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Taxonomic and environmental distribution
of bacterial amino acid auxotrophies

Josep Ramoneda 1 , Thomas B. N. Jensen 1,2, Morgan N. Price 3,
Emilio O. Casamayor 4 & Noah Fierer 1,5

Many microorganisms are auxotrophic—unable to synthesize the compounds
they require for growth. With this work, we quantify the prevalence of amino
acid auxotrophies across a broad diversity of bacteria and habitats. We pre-
dicted the amino acid biosynthetic capabilities of 26,277 unique bacterial
genomes spanning 12 phyla using a metabolic pathway model validated with
empirical data. Amino acid auxotrophy is widespread across bacterial phyla,
but we conservatively estimate that the majority of taxa (78.4%) are able to
synthesize all amino acids. Our estimates indicate that amino acid auxo-
trophies aremore prevalent among obligate intracellular parasites and in free-
living taxa with genomic attributes characteristic of ‘streamlined’ life history
strategies. We predicted the amino acid biosynthetic capabilities of bacterial
communities found in 12 unique habitats to investigate environmental asso-
ciations with auxotrophy, using data compiled from 3813 samples spanning
major aquatic, terrestrial, and engineered environments. Auxotrophic taxa
were more abundant in host-associated environments (including the human
oral cavity and gut) and in fermented food products, with auxotrophic taxa
being relatively rare in soil and aquatic systems. Overall, this work contributes
to a more complete understanding of amino acid auxotrophy across the
bacterial tree of life and the ecological contexts in which auxotrophy can be a
successful strategy.

Microbial auxotrophy (i.e. the inability of microorganisms to synthe-
size the compounds they require for growth) has been identified in
taxa isolated from many environments1–11. The loss of biosynthetic
genes can, under certain conditions, confer a selective advantage due
to the corresponding reduction in metabolic and energetic costs12–14.
Auxotrophy can be particularly advantageous when the essential
metabolites can be readily obtained from the surrounding environ-
ment, or from nearby cells, leading to the expectation that in envir-
onments with abundant nutrients or close-range interactions,
auxotrophy will be an adaptive trait15. For example, under laboratory
conditions, E. coli supplied with amino acids can evolve amino acid

auxotrophies in under 2000 generations and outcompete its ancestral
prototrophic relatives (i.e. taxa that have the ability to synthesize all
amino acids16). Another example are obligate intracellular parasites,
which have among the smallest genomes of all bacteria and are com-
monly auxotrophic for vitamins and certain amino acids available from
their host17.

Microorganisms can be auxotrophic for multiple types of meta-
bolites. The most frequent auxotrophies are those for vitamins3,6,18–21,
amino acids22–27, and diverse cofactors (e.g. heme groups28). Here, we
focus on amino acid auxotrophies because amino acids can be
important both as energy sources and as building blocks of the
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proteome, the costs associated with synthesizing amino acids are
reasonably well-constrained12, and because the amino acid biosyn-
thetic capabilities of many bacteria can be inferred with recent
improvements in our understanding of biosynthetic pathways and the
bioinformatic tools to infer amino acid auxotrophies29–32. In synthetic
assemblages, amino acid cross-feeding can be an ecologically stable
strategy when interacting partners complement each other in their
metabolic capabilities33. Thus, it is often assumed that auxotrophic
interactions and the cross-feeding of amino acids are a key factor
structuring microbial communities15. While there is limited evidence
for auxotrophy-mediated amino acid exchange in microbial commu-
nities found in natural systems, previous work has suggested that this
phenomenon likely occurs in microbial consortia responsible for
hydrocarbon degradation8, methanogenesis34, and anammox35.

Auxotrophy is expected to be more common in habitats where
the essential metabolites are more readily available and diffusible. For
example, protein-rich environments such as dairy products contain a
high availability of amino acids36, and are dominated by well-known
amino acid auxotrophs suchasbacteria from the genus Lactobacillus24.
The physical structure of microbial habitats can also influence the
availability of essential metabolites. Auxotrophies may be particularly
prevalent among bacteria living in biofilms or in well-mixed systems,
where metabolites can more readily be exchanged between taxa pri-
marily due to their spatial proximity37,38. Generally, we would expect
that communities from different environments should vary with
respect to the prevalence of auxotrophies due to differences in the
amounts and types of metabolites available. For example, we would
expect bacterial amino acid auxotrophs to be more common in host-
associated systems where amino acid availability is reasonably high,
such as the human gut22,26,27. However, the broader prevalence of
auxotrophic bacteria in other types of microbial systems (including
soil and aquatic systems) remains largely undetermined.

