
(iii)

≤ MEx

[
ESI

[
d⊤
LS

−1
L

∑
i∈I

ω2
i (x, ξ)U

L
i (U

L
i )

⊤S−1
L dL

]]
,
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where (i) holds by “honesty” of the forests; (ii) holds by the independency of the samples;

(iii) holds by Assumption 3.2. By (3.28), we have

ESI
[
Ex [∆3(x, ξ)]

2] ≤ M

k
Ex

[
ESI

[
d⊤
LS

−1
L

∑
i∈I

ωi(x, ξ)U
L
i (U

L
i )

⊤S−1
L dL

]]

Since SL =
∑

i∈I ωi(x, ξ)U
L
i (U

L
i )

⊤ and (3.40) holds, we have d⊤
LS

−1
L

∑
i∈I ωi(x, ξ)U

L
i (U

L
i )

⊤

S−1
L dL = d⊤

LS
−1
L dL ≤ 1, and hence

ESI
[
Ex [∆3(x, ξ)]

2] ≤ M

k
.

By Markov’s inequality, for any ξ ∈ Ξ, we have

Ex [∆3(x, ξ)]
2 = Op

(
1

k

)
. (3.52)

Lastly, for the term ∆4(x, ξ), with any ξ ∈ Ξ,

ESI
[
Ex [∆4(x, ξ)]

2] = Ex

[
ESI [∆4(x, ξ)]

2]
= Ex

[
ESI

[∑
i∈I

ω2
i (x, ξ)ε

2
i

]]
+ Ex

[
ESI

[ ∑
i,j∈I,i ̸=j

ωi(x, ξ)ωj(x)εiεj

]]
.

Using the tower rule, we also have

ESI [ωi(x, ξ)ωj(x, ξ)εiεj]
(i)
= ESI

[
ωi(x, ξ)ωj(x, ξ)ESI

[
εiεj | {Xl}Nl=1, {Yl}l∈J

]]
(ii)
= ESI [ωi(x, ξ)ωj(x, ξ)ESI [εi | Xi]ESI [εj | Xj]]

(iii)
= 0,
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where (i) holds by “honesty” of the forests; (ii) holds by the independency of the samples;

(iii) holds since E[ε | X] = 0. Therefore, we have

ESI
[
Ex [∆4(x, ξ)]

2] = Ex

[
ESI

[∑
i∈I

ω2
i (x, ξ)ε

2
i

]]
(i)
= Ex

[
ESI

[
ESI

[∑
i∈I

ω2
i (x, ξ)ε

2
i | {Xl}Nl=1, {Yl}l∈J

]]]
(iii)
= Ex

[
ESI

[∑
i∈I

ω2
i (x, ξ)ESI

[
ε2i | Xi

]]]
(iv)

≤ MEx

[
ESI

[∑
i∈I

ω2
i (x, ξ)

]]
,

where (i) holds by the tower rule and “honesty” of the forests; (ii) holds by the independency

of the samples; (iii) holds by Assumption 3.2. By (3.28) and
∑

i∈I ωi(x, ξ) = 1, we have

ESI
[
Ex [∆4(x, ξ)]

2] ≤ M

k
.

By Markov’s inequality, for any ξ ∈ Ξ, we have

Ex [∆4(x, ξ)]
2 = Op

(
1

k

)
. (3.53)

Combining (3.49), (3.51), (3.52) and (3.53) with (3.44), we have

Eξ

[
4

4∑
i=1

Ex [∆i(x, ξ)]
2 sup
x∈[0,1]d

{
1 + d⊤

L

(
SL − dLd

⊤
L

)−1
dL

}]

= Op

(
1

k
+

(
N

k

)− 2(q+β) log(1−α)
d log(α)

)
.

Together with (3.43), we conclude that (3.12) holds.

3.6.3 Auxiliary Lemmas

Lemma 3.4 (Theorem 7 of [WW15]). Let D = {1, 2, . . . , d} and ω, ϵ ∈ (0, 1). Then, there

exists a set of rectangles RD,ω,ϵ such that the following properties hold. Any rectangle L of
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volume λ(L) ≥ ω can be well approximated by elements in RD,ω,ϵ from both above and below

in terms of Lebesgue measure. Specifically, there exist rectangles R−, R+ ∈ RD,ω,ϵ such that

R− ⊆ L ⊆ R+ and exp{−ϵ}λ(R+) ≤ λ(L) ≤ exp{ϵ}λ(R−).

Moreover, as ω, ϵ→ 0, the set RD,ω,ϵ has cardinality bounded by

#RD,ω,ϵ =
1

ω

(
8d2

ϵ2

(
1 + log2

⌊
1

ω

⌋))d
· (1 +O(ϵ)).

Lemma 3.5 (Theorem 10 of [WW15]). Suppose that w ∈ (0, 1], and α ∈ (0, 0.5] are con-

stants. Choose any k ≤ n = ⌊wN⌋ satisfying k ≫ log(N). Let L be the collection of all

possible leaves of partitions satisfying (α, k)-regular. Let RD,ω,ϵ be as defined in Lemma 3.4,

with ω and ϵ choosing as

ω =
k

2n
and ϵ =

1√
k
. (3.54)

Then, there exists an n0 ∈ N such that, for every n ≥ n0, the following statement holds with

probability at at least 1 − n−1/2: for each leaf L ∈ L, we can select a rectangle R̄ ∈ RD,ω,ϵ

such that R̄ ⊆ L, λ(L) ≤ exp{ϵ}λ(R̄), and

#L−#R̄ ≤ 3ϵ#L+ 2
√
3 log(#RD,ω,ϵ)#L+O (log(#RD,ω,ϵ)) .

Lemma 3.6 (Lemma 12 of [WW15]). Fix a sequence δ(n) > 0, and define the event

A :=

{
sup

{
|#R− nµ(R)|√

nµ(R)
: R ∈ R, µ(R) ≥ µmin

}
≤

√
3 log

(
#R
δ

)}

for any set of rectangles R and threshold µmin, where #R := #{i : Xi ∈ R} and #R is the

number of rectangles of the set R. Then, for any sequence of problems indexed by n with

lim
n→∞

log(#R)
nµmin

= 0 and lim
n→∞

δ−1

#R
= 0, (3.55)
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there is a threshold n0 ∈ N such that, for all n ≥ n0, we have P(A) ≥ 1 − δ. Note that,

above, A, R, µmin and δ are all implicitly changing with n.

Lemma 3.7. Suppose that w ∈ (0, 1], and α ∈ (0, 0.5] are constants. Choose any k ≤ n =

⌊wN⌋ satisfying k ≫ log(N). Then, there exists a positive constant Λ0 > 0 such that the

event

B :=

{
inf

x∈[0,1]d,ξ∈Ξ
Λmin

(
SL − dLd

⊤
L

)
≥ Λ0

}
(3.56)

satisfies limN→∞ PSI (B) = 1, where dL and SL are defined as in (3.38). In addition, on the

event B, the matrices SL − dLd
⊤
L and SL are both positive-definite, and we also have

sup
x∈[0,1]d,ξ∈Ξ

d⊤
L(SL − dLd

⊤
L)

−1dL ≤
d̄

Λ0

. (3.57)

Lemma 3.8. Let the assumptions in Lemma 3.7 hold. Define the event

C :=
{
diamj(L(x, ξ)) ̸= 0, for all 1 ≤ j ≤ d, x ∈ [0, 1]d, ξ ∈ Ξ

}
. (3.58)

Then, we have PSI (C) = 1. Moreover, on the event B ∩ C, we have S,
∑

i∈I ωi(x, ξ)∆i∆
⊤
i

and
∑

i∈I ωi(x, ξ)G(Xi)G(Xi)
⊤ are both positive-definite, where ∆i = G(Xi − x).

3.6.4 Proofs of the auxiliary Lemmas

Proof of Lemma 3.7. Choose ω and ϵ as in (3.54). By Lemma 3.4, there exists some R̃D,ω,ϵ

satisfying the approximation property as in Lemma 3.4 with log(#R̃D,ω,ϵ) = O(log(N)).

Therefore, we can choose some RD,ω,ϵ ⊇ R̃D,ω,ϵ satisfying log(#RD,ω,ϵ) = O(log(N)) and

√
n = o(#RD,ω,ϵ). Condition on the event A defined in Lemma 3.6, with R = RD,ω,ϵ,

µmin = ω, and δ = 1/
√
n. By k ≫ log(N), as N →∞, we have

log(#RD,ω,ϵ)

k
= O

(
log(N)

k

)
= o(1) and

√
n

#RD,ω,ϵ
= o(1). (3.59)
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Thus, the condition (3.55) is satisfied. By Lemma 3.6, there exists n0 ∈ N such that

PSI (A) ≥ 1− 1√
n

for any n ≥ n0. (3.60)

Condition on the event A above. For any x ∈ [0, 1]d and ξ ∈ Ξ, under (α, k)-regular, and by

Corollary 14 of [WW15], we have

µ(L(x, ξ)) ≥ ω. (3.61)

By Lemmas 3.4 and 3.5, we can choose some R̄ := R̄(x, ξ) ∈ RD,ω,ϵ as an inner approximation

of L(x, ξ) satisfying R̄ ⊆ L(x, ξ),

λ(L(x, ξ))
(i)
= µ(L(x, ξ)) ≤ exp{ϵ}λ(R̄) (i)

= exp{ϵ}µ(R̄), and (3.62)

