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ABSTRACT OF THE DISSERTATION

Well-posedness and modified scattering for derivative nonlinear Schrodinger
equations

by

Donlapark Pornnopparath

Doctor of Philosophy in Mathematics

University of California San Diego, 2018

Professor loan Bejenaru, Chair

We consider the initial value problem for various type of nonlinear Schrodinger
equations with derivative nonlinearity which cannot be treated by normal perturbative
arguments because of the loss in derivative from the nonlinearity.

The first part of the study involves finding the well-posedness in low regularity
Sobolev spaces for different types of nonlinearities. The key idea is to capture a part of
the solution that resembles the linear Schrodinger dynamic while keeping the remaining

part spatial and frequency localized. With this, we can study the interactions between the

viil



truncations of the solution at different frequencies and obtain a meaningful perturbative
analysis.

In the second part, we study the dynamic of the cubic nonlinear Schrodinger equation
in the energy critical Sobolev space by projecting the solution onto different wave packets
which are frequency and spatial localized at all time. As a result, we obtain the asymptotic
behavior, modified scattering profile and asymptotic completeness of the solution without

relying on the integrable structure of the equation.
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Chapter 1

Introduction

1.1 Motivations

The Schrodinger equation with polynomial-type nonlinearity,

i0yu + Au = P(u,a, Oyu, 0,1)
(1.1)
u(z,0) =ug € H*(R), s > s,

where P : C* — C is a polynomial of the form

P(z) = P(z1,22,25,22) = Y Caz®, (1.2)

d<|a|<l

is a one dimensional model that comes up quite often in nonlinear optics. The nonlinearity
often arises from a high-intensity ultrashort light pulse propagating through an optical
fiber with high nonlinear coefficients ([43]), for example, semiconductor doped glasses or
organic polymers, in which case the refractive index takes a nonlinear form in powers of

intensity I of the light pulse: n = ng + nal + nyI? + ..., where ng, no, na, ... are refractive



index coefficients varying in time. In particular, if we ignore higher intensity orders:
n=ng+nol + ... +nonI", the wave equation for the light pulse when the optical fiber

has a circular cross section can be written as
1 o 1
AZE— gatPL == gatPNL, (13)

where c is the speed of light, E is the electric field and P, and P, are linear and nonlinear

parts of the electric polarization written as

P, — / " (no(t)2B(t — 1) d.

PNL = CQ|E|2 + C4|]E‘]|4 4+ ...+ CQN|E|2N,

where each ¢y; is a product of n;’s. The equation (1.3) can be solved by the method of

separation of variables by writing E as
E = éR(r)u(z,t)eP 1, (1.4)

where € is the direction vector of the polarization and r is the radius vector in the z-y
plane and u(z,t) is the amplitude. We can substitute (1.4) into (1.3) and approximate via

Taylor series expansion. When N = 2, the resulting equation is
10,u + Oyt = 1ag0iu + aglulu + azlul*u + ia,0;(|u*u) + ias0, (Jul*u).

This equation and its variations had been intensively studied, for examples, in [12], [13],
27], [43], [51] and [52]. If the pulse’s width is more than 100 femtosecond, the third-order

dispersion term agOyu can be neglected ([1]). Under this assumption, we can generalize



the equation to the Nth order refraction index: ([50])

N N N
100+ Opu =Y aglul™u+iY_ BrOy(|ul™?u) + i y0h(ju*?)u. (1.5)
k=1 k=2 k=2

Many simplified forms of this equation have been thoroughly investigated. For examples,

the Nonlinear Schrédinger equation (NLS):
i0,u + Opyu = |ulu (1.6)
and the Derivative Nonlinear Schrédinger equation (DNLS):
10, + Opu = i0,(|ul?u). (1.7)

Equation (1.7) also arises from studies of small-amplitude Alfven waves propagating parallel
to a magnetic field [40] and large-amplitude magnetohydrodynamic waves in plasmas [44].
There is also recent discovery of rogue waves as solutions for the Darboux transformation
of the DNLS (See [56]). More details on the DNLS equation will be explained below.
Before going over the literature, we introduce some notations that we will be using

throughout the rest of the thesis.

1.2 Notations

The following notations will be used: The variable x and ¢ always refer to the
one-dimensional spatial variable and the time variable, respectively. For 1 < p,q < oo, and

I,J C R, we define the Banach spaces L2(I) and L{(J) by the norms:

7z = ( /I F@)l dg:);



oz = ( [t |qu)

If there is no confusion, L? will sometimes be shortened to LP. For any Banach spaces
X(I) and Y(J) of complex-valued functions on sets I and J and any function f defined on

the product space I x J, we define the mixed norm

I llxvaxa == H”ny(J)HX(I)

and || fl|xy = || fllxy@xr)- For I = [a,b], we make a slightly shorter notations || f || xy(ap:.1) :=
| fllxvapxsy and || fllay@p = [|flxy(apxr). We define the Fourier transform and the

inverse Fourier transform of f(z) by

0 e

fla) = —= [ e=r)a

Since all of the proofs rely on estimates up to fixed constants, we will make an abuse
of notations and drop the constant \/% from these formulas. For s € R, we denote by
D* = (—A)*/? the Riesz potential of order —s. The Sobolev space H? is defined by the

norm
lull s = 111 = 92)2u(@) |2 = (1 + €%)2a(E)] -

We define the Banach space of bounded H*-valued continuous functions:

A 0) o= {1 € U - sup Dl < o0
€
The weighted Sobolev space H™ is defined by
Jll s = [1(1+ [2%)2 (1= 02) F 7.



Sometimes we will write these spaces as H® and H™F if the variable is well-understood.

Let v € L°L2. We define the Schrodinger propagator by

ety (x,t) = / ETIE B (E) dE.
R

The notation a < b and a ~ b means a < Cb and ca < b < C'A, respectively, for some
positive constants ¢ and C, which depend on P(z) but not on the functions involved in
these estimates.

We frequently split the frequency space into dyadic intervals, so whenever M and N
is mentioned, we assume that M, N € 2Z. Let 1(§) be a smooth cutoff function supported
in [{] < 4 and equal 1 on [{] < 2. We define ¢y = ¢ (%) — (2—]\?) Denote by Py the

Littlewood-Paley projection at frequency N, that is

Py f(€) = ¥n(€) /()
Define P<y and P-y to be the projections of frequency less than and greater than N:

Pon(6) = venf(6) == D vnr(©)f(¢).

Ponf(€) = Usnf(€) = Y vur()f(€).

We will sometimes shorten the notation as follows: fy := Py f. For any Banach space X

of functions on R and 1 < p < oo, we define the norm [P X by

fullow = (3 I1Pwally) (18)

N;e2Z

For s > 0, we define the homogeneous Sobolev space H® using the Littlewood-Paley

projections

s 3
= (D0 NEIPyul:)

NiEQZ

|



For any A C R, we define an indicator function x4 by

1 ifx e A,
Xa(z) =
0 ifxé¢ A

Since [[xj2n 21 (§)u(§) |2 ~ b (§)u(€)] 2, by the duality and orthogonality of X an-+1jl
under the Lg norm, we can define a norm equivalent to that of H? in terms of the Littlewood-

Paley projections:

1

%)’
L2) -

lullrs ~ I Perullze + (D NZ|Pyu

N;e2N

1.3 Previous results

There are several results regarding the well-posedness of (1.1). In [34], Kenig, Ponce
and Vega proved that the equation (1.1) is locally well-posed for a small initial data in

H3(R). There has been some interest in the special case where P = i\|u|Fu,:

i0u + Au = i\u|*u,
u(z,0) =up € H*(R), s > sq.

with k € R. Hao ([18]) proved that this equation is locally well-posed in Hz(R) for k > 5,
and Ambrose-Simpson ([2]) proved the result in H'(R) for k£ > 2. Recent studies show that
these results can be improved. See Santos ([45]) for the local-wellposedness in Hz when
k > 2 and Hayashi-Ozawa ([22]) for the local well-posedness in H? when k > 1 and the

global well-posedness in H! when k > 2.



Several studies showed that we have better results if P only consists of w and 9, u due
to the following heuristic: if v solves the linear Schrodinger equation, then the space-time
Fourier transform of % is supported away from the parabola {(&, 7)|T + £2 = 0}, leading to
strong dispersive estimates. Griinrock ([15]) showed that for P = 9,(u?) or P = (9,u)?

1

where d > 3, the equation (1.1) is locally well-posed for any s > % — 777 in the former

case and s > 3 — —L= in the latter. Later, Hirayama ([26]) extended Griinrock’s results for
P = 0,(u?) to the global well-posedness for s > % — ﬁ.

There are also various results for higher dimension analogues of (1.1)

i + Au = P(u,u, Vu, V)
(1.9)

u(z,0) = ug(x), = €R™
The most general results in R™ for n > 2 is due to Kenig, Ponce and Vega in [34]. For a
more specific case, we refer to [4] and [5] where Bejenaru obtained a local well-posedness
result for n = 2 and P(z) is quadratic with low regularity initial data. See also [11] when
n > 1 and P(u,v) = O(Jul? + |[v]?) or P(u,v) = O(|u]® + |v|?). For results in Besov spaces,
see [53] for the global well-posedness in B‘fg(]R") where n > 2 and s, = % — -1- which is
the critical exponent.

Let us go back to the DNLS equation.

i0u + Au = 10, (|ul*u)
(1.10)

u(x,0) =ug € H*(R),s > 3.

Observe that (1.10) is invariant under the scaling u(z,t) — ux(z,t) := A2u(Az, A%t). Since

lurll s = A®||u|| g, if we follow the scaling heuristic for dispersive equations, the equation



(1.10) is expected to be locally well-posed in any subcritical Sobolev space i.e. any H® with
s > 0. However, Biagioni and Linares ([6]) have showed that (1.10) is ill-posed for s < 1 in
the sense that the solution mapping ug — u fails to be uniformly continuous. This means
that our result from Theorem 1.3 when d = 3, which is a local well-posedness in H %, is
sharp in this sense.

We mention here a few of many results regarding this equation. The global well-
posedness in the energy space H'(R) was proved by Hayashi and Ozawa in [25]. For data
below the energy space, Takaoka has shown in [47] that DNLS is locally well-posed for s > %
using (1.11) with £ = —1. In [14], Colliander, Keel, Staffilani, Takaoka and Tao used the
“I-method” to show the global well-posedness of DNLS for s > %, assuming the smallness
condition |ug|zz < V2r. Later, Miao, Wu and Xu have proved the global well-posedness
result for the endpoint case s = % using the third generation I-method and same smallness
condition in [39]. Lastly, Wu ([54] and [55]) has shown that in the energy-critical case
s = 1, the smallness threshold is improved to ||ug||2 < 2\/7.

We are now shifting focus toward some qualitative aspects of the solutions. Kaup and
Newell has shown that the equation in completely integrable, which implies infinitely many
conservation laws. Moreover, the inverse scattering method can be applied to obtain soliton
solutions which are unstable in a sense that a small perturbation could cause the soliton to
disperse (See [32]). Recently, Liu, Perry and Sulem used this method to prove the global
well-posedness result in H*?(R) (see [38]). A study following Wu’s above result ([10]) shows
an existence of two kinds of solitons: bright solitons with mass /27, and lump soliton

with mass 21/7. He showed in [54] that there is no blow-up near the v/27 threshold. On



the other hand, the study of Cher, Simpson and Sulem ([10]) has shown some numerical
evidence of a blow-up profile that closely resembles the lump soliton.

The main difficulty in studying DNLS is the spatial derivative in nonlinearity. Due
to this, all of well-posedness results for DNLS so far involve the Gauge transformation:

T

o(,1) = u(a, {) exp {m/ u(y, D)2 dy. } (1.11)

—00

where k € R. In [47], Takaoka used the transformation with £ = —1 to turn (1.10) into

00 + Av = —iw?0,v — L|v|*v
(1.12)

v(z,0) = vy € H(R),s > 1.
Note that the transformation replaces the term |u|?d,u with v?d,u which can be treated
using the Fourier restriction norm method developed in [7]. In contrast to this type of proofs,
we managed to get the local well-posedness of (1.10) (as a part of Theorem 1.3) without
using a gauge transformation. The advantage is that the idea can be easily generalized to

get a similar result for the equation (1.13)

1.4 Local well-posedness for gDNLS

Our first result is the local well-posedness of (1.1) in Sobolev spaces when the

nonlinearity contains an arbitrary number of derivatives.
Theorem 1.1. In the equation (1.1), let s be any real number such that

(A) s> L if P(z,y,z w) is linear in z and w,



(B) s > % otherwise.

Then there exist a Banach space X*® and a constant C' = C(s,d) with the following properties:

For any ug € H*(R) such that ||ug||gs < C, the equation (1.1) has a unique solution:
w€ X ={uecCPH([-1,1] x R) N X* : |jul|xs <2C}.

Furthermore, the map ug — w is Lipschitz continuous from Be := {ug € H® : ||ug||gs < C'}

to X.

This shows that, without any restriction to the number of derivatives, we are
able to improve Kenig et al.’s result ([34]) from H? to H2. By restricting to only one
derivative per term in the nonlinearity, we can improve further to H 2, Moreover, part (A)
of Theorem 1.1 extends Hao and Santos’s local well-posedness result in H 2 to more general
class of nonlinearities. It turns out that the global well-posedness results can be achieved if

the nonlinearity is quintic or higher and the endpoint cases are excluded.
Theorem 1.2. Suppose that d > 5 in (1.2). Let s be any number such that

(A) s>

if each term in P(u, W, Oyu, Oyu) has only one derivative,

N |+

(B) s >

if a term in P(u, T, Oyu, O,u) has more than one derivative.

oo

Then the equation (1.1) is globally well-posed in the following sense: There exist a Banach
space X* and a constant C = C(s,d) with the following properties: For any uy € H*(R)

such that ||ug|

s < C and any time interval I containing 0, the equation (1.1) has a unique
solution:

ue€ X :={ucCOHI xR)NX*: ||ul

XS S 20}-

10



Furthermore, the map ug — w is Lipschitz continuous from Be := {ug € H® : ||ug||gs < C}

to X.

1.5 Global well-posedness for a special case of gDNLS

in critical Sobolev spaces

Notice that when each term in P(u,u,0,u,0,u) has only one derivative, (1.1) is

invariance under the scaling u(x,t) — uy(z,t) := )\ﬁu()\x, A%t). Thus, the critical space

is H* where s = 3 — 7 in the sense that [|u||gs0 = ||us|| 0. If we follow the heuristic
that a dispersive equation is expected to be locally well-posed in any subcritical Sobolev
space H® i.e. s> sg, then the result in part (A) of Theorem 1.2, which requires s > %, is

not optimal in this sense. It turns out that the global well-posedness at critical Sobolev

spaces can be achieved if we assume a specific type of the gDNLS equation

10w+ Au = 0, P(u, )

(1.13)
u(z,0) =up € H*(R), s > sq.
where P : C? — C is a polynomial of the form
P(z) = P(z1,2) = »_ Ca2® (1.14)

d<l|a|<l
and [ > d > 5.
The following theorem shows that for d > 5 we have the global well-posedness at

the scaling critical Sobolev space.

11



Theorem 1.3. Suppose that d > 5 in (1.14). Let sy = 3 — 75. For ug € H*(R) where

1
2
s > sq, the equation (1.13) is globally well-posed in the following sense:

There exist a Banach space X*® and a constant C = C(s,d) with the following

properties: For any ug € H*(R) such that ||ug||gs < C and any time interval I containing

0, the equation (1.13) has a unique solution:

ue€ X :={uecCYHI xR)NX*: ||ul

Furthermore, the map ug — w is Lipschitz continuous from Be := {ug € H® : ||up||g= < C}
to X.

In the case of s = sg, the statement above holds true if we replace H® by H* .

This extends Griinrock and Hirayama’s results to more general class of nonlinearities.
The main ideas behind the proof of Theorem 1.1 and Theorem 1.3 consist of the Duhamel
reformulation of the problem, followed by the contraction argument. First, we decompose
the nonlinear Duhamel term using (2.28), which was first introduced in [3], to deal with
the time integral. Second, we use the local smoothing estimate (2.4) and the maximal
function estimate (2.5) to deal with the loss of derivative in nonlinearity. We then combine
these tools together as main ingredients for the usual perturbative analysis to obtain the
well-posedness results. The proof for Theorem 1.3 in the case d = 5 is rather delicate and
needs some modulation-frequency argument which is sensitive to the conjugates in the
nonlinearity. Therefore, the proof of global well-posedness for d = 5, which is motivated by
Tao’s paper on the quartic generalised KdV equation ([49]), will be treated separately in

the last section.

12



1.6 Global bounds and modified scattering for the

DNLS equation

Another problem that comes up quite often in studies of nonlinear dispersive
equations is the scattering problem, where one observes the behavior of the solution forward
in time and see if it scatters to a linear solution. In our case, we consider the dynamic of
the solution to the cubic DNLS equation:

10 + Au = 0, (Jul*u)
(1.15)
u(z,0) = ug(x)
in the weighted Sobolev space H''(R). In particular, we are interested in a global pointwise

bound and the scattering profile of the solution. Assume that we can get a pointwise bound

in the form

A
| = S| =

[ulz, D) e [woll g2

10z, )|

58
A
T)T)—‘

||u0||H;’17

then we would expect u to behave like a linear solution for large ¢ since the nonlinearity

becomes really small:

I

e (uf )l S 5 lwollyy

Nj

The next step is to find a linear profile of w in the form of
u(z,t) = CA(z,t)e'BED

for some function A and B. In our work, we use the method pioneered by Ifrim-Tataru in

28], where they solved the scattering problem for the cubic NLS (1.6). The main idea is to

13



test the solution against wave packets W, (x,t) localized at different frequencies ¢ traveling
at speed v = &:
(v, t) = /u\ifv dx.

