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ABSTRACT OF THE DISSERTATION

Well-posedness and modified scattering for derivative nonlinear Schrödinger
equations

by

Donlapark Pornnopparath

Doctor of Philosophy in Mathematics

University of California San Diego, 2018

Professor Ioan Bejenaru, Chair

We consider the initial value problem for various type of nonlinear Schrödinger

equations with derivative nonlinearity which cannot be treated by normal perturbative

arguments because of the loss in derivative from the nonlinearity.

The first part of the study involves finding the well-posedness in low regularity

Sobolev spaces for different types of nonlinearities. The key idea is to capture a part of

the solution that resembles the linear Schrödinger dynamic while keeping the remaining

part spatial and frequency localized. With this, we can study the interactions between the

viii



truncations of the solution at different frequencies and obtain a meaningful perturbative

analysis.

In the second part, we study the dynamic of the cubic nonlinear Schrödinger equation

in the energy critical Sobolev space by projecting the solution onto different wave packets

which are frequency and spatial localized at all time. As a result, we obtain the asymptotic

behavior, modified scattering profile and asymptotic completeness of the solution without

relying on the integrable structure of the equation.
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Chapter 1

Introduction

1.1 Motivations

The Schrödinger equation with polynomial-type nonlinearity,
i∂tu+ ∆u = P (u, u, ∂xu, ∂xu)

u(x, 0) = u0 ∈ Hs(R), s ≥ s0,

(1.1)

where P : C4 7→ C is a polynomial of the form

P (z) = P (z1, z2, z3, z4) =
∑

d≤|α|≤l

Cαz
α, (1.2)

is a one dimensional model that comes up quite often in nonlinear optics. The nonlinearity

often arises from a high-intensity ultrashort light pulse propagating through an optical

fiber with high nonlinear coefficients ([43]), for example, semiconductor doped glasses or

organic polymers, in which case the refractive index takes a nonlinear form in powers of

intensity I of the light pulse: n = n0 + n2I + n4I
2 + . . ., where n0, n2, n4, . . . are refractive
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index coefficients varying in time. In particular, if we ignore higher intensity orders:

n = n0 + n2I + . . .+ n2NI
N , the wave equation for the light pulse when the optical fiber

has a circular cross section can be written as

∆zE−
1

c2
∂2
t PL =

1

c2
∂2
t PNL, (1.3)

where c is the speed of light, E is the electric field and PL and PNL are linear and nonlinear

parts of the electric polarization written as

PL =

∫ ∞
0

(n0(t′))2E(t− t′) dt′,

PNL = c2|E|2 + c4|E|4 + . . .+ c2N |E|2N ,

where each c2i is a product of nj’s. The equation (1.3) can be solved by the method of

separation of variables by writing E as

E = êR(r)u(z, t)eiβz−iωt, (1.4)

where ê is the direction vector of the polarization and r is the radius vector in the x-y

plane and u(z, t) is the amplitude. We can substitute (1.4) into (1.3) and approximate via

Taylor series expansion. When N = 2, the resulting equation is

i∂zu+ ∂ttu = ia0∂tttu+ a2|u|2u+ a3|u|4u+ ia4∂t(|u|2u) + ia5∂t(|u|4u).

This equation and its variations had been intensively studied, for examples, in [12], [13],

[27], [43], [51] and [52]. If the pulse’s width is more than 100 femtosecond, the third-order

dispersion term a0∂tttu can be neglected ([1]). Under this assumption, we can generalize
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the equation to the Nth order refraction index: ([50])

i∂zu+ ∂ttu =
N∑
k=1

αk|u|2ku+ i
N∑
k=2

βk∂t(|u|2k−2u) + i
N∑
k=2

γk∂t(|u|2k−2)u. (1.5)

Many simplified forms of this equation have been thoroughly investigated. For examples,

the Nonlinear Schrödinger equation (NLS):

i∂zu+ ∂ttu = |u|2u (1.6)

and the Derivative Nonlinear Schrödinger equation (DNLS):

i∂zu+ ∂ttu = i∂t(|u|2u). (1.7)

Equation (1.7) also arises from studies of small-amplitude Alfv́en waves propagating parallel

to a magnetic field [40] and large-amplitude magnetohydrodynamic waves in plasmas [44].

There is also recent discovery of rogue waves as solutions for the Darboux transformation

of the DNLS (See [56]). More details on the DNLS equation will be explained below.

Before going over the literature, we introduce some notations that we will be using

throughout the rest of the thesis.

1.2 Notations

The following notations will be used: The variable x and t always refer to the

one-dimensional spatial variable and the time variable, respectively. For 1 ≤ p, q ≤ ∞, and

I, J ⊆ R, we define the Banach spaces Lpx(I) and Lqt (J) by the norms:

‖f(x)‖Lpx(I) : =

(∫
I

|f(x)|p dx
) 1

p

3



‖g(t)‖Lqt (J) : =

(∫
J

|g(t)|q dx
) 1

q

.

If there is no confusion, Lpx will sometimes be shortened to Lp. For any Banach spaces

X (I) and Y(J) of complex-valued functions on sets I and J and any function f defined on

the product space I × J , we define the mixed norm

‖f‖XY(I×J) :=
∥∥‖f‖Y(J)

∥∥
X (I)

,

and ‖f‖XY = ‖f‖XY(R×R). For I = [a, b], we make a slightly shorter notations ‖f‖XY(a,b;J) :=

‖f‖XY([a,b]×J) and ‖f‖XY(a,b) := ‖f‖XY([a,b]×R). We define the Fourier transform and the

inverse Fourier transform of f(x) by

f̂(ξ) :=
1√
2π

∫
R
e−ixξf(x) dx,

f̌(x) :=
1√
2π

∫
R
eixξf(ξ) dξ.

Since all of the proofs rely on estimates up to fixed constants, we will make an abuse

of notations and drop the constant 1√
2π

from these formulas. For s ∈ R, we denote by

Ds = (−∆)s/2 the Riesz potential of order −s. The Sobolev space Hs
x is defined by the

norm

‖u‖Hs
x

:= ‖(1− ∂2
x)

s
2u(x)‖L2

x
= ‖(1 + ξ2)

s
2 û(ξ)‖L2

ξ
.

We define the Banach space of bounded Hs-valued continuous functions:

C0
tH

s
x(I × J) :=

{
f ∈ C(I;Hs

x(J)) : sup
t∈I
‖f(·, t)‖Hs

x(J) <∞
}
.

The weighted Sobolev space Hm,k
x is defined by

‖u‖2
Hm,k = ‖(1 + |x|2)

k
2 (1− ∂2

x)
m
2 u‖2

L2
x
.
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Sometimes we will write these spaces as Hs and Hm,k if the variable is well-understood.

Let v ∈ L∞t L2
x. We define the Schrödinger propagator by

eit∆v(x, t) :=

∫
R
eixξ−itξ

2

v̂(ξ) dξ.

The notation a . b and a ∼ b means a ≤ Cb and ca ≤ b ≤ CA, respectively, for some

positive constants c and C, which depend on P (z) but not on the functions involved in

these estimates.

We frequently split the frequency space into dyadic intervals, so whenever M and N

is mentioned, we assume that M,N ∈ 2Z. Let ψ(ξ) be a smooth cutoff function supported

in |ξ| ≤ 4 and equal 1 on |ξ| ≤ 2. We define ψN = ψ
(
ξ
N

)
− ψ

(
2ξ
N

)
. Denote by PN the

Littlewood-Paley projection at frequency N , that is

P̂Nf(ξ) = ψN(ξ)f̂(ξ)

Define P≤N and P>N to be the projections of frequency less than and greater than N :

P̂≤Nf(ξ) = ψ≤N f̂(ξ) :=
∑
M≤N

ψM(ξ)f̂(ξ),

P̂>Nf(ξ) = ψ>N f̂(ξ) :=
∑
M>N

ψM(ξ)f̂(ξ).

We will sometimes shorten the notation as follows: fN := PNf . For any Banach space X

of functions on R and 1 ≤ p ≤ ∞, we define the norm lpX by

‖u‖lpX :=
( ∑
Ni∈2Z

‖PNiu‖
p
X

) 1
p
. (1.8)

For s ≥ 0, we define the homogeneous Sobolev space Ḣs using the Littlewood-Paley

projections

‖u‖Ḣs :=
( ∑
Ni∈2Z

N2s
i ‖PNiu‖2

L2

) 1
2
.
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For any A ⊆ R, we define an indicator function χA by

χA(x) =


1 if x ∈ A,

0 if x /∈ A.

Since ‖χ[2N ,2N+1](ξ)û(ξ)‖L2
ξ
∼ ‖ψN (ξ)û(ξ)‖L2

ξ
, by the duality and orthogonality of χ[2N ,2N+1]û

under the L2
ξ norm, we can define a norm equivalent to that of Hs in terms of the Littlewood-

Paley projections:

‖u‖Hs ∼ ‖P≤1u‖L2 +
( ∑
Ni∈2N

N2s
i ‖PNiu‖2

L2

) 1
2
.

1.3 Previous results

There are several results regarding the well-posedness of (1.1). In [34], Kenig, Ponce

and Vega proved that the equation (1.1) is locally well-posed for a small initial data in

H
7
2 (R). There has been some interest in the special case where P = iλ|u|kux:

i∂tu+ ∆u = iλ|u|kux

u(x, 0) = u0 ∈ Hs(R), s ≥ s0.

with k ∈ R. Hao ([18]) proved that this equation is locally well-posed in H
1
2 (R) for k ≥ 5,

and Ambrose-Simpson ([2]) proved the result in H1(R) for k ≥ 2. Recent studies show that

these results can be improved. See Santos ([45]) for the local-wellposedness in H
1
2 when

k ≥ 2 and Hayashi-Ozawa ([22]) for the local well-posedness in H2 when k ≥ 1 and the

global well-posedness in H1 when k ≥ 2.
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Several studies showed that we have better results if P only consists of u and ∂xu due

to the following heuristic: if u solves the linear Schrödinger equation, then the space-time

Fourier transform of u is supported away from the parabola {(ξ, τ)|τ + ξ2 = 0}, leading to

strong dispersive estimates. Grünrock ([15]) showed that for P = ∂x(u
d) or P = (∂xu)d

where d ≥ 3, the equation (1.1) is locally well-posed for any s > 1
2
− 1

d−1
in the former

case and s > 3
2
− 1

d−1
in the latter. Later, Hirayama ([26]) extended Grünrock’s results for

P = ∂x(u
d) to the global well-posedness for s ≥ 1

2
− 1

d−1
.

There are also various results for higher dimension analogues of (1.1)
i∂tu+ ∆u = P (u, u,∇u,∇u)

u(x, 0) = u0(x), x ∈ Rn.

(1.9)

The most general results in Rn for n ≥ 2 is due to Kenig, Ponce and Vega in [34]. For a

more specific case, we refer to [4] and [5] where Bejenaru obtained a local well-posedness

result for n = 2 and P (z) is quadratic with low regularity initial data. See also [11] when

n ≥ 1 and P (u, v) = O(|u|2 + |v|2) or P (u, v) = O(|u|3 + |v|3). For results in Besov spaces,

see [53] for the global well-posedness in Ḃsn
1,2(Rn) where n ≥ 2 and sn = n

2
− 1

d−1
which is

the critical exponent.

Let us go back to the DNLS equation.
i∂tu+ ∆u = i∂x(|u|2u)

u(x, 0) = u0 ∈ Hs(R), s ≥ 1
2
.

(1.10)

Observe that (1.10) is invariant under the scaling u(x, t) 7→ uλ(x, t) := λ
1
2u(λx, λ2t). Since

‖uλ‖Ḣs = λs‖u‖Ḣs , if we follow the scaling heuristic for dispersive equations, the equation

7



(1.10) is expected to be locally well-posed in any subcritical Sobolev space i.e. any Hs with

s ≥ 0. However, Biagioni and Linares ([6]) have showed that (1.10) is ill-posed for s < 1
2

in

the sense that the solution mapping u0 7→ u fails to be uniformly continuous. This means

that our result from Theorem 1.3 when d = 3, which is a local well-posedness in H
1
2 , is

sharp in this sense.

We mention here a few of many results regarding this equation. The global well-

posedness in the energy space H1(R) was proved by Hayashi and Ozawa in [25]. For data

below the energy space, Takaoka has shown in [47] that DNLS is locally well-posed for s ≥ 1
2

using (1.11) with k = −1. In [14], Colliander, Keel, Staffilani, Takaoka and Tao used the

“I-method” to show the global well-posedness of DNLS for s > 1
2
, assuming the smallness

condition |u0|L2 <
√

2π. Later, Miao, Wu and Xu have proved the global well-posedness

result for the endpoint case s = 1
2

using the third generation I-method and same smallness

condition in [39]. Lastly, Wu ([54] and [55]) has shown that in the energy-critical case

s = 1, the smallness threshold is improved to ‖u0‖2
L < 2

√
π.

We are now shifting focus toward some qualitative aspects of the solutions. Kaup and

Newell has shown that the equation in completely integrable, which implies infinitely many

conservation laws. Moreover, the inverse scattering method can be applied to obtain soliton

solutions which are unstable in a sense that a small perturbation could cause the soliton to

disperse (See [32]). Recently, Liu, Perry and Sulem used this method to prove the global

well-posedness result in H2,2(R) (see [38]). A study following Wu’s above result ([10]) shows

an existence of two kinds of solitons: bright solitons with mass
√

2π, and lump soliton

with mass 2
√
π. He showed in [54] that there is no blow-up near the

√
2π threshold. On
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the other hand, the study of Cher, Simpson and Sulem ([10]) has shown some numerical

evidence of a blow-up profile that closely resembles the lump soliton.

The main difficulty in studying DNLS is the spatial derivative in nonlinearity. Due

to this, all of well-posedness results for DNLS so far involve the Gauge transformation:

v(x, t) := u(x, t) exp

{
ik

∫ x

−∞
|u(y, t)|2 dy,

}
(1.11)

where k ∈ R. In [47], Takaoka used the transformation with k = −1 to turn (1.10) into
i∂tv + ∆v = −iv2∂xv − 1

2
|v|4v

v(x, 0) = v0 ∈ Hs(R), s ≥ 1
2
.

(1.12)

Note that the transformation replaces the term |u|2∂xu with v2∂vu which can be treated

using the Fourier restriction norm method developed in [7]. In contrast to this type of proofs,

we managed to get the local well-posedness of (1.10) (as a part of Theorem 1.3) without

using a gauge transformation. The advantage is that the idea can be easily generalized to

get a similar result for the equation (1.13)

1.4 Local well-posedness for gDNLS

Our first result is the local well-posedness of (1.1) in Sobolev spaces when the

nonlinearity contains an arbitrary number of derivatives.

Theorem 1.1. In the equation (1.1), let s be any real number such that

(A) s ≥ 1
2

if P (x, y, z, w) is linear in z and w,

9



(B) s ≥ 3
2

otherwise.

Then there exist a Banach space Xs and a constant C = C(s, d) with the following properties:

For any u0 ∈ Hs(R) such that ‖u0‖Hs < C, the equation (1.1) has a unique solution:

u ∈ X := {u ∈ C0
tH

s
x([−1, 1]× R) ∩Xs : ‖u‖Xs ≤ 2C}.

Furthermore, the map u0 7→ u is Lipschitz continuous from BC := {u0 ∈ Hs : ‖u0‖Hs ≤ C}

to X.

This shows that, without any restriction to the number of derivatives, we are

able to improve Kenig et al.’s result ([34]) from H
7
2 to H

3
2 . By restricting to only one

derivative per term in the nonlinearity, we can improve further to H
1
2 . Moreover, part (A)

of Theorem 1.1 extends Hao and Santos’s local well-posedness result in H
1
2 to more general

class of nonlinearities. It turns out that the global well-posedness results can be achieved if

the nonlinearity is quintic or higher and the endpoint cases are excluded.

Theorem 1.2. Suppose that d ≥ 5 in (1.2). Let s be any number such that

(A) s > 1
2

if each term in P (u, u, ∂xu, ∂xu) has only one derivative,

(B) s > 3
2

if a term in P (u, u, ∂xu, ∂xu) has more than one derivative.

Then the equation (1.1) is globally well-posed in the following sense: There exist a Banach

space Xs and a constant C = C(s, d) with the following properties: For any u0 ∈ Hs(R)

such that ‖u0‖Hs < C and any time interval I containing 0, the equation (1.1) has a unique

solution:

u ∈ X := {u ∈ C0
tH

s
x(I × R) ∩Xs : ‖u‖Xs ≤ 2C}.

10



Furthermore, the map u0 7→ u is Lipschitz continuous from BC := {u0 ∈ Hs : ‖u0‖Hs ≤ C}

to X.

1.5 Global well-posedness for a special case of gDNLS

in critical Sobolev spaces

Notice that when each term in P (u, u, ∂xu, ∂xu) has only one derivative, (1.1) is

invariance under the scaling u(x, t) 7→ uλ(x, t) := λ
1
d−1u(λx, λ2t). Thus, the critical space

is Hs0 where s0 = 1
2
− 1

d−1
in the sense that ‖u‖Hs0 = ‖uλ‖Hs0 . If we follow the heuristic

that a dispersive equation is expected to be locally well-posed in any subcritical Sobolev

space Hs i.e. s > s0, then the result in part (A) of Theorem 1.2, which requires s > 1
2
, is

not optimal in this sense. It turns out that the global well-posedness at critical Sobolev

spaces can be achieved if we assume a specific type of the gDNLS equation
i∂tu+ ∆u = ∂xP (u, u)

u(x, 0) = u0 ∈ Hs(R), s ≥ s0.

(1.13)

where P : C2 7→ C is a polynomial of the form

P (z) = P (z1, z2) =
∑

d≤|α|≤l

Cαz
α, (1.14)

and l ≥ d ≥ 5.