Using genomic information alone, it is possible to predict the
metabolic capabilities of many bacterial taxa31,32,39–41. These metabolic
pathwaymodels relyon a priori knowledgeof the genes involved in the
metabolic pathways of interest and allow for the prediction of auxo-
trophy in any taxon for which high quality genomic information is
available. For example, D’Souza et al. 13 used genomic information
from 949 full genomes to estimate that 76% of bacterial taxa were
auxotrophic for at least one essential metabolite. The frequent appli-
cation of metabolic pathway models contrasts with the paucity of
experiments that empirically validate the predictions of thesemodels.
The experimental validation of auxotrophy typically requires challen-
ging and time consuming in vitro assays that are, by definition, difficult
to conduct on the large fraction of bacterial taxa that remain
uncultured42. Those studies that have attempted to empirically vali-
date predictions of auxotrophy show that genome-based models lar-
gely underestimate the metabolic capabilities of bacterial taxa29–31,43.
For example, Price et al. 29 studied 10 bacterial genera that were pre-
dicted to be auxotrophic for several amino acids, but found that these
taxa could grow on minimal media in the absence of externally sup-
plied amino acids.Using genome-widemutantfitness data, the authors
identified genes for 9 of the 11 missing steps in amino acid biosynth-
esis. While many biosynthetic pathways remain poorly understood44,
new empirical findings and conservative bioinformatic approaches
make it possible to infer bacterial auxotrophies31,32,43.

Here, we predicted the prevalence of amino acid auxotrophies
across a broad diversity of bacteria by analyzing 26,277 genomes
representing 12 different bacterial phyla. We also compared the pre-
dicted prevalence of amino acid auxotrophies from 13,523 repre-
sentative taxa found in 12 different habitats, ranging from soils,
freshwater, and marine waters, to engineered systems such as acti-
vated sludge and food products, and to host-associated systems
including the humangut, skin, andplant leaf surfaces.Wevalidated the
predictions of ametabolic pathwaymodel of bacterial auxotrophy31 by

compiling empirical information on the metabolic capabilities of
diverse bacterial taxa to minimize the overestimation of auxotrophy.
Finally, we evaluated which genomic features are more frequently
associated with bacterial amino acid auxotrophy to characterize the
broader life history strategies that differentiate amino acid auxotrophs
from prototrophs. By covering a broad range of taxa and habitats we
provide a comprehensive view on the taxonomic and environmental
signatures of amino acid auxotrophies in bacteria.

Results and discussion
Model validation
To test our ability to infer amino acid auxotrophy from genomic
analyses, we first validated our model after predicting the amino
acid biosynthesis capabilities of 171 taxa that can make all amino
acids (prototrophs). Doing so allowed us to quantify how many
genes need to be missing from an amino acid biosynthesis pathway
in a certain organism to be considered auxotrophic for that amino
acid. To minimize the overestimation of auxotrophy, we found that
at least 40% of the genes needed to be missing in a given amino acid
biosynthesis pathway to obtain a very low 0.4% rate of false positives
(i.e. erroneously predicted auxotrophies). This means that our
model predictions were correct in ~99% of the cases in which an
organism was able to synthesize a given amino acid. Only for serine
and cysteine (4% error) did ourmodel incorrectly predict amino acid
auxotrophies (i.e. inferring auxotrophies when the taxa were actu-
ally capable of synthesizing those amino acids, Supplementary
Fig. 1). In the case of serine, 6 of the 7 genomes that were mis-
classified as auxotrophic belonged to taxa from the phylum Desul-
fobacteria, which are typically sulfate-reducers (the remaining
genome belonged to a green sulfur bacterium from the Chlor-
obiaceae, Bacteroidetes; Supplementary Data 1). A group of sulfate-
reducing bacteria, including Desulfovibrio and related genera,
appear to produce serine from pyruvate or related compounds as in
the standard pathway45, but the genes involved are not known. The
phylum Desulfobacteria was not included in the analyses presented
below. Similarly, all the genomes that were misclassified as cysteine
auxotrophs belonged to phyla not included in this study such as the
Desulfobacteria and the Aquificae, also characterized by having
sulfur-related metabolisms (Supplementary Data 1). We found that
these genomes contained the cysteine synthase gene (cysK), which
makes it unlikely that these taxa synthesize cysteine via alternative
pathways. Together, these results suggest that our decision to
require at least 40% of the genes to be missing to infer auxotrophies
for cysteine and serine auxotrophy primarily affected less abundant
phyla not included in the study.