#L−#R̄

#L
≤ 3√

k
+ 2

√
3 log(#RD,ω,ϵ)

#L
+O

(
log(#RD,ω,ϵ)

#L

)
, (3.63)

where we denote #L := #L(x, ξ) for the sake of simplicity and (i) holds since Xi ∼

Uniform[0, 1]d. Define ωLi := ωi(x, ξ) = 1{Xi∈L(x,ξ)}/#L and ωR̄i := 1{Xi∈R̄}/#R̄. Note

that

SL − dLd
⊤
L =

∑
i∈I

ωi(x, ξ)U
L
i (U

L
i )

⊤ −
∑
i∈I

ωi(x, ξ)U
L
i

∑
i∈I

ωi(x, ξ)(U
L
i )

⊤ =
4∑
i=1

Qi,

where

Q1 :=
∑
i∈I

ωLi U
L
i (U

L
i )

⊤ −
∑
i∈I

ωLi U
L
i

∑
i∈I

ωLi (U
L
i )

⊤

−
∑
i∈I

ωR̄i U
L
i (U

L
i )

⊤ +
∑
i∈I

ωR̄i U
L
i

∑
i∈I

ωR̄i (U
L
i )

⊤,

Q2 :=
∑
i∈I

ωR̄i U
L
i (U

L
i )

⊤ −
∑
i∈I

ωR̄i U
L
i

∑
i∈I

ωR̄i (U
L
i )

⊤ − Var
(
U | X ∈ R̄

)
,

Q3 := Var
(
UL | X ∈ R̄

)
− Var

(
UL | X ∈ L(x, ξ)

)
,

Q4 := Var
(
UL | X ∈ L(x, ξ)

)
,
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where U and UL are independent copies of Ui and UL, respectively. By the triangle in-

equality,

inf
x∈[0,1]d,ξ∈Ξ

Λmin

(
SL − dLd

⊤
L

)
= inf

x∈[0,1]d,ξ∈Ξ,∥a∥2=1

4∑
i=1

a⊤Qia

≥ inf
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

a⊤Q4a−
3∑
i=1

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Qia
∣∣ .

In the following, we show that there exists some constant Λ0 > 0 such that

inf
x∈[0,1]d,ξ∈Ξ

Λmin

(
SL − dLd

⊤
L

)
≥ Λ0,

with probability approaching one as N →∞.

Step 1. We first demonstrate that on the event A, as N →∞,

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q1a
∣∣ = o(1). (3.64)

By the triangle inequality, we have

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q1a
∣∣ ≤ 2∑

j=1

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q1,ja
∣∣ , (3.65)

where for any x ∈ [0, 1]d and ξ ∈ Ξ,

Q1,1 := Q1,1(x, ξ) =
∑
i∈I

ωLi U
L
i (U

L
i )

⊤ −
∑
i∈I

ωR̄i U
L
i (U

L
i )

⊤,

Q1,2 := Q1,1(x, ξ) =
∑
i∈I

ωLi U
L
i

∑
i∈I

ωLi (U
L
i )

⊤ −
∑
i∈I

ωR̄i U
L
i

∑
i∈I

ωR̄i (U
L
i )

⊤.

Note that R̄ ⊆ L(x, ξ), for any a ∈ Rd̄, we have

∣∣a⊤Q1,1a
∣∣ ≤

∣∣∣∣∣∣∣
1

#L

∑
i∈{i∈I:Xi∈R̄}

(
a⊤UL

i

)2 − 1

#R̄

∑
i∈{i∈I:Xi∈R̄}

(
a⊤UL

i

)2∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
1

#L

∑
i∈{i∈I:Xi∈L(x,ξ)\R̄}

(
a⊤UL

i

)2∣∣∣∣∣∣∣
≤ 2(#L−#R̄)

#L
sup

i∈{i∈I:Xi∈L(x,ξ)}

(
a⊤UL

i

)2
.
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For any x ∈ [0, 1]d and ξ ∈ Ξ, if ωi(x, ξ) ̸= 0, i.e., Xi ∈ L(x, ξ), we have (Xij − xj)/

diamj(L(x, ξ)) ∈ [−1, 1]. By the construction of UL
i ,

∥UL
i ∥2 ≤

√
d̄∥UL

i ∥∞ ≤
√
d̄, ∀i ∈ {i ∈ I : ωi(x, ξ) ̸= 0}, (3.66)

where d̄ =
∑q

i=1 d
i. Hence, it follows that

sup
i∈{i∈I:Xi∈L(x,ξ)},∥a∥2=1

{(
a⊤UL

i

)2}
= sup

i∈{i∈I:Xi∈L(x,ξ)}

∥∥UL
i

∥∥2
2
≤ d̄. (3.67)

Therefore,

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q1,1a
∣∣ ≤ 2d̄ sup

x∈[0,1]d,ξ∈Ξ

{
#L−#R̄

#L

}
. (3.68)

By (3.59) and (3.63), as N → ∞, we have (#L − #R̄)/#L = o(1) for any x ∈ [0, 1]d and

ξ ∈ Ξ, which implies that

sup
x∈[0,1]d,ξ∈Ξ

{
#L−#R̄

#L

}
= o(1). (3.69)

By (3.68), we have

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q1,1a
∣∣ = o(1). (3.70)

In addition, note that for any a ∈ Rd̄,

∣∣a⊤Q1,2a
∣∣ =

∣∣∣∣∣∣∣
1

#L

∑
i∈{i∈I:Xi∈L(x,ξ)}

a⊤UL
i +

1

#R̄

∑
i∈{i∈I:Xi∈R̄}

a⊤UL
i

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣
1

#L

∑
i∈{i∈I:Xi∈L(x,ξ)}

a⊤UL
i −

1

#R̄

∑
i∈{i∈I:Xi∈R̄}

a⊤UL
i

∣∣∣∣∣∣∣ .
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By the triangle inequality, we have∣∣∣∣∣∣∣
1

#L

∑
i∈{i∈I:Xi∈L(x,ξ)}

a⊤UL
i −

1

#R̄

∑
i∈{i∈I:Xi∈R̄}

a⊤UL
i

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
1

#L

∑
i∈{i∈I:Xi∈R̄}

a⊤UL
i −

1

#R̄

∑
i∈{i∈I:Xi∈R̄}

a⊤UL
i

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
1

#L

∑
i∈{i∈I:Xi∈L(x,ξ)\R̄}

a⊤UL
i

∣∣∣∣∣∣∣
≤ 2(#L−#R̄)

#L
sup

i∈{i∈I:Xi∈L(x,ξ)}

∣∣a⊤UL
i

∣∣ .
Besides, we also have∣∣∣∣∣∣∣

1

#L

∑
i∈{i∈I:Xi∈L(x,ξ)}

a⊤UL
i +

1

#R̄

∑
i∈{i∈I:Xi∈R̄}

a⊤UL
i

∣∣∣∣∣∣∣ ≤ 2 sup
i∈{i∈I:Xi∈L(x,ξ)}

∣∣a⊤UL
i

∣∣ .
Therefore,

∣∣a⊤Q1,2a
∣∣ ≤ 4(#L−#R̄)

#L
sup

i∈{i∈I:Xi∈L(x,ξ)}

∣∣a⊤UL
i

∣∣2 .
By (3.67) and (3.69), we have

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q1,2a
∣∣ = o(1). (3.71)

Combining (3.70) and (3.71) with (3.65), we conclude that (3.64) holds.

Step 2. We now demonstrate that on the event A, as N →∞,

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q3a
∣∣ = o(1). (3.72)

By the triangle inequality, we have

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q3a
∣∣ ≤ 2∑

j=1

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q3,ja
∣∣ , (3.73)
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where for any x ∈ [0, 1]d and ξ ∈ Ξ,

Q3,1 := Q3,1(x, ξ) =E
(
UL(UL)⊤ | X ∈ R̄

)
− E

(
UL(UL)⊤ | X ∈ L(x, ξ)

)
,

Q3,2 := Q3,1(x, ξ) =E
(
UL | X ∈ R̄

)
E
(
(UL)⊤ | X ∈ R̄

)
−

E
(
UL | X ∈ L(x, ξ)

)
E
(
(UL)⊤ | X ∈ L(x, ξ)

)
.

Let µL = E
[
1{X∈L(x,ξ)}

]
and µR̄ = E

[
1{X∈R̄}

]
. By the triangle inequality,

∣∣a⊤Q3,1a
∣∣ ≤ ∣∣∣∣ 1µLE

[(
a⊤UL

)2
1{X∈R̄}

]
− 1

µR̄
E
[(
a⊤UL

)2
1{X∈R̄}

]∣∣∣∣
+

∣∣∣∣ 1µLE
[(
a⊤UL

)2
1{X∈L(x,ξ)\R̄}

]∣∣∣∣
≤ 2(µL − µR̄)

µL
sup

X∈[0,1]d

(
a⊤UL

)2
1{X∈L(x,ξ)}.

Similarly as in (3.67), we also have

sup
X∈[0,1]d,∥a∥2=1

(
a⊤UL

)2
1{X∈L(x,ξ)} ≤ d̄.