The following theorem shows that for d ≥ 5 we have the global well-posedness at

the scaling critical Sobolev space.
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Theorem 1.3. Suppose that d ≥ 5 in (1.14). Let s0 = 1
2
− 1

d−1
. For u0 ∈ Hs(R) where

s ≥ s0, the equation (1.13) is globally well-posed in the following sense:

There exist a Banach space Xs and a constant C = C(s, d) with the following

properties: For any u0 ∈ Hs(R) such that ‖u0‖Hs < C and any time interval I containing

0, the equation (1.13) has a unique solution:

u ∈ X := {u ∈ C0
tH

s
x(I × R) ∩Xs : ‖u‖Xs ≤ 2C}.

Furthermore, the map u0 7→ u is Lipschitz continuous from BC := {u0 ∈ Hs : ‖u0‖Hs ≤ C}

to X.

In the case of s = s0, the statement above holds true if we replace Hs by Ḣs0.

This extends Grünrock and Hirayama’s results to more general class of nonlinearities.

The main ideas behind the proof of Theorem 1.1 and Theorem 1.3 consist of the Duhamel

reformulation of the problem, followed by the contraction argument. First, we decompose

the nonlinear Duhamel term using (2.28), which was first introduced in [3], to deal with

the time integral. Second, we use the local smoothing estimate (2.4) and the maximal

function estimate (2.5) to deal with the loss of derivative in nonlinearity. We then combine

these tools together as main ingredients for the usual perturbative analysis to obtain the

well-posedness results. The proof for Theorem 1.3 in the case d = 5 is rather delicate and

needs some modulation-frequency argument which is sensitive to the conjugates in the

nonlinearity. Therefore, the proof of global well-posedness for d = 5, which is motivated by

Tao’s paper on the quartic generalised KdV equation ([49]), will be treated separately in

the last section.
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1.6 Global bounds and modified scattering for the

DNLS equation

Another problem that comes up quite often in studies of nonlinear dispersive

equations is the scattering problem, where one observes the behavior of the solution forward

in time and see if it scatters to a linear solution. In our case, we consider the dynamic of

the solution to the cubic DNLS equation:

i∂tu+ ∆u = i∂x(|u|2u)

u(x, 0) = u0(x)

(1.15)

in the weighted Sobolev space H1,1(R). In particular, we are interested in a global pointwise

bound and the scattering profile of the solution. Assume that we can get a pointwise bound

in the form

‖u(x, t)‖L∞x .
1

t
1
2

‖u0‖H1,1
x

‖∂xu(x, t)‖L∞x .
1

t
1
2

‖u0‖H1,1
x
,

then we would expect u to behave like a linear solution for large t since the nonlinearity

becomes really small:

‖i∂x(|u|2u)‖L∞x .
1

t
3
2

‖u0‖3
H1,1
x
.

The next step is to find a linear profile of u in the form of

u(x, t) ≈ CA(x, t)eiB(x,t)

for some function A and B. In our work, we use the method pioneered by Ifrim-Tataru in

[28], where they solved the scattering problem for the cubic NLS (1.6). The main idea is to
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test the solution against wave packets Ψv(x, t) localized at different frequencies ξ traveling

at speed v = ξ:

γ(v, t) =

∫
uΨ̄v dx.

Since the wave packets are spatial and frequency localized, the PDE equation (1.15) is

translated in an ODE of γ in t. We then proceed to solve this ODE and obtain a profile of

the solution by approximating u by γ. Note that the method that we just mentioned here

is not restrictive to Schrödinger-type equations and has a potential to be a major tool in

studying global dynamics of many nonlinear equations. For examples, see the recent works

of [redacted]. We summarize the results as follows. Under the smallness condition on the

initial data:

‖u0‖H1,1 ≤ ε� 1,

we have a global solution satisfying the pointwise bounds

‖u‖L∞ . ε|t|−1/2,

‖ux‖L∞ . ε|t|−1/2.

For large time t, the solution scatters with asymptotic profile

u(x, t) =
1

t1/2
W
(x
t

)
ei|W (x/t)|2 x

t
log t+ix

2

2t + err(x, t), (1.16)

where W is a function in H1−Cε2,1(R) for some constant C and err is a small error function

which decays in t. Moreover, we prove the asymptotic completeness, which states that for

any function W in H1−Cε2,1(R) and

‖W‖H1+Cε2,1(R) � ε� 1,
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there exists an initial data u0 such that the solution u to the equation (1.15) has the

asymptotic profile (1.16). For the full statement of this result, see Theorem 4.1.

1.7 Organization

We organize the materials as follows. In chapter 2, we will mention several linear

and smoothing estimates, together with the proofs of the maximal function estimate and

bilinear estimate. After that, we introduce the notion of the Fourier restriction spaces

Xs,b along with several well-known estimates, as we will apply some frequency-modulation

analysis in order to prove Theorem 1.3 in the case of d = 5. We will also introduce the

spaces V p of functions of bounded p-variation and prove several of their properties which

will be used to conclude the results in Chapter 4. In chapter 3, we introduce the solution

space XN and nonlinear space YN for functions supported at frequency N , and we will

prove the main linear and bilinear estimate for functions in these spaces using a solution

decomposition technique from [3]. Then we prove Theorem 1.1 and Theorem 1.3, where

the majority of proofs are focused on the multilinear estimates of functions in XN . In

Chapter 4, we prove (1.16) which consists of global boundedness, scattering and asymptotic

completeness., using the method of testing against wave packets from [28].
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Chapter 2

Elementary Results

2.1 The Linear Schrödinger equation

The corresponding linear equation of (1.1):

i∂tu+ ∆u = 0,

is used as the model for a quantum mechanical particle, e.g. an electron, where u(x, t) is a

wave function of the system and the quantity∫
R
|u(x, t)|2 dx (2.1)

is conserved over time. Normally, we rescale u so that the integral in (2.1) is 1. In this

case, for any measurable set A ∈ R, the integral∫
A

|u(x, t)|2 dx

gives the probability that the particle is in A at time t. The solutions of (2.1) are waves

which at different frequencies travel at different velocities. Hence, localized solutions such
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as wave packets tend to spread out or disperse over time. Such behavior led us to categorize

(2.1) as a dispersive equation.

2.2 Bernstein type inequality

We begin with the Bernstein inequality for the Littlewood-Paley projections. Note

that this is different from the standard result in literatures which is the same estimate but

for the space LqtL
p
x.

Lemma 2.1. For any pair of 1 ≤ p, q ≤ ∞, we have

‖∂xPNf‖LpxLqt . N‖PNf‖LpxLqt (2.2)

Proof. Let P̃N := PN/2 + PN + P2N be a Littlewood-Paley projection at a wider frequency

interval with corresponding multiplier ψ̃N . We can rewrite the term on the left-hand side

as

∂xP̃NPNf = (∂x

̂̃
ψN) ∗ PNf(x, t).

For each x, we have an inequality

‖∂xPNf‖Lqt ≤ |∂x

̂̃
ψN | ∗ ‖PNf(x, t)‖Lqt .

After taking the Lpx norm and apply Young’s inequality, we have

‖∂xPNf‖LpxLqt ≤ ‖∂x

̂̃
ψN‖L1

x
‖PNf‖LpxLqt . N‖PNf‖LpxLqt .
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This lemma helps us quantify derivatives of a function supported in a dyadic

frequency interval, which will come in handy in the proofs of multilinear estimates in

section 3 - 3.3.

2.3 Stationary phase lemmas

We mention here stationary phase results from harmonic analysis, which will be

used in the next subsection. See [46, p.331-334] for their proofs.

Lemma 2.2. Suppose that φ and ψ are smooth functions and ψ is compactly supported in

(a, b). If φ′(ξ) 6= 0 for all ξ ∈ [a, b], then

∣∣∣∣∫ b

a

eiλφ(ξ)ψ(ξ) dξ

∣∣∣∣ ≤ C

|λ|k

for all k ≥ 0, where the constant C depends on φ, ψ and k.

Lemma 2.3. Suppose that ψ : R→ R is smooth, φ is a real-valued C2-function in (a, b)

and φ′′(ξ) & 1. Then,

∣∣∣∣∫ b

a

eiλφ(ξ)ψ(ξ) dξ

∣∣∣∣ . 1

|λ| 12

(
|ψ(b)|+

∫ b

a

|ψ′(ξ)| dξ
)
.

2.4 Strichartz and local smoothing estimates

In our study, the nonlinear effect of the equation (1.1) with small initial data u0

plays a major role in the perturbative analysis. As we mentioned in section 1, the main

difficulty is a lost of derivative in the nonlinearity. In this regard, we will need the Strichartz

18



estimate for the Schrödinger propagator and the smoothing estimate (2.4) which gives

a 1
2
-order derivative gain of the linear solution in a suitable norm. We will also prove a

maximal function type estimate (2.5) which will be used for the analysis of the nonlinear

term.

Proposition 2.4. Let f ∈ L2. Then, we have the following estimates

‖eit∆f‖LqtLpx . ‖f‖L2
x
, (2.3)

where
2

q
+

1

p
=

1

2
and 2 ≤ p ≤ ∞, and

‖D
1
2 eit∆f‖L∞x L2

t
. ‖f‖L2

x
. (2.4)

Proof. The first inequality is the well-known Strichartz estimate. The proof can be found,

for example, in [9] and [48]. The proof of (2.4) can be found in Theorem 4.1 of [33].

The following maximal function type estimate tells us that for the linear equation

with time-and-frequency localized initial data in Hs(R) where s ≥ 1
2
, the solution is

well-controlled in LγxL
∞
t (R× I), where I = [−1, 1] when γ = 2, 3 and I = R when γ ≥ 4.

Proposition 2.5. Let u ∈ L2
x(R).

1. If γ = 2 or 3, assume that supp(|û|) ⊆ [N, 4N ] where N ∈ 2N or supp(|û|) ⊆ [0, 1],

in which case we consider N = 1, then

‖χ[−1,1](t)e
it∆u(x)‖LγxL∞t . N

1
γ ‖u‖L2

x
, (2.5a)

2. If γ ≥ 4, assume that supp(|û|) ⊆ [N, 4N ] where N ∈ 2Z, we have

‖eit∆u(x)‖LγxL∞t . N
γ−2
2γ ‖u‖L2

x
. (2.5b)
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Remark: We see that the estimate (2.5a) is local in time while (2.5b) is global. By

setting γ = d− 1, this leads to the local and global results in Theorem 1.1 and Theorem 1.3.

Proof. We refer to Theorem 2.5 in [33] for a proof of the case γ = 4. Let s0 = s0(γ) = 1
γ

for γ = 2, 3 and s0 = γ−2
2γ

for γ ≥ 5. We define an operator T : L2
x → LγxL

∞
t by

Tu = χ[−1,1](t)e
it∆u, yielding T ∗F =

∫ 1

−1
e−it∆F dt. Using the TT ∗ argument, it follows

that (2.5) is equivalent to either of the following estimates for F ∈ L2
xL

1
t (R× R) with the

same frequency support as u in the cases of γ = 2, 3.

∥∥∥∥∫ 1

−1

e−it∆F (x, t) dt

∥∥∥∥
L2
x

. N s0‖F‖
L

γ
γ−1
x L1

t

(2.6)∥∥∥∥χ[−1,1](t)

∫ 1

−1

ei(t−s)∆F (x, s) ds

∥∥∥∥
LγxL

∞
t

. N2s0‖F‖
L

γ
γ−1
x L1

t

. (2.7)

For γ ≥ 5, we have the same estimates but with integrals on R. Thus, it suffices to prove

(2.7). First, we assume that F ∈ S(R). Since F = P≤4NF , the inverse Fourier transform of

ei(t−s)ξ
2
F̂ is defined by

F−1
x

(
ei(t−s)ξ

2

F̂ (ξ, s)
)

= c

∫
R
ei(t−s)ξ

2+ixξF̂ (ξ, s) dξ

= F−1
x

(
e−i(t−s)ξ

2

ψ

(
ξ

4N

))
∗ F (x, s).

Since −1 ≤ t, s ≤ 1 implies −2 ≤ t− s ≤ 2, the term on the right of (2.7) can be replaced

by ∫
R
F−1
x

(
χ[−2,2](t− s)e−i(t−s)ξ

2

ψ

(
ξ

4N

))
∗ F (x, s) ds

= F−1
x

(
χ[−2,2](t)e

−itξ2ψ

(
ξ

4N

))
? F (x, t)

= c1K1 ? F
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where ? denotes the space-time convolution and

K1(x, t) =

∫
R
e−itξ

2+ixξχ[−2,2](t)ψ

(
ξ

4N

)
dξ. (2.8)

Similarly, for γ ≥ 5 we have ∫
R
ei(t−s)∆F (x, s) ds = c2K2 ? F

where

K2(x, t) =

∫
R
e−itξ

2+ixξψ

(
ξ

4N

)
dξ. (2.9)

To finish the proof, we need the following lemma.

Lemma 2.6. Let K1(x, t) and K2(x, t) be as in (2.8) and (2.9). Then, for i = 1, 2

‖Ki‖
L
γ
2
x L
∞
t

. N2s0 . (2.10)

We continue the proof of Proposition 2.5. By applying Young’s inequality and

Lemma 2.6, we obtain

‖Ki ? F‖LγxL∞t ≤ ‖Ki‖
L
γ
2
x L
∞
t

‖F‖
L

γ
γ−1
x L1

t

as desired. We then finish the proof by the usual density argument.

Proof of Lemma 2.6. Let I = [−1, 1] when γ = 2, 3 and I = R when γ ≥ 4. We divide

R× I into three regions

Ω1 := {(x, t) ∈ R× I | |x| ≤ 1

N
}

Ω2 := {(x, t) ∈ R× I | |x| ≥ 64N |t| , |x| > 1

N
}

Ω3 := {(x, t) ∈ R× I | |x| < 64N |t| , |x| > 1

N
},
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and we will estimate Ki(x, t) in each region. For a fixed x ∈ R and 1 ≤ i ≤ 3, we define

Ωx,i := {t ∈ I | (x, t) ∈ Ωi}. We consider the following two cases of values of γ.

Case 1: γ = 2, 3. Note that in this case we always assume that N ≥ 1. By a change of

variable η = ξ
4N

, we obtain

K1(x, t) = N

∫
R
χ[−2,2]e

−i16tN2η2+i4xNηψ(η) dη

A simple estimate on Ω1 shows that

∫
|x|≤ 1

N

|K1(x, t)|
γ
2 dx .

1

N
·N

γ
2

(∫
R
ψ(η) dη

) γ
2 ∼ N

γ−2
2 ≤ N. (2.11)

Next we consider the norm on Ω2. Note that the integrand in K1 vanishes if |η| ≥ 4.

Factoring out −i16tN2η2 + i4xNη = −i4xN(η − 4tN
x
η2) := −ixNφ1(η) yields

|φ′1(η)| = |1− 8
tN

x
η| ≥ 1− 32

∣∣∣∣tNx
∣∣∣∣ ≥ 1− 32 · 1

64
=

1

2
,

for any t ∈ Ωx,2. Therefore, φ1 has no critical point in this region. By Lemma 2.2, the

integral in K1 is bounded by |Nx|−k for all k ≥ 0. In particular, by choosing k = 2, we

obtain |K1(x, t)| . N(N |x|)−2 = N−1|x|−2. We finish by computing the L
γ
2
x L∞t norm on

Ω2:

∫
sup
t∈Ωx,2

|K1(x, t)|
γ
2 dx . N (γ−1)− γ

2 = N
γ−2
2 ≤ N. (2.12)

Now we consider the norm on Ω3. Factoring out the exponential term −i16tN2η2+i4xNη =
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−i4tN2(4η2 − xη

Nt
) := i4tN2φ2(η) yields φ′′2(η) & 1, so we can apply Lemma 2.3 to K1.

|K1(x, t)| = N

∣∣∣∣∫
R
e−itN

2η2+ixNηψ(η) dη

∣∣∣∣
. N · 1

N |t| 12

<
64N

1
2

|x| 12
.

(2.13)

Now we compute the L
γ
2
x L∞t norm of K1. Observe that the finite time restriction yields

|x| . N |t| ≤ 2N on Ω3. Therefore,

∫
sup
t∈Ωx,3

|K1(x, t)|
γ
2 dx .

∫
|x|<64N |t|

N
γ
4 |x|−

γ
4 dx . N

γ
4
− γ−4

4 = N. (2.14)

Combining (2.11),(2.12) and (2.14), we have that

‖K1‖
L
γ
2
x L
∞
t

. N
2
γ .

Case 2: γ ≥ 5. Since the estimates in (2.11) and (2.12) do not require any time restriction,

we get the same results for K2. ∫
Ω1∪Ω2

|K2|
γ
2 dx . N

γ−2
2 . (2.15)

On Ω3, we have the same estimate as in (2.13) for K2. From the fact that |x| > 1
N

in this

region, we have∫
sup
t∈Ωx,3

|K2(x, t)|
γ
2 dx .

∫
|x|> 1

N

N
γ
4 |x|−

γ
4 dx . N

γ
4

+ γ−4
4 = N

γ−2
2 . (2.16)

Note that we did not use the finite time restriction in this case. Combining (2.15) and

(2.16), we have that

‖K2‖
L
γ
2
x L
∞
t

. N
γ−2
γ .
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To estimate a product of functions as seen in the nonlinearity of DNLS, one usually

employs the bilinear estimate which splits the product into estimating individual functions

(see [8] where Bourgain proved the estimate in two dimensions).