We then quantified the rate of false negatives (i.e. inferring pro-
totrophy for amino acids that taxa cannot synthesize) using genomes
from taxa with experimentally determined auxotrophies compiled
from the literature (Supplementary Table 1). Applying our threshold
that a minimum of 40% of genes from a pathway had to be missing to
consider a genome auxotrophic for a given amino acid led to false
negative rate of 20% (i.e. theproportionof amino acids in eachgenome
forwhich ourmodel predicted taxa to be prototrophicwhen theywere
auxotrophic, Supplementary Fig. 2). On a per genome basis (i.e. pre-
dicting whether a given genome is auxotrophic for 1 or more amino
acids versus prototrophic), our model correctly infers prototrophy in
93% of the cases, and infers that a taxon is auxotrophic for at least 1
amino acid correctly in 95% of the cases. This means that, although the
model tends to underestimate the number of amino acids that a given
taxon is unable to synthesize, we can accurately identify when a taxon
is generally auxotrophic or prototrophic. We recognize that our cur-
rent understanding of amino acid biosynthesis pathway derives from
taxa that have been cultured, and that improved knowledge beyond
those taxa is required to improve our inferences of auxotrophies in
particular groups.
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Previous genome-based studies have largely overestimated
amino acid auxotrophy, despite mounting evidence that most of
these inaccurate predictions come from knowledge gaps or from
lack of awareness of alternative biosynthetic pathways29,30. A num-
ber of studies have used focused culturing efforts to identify auxo-
trophies in experimental isolates24,25,29,32,46 and high-throughput
culturing techniques make it possible to screen for bacterial growth
across a wide range of media types47,48. We recognize that our
approach likely misses a number of auxotrophies, but it does pro-
vide a more conservative perspective on the actual amino acid bio-
synthesis capabilities of most bacterial taxa. The fact that we only
found 19 taxa with genomic data available and known amino acid
auxotrophy profiles highlights the difficulties of conducting in vitro
experiments to confirm amino acid auxotrophies32. Future work
could benefit from advances in high-throughput cultivation-based
approaches to experimentally identify auxotrophies49 and expand
the datasets needed for validation of genome-based models50.
Dedicated efforts combining extensive media testing, whole gen-
ome sequencing, and comparative genomics will further reduce
uncertainty around amino acid biosynthesis in bacteria. Until then,
we are confident that our approach is conservative, recognizing that
we are likely underestimating the occurrence of some amino acid
auxotrophies.

Prevalence of amino acid auxotrophies in bacteria
We used our genome-based approach to predict amino acid auxo-
trophies in 26,277 bacterial taxa from the 12 phyla with >100 non-
chimeric representative genomes estimated to be >95% complete in
the Genome Taxonomy Database (GTDB, release 207)51. A large
majority of taxa (78.4%), each represented by a single genome, were
inferred to be able to synthesize all amino acids (i.e. were completely
prototrophic; Fig. 1A). This prediction contrasts with the previous
comprehensive study of amino acid auxotrophy in bacteria, which was
basedon949 sequenced genomeswith the authors reporting thatonly
24% of bacterial taxa were able to synthesize all amino acids13. There
are many reasons this discrepancy may exist, but it does suggest that
the GapMind predictive framework applied here yields a more con-
servative estimate of amino acid auxotrophies (as explained above)
and is less likely to incorrectly infer auxotrophies when specific bio-
synthetic genes are not detected in genomes.

Even though our model estimated that 78.4% of the 26,277 bac-
terial taxa were deemed to be completely prototrophic, there was a
high degree of variation in the distribution of amino acid auxotrophies
across bacterial taxa. We observed the lowest proportion of auxo-
trophs in the Cyanobacteria (0.9%) and the highest proportion in the
Tenericutes (99.2%). The phyla with the largest numbers of repre-
sentative genomes all contained large numbers of both auxotrophs

A

Genome origin
Phylum

Amino acid

C

B
Mann-Whitney U, P < 2.2 x 10-16

Fig. 1 | Amino acid auxotrophy across the predominant bacterial phyla.
A Prevalence of amino acid auxotrophy in bacterial taxa from the most common
phyla (N = 26,277 genomes). B Prevalence of amino acid auxotrophy in genomes
derived from environmental metagenomes (MAGs) or single cells (SAGs) (Assem-
bled), and in genomes obtained from bacterial isolates (Isolate). Themean number
of amino acid auxotrophies in A, B is indicated with white diamonds. C Proportion
of taxa that are auxotrophic for each of the 17 amino acids and chorismate out of
the total number of auxotrophic taxa (N = 3613 genomes). Numbers in brackets in

panel A indicate the number of genomes for which we predicted amino acid aux-
otrophy, numbers in brackets in panel B indicate the number of assembled and
isolate genomes included, and numbers in brackets in C indicate the subset of taxa
within each phylum that were predicted to be auxotrophs for at least one amino
acid. Letters in panel A indicate statistical differences (P <0.05) between phyla
based on Mann–Whitney U tests with P-values Bonferroni-corrected for multiple
comparisons.
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and prototrophs, with members of the Actinobacteria (8.6%) and
Proteobacteria (10.4%) having significantly lower proportions of aux-
otrophs than Bacteroidetes (37.2%) and Firmicutes (37.0%) (Fig. 1A;
Supplementary Table 2). Our finding that the Bacteroidetes and Fir-
micutes phyla contain higher proportions of auxotrophs than most
other phyla is in agreement with previous work13,15,30,52. Similarly, our
finding thatmost Cyanobacteria are prototrophic for all amino acids is
in line with previous work suggesting that Cyanobacteria are able to
synthesize all amino acids53 and our observation that only 0.8% of the
Tenericutes are prototrophic is tobe expectedgiven that auxotrophies
are widely observed in this group, which is mostly represented by
obligate, intracellular parasites54,55.