Hence,

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q3,1a
∣∣ ≤ 2d̄ sup

x∈[0,1]d,ξ∈Ξ

{
µL − µR̄
µL

}
. (3.74)

By (3.62) since Xi ∼ Uniform[0, 1]d, we have µR̄ ≥ exp{−ϵ}µL for any x ∈ [0, 1]d and ξ ∈ Ξ,

which implies that

sup
x∈[0,1]d,ξ∈Ξ

{
µL − µR̄
µL

}
≤ 1− exp{−ϵ} = 1− exp{−1/

√
k} = o(1) (3.75)

as N →∞. Together with (3.74), we have

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q3,1a
∣∣ = o(1). (3.76)

284



In addition, for any a ∈ Rd̄,

∣∣a⊤Q3,2a
∣∣ = ∣∣E (a⊤UL | X ∈ L(x, ξ)

)
+ E

(
a⊤UL | X ∈ R̄

)∣∣
·
∣∣E (a⊤UL | X ∈ L(x, ξ)

)
− E

(
a⊤UL | X ∈ R̄

)∣∣ .
By the triangle inequality, we have

∣∣E (a⊤UL | X ∈ L(x, ξ)
)
− E

(
a⊤UL | X ∈ R̄

)∣∣
≤
∣∣∣∣ 1µLE

[
a⊤UL

1{X∈R̄}
]
− 1

µR̄
E
[
a⊤UL

1{X∈R̄}
]∣∣∣∣

+

∣∣∣∣ 1µLE
[
a⊤UL

1{X∈L(x,ξ)\R̄}
]∣∣∣∣

≤ 2(µL − µR̄)
µL

sup
X∈[0,1]d

∣∣a⊤UL
∣∣1{X∈L(x,ξ)}.

Besides, we also have

∣∣E (a⊤UL | X ∈ L(x, ξ)
)
+ E

(
a⊤UL | X ∈ R̄

)∣∣ ≤ 2 sup
X∈[0,1]d

∣∣a⊤UL
∣∣1{X∈L(x,ξ)}.

Therefore,

∣∣a⊤Q3,2a
∣∣ ≤ 4(µL − µR̄)

µL
sup

{i:Xi∈L(x,ξ)}

∣∣a⊤UL
i

∣∣2 .
By (3.67) and (3.75), we have

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q3,2a
∣∣ = o(1). (3.77)

Combining (3.76) and (3.77) with (3.73), we conclude that (3.72) holds.

Step 3. We next demonstrate that condition on the event A, as N → ∞, with

probability at least 1− 2/
√
n,

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q2a
∣∣ = o(1). (3.78)
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For any i ∈ I and j ≤ d, define UR̄
i :=

(
ZR̄
i1, . . . , Z

R̄
id, (Z

R̄
i1)

2, ZR̄
i1Z

R̄
i2, . . . , (Z

R̄
id)

2, . . . , (ZR̄
id)

q
)⊤

with ZR̄
ij := (Xij − xj)/diamj(R̄). Then, we have

UL
i = DR̄U

R̄
i , (3.79)

where DR̄ := diag

(
diam1(R̄)

diam1(L(x,ξ))
, . . . , diamd(R̄)

diamd(L(x,ξ))
, diam2

1(R̄)

diam2
1(L(x,ξ))

, diam1(R̄)diam2(R̄)
diam1(L(x,ξ))diam2(L(x,ξ))

, . . . ,

diam2
2(R̄)

diam2
1(L(x,ξ))

, . . . ,
diamq

d(R̄)

diamq
d(L(x,ξ))

)
. Let R̄j = [r̄−j , r̄

+
j ] ⊆ [0, 1] be the interval of the j-axis of the

rectangle R̄ for each 1 ≤ j ≤ d. Define V̄ R̄
ij := (Xij − r̄−j )/diamj(R̄) and cR̄,j = (r̄−j −

xj)/diamj(R̄) for any 1 ≤ j ≤ d. Then, the d̄-dimensional vector UR̄
i can be represented as

UR̄
i = (V̄ R̄

i1 +cR̄,1, . . . , V̄
R̄
id+cR̄,d, (V̄

R̄
i1 +cR̄,1)

2, (V̄ R̄
i1 +cR̄,1)(V̄

R̄
i2 +cR̄,2), . . . , (V̄

R̄
id+cR̄,d)

2, . . . , (V̄ R̄
id+

cR̄,d)
q)⊤. Note that there exists some d̄ × d̄ lower triangular matrix PR̄ with 1 on main

diagonal such that

UR̄
i = PR̄V

R̄
i +CR̄, (3.80)

where VR̄
i := (V R̄

i1 , . . . , V
R̄
id , (V

R̄
i1 )

2, V R̄
i1 V

R̄
i2 , . . . , (V

R̄
id )

2, . . . , (V R̄
id )

q)⊤ and CR̄ := (cR̄,1, . . . ,

cR̄,d, c
2
R̄,1
, cR̄,1cR̄,2, . . . , c

2
R̄,d
, . . . , cq

R̄,d
)⊤. By (3.79) and (3.80), we have UL

i = DR̄PR̄V
R̄
i +

DR̄CR̄. Let V
R̄ be an independent copy of VR̄

i . Then, we can express Q2 as

Q2 = DR̄PR̄QR̄P
⊤
R̄DR̄,

where QR̄ :=
∑

i∈I ω
R̄
i V

R̄
i (V

R̄
i )

⊤ −
∑

i∈I ω
R̄
i V

R̄
i

∑
i∈I ω

R̄
i (V

R̄
i )

⊤ −Var
(
VR̄ | X ∈ R̄

)
. By the

sub-multiplicative property of matrix norm, we have

∥Q2∥2 ≤ ∥DR̄∥22∥PR̄∥22∥QR̄∥2.

SinceDR̄ is a diagonal matrix and its largest eigenvalue is smaller than 1, we have ∥DR̄∥22 ≤ 1.

In addition, since the eigenvalues of an lower triangular matrix are the diagonal entries of
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the matrix, we also have ∥PR̄∥22 = 1. Therefore, we have

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q2a
∣∣ = sup

x∈[0,1]d,ξ∈Ξ
∥Q2∥2 ≤ sup

x∈[0,1]d,ξ∈Ξ
∥QR̄∥2.

For anyR ∈ RD,ω,ϵ, letRj = [r−j , r
+
j ] ⊆ [0, 1] be the interval of the j-axis of the rectangleR for

each 1 ≤ j ≤ d. For any i ∈ I, let ωRi := 1{Xi∈R}/#R andVR
i := (V R

1 , . . . , V
R
id , (V

R
i1 )

2, V R
i1 V

R
i2 ,

. . . , (V R
id )

2, . . . , (V R
id )

q)⊤ with V R
ij = (Xij−r−j )/diamj(R). Define QR :=

∑
i∈I ω

R
i V

R
i (V

R
i )

⊤−∑
i∈I ω

R
i V

R
i

∑
i∈I ω

R
i (V

R
i )

⊤ − Var
(
VR | X ∈ R

)
, where VR is an independent copy of VR

i .

Recall that on the event A, (3.69) holds. Hence, there exists n1 ∈ N such that #R̄ ≥ k/2

whenever n ≥ n1. In addition, note that R̄ ∈ RD,ω,ϵ for all x ∈ [0, 1]d and ξ ∈ Ξ. Therefore,

when n ≥ n1,

sup
x∈[0,1]d,ξ∈Ξ

∥QR̄∥2 ≤ sup
R∈RD,ω,ϵ,#R≥k/2

∥QR∥2 .

Let mR := E
[
VR | X ∈ R

]
. By the triangle inequality, we have

sup
R∈RD,ω,ϵ,#R≥k/2

∥QR∥2 ≤ sup
R∈RD,ω,ϵ,#R≥k/2

∥QR,1∥2 + sup
R∈RD,ω,ϵ,#R≥k/2

∥QR,2∥2 ,

where

QR,1 :=
∑
i∈I

ωRi
(
VR
i −mR

) (
VR
i −mR

)⊤ − Var
(
VR | X ∈ R

)
,

QR,2 :=

(∑
i∈I

ωRi V
R
i −mR

)(∑
i∈I

ωRi V
R
i −mR

)⊤

.

Therefore, on the event A and provided that n ≥ n1, we have

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q2a
∣∣ ≤ sup

R∈RD,ω,ϵ,#R≥k/2
∥QR,1∥2 + sup

R∈RD,ω,ϵ,#R≥k/2
∥QR,2∥2 . (3.81)

For all i ∈ {i ∈ I : Xi ∈ R} and j ≤ d, we have VR
ij ∈ [0, 1], where VR

ij denotes the

j-th coordinate of VR
i . Note that (VR

i )i∈I:Xi∈R are i.i.d. random vectors condition on the
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indicators
{
1{Xi∈R}

}
i∈I . As shown in Example 2.4 of [Wai19], condition on

{
1{Xi∈R}

}
i∈I ,

(VR
ij)i∈I:Xi∈R,j≤d are sub-Gaussian with parameter at most σ = 1. Note that E[QR,1 |{

1{Xi∈R}
}
i∈I ] = 0. By Theorem 6.5 of [Wai19], for all ζ1 ≥ 0,

PSI

∥QR,1∥2 ≥ C1

√ d̄

#R
+

d̄

#R

+ ζ1 |
{
1{Xi∈R}

}
i∈I ,A


≤ C2 exp

{
−C3#Rmin{ζ1, ζ21}

}
,

where C1, C2, and C3 are some positive constants. By the union bound, we have

PSI

(
sup

R∈RD,ω,ϵ,#R≥k/2
∥QR,1∥2 ≥ C1

(√
2d̄

k
+

2d̄

k

)
+ ζ1 |

{
1{Xi∈R}

}
i∈I ,A

)

≤ C2#RD,ω,ϵ exp

{
−C3

2
kmin{ζ1, ζ21}

}
.