Since the wave packets are spatial and frequency localized, the PDE equation (1.15) is
translated in an ODE of v in ¢. We then proceed to solve this ODE and obtain a profile of
the solution by approximating u by 7. Note that the method that we just mentioned here
is not restrictive to Schrodinger-type equations and has a potential to be a major tool in
studying global dynamics of many nonlinear equations. For examples, see the recent works
of [redacted]. We summarize the results as follows. Under the smallness condition on the
initial data:

[uolla < e < 1,

we have a global solution satisfying the pointwise bounds

lull = < et 712,

luta |z S elt] 72,

For large time t, the solution scatters with asymptotic profile

, . 42
u(z,t) = =W (%) W /DFFlogti%e o opp (2 1), (1.16)

. . . —_ (2 . .
where W is a function in H'=¢<*1(R) for some constant C' and err is a small error function

which decays in t. Moreover, we prove the asymptotic completeness, which states that for

any function W in H'-¢“!(R) and

||W||H1+052,1(R) ek 1,

14



there exists an initial data uy such that the solution u to the equation (1.15) has the

asymptotic profile (1.16). For the full statement of this result, see Theorem 4.1.

1.7 Organization

We organize the materials as follows. In chapter 2, we will mention several linear
and smoothing estimates, together with the proofs of the maximal function estimate and
bilinear estimate. After that, we introduce the notion of the Fourier restriction spaces
X*? along with several well-known estimates, as we will apply some frequency-modulation
analysis in order to prove Theorem 1.3 in the case of d = 5. We will also introduce the
spaces VP of functions of bounded p-variation and prove several of their properties which
will be used to conclude the results in Chapter 4. In chapter 3, we introduce the solution
space Xy and nonlinear space Yy for functions supported at frequency N, and we will
prove the main linear and bilinear estimate for functions in these spaces using a solution
decomposition technique from [3]. Then we prove Theorem 1.1 and Theorem 1.3, where
the majority of proofs are focused on the multilinear estimates of functions in Xy. In
Chapter 4, we prove (1.16) which consists of global boundedness, scattering and asymptotic

completeness., using the method of testing against wave packets from [28].

15



Chapter 2

Elementary Results

2.1 The Linear Schrodinger equation

The corresponding linear equation of (1.1):
10u + Au = 0,

is used as the model for a quantum mechanical particle, e.g. an electron, where u(z,t) is a

wave function of the system and the quantity

/yu(;c,t)ﬁ da (2.1)
R
is conserved over time. Normally, we rescale u so that the integral in (2.1) is 1. In this

case, for any measurable set A € R, the integral

/A|u(x,t)|2 dx

gives the probability that the particle is in A at time ¢. The solutions of (2.1) are waves

which at different frequencies travel at different velocities. Hence, localized solutions such

16



as wave packets tend to spread out or disperse over time. Such behavior led us to categorize

(2.1) as a dispersive equation.

2.2 Bernstein type inequality

We begin with the Bernstein inequality for the Littlewood-Paley projections. Note
that this is different from the standard result in literatures which is the same estimate but

for the space L{LP.

Lemma 2.1. For any pair of 1 < p,q < oo, we have

10:Pn fllzre S NI PnfllzLe (2.2)

Proof. Let Py := Pnjs + Py + Poy be a Littlewood-Paley projection at a wider frequency
interval with corresponding multiplier JN. We can rewrite the term on the left-hand side

as
axlf)NPNf = (@JN) * Py f(x,t).

For each z, we have an inequality

10 Py fllzg < 10xthn| * || Py f (2, 8)]] s

After taking the LP norm and apply Young’s inequality, we have

10:Pn fllzrs < 10:0N e | Pxfllpre S NPy fllzre-

17



This lemma helps us quantify derivatives of a function supported in a dyadic
frequency interval, which will come in handy in the proofs of multilinear estimates in

section 3 - 3.3.

2.3 Stationary phase lemmas

We mention here stationary phase results from harmonic analysis, which will be

used in the next subsection. See [46, p.331-334] for their proofs.

Lemma 2.2. Suppose that ¢ and 1 are smooth functions and 1) is compactly supported in

(a,b). If ¢'(§) # 0 for all & € [a,b], then

b
YIS d
/a ¢ 5‘ DG

for all k > 0, where the constant C' depends on ¢, and k.

Lemma 2.3. Suppose that 1) : R — R is smooth, ¢ is a real-valued C?-function in (a,b)

and ¢"(§) 2 1. Then,
' iAD(E)
! d + d
/ae P(€) 5‘ ’)\| (W’ )| /W )l f)

2.4 Strichartz and local smoothing estimates

In our study, the nonlinear effect of the equation (1.1) with small initial data wug
plays a major role in the perturbative analysis. As we mentioned in section 1, the main

difficulty is a lost of derivative in the nonlinearity. In this regard, we will need the Strichartz
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estimate for the Schrodinger propagator and the smoothing estimate (2.4) which gives
a %—order derivative gain of the linear solution in a suitable norm. We will also prove a
maximal function type estimate (2.5) which will be used for the analysis of the nonlinear

term.

Proposition 2.4. Let f € L?. Then, we have the following estimates

1" fllgrz S NNz, (2.3)

2 1 1
where — 4+ — = — and 2 < p < o0, and
qg p 2

1
D2 fllpgers S 1INz (2.4)

Proof. The first inequality is the well-known Strichartz estimate. The proof can be found,

for example, in [9] and [48]. The proof of (2.4) can be found in Theorem 4.1 of [33]. [

The following maximal function type estimate tells us that for the linear equation
with time-and-frequency localized initial data in H*(R) where s > %, the solution is

well-controlled in LYL(R x I), where [ = [—1,1] when 7 = 2,3 and I = R when v > 4.
Proposition 2.5. Let u € L:(R).

1. If vy =2 or 3, assume that supp(|a|) C [N,4N] where N € 2N or supp(|a|) C [0, 1],

in which case we consider N =1, then
; 1
xS u@) | e S N7 lull 2, (2.5a)
2. If v > 4, assume that supp(|i|) C [N, 4N] where N € 2%, we have

leu(@)| e S N5 [Jull 2. (2.5b)
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Remark: We see that the estimate (2.5a) is local in time while (2.5b) is global. By

setting v = d — 1, this leads to the local and global results in Theorem 1.1 and Theorem 1.3.

Proof. We refer to Theorem 2.5 in [33] for a proof of the case v = 4. Let sg = so(y) = %
for v = 2,3 and sg = ”2—_72 for v > 5. We define an operator T : L2 — LILY® by
Tu = x-11)(t)e"®u, yielding T*F = f_ll e #AF dt. Using the TT* argument, it follows
that (2.5) is equivalent to either of the following estimates for F' € L2L}(R x R) with the

same frequency support as u in the cases of v = 2, 3.

1
—itA s
Fl(x.t) dt < N|F| _~ 2.6
H | emapa SN (26)
1 .
meu) I C L I T e, (27)
-1 LYIL® Lo Ly

For v > 5, we have the same estimates but with integrals on R. Thus, it suffices to prove
(2.7). First, we assume that F' € S(R). Since F' = PynF, the inverse Fourier transform of

ci(t=9€ F' is defined by

F (€ RE ) = / IR (€, 5) de

R

_F (e—z‘(t—s)£2¢ (%)) x F(x,s).

Since —1 <t,s <1 implies —2 <t — s < 2, the term on the right of (2.7) can be replaced

by
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where x denotes the space-time convolution and

Kl(ﬁ,t):/Reit£2+iw£X[—272]<t)¢ <%> dg. (28)

Similarly, for v > 5 we have
/ eUIAE (2, 5) ds = oKy x F
R

where
Ky(z,t) :/emz”x&w (%) dg. (2.9)
R

To finish the proof, we need the following lemma.

Lemma 2.6. Let Ky(z,t) and Ky(x,t) be as in (2.8) and (2.9). Then, fori=1,2

K|l 2 S N2, (2.10)

LZL ™

We continue the proof of Proposition 2.5. By applying Young’s inequality and

Lemma 2.6, we obtain

[ K x Fll e < || 5G] ]| =

2 0
Li Lg® L 'L}

as desired. We then finish the proof by the usual density argument. m

Proof of Lemma 2.6. Let I = [—1,1] when v = 2,3 and I = R when v > 4. We divide

R x I into three regions
1
O ={(z,t) eRx1]]z| < N}
1
Qy:={(z,t) e R x| |z| >64N]t| , |x| > N}

1
Q= {(x.0) €Rx T | [o] <6ANIt] , [o] > T},
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and we will estimate K;(x,t) in each region. For a fixed z € R and 1 < i < 3, we define

Qi ={tel] (z,t) € Q}. We consider the following two cases of values of .

Case 1: v = 2,3. Note that in this case we always assume that N > 1. By a change of

3

1xv> We obtain

variable n =

Kl(x,t) :N/X[—2,2}eilﬁthnQJeran(n) dn
R

A simple estimate on 2; shows that

/..

Next we consider the norm on €5. Note that the integrand in K; vanishes if |n| > 4.

R

ol 1 ol y—2
K )|F dr S - Nz(/¢(n) dn> ~ NZ < N. (2.11)
R

1
N

Factoring out —il6¢tN?n? + idxNn = —idazN(n — 1&n?) .= —izN¢; (n) yields
tN tN 1 1
=11 -8y >1 32| > 1232 & ==
[91(n)] = | = ‘ . ‘_ bl

for any ¢ € ;. Therefore, ¢; has no critical point in this region. By Lemma 2.2, the
integral in K is bounded by |[Nz|=* for all £ > 0. In particular, by choosing k = 2, we
obtain |K;(x,t)| < N(N|z|)~2 = N~!|z|~2. We finish by computing the LEL?O norm on
Qgi

/ sup | Ky (z,8)|2 de < NO7D=3 = Nz < N. (2.12)

teQz,Q

Now we consider the norm on €23. Factoring out the exponential term —i16t N?n?+idaxNn =
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it N2 (42 — 21

) := 4t N?pq(n) yields ¢4(n) = 1, so we can apply Lemma 2.3 to K.

|K1(I7t>| =N

—itN2n2+ix
[ty ay
R

(2.13)
64Nz

ol
Now we compute the Lz LY° norm of K;. Observe that the finite time restriction yields
|z| < NJ|t| < 2N on Q3. Therefore,

/ sup |Ki(x,t)|? dx ,S/ Nil|z
teQy 3 |z|<64N|t|

. (2.14)
Combining (2.11),(2.12) and (2.14), we have that

1K 3 SN
LZLge
Case 2:

v > 5. Since the estimates in (2.11) and (2.12) do not require any time restriction,
we get the same results for K.

/ |Ky|% de SNz
Q1UQ9

(2.15)
On (3, we have the same estimate as in (2.13) for K. From the fact that |z| > < in this
region, we have

/ sup |Ks(x,t)|? da S/ Ni|g|™7 dz < Ni
tEQI,:; |CC|>%

y—4 y—2
it =Nz

2

(2.16)

Note that we did not use the finite time restriction in this case. Combining (2.15) and
(2.16), we have that

Kl 5 SN

5
LZLe ™
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]

To estimate a product of functions as seen in the nonlinearity of DNLS, one usually
employs the bilinear estimate which splits the product into estimating individual functions

(see [8] where Bourgain proved the estimate in two dimensions).
Theorem 2.7 (Bilinear Strichartz Estimate). For any u,v € L2, we have

i ,l
IPA(e P ue® )|z, S A2 |ul| 2 fv]| 2 (2.17)

In addition, if & and © have disjoint supports and o = inf|supp(a) — supp(0)| > 0, then we
have
le"Pue™ ]2, S a2 lull2[lv]l 2. (2.18)

Proof. We follow the proof in [37, Theorem 2.9]. By duality, this is equivalent to showing

that for any F' € C°,

~ = 1 ~ ~
| [ F€= 0.6 = P)asle ~ mi(©tn) dedn| S XHF iz Nallizlolz
For each fixed a and S, let (£44,7as) be a solution to a = &2 —n? and 8 = £ — 7. We see
that the change of variables (§,n) — («, 3) gives the Jacobian J = 2(n — &). This together

with Cauchy-Schwarz yield
| [ Fle—n.& = oyimnte - mie)ito) ded)
- 1
— | [ Fla9)vos()i(an)ia) dadﬁ\

< 11z, ([ Woon )P 1i(Eas) o) )’

2

~ 171, ([ 1osste - n>|2!a<f>|2|@<n>|2§ ded

_1 N ~
SAIF Nz sz lol .
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This concludes the proof of (2.17). The proof for (2.18) is essentially the same, but & —n
is replaced by & + 7, £2 — n? is replaced by £% + n? and there is no 1-,. The conclusion

follows from the observation that

1 1

7] 2ln —¢]

> 1
~ o
O

We will need a variant of this estimate adapted to the X* space (2.44) for our

trilinear estimate (3.3). The details will be explained in the next section.

2.5 The main linear estimate

In this section, we consider a nonlinear Schrodinger equation
(2.19)

u(z,0) = up.
Let I =[-1,1]ifd =3,4and [ =R if d > 5. A solution u(x,t) € R x I can be represented

by the Duhamel formula
u(z,t) = ey — z/ e U=IAE (s) ds. (2.20)
0

In the proof of Theorem 1.1 and Theorem 1.3, the spaces that we use are based on

the following norms which take a function u supported at dyadic frequency interval ~ N.
lullve = it LN lurlls e + oz |+ e = u}

lellxy = lullgerz + N7 full s oo + N2 [Jull 12 (2.21)

+ N2 ||(i8, + A)ully,,
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where L®L2? = L®L2(I x R) and L2L{ = LPL}(R x I). These norms satisfy the following
t T t T Tt Tzt

linear estimate, which makes them suitable for the contraction argument.
Theorem 2.8. Let u be a solution to equation (2.19). Then,
[Pvullxy S lluollzz + [Py Fllyy- (2.22)

This immediately follows from the Duhamel formula and the following three propo-

sitions.
Proposition 2.9. For any ug € L2(R), we have
le" Pruol|xy < Jluoll 2. (2.23)

Proof. This follows from the Strichartz estimate (2.3), the smoothing estimate (2.4) and

(2.5a) if d = 3,4 or (2.5b) if d > 5. O
Proposition 2.10. For any function F(z,t) such that PyF € LLL?, we have

<Py Elly. (221
XN

t
/ e t=)APyF(s) ds
0

Proof. 1t follows from Minkowski inequality and (2.23) that

t
/ e =APyF(s) ds
0

< / |02 Py F(s) 1 x ds
XN R

< / | PyF(s)]|1z ds
R

= [[PnFllzyLz-

Therefore, it suffices to prove that

SN2 Py e (2.25)
XN

t
/ =2 Py F(s) ds
0
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Let Ky be the fundamental solution of Schrodinger equation i.e.

S 2 1 -2
Ko(z,t) = F e ™) = —_4mte” /4,

Thus,

. t
/ ei(t—s)APNF(x, s) ds = / / Py [Ko(z —y,t — s)F(y, s)] dyds
0 JR

0

= / /t Py [Ko(x —y,t — s)F(y,s)] dsdy (2.26)

= /wy dy,
R

In order to proceed, we will make use of the following lemma.

Lemma 2.11. For any N € 2%, the function w, defined in (2.26) satisfies the following
estimate:

_1
Jwyllxy S N72F ()] rs- (2.27)

Continuing the proof of Proposition 2.10, we see that the estimate (2.25) follows

immediately from (2.27). O

Proof of Lemma 2.11. By translation invariance, it suffices to assume that y = 0. Denote
Fy(t) := F(0,t). To proceed, we use the following decomposition which was first introduced

in [3] to deal with Scrodinger maps.
wo(z,t) = =" Lug(x) — (Poyypo Luso)e™ vo(x) + h(z, 1), (2.28)
where £ : L2(R) — L2(R) is an operator and

— _1
I£vollzz + llvollzz + N7 (IARN 2, + ellzz,) S N 72| Foll - (2.29)
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To prove the claim, first we rewrite the definition of wg as
wo(z,t) = / X[0,00)(t = 8)Pn[Ko(z,t — 5)|Fy(s) ds
R

- eim/ Pn[Ko(z,—s)]Fo(s) ds (2.30)

0
= (X[0,00) PN K0) *¢ Fo — GZtA/ PyKo(x,—s)Fy(s) ds,

— 00

where %; is the time convolution. The space-time Fourier transform of the first term is

equal to
vnE) 5
— 31
_T_€Q_Z-OFO(T>7 (23 )
where ﬁo is the time Fourier transform of F. We define
00(&) == U (&) Fo(=£2). (2.32)

We see that vy is supported at frequency ~ N. By changing variables we obtain the
following estimate,

lvollze S N72(|Fylle. (2.33)

We apply the spatial Fourier transform to the second term

0

[ PRt~ 9R(s) ds = unte) [ € R(s) as

= v ()T (X000 F0) (=€) (2.34)

= Lug(€).

We see that Lvg is supported at frequency ~ N. It follows from a change of variables that
_1
[Lvollz S N72|[Follrz-
Applying the Fourier transform to e®“uy,

}-(eitAUO) _ ¢N(§)F\O(_§2)ft(e—it§2) _ wN(f)ﬁO(_€2)6T+£2'
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Assume that £ > 0 and consider the distribution d,¢2. For any ¢ € S(R x R), by a change

of variables

[T oeenae= [ o ar

Thus, 1es0d,1e2 = 1T<0#5& /== Therefore, the following computation holds.

]:{ (P<ny250 1x>0)e’mvo } &, 7)

= (Un(E) Fo(—€2)0,4¢2) * wévi—%@

NENGrYe Yoz (§)

- (2¢_—TF0<—5 >5§_ﬁ) “Teri

_ N (VT Fo(7) denypmo (€ = VT
2y/—T1 §—+—7+10

= 1/)N(\/—_T)¢<N/250 (€ — \/—_T)ﬁo(T)

E+V-T 1
2v/—7 E4+71+10

With this and (2.31), the space-time Fourier transform of the remainder term is given by

h(&,T) = <¢N(§) — N (V=T )< nyos0 (€ — \/__7-)5 + \/__T) Fo(7)

WoT ) @i (g

= A&7 Bo(r).
The term in the bracket is bounded, supported in {0 < £ ~ N} and vanishes when £ = /-7,

canceling out the singularity. Since the same result holds for ¢ < 0, this implies that
A l ~
IAR 2, + 10kl 1z, ~ (€% + DRIz < N2 Fo(7)llzz. (2.36)

The estimate (2.29) then follows from (2.33) and (2.36).
Remark: It is important to note that vy, Lvy and h are supported at frequency ~ N, since

we will need this fact in any proof that employ the decomposition (2.28).
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We are now ready to prove (2.27). By Bernstein’s inequality and direct L? integration on
A(S,7),
1Pl a1 e < W Fihll g1 S IFPN Ly pa
d—3
S N || Fh||pare
d—3 ~
= N iy
d—3 ~
< NAET| A D) iz 1ol 22,

where A({,7) is defined as in (2.35) when & > 0,. We split the integral in ||A(&, 7)||3. as
7€

A€ DI, = [ A dedr
v |é—v/=TI< 5160

+ / A(e )P dedr
|é—v=71> 30

= Al + AQ.