Our analysis of the prevalence of auxotrophies at the family level
emphasizes the broad taxonomic distribution of auxotrophs. We
predicted the prevalence and identity of amino acid auxotrophies
across the predominant bacterial families (51 families from the 12 phyla
with at least 100 available genomes; Supplementary Fig. 3). Less than a
quarter (21.6%) of the families contained more auxotrophic than pro-
totrophic taxa. The Mycoplasmataceae was the only family where all
bacterial members were predicted to be auxotrophs, as expected for
this groupof intracellular parasites thatobtain required nutrients from
their host56. All families where over 80% of their members were pre-
dicted to be auxotrophs contained predominantly host-associated
taxa, including Coriobacteriaceae57, Lactobacillaceae58, and
Streptococcaceae59 (Supplementary Fig. 3). On the opposite end of the
spectrum, 54.9% of the 51 families had less than 10% auxotrophic taxa
(Supplementary Fig. 3). The least auxotrophic families were the
Streptomycetaceae (0.1%), Paenibacillaceae (0.2%), and the Pseudo-
monadaceae (0.3%).

Associations between amino acid auxotrophy, genome size, and
genome origin
We found that the prevalenceof auxotrophswas significantly lower for
genomes derived from bacterial isolates compared to those genomes
assembled from environmental metagenomes (MAGs) and single cells
(SAGs) (Mann-Whitney U, p <0.001; Fig. 1B). Note that all MAG/SAG
genomes included in the study were thoroughly filtered for com-
pleteness (>95% complete), absence of chimerism, and were required
to contain an assembled 16 S rRNA gene. We also found that MAGs/
SAGs, >95%ofwhich represent uncultivated taxa, hadgenerally smaller
genomes and higher predicted minimal doubling times than genomes
derived from cultured isolates (Welch two-sample t-test, p < 0.001;
Supplementary Fig. 4A, B), in agreement with previous findings60.
Crucially, the number of amino acids that taxa were unable to syn-
thesize was inversely proportional to their genome size (r = −0.40,
p <0.001; Supplementary Fig. 4C). This general negative association
between genome size and auxotrophy across phyla suggests that the
higher number of auxotrophies observed inMAGs/SAGs is likely due to
evolutionary processes associated with genome size reduction, and
not potential annotation or completeness biases. Isolate-derived gen-
omes had higher completeness (99.2% average completeness) than
those from MAGs/SAGs (97.6%), but this difference alone is likely
insufficient to result in a sizeabledifference in thenumber of estimated
auxotrophies. We also verified that the potential impact of genome
completeness on predicted amino acid auxotrophy was minor based
on the weak correlation between genome completeness and the
number of auxotrophies per genome (within MAGs/SAGs r = −0.07;
within isolates r = −0.14). We also verified that the phyla with the
highest proportions of auxotrophic taxa did not typically contain a
larger proportion ofMAG/SAGgenomes (Supplementary Fig. 5). These
results suggest that many bacterial taxa are not readily cultivated
because they have life history strategies characterized by slow growth
and complex external nutrient requirements that impair growth under
laboratory conditions42. This seems unsurprising as phyla with low
proportions of auxotrophs (e.g. Cyanobacteria or Actinobacteria) tend

to have larger genomes compared to phyla with higher proportions of
auxotrophs61, and genome reduction by loss of biosynthetic genes has
previously been associated with auxotrophy across bacterial groups62

(see below for further discussion of this point).

Amino acid auxotrophies associated with specific
bacterial phyla
We next investigated which specific amino acid auxotrophies were
most common across bacteria. Auxotrophic bacteria were most fre-
quently auxotrophic for leucine (58.5%), valine (57.8%), and isoleucine
(54.9%) (branched-chain amino acids), and were the least likely to be
auxotrophic for asparagine (7.0%), glycine (7.2%), andglutamine (9.3%)
(Fig. 1C). The availability of branched-chain amino acids controls the
virulence gene expression in diverse host-associated bacteria, and
auxotrophy for these amino acids has been suggested to be an adap-
tation to regulate bacterial metabolic activity with changes in external
nutrient levels63. Generally, the amino acid auxotrophic profiles were
primarily dictated by the identity of the amino acids rather than the
taxonomic affiliation of the genomes in question, meaning that most
phylaweremore auxotrophic for the same amino acids (Fig. 1C). There
were some exceptions to this pattern. For example, in the Actino-
bacteria (91.4% prototrophs) 61.6% of the auxotrophic taxa could not
synthesize tryptophan (Fig. 1C). Notably, 41.6%of those actinobacterial
tryptophan auxotrophs belonged to the gut-associated genera Col-
linsella andOlsenella64. We verified that the number of genes in a given
amino acid biosynthesis pathway was not strongly correlated with the
proportion of auxotrophic taxa for that amino acid (r = −0,43,
p =0.100). Note that the predicted auxotrophy for serine in the
Deinococcus-Thermus phylum is likely due to a novel phosphoserine
phosphatase in Thermus thermophilus, which has not been incorpo-
rated into GapMind65.