By the tower rule, we further obtain that

PSI

(
sup

R∈RD,ω,ϵ,#R≥k/2
∥QR,1∥2 ≥ C1

(√
2d̄

k
+

2d̄

k

)
+ ζ1 | A

)

≤ C2#RD,ω,ϵ exp

{
−C3

2
kmin{ζ1, ζ21}

}
.

Let ζ1 =
√

4 log(#RD,ω,ϵ)

C3k
. By (3.59), there exists n2 ∈ N such that ζ21 ≤ ζ1 and #RD,ω,ϵ ≥

max{C2, d̄/2}
√
n whenever n ≥ n2. Thus, provided that n ≥ max{n1, n2}, we have

PSI

 sup
R∈RD,ω,ϵ,#R≥k/2

∥QR,1∥2 ≥ C1

(√
2d̄

k
+

2d̄

k

)
+

√
4 log(#RD,ω,ϵ)

C3k
| A


≤ C2/#RD,ω,ϵ ≤ 1/

√
n. (3.82)

Additionally, note that

sup
R∈RD,ω,ϵ,#R≥k/2

∥QR,2∥2 = sup
R∈RD,ω,ϵ,#R≥k/2

∥∥∥∥∥∑
i∈I

ωRi V
R
i −mR

∥∥∥∥∥
2

2

= sup
R∈RD,ω,ϵ,#R≥k/2

d̄∑
j=1

 1

#R

∑
i∈{i∈I:Xi∈R}

VR
ij −mR,j

2

, (3.83)
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where mR,j is the j-th coordinate of mR. Since VR
ij ∈ [0, 1] for all i ∈ {i ∈ I : Xi ∈ R}

and j ≤ d, by Theorem 2 of [Hoe94], for any j ≤ d̄ and ζ2 > 0,

PSI

∣∣∣∣∣∣ 1

#R

∑
i∈{i∈I:Xi∈R}

VR
ij −mR,j

∣∣∣∣∣∣ ≥ ζ2 |
{
1{Xi∈R}

}
i∈I ,A

 ≤ 2 exp
{
−2#Rζ22

}
.

By the union bound, for all ζ2 ≥ 0,

PSI

 sup
R∈RD,ω,ϵ,#R≥k/2

d̄∑
j=1

 1

#R

∑
i∈{i∈I:Xi∈R}

VR
ij −mR,j

2

≥ d̄ζ22 |
{
1{Xi∈R}

}
i∈I ,A


≤ 2d̄#RD,ω,ϵ exp

{
−kζ22

}
.

Together with (3.83) and using the tower rule, for all ζ2 ≥ 0,

PSI

(
sup

R∈RD,ω,ϵ,#R≥k/2
∥QR,2∥2 ≥ d̄ζ22 | A

)
≤ 2d̄#RD,ω,ϵ exp

{
−kζ22

}
.

Let ζ2 =
√

2 log(#RD,ω,ϵ)

k
. Then, we have

PSI

(
sup

R∈RD,ω,ϵ,#R≥k/2
∥QR,2∥2 ≥

2d̄ log(#RD,ω,ϵ)

k
| A

)
≤ 2d̄/#RD,ω,ϵ ≤ 1/

√
n, (3.84)

since #RD,ω,ϵ ≥ 2d̄
√
n whenever n ≥ n2. Combining (3.82) and (3.84) with (3.81), provided

that n ≥ max{n1, n2}, we have

PSI

(
sup

x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q2a
∣∣ ≥ C1

(√
2d̄

k
+

2d̄

k

)
+

√
4 log(#RD,ω,ϵ)

C3k

+
2 log(#RD,ω,ϵ)

k
| A
)
≤ 2/

√
n.

Therefore, condition on the event A, as N →∞,

sup
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

∣∣a⊤Q2a
∣∣ = O

(√
1

k
+

1

k
+

√
log(#RD,ω,ϵ)

k
+

log(#RD,ω,ϵ)

k

)
= o(1),

with probability at least 1− 2/
√
n.
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Step 4. We demonstrate that there exists some constant Λ0 > 0 such that

inf
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

a⊤Q4a ≥ 2Λ0. (3.85)

Let Lj(x, ξ) = [aj, bj] ⊆ [0, 1] be the interval of the j-axis of the leaf L(x, ξ) for each j ≤ d.

Define V L
j = (Xj − aj)/diamj(L(x, ξ)) and cL,j = (aj − xj)/diamj(L(x, ξ)) for any j ≤ d.

The d̄-dimensional vector UL can be represented as UL = (V L
1 + cL,1, . . . , V

L
d + cL,d, (V

L
1 +

cL,1)
2, (V L

1 + cL,1)(V
L
2 + cL,2), . . . , (V

L
d + cL,d)

2, . . . , (V L
d + cL,d)

q)⊤. Then, there exists some

d̄× d̄ lower triangular matrix PL with 1 on main diagonal such that

UL = PLV
L +CL, (3.86)

where VL := (VL,1, . . . , VL,d, V
2
L,1, VL,1VL,2, . . . , V

2
L,d, . . . , V

q
L,d)

⊤ and CL := (cL,1, . . . , cL,d, c
2
L,1,

cL,1cL,2, . . . , c
2
L,d, . . . , c

q
L,d)

⊤. Here, PL and CL are both deterministic given L(x, ξ). Plugging

UL = PLV
L +CL into Q4, we have

Q4 = Var
(
PLV

L | X ∈ L(x, ξ)
)
= PLVar

(
VL | X ∈ L(x, ξ)

)
P⊤
L .

By the sub-multiplicative property of matrix norm, we have

∥Q−1
4 ∥2 ≤ ∥P−1

L ∥
2
2/Λmin(Var

(
VL | X ∈ L(x, ξ)

)
)

Since PL is a lower triangular matrix with 1 on main diagonal, we know that P−1
L is an upper

triangular matrix with 1 on main diagonal, and it follows that
∥∥P−1

L

∥∥
2
= 1. Therefore,

inf
x∈[0,1]d,ξ∈Ξ,∥a∥2=1

a⊤Q4a ≥ inf
x∈[0,1]d,ξ∈Ξ,∥a∥=1

Var
(
a⊤VL | X ∈ L(x, ξ)

)
.

Since the coordinates of X are i.i.d. uniformly distributed, we know that (V L
j )dj=1 are also

i.i.d. uniformly distributed givenX ∈ L(x, ξ). Let (Ṽj)dj=1 be a sequence of i.i.d. uniform ran-

dom variables with support [0, 1], and denote Ṽ := (Ṽ1, . . . , Ṽd, Ṽ
2
1 , Ṽ1Ṽ2, . . . , Ṽ

2
d , . . . , Ṽ

q
d )

⊤.
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Then, for any x ∈ [0, 1]d and ξ ∈ Ξ, we have

inf
∥a∥=1

Var
(
a⊤VL | X ∈ L(x, ξ)

)
= inf

∥a∥2=1
Var

(
a⊤Ṽ

)
.

Let Λ0 = inf∥a∥2=1Var
(
a⊤Ṽ

)
/2. Note that the quantity Λ0 is deterministic given the

dimension d̄ and hence is independent of the sample size N . Suppose that Var
(
a⊤Ṽ

)
= 0

with some a ̸= 0. Then, we have P(a⊤Ṽ = a0) = 1 with some constant a0 ∈ R. However,

note that a⊤Ṽ − a0 is a q-th polynomial function of (Ṽ1, Ṽ2, . . . , Ṽd). As shown in Section

2.6.5 of [Fed14], P(a⊤Ṽ = a0) = 1 occurs only if a0 = 0 and a = 0; this contradicts with

a ̸= 0. Therefore, we conclude that Λ0 > 0 and infx∈[0,1]d,ξ∈Ξ,∥a∥2=1 a
⊤Q4a ≥ 2Λ0.

Combining the results of Steps 1-4 and note that (3.60) holds, we conclude that

lim
N→∞

PSI (B) = 1.

Lastly, condition on the event B, (3.56). Then, SL−dLd
⊤
L and SL are both positive-definite.

In addition, we also have

sup
x∈[0,1]d,ξ∈Ξ

d⊤
L(SL − dLd

⊤
L)

−1dL ≤
1

Λ0

sup
x∈[0,1]d,ξ∈Ξ

∥∥∥∥∥∑
i∈I

ωi(x, ξ)U
L
i

∥∥∥∥∥
2

2

(i)

≤ 1

Λ0

sup
x∈[0,1]d,ξ∈Ξ

(∑
i∈I

ωi(x, ξ)
∥∥UL

i

∥∥
2

)2
(ii)

≤ d̄

Λ0

,

where (i) holds by the triangle inequality; (ii) holds by (3.66) and
∑

i∈I ωi(x, ξ) = 1.

Proof of Lemma 3.8. Condition on the event B, (3.56). Then, the matrix SL − dLd
⊤
L is

positive-definite, which implies that SL is also positive-definite. Recall thatDL := diag (diam1

(L(x, ξ)), . . . , diamd(L(x, ξ)), diam
2
1(L(x, ξ)), diam1(L(x, ξ))diam2(L(x, ξ)), . . . , diam

2
1(L(x,

ξ)), . . . , diamq
d(L(x, ξ))). On the event C, (3.58), the diagonal matrix DL is invertible. By

291



(3.37), we have S = DLSLDL and S−dd⊤ = DL(SL−dLd
⊤
L)DL. Hence, on the event B∩C,

we have S and S− dd⊤ are both positive-definite. In addition, note that

∑
i∈I

ωi(x, ξ)∆i∆
⊤
i =

1 d⊤

d S

 .