Note that ¥y (£) = vn(vV—=7) + (£ = V=7)O(%) as £ = V/—7. If |¢ — V/=7| < 55, then

Yonyos0(§ —/—7) =1 and it follows that

E+V-T
N (E) = N (V=T anyom0 (§ = V=T) 5= s

Yn(V=T) (V=T = &) 1
= = He=vo(y)

Since A(&,7) is supported in the region £ ~ N, we have that

1 1
<
A4S /T~N2 /§~N —27(E+/—7)? - N2(§++/—7)?

1
dédr S —.
s N

On the other hand, under the assumptions that, £ ~ N and [§ — /—7| > 21%, we have

E2+7|=|(E+V-T)E-V-T)] = 2]}[—020 Thus, by a change of variables (£,7) — (£,7)
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where 7 := 7 + &2, we have

N(E&) | UN(=T)enyam0 (6 — V/T)
A2 s / /gﬁ>wo (&

+

+ )2 —4r(€ + v/ —7)?

1
S ma+/ / dedr
/wv AP N i o2 Jeon —AT(E+ /)2

dedr

<3100
o L]
~ Jeun N? N
.y
~ N

and a similar result holds when £ < 0. From this, we can conclude that
1Pl a1 pee S N%“A(gaT)HLilguﬁO(T)HLQ < N0 2| F(0)]| 2.
Similarly, we have the following,
12|z, < IHE(O) 2z
In particular, for d = 3 and N > 1, we have that
N2 bz < Iz S N7HFO)]2
Similarly, by Sobolev’s embedding,
N Al ez S N2l|hll 2o S N7HAR] L2, S N73F(0)] 2.
where we used (2.29) in the last step. Lastly, it follows from (2.37) that

17l Loz < [[hllL2rge S N721F(0) ]|z

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

Putting together (2.37),(2.40) and (2.41), we are done with estimating h. Similar estimate

for the term 1,-0e®vy follows easily from Strichartz-type estimates (2.3), (2.4) and (2.5).
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In the proof of Theorem 1.1 in the next section, we will incorporate the low
frequency projection P<ju into the spaces X*® and Y, which are restricted to the time
interval 7" = [—1,1], in order to obtain the local well-posedness. Therefore, we need an
estimate analogous to (2.22) for functions supported at low frequencies, which can be

obtained from the two following propositions:

Proposition 2.12. Let T = [—1,1]. For any function uy € L*(R), we have
| P<re™® ol x,mxry S | Pertio| 2 (2.42)

Proof. In view of Strichartz’s estimate (2.3) with p = 2 and ¢ = oo and (2.5a), it suffices
to prove that

| P<1€™ g oo 2mxr) S | Peatiollzz-
Using the fact that @o (&,1) is compactly supported ¢ variable and Plancherel theorem,

we have

HpﬁleitAuoHLgoLf(RxT) < HpﬁleitAuOHL?Lgo(Tx]R) < ’W(@aOHL%Lg(TxR)

< ||¢(5)ﬁ0||Lg°Lg(TxR) = ||P§1U0||Lg-
0
Proposition 2.13. Let T = [—1,1]. For any function F(x,t) such that P<;F € Y1, we

have

t
H/ AP F(z,s) ds
0

< ||P<4 F . 2.43
Xl(RxT)NH <1 F'||vi mx) (2.43)

Proof. As in the proof of Proposition 2.10, it follows from Minkowski inequality that

¢
/ et=IAP_ F(s) ds

0

5 HPSlFHLtlL%(Tx]R)'
Xl(RXT)
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Thus, it suffices to prove that

Note that for t € [0, 1], we can rewrite

¢
/ et=IAP_ F(s) ds

0

SN P<1Fll i z@xry-
Xl(RXT)

t
/ ¢ =IAP_ F(z,5) ds = / X (t = 8)xj0.0 (s)e'" ™I P2y F (2, 5) ds
0 R
= K(ZL’, t) * X[O,l) (t)PSlF((L’, t)

where « is the space-time convolution and

K(w,t):/Re_it@—’—ixéX[O,l)(t)w (%) df,

which obeys the estimate (2.10) with N = 1. Hence, by Young’s inequality

[xou® K@)« xonOPaF@d] | S Ixou®PaFllzz.

L2L%
We use the finite time restriction and apply Bernstein’s and Minkowski’s inequality.
X100 (#) P<1 Fllp2pr S ||X[0,1}(t)P§1F||Lg¢
S Xy () P<a Fll 2y

< |IXe1y () P<a Fll g1 g2

Since similar proof applies for the time interval [—1, 0], we obtain

t
| [ et ospaps) s < 1P Flusizn)
0

L2L° (RXT)
This estimate has the following two consequences. First, from Minkowski’s inequality, we

have

t
H/ AP F(x, 5) ds‘
0

t
< H/ e=)AP_ F(z,s) ds‘
L°L2(TXR) 0 =

L2LE(RXT)

SN P<Fllpyz@xry-
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Secondly, it follows from Minkowski’s inequality, Bernstein’s inequality and the finite time

restriction that

t t
H/ AP F(x,5) ds < / AP F(x,5) ds
0 0

LeLZ(RXT)

t
< /ei(t_s)APglF(:p,s) ds
0

L2L(TxR)

Li,t(RxT)

t
< /ei(t_s)APglF(:p,s) ds
0

L2L5°(RXT)
SN P<Fll i rz@xry-

This concludes the proof of (2.43). O

The essential part of the contraction argument is a multilinear estimate: an estimate
of the form [|@,us [Ty willys <TI0, luillxs. One of the main tools that we will use to

prove this is the following Bilinear Strichartz estimate for the X? space.

Theorem 2.14. Let N > M and suppose that uw and v are supported at frequency N and

M, respectively. Then, we have
N2
luvllzz, S N72 |Jullxy vl (2.44)
Proof. Let Fi(x,t) = (10, + A)u(z,t) and Fy(z,t) = (i0; + A)v(z,t). We will prove that

luollz, SN2

ItN

() llzz + [1Fillzzzz) (10(0) 1z + 1 F2llzyez) (2.45)

lwwlzz, N5 (e ez + N5 Filliazz) (1012 + M3 Fallzgrz) — (2.46)

hawllz, S N7F (Jlu(O)llzz + N5 Fillzasz ) (1) 2 + 1 Fallzrs) - (2.47)
_1 _1

luwwlzz, S N7% (u(©)lsz + 1Fillzzz) (1012 + M| Byll gz ) (2.48)
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To achieve (2.45), we consider the expansion of uv after using the Duhamel formula on u

and v.
u(z,t) = e u(0) — 2/ e =IAE (s) ds
0
v(z,t) = v (0) — z/ =92y (s) ds,
0
It follows from the bilinear estimate for free solutions (2.18) that
le**u(O)e" 200z, £ N2 u(0)]lzz[[0(0)]2
By the Minkowski inequality, we have that
t ] ) 1
|| / A (5)eit0(0) ds] 2, S N7 / 1B 2 llo(O)]] 22 ds
0 ’ R
1
= N2 P12 [[v(0)]| 2.
Similarly,

t
I [ eI Fufs) dsliz, N ()21 el
0

With the same proof, we can estimate the last term in the product.

t ot
H/ / =R (5)e 92 Fy(3) dsds|| 2 ,
0 Jo ’
1
SN2 Al ezl Pl
and (2.45) follows.

To prove (2.46), we recall (2.28) which allows us to decompose u and v as follows

u(z,t) = ™ u(0) — / "2 Luy, + (Pyjosolyso)e™uy, — hyy(x,t) dy (2.49)
R

v(z,t) = "0 (0) — / "B Ly + (Pjgo Lyso)e™ vy — hoy(z,t) dy, (2.50)
R
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where £ : L2 — L2 is a bounded operator and u,, Lu, and hy, are defined similarly to
(2.35), (2.34) and (2.35), respectively. From the remark following (2.36), we see that these

functions are supported at frequency ~ N. Similar vy, Lv,, hg,, Moreover, we have

[Luyllez + lluyllz + 5= (HM Izz, +[10hylicz,) < I\Fl(y, t)llzs- (2.51)

l\.’)\»ﬁ

Similar conclusions hold for vy, Lv, and hy, at frequency ~ M with corresponding
nonlinearity F5(y/,t). Consider each term in the product uv. Let Y250 be the function

defined by Pyjgs0 f := 190 * f. Observe that for any G € L?, we have that
1(PryjasoLoso)e™ S uy G) | 2,
= (Y250 * Laso)e™uyG() | 2,
< [ Moy ()G @z (2] d (2.52)
< [ 160,622 lizao ()] d=
< e, Gl 2
With this, we can take care of all the terms involving Pp/s01,50 in the expansion of uw.

For any A, B € L?, we have

[(Py/zsolaso)e uye™ Bl 2, < lle™uye™ Bll 2,

|(Pyjoso Loso)e ™ gy lliz | S e uyhaylzz
Similarly,

||€itAA(PN/2501x>0)eimvy’“Lg,t S HeitAAeimvy’”Lg’t

”hl,y(PN/25°1x>0> Uy HLH S 1 ye Uy’Hij’ta
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and lastly,

| [(Prrzotasole ] [(Prstaae®n] |,
x,t

it A

< ‘ eimuy [(PN/zao ly~0)€’

Uy/] L2

x,t

S ||€itAuyeitAvy’||Lg7t'
Therefore, we only have to worry about the terms of the forms e Ae™® B, €2 Ahy,,
hi,e*B and hy,hy,. Note that any choice of A that is not u(0) is an integral with

respect to y. The same holds for B. By the bilinear Strichartz estimate (2.18), one obtains

e Ae™ B2, S N72|| A1z ]| Bll 2. (2.53)

We get the desired bound by observing that either we have ||A||z2 = [|u(0)||z2 or [|[Al|L2 <
Je Nuyllez dy < N2 | F1[[ L1z from (2.51). It remains to estimate the terms that involve

hy, and hy,. By Holder and Bernstein inequalities, (2.4) and (2.39), We have that

162 Aha |z S (162 All e 12 oy |21

PR

(2.54)
<N 2M ™2 HAHLgHFz(?/)HL?

By taking [, - dy’ when A = w(0) and [, [; - dydy’ when A = Lu, or A = u, on both
sides of the inequality and applying (2.29), we get the desired bound. On the other
hand, we get the estimate for ||hy,e"®Bl|;> by observing that from (2.29), we have

[ARy 2, S N~:||Fy| 2. Hence,
1h1ye™® Bllz, < [1haylle e Bl s,

_3 1
SN 2M2HF1”L%HBHL§°L§ (2.55)

1
< NTEM72| By g2 || B g g2
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Lastly, we use (2.39) and (2.40) to estimate the remaining term

[hyhoy e, < lhyllpeerzllhoy oz e

x,t T

(2.56)
S NTIM T F() |1 Fa(y) | e

Taking [, [5 - dydy', we obtain (2.46). We are now left to proving (2.47) and (2.48). The
proof is a mix of the ideas we used to prove (2.45) and (2.46). For (2.47), we write u using
the decomposition (2.49) and v using the Duhamel formula. On the product expansion
of |luv|| 2,, We apply the triangle inequality and Minkowski inequality. We then apply
the bilinear estimate (2.18) to any term of the form || Ae® B)| 12, to get the desired
bound. This leaves us with the terms of the form [[e™® Ahg /|| 12, on which we can apply
(2.54). In the same manner, we can prove (2.48) using the Duhamel formula for v and the
decomposition (2.50) for v. We finish the proof by observing that the terms of the form

[71,4¢"Bl| 12, can be bounded using (2.55). O

2.6 X°’ space

This new class of function spaces was introduced by Bourgain ([7]) under an
observation that if the we take the space-time Fourier transform of a linear dispersive

equation, for example,

F(i0wu + Au)(&,7) =0

(7 + &) Fulé,7) =0,
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then the support of Fu(&,7) lives in the parabola {7 + £* = 0}. Since, for a short time,
solutions to the Cauchy problem for a nonlinear Schrodinger equation behaves like the
linear solution, this suggest that the space-time Fourier transform of these solutions will be
supported in a small oneighborhood of this parabola. This observation gives rise to the

following norm:

lull s := [1(€)* (T + €2) Fu(, )z,
which measure the regularity of u by the (£)® factor and the “closeness” to the linear
solution by the (7 + £2)° factor. The space that we will be using is a modification of this

norm using the Littlewood-Paley projections. For each N € 2%, let Ay be a set defined by
Ay = {(&,7): M < |7+ &% < 2M}. (2.57)

Recall that @(&, 7) is the space-time Fourier transform of u(z,t). The X% space is the

closure of the test functions under the following norm:

1

o = (3 (Vllilzz can)?) "

Me2Z

Previously, the nonlinear space Y* is based on the space Zy defined by the following norm
on each frequency N.
lullzy = N2 lul oyuz.
We modify this by adding the X031 space.
Yv:i=Zy+ X031,

The solution space is defined by

lullxy = lu(O)llzz + 170 + A)ullyy
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s 3
o= (X VIRl )

Ne2Z

|

xe = [lull o + llullxs, (2.58)

and the nonlinear space is defined by

1
vo= (0 NEIPvali, )

Ne2Z (2.59)

Jullys =
The following proposition shows that any estimates of free solutions that we proved in

Chapter 2 can be extended to functions in Xy using the Schrodinger equation version of

Lemma 4.1 from Tao ([49]).

Proposition 2.15 ([49]). Let S be any space-time Banach space that satisfies the following
mequality,

lg() F (2, t)lls < llgllce=llF(z, )]s, (2.60)

forany F € S and g € L®(R). Let T : L*(R) x ... x L*(R) — S be a spatial multilinear

operator satisfying
T (™ urg, ... e u0)lls < H i 0| 22
for any uyp, ... ,uro € LA(R). Then the following estimate

k
1T (s ulls S T T (0) 2z + 160 + A)usll o 5.) (2.61)
=1

holds true for any uy, ..., u, € X% 2 provided that u; is supported at frequency ~ N; for

1<i<k.
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With this proposition, we can obtain several Strichartz-type estimates for Xy that

will be useful later on.

Corollary 2.16. For any u € Xy, we have the following estimates:

HuHLt‘X’LgﬂL?J S llullxy (2.62)
_1
lullpeorz S N 72 [ullxy (2.63)
1
lullazee S N3 lullxy (2.64)

Proof. We apply Proposition 2.15 to linear estimates (2.3), (2.4) and (2.5), and bilinear

estimates (2.17) and (2.18). O
We also have the bilinear estimate adapted to the space Xy.

Proposition 2.17. Let N, M and X\ be dyadic numbers such that M < N and A\ < N. For

any functions u and v supported at frequency ~ N and ~ M, respectively, we have
1Po(uo)l iz S A2 ullxy 0]l x, (2.65)
In addition, if & and 0 have disjoint supports and o = inf|supp(@) — supp(v)|, then we have
luollz, S a7 lullxyllollx,,- (2.66)

Proof. As before, the bilinear estimate for homogeneous solutions (2.17) and (2.18) is the
keys to proving these estimates. It suffices to prove (2.65), since (2.66) will follow in a
similar manner. Denote F} := (i0; + A)u and F, := (i0; + A)v. Using Proposition 2.15

with T'(uy, ug) = ujug to extend the bilinear estimate (2.17), we obtain

[1Pox(uv)lzz, S A2 ([[w(O)lzz + (11l go-3.0) U0 (0) 22 + 1 F2ll .- 3.0)-
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Therefore, it suffices to prove that for any v € Xy and v € X,

_ _1
[Pox(uo)llrz, S A72 ([[u(O)] 22 + [1F1ll 2y ) (o (0) |z + [ F2ll 2 ), (2.67)
_ _1
[Pox(uo)llzz, S A2 ([w(O)]zz + [[Fillzy ) (0 (O) |2 + (12 4o-3.0), (2.68)
[Pox(uo)lzz, S A2 ([[w(0) ]z + I o 3.0) ([0 (O0)] 22 + (1 F2ll 25 )- (2.69)

We use the decomposition from (2.28) for u. However, in this case, the frequency localization

at 2% is replaced by 2%:
u(z,t) = e u(0) — / "2 Ly + (Py o Lyso)e ™ uy, — hy(z,t) dy,
R

where £ : L2 — L2 is a bounded operator and u,, Lu, and h, are defined similarly to
(2.32), (2.34) and (2.35), respectively. From the remark following (2.36), we see that these
functions are supported at frequency ~ N. Moreover, the following estimate still holds

even with the frequency replacement.

1
N3z

1
1Luyllzz + luyllee + 5 (AR llzz, + 10k l22,) S =1 1£1 (Y, )z (2.70)

We consider all the possible terms in Ps(uv). First, we consider all the terms that involve

Py j2501,50. For any G € L2, we have that
P, (PA/25011>0)6“AuyG} —P., [(PA/QE,O1m>0)P<<A(e“AuyG)}
P, [(PA /2501x>0)PZ,\(e“AuyG)]
:P>)\ |:(P)\/250 1x>0)PZA(€itAUyG):| .