In contrast to previous studies, we did not find a significant cor-
relation between the proportion of auxotrophic taxa for each amino
acid and the metabolic cost of each amino acid calculated from the
number of P-bonds required to synthesize a given amino acid
(r = −0.24, p = 0.4; Supplementary Fig. 6A)12. When we explored this
relationship within each of the predominant phyla, we only found a
significant correlation in the phylum Spirochaetes (r = 0.71, p = 0.001;
Supplementary Fig. 6B).

Prevalence of amino acid auxotrophy across habitats
We analyzed representative genomes from bacterial taxa found across
12 different habitats to assess general patterns in amino acid auxo-
trophies (Table 1). The habitats included in our analyses covered a
broad range of habitat types, including terrestrial (bulk soil, rhizo-
sphere soil), aquatic (freshwater lakes, marine surface waters), engi-
neered (activated sludge and residential plumbing), host-associated
habitats (phyllosphere, human gut, human skin, and human oral cav-
ity), and fermented foods (cheese and sourdough). We identified
between 148 (cheese) and 2949 (phyllosphere) representative gen-
omes per habitat (13,523 genomes in total) (Table 1, seeMethods). The
proportion of taxa that were capable of synthesizing all amino acids
was highly variable across habitats.More than 95%of bacteria found in
rhizosphere soils, residential plumbing, and bulk soils were capable of
synthesizing all amino acids (Fig. 2A; Table 1). In contrast, less than half
of the bacteria in the human gut (41.6%) and oral cavity (24.7%) were
prototrophic for all amino acids (Fig. 2A). The habitat-specific patterns
in auxotrophy prevalence were still evident even when we restricted
our analyses to the phylum Proteobacteria, the most ubiquitous phy-
lumacross habitats and aphylumwith biosynthetic pathways that have
been relatively well-studied31. These proteobacterial-specific analyses
also show that the human gut and oral cavity were inferred to have the
highest proportions of auxotrophic taxa (Supplementary Fig. 7).

The differences in the prevalence of amino acid auxotrophies
across different habitats matched differences in the taxonomic
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composition of the communities found in those habitats (Fig. 2B).
Habitats dominated by the phylum Proteobacteria were the least
auxotrophic, and habitats dominated by the Firmicutes were the most
auxotrophic (Fig. 2B). These results agreed with the patterns we
observed in the analysis across phyla (Fig. 1A), with families in the
Firmicutes like Lactobacillaceae and Streptococcaceae being more
auxotrophic than proteobacterial families like the Pseudomonadaceae
or Burkholderiaceae (Supplementary Fig. 3). These results are unlikely
to be biased by knowledge gaps in the amino acid biosynthesis path-
ways of the Firmicutes, as the Firmicutes is a well-studied phylum (see
e.g. ref. 66). Since we observed that assembled genomes had more
auxotrophies than genomes fromcultured isolates, we verified that the
differences in the prevalence of auxotrophy across habitats were not
driven by the proportion of assembled genomes and genomes derived
from isolates across those habitats (Supplementary Fig. 8). Since the
proportion of representative genomes recovered differed among
habitats (Table 1), we also verified this proportion did not correlate
with the proportion of auxotrophic taxa in those habitats
(r = −0.17, P =0.6).

As there are numerous examples of auxotrophic bacteria that
have been isolated from soil67,68, aquatic environments1, food24, plants3,
and thehumangut21,69,70, it hasbeen assumedamino acid auxotrophy is
a widespread trait across habitats. Our results indicate that amino acid
auxotrophies are rather uncommon in non-host associated systems,
and are only relatively common in host-associated systems (skin, gut,
or oral cavity) and some fermented foods (cheese and sourdough)
(Fig. 2A). The mean number of amino acids that bacterial taxa were
unable to synthesize ranged between nearly zero in rhizosphere soils,
residential plumbing, bulk soil, freshwater lakes, and marine surface
waters, to 2–3 amino acids in taxa from the oral cavity, the human gut,
and sourdough startermicrobiomes (Fig. 2A). Host-associated habitats
and fermented foods not only contained more auxotrophic taxa but
those auxotrophs were unable to synthesize a larger number of amino
acids (Table 1), suggesting that these environments generally support
auxotrophic taxa13. Host-associated habitats often share a high and
temporally stable supply of amino acids both from the host and
ingested food71, and fermented foods can have a high availability of
peptides rich in amino acids such as milk proteins72. For example, in
Clostridium species (phylumFirmicutes) aminoacid auxotrophies have
been associatedwith toxin production, which increases the availability
of amino acids in the gut lumen73. We detected multiple amino acid
auxotrophies in Clostridium species, which are capable of obtaining
energy via the oxidation and reduction of amino acids using the