For any (a,b) ∈ Rd̄+1 \ {0}, we have

(
a b⊤

)1 d⊤

d S


a
b

 = (a+ d⊤b)2 + b⊤(S− dd⊤)b > 0,

since (a + d⊤b)2 = b⊤(S − dd⊤)b = 0 only when b = 0 and a = −d⊤b = 0. Hence,∑
i∈I ωi(x, ξ)∆i∆

⊤
i is positive-definite on the event B ∩ C. Recall that the lower trian-

gular matrix T is invertible. By (3.32), we have
∑

i∈I ωi(x, ξ)G(Xi)G(Xi)
⊤ = T−1

∑
i∈I

ωi(x, ξ)∆i∆
⊤
i (T

−1)⊤. Hence,
∑

i∈I ωi(x, ξ)G(Xi)G(Xi)
⊤ is also positive-definite on the

event B ∩ C.

In the following, we further show that PSI (C) = 1. Let Xij be the j-th coordinate of

the vector Xi and c ∈ [0, 1] be some constant. Then, we have

PSI (Cc) = PSI
(
∃ j ≤ d, x ∈ [0, 1]d, ξ ∈ Ξ, s.t. diamj(L(x, ξ)) = 0

)
= PSI

(
∃ j ≤ d, x ∈ [0, 1]d, ξ ∈ Ξ, s.t. Xij = Xi′j ∀i, i′ ∈ {i ∈ I : Xi ∈ L(x, ξ)}

)
(i)

≤ PSI (∃ j ≤ d, i, i′ ∈ {i ∈ I : Xi ∈ L(x, ξ)} s.t. i ̸= i′ and Xij = Xi′j)

(ii)

≤
∑

1≤j≤d,i,i′∈I,i ̸=i′
PSI (Xij = Xi′j)

(iii)
= 0,

where (i) holds since the minimum leaf size # {l : Xl ∈ L(x, ξ)} ≥ k ≥ 2; (ii) holds by the

union bound; (iii) holds since PSI (Xij = Xi′j) = 0 as Xij and Xi′j are independent uniform

random variables for any i ̸= i′ and j ≤ d. Therefore, we conclude that PSI (C) = 1 holds.
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3.6.5 Proofs of the uniform results

Proof of Lemma 3.2. In this proof, we use the same notation as Lemma 3.1. Note that for

any 1 ≤ j ≤ d, we have

diamj(L(x, ξ)) ≤ diamj(Lkt,j(x, ξ))
(i)
=

t∏
i=1

diamj(Lki,j(x, ξ))

diamj(Lki,j−1(x, ξ))
, (3.87)

where (i) holds by diamj(Lki,j−1(x, ξ)) = diamj(Lki−1,j
(x, ξ)) for any 2 ≤ i ≤ t and diamj

(Lk1,j(x, ξ)) = 1. Choose ωi = (1 − α)/2, ϵi = 1/
√
(1− α)nki,j−1 and δi = 1/

√
nki,j−1

thoughout this proof. Define the event

Aij :=

{
sup

{
|#R− nki,j−1µ̃(R)|√

nki,j−1µ̃(R)
: R ∈ RD,ωi,ϵi , µ̃(R) ≥ ωi

}
≤

√
3 log

(
#RD,ωi,ϵi

δi

)}
,

(3.88)

for any 1 ≤ i ≤ t and 1 ≤ j ≤ d, where #R := #{i : Xi ∈ R}, µ̃(R) := E
[
1{X∈R} |{

1{Xl∈Lki,j−1(x,ξ)}
}
l∈I

]
and #RD,ωi,ϵi is the number of rectangles of the set RD,ωi,ϵi . Note

that as nki,j−1 →∞, we have

log(#RD,ω,ϵ)

nki,j−1ωi
= O

(
log(nki,j−1)

nki,j−1

)
= o(1) and

√
nki,j−1

#RD,ω,ϵ
= o(1).

By Lemma 3.6, for nki,j−1 is large enough, we have

PSI

(
Ai |

{
1{Xl∈Lki,j−1(x,ξ)}

}
l∈I

)
≥ 1− 1

√
nki,j−1

≥ 1− 1√
k
.

By the tower rule, we have P (Aij) ≥ 1− 1/
√
k. By the union bound and (3.23), we have

PSI
(
∪dj=1 ∪ti=1 Acij

)
≤ td√

k
≤ log(⌊wN⌋/k)√

k log ((1− α)−1)
.
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Then, we have

PSI
(
∩dj=1 ∩ti=1 Ai

)
= 1− PSI

(
∪dj=1 ∪ti=1 Acij

)
≥ 1− log(⌊wN⌋)/k)√

k log ((1− α)−1)
.

By k ≫ log2(N), we have

PSI
(
∩dj=1 ∩ti=1 Ai

)
= 1− o(1). (3.89)

Given the event ∩dj=1 ∩ti=1 Ai, under (α, k)-regular, and by Corollary 14 of [WW15], we

have µ̃(Lki,j(x, ξ)) ≥ ωi for any x ∈ [0, 1]d, ξ ∈ Ξ and 1 ≤ i ≤ t. By Lemma 3.4, we can

choose some R̃i := R̃i(x, ξ) ∈ RD,ωi,ϵi as an inner approximation of Lki,j(x, ξ) satisfying

R̃i ⊆ Lki,j(x, ξ) with #R̃i ≤ nki,j and exp{−ϵi}µ̃(Lki,j(x, ξ)) ≤ µ̃(R̃i) ≤ µ̃(Lki,j(x, ξ)), where

µ̃(Lki,j(x, ξ)) = diamj(Lki,j(x, ξ))/diamj(Lki,j−1(x, ξ)). Conditional on the event ∩dj=1 ∩ti=1

Ai, we have for any x ∈ [0, 1]d, ξ ∈ Ξ and 1 ≤ i ≤ t,

#R̃i ≥ nki,j−1µ(R̃i)−
√

3nki,j−1µ(R̃i) log (#RD,ωi,ϵi/δi),

which implies

nki,j ≥ exp{−ϵi}nki,j−1µ̃(Lki,j(x, ξ))−
√

3nki,j−1µ̃(Lki,j(x, ξ)) log (#RD,ωi,ϵi/δi).

Hence, for any x ∈ [0, 1]d, ξ ∈ Ξ and 1 ≤ i ≤ t,√
diamj(Lki,j(x, ξ))

diamj(Lki,j−1(x, ξ))
=
√
µ̃(Lki,j(x, ξ)) ≤ 2 exp{ϵi}

(√
3

nki,j−1

log

(
#RD,ωi,ϵi

δi

)

+

√
3

nki,j−1

log

(
#RD,ωi,ϵi

δi

)
+ 4 exp{−ϵi}

nki,j
nki,j−1

)

≤ 4 exp{ϵi}

√
3

nki,j−1

log

(
#RD,ωi,ϵi

δi

)
+ 4 exp{−ϵi}

nki,j
nki,j−1

.
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By (3.87), conditional on the event ∩dj=1 ∩ti=1 Ai, by (3.61), we have for any x ∈ [0, 1]d and

ξ ∈ Ξ,

diamj(L(x, ξ)) ≤ 16

{
t∏
i=1

exp{2ϵi}
[

3

nki,j−1

log

(
#RD,ωi,ϵi

δi

)
+ 4 exp{−ϵi}

nki,j
nki,j−1

]}

By log(#RD,ωi,ϵi) = O(log(nki,j−1)), as N →∞, we have

diamj(L(x, ξ)) = O

(
t∏
i=1

[
log(nki,j−1)

nki,j−1

+
nki,j
nki,j−1

])
(i)
= O

(
(1− α)t

[
1 +

log(⌊wN⌋)
(1− α)k

]t)
,

where (i) holds by k ≤ nki,j−1 ≤ ⌊wN⌋ and nki,j ≤ (1−α)nki,j−1. By (3.23) and k ≫ log2(N),

we have

lim
N→∞

[
1 +

log(⌊wN⌋)
(1− α)k

]t
= lim

N→∞
exp

{
t log(⌊wN⌋)
(1− α)k

}
= 1.

By (3.23) with l ≤ d and α ∈ (0, 0.5], we have

(1− α)t ≤ (1− α)
log((2k−1)/⌊wN⌋)

d log(α)
− l

d ≤ 2

(
⌊wN⌋
2k − 1

)− log(1−α)
d log(α)

.

Conditional on the event ∩dj=1 ∩ti=1 Ai, as N →∞, we have for any x ∈ [0, 1]d and ξ ∈ Ξ,

diamj(L(x, ξ)) = O

((
N

k

)− log(1−α)
d log(α)

)
.

Since diamr(L(x, ξ)) =
[∑d

j=1 diam
2
j(L(x, ξ))

]r/2
for any r ≥ 1, conditional on the event

∩dj=1 ∩ti=1 Ai, as N →∞, we have

sup
x∈[0,1]d,ξ∈Ξ

{diamr(L(x, ξ))} = O

((
N

k

)− r log(1−α)
d log(α)

)
.