Let ¢n/950 be the function defined by Ppygso f 1= 1950 * f. Consequently,

|

P>)\ [(P/\/2501x>0)€itAuyG} ‘

2
L:L',t
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= P>)\ [(P)\/Qso1x>0)PZ)\(€itAuyG)} ’

2
Lz,t

< (PA/25olx>0)PZ,\(eitAuyG)‘

2
Lm,t

= ('17[))\/250 * 1$>0)PE>\(€itAuyG)‘

g/\

< 1 Porl€"2u, Gz

2
L3

]-a:—z>0P2)\ [eitAuy(x)G(x)} ‘

12 |thnyas0 (2)] dz

In other words, to estimate such terms, we can take out the P, /g501,~0 factor just like
what we did in the proof of Theorem 2.14. Following the same line of proof as for (2.46)
but using a different bilinear estimate (2.17) instead of (2.18), we obtain (2.67). To prove

(2.68) and (2.69), we will show that for any vy € L2 supported at frequency ~ M,

[Pox(ue™@vo)l[ 2, S A7 (lu(0) 22 + [[F1llzy)llvoll 22, (2.71)

Tt

which, in view of Proposition 2.15 with T'(v) = Ps,(uv), leads to (2.68). From (2.17) and

(2.70), we obtain

. _— 1
1Poa(eu(0)e™2v0) 2, S A2 [[ul(0) 22 | voll e,
. _— 1
1Poa(e"® Luye®Bvo) 2, S A2 Luyll 22 ol 2,
_1
S (AN) = [ By, )|z [lvoll 2

B N
1P2a(e"Suye™B o)l 2, S A2 fuyll 2 flvoll 2

_1
S AN)2 [Py, )l ez llvoll 2
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We use the last inequality to estimate the term in Ps(ue*®vy) that involves Py /os01,50.

Poy [(P,\/Qso 1z>0)eimuye“Av0]

I [P (e uye®™ug)|| 2
x,t

S (AN) 72 {[Fa(y, Ol zzllvoll 2.

For the remaining term, we use the Holder inequality, (2.70) and the fact that A < N.

1Poa(hye™ o)z, S lhyllz, e vollzs,

Tt N

1
2

< 3
N2

~Y

13y, )l zz[lvoll 2 (2.72)
< ON)E1F D)2z voll s
Recalling that [|(i0, + A)ul| 7, = N~2|(i0, + A)ull1zz, these estimates yield (2.71) via the
Minkowski inequality. The proof for (2.69) is similar, except at (2.72) where we have the
following modification:
1PoA(e  uohy )22, < [l

b

Uo|| oo 2Pyl L2 15
S (NM)2 Juoll g | Foly/', )
< M) [luoll 2 1P, 1) -
For the second to last inequality, we used the smoothing estimate (2.4) and (2.37) with

d = 3. This concludes the proof of (2.65). O

We will also use the following estimate which was taken from Tao ([49]) and modified

to be suitable to our spaces.

Proposition 2.18. Suppose that u is supported at frequency ~ N. Then we have

[ll o300 S Nullxn- (2.73)
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Proof. Consider the Duhamel’s formula of w.

t t
u(z,t) = ePuy — z/ e=)AE (s) ds — z/ e =2 Fy(s) ds, (2.74)
0 0

where F} € Zy and Fy € X% 21, For i = 1,2, we split the term

t t 0
/ei(”)AE(s) ds = / eIAF(s) ds — et / Y HOR
0 —o0 -

Since the X2 seminorm vanishes on any free solution, it suffices to estimate the first
term. For Fy, we recall the computation (2.26) from the proof of Lemma 2.11 that the first

term is equal to

Lf).ﬁl(y 7).

/wydy where {Dy:_T_gz_ 5

With a direct integration, we see that

//~N “’f'&? By, 7] dgdf)é

S Il

Ixaywllez, ~

From the definition of X% it follows that

t
H/ e =IAE (s) ds‘

On the other hand, we consider the space-time Fourier transform

S FL| zy -

-0 1
XO,Q,oo

fQ,M (£7 T)

i(t—s)A —
}—/X(Om)(t—‘s)e(t 12 Fy(s) ds = —7 =& —i0

It follows from the Plancherel’s theorem that

t
H/ et=I2Fy(s) ds

and the conclusion immediately follows. O]

N ||F2||X0,—%,17

XO,%,DO
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2.7 VP space

Toward the end of Chapter 4, we will employ another space V?B of functions of

bounded p variation with respect to a Banach space B defined by the seminorm:

K 1/p
[ullves = sup (Z luty) — U(tk—l)H%) ,
k=1

—oo<tp<...<tg <00

and let V? B be the space of right continuous functions f in VB satisfying f(—oo) = 0.

Let 1 < p < ¢ < 0. Since IP(N) C 19(N), it follows from the definition that
VPB C VIB. (2.75)

We refer to [17] for a complete treatment of these spaces as main tools to study well-
posedness problems for PDEs. For our purpose, however, we only need the following
proposition:
Proposition 2.19 ([35], Corollary 3.3). Let p and q be indices satisfying
1
+ —. 4<p< .
p oq 2
For any function u € V2L2, the following estimate holds:
le"ull s < Nlullvers. (2.76)
We mention here the main reason that this space will be employed later on in

Section 4.6, namely, the fact that it commutes with the [2-type spaces.

Proposition 2.20. For any Banach space B and any sequence of functions f, : R — B,

we have

(=005, < (fjufnu%?lg)é. @77)
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Proof. We have that

(S hn)’

—oo<tp<...<tg <00 k=1 n—=1

(i{ up Zufntk e m;})%

=1 foo<t0<...<tK<oo

- (Z |rfn\|%26)2-

K oo %
—_— sup <ZZ | fr(te) — fu(te- 1)”8)

IA
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Chapter 3

Well-posedness results

3.1 Proof of Theorem 1.1

Let s be the exponent which satisfies the condition in Theorem 1.1. To obtain
the local well-posedness, we redefine the spaces X*® and Y* from (2.21) in a way that the
projections on the low frequencies are combined together. Since we assume a finite time

restriction, so any spaces mentioned below are defined on the product space R x [—1,1].

_1 1
ullzy = HuHLfoLimLngong,t + N2 HuHLngo + Nz HUHLgOLf
. _1
[ullyy = inf{N"2lur[[p1p2 + [Juallpire | wi +uz = u}
[ullxy = llullzy + [1(i0 + A)ullyy (3.1)

[l

xo = IPaull, + (30 N Pyullk, )

Ne2N

|

vs = || P<iully, + ( Z NQSHPNU‘ﬁ/N)Z.

Ne2N
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The previous section prepares us all the estimates we need in order to obtain the linear
estimate for the X* and Y* spaces; It follows from (2.22), (2.42) and (2.43) that for any

s 2

Y

N |—

[ullxs < lluol ye. (3.2)

We are now ready to prove the multilinear estimate.

Theorem 3.1. Let d > 3. For any uy,us,...,uq € X° where s > %, we have the following

estimate.

d d
H((‘?xul)Hui o STl (3.3)
1=2 =1

Proof. 1t suffices to prove that

d d
H@z“l) I1w o [Tl s (3.4)
=2 =2

Sl

which implies (3.3) since X* C X 2 due to the absence of low frequency projections. In
view of (2.42) and (2.43), we can treat P<; as P, so it suffices to estimate the summation

over high frequencies:

; (3.5)

YS

> N Pu(Pr s f[ Py ;)
i=2

N,N1,...,Ng i=
where N > 1 and N; > 1 for all 7 in the summation. We can assume that N; >
Ny > ... > Ngyand N < N;. This is because u; is the only term in (3.5) that has a
derivative, and so any other frequency distribution would lead to a better estimate. We

1
define ey, 1 = N7||Pyunllxy, and en;i = NP || Pyuil xy, for 2 < i < d. Thus, we see

that [[eny 1llizav) = lJurllxs and [[engillizovy = lluill 3 for 2 <4 < d. In order to obtain
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the [? summation of cy,;, we will repeatedly be using the following application of the

Cauchy-Schwarz inequality:

Z Na HCNM — Z H i H Z —aCN; i

Nj,....Nq 1=j 2‘ = ]N>1N
<l
i=j

for any a > 0. To prove (3.4), we split the summation over three different kinds of frequency

(3.6)

interactions.
Z NHPNPNﬁmHPNul
N,N1,....Ng =2
- (S S ) ],
I ‘
Each of the summations contains certain ranges of N, Ny, ..., Ny described by the following
cases:

I) N1 > NQ and N ~ Nl.

By Holder inequality, (2.5) with v = 2 and (3.6),

HPN PN1(9 U1HPNUJ1
Ni,...,Ng

LyL?

d
S 1P, Own Pryus|| 12 1 Prgus | e | [ 1Pl cee,

i=4




Therefore,

(PN18 UIHPNUZ

LLL2 N Z CN11 HHulHX?

Ni~N =2

>l
I
Taking the [? summation with respect to N > 1, we obtain (3.4).

II) NlNN2>>N32 ZNd &IldNSNl.
In this case, we use the bilinear estimate for the product Py, 0,uq Pn,us and put Py,us in

the Strichartz space L} L

HPN PNla UIHPNUz

NeNy LyL2
s Y |pvpve w TT P .
Ni,...,Ng i=2 t e
d
SO 1PwOsr Payus| 1z || Pryusllperss | [ IPwwilles,
) i=4
d

o)

Ni~No LT Ny N3 =3

1 d
2
(3 o) Huuinx%,

Ni>N Ny i=2

N

where we used (3.6) in the second to last step. Therefore,

ZNQS | Pn (P, Oy UlHPN U; ||L1L2 < Jualf3

=2

e H o,

I][) N1~N2~N32...2NdandN§N1.

We divide the proof into two cases depending on the degree d.
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A). d=3.
Even though we cannot use the bilinear estimate in this case, the fact that Ny ~ Ny ~
N3 allows us to cancel the derivative loss in Py, d,u; by the % regularity from Pp,us

and Py,us via the Holder inequality:

HPN[(PNlaa:W)PNQUQPNgU:s]‘
Ny ~Na~Ns

LiLg

S Z HPN[(PNlamUI)PNQUQPNgu?;]‘ o
N1~N2NN3 t,@

S Y 1PwOsulig 1Pvyuzlss, | Prousll e,

Ni~Ny~N3

1-—s
< N
~ 1 1 CN1,1CN2,2CN3 3
Ni~Ny~N3 N5 N5

s(X

N1 >N

1
2
NfCN1’1> HU2\|X%HU3HX%7

where the last step follows from the Cauchy-Schwarz inequality on ¢y, 1¢n, 2Cn; 3-
B). d > 4.
We again take advantage of the finite time restriction and put Py,u; for 1 <7 <4 in

suitable Strichartz spaces, namely L{°L? and L} L2°.

HPN PNla u1HPNuz

Ni,...,Ng

LiLg

4

L312

5 HPN PN1au1HPNUz

Ni,....;Ng

d
S Z | P, Opuin || Lo 12 H 1P, il e | 11w, will oo
. =2 1=5

< Nl s
~ 1 1 1 H CNzal
N; N22 2 4 =1
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d
Z %CNlJCNQ,QCNg,g)( Z 1% HCNM.>

S
N1,N2,N3 1 Ny...,Ng N4 =4
d
1 3
< (0 smema) Tl
NizN L =2
In either case, it follows that
d 9 d
> N®| Pr (P, 0pun | | Povus) e Sl | e
i=2 ’ i=2

117

and this concludes the proof.

]

In view of this theorem, if every term in P(u, @, 0,u, 0,u) has only one derivative,

then we expect to close the contraction argument in a subspace of X 2. On the other hand,

Xs+1

xs S |Juil

if we replace u; by 0,u; for some j > 2, then it follows from (2.2) that ||0,u;]
for any s > 0, and so (3.4) yields

d
o3 < Nl g 10wl g H il 3
=

[CEAICE Hu

i=2
1#£]

d
< ol g Tl
=2

and for any s > %, we have

[CRAICES Hu

i#]

d
S lluallxe T el
=2

YS
Consequently, in the case that a term in P(u, 4, 0,u, 0,u) has more than one derivative, we

can employ the contraction argument in X 3

53



Proof of Theorem 1.1. We define F'(u) := P(u,u,0,u, 0,u). Let u and v be functions in

X?. We use the main linear estimate (3.2) and simple algebra to obtain

<o ||F(u) = F)lly.
X (3.7)

%+l

/0 =92 [P (u(z, ) — F(o(x, )] ds

Ol — vl

< creo(||ul Xs,

where we used the multilinear estimate (3.3) in the last step.
Let C' := min {(8@102)*ﬁ, (402)7ﬁ} where ¢; and ¢, are constants in (3.7). Define

a Banach space as stated in the theorem:
X={uec CPH:([-1,1] x R)N X* : ||ul|xs < 2C}.
Let uy € X such that ||ug||gs < C. Then, for u € X, we define an operator
Lu := ey — 2/ e IAF (u(z, 5)) ds,
0

Again, by the main linear estimate, we have

[ Ll

s+ || F|

x= < uol ys

< [luoll s + ol

X e

Thus, L maps X to X. Moreover, from (3.7),

[Lu = Lo o vl — vl

1
xs < (]|l xs < ZHU — V|| xs.

Thus, L is a contraction and the local well-posedness in X immediately follows. O
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3.2 Proof of Theorem 1.3 when d > 6

In the previous sections, we used the time restriction to avoid dealing with low
frequencies at ¢ < 1. However, such argument cannot be used to obtain the global well-

posedness for the gDNLS with nonlinearity of order d > 5. Therefore, the function spaces

d—3

-1 for

that we use will take these low frequencies into account. Let so(d) = % — ﬁ =
d > 5. The spaces X* and Y* in (2.21) are replaced by those defined by the quasi-norms

X% and Y* which in turn are defined by the norms Xy and Yy,
_1 1
lullxy = l[ullgerz + N7 lullzaree + N2 |Julpoo 2

+ N7E(| (00, + Al 12

= ( 3 N25||PNu||§(N>2

Ne2Z

[l

[ullxs = llull o + [l xs

_1
[ullyy = N72lullpyrz

1
s 2
o= (30 N IPyul, )

Ne2Z

lul

[ullys = llullyo + [lully..

Thus we have embeddings X* < H* and X* < X < X for any s > so. In view

of (2.22), we obtain the linear estimate

[ullxs < lluol ye. (3.9)

With these choices of spaces, we can establish the multilinear estimate for d > 6. The proof
for the case d = 5 is significantly more involved and requires some frequency-modulation

analysis, so we will postpone it to the next section.
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Theorem 3.2. Let d > 6. We have the following estimates.

1). For any uj,usg,...,uq € X,

X505 (3.10)

d
o STl
=1

2). Let s > sg. For any uy,ug, ..., uq € X°,

d
S i 3.11
) (R (3.11)
Proof. Our goal is to obtain the estimate
d
21\72s+1||1D HuzllLle S Z g o TT il (3.12)

i#£]
which implies (3.10) by choosing s = s9. We get (3.11) by combining two different versions
of this estimate with a fixed s > sy and with s = 0. We will focus on each term on the
left-hand side of (3.11)

2

N2 1HPN8 Hu

o =V eve S HPNZ u;

LlL?
177A%Z_
2s+1 2
S
:S-A] H}%V || fﬁvlh )
LLL?
N17 7Nd i=1 et

and study different kinds of frequency interactions. As before, we assume that Ny > Ny >
. > Ny. We define cy, 1 = NISHPNi'U/lHXNl and cy,; = Ni50||PNiui||XNi for 2 <i<d. We

will use the following two estimates for a product of terms with higher and lower frequencies.

1. For N S Ny ~ Ny ~ ...~ N;_; where j > 3, it follows from the Cauchy-Schwarz

inequality that

j—1 %j—l
S TTevis (X an) T uilixeo. (3.13)
N; i=1 Ni>N i=2
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2. For N; > Nj1 > ... > Ng and any a > 0, Young’s inequality and trivial estimate

cni < ||| s imply

Z ( ) HCN“ZS H HUZHXéO Z (%) CN;,jCNy.d
J

N_}ZZNCZ 1= i= ]+1 NjZ---ZNd
S H il %o
i=j

These estimates will be used in each case after appropriate uses of Holder inequality,

(3.14)

Bernstein inequality and bilinear estimate (2.44).

By Holder and Bernstein inequalities,

d
o
=1

LyL?

5 d
< Z ||PN1U1||L30L3 H | P, wil| La e H ||PNiUi||L;<jt

§ZHPN1U1HLOOL2HHPN% ’L4L°°HN | P, il o2
N; =2 =6

1 1
. 5 S0— 7 d 550
— 7, the sums of the exponents in [];_, N;° * and []_g N are equal.

Since sg = %

With the assumption that Ny > N3 > ... > N, the right-hand side is bounded by

S () e 319

N; Ny

To estimate this term, we consider the following two frequency interactions.
1. N~ Ny >Ny, > ... > N,

Using (3.14) on ¢y, 26N, 3 - - - Cn,.d, We can bound (3.15) by

Z CNl, HHU”LHXSOv

Ni~N
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for each fixed N. We have that

5
Z(ZZ; o) Huuzuxgo > I e

N Ni~N
ie H il %o

= a3
which implies (3.12) as desired.

. N<N ~N,>...>Ny

Using (3.13) on ¢y, 1¢n,2 and (3.14) on ¢y, 3¢N,4 - - - €Ny.d, We can bound (3.15) by

< Z N23+1 N1,> HHUZHXSO

N>N

Therefore, by switching the order of summations,

N2s+1
2 D yEehu HHquXso NZch, HHquxsm

NN>N

which again implies (3.12). This concludes the proof for d > 6.
O

Using the linear estimate (3.9) and the multilinear estimates (3.10) and (3.11), the

proof for Theorem 1.3 follows in the same manner as in Theorem 1.1. Note that we did

not use any finite time restriction in any parts of the proof.

3.3 Proof of Theorem 1.3 when d =5

The difficulty in this case arises from the fact that there is no room left to put the

lowest frequency term in Lg7. Thus, we will take this case with extra care by adding the
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X0ba spaces mentioned in Section 2.6. We start with proving the multilinear estimate.

Note that the position of complex conjugates will be significant in the analysis below.

Theorem 3.3. For 1 < i < 5, let u; represent u or u. Then we have the following
estimates.