Stickland reaction in amino acid-rich environments74. Overall, our
analyses suggest that amino acid auxotrophymight bemost beneficial
under conditions of temporally stable and (mostly) abundant amino
acid supply, conditions which are not likely to be common in soils and
aquatic environments. However, there are notable exceptions in these
non-host associated environments. For example, while soils generally
select for prototrophic bacteria (96.4% of soil taxa in our analyses were
prototrophic, Table 1)75, the common soil bacterium Candidatus
Udaeobacter has a ‘streamlined’ genome with multiple amino acid
auxotrophies that make it unique among soil bacterial taxa76. Candi-
datus Udaeobacter is considered a nutrient scavenger that likely ben-
efits from the locally abundant nutrients provided by decaying
bacterial biomass76,77 (Supplementary Fig. 9). As another example, we
found amino acid auxotrophies to be widespread among soil-dwelling
Bdellovibrionaceae (Supplementary Fig. 9) and the predatory lifestyles
of members of this group may allow amino acids to be obtained from
ingested prey78,79. Pelagibacter ubique, an abundant pelagic bacterium
with a highly streamlined genome80,812, is another example of an
organism with a free-living lifestyle where auxotrophy (in this case
glycine auxotrophy1) is a successful strategy owing to the local abun-
dance of glycolate (a precursor of glycine) from neighboring
phytoplankton82.

Signatures of genome streamlining in amino acid auxotrophs
As noted above, we found that auxotrophic taxa tend to have smaller
genomes than prototrophic taxa and genome size was negatively
correlated with the number of amino acid auxotrophies per genome
(Supplementary Fig. 4C). This pattern is, in part, a product of obligate
intracellular parasites having smaller genomes as a product of genetic
drift83, as would be the case for Spirochaetes and Tenericutes (Fig. 1A;
Supplementary Fig. 3). However, this pattern could also be driven by
auxotrophic free-living bacteria beingmore likely to have ‘streamlined’
genomes84. In other words, there is selection for amino acid auxo-
trophy in free-living taxa with smaller genomes that minimize cell
complexity to more efficiently use the resources required to sustain
growth. To test this ‘streamlining’ hypothesis, we focused our analyses
on two phyla, Bacteroidetes and Firmicutes, with high proportions of
auxotrophic taxa (37.2% and 37.0%, respectively), and we identified
gene categories (COG categories85) that were differentially abundant
across auxotrophic versus prototrophic members of each phylum
(Fig. 3). In this analysis, we considered auxotrophic taxa to be only
those taxa that were unable to synthesize two or more amino acids. In
both phyla, genome size was negatively correlated with the number of

Table 1 | Attributes of the datasets included in the study

Habitat #Samples #Genomes % ASVs with representa-
tive genomes

Proportional abundance of all ASVs
with representative genomes (%)

% prototrophs % with only 1 amino
acid auxotrophy

Refs.

Rhizosphere 230 2886 48.3 70.0 97.5 23.6 106

Residential
plumbing

471 733 57.5 84.5 97.4 42.1 107

Soil 255 448 18.1 35.3 96.4 62.5 108

Freshwater 299 688 45.5 57.4 95.9 17.9 109

Marine 365 772 32.9 33.9 91.5 65.2 110

Activated sludge 514 1369 32.2 54.2 89.6 30.1 111

Phyllosphere 128 2949 43.6 41.9 89.4 9.9 112

Cheese 98 148 69.6 87.6 81.8 18.5 113

Sourdough 421 218 93.8 82.7 75.2 5.6 114

Human skin 335 1778 93.9 98.1 69.7 10.8 115

Human gut 350 979 66.3 89.1 41.6 25.7 116

Human oral cavity 347 571 83.7 97.9 24.7 9.1 115

Reference genomes were obtained by matching the 16S rRNA gene amplicon sequences to the Genome Taxonomy Database (GTDB) allowing a single nucleotide mismatch. Genomes with a
completeness lower than 95% were discarded. Only amplicon sequence variants (ASV) with more than 10 reads in a given habitat occurring in at least 10% of the samples were included. The
proportion of single amino acid auxotrophs was calculated from the total number of auxotrophic taxa. The table is sorted by increasing proportion of amino acid auxotrophs in each habitat.
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amino acid auxotrophies per genome (Fig. 3A, B), in agreement with
the general expectation from streamlining theory84. Likewise, as
expected for streamlined taxa, genes for translation, protein turnover,
and post-translational modification were all overrepresented in the
genomes of auxotrophic taxa (Fig. 3C). These and other functional
gene categories, such as nucleotide transport and metabolism and
DNA replication, recombination and repair have all been previously
linked to genome streamlining and associated life history strategies
across a broad rangeofbacterial taxa75,86,87. The genes overrepresented
in the genomes of prototrophic taxa were also consistent with our
expectations and previous findings: genes for the transport and
metabolism of carbohydrates, amino acids, and lipids, and genes for

transcription and signal transduction were all overrepresented in the
genomes of prototrophic taxa (Fig. 3C)86,87. Together, these findings
indicate that amino acid auxotrophy is part of the general life history
strategy that characterizes bacteria with ‘streamlined’ genomes.