Theorem 2.7 (Bilinear Strichartz Estimate). For any u, v ∈ L2
x, we have

‖Pλ(eit∆ueit∆v)‖L2
x,t

. λ−
1
2‖u‖L2‖v‖L2 (2.17)

In addition, if û and v̂ have disjoint supports and α = inf|supp(û)− supp(v̂)| > 0, then we

have

‖eit∆ueit∆v‖L2
x,t

. α−
1
2‖u‖L2‖v‖L2 . (2.18)

Proof. We follow the proof in [37, Theorem 2.9]. By duality, this is equivalent to showing

that for any F ∈ C∞c ,∣∣∣ ∫ F (ξ − η, ξ2 − η2)ψ>λ(ξ − η)û(ξ)¯̂v(η) dξdη
∣∣∣ . λ−

1
2‖F‖L2

ξ,τ
‖û‖L2

ξ
‖v̂‖L2

ξ
.

For each fixed α and β, let (ξαβ, ηαβ) be a solution to α = ξ2 − η2 and β = ξ − η. We see

that the change of variables (ξ, η) 7→ (α, β) gives the Jacobian J = 2(η − ξ). This together

with Cauchy-Schwarz yield∣∣∣ ∫ F (ξ − η, ξ2 − η2)ψ>λ(ξ − η)û(ξ)¯̂v(η) dξdη
∣∣∣

=
∣∣∣ ∫ F (α, β)ψ>λ(β)û(ξαβ)¯̂v(ηαβ)

1

J
dαdβ

∣∣∣
≤ ‖F‖L2

ξ,τ

(∫
|ψ>λ(β)|2|û(ξαβ)|2|v̂(ηαβ)|2 1

J2
dαdβ

) 1
2

= ‖F‖L2
ξ,τ

(∫
|ψ>λ(ξ − η)|2|û(ξ)|2|v̂(η)|2 1

J
dξdη

) 1
2

. λ−
1
2‖F‖L2

ξ,τ
‖û‖L2

ξ
‖v̂‖L2

ξ
.
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This concludes the proof of (2.17). The proof for (2.18) is essentially the same, but ξ − η

is replaced by ξ + η, ξ2 − η2 is replaced by ξ2 + η2 and there is no ψ>λ. The conclusion

follows from the observation that

1

|J |
=

1

2|η − ξ|
&

1

α
.

We will need a variant of this estimate adapted to the Xs space (2.44) for our

trilinear estimate (3.3). The details will be explained in the next section.

2.5 The main linear estimate

In this section, we consider a nonlinear Schrödinger equation

iut + ∆u = F

u(x, 0) = u0.

(2.19)

Let I = [−1, 1] if d = 3, 4 and I = R if d ≥ 5. A solution u(x, t) ∈ R× I can be represented

by the Duhamel formula

u(x, t) = eit∆u0 − i
∫ t

0

ei(t−s)∆F (s) ds. (2.20)

In the proof of Theorem 1.1 and Theorem 1.3, the spaces that we use are based on

the following norms which take a function u supported at dyadic frequency interval ∼ N .

‖u‖YN = inf{N−
1
2‖u1‖L1

xL
2
t

+ ‖u2‖L1
tL

2
x
| u1 + u2 = u}

‖u‖XN = ‖u‖L∞t L2
x

+N−s0‖u‖Ld−1
x L∞t

+N
1
2‖u‖L∞x L2

t

+N−
1
2‖(i∂t + ∆)u‖YN ,

(2.21)
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where L∞t L
2
x = L∞t L

2
x(I × R) and LpxL

q
t = LpxL

q
t (R× I). These norms satisfy the following

linear estimate, which makes them suitable for the contraction argument.

Theorem 2.8. Let u be a solution to equation (2.19). Then,

‖PNu‖XN . ‖u0‖L2
x

+ ‖PNF‖YN . (2.22)

This immediately follows from the Duhamel formula and the following three propo-

sitions.

Proposition 2.9. For any u0 ∈ L2
x(R), we have

‖eit∆PNu0‖XN . ‖u0‖L2
x
. (2.23)

Proof. This follows from the Strichartz estimate (2.3), the smoothing estimate (2.4) and

(2.5a) if d = 3, 4 or (2.5b) if d ≥ 5.

Proposition 2.10. For any function F (x, t) such that PNF ∈ L1
xL

2
t , we have∥∥∥∥∫ t

0

ei(t−s)∆PNF (s) ds

∥∥∥∥
XN

. ‖PNF‖YN . (2.24)

Proof. It follows from Minkowski inequality and (2.23) that∥∥∥∥∫ t

0

ei(t−s)∆PNF (s) ds

∥∥∥∥
XN

≤
∫
R
‖ei(t−s)∆PNF (s)‖XN ds

.
∫
R
‖PNF (s)‖L2

x
ds

= ‖PNF‖L1
tL

2
x
.

Therefore, it suffices to prove that∥∥∥∥∫ t

0

ei(t−s)∆PNF (s) ds

∥∥∥∥
XN

. N−
1
2‖PNF‖L1

xL
2
t
. (2.25)
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Let K0 be the fundamental solution of Schrödinger equation i.e.

K0(x, t) = F−1(e−itξ
2

) =
1√
4πit

eix
2/4t.

Thus, ∫ t

0

ei(t−s)∆PNF (x, s) ds =

∫ t

0

∫
R
PN [K0(x− y, t− s)F (y, s)] dyds

=

∫
R

∫ t

0

PN [K0(x− y, t− s)F (y, s)] dsdy

:=

∫
R
wy dy,

(2.26)

In order to proceed, we will make use of the following lemma.

Lemma 2.11. For any N ∈ 2Z, the function wy defined in (2.26) satisfies the following

estimate:

‖wy‖XN . N−
1
2‖F (y)‖L2

t
. (2.27)

Continuing the proof of Proposition 2.10, we see that the estimate (2.25) follows

immediately from (2.27).

Proof of Lemma 2.11. By translation invariance, it suffices to assume that y = 0. Denote

F0(t) := F (0, t). To proceed, we use the following decomposition which was first introduced

in [3] to deal with Scrödinger maps.

w0(x, t) = −eit∆Lv0(x)− (P<N/2501x>0)eit∆v0(x) + h(x, t), (2.28)

where L : L2
x(R)→ L2

x(R) is an operator and

‖Lv0‖L2
x

+ ‖v0‖L2
x

+N−1(‖∆h‖L2
x,t

+ ‖ht‖L2
x,t

) . N−
1
2‖F0‖L2

t
. (2.29)

27



To prove the claim, first we rewrite the definition of w0 as

w0(x, t) =

∫
R
χ[0,∞)(t− s)PN [K0(x, t− s)]F0(s) ds

− eit∆
∫ 0

−∞
PN [K0(x,−s)]F0(s) ds

= (χ[0,∞)PNK0) ∗t F0 − eit∆
∫ 0

−∞
PNK0(x,−s)F0(s) ds,

(2.30)

where ∗t is the time convolution. The space-time Fourier transform of the first term is

equal to

ψN(ξ)

−τ − ξ2 − i0
F̂0(τ), (2.31)

where F̂0 is the time Fourier transform of F0. We define

v̂0(ξ) := ψN(ξ)F̂0(−ξ2). (2.32)

We see that v0 is supported at frequency ∼ N . By changing variables we obtain the

following estimate,

‖v0‖L2
x
. N−

1
2‖F0‖L2

t
. (2.33)

We apply the spatial Fourier transform to the second term∫ 0

−∞
P̂NK0(x,−s)F0(s) ds = ψN(ξ)

∫ 0

−∞
eisξ

2

F0(s) ds

= ψN(ξ)Ft(χ(0,∞]F0)(−ξ2)

:= L̂v0(ξ).

(2.34)

We see that Lv0 is supported at frequency ∼ N . It follows from a change of variables that

‖Lv0‖L2
x
. N−

1
2‖F0‖L2

t
.

Applying the Fourier transform to eit∆v0,

F(eit∆v0) = ψN(ξ)F̂0(−ξ2)Ft(e−itξ
2

) = ψN(ξ)F̂0(−ξ2)δτ+ξ2 .
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Assume that ξ > 0 and consider the distribution δτ+ξ2 . For any φ ∈ S(R×R), by a change

of variables ∫ ∞
0

φ(ξ,−ξ2) dξ =

∫ 0

−∞

1

2
√
−τ

φ(
√
−τ , τ) dτ.

Thus, 1ξ>0δτ+ξ2 = 1τ<0
1

2
√
−τ δξ−

√
−τ . Therefore, the following computation holds.

F
{

(P<N/2501x>0)eit∆v0

}
(ξ, τ)

= (ψN(ξ)F̂0(−ξ2)δτ+ξ2) ∗
ψ<N/250(ξ)

ξ + i0

=

(
ψN(ξ)

2
√
−τ

F̂0(−ξ2)δξ−
√
−τ

)
∗
ψ<N/250(ξ)

ξ + i0

=
ψN(
√
−τ)F̂0(τ)

2
√
−τ

ψ<N/250(ξ −
√
−τ)

ξ −
√
−τ + i0

= ψN(
√
−τ)ψ<N/250(ξ −

√
−τ)F̂0(τ)

ξ +
√
−τ

2
√
−τ

1

ξ2 + τ + i0
.

With this and (2.31), the space-time Fourier transform of the remainder term is given by

ĥ(ξ, τ) =

(
ψN(ξ)− ψN(

√
−τ)ψ<N/250(ξ −

√
−τ)

ξ +
√
−τ

2
√
−τ

)
F̂0(τ)

−ξ2 − τ − i0

:= A(ξ, τ)F̂0(τ).

(2.35)

The term in the bracket is bounded, supported in {0 < ξ ∼ N} and vanishes when ξ =
√
−τ ,

canceling out the singularity. Since the same result holds for ξ < 0, this implies that

‖∆h‖L2
x,t

+ ‖∂th‖L2
x,t
∼ ‖(ξ2 + |τ |)ĥ‖L2

ξ,τ
. N

1
2‖F̂0(τ)‖L2

τ
. (2.36)

The estimate (2.29) then follows from (2.33) and (2.36).

Remark: It is important to note that v0, Lv0 and h are supported at frequency ∼ N , since

we will need this fact in any proof that employ the decomposition (2.28).

29



We are now ready to prove (2.27). By Bernstein’s inequality and direct L2 integration on

A(ξ, τ),

‖h‖Ld−1
x L∞t

≤ ‖Fth‖Ld−1
x L1

τ
. ‖Fth‖L1

τL
d−1
x

. N
d−3

2(d−1)‖Fth‖L1
τL

2
x

= N
d−3

2(d−1)‖ĥ‖L1
τL

2
ξ

≤ N
d−3

2(d−1)‖A(ξ, τ)‖L2
τ,ξ
‖F̂0(τ)‖L2

τ
,

where A(ξ, τ) is defined as in (2.35) when ξ > 0,. We split the integral in ‖A(ξ, τ)‖2
L2
τ,ξ

as

‖A(ξ, τ)‖2
L2
τ,ξ

=

∫
|ξ−
√
−τ |< N

2100

|A(ξ, τ)|2 dξdτ

+

∫
|ξ−
√
−τ |≥ N

2100

|A(ξ, τ)|2 dξdτ

:= A1 + A2.

Note that ψN(ξ) = ψN(
√
−τ) + (ξ −

√
−τ)O( 1

N
) as ξ →

√
−τ . If |ξ −

√
−τ | < N

2100
, then

ψ<N/250(ξ −
√
−τ) = 1 and it follows that

ψN(ξ)− ψN(
√
−τ)ψ<N/250(ξ −

√
−τ)

ξ +
√
−τ

2
√
−τ

=
ψN(
√
−τ)(

√
−τ − ξ)

2
√
−τ

+ (ξ −
√
−τ)O

( 1

N

)
.

Since A(ξ, τ) is supported in the region ξ ∼ N , we have that

A1 .
∫
τ∼−N2

∫
ξ∼N

1

−2τ(ξ +
√
−τ)2

+
1

N2(ξ +
√
−τ)2

dξdτ .
1

N
.

On the other hand, under the assumptions that, ξ ∼ N and |ξ −
√
−τ | ≥ N

2100
, we have

|ξ2 + τ | = |(ξ +
√
−τ)(ξ −

√
−τ)| & N2

2100
. Thus, by a change of variables (ξ, τ) 7→ (ξ, η)

30



where η := τ + ξ2, we have

A2 ≤
∫ 0

−∞

∫
|ξ−
√
−τ |≥ N

2100

ψN(ξ)

(ξ2 + τ)2
+
ψN(
√
−τ)ψ<N/250(ξ −

√
−τ)

−4τ(ξ +
√
−τ)2

dξdτ

.
∫
ξ∼N

∫
|η|& N2

2100

1

η2
dηdξ +

∫
τ∼−N2

∫
ξ∼N

1

−4τ(ξ +
√
−τ)2

dξdτ

.
∫
ξ∼N

1

N2
dξ +

1

N

.
1

N
,

and a similar result holds when ξ < 0. From this, we can conclude that

‖h‖Ld−1
x L∞t

. N
d−3

2(d−1)‖A(ξ, τ)‖L2
τ,ξ
‖F̂0(τ)‖L2

τ
. N

d−3
2(d−1)

− 1
2‖F (0)‖L2

t
. (2.37)

Similarly, we have the following,

‖h‖L∞x,t . ‖F (0)‖L2
t
. (2.38)

In particular, for d = 3 and N ≥ 1, we have that

N−
1
2‖h‖L2

xL
∞
t
≤ ‖h‖L2

xL
∞
t
. N−

1
2‖F (0)‖L2

t
. (2.39)

Similarly, by Sobolev’s embedding,

N
1
2‖h‖L∞x L2

t
. N

1
2‖h‖L2

tL
∞
x
. N−1‖∆h‖L2

x,t
. N−

1
2‖F (0)‖L2

t
. (2.40)

where we used (2.29) in the last step. Lastly, it follows from (2.37) that

‖h‖L∞t L2
x
≤ ‖h‖L2

xL
∞
t
. N−

1
2‖F (0)‖L2

t
. (2.41)

Putting together (2.37), (2.40) and (2.41), we are done with estimating h. Similar estimate

for the term 1x>0e
it∆v0 follows easily from Strichartz-type estimates (2.3), (2.4) and (2.5).
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In the proof of Theorem 1.1 in the next section, we will incorporate the low

frequency projection P≤1u into the spaces Xs and Y s, which are restricted to the time

interval T = [−1, 1], in order to obtain the local well-posedness. Therefore, we need an

estimate analogous to (2.22) for functions supported at low frequencies, which can be

obtained from the two following propositions:

Proposition 2.12. Let T = [−1, 1]. For any function u0 ∈ L2(R), we have

‖P≤1e
it∆u0‖X1(R×T ) . ‖P≤1u0‖L2

x
. (2.42)

Proof. In view of Strichartz’s estimate (2.3) with p = 2 and q =∞ and (2.5a), it suffices

to prove that

‖P≤1e
it∆u0‖L∞x L2

t (R×T ) . ‖P≤1u0‖L2
x
.

Using the fact that P̂≤1u0(ξ, t) is compactly supported ξ variable and Plancherel theorem,

we have

‖P≤1e
it∆u0‖L∞x L2

t (R×T ) ≤ ‖P≤1e
it∆u0‖L2

tL
∞
x (T×R) ≤ ‖ψ(ξ)û0‖L2

tL
1
ξ(T×R)

≤ ‖ψ(ξ)û0‖L∞t L2
ξ(T×R) = ‖P≤1u0‖L2

x
.

Proposition 2.13. Let T = [−1, 1]. For any function F (x, t) such that P≤1F ∈ Y1, we

have ∥∥∥∫ t

0

ei(t−s)∆P≤1F (x, s) ds
∥∥∥
X1(R×T )

. ‖P≤1F‖Y1(R×T ). (2.43)

Proof. As in the proof of Proposition 2.10, it follows from Minkowski inequality that∥∥∥∥∫ t

0

ei(t−s)∆P≤1F (s) ds

∥∥∥∥
X1(R×T )

. ‖P≤1F‖L1
tL

2
x(T×R).
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Thus, it suffices to prove that∥∥∥∥∫ t

0

ei(t−s)∆P≤1F (s) ds

∥∥∥∥
X1(R×T )

. ‖P≤1F‖L1
xL

2
t (R×T ).

Note that for t ∈ [0, 1], we can rewrite∫ t

0

ei(t−s)∆P≤1F (x, s) ds =

∫
R
χ[0,1)(t− s)χ[0,1)(s)e

i(t−s)∆P≤1F (x, s) ds

:= K(x, t) ? χ[0,1)(t)P≤1F (x, t)

where ? is the space-time convolution and

K(x, t) =

∫
R
e−itξ

2+ixξχ[0,1)(t)ψ

(
ξ

N

)
dξ,

which obeys the estimate (2.10) with N = 1. Hence, by Young’s inequality

∥∥∥χ[0,1](t)
[
K(x, t) ? χ[0,1)(t)P≤1F (x, t)

] ∥∥∥
L2
xL
∞
t

. ‖χ[0,1](t)P≤1F‖L2
xL

1
t
.

We use the finite time restriction and apply Bernstein’s and Minkowski’s inequality.

‖χ[0,1](t)P≤1F‖L2
xL

1
t
. ‖χ[0,1](t)P≤1F‖L2

x,t

. ‖χ[−1,1](t)P≤1F‖L2
tL

1
x

≤ ‖χ[−1,1](t)P≤1F‖L1
xL

2
t
.

Since similar proof applies for the time interval [−1, 0], we obtain

∥∥∥∫ t

0

ei(t−s)∆P≤1F (x, s) ds
∥∥∥
L2
xL
∞
t (R×T )

. ‖P≤1F‖L1
xL

2
t (R×T ).