1). For anyu € X7,

5
‘(%Hui o1 N HUHi(;Ia (3.16)
i=1
2). Let s > }1. For any u € X?,
5
]axHui S Ml (3.17)
i=1

Proof. As before, our goal is to obtain the estimate

5 2
E :N2s+2 Px H u;
N =1

Yn
First, we split each term in the left-hand side as the sum of all possible frequency interactions:

5
PN&E H U;
=1

1
Assume that Ny > Ny > ... > Nj. Define cy, 1 = ]\715||P]\;1u\|XN1 and cy,; = N;*||Pn,u

S [lul

el (3.18)

2

5
2
< N25+2 HP P
NEEEI ol L9 8

N
15 N5 1=

N25+2

| X,
for 2 <7 < 5. We make a slight abuse of notation by using » w, for the summation over
all possible Ny, No, ..., N5 when the restrictions on these numbers are clear. We also will
be using the Cauchy-Schwarz inequality (3.13) and Young’s inequality (3.14).

We split the left-hand side of (3.18) over four different kinds of frequency interactions:

5
Z N? PN(PNlaa:UIHPNlul)
N.N1 N i=2 N
5
- (E e ) ppaan [ P
I IT Ir  Iv =2 w
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Each of the summations contains certain ranges of N, Ny, ..., N5 described by the following

cases:
I) NSNlNNQNN3NN4NN5.

By Holder and Cauchy-Schwarz inequalities, we have

5
|ovTTw
i=1

Y Z ||PN1U1||L°°L2 H | P, wi| L4 e
Z

5

> —11
= CN;.i
S+l )
N Ny 2=

1 3
(2 gmercn) lull
~ N125+1 Ni1,1 || ||X71I

Ni>N

Summing over N € 2%, we see that

2s+1
Saledluf),, <X 3 () Al
1 L1L2 ~ Nl,l XZI

I N1 NSN;

< lull3. el

II). N~N,> N, >Ny > N; > N;.

By the bilinear estimate (2.65) or (2.66) on Py, u; Py,us (depending on the complex

conjugates) and Bernstein inequality on Py, us, we have that for each fixed N,

HPNﬁUi

4
S IPvun Pryusllz, T T I1Pwwill s coe || Prsus | ee,

LLL?

N i=3
1 4
S Z | Pyt |, 1 Po izl | T 1Pl s e | Povs s | e 22
N, N{ =3
> ()
= T CN,.i-
N; le 2\ N2/ o

60



By Young’s inequality (3.14), this term is bounded by

1
<)) ﬁ enyallull’y

Ni~N

Therefore,

2s5+1 5+% 2 8
Sl L, 23 (X (3) o) bl
N Ni~N
S (X2 ) lully
N1 N~Ni

I[I) N§N1NN2NNJ'71>>NJ'2N5Wherej:30rj:4.

This is similar to case I1), but instead we use the bilinear estimate on Py, u, Py, u;.

5
e
=1

SY IPvun Payugllzz, [T 1Pwwill s oo 1P sl o,
N; 2<i<4
i

LyL?

C”mw

<Z HPNlUlHXNlWDNJ'UJHXN2 IT 12w willzanse 1 Pryus| 5o
92<i<4

i#]

l\:)\»—‘

15
1 N5\ 4
<> (%) Hews
Ni Nf+5 NiJ i
Applying the Cauchy-Schwarz inequality (3.13) on Hf;ll cn,,i and (3.14) on Hf: § CNyjis WE

see that

1
1 /N;\ 7 SN S
>y () Tenes (X smehur) 1oy

i=1 NN L

Therefore,

2 N 2541
) < _ 8
S B S ) ww
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~ Nl

IV) NSNlNNQNN3NN4>>N5.
In this case, we will take the number of complex conjugates in wujusuzuy into

consideration. Note that the positions of conjugates does not matter here.

1). u; = ug = v and uy = uy = u. We divide into further subcases by comparing

the sizes between N and Ns.

We use Hélder inequality and apply the bilinear estimate (2.66) to || Py, u1 Py, us|| .z

HpNiljlui

S 1Py Prgus|lzz, T T I1Pwwill s coe || Pryiallee,
N.

=2

LyL?

7
1

> 3
N2
<N 4% [Pyl 11 Pvs sl | TN Pvsttill oo || Py taal| e 2

N, Ny i=2
1
1 5
N4
< 1 CN; i
~ s_,'_l 1 [
N, N} 2N i

2

1=
o
e

1 )
Z 28+%N% C?\H,l) ”qu§(%7

Ni1ZN Nl

A
—~

where we used Cauchy-Schwarz, the fact that Ny ~ N;, N ~ Ny and the trivial inequality

CNs 5 < HUHX% in the last step. Consequently,

5 9 N 25+3
E Nz P Hu < E E — for ul|®
N (2 L1L2N Nl N1,1 H HX71I
v i=1 Tt N Ni>N

N~Ns
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2 8
~ Nl el

1.2). N> N:.

We split H?Zl Py, u; into four terms using low and high frequency projections.

Py, ui Pyyuy = Pen(Pryuy Pyyus) + Poy (P, un Pryus),

Py, us Py, us = Pen(PryusP,us) + Pon(Pryus Py, ua).
Since N > Nj, so H?Zl Py,u; must be at frequency > N. Thus, we can assume that each
of the resulting terms after the splits contains at least one high frequency projection. Thus,
it suffices to estimate P>y (P, u1Pn,uz) H?:?) Py,u;. We use the bilinear estimate (2.65)
on Psn (P, ui Pyyus),

1
||P2N(PN1UIPN2U2)HL§¢ S N

1P wll i, | Pl - (3.19)

1
2

Then, by applying the estimate (3.13) on cn, 16N, 3¢N,,4 and (3.14) on ¢y, 2¢n; 5, We obtain

HPNQW

4
<> [ Pon (Pryua Pryus) |2, TT 1P, ill s oo || Prgus | 1,

Lir?

N; i=3
Nz !
<> NE’% 1P, ull o, 1Pyl g, [T 1Pl oo | P s | e 2 (3.20)
N; =3
15
1 N5\ 2
S./ 1 s (F‘S) H Niyi
o V2N 2/ =
()1
~ v Nt
N VENT Ny i=1
< 1 5, \2
S (Y ) lully,
N{>N 1
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where we used the Cauchy-Schwarz on » ey —1—CN,,1CN,,2 and the Young’s inequality on

=

5
DN, (E) CNy3CN, ACNs 5 As a result,

Mw(ZEZ()%%)w@

N1ZN

Z N2s+1HP HUz

N>>N

2 8
~ %l

1.3). N < N;.

This is similar to case 1.2), but we split [[_, Py,u; at Nj instead of N.
PN1U1PN2u2 = P<<N5(PN1U1PN2U2) =+ P2N5<PNIU1PNQUQ),
PN3U3PN4U4 = P<<N5 (PN3U3PN4U4) + P2N5<PN3U3PN4U4).

Since the output is supported at frequency N < N5, we can see that Hf‘:l Py, u; must
be supported at frequency ~ N5. Thus, we can assume that each term in the product

expansion contains at least one high frequency projection. To estimate the product, we

M\»—‘

can use (3.19) and (3.20) that we just obtained and replace N~2 by Ny

5
Tl
=1

2N 7

i

4
5(ZNW%)MW

which leads to the same result as in the previous case.
2). u; = ug = uz = u, uy and us can be either u or u.

This is the hardest case and requires some frequency-modulation analysis. Suppose
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that for some 1 < j <5 the space-time Fourier transform of Py, u is supported in the set
2 |
{(&,7): |7+ Ny > N } (3.21a)

or that of Py,u (for 4 < j <'5) is supported in the set

1
{(&7) 7 = N[ > SNt} (3.21D)
Then, (2.73) yields
||PNjuj||Li7t f§ NI_IHPN]'UJ]HXO 3,00 SJ N 1HPN u]||XN

Without loss of generality, assume that 7 = 1. Then by Holder and Bernstein inequalities,

3 5
L S 1 Pwvun 2, H 1P, oz [T I Pwall e
; 1=4

l 5
1 NN,
S, " < 4 5) HCNZ,Z
=1

l
2
N1

Ntz ( )HCNM

On the other hand, if the space-time Fourier transform of Py, us is supported in the set

5
HPNI_[PNZUJz
=1

(3.21a) in the case us = u or (3.21b) in the case us = u, then we have

5 2
HPNHPNM Lo S T IPwwill o 1 Povy s Povyua Pryus | 2
=1 ® i=1
2 4
ST IPwvillzazse TN Pvwill gera | Paguslz2 o
i=1 =3
1 4
SN2 [T IPwtill e | Pvsus 22,
=1
L5
N4
/S Si_; HCN«J
Ny =
15
1 <N5) 1 H
~ — c
le+% Ns/ i o
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We then get the desired result by observing that

1 5 1
1 [N:;\? 1 5, N\%,
SQQ@)J!WMs(E:NgﬂMQ|wu%

+
N NiZN

Thus, we can assume that the space-time Fourier transform of Py, u is supported in the set

1
{&7 7+ NT| < o5 NT

32
and that of Py, @ is supported in
{7 |r - N2 < N
9 . 11 = 32 1J-

Here, we introduce Riesz transforms P, and P_ defined by

Pif(€) =1esof,  Pof(€) = lecof.
Then, denoting P, Py, := P]J\}i and P_Py, := P]@, for 1 <4 <4, we decompose Py,u; into
Pyu; = Pfgul + Py u;,
and consider all the terms that we get from H?Zl Py,u;. For any term that contains
PJJ\EjuP];ku, P]J\?juP;ka or PﬁjuP&kﬂ, where 1 < j < k < 4, we can apply the bilinear

estimates (2.65) and (2.66), then proceed with the Holder’s and Bernstein inequality on

LLL? as in the previous cases. For example, if j = 1 and k = 2, then we have

5
HPN(P]¢1U1P&2UQHPNiu’L’>
=3

LyL?
1

N2 .
S = [ Pvullxy, [T 1Py will o ce | Py sl e 2

NP =1 i=3

1

1 N5\ 7
< 2 .
S (Nz) [ ev.

1 1=1

L
1 N5\ *
N <ﬁ3> HCNi’i’

V]

ot

=
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Therefore, it suffices to consider the following four terms.
(i) ([T, Py, w) P, uPyyus
(it) (TT;~, Py,u) Py, uPyyus
(iii) (TT;_, Py u)Py,uPy;us
(iv) (ITi=s Pr,u)Pr, @Pryus
In either case, simple algebra shows that the space-time Fourier transform of the product

is supported at least > N? away from the parabola 7 = —£2. The worst case is (iii) with

us = u where the output’s modulation is

Thus, we can put these products in the X 0,-3.1 space and get a good bound. For example,
focusing on (iii), we use Holder inequality, Bernstein inequality and the boundedness of

Riesz transforms.

o1
X0.—%.1

3
| PuI(TT P ) Py aPcus)
i=1

3
1 o
S EH(H P]-\’T_,L-u)PN4UPN5u5‘

t,x

3 5
S N, H ||PNZ-U||L?,Z H | Pl g r

=1 =4

1 3
> i)l

Ni2N L

N
—
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Hence, by summing over N and N,’s, we have

2

3
Z N25+2H PN[(H P]”\;iu)P];4aPN5u5]‘ .
i=1

Xo,—%@
v
N 2542 ) .
SEY (%) dully
N1 N<N;
S ol

as desired.

3). up = ug = uz = u, uy and us can be either u or u.
The proof is the same as in the previous case. Note that we get a better result in the sense
that the space-time Fourier support of Hle Py,u; when F, 4u; is supported in (3.22) is
> N? away from the parabola 7 = —¢&2 without relying on the Riesz transforms. This

concludes the proof of the multilinear estimate.

3.4 Proof of Theorem 1.2

The proof is similar to what we did in Section 3.2 with the same function spaces:
_1 1
lullxy = lullzgerz + N5 |[ullzaree + N2 |Jufl poo 2
+ NE(i0, + Aul iz

Julls- = (32 N Pyulik, )’

Ne2Z

[ullxs = llull o + [l x5 (3.23)

1
[ullvy = N72{ull a2
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s 3
o= (D0 NPyl )

Ne2Z

]

i

ve = [lullyo + [lully-.

Now we state a multilinear estimate. The proof is shortened as it is similar to that

of Theorem 3.2 for the most part.

Theorem 3.4. Suppose that d > 5. Let s,r > % and u; € X*® for 1 <1i <d. Then we have

the following estimate:

S

H (axul) ﬁ U
i=2

Proof. Again, we study the frequency interactions with N being the output frequency and

d
X7 H l|will xs (3.24)
=2

N; > Ny > ... > Ny being the input frequencies. For s > %, we define ¢y, 1 = ||PN1u1||XN1
and cy, ;i = || Pn;uil|xy, for 2 < i < d. We consider the usual High x Low — High and

High x High — Low interactions:

With some abuse of notations, we define Hf:_; A; = 1if d = 5. By Holder inequality,

Young’s inequality and the continuous embedding X* < X* < X* for any s’ > s >

N =

d
HN”"_%PN[(PNlaxul) HPNzuZ]
=2

Lir?
4 d—1
1
SN2 | Pry Oatin || perz [ [ 1 Pvttillzacee [T 1Pl zos, || Pvytal e
N, =2 i=5

N3 /Ny 1 T e N
2 4 2
< EN’ <_N1> <_N2> cny 1 (V5 CNg 2)CNyd i|_3| Nien,q | | Nien, i

=5

7
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< X () o
AN S
<) (E) QCNl,lgHUz‘\

Ni~N

4 d—1
wll oy TT sl g TT sl Ml
=3 1=5

X
Take the [ summation and (3.24) follows.
2. N<N ~N,>...> N,

This is similar to the previous case, but we apply Cauchy-Schwarz to ) . cn, 1w, 2.

1
N2

LLL2

d
Py[(Py,0yw) [ | Prvuil
=2

1=

NN\™3 /Ng\ i 1 1 1 ol
<Y (M) (E) en 1 (NS e, 2) (N eny 3) (Nt ena)ewga | [(NZ en, )
N;

i=5
N\ 2r—1 % d—1
SOX (%) ) Tl Dl gyl g, TT ol g eal o
NiZN i=5
N\ 2r—1 1 d
S ( Z (ﬁ) ||PN1u1||§(N1) H [ || xs-
NiZN ! i=2

Take the [ summation to obtain (3.24).

]

The proof of Theorem 1.2 part (A) now follows the same contraction argument as
before. To prove part (B) of the theorem, we replace u; by d,u; for some j > 2, and it

follows from (2.2) that ||0,u;||xs < ||wil

xs+1 for any s > 7. Hence, (3.24) implies that for

any s > %,
d d
a1 a0 TT ], € sl TT b
i=2 Y i=2
i#] i#j

70



d
ST il xe
i=1
Consequently, in the case that a term in P(u, 4, 0,u, 0,u) has more than one derivative, we

can employ the contraction argument in X°.
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Chapter 4

Global bounds and modified

scattering for DNLS

As promised in Section 1.6, we give the full statement of our result here.

Theorem 4.1. A) (Global bounds) Assume that
lugl|mn < e < 1. (4.1)

Then the equation (1.15) with the initial data ug has a global solution satisfying the

pointwise bounds

lullz= S elt] 72, (4.2)

s | o S elt] 72, (4.3)

B) (Asymptotic profiles) Let u be a solution to (1.15), then there exists a function
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W e H'-C“Y(R) such that

u(z,t) = 751/21/1/ < ) W (/)7 log t+i% + erry(x,t), (4.4)
(e, t) = WO OFT B ey (1) (4.5)
ug(x,t) = ;%W (f) i1W (/1) % log H+i%g + errs(x,t), (4.6)
where
lerr || S e(1+ )71 lerr |z < e(1+ )75+, (4.7)
lerrall e < e(U4+6)7FCC lerralle < e(1 + )70, (4.8)
lerrs||pee S €L 487250 lerrs||s < e(1+¢) 140, (4.9)

C) (Asymptotic completeness) Let C' be a large constant and W be a function satisfying
||W||H1+Ce2’1(R) << € << 1- <4.10)

Then there exists a function ug satisfying (4.1) such that the equation (1.15) with ug

as the initial data has the solution w with the profile (4.4),(4.5) and (4.6).

Instead of directly tackling (1.15) which involves a derivative in the nonlinearlity,
we can decouple it into two cubic NLS equations by defining u; := wexp(—2i [*__|u[? da’)

and uy = % (Opu1 + i|ur|?uy). We then obtain a system of equations:

1
i@tul + §a$xul = _Z\/EEQU%
(4.11)

1
i(?tu2 + Eamm == Z\/iﬂlug

This is where we apply the technique from [28], originally employed to study the cubic

nonlinear Schrodinger equation:

1
i0pu + §8mu =ulul?,  u(z,0) = up(x).
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The main idea is to consider the dynamic of the solutions along wave packets ¥, (to be

precisely defined in Section 4.2) traveling with velocity v:

y(t,v) == /u@v dz.

Since W, is localized around the ray T, := {x = vt}, we can think of v(¢,v) as the decay of
u along I',. We can then study the dynamic of v in order to construct a scattering profile
for u. To see this technique employed for other equations, see [19], [20], [21], [29], [30], [41]
and [42].

We adapt this idea to 4.11 by studying the simultaneous dynamics of u; and uy

along the I';:
vi(t,v) == /uz@v dz, i=1,2.

The ode dynamics for 7, and 7, will then be used to construct a profile for uy, us and
finally for u.

Note that the space H'! involves the x operator f — xf which does not commute
with the Schodinger flow, preventing us from applying the usual perturbative argument.

To resolve this issue, we introduce a new operator L defined by
Lu = (x + it0,)u.
Now for the operator P that defines the Schrodinger equation
] 1
Pu := (10, + éﬁw)u,

it is easy to check that PL = LP. Moreover, L is a conjugate of x and tJ, with respect to
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112
the linear flow and multiplication by e, respectively:

LeitA/Zf _ eitA/2$f

iz2 iz2
Le2t f =te2r0,f.

We see that the exponential factors on the right-hand side will disappear after taking
L? norms by the duality. This suggests that the issue can be overcome by analyzing the

equations for Lu, and Lus, as we shall see later in this chapter.

4.1 Local theory

In this section we address the local in time well-posedness of the system (4.11). To
fix things, local in time refers to the time interval [0, 1]. We also reiterate that the data is

assumed to be small, that is |Jug| g1 < 1.