Proof of Lemma 3.3. In this proof, we condition on the event A ∩ B ∩ C ∩ Ā, where Ā :=

∩dj=1 ∩ti=1 Ai. Let n = ⌊wN⌋. The event A is defined in Lemma 3.6, with R = RD,ω,ϵ,
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µmin = ω, and δ = 1/
√
n. The events B, C and ∩dj=1∩ti=1Ai are defined as (3.56), (3.58) and

(3.88). By Lemmas 3.7 and 3.8, we know that SL − dLd
⊤
L , SL, S,

∑
i∈I ωi(x, ξ)∆i∆

⊤
i and∑

i∈I ωi(x, ξ)G(Xi)G(Xi)
⊤ are all positive-definite, with PSI (B ∩ C) = 1 − o(1). Together

with Lemma 3.6 and (3.89), we have PSI(A∩B ∩ C ∩ Ā) = 1− o(1). Recall the definition of

m̂CLPF(x), (3.9); we have

sup
x∈[0,1]d

|m̂CLPF(x)−m(x)| = sup
x∈[0,1]d

∣∣∣Eξ [G(x)⊤
(
β̂(x, ξ)− β

)]∣∣∣
≤ sup

x∈[0,1]d

[
Eξ
∣∣∣G(x)⊤

(
β̂(x, ξ)− β

)∣∣∣] .
By (3.33), we have

sup
x∈[0,1]d

|m̂CLPF(x)−m(x)|

≤ sup
x∈[0,1]d

Eξ
∣∣∣∣∣∣e⊤1

(∑
i∈I

ωi(x, ξ)∆i∆
⊤
i

)−1(∑
i∈I

ωi(x, ξ)∆i(εi + ri)

)∣∣∣∣∣∣


(i)

≤ sup
x∈[0,1]d

[
Eξ
∣∣∣∣(1− d⊤S−1d)−1

∑
i∈I

ωi(x, ξ)(εi + ri)

+ (1− d⊤S−1d)−1d⊤S−1
∑
i∈I

ωi(x, ξ)Ui(εi + ri)

∣∣∣∣]. (3.90)

where (i) hold by (3.34) and (3.35). Plugging (3.37) into (3.90), we have

sup
x∈[0,1]d

|m̂CLPF(x)−m(x)| ≤ sup
x∈[0,1]d

[
Eξ
∣∣∣∣(1− d⊤

LS
−1
L dL)

−1
∑
i∈I

ωi(x, ξ)(εi + ri)

+ (1− d⊤
LS

−1
L dL)

−1d⊤
LS

−1
L

∑
i∈I

ωi(x, ξ)U
L
i (εi + ri)

∣∣∣∣].
By (3.40) and the triangle inequality,

sup
x∈[0,1]d

|m̂CLPF(x)−m(x)| ≤
4∑
i=1

[
sup

x∈[0,1]d
Eξ |∆i(x, ξ)|

]
sup

x∈[0,1]d,ξ∈Ξ

{
1 + d⊤

L

(
SL − dLd

⊤
L

)−1
dL

}
,

(3.91)
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where ∆i(x, ξ) (i ∈ {1, 2, 3, 4}) are defined as (3.41)-(3.42). Since m ∈ Hq,β, by (3.45), we

have

sup
x∈[0,1]d

Eξ |∆1(x, ξ)| ≤

∑
|α|=q

L0

α!

 sup
x∈[0,1]d

Eξ

∣∣∣∣∣∑
i∈I

ωi(x, ξ)d
⊤
LS

−1
L UL

i ∥Xi − x∥q+β
∣∣∣∣∣ ,

sup
x∈[0,1]d

Eξ |∆2(x, ξ)| ≤

∑
|α|=q

L0

α!

 sup
x∈[0,1]d

Eξ

∣∣∣∣∣∑
i∈I

ωi(x, ξ)∥Xi − x∥q+β
∣∣∣∣∣ .

By (3.46), (3.47) and (3.50), we have∣∣∣∣∣∑
i∈I

ωi(x, ξ)d
⊤
LS

−1
L UL

i ∥Xi − x∥q+β
∣∣∣∣∣ ≤ diam(q+β)(L(x, ξ)),∣∣∣∣∣∑

i∈I

ωi(x, ξ)∥Xi − x∥q+β
∣∣∣∣∣ ≤ diam(q+β)(L(x, ξ)).

Then, we have

sup
x∈[0,1]d

Eξ |∆1(x, ξ)| ≤

∑
|α|=q

L0

α!

 sup
x∈[0,1]d

Eξ
[
diam(q+β)(L(x, ξ))

]
,

sup
x∈[0,1]d

Eξ |∆2(x, ξ)| ≤

∑
|α|=q

L0

α!

 sup
x∈[0,1]d

Eξ
[
diam(q+β)(L(x, ξ))

]
.

Hence, by Lemma 3.2 with r = q + β, conditional on the event Ā, as N →∞, we have

sup
x∈[0,1]d

Eξ |∆1(x, ξ)| = Op

((
N

k

)− (q+β) log(1−α)
d log(α)

)
, (3.92)

sup
x∈[0,1]d

Eξ |∆2(x, ξ)| = Op

((
N

k

)− (q+β) log(1−α)
d log(α)

)
. (3.93)

Conditional on the event A above, we follow the proof of Lemma 3.7 to choose some R̄ :=

R̄(x, ξ) ∈ RD,ω,ϵ as an inner approximation of L(x, ξ) satisfying R̄ ⊆ L(x, ξ) with (3.62)

and (3.63). Recall the definition ωLi := ωi(x, ξ) = 1{Xi∈L(x,ξ)}/#L and ωR̄i := 1{Xi∈R̄}/#R̄,

where #L := #L(x, ξ) and #R̄ := #R̄(x, ξ). By the triangle inequality,

sup
x∈[0,1]d

Eξ |∆3(x, ξ)| ≤ sup
x∈[0,1]d,ξ∈Ξ

∣∣∣∣∣d⊤
LS

−1
L

∑
i∈I

ωi(x, ξ)U
L
i εi

∣∣∣∣∣ ≤
2∑
j=1

sup
x∈[0,1]d,ξ∈Ξ

|∆3,j| (3.94)
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where for any x ∈ [0, 1]d and ξ ∈ Ξ,

∆3,1 := ∆3,1(x, ξ) =
∑
i∈I

ωLi d
⊤
LS

−1
L UL

i εi −
∑
i∈I

ωR̄i d
⊤
LS

−1
L UL

i εi,

∆3,2 := ∆3,2(x, ξ) =
∑
i∈I

ωR̄i d
⊤
LS

−1
L UL

i εi.

Note that

|∆3,1| ≤

∣∣∣∣∣∣∣
1

#L

∑
i∈{i∈I:Xi∈R̄}

d⊤
LS

−1
L UL

i εi −
1

#R̄

∑
i∈{i∈I:Xi∈R̄}

d⊤
LS

−1
L UL

i εi

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
1

#L

∑
i∈{i∈I:Xi∈L(x,ξ)\R̄}

d⊤
LS

−1
L UL

i εi

∣∣∣∣∣∣∣ ≤
2(#L−#R̄)

#L
sup

i∈{i∈I:Xi∈L(x,ξ)}

∣∣d⊤
LS

−1
L UL

i εi
∣∣

(i)

≤ 4M
(#L−#R̄)

#L
sup

i∈{i∈I:Xi∈L(x,ξ)}

∣∣d⊤
LS

−1
L UL

i

∣∣ , (3.95)

where (i) holds by |ε| = |Y − E[Y | X]| ≤ 2M since E[ε | X] = 0 and Y ∈ [−M,M ]. By the

triangle inequality, we have

∥dL∥2 ≤
∑
i∈I

ωi(x, ξ)
∥∥UL

i

∥∥
2

(i)

≤
√
d̄,

where (i) holds by (3.66) and
∑

i∈I ωi(x, ξ) = 1. By Cauchy-Schwarz inequality and the

sub-multiplicative property of matrix norm, we have for any x ∈ [0, 1]d and ξ ∈ Ξ,

sup
i∈{i∈I:Xi∈L(x,ξ)}

∣∣d⊤
LS

−1
L UL

i

∣∣ ≤ sup
i∈{i∈I:Xi∈L(x,ξ)}

∥dL∥2∥SL∥2∥UL
i ∥2

(i)

≤ d̄

Λ0

. (3.96)

where (i) holds by Lemma 3.7 and (3.66). By (3.59) and (3.63), conditional on the event A,

as N →∞, we have (#L−#R̄)/#L = O(
√

log(N)/k) for any x ∈ [0, 1]d and ξ ∈ Ξ, which

implies that

sup
x∈[0,1]d,ξ∈Ξ

{
#L−#R̄

#L

}
= O

(√
log(N)

k

)
. (3.97)
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Combining (3.96) and (3.97) with (3.95), conditional on the event A, as N →∞ we have

sup
x∈[0,1]d,ξ∈Ξ

|∆3,1| = O

(√
log(N)

k

)
. (3.98)

By k ≫ log(N) and (3.97), conditional on the event A, as N → ∞, we have (#L −

#R̄)/#L = o(1) for any x ∈ [0, 1]d and ξ ∈ Ξ. Hence, there exists n1 ∈ N such that

#R̄ ≥ k/2 whenever n ≥ n1. Note that R̄ ∈ RD,ω,ϵ for all x ∈ [0, 1]d and ξ ∈ Ξ. Therefore,

when n ≥ n1,

sup
x∈[0,1]d,ξ∈Ξ

|∆3,2| ≤ sup
R∈RD,ω,ϵ,#R≥k/2

|∆3,2| . (3.99)

By the tower rule and E[ε | X] = 0, we have E
[∑

i∈I ω
R̄
i d

⊤
LS

−1
L UL

i εi | {Xl}Nl=1, {Yl}l∈J
]
= 0.