This estimate has the following two consequences. First, from Minkowski’s inequality, we

have ∥∥∥∫ t

0

ei(t−s)∆P≤1F (x, s) ds
∥∥∥
L∞t L

2
x(T×R)

≤
∥∥∥∫ t

0

ei(t−s)∆P≤1F (x, s) ds
∥∥∥
L2
xL
∞
t (R×T )

. ‖P≤1F‖L1
xL

2
t (R×T ).
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Secondly, it follows from Minkowski’s inequality, Bernstein’s inequality and the finite time

restriction that∥∥∥∫ t

0

ei(t−s)∆P≤1F (x, s) ds
∥∥∥
L∞x L

2
t (R×T )

≤
∥∥∥∫ t

0

ei(t−s)∆P≤1F (x, s) ds
∥∥∥
L2
tL
∞
x (T×R)

.
∥∥∥∫ t

0

ei(t−s)∆P≤1F (x, s) ds
∥∥∥
L2
x,t(R×T )

.
∥∥∥∫ t

0

ei(t−s)∆P≤1F (x, s) ds
∥∥∥
L2
xL
∞
t (R×T )

. ‖P≤1F‖L1
xL

2
t (R×T ).

This concludes the proof of (2.43).

The essential part of the contraction argument is a multilinear estimate: an estimate

of the form ‖∂xu1

∏d
i=2 ui‖Y s .

∏d
i=1 ‖ui‖Xs . One of the main tools that we will use to

prove this is the following Bilinear Strichartz estimate for the Xs space.

Theorem 2.14. Let N �M and suppose that u and v are supported at frequency N and

M , respectively. Then, we have

‖uv‖L2
x,t

. N−
1
2‖u‖XN‖v‖XM . (2.44)

Proof. Let F1(x, t) = (i∂t + ∆)u(x, t) and F2(x, t) = (i∂t + ∆)v(x, t). We will prove that

‖uv‖L2
x,t

. N−
1
2

(
‖u(0)‖L2

x
+ ‖F1‖L1

tL
2
x

) (
‖v(0)‖L2

x
+ ‖F2‖L1

tL
2
x

)
(2.45)

‖uv‖L2
x,t

. N−
1
2

(
‖u(0)‖L2

x
+N−

1
2‖F1‖L1

xL
2
t

)(
‖v(0)‖L2

x
+M− 1

2‖F2‖L1
xL

2
t

)
(2.46)

‖uv‖L2
x,t

. N−
1
2

(
‖u(0)‖L2

x
+N−

1
2‖F1‖L1

xL
2
t

) (
‖v(0)‖L2

x
+ ‖F2‖L1

tL
2
x

)
. (2.47)

‖uv‖L2
x,t

. N−
1
2

(
‖u(0)‖L2

x
+ ‖F1‖L1

tL
2
x

) (
‖v(0)‖L2

x
+M− 1

2‖F2‖L1
xL

2
t

)
. (2.48)
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To achieve (2.45), we consider the expansion of uv̄ after using the Duhamel formula on u

and v.

u(x, t) = eit∆u(0)− i
∫ t

0

ei(t−s)∆F1(s) ds

v(x, t) = eit∆v(0)− i
∫ t

0

ei(t−s)∆F2(s) ds,

It follows from the bilinear estimate for free solutions (2.18) that

‖eit∆u(0)eit∆v(0)‖L2
x,t

. N−
1
2‖u(0)‖L2

x
‖v(0)‖L2

x

By the Minkowski inequality, we have that

‖
∫ t

0

ei(t−s)∆F1(s)eit∆v(0) ds‖L2
x,t

. N−
1
2

∫
R
‖F1(s)‖L2

x
‖v(0)‖L2

x
ds

= N−
1
2‖F1‖L1

tL
2
x
‖v(0)‖L2

x
.

Similarly,

‖
∫ t

0

eit∆u(0)ei(t−s)∆F2(s) ds‖L2
x,t

. N−
1
2‖u(0)‖L2

x
‖F2‖L1

tL
2
x
.

With the same proof, we can estimate the last term in the product.

‖
∫ t

0

∫ t

0

ei(t−s)∆F1(s)ei(t−s)∆F2(s̃) dsds̃‖L2
x,t

. N−
1
2‖F1‖L1

tL
2
x
‖F2‖L1

tL
2
x
,

and (2.45) follows.

To prove (2.46), we recall (2.28) which allows us to decompose u and v as follows

u(x, t) = eit∆u(0)−
∫
R
eit∆Luy + (PN/2501x>0)eit∆uy − h1,y(x, t) dy (2.49)

v(x, t) = eit∆v(0)−
∫
R
eit∆Lvy′ + (PM/2501x>0)eit∆vy′ − h2,y′(x, t) dy

′, (2.50)
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where L : L2
x → L2

x is a bounded operator and uy,Luy and h1,y are defined similarly to

(2.35), (2.34) and (2.35), respectively. From the remark following (2.36), we see that these

functions are supported at frequency ∼ N . Similar vy′ ,Lvy′ , h2,y′ Moreover, we have

‖Luy‖L2
x

+ ‖uy‖L2
x

+
1

N
(‖∆hy‖L2

x,t
+ ‖∂thy‖L2

x,t
) .

1

N
1
2

‖F1(y, t)‖L2
t
. (2.51)

Similar conclusions hold for vy′ ,Lvy′ and h2,y′ at frequency ∼ M with corresponding

nonlinearity F2(y
′, t). Consider each term in the product uv. Let ψN/250 be the function

defined by PN/250f := ψN/250 ∗ f . Observe that for any G ∈ L2, we have that

‖(PN/2501x>0)eit∆uyG(x)‖L2
x,t

= ‖(ψN/250 ∗ 1x>0)eit∆uyG(x)‖L2
x,t

≤
∫
‖1x−z>0e

it∆uy(x)G(x)‖L2
x,t
|ψN/250(z)| dz

≤
∫
‖eit∆uy(x)G(x)‖L2

x,t
|ψN/250(z)| dz

. ‖eit∆uyG‖L2
x,t
.

(2.52)

With this, we can take care of all the terms involving PN/2501x>0 in the expansion of uv.

For any A,B ∈ L2, we have

‖(PN/2501x>0)eit∆uye
it∆B‖L2

x,t
. ‖eit∆uyeit∆B‖L2

x,t

‖(PN/2501x>0)eit∆uyh2,y′‖L2
x,t

. ‖eit∆uyh2,y′‖L2
x,t
.

Similarly,

‖eit∆A(PN/2501x>0)eit∆vy′‖L2
x,t

. ‖eit∆Aeit∆vy′‖L2
x,t

‖h1,y(PN/2501x>0)eit∆vy′‖L2
x,t

. ‖h1,ye
it∆vy′‖L2

x,t
,
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and lastly, ∥∥∥ [(PN/2501x>0)eit∆uy
] [

(PN/2501x>0)eit∆vy′
] ∥∥∥

L2
x,t

.
∥∥∥eit∆uy [(PN/2501x>0)eit∆vy′

] ∥∥∥
L2
x,t

. ‖eit∆uyeit∆vy′‖L2
x,t
.

Therefore, we only have to worry about the terms of the forms eit∆Aeit∆B, eit∆Ah2,y′ ,

h1,ye
it∆B and h1,yh2,y′ . Note that any choice of A that is not u(0) is an integral with

respect to y. The same holds for B. By the bilinear Strichartz estimate (2.18), one obtains

‖eit∆Aeit∆B‖L2
x,t

. N−
1
2‖A‖L2

x
‖B‖L2

x
. (2.53)

We get the desired bound by observing that either we have ‖A‖L2
x

= ‖u(0)‖L2
x

or ‖A‖L2
x
.∫

R ‖uy‖L2
x
dy . N−

1
2‖F1‖L1

xL
2
t

from (2.51). It remains to estimate the terms that involve

h1,y and h2,y. By Hölder and Bernstein inequalities, (2.4) and (2.39), We have that

‖eit∆Ah2,y′‖L2
x,t

. ‖eit∆A‖L∞x L2
t
‖h2,y′‖L2

xL
∞
t

. N−
1
2M− 1

2‖A‖L2
x
‖F2(y′)‖L2

t
.

(2.54)

By taking
∫
R · dy

′ when A = u(0) and
∫
R

∫
R · dydy

′ when A = Luy or A = uy on both

sides of the inequality and applying (2.29), we get the desired bound. On the other

hand, we get the estimate for ‖h1,ye
it∆B‖L2

x,t
by observing that from (2.29), we have

‖∆h1,y‖L2
x,t

. N−
3
2‖F1‖L2

t
. Hence,

‖h1,ye
it∆B‖L2

x,t
. ‖h1,y‖L2

x,t
‖eit∆B‖L∞x,t

. N−
3
2M

1
2‖F1‖L2

x
‖B‖L∞t L2

x

≤ N−
1
2M− 1

2‖F1‖L2
x
‖B‖L∞t L2

x
.

(2.55)
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Lastly, we use (2.39) and (2.40) to estimate the remaining term

‖h1,yh2,y′‖L2
x,t
≤ ‖h1,y‖L∞x L2

t
‖h2,y′‖L2

xL
∞
t

. N−1M− 1
2‖F1(y)‖L2

t
‖F2(y′)‖L2

t
.

(2.56)

Taking
∫
R

∫
R · dydy

′, we obtain (2.46). We are now left to proving (2.47) and (2.48). The

proof is a mix of the ideas we used to prove (2.45) and (2.46). For (2.47), we write u using

the decomposition (2.49) and v using the Duhamel formula. On the product expansion

of ‖uv‖L2
x,t

, we apply the triangle inequality and Minkowski inequality. We then apply

the bilinear estimate (2.18) to any term of the form ‖eit∆Aeit∆B‖L2
x,t

to get the desired

bound. This leaves us with the terms of the form ‖eit∆Ah2,y′‖L2
x,t

, on which we can apply

(2.54). In the same manner, we can prove (2.48) using the Duhamel formula for u and the

decomposition (2.50) for v. We finish the proof by observing that the terms of the form

‖h1,ye
it∆B‖L2

x,t
can be bounded using (2.55).

2.6 Xs,b space

This new class of function spaces was introduced by Bourgain ([7]) under an

observation that if the we take the space-time Fourier transform of a linear dispersive

equation, for example,

F(i∂tu+ ∆u)(ξ, τ) = 0

(τ + ξ2)Fu(ξ, τ) = 0,
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then the support of Fu(ξ, τ) lives in the parabola {τ + ξ2 = 0}. Since, for a short time,

solutions to the Cauchy problem for a nonlinear Schrödinger equation behaves like the

linear solution, this suggest that the space-time Fourier transform of these solutions will be

supported in a small oneighborhood of this parabola. This observation gives rise to the

following norm:

‖u‖Xs,b := ‖〈ξ〉s〈τ + ξ2〉bFu(ξ, τ)‖L2
ξ,τ
,

which measure the regularity of u by the 〈ξ〉s factor and the “closeness” to the linear

solution by the 〈τ + ξ2〉b factor. The space that we will be using is a modification of this

norm using the Littlewood-Paley projections. For each N ∈ 2Z, let AN be a set defined by

AM := {(ξ, τ) : M ≤ |τ + ξ2| ≤ 2M}. (2.57)

Recall that ũ(ξ, τ) is the space-time Fourier transform of u(x, t). The Ẋ0,b,q space is the

closure of the test functions under the following norm:

‖u‖Ẋ0,b,q :=
( ∑
M∈2Z

(N b‖ũ‖L2
ξ,τ (AM ))

q
) 1
q
.

Previously, the nonlinear space Ẏ s is based on the space ZN defined by the following norm

on each frequency N .

‖u‖ZN := N−
1
2‖u‖L1

xL
2
t
.

We modify this by adding the Ẋ0,− 1
2
,1 space.

YN := ZN + Ẋ0,− 1
2
,1.

The solution space is defined by

‖u‖XN = ‖u(0)‖L2
x

+ ‖(i∂t + ∆)u‖YN
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‖u‖Ẋs =
( ∑
N∈2Z

N2s‖PNu‖2
XN

) 1
2

‖u‖Xs = ‖u‖Ẋ0 + ‖u‖Ẋs , (2.58)

and the nonlinear space is defined by

‖u‖Ẏ s =
( ∑
N∈2Z

N2s‖PNu‖2
YN

) 1
2

‖u‖Y s = ‖u‖Ẏ 0 + ‖u‖Ẏ s .

(2.59)

The following proposition shows that any estimates of free solutions that we proved in

Chapter 2 can be extended to functions in XN using the Schrödinger equation version of

Lemma 4.1 from Tao ([49]).

Proposition 2.15 ([49]). Let S be any space-time Banach space that satisfies the following

inequality,

‖g(t)F (x, t)‖S ≤ ‖g‖L∞t ‖F (x, t)‖S, (2.60)

for any F ∈ S and g ∈ L∞t (R). Let T : L2(R)× . . .× L2(R)→ S be a spatial multilinear

operator satisfying

‖T (eit∆u1,0, . . . , e
it∆uk,0)‖S .

k∏
i=1

‖ui,0‖L2
x

for any u1,0, . . . , uk,0 ∈ L2
x(R). Then the following estimate

‖T (u1, . . . , uk)‖S .
k∏
i=1

(‖ui(0)‖L2
x

+ ‖(i∂t + ∆)ui‖Ẋ0,− 1
2 ,1

) (2.61)

holds true for any u1, . . . , uk ∈ Ẋ0,− 1
2
,1 provided that ui is supported at frequency ∼ Ni for

1 ≤ i ≤ k.
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With this proposition, we can obtain several Strichartz-type estimates for XN that

will be useful later on.

Corollary 2.16. For any u ∈ XN , we have the following estimates:

‖u‖L∞t L2
x∩L6

t,x
. ‖u‖XN (2.62)

‖u‖L∞x L2
t
. N−

1
2‖u‖XN (2.63)

‖u‖L4
xL
∞
t
. N

1
4‖u‖XN (2.64)

Proof. We apply Proposition 2.15 to linear estimates (2.3), (2.4) and (2.5), and bilinear

estimates (2.17) and (2.18).

We also have the bilinear estimate adapted to the space XN .

Proposition 2.17. Let N,M and λ be dyadic numbers such that M ≤ N and λ . N . For

any functions u and v supported at frequency ∼ N and ∼M , respectively, we have

‖P>λ(uv̄)‖L2
t,x

. λ−
1
2‖u‖XN‖v‖XM (2.65)

In addition, if û and v̂ have disjoint supports and α = inf|supp(û)− supp(v̂)|, then we have

‖uv‖L2
t,x

. α−
1
2‖u‖XN‖v‖XM . (2.66)

Proof. As before, the bilinear estimate for homogeneous solutions (2.17) and (2.18) is the

keys to proving these estimates. It suffices to prove (2.65), since (2.66) will follow in a

similar manner. Denote F1 := (i∂t + ∆)u and F2 := (i∂t + ∆)v. Using Proposition 2.15

with T (u1, u2) = u1u2 to extend the bilinear estimate (2.17), we obtain

‖P>λ(uv̄)‖L2
t,x

. λ−
1
2 (‖u(0)‖L2

x
+ ‖F1‖Ẋ0,− 1

2 ,1
)(‖v(0)‖L2

x
+ ‖F2‖Ẋ0,− 1

2 ,1
).
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Therefore, it suffices to prove that for any u ∈ XN and v ∈ XM ,

‖P>λ(uv̄)‖L2
t,x

. λ−
1
2 (‖u(0)‖L2

x
+ ‖F1‖ZN )(‖v(0)‖L2

x
+ ‖F2‖ZM ), (2.67)

‖P>λ(uv̄)‖L2
t,x

. λ−
1
2 (‖u(0)‖L2

x
+ ‖F1‖ZN )(‖v(0)‖L2

x
+ ‖F2‖Ẋ0,− 1

2 ,1
), (2.68)

‖P>λ(uv̄)‖L2
t,x

. λ−
1
2 (‖u(0)‖L2

x
+ ‖F1‖Ẋ0,− 1

2 ,1
)(‖v(0)‖L2

x
+ ‖F2‖ZN ). (2.69)

We use the decomposition from (2.28) for u. However, in this case, the frequency localization

at N
250

is replaced by λ
250

:

u(x, t) = eit∆u(0)−
∫
R
eit∆Luy + (Pλ/2501x>0)eit∆uy − hy(x, t) dy,

where L : L2
x → L2

x is a bounded operator and uy,Luy and hy are defined similarly to

(2.32), (2.34) and (2.35), respectively. From the remark following (2.36), we see that these

functions are supported at frequency ∼ N . Moreover, the following estimate still holds

even with the frequency replacement.

‖Luy‖L2
x

+ ‖uy‖L2
x

+
1

N
(‖∆hy‖L2

x,t
+ ‖∂thy‖L2

x,t
) .

1

N
1
2

‖F1(y, t)‖L2
t
. (2.70)

We consider all the possible terms in P>λ(uv̄). First, we consider all the terms that involve

Pλ/2501x>0. For any G ∈ L2
x, we have that

P>λ

[
(Pλ/2501x>0)eit∆uyG

]
=P>λ

[
(Pλ/2501x>0)P�λ(e

it∆uyG)
]

+ P>λ

[
(Pλ/2501x>0)P&λ(e

it∆uyG)
]

=P>λ

[
(Pλ/2501x>0)P&λ(e

it∆uyG)
]
.

Let ψN/250 be the function defined by PN/250f := ψN/250 ∗ f . Consequently,

∥∥∥P>λ [(Pλ/2501x>0)eit∆uyG
] ∥∥∥

L2
x,t
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=
∥∥∥P>λ [(Pλ/2501x>0)P&λ(e

it∆uyG)
] ∥∥∥

L2
x,t

.
∥∥∥(Pλ/2501x>0)P&λ(e

it∆uyG)
∥∥∥
L2
x,t

=
∥∥∥(ψλ/250 ∗ 1x>0)P&λ(e

it∆uyG)
∥∥∥
L2
x,t

≤
∫ ∥∥∥1x−z>0P&λ

[
eit∆uy(x)G(x)

] ∥∥∥
L2
x,t

|ψN/250(z)| dz

. ‖P&λ(e
it∆uyG)‖L2

x,t
.