Proposition 4.2. Let S = L{L° N L°L2. Assume that ||ug||gr < € < 1. The system

(4.11) is locally well-posed with the solutions satisfying
10pt1]]s + llulls + [Juzlls S lluollmr- (4.12)

Proof. Note that |ui(x,0)| = |ug(x)| and |ug(z,0)| < \%(quo(xﬂ + |ug(z)|?). By the

standard energy estimate for the cubic NLS, we obtain

s S luoll 2 + [@aui]l s 2

S luollze + [Jual papee Juell papee lun || oo 2.

1)



Similarly,

[ualls < lluollm + HuluLf}LgOHuQHL?LgOHUQHL?OL%'

We can combine these two estimates to obtain a linear estimate for (uy,us) € S x S:

lurlls + lluzlls < lluollm + (lunlls + fluzlls)®.

For the estimate of ||0,u:|s, we use the relation u; = v/2uy — i|u;|*u; and Bernstein’s

inequality:

10zualls S llualls + [Hual[ls
< Jlualls + llual g llualls

2 aveluls

S luzlls + [l
< JJualls + llwal g0y llualls

< lJualls + |9z |5l ls-

The local-wellposedness of (4.11) then follows from the usual contraction argument on the
space

{(ur,u2) € 5 x5 |Opun]ls + [[wn]ls + [Juzlls < C}

for some small constant C. O]

By applying the operator L to the equations, we see that Lu; and Lus satisfy the

following equations:

PLuy = —i2v/2u iz Luy + iv/2u? Ty
(4.13)

PLuy = z’2\/§u2u_1Lu2 — zx/éugL_ul
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With the assumption that t < 1, the energy estimate yields the following proposition:

Proposition 4.3. Assume thatt <1 and ||up||g11 < € < 1. Then Luy and Lusy satisfy the
following estimate:
[ Lua | pgerz + | Lualngerz < lluollmor (4.14)
Proof. Using standard energy estimates we obtain the following:
[ Lus| gz S llwua(0)|| 2 + [Jug@r Lug + uiLus ||y 2
S lzua(0))|z2 + llwa || Lapee luall papoe [ Lual| g e
+ ||u2||%§Lg°||Lu1||L§°L§-
Combining this with (4.12) and the smallness assumptions gives
I Zuallpeerz < Nuollana + [fuall7s pee | Lunl| o2
In a similar manner,
[ Lua (| zeorz S lzua(0)||n2 + [luall papoe lluall o poo [ Lun || Lo 22

+ lJual 7 e | Dzl e e

leads to
[Zurl|ngere S lluoll s + [l |7 oo || Dtta || o 2

Invoking the smallness of ||u1[|p1z0 and [Jug|p1z0, allows us to conclude with (4.14).

]

We turn our attention to estimating 0, Lu;. By taking the derivative to the first
equation in 4.13, we have an equation for d,(Lu;). To deal with the nonlinear terms for

this equation, we will need the following lemma
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Lemma 4.4. Let T'y := {(Ny, No, N3) € (22)3 : Ny < 8max{ Ny, Na}}. Then, the following

estimate is true for all uy, us, us € L? N L™

||SHL2 = Z PNluleQUQPNga:EUS

(N1,N2,N3)€ly 12 (415)

S (10pur||i2poe Juzllizpoe + |Jurllizpee || Opualli oo ) [Jus|| L2,

||5||L2 S ||3wU1||z2L°°||U2||L2HU3||Z2L°° + HU1||Z2L°°||3zu2||L2||u3Hl2L°°' (4.16)

Proof. We consider several subsets of I'y, estimate their contribution and show a bound as

above.
i) N; < 271N, and N3 < 279N, For each fixed N, € 2%, we have
Z PNZU1PN2U2pN3azU3 5 HP§2*10NQUI||L°°HPN2U2P§8N281U3HL2
N3<8Ns
N1<No 2
Sl | D HPNQWHL%HPM@USHHI
M<8Na»
M
S Ml oo | Py Oatial [ | Y N, 1 Prus] e
M<8N, = 2
S Nl || pos || Py Op i || oo || P<nyus | 2
S Nl || pos (| Prv, Ox i || oo [[us]| 22
Since

Z PN1U1PN2U2PN33xU3
N3<8N»
N1<N2
is supported at frequency =~ N,, the estimate 4.15, follows by summing with respect to Ns.

ii) Ny < 279N, and N3 < 2719N,: This is similar to the above.
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iii) N; &~ Ny: This case is essentially reducible to N; = Ny, when we estimate as

above to obtain

Z PNQU1PN2U2PN3axU3

N3<8N2

S [ Pryun || oo || Py Optia || oo || us]| 2

L2

The summation with respect to Ny is performed in a trivial manner:

S uallizpee||Opualliz oo || us]| 22

Z Z Py, uy Pr,yus P, Opus

No N3<8N>

L2

iv) N3 ~ N,: This case is essentially reducible to N3 = N,, when we estimate as

above to obtain

> PryurPryusPu,Opus|| S [l |l || Pay Ostiz | oo || Payus| 2

N1§2_10N2 12

The summation with respect to Ny is performed in a trivial manner:

> Y PvunPyusPy,duus|| S |z |Oatzllepe lus 2.

Ny N;<2-10N, 2

This finishes the proof of (4.15); the proof of (4.16) is entirely similar.

O

Lemma 4.5. Assume that for allt € R, uy0(t), uao(t), uso(t) and Fi(t), Fy(t), F5(t) are

functions in L2(R) and u; = u;(t,x) satisfies
Ui(s,8) = e a0 (6) +/ eI F (0, &) do. (4.17)
0

for 1 <i < 3. Then, we have the following estimate

t
‘/ U U O0pUs dS
0

S B+ sup [lua(®) sz llua(®) 12z llus ()] 22
L2

t (4.18)
T Z / 1F5(s) [ 2 ||w; (s) [ 2 [[ur(s) || 2 ds.
( 0

i.j,k)=1,2,3
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where
t
B = min{/ (||3xul(5)’|l2Lg°||u2(5)||l2Lg°

0
+ Hul(s)HﬂLgoHaxuz(s)Hl?Lgo)HU:S(S)HLg ds,
t

[ o)l a5 i (o

0

+ [Jur(s) lzpge || Oaua(s)]| 2 [Jus () lizoe dS}-
Proof. We begin by writing U U0 Uus = > Ni.Na.Ns Pyuy Pous P3Oy us. Then, we split the
possible combinations of index into two sets:
Iy = {(N1, N2, N3) € (27)* : N3 < 8max{Ny, No}}
[y := {(Ny, Ny, N3) € (2%)% : N3 > 8max{N;, N»}}.
The first estimate in (4.18) is obtained immediately by using (4.15) on I'y.

For T'y, we use (4.17). For simplicity, when we write uyus0yug and work under the
assumption that u; is supported in the set [NT, 2Ni] with the condition that (Ny, Ny, N3) €
[',. Using integration by parts, we have that for K(&,&,&,&3) = €2+ & — & — £ and
S(€) ={(&1,&,&) € R : & + & + & = £}, the following holds true

/t]: (UIUQTU@) (s,€) ds
0

t -
_ / / K G (€0)e BT (&) i (&) dErdbadsy ds
0 JS()

1 . N R s B — t
= [—/ ?6”1(6”51u1(51)ezsézuz(fz)ewggf?)us(—53) d&dfzdﬁs]
S(e) s=0
t 1 . - 2 s #2 2—
o[ o (e a ) ) Ta (6 ) dadads ds
0 Jsge 1S

Note that, as a consequence of (4.17), we have

0,66, = 8, {ui(o) + / ¢ Fi(0,&) da} = " E(s,&).
0
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We define v;(€) = 156 4 (8),G; = SR = 1,2, v3(€) = eis€¢hz(—€) and Gy =

e EFy(—£). Using that K (&, &1, &,&) ~ €3 2 1 on Ty, we obtain

t
‘/ U U0, us ds
0

1
< sup m”% * U * V3|12

L2(T2) t 3
1
+— / |G % 0y % Qg || 2 ds
N3
(4,4,k)=1,2,3
< sup N2||U1||L1||U2||L1||U3||L2
1
+ 52 HFHHU;;HHuka ds.
3
(Z,jk‘ =1,2,3

We use

1 1
|1 * vo * vsl| g2 S [Jvrl|pr|lva | e l|vs]| e S NP N {[vr ]| 2 |lva | 2] vs]] 22

1
< N7ZN3 N3||u1||L2Hu2||L2||U3||L2'

We estimate the same way the terms ||GZ % U; * U/ 2 with the rule that the high frequency
terms, vz or G are placed in L?, while the low frequency ones in L!. Putting these estimates

together we obtain the bound

11
< NENG NG SupHU1IIL2HU2HL2HU3I|L2+ > / [ Fill 22 [l el wel 2 ds
(i,5,k)=1,2,3

To obtain the actual contribution coming from I'; to the estimate (4.18), we need to sum
with respect to Ny, No, N3 subject to the constraint N3 > 8 max{ Ny, No}. The summation
with respect to Ny, N is easy due to the gains (NyN; )2 and (NyN;')z. The one with
respect to N3 uses the almost orthogonality of the output with respect to Nj3; precisely

u us0,us3 is supported at frequency ~ Nj.
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Now we are ready to obtain an estimate for 0, Lu;.

Proposition 4.6. Fort <1 we have the estimate

[0z Lun || gorz S luoll o (4.19)
Proof. By taking the derivative to the first equation of 4.13, we have that 0, Lu; satisfies

PO, Lu, = 8x(—i2\/§u1u_2Lu1 + zﬁu%L_uQ)
The Duhamel formula yields
. t . —
Oy, Lu; = e”A/Q(xux(O)) + / ez(t’S)A/an(—iQ\/ﬁulu_gLul + i\/ﬁu%Lug) ds
0

After using the product rule, we can easily estimate some of the terms using the Strichartz

inequality and the size of the time interval (being < 1):

t
/ ei(t_s)A/2(8xu1)u_2Lu1 ds
0

S ||(axul)u_2LU1||Lt1Lg([o,t]xR)
L2

S 10zua [l zaree vl o pee (| L [ g rz -

In a similar manner we obtain:

However, since none of the estimates we have proved so far cover any bounds for d,us and

S lluallpapee lwall o poe |0 (Lun ) [ pe 22

¢
/ ei(t*S)A/zulu_g(amLul) ds
0

L2

t
/ elt=9)A/2 (Opur)uy Lugy ds
0

S 10punl| zapee 1wl pa poe | Lusl [ g rs -
L2

O, Luy, more work is needed for the terms 1,0, (uz) Lu; and u20,(Lus). By applying (4.18)
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and invoking the equations for uy, us and Lu;, we have that

S ||6xul||L;112Lgo||U2||L§Z2Lgo||LU1||L§°L£ + ||U1||L§Z2Lgo||U2||L;1l2L;O||8acLU1||L§;°L§.

¢
/ ei(t_s)A/zul(ﬁmu_g)Lul ds
0

L2

+ luall g rz luall ooz || Lun || gz + lufusllpypz lusll oo na || Lun || o 22
+ [Jun || go 2 lua w3 g e || Lua || Lo 2

+ [l || ge rz lual ge 2 [ Ly + wiLusl| 1y 12

The L{I2L%° norms can be bounded as follows:

1/2 1/2
Pz S 10wl o = 100t llprars

HaﬂcUIHL;‘l?LgO = || Opud|
S fJuolli an

~ [Jug|| g1

The same applies to ||ug|;1210. Since we already have the bounds for the rest of the linear

terms, all that is left are the nonlinear terms which can be easily bounded:

HU%WHLng S HulHingOHUQHL;”L%
||U1U3||L}Lg S ||u2H%j}Lg°||u1”L?°L%
luitaLun || iz S llunllpapee [[uall papee | L | 5o 2

[uiLus| s S luall7apee | Lusl e rz.-

Combining all these estimates and apply (4.12) and (4.14), all these terms collapse on the
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right-hand side collapse to a simple estimate.

¢
/ =922y (0,uz)Luy ds
0

S oG + Mol 102 Lan || Lo 2.
L2

In a similar manner, we have that

Therefore we obtain

S Nuollzrn + lluol[31a 102 L [ 5o 2.
L2

t
/ e =9)R202(9, Tuy) ds
0

10: Lual|gerz < Hlwollzrn + ol + ol 105 Laua | ez

and we conclude that

100 L || ooz S ol 1

4.2 Testing using wave packets

As mentioned in the introduction, we will use the technique of testing against the
wave packet W, supported on the ray { = v = 7. The precise definition is as follows: we let

x be a smooth function with compact support around 0 and f X(x) dx = 1. We then define

o(t,x) = —
T — vt id(,t)
U,(t,x) == x A

Yi(t,v) = /ui(t)@](t,x) dz, i=1,2.

We also make a convention that when a result holds for v and w, it means that it holds for

v; and wu; for i =1, 2.



The following results from Ifrim-Tataru allow us to estimate the solutions of (1.15) with

the help of v, and .

Lemma 4.7 (Lemma 2.2 in [28]). Assume that u(t) € L2 N L and Lu(t) € L2 for all

t € R and define y(t,v) == [u(t)V,(t,x) dx. Then u and v satisfy the following estimates:

e S 2 Nullge,  vllee S lullze, 10llze S 1 Lullze, (4.20)

lu(t, vt) — 7200 (8, 0) 1z S 7| L)z,

(4.21)
Ju(t, vt) — 2Dy (1, 0) || e S 73| Lul| 2,
We also have the Fourier estimates
~ —ite? —
[a(t, &) — e ”v(t&)lng St Lul| 2,
(4.22)

~ —ite? —
(e, €) — e Pt ) g < 7|1 Ll e,

The following Lemma tells us that the momentum operator on u corresponds to the position

operator on .

Lemma 4.8. Let u and v be defined as in Lemma 4.7. Then we have the following

estimates:

‘um(t, vt) — it_1/2ei¢vﬂ < t_1/2(||u||Loo + t_1/4||Lum||Lz) 423)

| we (t, vt) — it’l/Qei%v”Lz St (e + || Lug | 22)-

Proof. Note that [ x dz = 1. We start with the triangle inequality.

— ot o
z’t—l/?/ (33 t“ )u\II dr

|u$ — it‘lﬂewvﬂ < +

. €T —
e Py, — it=1/? / ;u\llv dx

By Holder inequality, we have
—ut\ —
z’t—l/?/ ("7 t“ )u\If dx
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For the first term, we will use integration by parts. By defining % := e~*®u,, we obtain

— Jemitu, 44172 / uy ("”” \‘/%“t> Do da
_ ey, — 112 / 0, {ux (‘” ;{’t> } e dy
t‘l/Q/[zD( Lot) — (7)) (m;;’t) da
+ ‘t_l /ux’ (a:\—/%vt) e dx| .

Since the second term can be written as e~ *®v)y(t, vt) x, x'(t'/?v), we can apply Young’s

. €T —
e Py, — it /2 / ?u\lfv dx

IN
~
S
~+

(4.24)

inequality to obtain
‘e_w(t’”t)u(t, vt) *, X'(tl/Zv)| < t_1/2||u||Lgo

and

Hefw(t,vt)u(t,l)t) %, X/(t1/2v)||L% < t*luuHLg

Y

For the remaining term, we use Holder inequality

vt
‘e_id’(t’”t)ux(t,vt) - €_i¢ux(t7x)| = / 9y {e_w(t’y)uw(t)y)} dy‘

. vt
_ H / ) Loy (1) dy‘ (4.25)
x — tu|Y/?
< B2

r—vt

Therefore, by defining z = 7 we have that

‘tm / B (E, vt) — B(t, 2)]x (""” \_/z”t) do

SEMLul [ Jal) dz

< Lt 2.
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It remains to estimate the L? norm of this term. By (4.25) and Minkowski inequality, we

have

Ht—1/2/[w(t,vt) — it 2)]x (“""\_/%"’t) da]

vt T — vt
| Lua(t, y)|x ( > dydz

1
// | Lug(t, vt + tY/22h)|2x(2) dhdz
0

L3

<1
Y]

1
v

L3

IN

1
¥‘|Lux|’L2

]

These results suggest that it might be better to focus on the dynamic of ~;, which

we can describe in the following lemma.

Lemma 4.9. v, and 7, satisfy the following ODEs.
. o L
N(tv) = =it vl + 5t D+ Ra(t,v). (4.26)

3ot 0) = i ol + 512l + Ralt, ), (4.27)
where
Rl S ¢ Ll + o e (6 N etz + s 1)
S X P P P A PR S T P 2 P
(4.28)

1Rallzee < ¢ Luallze + llufl ozl oo (674 LOpun [l 2 + [fuan | £2o)

+ 4O || oo f|ua | oo | L | r2 + 4|3 oo |[n || poo || Lua || 12
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and
1Rallze S 721 Lun | 2 + 72 e |G (1| Lzt 22 + [Joan | 2)
+ 20 || oo || oo | L || 2 4 872 | o || L 2,4
(4.29)
1Rollzz S 72| Lzl z2 + 2|l ol e (1| LOzual| 2 + [Joan | 2)
+ 20 || oozl oo | L | 22 A 72 e[ iz e | L [ 2
Proof. From the definition of v, we compute the time derivative and then utilize the PDE
4.11 for uy.

Y (t) = /@ulﬁv + w0V dr = /(i@gul — ﬂu_gu%)ﬁv + w0,V dx

- / i, (10, 1+ 000, dr — V2 / 02T, da (4.30)

— /z'ul(z'at + 02)U, dx — /u% <(9$u1 + %]u1|2u1) U, dr.

From direct calculation, we see that for & = t='/2(z — vt),

(i0; + 02V, =

= €0 X' (2) + iix(®)].

We then integrate by parts to obtain

/ (10, + Oy d = 2%/2 / 10, [X'(7) — ixx(7)] we™ d

1 AN i (s —i
=55k / X' (%) — iZx(%)] Lure™™ dax.

Therefore, by Holder inequality,

’ / i (10, + 02, da| < 74| Luy 1. (4.31)
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We will now split the term.