Since εi ∈ [−2M, 2M ] for all i ∈ {i ∈ I : Xi ∈ R} and (3.96), by Theorem 2 of [Hoe94], for

any ζ > 0,

PSI

∣∣∣∣∣∣ 1

#R

∑
i∈{i∈I:Xi∈R}

d⊤
LS

−1
L UL

i εi

∣∣∣∣∣∣ ≥ ζ | {Xl}Nl=1, {Yl}l∈J ,A

 ≤ 2 exp

{
−Λ2

0#Rζ
2

8M2d̄2

}
.

By the union bound, for all ζ ≥ 0,

PSI

 sup
R∈RD,ω,ϵ,#R≥k/2

∣∣∣∣∣∣ 1

#R

∑
i∈{i∈I:Xi∈R}

d⊤
LS

−1
L UL

i εi

∣∣∣∣∣∣ ≥ ζ | {Xl}Nl=1, {Yl}l∈J ,A


≤ 2#RD,ω,ϵ exp

{
− Λ2

0kζ
2

16M2d̄2

}
.

By the tower rule, for all ζ ≥ 0,

PSI

 sup
R∈RD,ω,ϵ,#R≥k/2

∣∣∣∣∣∣ 1

#R

∑
i∈{i∈I:Xi∈R}

d⊤
LS

−1
L UL

i εi

∣∣∣∣∣∣ ≥ ζ | A

 ≤ 2#RD,ω,ϵ exp

{
− Λ2

0kζ
2

16M2d̄2

}
.

Let ζ =
√

32M2d̄2 log(#RD,ω,ϵ)

Λ2
0k

. By (3.59), there exists n2 ∈ N such that #RD,ω,ϵ ≥ 2
√
n

whenever n ≥ n2. Together with (3.99), provided that n ≥ max{n1, n2}, we have

PSI

 sup
x∈[0,1]d,ξ∈Ξ

|∆3,2| ≥

√
32M2d̄2 log(#RD,ω,ϵ)

Λ2
0k

| A

 ≤ 2

#RD,ω,ϵ
≤ 1√

n
. (3.100)
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Combining (3.98) and (3.100) with (3.94), conditional on the event A, as N →∞,

sup
x∈[0,1]d

Eξ |∆3(x, ξ)| = Op

(√
log(N)

k

)
. (3.101)

Note that

sup
x∈[0,1]d

Eξ |∆4(x, ξ)| = sup
x∈[0,1]d

[
Eξ

∣∣∣∣∣∑
i∈I

ωi(x, ξ)εi

∣∣∣∣∣
]
≤ sup

x∈[0,1]d,ξ∈Ξ

∣∣∣∣∣∑
i∈I

ωi(x, ξ)εi

∣∣∣∣∣ .
Repeating the same procedure as (3.101) except replacing d⊤

LS
−1
L UL

i εi with εi, conditional

on the event A, as N →∞, we have

sup
x∈[0,1]d

Eξ |∆4(x, ξ)| = Op

(√
log(N)

k

)
. (3.102)

Combining (3.92), (3.93), (3.101), (3.102), (3.44) with (3.91), we have

sup
x∈[0,1]d

|m̂CLPF(x)−m(x)| = Op

(√
log(N)

k
+

(
N

k

)− (q+β) log(1−α)
d log(α)

)
.

Proof of Theorem 3.4. For this proof, it sufficient to check the conditions of Assumptions

2.1 from Theorem 2.1 of [CCD+17]. Let V := A − π∗(X) and U := U1 + U0 with Ua :=

1{A=a}(Y (a) − µ∗
a(X)) for a ∈ {0, 1}. By the definition of π∗(X) and µ∗

a(X), we have

E[V | X] = 0 and E[Ua | X, A = a] = 0 for a ∈ {0, 1}. By the law of total probability, we

have E[U | X, A] = E[U1 | X, A = 1]P(A = 1 | X) + E[U0 | X, A = 0]P(A = 0 | X) = 0.

Hence, the condition (i) of Assumptions 2.1 is satisfied. Let r > 4 be any fixed positive

constant. Since |Y | ≤ M , we have |µ∗
a(X)| ≤ M , which implies {E[µ∗

a(X)]r}1/r ≤ M . By

|Y | ≤ M , we also get {E[Y ]r}1/r ≤ M . By the triangle inequality and 1{A=a} ≤ 1, we have

|U | ≤ 2|Ua| ≤ 2|Y −µ∗
a(X)| ≤ 2|Y |+2|µ∗

a(X)| ≤ 4M , which implies P(E[U2 | X] ≤ 4M) = 1.
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Since E[1{A=a}(Y (a)− µ∗
a)]

2 ≥ C0, we have {E[U ]2}1/2 = {E[U0]
2 + E[U1]

2}1/2 ≥
√
2C0. By

overlap condition under Assumption 3.4, we have P(|A − π∗(X)| ≥ c0) = 1, which implies

{E[V 2]}1/2 ≥ c0. Hence, the condition (ii) of Assumptions 2.1 is satisfied. By Theorem 3.2,

we have

{EX

[
µ̂−k
a (X)− µ∗

a(X)
]2}1/2 = Op

N−
(qa+βa) log((1−αa)−1)

d log(α−1
a )+2(qa+βa) log((1−αa)−1)

 = op(1),

{EX

[
π̂−k(X)− π∗(X)

]2}1/2 = Op

N−
(q2+β2) log((1−α2)

−1)
d log(α−1

2 )+2(q2+β2) log((1−α2)
−1)

 = op(1).

By d ≤ 2

√
(qa+βa)(q2+β2) log((1−αa)−1) log((1−α2)−1)

log(α−1
a ) log(α−1

2 )
for a = {0, 1}, we have

(qa + βa) log ((1− αa)−1)

d log (α−1
a ) + 2(qa + βa) log ((1− αa)−1)

+
(q2 + β2) log ((1− α2)

−1)

d log
(
α−1
2

)
+ 2(q2 + β2) log ((1− α2)−1)

≥ 1

2
,

which implies

{EX

[
µ̂−k
a (X)− µ∗

a(X)
]2}1/2{EX

[
π̂−k(X)− π∗(X)

]2}1/2 = op(N
−1/2).

By Lemma 3.3, we have P(c1 < π̂−k(X) ≤ 1− c1) = 1 with probability approaching one and

some constant c1 ∈ (0, 1/2). Hence, the condition (iii) of Assumptions 2.1 is satisfied.

Proof of Lemma 3.3. By Theorem 3.3, as N → ∞, we have supx∈[0,1]d1 |π̂−k(x) − π∗(x)| =

op(1). Then, we have

lim
N→∞

PSn

(
sup

x∈[0,1]d1
|π̂−k(x)− π∗(x)| ≤ c0/2

)
= 1,

which implies

lim
N→∞

PSn
[
PX

(
π∗(S1)− c0/2 < π̂−k(X) ≤ π∗(X) + c0/2

)
= 1
]
= 1,
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By the overlap condition PX(c0 < π∗(X) < 1− c0) = 1, we have

lim
N→∞

PSn
(
PX(c0/2 < π̂−k(X) ≤ 1− c0/2) = 1

)
= 1.

Let c1 = c0/2. Then, we have

lim
N→∞

PSn
(
PX(c1 < π̂−k(X) ≤ 1− c1) = 1

)
= 1.
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[MGS20] Jaouad Mourtada, Stéphane Gäıffas, and Erwan Scornet. Minimax optimal
rates for mondrian trees and forests. The Annals of Statistics, 48(4):2253–
2276, 2020.

[MH14] Lucas Mentch and Giles Hooker. Ensemble trees and clts: Statistical infer-
ence for supervised learning. stat, 1050:25, 2014.

[MR06] Nicolai Meinshausen and Greg Ridgeway. Quantile regression forests. Journal
of machine learning research, 7(6), 2006.

307



[Mur03] Susan A Murphy. Optimal dynamic treatment regimes. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 65(2):331–355, 2003.

[MvdLRG01] Susan A Murphy, Mark J van der Laan, James M Robins, and Conduct
Problems Prevention Research Group. Marginal mean models for dynamic
regimes. Journal of the American Statistical Association, 96(456):1410–1423,
2001.

[NBW21] Xinkun Nie, Emma Brunskill, and Stefan Wager. Learning when-to-treat
policies. Journal of the American Statistical Association, 116(533):392–409,
2021.

[NRWY10] Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin
Yu. A unified framework for high-dimensional analysis of m-estimators with
decomposable regularizers. arXiv preprint arXiv:1010.2731, 2010.

[NRWY12] Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin
Yu. A unified framework for high-dimensional analysis of m-estimators with
decomposable regularizers. Statistical science, 27(4):538–557, 2012.

[ORR10] Liliana Orellana, Andrea Rotnitzky, and James M Robins. Dynamic regime
marginal structural mean models for estimation of optimal dynamic treat-
ment regimes, part i: main content. The International Journal of Biostatis-
tics, 6(2), 2010.

[OT21] Eliza O’Reilly and Ngoc Mai Tran. Minimax rates for high-dimensional
random tessellation forests. arXiv preprint arXiv:2109.10541, 2021.

[Rob86] James Robins. A new approach to causal inference in mortality studies with
a sustained exposure period—application to control of the healthy worker
survivor effect. Mathematical Modelling, 7(9-12):1393–1512, 1986.

[Rob87] James M Robins. Addendum to “a new approach to causal inference in
mortality studies with a sustained exposure period—application to control
of the healthy worker survivor effect”. Computers & Mathematics with Ap-
plications, 14(9-12):923–945, 1987.