In other words, to estimate such terms, we can take out the Pλ/2501x>0 factor just like

what we did in the proof of Theorem 2.14. Following the same line of proof as for (2.46)

but using a different bilinear estimate (2.17) instead of (2.18), we obtain (2.67). To prove

(2.68) and (2.69), we will show that for any v0 ∈ L2
x supported at frequency ∼M ,

‖P>λ(ueit∆v0)‖L2
x,t

. λ−
1
2 (‖u(0)‖L2

x
+ ‖F1‖ZN )‖v0‖L2

x
, (2.71)

which, in view of Proposition 2.15 with T (v) = P>λ(uv̄), leads to (2.68). From (2.17) and

(2.70), we obtain

‖P>λ(eit∆u(0)eit∆v0)‖L2
x,t

. λ−
1
2‖u(0)‖L2

x
‖v0‖L2

x
,

‖P>λ(eit∆Luyeit∆v0)‖L2
x,t

. λ−
1
2‖Luy‖L2

x
‖v0‖L2

x
,

. (λN)−
1
2‖F1(y, t)‖L2

t
‖v0‖L2

x

‖P&λ(e
it∆uyeit∆v0)‖L2

x,t
. λ−

1
2‖uy‖L2

x
‖v0‖L2

x

. (λN)−
1
2‖F1(y, t)‖L2

t
‖v0‖L2

x
.
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We use the last inequality to estimate the term in P>λ(ueit∆v0) that involves Pλ/2501x>0.

∥∥∥P>λ [(Pλ/2501x>0)eit∆uyeit∆v0

] ∥∥∥
L2
x,t

. ‖P&λ(e
it∆uyeit∆v0)‖L2

x,t

. (λN)−
1
2‖F1(y, t)‖L2

t
‖v0‖L2

x
.

For the remaining term, we use the Hölder inequality, (2.70) and the fact that λ . N .

‖P>λ(hyeit∆v0)‖L2
x,t

. ‖hy‖L2
x,t
‖eit∆v0‖L∞x,t

.
M

1
2

N
3
2

‖F1(y, t)‖L2
t
‖v0‖L2

x

. (λN)−
1
2‖F1(y, t)‖L2

t
‖v0‖L2

x
.

(2.72)

Recalling that ‖(i∂t + ∆)u‖ZN = N−
1
2‖(i∂t + ∆)u‖L1

xL
2
t
, these estimates yield (2.71) via the

Minkowski inequality. The proof for (2.69) is similar, except at (2.72) where we have the

following modification:

‖P>λ(eit∆u0hy′)‖L2
x,t

. ‖eit∆u0‖L∞x L2
t
‖hy′‖L2

xL
∞
t

. (NM)−
1
2‖u0‖L2

x
‖F2(y′, t)‖L2

t

. (λM)−
1
2‖u0‖L2

x
‖F2(y′, t)‖L2

t
.

For the second to last inequality, we used the smoothing estimate (2.4) and (2.37) with

d = 3. This concludes the proof of (2.65).

We will also use the following estimate which was taken from Tao ([49]) and modified

to be suitable to our spaces.

Proposition 2.18. Suppose that u is supported at frequency ∼ N . Then we have

‖u‖
Ẋ0, 12 ,∞

. ‖u‖XN . (2.73)
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Proof. Consider the Duhamel’s formula of u.

u(x, t) = eit∆u0 − i
∫ t

0

ei(t−s)∆F1(s) ds− i
∫ t

0

ei(t−s)∆F2(s) ds, (2.74)

where F1 ∈ ZN and F2 ∈ Ẋ0,− 1
2
,1. For i = 1, 2, we split the term∫ t

0

ei(t−s)∆Fi(s) ds =

∫ t

−∞
ei(t−s)∆Fi(s) ds− eit∆

∫ 0

−∞
e−is∆Fi(s) ds.

Since the Ẋ0, 1
2
,∞ seminorm vanishes on any free solution, it suffices to estimate the first

term. For F1, we recall the computation (2.26) from the proof of Lemma 2.11 that the first

term is equal to ∫
wy dy where w̃y =

ψN(ξ)

−τ − ξ2 − i0
F̂1(y, τ).

With a direct integration, we see that

‖χAM w̃‖L2
x,τ
∼ 1

N
1
2

(∫ ∫
ξ∼N

|ξ|
(τ + ξ2)2

χAM [F̂1(y, τ)]2 dξdτ
) 1

2

.
1

N
1
2M

1
2

‖F1(y, t)‖L2
t
,

From the definition of Ẋ0, 1
2
,∞, it follows that

∥∥∥∫ t

−∞
ei(t−s)∆F1(s) ds

∥∥∥
Ẋ0, 12 ,∞

. ‖F1‖ZN .

On the other hand, we consider the space-time Fourier transform

F
∫
χ(0,∞)(t− s)ei(t−s)∆F2(s) ds =

F̃2,M(ξ, τ)

−τ − ξ2 − i0
.

It follows from the Plancherel’s theorem that

∥∥∥∫ t

−∞
ei(t−s)∆F2(s) ds

∥∥∥
Ẋ0, 12 ,∞

. ‖F2‖Ẋ0,− 1
2 ,1
,

and the conclusion immediately follows.
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2.7 V p space

Toward the end of Chapter 4, we will employ another space V pB of functions of

bounded p variation with respect to a Banach space B defined by the seminorm:

‖u‖V pB := sup
−∞<t0<...<tK<∞

(
K∑
k=1

‖u(tk)− u(tk−1)‖pB

)1/p

,

and let V p
−,rcB be the space of right continuous functions f in V pB satisfying f(−∞) = 0.

Let 1 ≤ p < q <∞. Since lp(N) ⊂ lq(N), it follows from the definition that

V pB ⊂ V qB. (2.75)

We refer to [17] for a complete treatment of these spaces as main tools to study well-

posedness problems for PDEs. For our purpose, however, we only need the following

proposition:

Proposition 2.19 ([35], Corollary 3.3). Let p and q be indices satisfying

2

p
+

1

q
=

1

2
. 4 ≤ p ≤ ∞.

For any function u ∈ V 2L2
x, the following estimate holds:

‖eit∆u‖LptLqx . ‖u‖V 2L2
x
. (2.76)

We mention here the main reason that this space will be employed later on in

Section 4.6, namely, the fact that it commutes with the l2-type spaces.

Proposition 2.20. For any Banach space B and any sequence of functions fn : R→ B,

we have ∥∥∥( ∞∑
n=1

‖fn(·)‖2
B

) 1
2
∥∥∥
V 2R
≤
( ∞∑

n=1

‖fn‖2
V 2B

) 1
2

. (2.77)
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Proof. We have that

∥∥∥( ∞∑
n=1

‖fn(·)‖2
B

) 1
2
∥∥∥
V 2R

= sup
−∞<t0<...<tK<∞

(
K∑
k=1

∞∑
n=1

‖fn(tk)− fn(tk−1)‖2
B

) 1
2

≤

(
∞∑
n=1

{
sup

−∞<t0<...<tK<∞

K∑
k=1

‖fn(tk)− fn(tk−1)‖2
B

}) 1
2

=

( ∞∑
n=1

‖fn‖2
V 2B

) 1
2

.
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Chapter 3

Well-posedness results

3.1 Proof of Theorem 1.1

Let s be the exponent which satisfies the condition in Theorem 1.1. To obtain

the local well-posedness, we redefine the spaces Xs and Y s from (2.21) in a way that the

projections on the low frequencies are combined together. Since we assume a finite time

restriction, so any spaces mentioned below are defined on the product space R× [−1, 1].

‖u‖ZN = ‖u‖L∞t L2
x∩L4

tL
∞
x ∩L6

x,t
+N−

1
2‖u‖L2

xL
∞
t

+N
1
2‖u‖L∞x L2

t

‖u‖YN = inf{N−
1
2‖u1‖L1

xL
2
t

+ ‖u2‖L1
tL

2
x
| u1 + u2 = u}

‖u‖XN = ‖u‖ZN + ‖(i∂t + ∆)u‖YN

‖u‖Xs = ‖P≤1u‖X1 +
( ∑
N∈2N

N2s‖PNu‖2
XN

) 1
2

‖u‖Y s = ‖P≤1u‖Y1 +
( ∑
N∈2N

N2s‖PNu‖2
YN

) 1
2
.

(3.1)
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The previous section prepares us all the estimates we need in order to obtain the linear

estimate for the Xs and Y s spaces; It follows from (2.22), (2.42) and (2.43) that for any

s ≥ 1
2
,

‖u‖Xs . ‖u0‖Hs + ‖F‖Y s . (3.2)

We are now ready to prove the multilinear estimate.

Theorem 3.1. Let d ≥ 3. For any u1, u2, . . . , ud ∈ Xs where s ≥ 1
2
, we have the following

estimate. ∥∥∥(∂xu1)
d∏
i=2

ui

∥∥∥
Y s

.
d∏
i=1

‖ui‖Xs . (3.3)

Proof. It suffices to prove that

∥∥∥(∂xu1)
d∏
i=2

ui

∥∥∥
Y s

. ‖u1‖Xs

d∏
i=2

‖ui‖X 1
2
. (3.4)

which implies (3.3) since Xs ⊂ X
1
2 due to the absence of low frequency projections. In

view of (2.42) and (2.43), we can treat P≤1 as P1, so it suffices to estimate the summation

over high frequencies:

∑
N,N1,...,Nd

N s
∥∥∥PN(PN1∂xu1

d∏
i=2

PNiui)
∥∥∥
Y s
, (3.5)

where N ≥ 1 and Ni ≥ 1 for all i in the summation. We can assume that N1 ≥

N2 ≥ . . . ≥ Nd and N . N1. This is because u1 is the only term in (3.5) that has a

derivative, and so any other frequency distribution would lead to a better estimate. We

define cN1,1 = N s
1‖PN1u1‖XN1

and cNi,i = N
1
2
i ‖PNiui‖XNi for 2 ≤ i ≤ d. Thus, we see

that ‖cN1,1‖l2(N1) = ‖u1‖Xs and ‖cNi,i‖l2(Ni) = ‖ui‖X 1
2

for 2 ≤ i ≤ d. In order to obtain
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the l2 summation of cNi,i, we will repeatedly be using the following application of the

Cauchy-Schwarz inequality:

∑
Nj ,...,Nd

1

Na
j

d∏
i=j

cNi,i ≤
∑

Nj ,...,Nd

d∏
i=j

1

N
a
d
i

cNi,i ≤
d∏
i=j

∑
Ni≥1

1

N
a
d
i

cNi,i

.
d∏
i=j

‖ui‖X 1
2
,

(3.6)

for any a > 0. To prove (3.4), we split the summation over three different kinds of frequency

interactions.

∑
N,N1,...,Nd

N s
∥∥∥PN(PN1∂xu1

d∏
i=2

PNiui)
∥∥∥
Y s

=
(∑

I

+
∑
II

+
∑
III

)
N s
∥∥∥PN(PN1∂xu1

d∏
i=2

PNiui)
∥∥∥
Y s

Each of the summations contains certain ranges of N,N1, . . . , Nd described by the following

cases:

I). N1 � N2 and N ∼ N1.

By Hölder inequality, (2.5) with γ = 2 and (3.6),

∑
N1,...,Nd

∥∥∥PN(PN1∂xu1

d∏
i=2

PNiui)
∥∥∥
L1
xL

2
t

.
∑
Ni

‖PN1∂xu1PN2u2‖L2
x,t
‖PN3u3‖L2

xL
∞
t

d∏
i=4

‖PNiui‖L∞x,t

.
∑
Ni

1

N
s− 1

2
1 N

1
2

2

d∏
i=1

cNi,i

.
1

N s− 1
2

∑
Ni

1

N
1
2

2

d∏
i=1

cNi,i

.
1

N s− 1
2

∑
N1∼N

cN1,1

d∏
i=2

‖ui‖X 1
2
.
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Therefore,

∑
I

N s− 1
2

∥∥∥PN(PN1∂xu1

d∏
i=2

PNiui)
∥∥∥
L1
xL

2
t

.
∑
N1∼N

cN1,1

d∏
i=2

‖ui‖X 1
2
.

Taking the l2 summation with respect to N ≥ 1, we obtain (3.4).

II). N1 ∼ N2 � N3 ≥ . . . ≥ Nd and N . N1.

In this case, we use the bilinear estimate for the product PN1∂xu1PN3u3 and put PN2u2 in

the Strichartz space L4
tL
∞
x :

∑
N1,...,Nd

∥∥∥PN(PN1∂xu1

d∏
i=2

PNiui)
∥∥∥
L1
tL

2
x

.
∑

N1,...,Nd

∥∥∥PN(PN1∂xu1

d∏
i=2

PNiui)
∥∥∥
L

4
3
t L

2
x

.
∑
Ni

‖PN1∂xu1PN3u3‖L2
t,x
‖PN2u2‖L4

tL
∞
x

d∏
i=4

‖PNiui‖L∞t,x

.
∑
Ni

1

N
s− 1

2
1 N

1
2

2 N
1
2

3

d∏
i=1

cNi,i

.
( ∑
N1∼N2

1

N s
1

cN1,1cN2,2

)( ∑
N3,...,Nd

1

N
1
2

3

d∏
i=3

cNi,i

)
.
( ∑
N1&N

1

N s
1

cN1,1

) 1
2

d∏
i=2

‖ui‖Ẋ 1
2
,

where we used (3.6) in the second to last step. Therefore,

∑
II

N2s‖PN(PN1∂xu1

d∏
i=2

PNiui)‖2
L1
tL

2
x
. ‖u1‖2

Xs

d∏
i=2

‖ui‖2

X
1
2
.

III). N1 ∼ N2 ∼ N3 ≥ . . . ≥ Nd and N . N1.

We divide the proof into two cases depending on the degree d.
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A). d = 3.

Even though we cannot use the bilinear estimate in this case, the fact that N1 ∼ N2 ∼

N3 allows us to cancel the derivative loss in PN1∂xu1 by the 1
2

regularity from PN2u2

and PN3u3 via the Hölder inequality:

∑
N1∼N2∼N3

∥∥∥PN [(PN1∂xu1)PN2u2PN3u3]
∥∥∥
L1
tL

2
x

.
∑

N1∼N2∼N3

∥∥∥PN [(PN1∂xu1)PN2u2PN3u3]
∥∥∥
L2
t,x

.
∑

N1∼N2∼N3

‖PN1∂xu1‖L6
t,x
‖PN2u2‖L6

t,x
‖PN3u3‖L6

t,x

.
∑

N1∼N2∼N3

N1−s
1

N
1
2

2 N
1
2

3

cN1,1cN2,2cN3,3

.
( ∑
N1&N

1

N s
1

cN1,1

) 1
2‖u2‖X 1

2
‖u3‖X 1

2
,

where the last step follows from the Cauchy-Schwarz inequality on cN1,1cN2,2cN3,3.

B). d ≥ 4.

We again take advantage of the finite time restriction and put PNiui for 1 ≤ i ≤ 4 in

suitable Strichartz spaces, namely L∞t L
2
x and L4

tL
∞
x .

∑
N1,...,Nd

∥∥∥PN(PN1∂xu1

d∏
i=2

PNiui)
∥∥∥
L1
tL

2
x

.
∑

N1,...,Nd

∥∥∥PN(PN1∂xu1

d∏
i=2

PNiui)
∥∥∥
L

4
3
t L

2
x

.
∑
Ni

‖PN1∂xu1‖L∞t L2
x

4∏
i=2

‖PNiui‖L4
tL
∞
x

d∏
i=5

‖PNiui‖L∞t,x

.
∑
Ni

N1−s
1

N
1
2

2 N
1
2

3 N
1
2

4

d∏
i=1

cNi,i
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.
( ∑
N1,N2,N3

1

N s
1

cN1,1cN2,2cN3,3

)( ∑
N4...,Nd

1

N
1
2

4

d∏
i=4

cNi,i

)
.
( ∑
N1&N

1

N s
1

cN1,1

) 1
2

d∏
i=2

‖ui‖X 1
2
,

In either case, it follows that

∑
III

N2s
∥∥∥PN(PN1∂xu1

d∏
i=2

PNiui)
∥∥∥2

L1
tL

2
x

. ‖u1‖2
Xs

d∏
i=2

‖ui‖2

X
1
2
.

and this concludes the proof.

In view of this theorem, if every term in P (u, ū, ∂xu, ∂xū) has only one derivative,

then we expect to close the contraction argument in a subspace of X
1
2 . On the other hand,

if we replace uj by ∂xuj for some j ≥ 2, then it follows from (2.2) that ‖∂xui‖Xs . ‖ui‖Xs+1

for any s > 0, and so (3.4) yields

∥∥∥(∂xu1)(∂xuj)
d∏
i=2
i 6=j

ui

∥∥∥
Y

3
2
. ‖u1‖X 3

2
‖∂xuj‖X 1

2

d∏
i=2
i 6=j

‖ui‖X 1
2

. ‖u1‖X 3
2

d∏
i=2

‖ui‖X 3
2
,

and for any s ≥ 3
2
, we have∥∥∥(∂xu1)(∂xuj)

d∏
i=2
i 6=j

ui

∥∥∥
Y s

. ‖u1‖Xs

d∏
i=2

‖ui‖Xs .

Consequently, in the case that a term in P (u, ū, ∂xu, ∂xū) has more than one derivative, we

can employ the contraction argument in X
3
2 .
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Proof of Theorem 1.1. We define F (u) := P (u, ū, ∂xu, ∂xū). Let u and v be functions in

Xs. We use the main linear estimate (3.2) and simple algebra to obtain∥∥∥∥∫ t

0

ei(t−s)∂
2
x [F (u(x, s))− F (v(x, s))] ds

∥∥∥∥
Xs

≤ c1 ‖F (u)− F (v)‖Y s

≤ c1c2(‖u‖d−1
Xs + ‖v‖d−1

Xs )‖u− v‖Xs ,

(3.7)

where we used the multilinear estimate (3.3) in the last step.