Conclusions
Amino acid auxotrophy is broadly distributed across the bacterial tree
of life, but it is likely less common than previously assumed. We
observed appreciable taxon-specific and habitat-specific differences in
the prevalence of amino acid auxotrophies, whereby amino acid aux-
otrophy seems to be most prevalent in host-associated systems or
habitats where amino acid availability is expected to be relatively high.
In free-living taxa, amino acid auxotrophy likely arises as a product of
the genome streamlining process, whereby taxa are adapted for effi-
cient growth sustained on temporally stable supplies of nutrients. This
strategy is likely a characteristic of the majority of bacterial taxa that
remain uncultured42, emphasizing the need for directing culturing
efforts towards bacteria with traits such as auxotrophy and small
genomes. Overall, our comprehensive investigation of bacterial amino
acid auxotrophies highlights that we still have insufficient experi-
mental evidence to confirm amino acid auxotrophies across many
bacterial groups. Dedicated culturing and testing of growth require-
ments across diverse bacterial taxa would further our understanding
of the links between auxotrophy and the specific bacterial life history
strategies thatmake amino acid auxotrophy an ecologically successful
strategy.

Methods
Study design
We compiled the full sequences of the ~62,000 unique bacterial gen-
omes (‘species clusters’) available in the Genome Taxonomy Database
(GTDB) (release 207)53. We restricted our analyses to only those bac-
terial phyla with more than 100 representative genomes available in
GTDB (12 phyla in total) and only included genomes estimated to be
>95% complete based on CheckM (v1.1.6)88. We also removed all
metagenome-assembled genomes (MAGs) that lacked 16 S rRNA
genes, as well as those with signals of chimerism based on GUNC
(GenomeUnclutterer)89, yielding 26,277 genomes in total.We then ran
the automated amino acid biosynthesis annotation tool GapMind on
all of these genomes31. GapMind identifies candidates for steps in
amino acid biosynthesis by using a database of 1849proteins that have
been experimentally shown to be involved in amino acid biosynthesis
(taken primarily fromMetaCyc90, SwissProt91 and BRENDA92), as well as
145 protein families (144 TIGRfams93 and 1 Pfam94). GapMind then
searches genomes for candidates in the reference biosynthesis path-
ways using ublast (for similar proteins95) or HMMER (for members of
the same protein family96), providing confidence of matches based on
sequence identity and coverage31. At this step, GapMind uses ublast to
check if these candidates are similar to any of 113,704 experimentally-
characterized proteins that could have alternative functions to amino
acid biosynthesis. Candidates are considered valid if the bit score of
the alignment to proteins involved in amino acid biosynthesis is higher
than thebit scoreof the alignment toproteinswithother functions.We
considered a biosynthetic step tobepresent if it hadat least amedium-
confidencecandidate, which for protein candidates basedonsimilarity
to a characterized protein means either (1) at least 40% identity and
70% coverage to a characterized protein, or (2) at least 30% identity
and 80% coverage and more similar to protein(s) with this function
than to another characterized protein in the database of the 113,704
proteins. We predicted the biosynthesis capabilities for 17 amino acids
and chorismate (a precursor of aromatic amino acids), but excluded
alanine, aspartate, and glutamate because these amino acids can be
produced via the transamination of intermediates from central meta-
bolism, and annotating the substrates of transaminases is inherently
challenging29.
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Fig. 2 | Amino acid auxotrophy in bacteria across habitats. A Prevalence of
amino acid auxotrophy in representative bacterial taxa from 12 different habitats
(N = 13,523 genomes). The mean number of amino acid auxotrophies of repre-
sentative bacterial taxa in each habitat is shown as red diamonds in themain panel,
and as horizontal bars in the top subpanel. B Relative abundance of the most
dominant phyla across habitats. The x-axis is sorted by increasing numbers of
auxotrophic taxa in each habitat. Letters at the top of A indicate statistical differ-
ences (P <0.05) between habitats based onMann-Whitney U tests with Bonferroni-
corrected p-values.
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In addition to predicting amino acid auxotrophy across bacterial
phyla, we also investigated how the prevalence of amino acid auxo-
trophy varies across different bacterial habitats. To do so, we used 16 S
rRNA gene sequencing data from 12 different habitats (one dataset per
habitat, Table 1), to identify the predominant bacterial taxa found in
each of the 12 habitats. We selected 12 publicly available 16 S rRNA
gene sequence datasets that each had >100 samples, with each dataset
including a broad range of sample types representative of the habitat.
These datasets were analyzed using the same bioinformatic pipeline.
Briefly, we used cutadapt (v1.18)97 to remove primers, adapters and
ambiguous bases from the 16 S rRNA gene reads. We then quality-
filtered the sequences, inferred amplicon sequence variants (ASVs)
using theDADA2pipeline (v1.14.1)98, and removed chimeric sequences.
Taxonomic affiliations were determined against the SILVA SSU data-
base (release 138)99. We used the phyloseq R package (v1.38.0)100 for
downstream analyses. From each dataset we obtained representative
genomes bymatching the 16 S rRNA gene sequences of individual taxa
to genomes in GTDB, allowing a single base mismatch (i.e. 99.6%
sequence similarity for 250 bp fragments), following the approach
used previously to investigate the genomic attributes of bacteria
across environmental gradients101. We only included ASVs that had

more than 10 reads in a givenhabitat andoccurred in at least 10%of the
samples from each dataset as we wanted to focus on representative
genomes from those taxa that are reasonably ubiquitous in each of the
12 habitats. We ran the GapMind pipeline on these representative
genomes to infer the completeness of the amino acid biosynthesis
profiles for those bacterial community members in each habitat.