/u?mv dx = /u?@ve_w (e—wamul — e~ 0t 9 uy (t, vt)) dx
+ /ulmvew(t’”t) (e Puy — e’id’(t’”t)ul(t,vt)) dx
+ 0 (t, vt) (ua(t, vt) — t712e 000y,
n t—1/26i¢(t,vt),yf (W _ it—l/Qe—w(t,ut)U%)
+ it~ o]y P
i= Ra1 + Raz + Rss + Ras + it vl |*1 + Rs

= R3 + Z'tilv"}/1|2’)/1.

The term Rs; and can be estimated using (4.25).
[Rat| S 7 |7 | LO0tn | 2.
The same goes for R, but with u, replaced by w in (4.25).
|Raa| S 74|00t || oo | || oo | Lua | 2.
The term Rs3 can be estimated using (4.20) and (4.21)
|Ras| S 7410zt || oo [ | oo || L 2,
and R34 can be estimated using (4.20) and (4.23).
[Raa S NlunlGoe + ¢ |2 | LDzt 2
In conclusion, we have

|Rs| S Jlun || 2o (74| LOua || 12 + |Jn] poe) + 4|0t || oo |2t | oo | Luaa | -
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We apply the same idea to the remaining term.

i = i T
5 [ttt de =2 [, (il = fue.o0?) do

7 _
—y1 (Jur(t, vt)|* = 72 [*)

(]

1.
+ 5t Il
i -2 4
= §t ”71| 71 + R4

where R4 satisfies the estimate
|R | < t 1/4H ||4l°°||L H 2

Consequently, we obtain the L> bound for R; := R3 + R4. The L? bound for R; can be
obtained in a similar manner, using the second estimates in (4.21) and (4.23) instead of
the first ones.

The proof for 7, is finished after combining R; := R3 + R4. With the same proof focusing

on the PDE for uy, we can obtain similar result for ~s. O]

4.3 Global Well-posedness and global bounds

Assume that the initial data is small in H*!. Then, the DNLS has a unique solution

in L°H! due to the conservation of mass and energy.

Proposition 4.10. Assume that u is a solution to (1.15) with the initial data satisfying
o710 <€ < %. Then for all t € R, we have the estimate

(@)l < €. (4.32)
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Proof. It follows from the conservation of mass that ||u(t)|;2 < e. From Gagliardo-

Nirenberg inequality, we have that

3
< 14/\146 do + —/|ux]2 do
R 4 R

o6

p“ua:”%gﬂuﬂig + ZH“:::H%;

56¢! 3 ,
< —2 T [Jwe |72

7

= §||Ux||2Lg‘

/]R ST u(8) [2u(t) (D) + 2Ju(t)[° da

IN

Therefore, E(u(t)) ~ ||us||7., and it follows that
lu(®)l7 ~ M(u(t)) + E(u(t)) = M(u(0)) + E(u(0)) ~ [u(0)|[3 <
as desired. ]

Corollary 4.11. The equation (1.15) with initial data ug € H“' has a unique solution in
H.
Proof. This follows from the previous proposition and the H'! local theory for the DNLS. [

We will now prove pointwise estimates of the solution. First, we will assume two

bootstrap assumptions

Jul| L < Delt| ™2, (4.33)
||| e < Delt| /2. (4.34)
where 1 < D < e !,
This implies that
lunll o < Deft|~1/2, (4.35)
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|0t oo < Delt| ™2 4+ D3e3|t|73/2, (4.36)
|ug||zoe < Delt| ™2 4+ D3&3|t|~3/2. (4.37)
Under these assumptions, we obtain the following estimates for Lu; and LO,u.
Lemma 4.12. Fort > 1, we have that
| L ()] 12 < et©P*¢ (4.38)
for some C' > 1 independent of D and €.
Proof. Multiply equation ((4.13)) by Lu; and integrate. We have
d -
EHLul(t)H%Q = Re/ [—iQﬁulu_g\LuﬂQ + i\/ﬁu%LulLug] dx
d -
%HLug(t)H%2 = Re/ [i2x/§u2u_1|Lu2|2 - i\/éugLulLUQ} dx
This leads to an inequality
d 2 2
1L (032 + 1| s (032
S [luallZe + lJuallFoe + lluallos lJugll o] [ Lua(6)]172 + | Lua(t)]Z2] -

Note that ||Lu;||r2 S ||zus(0)]| 12 < € for i = 1,2. By applying Gronwall’s inequality, we
obtain
1L (B)172 + (| Lz (2)]1 72
< (| Lua(D)]32 + || Lua(1)[|72) o1 utllF oo +luzllf oo +lutll oo [luzll oo dt
(4.39)
< 2l 2 oo Hlua |3 oo+t oo uzll oo dt

2.2
S GZtCOD € .

For some Cjy > 2. ]
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The last thing we need is an L? estimate for LO,u:

Lemma 4.13. Fort > 1, we have an estimate

L0y ]| 2 S (e +t71D2e3) tOP° < P, (4.40)

where the last inequality has an implicit constant depending on D.

Proof. Recall that we have dyu; = v/2ug — i|uy|*u;. Applying L to both sides, we compute
Ll [Puy = it0, (Juy [H)uy + |us [ Ly .

This allows us to estimate

1L0sunllz S | Ll 2 + (19w flnoe |2 1 [lzoe + 1 Zun 2|7
< (CD% + D23 +D2€3toD262—1

< (26 + t_1D263) oD%

[
We can now close the bootstrap argument and obtain global bounds.
Proposition 4.14. For any t > 1, we have that
lullz < et™?, (4.41)
gl oo S et ™2, (4.42)

with the implicit constants not depending on D.
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Proof. Tt suffices to prove in the case t > 0. We first obtain the global bounds. By defining

wy := e~ “®uy, we can use the local well-posedness result to obtain the bound for ¢ € (0, 1].

u(t)] = [ur(8)] = Jwr(8)] S [|8pewr (8) ]| 2 lfws () g2 = ¢ Y2 | Lua (8) 1357 [ ()3 S et =Y/,

~

(4.43)
To advance from t = 1, we will use (4.21), (4.26) and (4.28). First, note that
(8, 0t) — £7Y26900 0 (o) | < ES Ll S e HHOPE (a4)
Thus, it suffices to bound 7. Since i|y|? is purely imaginary, we have that
t
O] < ]+ [ RaGs,o)] ds (4.45
1
From (4.20) and (4.43), we have
W] S 2 lun (D) S e
From (4.28), (4.33)-(4.37),(4.38) and (4.40), we have
|Ry| < €1+ D2)¢o/4+CD%e, (4.46)

By integrating this estimate, we obtain

e~ = ()l < 7200 (0, 0) o
t
S (Il + [ RG] ds)
1
< (14 D23y

Set 2
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from the assumption 1 < D < e~!. We then obtain (4.41) from the bootstrap argument
as desired.

We will now prove the bound for u,. We have that for ¢ € (0, 1]
|Gsturlle S 2N L) [ 15 0 [[15 S 712, (4.47)
Now assume that ¢t > 1. It follows from the estimate (4.21) that
g (t, vt) — 269000 (1 0) || o S 34| Lug| 2 S et~ 3+CP*, (4.48)
As before, we have that
t
ralt)) < ha()] + [ [Rals. o) ds (4.49)
1
From (4.20), (4.47) and (4.43), we have
(D] S ¥ Jua (D= S 2100 ()| + ua (D7) S e
We then estimate the remainder R, in the same way that we did for R;.
|Ry| < e(1 + D2e2)t5/4+eD*e, (4.50)
From this, we see that the bound for us is the same as that of u;.
t
fua®ll= 62 el S ¢ (1)) + [ 1ol ds) S et
1

and we conclude that
e ()] oo S Nua(t)|| 2o + [Jur () ]|7

S lua(®) e + lua ()7
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as desired.

Corollary 4.15. Fort > 1, we have an estimate
| LOyus || 2 < et€P7. (4.51)

Proof. The proof is the same as Lemma 4.13, but the implicit constant now does not

depend on D because of (4.41) and (4.42). O

4.4 Asymptotic profiles

We will extract profiles from u; and uy and use them to construct a profile for w.

The following estimate will be used to reverse the Gauge transformation from wu; to w.
Lemma 4.16. Let 0 < s < 1.

1. Forany f € H® and g € H®,

Hf(x) o (i [ttty i)

2. For any f € H"! and g € H1,

Hf(x) o (i [l )

S /]

Hs

we + L fllz2llgll 2 llgll s (4.52)

S W llzesr + 1 iz llgll=(lglle + lgllZ)-

Hs+1

(4.53)
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Proof. For a proof of (4.52) we refer to [23]. In order to prove (4.53), we will apply the

product estimate for Sobolev spaces: for any a > 0 and fi, fo € H*N L>®, we have that

1 fallme S Il fall e + L fll el fal oo (4.54)

Lf1follge S W fillzee L foll o+ 1Lfull ol fol - (4.55)

See, for instance, [31] for proofs of these inequaliies. It follows that

‘feXp ( I d:c')
—00 Hs+1
X . * N |2 d /)
fo p(z/_m\gu)r I

S8l 1 + Ul oo ([ lota) ')

|g]* exp (@/ lg(a")? dw’)

e + \

Hs+1

~ [If]

mert + || fllze

Hs

Notice that we can estimate the last term using (4.52) and (4.54).

llstizess (: [ty ')

S Mg Pl +llgliz=llgl

HS

HS

me + lgllZz gl e,

S llgllz=llg]
which gives the desired inequality. O]
We begin by recalling the estimates (4.46) in the proof of Proposition 4.14:
Ry || o S et™5/4HCD*, (4.56)
We can also obtain an L? bounds using (4.29), (4.38), (4.51), (4.41) and (4.42):

1Ry|| 1z S et=#/HOP, (4.57)
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Moreover, the estimate (4.20) together with the global estimates (4.41) and (4.42) allow us

to obtain the following bounds for v; and ~s:

1villee S € 1villz < e (4.58)
for i = 1,2. We recall the ODE of ~; from (4.26):

: o .-
’Yl(t, U) = —it 1'U|"}/1‘2’)/1 - §Zt 2”}/1|4’)/1 -+ Rl(t, U). (459)

Since the last two terms on the right-hand side are integrable on ¢ € [1,00) and are small
compared to the first term as ¢ — oo, we can obtain an approximated solution to this ODE

by assuming that these terms vanish. This can be expressed as

Y1 (t,v) = Wy (v)e MW logt o opp (4 ), (4.60)

1/4+CD3?e? 1/24+CD3?€?

where ||errol|pe S et™ and [lerro|| 2 < et™ . Then we can approximate u;

by 71 using (4.21) and (4.38):

1 22

w(t,x) = 1172 Wi (%) e~ W@/ Flogt+igy 4 erry(t, )

(4.61)
= Uy (t, x) + erry(t, x).

3/4+CD?¢? 1+C D322

where ||errp|[ze S et and ||errp|[z2 S et™ . By setting ¢t = 1, we have that

Wi (@)l e S Mlua (L, 2) e Se, Wi (@)l S llua (L 2)]lez S e (4.62)
Since u(t, x) = uy(t, z) exp(2i [ |uy (¢, 2')[* da’), we can give an expression for u:

T

u(t,x) = @y (t, ) exp (2@' / (1| + 2Re[@y @7, ()] + |err,(t))? d:z:’) Verr(t, ) (4.63)

—00
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Note that (4.62) implies

lirerrylls < s IWie/Dllizllerryllie S €77

t1/2

Thus we can take the integrand in (4.63) as a small perturbation of |4;|>. Therefore, as

t — oo, we can write

xT

u(t,z) = uy(t, ) exp (22/ |y |2 dx’) +erry(t, x)

—0o0

—3/4+CD?%e? —14+CD3?¢?

where |lerr||pe S et and |lerri|| 2 S et

By defining W (z) := Wi(x) exp < T W ()2 dx’), we obtain

1 w
u(t,z) = t1/2W (%) eI /DR log iy +erry(t, x), (4.64)

as desired. The same technique can also be applied to prove (4.6). First, we apply the

estimate (4.23) on u; to obtain

Opun (t, ) = t3/2W1 ( ) —ilWi(e/0) log t+i% + erry(t, x), (4.65)

—3/4+CD?%¢? —1+CD3?€?

where ||errs||re S et and |lerr|| 2 S et . The result then follows from

T

Dyult,x) = (yun (t, ) + 20wy (£, ) |ur (t, 2)[2) exp (22' / s () |2 dx’)

—o
2T

To find the regularity of W, we go back to (4.65) and use uy = \%(&Eul + i|ug [Puy) to
obtain

(t Ut) (U) e—iv\Wl(v)\Q10gt+z‘¢>(t,vt) + OL% (Et_3/2+CD262). (466)

\/_tl/QW
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From (4.21) and (4.38), we have that

1 .
us(t, vt) = mewu’m’m(t,v) i OL%(Et—H-C’DQeQ)‘

It follows that

,}/2(t’ U) _ Z_\/inl (U) e—iv|W1(v)|210gt + OL%(Et_1/2+CD2€2). (467)

We then multiply both sides by " (W)*logt and observe that the exponent contains a prod-
uct of [Wy(v)| = |71 (¢, v)| + Opz (et~V/2FCP*) and v| Wy (v)| = |ya(t, v)| + Opz (et =1/,

Therefore, (4.67) gives us an L? approximation for vW;(v) for all large t.

|07 (v) + ivV27(t, v)eilvl(t,v)\lw(t,v)llogtHL%

_ 2.2
30)675 1/24CD%¢

S 2l (llzzhellee + lIvllze + 2l logt

< et MEOD*E gt
From (4.20), we have
Hav [(t, U)eihl(t,v)llw(t,v)\logt] HL% < et Jogtt.

Therefore, we obtain the asymptotic for oW (v):

vWi(v) = Ops (etP* log t) + Or2 (et =1/>TCD* 1og ). (4.68)
We can make the same analysis on (4.60) alone to obtain the asymptotic for Wi (v):

Wi(v) = Ops (et“P°C log t) + Oz (et~ /*P* log ). (4.69)
One can multiply both sides of (4.68) and (4.69) by exp (22’ I W) dx’), apply (4.52)

and (4.62) to obtain the same asymptotics for vWW (v). The regularity of W can then be
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achieved by interpolation:

||W||H1*CO€2V1 5 €,
v

for large enough Cj.
It remains to prove (4.5), a profile for 4. We can approximate u; by 71 using (4.22)
and (4.38):
i (1,€) = Wa(€)e MOt 4 epp (2, ),

1/4+CD32€? 1/2+CD?€?

where [lerryf|l e S €™ and |[lerr|| 12 < et . To obtain a similar profile

for @1, we need the factorization technique for the Schrédinger propagator U(t) 1= e4/?

iz?
from [24] and [16]. By defining M, = e2r and D, a dilation operator, by

1 x
we have that for any f € L? and any ¢t > 1,

UDf)(t2) = [F e "L F (¢ @)

- 1 ia?

=F I.F {WG 2t *f(l’):|
1 i(x— 2

o <€)

2?1 1 _ing €2

= [M,D,F M, f|(t, x).

Note that f in the first line depends on x while the one in the last line depends on &. From

this, we have [U(—t)f](t,z) = [M,t}"_lD%M,tf] (t,x). By applying this to our function u,
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it follows that

xT

s (/)] dm’)]

3
= FM_tF_lD%M_t {ul(t,f) exp <22/

o)l dy)|

_ o

= FM,t.Ffl (D%M,tul) exp <27// |u1(y>’2 dy>:|
: 3

=FM_ ,F! (D%M_tul) exp <2z/ t|M_yuq (t{’)|2 d@)]
: 3

— FM_F 7 |(DyM o) exp (2i / D1 M_yuy dg')}

£

— FM_,F! D1 My ? dg’)}

:(fMtL{(—t)ul) exp (2@/

= (}"Z/{(—t)ul> exp (22' /_5 |D%M—tu1’2 dfl) + G(1,6),

where
13
G(t,€) = F(M_, — 1) F! [(fMtU(—t)ul) exp (2@' / |Ds M_yuy ? dg’)]

3
4 (FOM; — DU(~tym) exp (2 / Dy M [? de')

= F(M_ —F! [(fth_t)m) exp (2 /_ZIFM—M—t)“l'Q dfﬂ

+ (F(M; — DU(—t)uq) exp <2i /5 | FM_U(—t)us d§'>

= Gl + GQ.

2
z?|?
t

Note that for any small 0 < v < %, we have |[M_, — 1] <,

. Therefore, for any

% < a <1 -7, it follows from the Sobolev embedding, (4.52) and duality that

Gl S G 1o
1 13

< 0l
Ntf

(FMU(—t)uy) exp (22/

— 00

\FM_ U (—t)u,|? d§’>

Hot+y
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N

~ ~
szl = m\ql =

(IFMU(=t)u ||+ [FMU(—t)un |72 | F MU () [| 0 )
(et (=t ]l o + lJua 214 (—t)ual o) -
and similarly

|Gl = [|IF (M = DU(—t)ur || e

S IF(My = DU(=t)un || e

A
~~ ~
wul = t\:Ml =

[z U (—t)un | 2

IN

[ (=t)un ]| mos.

Since L = U(t)ald(—t), we can use (4.38) and set v = 3 — 2C'D?e? to find a global bound

for G.

Gl S

8

—1/4+2CD3?€?
Set :

We can estimate G in Lg using the same proof. Since there is no need for the Sobolev

embedding, we can take o = 0 and v = 1 — 2C'D?¢?, which yield

”GHLE 5 t—1/2+2CD2€2'

Continuing the computation of FU(—t)u, we observe that the asymptotic (4.61) of u;
implies |D%M_tu1(t,§)| < |W(&)| + t%|e7’rp(t,ta:)|. Therefore,

3

FU(—t)u = (]:U(—t)m) exp (2@/ |D%]\4_tu1|2 d{”) | epl/ar20D2E
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— (]—'Z,[(—t)u1> exp (2@ /;|W1(§’)|2 d€’) + erry(t,€)

. 2 £
_ Wl<£)e—z§\W1(§)| logtexp (22/ ‘W1(5/)|2 dg/) —|—6?"7”g(t,f)

= W (&)e EIW©OFlogt | oppti(y €.