Let C := min
{

(8c1c2)−
1
d−1 , (4c2)−

1
d−1

}
where c1 and c2 are constants in (3.7). Define

a Banach space as stated in the theorem:

X = {u ∈ C0
tH

s
x([−1, 1]× R) ∩Xs : ‖u‖Xs ≤ 2C}.

Let u0 ∈ X such that ‖u0‖Hs ≤ C. Then, for u ∈ X, we define an operator

Lu := eit∆u0 − i
∫ t

0

ei(t−s)∆F (u(x, s)) ds,

Again, by the main linear estimate, we have

‖Lu‖Xs ≤ ‖u0‖Hs + ‖F‖Y s

≤ ‖u0‖Hs + c2‖u‖dXs

≤ 3C

2
< 2C.

Thus, L maps X to X. Moreover, from (3.7),

‖Lu− Lv‖Xs ≤ c1c2(‖u‖d−1
Xs + ‖v‖d−1

Xs )‖u− v‖Xs ≤ 1

4
‖u− v‖Xs .

Thus, L is a contraction and the local well-posedness in X immediately follows.
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3.2 Proof of Theorem 1.3 when d ≥ 6

In the previous sections, we used the time restriction to avoid dealing with low

frequencies at ξ ≤ 1. However, such argument cannot be used to obtain the global well-

posedness for the gDNLS with nonlinearity of order d ≥ 5. Therefore, the function spaces

that we use will take these low frequencies into account. Let s0(d) = 1
2
− 1

d−1
= d−3

2(d−1)
for

d ≥ 5. The spaces Xs and Y s in (2.21) are replaced by those defined by the quasi-norms

Ẋs and Ẏ s which in turn are defined by the norms XN and YN ,

‖u‖XN = ‖u‖L∞t L2
x

+N−
1
4‖u‖L4

xL
∞
t

+N
1
2‖u‖L∞x L2

t

+N−
1
2‖(i∂t + ∆)u‖L1

xL
2
t

‖u‖Ẋs =
( ∑
N∈2Z

N2s‖PNu‖2
XN

) 1
2

‖u‖Xs = ‖u‖Ẋ0 + ‖u‖Ẋs

‖u‖YN = N−
1
2‖u‖L1

xL
2
t

‖u‖Ẏ s =
( ∑
N∈2Z

N2s‖PNu‖2
YN

) 1
2

‖u‖Y s = ‖u‖Ẏ 0 + ‖u‖Ẏ s .

(3.8)

Thus we have embeddings Xs ↪→ Hs and Xs ↪→ Xs0 ↪→ Ẋs0 for any s ≥ s0. In view

of (2.22), we obtain the linear estimate

‖u‖Xs . ‖u0‖Hs + ‖F‖Y s . (3.9)

With these choices of spaces, we can establish the multilinear estimate for d ≥ 6. The proof

for the case d = 5 is significantly more involved and requires some frequency-modulation

analysis, so we will postpone it to the next section.
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Theorem 3.2. Let d ≥ 6. We have the following estimates.

1). For any u1, u2, . . . , ud ∈ Xs0,

∥∥∥∂x d∏
i=1

ui

∥∥∥
Ẏ s0

.
d∏
i=1

‖ui‖Ẋs0 , (3.10)

2). Let s ≥ s0. For any u1, u2, . . . , ud ∈ Xs,

∥∥∥∂x d∏
i=1

ui

∥∥∥
Y s

.
d∏
i=1

‖ui‖Xs . (3.11)

Proof. Our goal is to obtain the estimate

∑
N

N2s+1‖PN
d∏
i=1

ui‖2
L1
xL

2
t
.

d∑
j=1

‖uj‖2
Ẋs

∏
i 6=j

‖ui‖2
Ẋs0

, (3.12)

which implies (3.10) by choosing s = s0. We get (3.11) by combining two different versions

of this estimate with a fixed s ≥ s0 and with s = 0. We will focus on each term on the

left-hand side of (3.11)

N2s−1
∥∥∥PN∂x d∏

i=1

ui

∥∥∥2

L1
xL

2
t

= N2s−1
∥∥∥PN∂x ∑

N1,...,Nd

d∏
i=1

PNiui

∥∥∥2

L1
xL

2
t

. N2s+1
∑

N1,...,Nd

∥∥∥PN d∏
i=1

PNiui

∥∥∥2

L1
xL

2
t

,

and study different kinds of frequency interactions. As before, we assume that N1 ≥ N2 ≥

. . . ≥ Nd. We define cN1,1 = N s
1‖PNiu1‖XN1

and cNi,i = N s0
i ‖PNiui‖XNi for 2 ≤ i ≤ d. We

will use the following two estimates for a product of terms with higher and lower frequencies.

1. For N . N1 ∼ N2 ∼ . . . ∼ Nj−1 where j ≥ 3, it follows from the Cauchy-Schwarz

inequality that ∑
Ni

j−1∏
i=1

cNi,i .
( ∑
N1&N

c2
N1,1

) 1
2

j−1∏
i=2

‖ui‖Ẋs0 . (3.13)
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2. For Nj ≥ Nj+1 ≥ . . . ≥ Nd and any α > 0, Young’s inequality and trivial estimate

cNi,i ≤ ‖ui‖Ẋs0 imply∑
Nj≥...≥Nd

(
Nd

Nj

)α d∏
i=j

cNi,i ≤
d−1∏
i=j+1

‖ui‖Ẋs0

∑
Nj≥...≥Nd

(
Nd

Nj

)α
cNj ,jcNd,d

.α

d∏
i=j

‖ui‖Ẋs0 .

(3.14)

These estimates will be used in each case after appropriate uses of Hölder inequality,

Bernstein inequality and bilinear estimate (2.44).

By Hölder and Bernstein inequalities,∥∥∥PN d∏
i=1

ui

∥∥∥
L1
xL

2
t

.
∑
Ni

‖PN1u1‖L∞x L2
t

5∏
i=2

‖PNiui‖L4
xL
∞
t

d∏
i=6

‖PNiui‖L∞x,t

.
∑
Ni

‖PN1u1‖L∞x L2
t

5∏
i=2

‖PNiui‖L4
xL
∞
t

d∏
i=6

N
1
2
i ‖PNiui‖L∞t L2

x

.
∑
Ni

1

N
s+ 1

2
1

5∏
i=2

1

N
s0− 1

4
i

d∏
i=6

N
1
2
−s0

i

d∏
i=1

cNi,i.

Since s0 = 1
2
− 1

d−1
, the sums of the exponents in

∏5
i=2 N

s0− 1
4

i and
∏d

i=6N
1
2
−s0

i are equal.

With the assumption that N2 ≥ N3 ≥ . . . ≥ Nd, the right-hand side is bounded by

∑
Ni

1

N
s+ 1

2
1

(
Nd

N2

) 1
4(d−1)

d∏
i=1

cNi,i. (3.15)

To estimate this term, we consider the following two frequency interactions.

1. N ∼ N1 � N2 ≥ . . . ≥ Nd.

Using (3.14) on cN2,2cN3,3 . . . cNd,d, we can bound (3.15) by

∑
N1∼N

1

N
s+ 1

2
1

cN1,1

5∏
i=2

‖ui‖Ẋs0 ,

57



for each fixed N . We have that∑
N

( ∑
N1∼N

N2s+1

N
s+ 1

2
1

cN1,1

)2
5∏
i=2

‖ui‖2
Ẋs0
∼
∑
N1

c2
N1,1

5∏
i=2

‖ui‖2
Ẋs0

= ‖u1‖2
Ẋs

5∏
i=2

‖ui‖2
Ẋs0

,

which implies (3.12) as desired.

2. N . N1 ∼ N2 ≥ . . . ≥ Nd.

Using (3.13) on cN1,1cN2,2 and (3.14) on cN3,3cN4,4 . . . cNd,d, we can bound (3.15) by

( ∑
N1&N

1

N2s+1
1

c2
N1,1

) 1
2

5∏
i=2

‖ui‖Ẋs0 .

Therefore, by switching the order of summations,

∑
N

∑
N1&N

N2s+1

N2s+1
1

c2
N1,1

5∏
i=2

‖ui‖2
Ẋs0

.
∑
N1

c2
N1,1

5∏
i=2

‖ui‖2
Ẋs0

,

which again implies (3.12). This concludes the proof for d ≥ 6.

Using the linear estimate (3.9) and the multilinear estimates (3.10) and (3.11), the

proof for Theorem 1.3 follows in the same manner as in Theorem 1.1. Note that we did

not use any finite time restriction in any parts of the proof.

3.3 Proof of Theorem 1.3 when d = 5

The difficulty in this case arises from the fact that there is no room left to put the

lowest frequency term in L∞x,t. Thus, we will take this case with extra care by adding the
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Ẋ0,b,q spaces mentioned in Section 2.6. We start with proving the multilinear estimate.

Note that the position of complex conjugates will be significant in the analysis below.

Theorem 3.3. For 1 ≤ i ≤ 5, let ui represent u or ū. Then we have the following

estimates.

1). For any u ∈ X 1
4 , ∥∥∥∂x 5∏

i=1

ui

∥∥∥
Ẏ

1
4
. ‖u‖5

Ẋ
1
4
, (3.16)

2). Let s ≥ 1
4
. For any u ∈ Xs, ∥∥∥∂x 5∏

i=1

ui

∥∥∥
Y s

. ‖u‖5
Xs . (3.17)

Proof. As before, our goal is to obtain the estimate

∑
N

N2s+2
∥∥∥PN 5∏

i=1

ui

∥∥∥2

YN
. ‖u‖2

Ẋs‖u‖8

Ẋ
1
4
. (3.18)

First, we split each term in the left-hand side as the sum of all possible frequency interactions:

N2s+2
∥∥∥PN∂x 5∏

i=1

ui

∥∥∥2

YN
. N2s+2

∑
N1,...,N5

∥∥∥PN 5∏
i=1

PNiui

∥∥∥2

YN
.

Assume that N1 ≥ N2 ≥ . . . ≥ N5. Define cN1,1 = N s
1‖PN1u‖XN1

and cNi,i = N
1
4
i ‖PNiu‖XNi

for 2 ≤ i ≤ 5. We make a slight abuse of notation by using
∑

Ni
for the summation over

all possible N1, N2, . . . , N5 when the restrictions on these numbers are clear. We also will

be using the Cauchy-Schwarz inequality (3.13) and Young’s inequality (3.14).

We split the left-hand side of (3.18) over four different kinds of frequency interactions:∑
N,N1,...,N5

N s
∥∥∥PN(PN1∂xu1

5∏
i=2

PNiui)
∥∥∥
YN

=
(∑

I

+
∑
II

+
∑
III

+
∑
IV

)
N s
∥∥∥PN(PN1∂xu1

5∏
i=2

PNiui)
∥∥∥
YN
.
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Each of the summations contains certain ranges of N,N1, . . . , N5 described by the following

cases:

I). N . N1 ∼ N2 ∼ N3 ∼ N4 ∼ N5.

By Hölder and Cauchy-Schwarz inequalities, we have

∥∥∥PN 5∏
i=1

ui

∥∥∥
L1
xL

2
t

.
∑
Ni

‖PN1u1‖L∞x L2
t

5∏
i=2

‖PNiui‖L4
xL
∞
t

=
∑
Ni

1

N
s+ 1

2
1

5∏
i=1

cNi,i

.
( ∑
N1&N

1

N2s+1
1

c2
N1,1

) 1
2‖u‖4

Ẋ
1
4
.

Summing over N ∈ 2Z, we see that

∑
I

N2s+1
∥∥∥PN 5∏

i=1

ui

∥∥∥2

L1
xL

2
t

.
∑
N1

∑
N.N1

(
N

N1

)2s+1

c2
N1,1
‖u‖8

Ẋ
1
4

. ‖u‖2
Ẋs‖u‖8

Ẋ
1
4
.

II). N ∼ N1 � N2 ≥ N3 ≥ N4 ≥ N5.

By the bilinear estimate (2.65) or (2.66) on PN1u1PN2u2 (depending on the complex

conjugates) and Bernstein inequality on PN5u5, we have that for each fixed N ,

∥∥∥PN 5∏
i=1

ui

∥∥∥
L1
xL

2
t

.
∑
Ni

‖PN1u1PN2u2‖L2
x,t

4∏
i=3

‖PNiui‖L4
xL
∞
t
‖PN5u5‖L∞x,t

.
∑
Ni

N
1
2

5

N
1
2

1

‖PN1u1‖XN1
‖PN2u2‖XN2

4∏
i=3

‖PNiui‖L4
xL
∞
t
‖PN5u5‖L∞t L2

x

=
∑
Ni

1

N
s+ 1

2
1

(
N5

N2

) 1
4

5∏
i=1

cNi,i.

60



By Young’s inequality (3.14), this term is bounded by

.
∑
N1∼N

1

N
s+ 1

2
1

cN1,1‖u‖4

Ẋ
1
4
.

Therefore, ∑
II

N2s+1
∥∥∥PN 5∏

i=1

ui

∥∥∥2

L1
xL

2
t

.
∑
N

( ∑
N1∼N

(
N

N1

)s+ 1
2

cN1,1

)2

‖u‖8

Ẋ
1
4

.
(∑

N1

∑
N∼N1

c2
N1,1

)
‖u‖8

Ẋ
1
4

∼ ‖u‖2
Ẋs‖u‖8

Ẋ
1
4
.

III). N . N1 ∼ N2 ∼ Nj−1 � Nj ≥ N5 where j = 3 or j = 4.

This is similar to case II), but instead we use the bilinear estimate on PN1u1PNjuj.∥∥∥PN 5∏
i=1

ui

∥∥∥
L1
xL

2
t

.
∑
Ni

‖PN1u1PNjuj‖L2
x,t

∏
2≤i≤4
i 6=j

‖PNiui‖L4
xL
∞
t
‖PN5u5‖L∞x,t

.
∑
Ni

N
1
2

5

N
1
2

1

‖PN1u1‖XN1
‖PNjuj‖XN2

∏
2≤i≤4
i 6=j

‖PNiui‖L4
xL
∞
t
‖PN5u5‖L∞t L2

x

.
∑
Ni

1

N
s+ 1

2
1

(
N5

Nj

) 1
4

5∏
i=1

cNi,i.

Applying the Cauchy-Schwarz inequality (3.13) on
∏j−1

i=1 cNi,i and (3.14) on
∏5

i=j cNi,i, we

see that ∑
Ni

1

N
s+ 1

2
1

(
N5

Nj

) 1
4

5∏
i=1

cNi,i .
( ∑
N1&N

1

N2s+1
1

c2
N1,1

) 1
2‖u‖8

Ẋ
1
4

Therefore,

∑
III

N2s+1
∥∥∥PN 5∏

i=1

ui

∥∥∥2

L1
xL

2
t

.
(∑

N

∑
N1&N

(
N

N1

)2s+1

c2
N1,1

)
‖u‖8

Ẋ
1
4
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∼ ‖u‖2
Ẋs‖u‖8

Ẋ
1
4
.

IV ). N . N1 ∼ N2 ∼ N3 ∼ N4 � N5.

In this case, we will take the number of complex conjugates in u1u2u3u4 into

consideration. Note that the positions of conjugates does not matter here.

1). u1 = u3 = u and u2 = u4 = ū. We divide into further subcases by comparing

the sizes between N and N5.

1.1). N ∼ N5.

We use Hölder inequality and apply the bilinear estimate (2.66) to ‖PN1u1PN5u5‖L2
x,t∥∥∥PN 5∏

i=1

ui

∥∥∥
L1
xL

2
t

.
∑
Ni

‖PN1u1PN5u5‖L2
x,t

3∏
i=2

‖PNiui‖L4
xL
∞
t
‖PN4u4‖L∞x,t

.
∑
Ni

N
1
2

4

N
1
2

1

‖PN1u1‖XN1
‖PN5u5‖XN5

3∏
i=2

‖PNiui‖L4
xL
∞
t
‖PN4u4‖L∞t L2

x

.
∑
Ni

N
1
4

4

N
s+ 1

2
1 N

1
4

5

5∏
i=1

cNi,i

∼
∑
Ni

1

N
s+ 1

4
1 N

1
4

5∏
i=1

cNi,i

.
( ∑
N1&N

1

N
2s+ 1

2
1 N

1
2

c2
N1,1

) 1
2‖u‖4

Ẋ
1
4
,

where we used Cauchy-Schwarz, the fact that N4 ∼ N1, N ∼ N5 and the trivial inequality

cN5,5 ≤ ‖u‖Ẋ 1
4

in the last step. Consequently,

∑
IV

N∼N5

N2s+1
∥∥∥PN 5∏

i=1

ui

∥∥∥2

L1
xL

2
t

.
(∑

N

∑
N1&N

(
N

N1

)2s+ 1
2

c2
N1,1

)
‖u‖8

Ẋ
1
4
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∼ ‖u‖2
Ẋs‖u‖8

Ẋ
1
4
.

1.2). N � N5.

We split
∏5

i=1 PNiui into four terms using low and high frequency projections.

PN1u1PN2u2 = P�N(PN1u1PN2u2) + P&N(PN1u1PN2u2),

PN3u3PN4u4 = P�N(PN3u3PN4u4) + P&N(PN3u3PN4u4).