[Rob97] James M Robins. Causal inference from complex longitudinal data. In Latent
variable modeling and applications to causality, pages 69–117. Springer, 1997.

[Rob00a] James M Robins. Marginal structural models versus structural nested mod-
els as tools for causal inference. In Statistical models in epidemiology, the
environment, and clinical trials, pages 95–133. Springer, 2000.

[Rob00b] James M Robins. Robust estimation in sequentially ignorable missing data
and causal inference models. In Proceedings of the American Statistical As-
sociation, volume 1999, pages 6–10. Indianapolis, IN, 2000.

308



[Rob04] James M Robins. Optimal structural nested models for optimal sequential
decisions. In Proceedings of the second seattle Symposium in Biostatistics,
pages 189–326. Springer, 2004.

[RR83] Paul R Rosenbaum and Donald B Rubin. The central role of the propensity
score in observational studies for causal effects. Biometrika, 70(1):41–55,
1983.

[Rub74] Donald B Rubin. Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of Educational Psychology, 66(5):688, 1974.

[RZ12] Mark Rudelson and Shuheng Zhou. Reconstruction from anisotropic random
measurements. In Shie Mannor, Nathan Srebro, and Robert C. Williamson,
editors, Proceedings of the 25th Annual Conference on Learning Theory, vol-
ume 23 of Proceedings of Machine Learning Research, pages 10.1–10.24, Ed-
inburgh, Scotland, 25–27 Jun 2012. JMLR Workshop and Conference Pro-
ceedings.

[SBM08] Peter Z Schochet, John Burghardt, and Sheena McConnell. Does job corps
work? impact findings from the national job corps study. American Eco-
nomic Review, 98(5):1864–1886, 2008.

[SBRJ+03] P Schochet, J Bellotti, C Ruo-Jiao, S Glazerman, A Grady, M Gritz, S Mc-
Connell, T Johnson, and J Burghardt. National job corps study: data doc-
umentation and public use files. vols. I-IV). Washington, DC: Mathematica
Policy Research, Inc, 2003.

[SBV15] Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. Consistency of random
forests. The Annals of Statistics, 43(4):1716–1741, 2015.

[Sch01] Peter Z Schochet. National Job Corps Study: The impacts of Job Corps on
participants’ employment and related outcomes. US Department of Labor,
Employment and Training Administration, Office of Policy and Research,
2001.

[SRR19] Ezequiel Smucler, Andrea Rotnitzky, and James M Robins. A unifying ap-
proach for doubly-robust ℓ1 regularized estimation of causal contrasts. arXiv
preprint arXiv:1904.03737, 2019.

[SSM19] Rodney Sparapani, Charles Spanbauer, and Robert McCulloch. The bart r
package. Accessed on Aug, 21:2019, 2019.

[Sto82] Charles J Stone. Optimal global rates of convergence for nonparametric
regression. The annals of statistics, pages 1040–1053, 1982.

[SXG21] Rahul Singh, Liyuan Xu, and Arthur Gretton. Kernel methods for multistage
causal inference: Mediation analysis and dynamic treatment effects. arXiv
preprint arXiv:2111.03950, 2021.

309



[TAF+23] Julie Tibshirani, Susan Athey, Rina Friedberg, Vitor Hadad, David Hirsh-
berg, Luke Miner, Erik Sverdrup, Stefan Wager, Marvin Wright, and Main-
tainer Julie Tibshirani. Package ‘grf’, 2023.

[Tan20] Zhiqiang Tan. Model-assisted inference for treatment effects using regu-
larized calibrated estimation with high-dimensional data. The Annals of
Statistics, 48(2):811–837, 2020.

[TS12] Eric J Tchetgen Tchetgen and Ilya Shpitser. Semiparametric theory for
causal mediation analysis: efficiency bounds, multiple robustness, and sensi-
tivity analysis. The Annals of Statistics, 40(3):1816, 2012.

[TYWK+19] Linh Tran, Constantin Yiannoutsos, Kara Wools-Kaloustian, Abraham Siika,
Mark Van Der Laan, and Maya Petersen. Double robust efficient estimators
of longitudinal treatment effects: comparative performance in simulations
and a case study. The International Journal of Biostatistics, 15(2), 2019.

[VB21] Davide Viviano and Jelena Bradic. Dynamic covariate balancing: estimating
treatment effects over time. arXiv preprint arXiv:2103.01280, 2021.

[vdLG11] Mark J van der Laan and Susan Gruber. Targeted minimum loss based
estimation of an intervention specific mean outcome. U.C. Berkeley Division
of Biostatistics Working Paper Series, Working Paper 290, 2011.

[vdLG12] Mark J van der Laan and Susan Gruber. Targeted minimum loss based
estimation of causal effects of multiple time point interventions. The inter-
national journal of biostatistics, 8(1), 2012.

[WA18] Stefan Wager and Susan Athey. Estimation and inference of heterogeneous
treatment effects using random forests. Journal of the American Statistical
Association, 113(523):1228–1242, 2018.

[Wai19] Martin J Wainwright. High-dimensional statistics: A non-asymptotic view-
point, volume 48. Cambridge University Press, 2019.

[WW15] Stefan Wager and Guenther Walther. Adaptive concentration of regression
trees, with application to random forests. arXiv preprint arXiv:1503.06388,
2015.

[WWPW19] Marvin N Wright, Stefan Wager, Philipp Probst, and Maintainer Marvin N
Wright. Package ‘ranger’. Version 0.11, 2, 2019.

[YS18] Sean Yiu and Li Su. Covariate association eliminating weights: a unified
weighting framework for causal effect estimation. Biometrika, 105(3):709–
722, 2018.

[YvdL06] Zhuo Yu and Mark van der Laan. Double robust estimation in longitudinal
marginal structural models. Journal of Statistical Planning and Inference,
136(3):1061–1089, 2006.

310



[ZB22] Yuqian Zhang and Jelena Bradic. High-dimensional semi-supervised learn-
ing: in search of optimal inference of the mean. Biometrika, 109(2):387–403,
2022.

[ZCB21] Yuqian Zhang, Abhishek Chakrabortty, and Jelena Bradic. Double robust
semi-supervised inference for the mean: Selection bias under mar labeling
with decaying overlap. arXiv preprint arXiv:2104.06667, 2021.

[ZL12] Guoyi Zhang and Yan Lu. Bias-corrected random forests in regression. Jour-
nal of Applied Statistics, 39(1):151–160, 2012.

[ZRM08] Junni L Zhang, Donald B Rubin, and Fabrizia Mealli. Evaluating the effects
of job training programs on wages through principal stratification. In Mod-
elling and Evaluating Treatment Effects in Econometrics. Emerald Group
Publishing Limited, 2008.

[ZZS19] Wensheng Zhu, Donglin Zeng, and Rui Song. Proper inference for value func-
tion in high-dimensional q-learning for dynamic treatment regimes. Journal
of the American Statistical Association, 114(527):1404–1417, 2019.

311


	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	High-dimensional inference for dynamic treatment effects
	Introduction
	The doubly robust representations
	Organization of the paper
	Notation

	The doubly robust estimators
	The sequential doubly robust Lasso (S-DRL) estimator
	The dynamic treatment Lasso (DTL) estimator
	Comparisons between the first-time working models a*() and a,NR*()
	The general DR DTE estimator

	Asymptotic properties
	Properties of the S-DRL estimator
	Properties of the DTL estimator
	Properties of the general DR estimator

	Supporting theoretical discoveries
	An adaptive theory for imputed Lasso with high-dimensional covariates
	Theoretical characteristics of nuisance estimators with imputed outcomes

	Advancing multi-stage treatment estimation with DR methods
	Numerical Experiments
	Simulation studies
	Application to National Job Corps Study (NJCS)

	Discussion
	Supplementary Material
	Further discussions on the nuisance models
	Additional numerical experiments
	Proof of the results for the doubly robust representation
	Convergence rates for nuisance estimators
	Asymptotic theory for general Dynamic Treatment Effect (DTE)
	Asymptotic theory for Sequential Double Robust Lasso (S-DRL) estimator
	Asymptotic theory for Dynamic Treatment Lasso (DTL) estimator
	Proof of the results for multi-stage treatment estimation with DR methods

	Acknowledgement

	Dynamic treatment effects: high-dimensional inference under model misspecification
	Introduction
	Moment-targeted nuisance estimators
	Sequential model doubly robust inference
	Theoretical results for the nuisance estimators
	Results for misspecified models
	Results for correctly specified models

	Numerical Experiments
	Simulation studies
	A semi-synthetic analysis based on the National Job Corps Study (NJCS)

	Discussion
	Supplementary Material
	Uniqueness of moment-targeted parameters
	Justifications for Section 2.2
	Auxiliary lemmas
	Proofs of the main results
	Proofs of the auxiliary Lemmas

	Acknowledgement

	Adaptive split balancing for optimal random forests
	Notation
	Cyclic Forest
	A cyclic approach
	Theoretical results

	Cyclic Local Polynomial Forest
	Cyclic local polynomial forest
	Theoretical results

	Uniform results
	Application to ATE estimation in causal inference
	Numerical Experiments
	Supplement
	Proof of the results for Cyclic Forest
	Proofs of the results for Cyclic Polynomial Forest
	Auxiliary Lemmas
	Proofs of the auxiliary Lemmas
	Proofs of the uniform results

	Acknowledgement

	Bibliography