Validation of amino acid auxotrophy predictions
Sincemany of the genes involved in amino acid biosynthesis are notwell
described29, genome-based inferences can significantly overestimate the
prevalence of auxotrophies. Thus, to validate our approach, we com-
piled genomic information from 171 taxa that are known to grow in
minimal media without the external supply of amino acids (i.e. proto-
trophs, compiled in Price et al.31; Supplementary Data 1) and ran Gap-
Mind on those genomes to quantify biases in our predictions. We also
estimated the accuracy of the predictions for specific auxotrophies by
compiling genomic information for 19 taxa with experimentally deter-
mined auxotrophies (compiled from31,102; Supplementary Table 1). This
validation allowed us to determine the number of genes that need to be
missing in any given amino acid biosynthesis pathway to consider that
taxon auxotrophic for a given amino acid.

C

Pearson's correlation test
r = -0.48, P < 2.2 x 10-16

Pearson's correlation test
r = -0.50, P < 2.2 x 10-16

Bacteroidetes

Phylum

Firmicutes

BA

Fig. 3 | Evidence for genome streamlining and related functional features in
bacterial taxa that are auxotrophic for amino acids. A, B Relationship between
genome size and the number of amino acid auxotrophies in bacterial taxa from the
phylum Bacteroidetes A and Firmicutes B, respectively. C Functional categories
that are consistently overrepresented in auxotrophic and prototrophic genomes

from the phyla Bacteroidetes and Firmicutes. Functional categoriesweredefined as
Clusters of Orthologous Genes (COGs). We displayed those categories where the
Bacteroidetes and Firmicutes had non-statistically significant trends in grey font
based onMann-Whitney U tests (P <0.01). Pearson’s correlation coefficients (r) are
displayed on A, B. NBacteroidetes = 3232 genomes, NFirmicutes = 4674 genomes.
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Associations between functional genes and amino acid
auxotrophy
We investigated associations between amino acid auxotrophy and
broad functional gene categories by testing the prevalence of Clusters
of Orthologous Genes (COGs) in the genomes of auxotrophic and
prototrophic taxa85. We conducted these analyses on the phyla Bac-
teroidetes and Firmicutes as themetabolic pathways of thesephyla are
relatively well-studied, contain >3000 taxa with available genomes,
and these phyla include sizeable proportions of auxotrophs for robust
statistical analyses. We annotated genomes into COG categories using
eggNOG-mapper v2103, and calculated the genome size-corrected
prevalence of each COG category per genome. In order to have a
conservative classification of auxotrophy, we only classified those taxa
that contained 2 or more amino acid auxotrophies as auxotrophs, and
those taxa with no auxotrophies as prototrophs. We obtainedminimal
doubling times for all genomes based on the predictions established
by Weissman et al.104 (gRodon R package; https://github.com/jlw-
ecoevo/gRodon), by matching the genome accessions of the taxa in
the EGGO database (https://github.com/jlw-ecoevo/eggo).

Statistical analyses
We verified the non-normality of the data using the Shapiro-Wilk test
and compared the number of auxotrophic taxa between phyla and
habitats using Mann-Whitney U tests using the wilcox.test() R function
with Bonferroni correction of p-values for multiple comparisons. We
used Pearson’s correlation tests to determine whether bacteria were
more auxotrophic for amino acids with higher biosynthetic energy
costs. The same test was used to investigate correlations of auxotrophy
with genome size. We obtained information on the energy (P-bonds)
required for amino acid biosynthesis from Akashi and Gojobori12. We
used multiple Mann-Whitney U tests with Bonferroni correction for
multiple comparisons to investigate whether particular COG categories
were overrepresented in genomes from auxotrophic versus proto-
trophic taxa. We represented the results as the log2-fold ratio. Finally,
we investigated associations between the estimated bacterial minimal
doubling times and genome origin using Mann-Whitney U tests, and
tested differences in genome size between assembled genomes and
genomes from cultured isolates using Welch two-sample two-sided
t-tests. All statistical analyses were performed in R (v4.1.3)105.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequence data analyzed for this study had already been deposited
in open repositories and can be accessed through the specific works
cited in this work. The source data to reproduce the findings of this
study has beenmade publicly available on Figshare (https://doi.org/10.
6084/m9.figshare.24101742.v1). The genome data included in this
study canbe found in theGenomeTaxonomyDatabase (GTDB, https://
data.gtdb.ecogenomic.org/releases/release207/207.0/). Information
on predicted doubling times in bacteria can be found in the EGGO
database (https://github.com/jlw-ecoevo/eggo). Functional gene
annotations were based on the Database of Clusters of Orthologous
Genes (COGs, https://www.ncbi.nlm.nih.gov/research/cog).

Code availability
The code to reproduce the findings of this study has been made
publicly available on Figshare (https://doi.org/10.6084/m9.figshare.
24101742.v1).
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