Since N � N5, so
∏4

i=1 PNiui must be at frequency � N . Thus, we can assume that each

of the resulting terms after the splits contains at least one high frequency projection. Thus,

it suffices to estimate P&N(PN1u1PN2u2)
∏5

i=3 PNiui. We use the bilinear estimate (2.65)

on P&N(PN1u1PN2u2),

‖P&N(PN1u1PN2u2)‖L2
x,t

.
1

N
1
2

‖PN1u‖XN1
‖PN2u‖XN2

. (3.19)

Then, by applying the estimate (3.13) on cN1,1cN3,3cN4,4 and (3.14) on cN2,2cN5,5, we obtain

∥∥∥PN 5∏
i=1

ui

∥∥∥
L1
xL

2
t

.
∑
Ni

‖P&N(PN1u1PN2u2)‖L2
x,t

4∏
i=3

‖PNiui‖L4
xL
∞
t
‖PN5u5‖L∞x,t

.
∑
Ni

N
1
2

5

N
1
2

‖PN1u‖XN1
‖PN2u‖XN2

4∏
i=3

‖PNiui‖L4
xL
∞
t
‖PN5u5‖L∞t L2

x
(3.20)

.
∑
NiN

1

N
1
2N s

1

(
N5

N2

) 1
4

5∏
i=1

cNi,i

∼
∑
NiN

1

N
1
2N s

1

(
N5

N3

) 1
4

5∏
i=1

cNi,i

.
( ∑
N1&N

1

NN2s
1

c2
N1,1

) 1
2‖u‖4

Ẋ
1
4
,
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where we used the Cauchy-Schwarz on
∑

Ni
1

N
1
2Ns

1

cN1,1cN2,2 and the Young’s inequality on∑
Ni

(
N5

N3

) 1
4
cN3,3cN4,4cN5,5. As a result,

∑
IV

N�N5

N2s+1
∥∥∥PN 5∏

i=1

ui

∥∥∥2

L1
xL

2
t

.
(∑

N

∑
N1&N

(
N

N1

)2s

c2
N1,1

)
‖u‖8

Ẋ
1
4

∼ ‖u‖2
Ẋs‖u‖8

Ẋ
1
4
.

1.3). N � N5.

This is similar to case 1.2), but we split
∏5

i=1 PNiui at N5 instead of N .

PN1u1PN2u2 = P�N5(PN1u1PN2u2) + P&N5(PN1u1PN2u2),

PN3u3PN4u4 = P�N5(PN3u3PN4u4) + P&N5(PN3u3PN4u4).

Since the output is supported at frequency N � N5, we can see that
∏4

i=1 PNiui must

be supported at frequency ∼ N5. Thus, we can assume that each term in the product

expansion contains at least one high frequency projection. To estimate the product, we

can use (3.19) and (3.20) that we just obtained and replace N−
1
2 by N

− 1
2

5 .

∥∥∥PN 5∏
i=1

ui

∥∥∥
L1
xL

2
t

.
∑
Ni

1

N
1
2

5 N
s
1

(
N5

N3

) 1
4

5∏
i=1

cNi,i

�
∑
Ni

1

N
1
2N s

1

(
N5

N3

) 1
4

5∏
i=1

cNi,i

.
( ∑
N1&N

1

NN2s
1

c2
N1,1

) 1
2‖u‖4

Ẋ
1
4
,

which leads to the same result as in the previous case.

2). u1 = u2 = u3 = u, u4 and u5 can be either u or ū.

This is the hardest case and requires some frequency-modulation analysis. Suppose
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that for some 1 ≤ j ≤ 5 the space-time Fourier transform of PNju is supported in the set

{(ξ, τ) : |τ +N2
1 | >

1

32
N2

1}, (3.21a)

or that of PNj ū (for 4 ≤ j ≤ 5) is supported in the set

{(ξ, τ) : |τ −N2
1 | >

1

32
N2

1}. (3.21b)

Then, (2.73) yields

‖PNjuj‖L2
x,t

. N−1
1 ‖PNjuj‖Ẋ0, 12 ,∞

. N−1
1 ‖PNjuj‖XNj .

Without loss of generality, assume that j = 1. Then by Hölder and Bernstein inequalities,∥∥∥PN 5∏
i=1

PNiui

∥∥∥
L1
xL

2
t

. ‖PN1u1‖L2
x,t

3∏
i=2

‖PNiui‖L4
xL
∞
t

5∏
i=4

‖PNiui‖L∞x,t

.
1

N
s+ 1

2
1

(
N4N5

N2
1

) 1
4

5∏
i=1

cNi,i

∼ 1

N
s+ 1

2
1

(
N5

N3

) 1
4

5∏
i=1

cNi,i.

On the other hand, if the space-time Fourier transform of PN5u5 is supported in the set

(3.21a) in the case u5 = u or (3.21b) in the case u5 = ū, then we have∥∥∥PN 5∏
i=1

PNiui

∥∥∥
L1
xL

2
t

.
2∏
i=1

‖PNiui‖L4
xL
∞
t
‖PN3u3PN4u4PN5u5‖L2

x,t

.
2∏
i=1

‖PNiui‖L4
xL
∞
t

4∏
i=3

‖PNiui‖L∞t L4
x
‖PN5u5‖L2

tL
∞
x

. N
1
2

5

4∏
i=1

‖PNiui‖L4
xL
∞
t
‖PN5u5‖L2

x,t

.
N

1
4

5

N
s+ 3

4
1

5∏
i=1

cNi,i

∼ 1

N
s+ 1

2
1

(
N5

N3

) 1
4

5∏
i=1

cNi,i.
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We then get the desired result by observing that

1

N
s+ 1

2
1

(
N5

N3

) 1
4

5∏
i=1

cNi,i .
( ∑
N1&N

1

N2s+1
1

c2
N1,1

) 1
2‖u‖4

Ẋ
1
4
.

Thus, we can assume that the space-time Fourier transform of PNju is supported in the set

{ξ, τ : |τ +N2
1 | ≤

1

32
N2

1},

and that of PNk ū is supported in

{ξ, τ : |τ −N2
1 | ≤

1

32
N2

1}.

Here, we introduce Riesz transforms P+ and P− defined by

P̂+f(ξ) = 1ξ≥0f̂ , P̂−f(ξ) = 1ξ<0f̂ .

Then, denoting P+PNi := P+
Ni

and P−PNi := P−Ni , for 1 ≤ i ≤ 4, we decompose PNiui into

PNiui = P+
Ni
ui + P−Niui,

and consider all the terms that we get from
∏5

i=1 PNiui. For any term that contains

P+
Nj
uP−Nku, P+

Nj
uP+

Nk
ū or P−NjuP

−
Nk
ū, where 1 ≤ j < k ≤ 4, we can apply the bilinear

estimates (2.65) and (2.66), then proceed with the Hölder’s and Bernstein inequality on

L1
xL

2
t as in the previous cases. For example, if j = 1 and k = 2, then we have∥∥∥PN(P+

N1
u1P

−
N2
u2

5∏
i=3

PNiui)
∥∥∥
L1
xL

2
t

.
N

1
2

5

N
1
2

1

2∏
i=1

‖PNiu‖XNi
4∏
i=3

‖PNiui‖L4
xL
∞
t
‖PN5u5‖L∞t L2

x

.
1

N
s+ 1

2
1

(
N5

N2

) 1
4

5∏
i=1

cNi,i

∼ 1

N
s+ 1

2
1

(
N5

N3

) 1
4

5∏
i=1

cNi,i,
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Therefore, it suffices to consider the following four terms.

(i) (
∏3

i=1 P
+
Ni
u)P+

N4
uPN5u5

(ii) (
∏3

i=1 P
−
Ni
u)P−N4

uPN5u5

(iii) (
∏3

i=1 P
+
Ni
u)P−N4

ūPN5u5

(iv) (
∏3

i=1 P
−
Ni
u)P+

N4
ūPN5u5

In either case, simple algebra shows that the space-time Fourier transform of the product

is supported at least & N2
1 away from the parabola τ = −ξ2. The worst case is (iii) with

u5 = u where the output’s modulation is

(3N1 −N1 ±N5)2 − 4N2
1 +N2

1 ∼ N2
1 .

Thus, we can put these products in the Ẋ0,− 1
2
,1 space and get a good bound. For example,

focusing on (iii), we use Hölder inequality, Bernstein inequality and the boundedness of

Riesz transforms. ∥∥∥PN [(
3∏
i=1

P+
Ni
u)P−N4

ūPN5u5]
∥∥∥
Ẋ0,− 1

2 ,1

.
1

N1

∥∥∥(
3∏
i=1

P+
Ni
u)P−N4

ūPN5u5

∥∥∥
L2
t,x

.
(N4N5)

1
2

N1

3∏
i=1

‖PNiu‖L6
t,x

5∏
i=4

‖PNiu‖L∞t L2
x

.
1

N s+1
1

(
N5

N1

) 1
4

5∏
i=1

cNi,i

∼ 1

N s+1
1

(
N5

N3

) 1
4

5∏
i=1

cNi,i

.
( ∑
N1&N

1

N2s+2
1

c2
N1,1

) 1
2‖u‖4

Ẋ
1
4
.
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Hence, by summing over N and Ni’s, we have

∑
IV

N2s+2
∥∥∥PN [(

3∏
i=1

P+
Ni
u)P−N4

ūPN5u5]
∥∥∥2

Ẋ0,− 1
2 ,1

.
∑
N1

∑
N.N1

(
N

N1

)2s+2

c2
N1,1
‖u‖8

Ẋ
1
4

. ‖u‖2
Ẋs‖u‖8

Ẋs0
,

as desired.

3). u1 = u2 = u3 = ū, u4 and u5 can be either u or ū.

The proof is the same as in the previous case. Note that we get a better result in the sense

that the space-time Fourier support of
∏5

i=1 PNiui when Fx,tui is supported in (3.22) is

& N2
1 away from the parabola τ = −ξ2 without relying on the Riesz transforms. This

concludes the proof of the multilinear estimate.

3.4 Proof of Theorem 1.2

The proof is similar to what we did in Section 3.2 with the same function spaces:

‖u‖XN = ‖u‖L∞t L2
x

+N−
1
4‖u‖L4

xL
∞
t

+N
1
2‖u‖L∞x L2

t

+N−
1
2‖(i∂t + ∆)u‖L1

xL
2
t

‖u‖Ẋs =
( ∑
N∈2Z

N2s‖PNu‖2
XN

) 1
2

‖u‖Xs = ‖u‖Ẋ0 + ‖u‖Ẋs (3.23)

‖u‖YN = N−
1
2‖u‖L1

xL
2
t
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‖u‖Ẏ s =
( ∑
N∈2Z

N2s‖PNu‖2
YN

) 1
2

‖u‖Y s = ‖u‖Ẏ 0 + ‖u‖Ẏ s .

Now we state a multilinear estimate. The proof is shortened as it is similar to that

of Theorem 3.2 for the most part.

Theorem 3.4. Suppose that d ≥ 5. Let s, r > 1
2

and ui ∈ Xs for 1 ≤ i ≤ d. Then we have

the following estimate:

∥∥∥(∂xu1)
d∏
i=2

ui

∥∥∥
Y r

. ‖u1‖Xr

d∏
i=2

‖ui‖Xs , (3.24)

Proof. Again, we study the frequency interactions with N being the output frequency and

N1 ≥ N2 ≥ . . . ≥ Nd being the input frequencies. For s > 1
2
, we define cN1,1 = ‖PN1u1‖XN1

and cNi,i = ‖PNiui‖XNi for 2 ≤ i ≤ d. We consider the usual High × Low → High and

High×High→ Low interactions:

1. N ∼ N1 � N2 ≥ . . . ≥ Nd.

With some abuse of notations, we define
∏d−1

i=5 Ai = 1 if d = 5. By Hölder inequality,

Young’s inequality and the continuous embedding Xs ↪→ Xs′ ↪→ Ẋs′ for any s′ > s >

1
2
,

∥∥∥N r− 1
2PN [(PN1∂xu1)

d∏
i=2

PNiui]
∥∥∥
L1
xL

2
t

. N r− 1
2

∑
Ni

‖PN1∂xu1‖L∞x L2
t

4∏
i=2

‖PNiui‖L4
xL
∞
t

d−1∏
i=5

‖PNiui‖L∞x,t‖PNdud‖L4
xL
∞
t

.
∑
Ni

( N
N1

)r− 1
2
(Nd

N2

) 1
4
cN1,1(N

1
2

2 cN2,2)cNd,d

4∏
i=3

N
1
4
i cNi,i

d−1∏
i=5

N
1
2
i cNi,i
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.
∑
N1∼N

( N
N1

)r− 1
2
cN1,1‖u2‖Ẋ 1

2

4∏
i=3

‖ui‖Ẋ 1
4

d−1∏
i=5

‖ui‖Ẋ 1
2
‖ud‖Ẋ0

.
∑
N1∼N

( N
N1

)r− 1
2
cN1,1

d∏
i=2

‖ui‖Xs .

Take the l2 summation and (3.24) follows.

2. N . N1 ∼ N2 ≥ . . . ≥ Nd.

This is similar to the previous case, but we apply Cauchy-Schwarz to
∑

i cN1,1cN2,2.

N r− 1
2

∥∥∥PN [(PN1∂xu1)
d∏
i=2

PNiui]
∥∥∥
L1
xL

2
t

.
∑
Ni

( N
N1

)r− 1
2
(Nd

N3

) 1
4
cN1,1(N

1
4

2 cN2,2)(N
1
2

3 cN3,3)(N
1
4

4 cN4,4)cNd,d

d−1∏
i=5

(N
1
2
i cNi,i)

.
( ∑
N1&N

( N
N1

)2r−1

c2
N1,1

) 1
2‖u2‖Ẋ 1

4
‖u3‖Ẋ 1

2
‖u4‖Ẋ 1

4

d−1∏
i=5

‖ui‖Ẋ 1
2
‖ud‖Ẋ0

.
( ∑
N1&N

( N
N1

)2r−1

‖PN1u1‖2
XN1

) 1
2

d∏
i=2

‖ui‖Xs .

Take the l2 summation to obtain (3.24).

The proof of Theorem 1.2 part (A) now follows the same contraction argument as

before. To prove part (B) of the theorem, we replace uj by ∂xuj for some j ≥ 2, and it

follows from (2.2) that ‖∂xui‖Xs . ‖ui‖Xs+1 for any s > 1
2
. Hence, (3.24) implies that for

any s > 3
2
,

∥∥∥(∂xu1)(∂xuj)
d∏
i=2
i 6=j

ui

∥∥∥
Y s

. ‖u1‖Xs‖∂xuj‖Xs−1

d∏
i=2
i 6=j

‖ui‖Xs−1
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.
d∏
i=1

‖ui‖Xs .

Consequently, in the case that a term in P (u, ū, ∂xu, ∂xū) has more than one derivative, we

can employ the contraction argument in Xs.
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Chapter 4

Global bounds and modified

scattering for DNLS

As promised in Section 1.6, we give the full statement of our result here.

Theorem 4.1. A) (Global bounds) Assume that

‖u0‖H1,1 ≤ ε� 1. (4.1)

Then the equation (1.15) with the initial data u0 has a global solution satisfying the

pointwise bounds

‖u‖L∞ . ε|t|−1/2, (4.2)

‖ux‖L∞ . ε|t|−1/2. (4.3)

B) (Asymptotic profiles) Let u be a solution to (1.15), then there exists a function
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W ∈ H1−Cε2,1(R) such that

u(x, t) =
1

t1/2
W
(x
t

)
ei|W (x/t)|2 x

t
log t+ix

2

2t + err1(x, t), (4.4)

û(x, t) =
1

t1/2
W (ξ)ei|W (ξ)|2 x

t
log t−i tξ

2

2 + err2(x, t), (4.5)

ux(x, t) =
ix

t3/2
W
(x
t

)
ei|W (x/t)|2 x

t
log t+ix

2

2t + err3(x, t), (4.6)

where

‖err1‖L∞x . ε(1 + t)−
3
4

+Cε2 , ‖err1‖L2
x
. ε(1 + t)−

1
4

+Cε2 , (4.7)

‖err2‖L∞x . ε(1 + t)−1+Cε2 , ‖err2‖L2
x
. ε(1 + t)−1+Cε2 , (4.8)

‖err3‖L∞x . ε(1 + t)−
1
2

+Cε2 , ‖err3‖L2
x
. ε(1 + t)−1+Cε2 . (4.9)

C) (Asymptotic completeness) Let C be a large constant and W be a function satisfying

‖W‖H1+Cε2,1(R) � ε� 1. (4.10)

Then there exists a function u0 satisfying (4.1) such that the equation (1.15) with u0

as the initial data has the solution u with the profile (4.4),(4.5) and (4.6).

Instead of directly tackling (1.15) which involves a derivative in the nonlinearlity,

we can decouple it into two cubic NLS equations by defining u1 := u exp(−2i
∫ x
−∞|u|

2 dx′)

and u2 = 1√
2

(∂xu1 + i|u1|2u1). We then obtain a system of equations:
i∂tu1 +

1

2
∂xxu1 = −i

√
2u2u

2
1

i∂tu2 +
1

2
∂xxu2 = i

√
2u1u

2
2

(4.11)

This is where we apply the technique from [28], originally employed to study the cubic

nonlinear Schrödinger equation:

i∂tu+
1

2
∂xxu = u|u|2, u(x, 0) = u0(x).
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The main idea is to consider the dynamic of the solutions along wave packets Ψv (to be

precisely defined in Section 4.2) traveling with velocity v:

γ(t, v) :=

∫
uΨv dx.

Since Ψv is localized around the ray Γv := {x = vt}, we can think of γ(t, v) as the decay of

u along Γv. We can then study the dynamic of γ in order to construct a scattering profile

for u. To see this technique employed for other equations, see [19], [20], [21], [29], [30], [41]

and [42].

We adapt this idea to 4.11 by studying the simultaneous dynamics of u1 and u2

along the Γv:

γi(t, v) :=

∫
uiΨv dx, i = 1, 2.