The error term can be approximated (ignoring the lower order terms in t) as follows:

lerryllree < llerrllre + llerry|lrge + (- 1/420D%e

S llerrplleg + 2 IFUthullg [Wierry (i) |y + et /420
—_ 262
< llerrsllzg + Wil Wiz llerry(6) g + et /47207

_ 2.2

||e7“7";'||L§ < ||errf||Lg + ||err;||Lg | - l/2420D%E

< llerryllzg + 2 |z Wierry (¢, t) |y + et~ /2H20P%

—1/242CD2e?
< et :

By defining erry(t,€) == e " errl(t, €), we obtain the wave profile for @ as stated in (4.5).

4.5 The asymptotic completeness

We will now prove (C) in Theorem 4.1, which is the asymptotic completeness of
equation (1.15). Let W € H'¢(R). Roughly speaking, we want to show the existence

of a small initial data uy € H"! whose profile in (4.4) is associated with W. Let W; be the
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gauge transformation of W:

Wy =W exp (21/ (W (2'))? dx') :

An application of (4.53) and (4.62) shows that

T

W ()|? da:’)

Wil grecen = HWeXp (2@/

—00

S IWlgeea
H1+Ce21

Therefore, it suffices to find initial data u19 € H"! and usg € H*! so that the system of
equations (4.11) has a solution whose profiles in (4.61) and (4.66) are associated with W7,
because we can then obtain ug from uy = uy exp( ffoo|u1 |2 dz’). To simplify the proof below,
we will make an abuse of notations and replace W; by W. Here, we assume a stronger

bound on W:
[W | grasesiey < M <1 where M,§ >0 and M? <. (4.70)

Let v; and vy be the asymptotic profiles of u; and uy defined by

1 . .
w(t,z) = t1/2W <%> AW @ /) (x/t) 1ogt+za:2/(2t)7
1T T\ 2 ;2
N O\ W (x/t)|?(x/t) log t+ix? /(2t)
vo(t, ) := NGTIE %% <t> e :

In the argument below, we will take a look at L> and L? behavior of (id; + £02)v; and
L(i0, + %8%)1)7; for ¢ = 1,2, which requires the spatial regularity of W up to the third order.
For this reason, we create a new profile that resemble W and has the desired regularity

using the frequency cutoff.

W(t, ’U) = Pgtl/QW(/U)
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where F(Pcu2W)(t,€) == Wer (€/tY2)W (L, €). Then the approximate profiles are

1 . ,
w, (t, .CE) — %W (t, .Clﬁ/t) ez|W(t,x/t)|2(:c/t) 10gt+zx2/(2t)’
walt, x) = i W (t, 2 /t) oW (ta/t)2(x/t) log t+ia? /(2t)

\/§t3/2

By Bernstein’s inequality, we have
IW(t,v) — W(U)HL% < Mt71/275’ IW(t,v) — W(U)HL;” < Mit—L/4A-6

We see that w; is a good approximation of v.

1
jor —wn| 5 %W(&:/t) — Wit z/1)|

logt |x 2 2
o W2/ (W (/1) = W (/D)

Some factors in the second term can be bounded by Sobolev embedding.
(W)l + (o] + DIV ()| S (W[ reesr ) < M.

Therefore, we can see that w; is a good approximation of v;.
lor —willz S MtTV270(1 4 M logt),

vy — wi]|pee < Mt3479(1 4+ M logt).
To get an approximation for vy, we note that w, contains the term $W(t,z/t). Applying

the Fourier transform,

FuPopsW) ~ Ol (€/t/PW(€)] = Do (€/t/*)W (€) + b (€/£/2) W (€),

it follows from the duality and Young’s inequality that
[oPeuaWllis S |1PsoW iz + ¢~V W)

(4.71)
0P oW | oo S || Pegro0W || poo + 2| W] .
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It follows that for vy and ws,

lva — wal[r2 S Mt=Y273(1 + M?log ),

|vg — wal| e < Mt=3/479(1 4+ M*logt).
Thus we know that w; and wy are good approximations of v; and vy. Let u; and us be
any solution to (4.11). By defining U; := u; — w; for i = 1,2, we see that if the profile
of u; is associated with Wy, then U;(00) := limy o U(t,2) = 0 for all x € R and vice
versa. Therefore, using the information that u; and uy solve (4.11), we can reformulate the
problem as a PDE for U; with zero initial data at t = co. To do this, we let n,m to be a

permutation of the indices 1,2 and define the error function f, by
fo = (i0; + %ag)wn —i(—1)"V 2w w?, (4.72)
and then consider the equations for U,:
(104 + 53U = ~i(~1)"V3(Trs ¥ ) (U 00)? + (1) T, ~ .
This can be rewritten as
(100 + 53U = Na(Uw) — fu Ua(o0) =0, (4.73)
where U := (Uy,Us) and w := (wy, wq) and
Ny (U, w) = i(=1)"™V2(UU,, 4 UW, + 2U,U pwy, + 2Un W + Uppw?).
The equation can be rewritten as

Un(t,z) = ®(t) N, (U, w) — ®(t) fr
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where ®(t)f == ft H5a f(s) ds. The Strichartz-type estimate for this problem can be

stated as follows:

|P) fllzeerz 00y + 1R fll Lare(m00) S Nl 22 L2(700)- (4.74)

We will solve for U,, using the contraction argument. The solution space X is defined by

T1/2+6
|Unllx == = sup P 0 M2 log T)? (Ul s 2cr2ry + NUnll 220 (r2m)) 5 (4.75)

and the space for LU, is defined by

T(S
T iziog Ty
og

LU, % = = sup | LU\ go 2 2y + LU Lo oo (rom) - (4.76)

To make a contraction argument, we need the following estimate for the inhomogeneous

terms, whose proof is postponed until the next section.

Lemma 4.17. Forn = 1,2 the function f, defined in (4.72) satisfies the following estimate:
1@ fullx + (| PLfallx S M. (4.77)

In view of (4.77), it suffices to prove that the map U +— (N1(U,w), No(U,w)) is a contraction

for a small ball in X x X. This can be done by proving the following estimate

2
ZHN (U,w) = N(U, )1 22000) S D NUn = Unllx (M + [ Unll + 10al%)- - (4.78)

n=1

Let C' be the implicit constant in (4.78). Then, by choosing M < C~', the map is a
contraction on the ball {(U,U;) € X x X : |Ui||x + ||Uz]|x} < CM. Consequently, we

obtain solutions U; and U, satisfying

|ULllx + |Uz]lx S M (4.79)
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The estimate (4.78) can be simplified by taking U = 0, resulting in

2 2
S NG U w2 (100 S D MIUnllx + 1Un (4.80)

n=1 n=1

and the proof of (4.78) will follow in the same manner. To begin the proof, we divide [T, 00)
into dyadic intervals on each of which we will estimate. In the following computations, we
let k,1 € {1,2}

|Ukwrwil| iz rory S Tllwellzze, e will nge, m2m | Ukl e p2 (7,27

1UUrwml| i 2 rory S T wll oo, amy 1Unll oo 2 om) 10| s e 2

HUELUm“L}Lg(T,zT) N T1/2||UmHL?°L§(T72T)HUnH%j}LgO(T,QT)‘

From the definitions of w; and w,, we have

| Uswewl| 1 p2rory S MPT727°(1 4+ M2 log T)?|| Uy || x
U Uikl i 2 rory S MT /472 (1 + M? log T)* | Ul x |U | x (4.81)
t z( )

HUgUmHLtng(T,ZT) ST+ M?1og T) || Ul x | U || -

Those account for all terms in Ny (U, w) and Ny(U,w). After taking the summations in 7,
we obtain (4.80) as desired.

We will now find the Li bounds for LU; and LU,. Note that both functions satisfy the
system of equations in V; and V5:

(i0, + %ag)vn — LN,(U,w) — Lf,, LU, (c0)=0. (4.82)

By the uniqueness of the solution obtained from the contraction argument, we are guaranteed
that (LU, LUs,) is the only solution to (4.82). We rewrite these equations as
LU,(t,z) = ®(t)LN,(U,w) — ®(t)Lf,

= P(LU,) + Q(LUy,) 4 gn — L fn,
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where

P(LU,) = i(—1)™2vV2(LU, U, U, + LUUyWr, + LULUwy, + LUpw, W, ),

Q(LU,,) = i(—1)"V2(U*LU,, — 2U, LU w, — LU,w?),
gn = i(—l)m\/ﬁ(QUmwann — U*Lw,,
+ 20U, Uy Lw,, + 2U,, Lw, W, — 2Upw, Lw,y, ).
We estimate as in (4.81), using (4.79) for U; and U,. Notice that the worst terms, namely
the last terms of P(LU,) and Q(LU,,), give the lowest order of decay in T
IP(LU gy r2(rory S MPT™(1+ M*log T)*|| LU, | 5,

QLU i 12 (r2m) S MPT(1+ M?*1og T)[| LUy | 5

After taking the summation over dyadic T' > 1, we have

2 2
D MPLUD izree S 67 MPT2(1+ MPlog T)* Y ||LU| 5 (4.83)

n=1 n=1

Let C' be the implicit constant. In order to get a contraction map, we can pick any positive

M < (%)%. To estimate g,,, we need the bounds on Lw, which we get from the direct
calculations.
[Lwillzz S 10.W ez + log tWI[ o l[v0 W] 12
< M(1+ M?logt),
[ Lws 2 St H Wiz + 08, W ||z + log toW]| 71 |0, | 2
< M(1+ M?logt).
Consequently,

I gnllzir2(romy S MPT™472(1 4 M 1og T)?.
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Taking the summation over dyadic 1" > 1, we have
gl 2122 (700) S MPTV4722(1 4 M log T))?.

We then take T'= 1. From the Strichartz estimate (4.74) and (4.83), we conclude that

2
Z HLUnHL?O(LOO;L%) 5 M
n=1

as desired.

4.6 Proof of Lemma 4.17

In view of (4.74), it suffices to estimate || f,[| 122 (17,000 a0d | L S0l 122 (7,00)- We begin

with computing f,. We denote a function W 1/2(¢,v) by

W\gtlﬂ(ta 5) =< (tl%) /W?(t, f)

Observe that
d £ £ (€
' (t_/) =pntal\an )
where the hidden constants in the approximation only depend on our choice of ;. We see

that

OW(t,v) = me’d <2%) W(€)es de = i /2(v).
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Consequently,

1 22, 1 VI
i = mezgtﬂtlogthz{? [th/2 + 2@'% log tW%(th/2W):|

1 _
+5n [W” + 2@'% log tWR(W"W) + 2ilog tW’yWP]

1 — RN
+ 5 [2% log EW'R(W'W) + % log tW|W/|? — 2W (% log ti)%(W’W))

— (log t)*W|WI* — 2736 (logt)? W|W|2£R(WW)} }

1 22 i a2 ) T .z EY ¥ 4.84
fo = me or i logt{W| {t_2 [Wt1/2 + QZZIOgtW%(VthmW)} ( )

+ 2%3 [W" + 2@'% log tWR(W"W) + 2ilog tW'[W!Z]
- N2
+ t% [z% log IWRONVW) + z% log tWW'[2 — 2w (% log ti)%(W’W))
2 -
~ (log )2WW|* — 73” (log )2 W|W|29%(W’W)}
1 / L INA) - 2
ta [W + 22; log WR(W'W) + ilog tW|W)| ] :

From the definition (4.70) and (4.71), Bernstein’s inequality yields

[EIWlee § M, @)W e S MEA,

v 12 s v L2 t B y v 12 t s .
W USJM W U§M1/25 W USJMl(S (485)
) Wasallig S MEV2D, [0y Wsalliz S M.
Therefore, we obtain the estimate
I fall ez S MEH275(1+ M2 logt)?. (4.86)

By integration in time and the Strichartz estimate (4.74), we obtain the bound for ®f, in

(4.77). To estimate Lf,, we use L(eiég(x/t)) = ieig&ug(x/t) to obtain

ILfollre S Mt'70(1+ M?logt)®. (4.87)
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However, an integration in time gives an extra 6! factor.
L fullirzrory S 67" MT™°(1+ M?logT)?.

Applying (4.74) directly gives us an extra ! factor which does not imply (4.17) since
§ > M?, so more careful analysis on Lf, is required. Notice that the problem arises from
the terms in Lf, that give time decay ¢! in L2; For example, we estimate the first term

in Lfs, ignoring terms with higher decay in ¢:

o S g e (F) 11 ()1

1
= S lloWar (0) + Wiz (0)]l 2

T a?

7 72 lo, 2 T
|2 e s ()]

LE

<Mt

where we used (4.85) for the last inequality. In fact, the terms that give t7'=% decay are
precisely those that contain W™ or WY/, ,. Since the rest of the terms do not contribute a

factor of 67 to ||Lf,| 12 via (4.74), it suffices to estimate these terms. In order to do so,

we let

hn = lee 2t Zn(t,]}/t) = 1:176 2t az(Zn(t7x/t)) = t376 2t a’l)Z’Vl(t?U)

where v = f and

/!

2t

7y = W losthVP? <th + 2ivlog tWRe(W,12W) + —— + z% log tWRe(W”W))

V2

The proof is finished after we estimate ®h,, in X. First, using (4.85) and their weighted

22 = UZl.

version, we have

109 Zallz S 731+ M2 log t) () Weppolliz, 5 =0,1,2, (4.88)
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Since

)WL psallie S 22 W|gpsonn < t270M, (4.89)

inequality (4.88) with j = 1 tells us that 9,7, (and hence h,) decays in L? sense in the
region of frequencies greater than t/2.

With that in mind, we compute
Oh,(t) = ie“A/2]:gl {/too / 83_1/262'33561'852/261'338”2”(8’ z/s) da:ds}
= ieimﬁ}—gl {/too / #eis(f_”)Q/zavZn(s,v) dvds}
= ieimﬂ}?l {/too 81—1/26“52/2 * Oy Zn (S, §)d8} (4.90)
= je'tA/? /OO s_le’%a/vZ\n(s, —x)ds
t
= A2 /00 S_lxei%i?n(s, —z)ds.

t

To estimate the right hand side under the norm of L} L2(T, c0), we claim that the following

estimate holds:
[t~ we % Z, ¢, D)Lz e S MT°(1+ M logT)?. (4.91)

where the {2 norm is the /? sum taken with respect to the dyadic intervals in z. Notice
that there is no more 6! factor.

Assuming that (4.91) is true, we then define z,,(t) := e=*~/2®h,,(t). In other words,

22—~

zn(t):/ s twe's Z,(s, —x)ds
t

From (4.88) with j = 1, we see that z, : [T, 00) — L2(R) is continuous and the estimate

(4.91) implies that z, € W' L3(T,00). Even though the 2 norm and the W,"! norm
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cannot be interchanged, we can embed W' in a larger space which allows us to do so.
First, we introduce the space V? of functions of bounded p variation with respect to a

Banach space B defined by the seminorm:

T=tp<...<tg <co

K 1/p
[2[[veBr,s0) = sup (Z |2(tr) — Z(tk—l)ll’é> :
k=1

Notice that V! is the space of functions of bounded variation and W,"' L2(T, c0) is the
space of absolutely continuous functions from [T, 00) to L2(R), so we have an embedding
W L2(T, 00) € V'LA(T, 00). Therefore, in view of (2.75) and (2.77), we have the following

chain of inclusions:
PWHMLA(T, 00) € I2V2LA(T, 00) € V2I2LA(T, 00) = V2LA(T, 00).

Since z, is continuous and z,(c0) = 0, so it satisfies the hypothesis in Proposition 2.19
after a time reflection ¢ — —t. Therefore, by (2.76),
€22 2 ()] Lo r2 (1,00) + HeitA/QZn(f)HLngo(T,oo) S lznllverz (r,0)-

It follows that
[ PR (D) Lo r2(T,00) + 1 PRa ()| L8120 (1,00) S 20 llverz (7,00
<SMT™(14 M*1logT)?.
This leads to the desired estimate ||PLf,|z < M.

It remains to prove (4.91). We divide this into two cases:

Case 1: |z| < TY2. From (4.88) with j = 0 and (4.89), we obtain

[t 2 Z, (2, ) li2rirzree) S T2t Z, (8, ) |liee 2 £2 (1,00)
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STV (1 + M2 log t) (o)W 2 i1 12(7,00)
ST V(1 + M log T) [ ()W, |2

<SMT™(1 4 M*logT).

Case 2: |z| > T'2. We consider each term in the [?> sum where |z| ~ R > T2
In the following integral with respect to ¢, we apply the estimate (4.88) with j = 0 for

R <tY2 and j =2 for R > tY2 (note that ||02Z,|| ~ R2||Z,| in this region),

1t 2 Zn (t, 2) | 3 12 (7005l

R2
1
T

“R
+ [ Mg )Wl
R2 -

R 1/2
<R (/T R2t2(1 + M*1og t)°[[(0) W2, |72 (o) dt)

L1
R

~ 1 1/2

S (/ t_2(1 + M*1og t)°[[(0)W 2 po|72 (o) dt) :

T
Taking the [? sum with respect to R € 2%, we have

o R2 1/2
/R2 t_g(l + M? 1Ogt>2||<v>W/§/t1/2“%%(hz\zR) dt)

o
— 1
1t 2 Z0(t, )1 12 22 7,00 §/T t_g(l + M?1og t)°|[{(0) W21 2][72 dt. (4.92)

Note that by the duality,

)W sallzz S 1PeprreoW” g2 4+ £ 2IWE el 2
< t75||P§t1/2 <D>U<D>1+25WHL5 + ||P§t1/2W”H1}+25

Wy || as
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It suffices to use the first term to estimate the integral in (4.92), as the other terms will

give lower orders of ¢ in the following argument. Since M? < §, we have that

7272 (1 4+ M?1og t)°|| P2 (DYyv (D) W |7, dt
T (4.93)

< T%(1 4+ M2log T)® / £ Pogorz (D) DY BW, dt
T

Now we split the integral over dyadic intervals

/ t’QHPStl/g<D)U(D)1+2‘SWH%% dt
T

22N+2
S / X IneDD) W
oN T2 T2 ok cop1/2
22N +2 22k
S Y XL gwlPeeo)y W a
ok 7Y N2k
22k

< X 2 gl PeD) W

o> T2 N>k
S W1 e

< M.
Combined with (4.93), we get (4.91) as desired.
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