The ode dynamics for γ1 and γ2 will then be used to construct a profile for u1, u2 and

finally for u.

Note that the space H1,1 involves the x operator f 7→ xf which does not commute

with the Schödinger flow, preventing us from applying the usual perturbative argument.

To resolve this issue, we introduce a new operator L defined by

Lu := (x+ it∂x)u.

Now for the operator P that defines the Schrödinger equation

Pu := (i∂t +
1

2
∂xx)u,

it is easy to check that PL = LP . Moreover, L is a conjugate of x and t∂x with respect to
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the linear flow and multiplication by e
ix2

2t , respectively:

Leit∆/2f = eit∆/2xf

Le
ix2

2t f = te
ix2

2t ∂xf.

We see that the exponential factors on the right-hand side will disappear after taking

L2 norms by the duality. This suggests that the issue can be overcome by analyzing the

equations for Lu1 and Lu2, as we shall see later in this chapter.

4.1 Local theory

In this section we address the local in time well-posedness of the system (4.11). To

fix things, local in time refers to the time interval [0, 1]. We also reiterate that the data is

assumed to be small, that is ‖u0‖H1,1 � 1.

Proposition 4.2. Let S = L4
tL
∞
x ∩ L∞t L2

x. Assume that ‖u0‖H1 < ε < 1. The system

(4.11) is locally well-posed with the solutions satisfying

‖∂xu1‖S + ‖u1‖S + ‖u2‖S . ‖u0‖H1 . (4.12)

Proof. Note that |u1(x, 0)| = |u0(x)| and |u2(x, 0)| . 1√
2
(|∂xu0(x)| + |u0(x)|3). By the

standard energy estimate for the cubic NLS, we obtain

‖u1‖S . ‖u0‖L2 + ‖u2u
2
1‖L1

tL
2
x

. ‖u0‖L2 + ‖u1‖L4
tL
∞
x
‖u2‖L4

tL
∞
x
‖u1‖L∞t L2

x
.
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Similarly,

‖u2‖S . ‖u0‖H1 + ‖u1‖L4
tL
∞
x
‖u2‖L4

tL
∞
x
‖u2‖L∞t L2

x
.

We can combine these two estimates to obtain a linear estimate for (u1, u2) ∈ S × S:

‖u1‖S + ‖u2‖S . ‖u0‖H1 + (‖u1‖S + ‖u2‖S)3.

For the estimate of ‖∂xu1‖S, we use the relation u1 =
√

2u2 − i|u1|2u1 and Bernstein’s

inequality:

‖∂xu1‖S . ‖u2‖S + ‖|u1|3‖S

≤ ‖u2‖S + ‖u1‖2
L∞t,x
‖u1‖S

. ‖u2‖S + ‖u1‖2

L∞t H
1/2
x
‖u1‖S

≤ ‖u2‖S + ‖u1‖2
L∞t H

1
x
‖u1‖S

≤ ‖u2‖S + ‖∂xu1‖2
S‖u1‖S.

The local-wellposedness of (4.11) then follows from the usual contraction argument on the

space

{(u1, u2) ∈ S × S : ‖∂xu1‖S + ‖u1‖S + ‖u2‖S ≤ C}

for some small constant C.

By applying the operator L to the equations, we see that Lu1 and Lu2 satisfy the

following equations: 
PLu1 = −i2

√
2u1u2Lu1 + i

√
2u2

1Lu2

PLu2 = i2
√

2u2u1Lu2 − i
√

2u2
2Lu1

(4.13)
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With the assumption that t ≤ 1, the energy estimate yields the following proposition:

Proposition 4.3. Assume that t ≤ 1 and ‖u0‖H1,1 < ε < 1. Then Lu1 and Lu2 satisfy the

following estimate:

‖Lu1‖L∞t L2
x

+ ‖Lu2‖L∞t L2
x
. ‖u0‖H1,1 . (4.14)

Proof. Using standard energy estimates we obtain the following:

‖Lu2‖L∞t L2
x
. ‖xu2(0)‖L2 + ‖u2u1Lu2 + u2

2Lu1‖L1
tL

2
x

. ‖xu2(0)‖L2 + ‖u1‖L4
tL
∞
x
‖u2‖L4

tL
∞
x
‖Lu2‖L∞t L2

x

+ ‖u2‖2
L4
tL
∞
x
‖Lu1‖L∞t L2

x
.

Combining this with (4.12) and the smallness assumptions gives

‖Lu2‖L∞t L2
x
. ‖u0‖H1,1 + ‖u2‖2

L4
tL
∞
x
‖Lu1‖L∞t L2

x

In a similar manner,

‖Lu1‖L∞t L2
x
. ‖xu1(0)‖L2 + ‖u1‖L4

tL
∞
x
‖u2‖L4

tL
∞
x
‖Lu1‖L∞t L2

x

+ ‖u1‖2
L4
tL
∞
x
‖Lu2‖L∞t L2

x

leads to

‖Lu1‖L∞t L2
x
. ‖u0‖H1,1 + ‖u1‖2

L4
tL
∞
x
‖Lu2‖L∞t L2

x
.

Invoking the smallness of ‖u1‖L4
tL
∞
x

and ‖u2‖L4
tL
∞
x

, allows us to conclude with (4.14).

We turn our attention to estimating ∂xLu1. By taking the derivative to the first

equation in 4.13, we have an equation for ∂x(Lu1). To deal with the nonlinear terms for

this equation, we will need the following lemma
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Lemma 4.4. Let Γ1 := {(N1, N2, N3) ∈ (2Z)3 : N3 ≤ 8 max{N1, N2}}. Then, the following

estimate is true for all u1, u2, u3 ∈ L2 ∩ L∞:

‖S‖L2 : =

∥∥∥∥∥∥
∑

(N1,N2,N3)∈Γ1

PN1u1PN2u2PN3∂xu3

∥∥∥∥∥∥
L2

. (‖∂xu1‖l2L∞‖u2‖l2L∞ + ‖u1‖l2L∞‖∂xu2‖l2L∞)‖u3‖L2 ,

(4.15)

‖S‖L2 . ‖∂xu1‖l2L∞‖u2‖L2‖u3‖l2L∞ + ‖u1‖l2L∞‖∂xu2‖L2‖u3‖l2L∞ . (4.16)

Proof. We consider several subsets of Γ1, estimate their contribution and show a bound as

above.

i) N1 ≤ 2−10N2 and N3 ≤ 2−10N2: For each fixed N2 ∈ 2Z, we have∥∥∥∥∥∥∥
∑

N3≤8N2
N1≤N2

PN2u1PN2u2PN3∂xu3

∥∥∥∥∥∥∥
L2

. ‖P≤2−10N2
u1‖L∞‖PN2u2P≤8N2∂xu3‖L2

. ‖u1‖L∞
[ ∑
M≤8N2

‖PN2u2‖L∞‖PM∂xu3‖L2

]

. ‖u1‖L∞‖PN2∂xu2‖L∞
[ ∑
M≤8N2

M

N2

‖PMu3‖L2

]

. ‖u1‖L∞‖PN2∂xu2‖L∞‖P≤N2u3‖L2

. ‖u1‖L∞‖PN2∂xu2‖L∞‖u3‖L2 .

Since ∑
N3≤8N2
N1≤N2

PN1u1PN2u2PN3∂xu3

is supported at frequency ≈ N2, the estimate 4.15, follows by summing with respect to N2.

ii) N2 ≤ 2−10N1 and N3 ≤ 2−10N2: This is similar to the above.
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iii) N1 ≈ N2: This case is essentially reducible to N1 = N2, when we estimate as

above to obtain∥∥∥∥∥ ∑
N3≤8N2

PN2u1PN2u2PN3∂xu3

∥∥∥∥∥
L2

. ‖PN2u1‖L∞‖PN2∂xu2‖L∞‖u3‖L2 .

The summation with respect to N2 is performed in a trivial manner:∥∥∥∥∥∑
N2

∑
N3≤8N2

PN2u1PN2u2PN3∂xu3

∥∥∥∥∥
L2

. ‖u1‖l2L∞‖∂xu2‖l2L∞‖u3‖L2 .

iv) N3 ≈ N2: This case is essentially reducible to N3 = N2, when we estimate as

above to obtain

∥∥∥∥∥∥
∑

N1≤2−10N2

PN2u1PN2u2PN2∂xu3

∥∥∥∥∥∥
L2

. ‖u1‖L∞‖PN2∂xu2‖L∞‖PN2u3‖L2 .

The summation with respect to N2 is performed in a trivial manner:∥∥∥∥∥∥
∑
N2

∑
N1≤2−10N2

PN1u1PN2u2PN2∂xu3

∥∥∥∥∥∥
L2

. ‖u1‖L∞‖∂xu2‖l2L∞‖u3‖L2 .

This finishes the proof of (4.15); the proof of (4.16) is entirely similar.

Lemma 4.5. Assume that for all t ∈ R, u1,0(t), u2,0(t), u3,0(t) and F1(t), F2(t), F3(t) are

functions in L2
x(R) and ui = ui(t, x) satisfies

ûi(s, ξ) = e−isξ
2

ûi,0(ξ) +

∫ s

0

ei(σ−s)ξ
2

F̂i(σ, ξi) dσ. (4.17)

for 1 ≤ i ≤ 3. Then, we have the following estimate∥∥∥∥∫ t

0

u1u2∂xu3 ds

∥∥∥∥
L2

. B + sup
t
‖u1(t)‖L2

x
‖u2(t)‖L2

x
‖u3(t)‖L2

x

+
∑

(i,j,k)=1,2,3

∫ t

0

‖Fi(s)‖L2
x
‖uj(s)‖L2

x
‖uk(s)‖L2

x
ds.

(4.18)
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where

B = min
{∫ t

0

(‖∂xu1(s)‖l2L∞x ‖u2(s)‖l2L∞x

+ ‖u1(s)‖l2L∞x ‖∂xu2(s)‖l2L∞x )‖u3(s)‖L2
x
ds,∫ t

0

‖∂xu1(s)‖l2L∞x ‖u2(s)‖L2
x
‖u3(s)‖l2L∞x

+ ‖u1(s)‖l2L∞x ‖∂xu2(s)‖L2
x
‖u3(s)‖l2L∞x ds

}
.

Proof. We begin by writing u1u2∂xu3 =
∑

N1,N2,N3
P1u1P2u2P3∂xu3. Then, we split the

possible combinations of index into two sets:

Γ1 := {(N1, N2, N3) ∈ (2Z)3 : N3 ≤ 8 max{N1, N2}}

Γ2 := {(N1, N2, N3) ∈ (2Z)3 : N3 ≥ 8 max{N1, N2}}.

The first estimate in (4.18) is obtained immediately by using (4.15) on Γ1.

For Γ2, we use (4.17). For simplicity, when we write u1u2∂xu3 and work under the

assumption that ûi is supported in the set
[
Ni
2
, 2Ni

]
with the condition that (N1, N2, N3) ∈

Γ2. Using integration by parts, we have that for K(ξ, ξ1, ξ2, ξ3) := ξ2 + ξ2
3 − ξ2

2 − ξ2
1 and

S(ξ) = {(ξ1, ξ2, ξ3) ∈ R3 : ξ1 + ξ2 + ξ3 = ξ}, the following holds true∫ t

0

F
(
u1u2∂xu3

)
(s, ξ) ds

= −
∫ t

0

∫
S(ξ)

eisKeisξ
2
1 û1(ξ1)eisξ

2
2 û2(ξ2)eisξ

2
3ξ3û3(−ξ3) dξ1dξ2dξ3 ds

=

[
−
∫
S(ξ)

1

iK
eisKeisξ

2
1 û1(ξ1)eisξ

2
2 û2(ξ2)eisξ

2
3ξ3û3(−ξ3) dξ1dξ2dξ3

]t
s=0

+

∫ t

0

∫
S(ξ)

1

iK
eisK∂s

{
eisξ

2
1 û1(ξ1)eisξ

2
2 û2(ξ2)eisξ

2
3ξ3û3(−ξ3)

}
dξ1dξ2dξ3 ds.

Note that, as a consequence of (4.17), we have

∂se
isξ2i ûi = ∂s

{
ui(0) +

∫ s

0

eiσξ
2

F̂i(σ, ξi) dσ

}
= eisξ

2

F̂i(s, ξi).
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We define vi(ξ) = eisξ
2
ûi(ξ), Gi = eisξ

2
F̂i, i = 1, 2, v3(ξ) = eisξ2ξû3(−ξ) and G3 =

eisξ2ξF̂3(−ξ). Using that K(ξ, ξ1, ξ2, ξ3) ∼ ξ2
3 & 1 on Γ2, we obtain∥∥∥∥∫ t

0

u1u2∂xu3 ds

∥∥∥∥
L2(Γ2)

. sup
t

1

N2
3

‖v1 ∗ v2 ∗ v3‖L2

+
1

N2
3

∑
(i,j,k)=1,2,3

∫ t

0

‖Ĝi ∗ ûj ∗ ûk‖L2 ds

. sup
t

1

N2
3

‖v1‖L1‖v2‖L1‖v3‖L2

+
1

N2
3

∑
(i,j,k)=1,2,3

∫ t

0

‖F̂i‖‖vj‖‖uk‖L2 ds.

We use

‖v1 ∗ v2 ∗ v3‖L2 . ‖v1‖L1‖v2‖L1‖v3‖L2 . N
1
2

1 N
1
2

2 ‖v1‖L2‖v2‖L2‖v3‖L2

. N
1
2

1 N
1
2

2 N3‖u1‖L2‖u2‖L2‖u3‖L2 .

We estimate the same way the terms ‖Ĝi ∗ ûj ∗ ûk‖L2 with the rule that the high frequency

terms, v3 or G3 are placed in L2, while the low frequency ones in L1. Putting these estimates

together we obtain the bound

. N
1
2

1 N
1
2

2 N
−1
3

sup
t
‖u1‖L2‖u2‖L2‖u3‖L2 +

∑
(i,j,k)=1,2,3

∫ t

0

‖Fi‖L2‖uj‖L2‖uk‖L2 ds

 .

To obtain the actual contribution coming from Γ2 to the estimate (4.18), we need to sum

with respect to N1, N2, N3 subject to the constraint N3 ≥ 8 max{N1, N2}. The summation

with respect to N1, N2 is easy due to the gains (N1N
−1
3 )

1
2 and (N2N

−1
3 )

1
2 . The one with

respect to N3 uses the almost orthogonality of the output with respect to N3; precisely

u1u2∂xu3 is supported at frequency ≈ N3.
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Now we are ready to obtain an estimate for ∂xLu1.

Proposition 4.6. For t ≤ 1 we have the estimate

‖∂xLu1‖L∞t L2
x
. ‖u0‖H1,1 . (4.19)

Proof. By taking the derivative to the first equation of 4.13, we have that ∂xLu1 satisfies

P∂xLu1 = ∂x(−i2
√

2u1u2Lu1 + i
√

2u2
1Lu2)

The Duhamel formula yields

∂xLu1 = eit∆/2(xux(0)) +

∫ t

0

ei(t−s)∆/2∂x(−i2
√

2u1u2Lu1 + i
√

2u2
1Lu2) ds

After using the product rule, we can easily estimate some of the terms using the Strichartz

inequality and the size of the time interval (being ≤ 1):

∥∥∥∥∫ t

0

ei(t−s)∆/2(∂xu1)u2Lu1 ds

∥∥∥∥
L2

. ‖(∂xu1)u2Lu1‖L1
tL

2
x([0,t]×R)

. ‖∂xu1‖L4
tL
∞
x
‖u2‖L4

tL
∞
x
‖Lu1‖L∞t L2

x
.

In a similar manner we obtain:

∥∥∥∥∫ t

0

ei(t−s)∆/2u1u2(∂xLu1) ds

∥∥∥∥
L2

. ‖u1‖L4
tL
∞
x
‖u2‖L4

tL
∞
x
‖∂x(Lu1)‖L∞t L2

x∥∥∥∥∫ t

0

ei(t−s)∆/2(∂xu1)u1Lu2 ds

∥∥∥∥
L2

. ‖∂xu1‖L4
tL
∞
x
‖u1‖L4

tL
∞
x
‖Lu2‖L∞t L2

x
.

However, since none of the estimates we have proved so far cover any bounds for ∂xu2 and

∂xLu2, more work is needed for the terms u1∂x(u2)Lu1 and u2
1∂x(Lu2). By applying (4.18)
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and invoking the equations for u1, u2 and Lu1, we have that

∥∥∥∥∫ t

0

ei(t−s)∆/2u1(∂xu2)Lu1 ds

∥∥∥∥
L2

. ‖∂xu1‖L4
t l

2L∞x
‖u2‖L4

t l
2L∞x
‖Lu1‖L∞t L2

x
+ ‖u1‖L4

t l
2L∞x
‖u2‖L4

t l
2L∞x
‖∂xLu1‖L∞t L2

x

+ ‖u1‖L∞t L2
x
‖u2‖L∞t L2

x
‖Lu1‖L∞t L2

x
+ ‖u2

1u2‖L1
tL

2
x
‖u2‖L∞t L2

x
‖Lu1‖L∞t L2

x

+ ‖u1‖L∞t L2
x
‖u1u

2
2‖L1

tL
2
x
‖Lu1‖L∞t L2

x

+ ‖u1‖L∞t L2
x
‖u2‖L∞t L2

x
‖u1u2Lu1 + u2

1Lu2‖L1
tL

2
x
.

The L4
t l

2L∞x norms can be bounded as follows:

‖∂xu1‖L4
t l

2L∞x
= ‖∂xu1‖1/2

L2
t l

1L∞x
≤ ‖∂xu1‖1/2

l1L2
tL
∞
x

= ‖∂xu1‖l2L4
tL
∞
x

. ‖u0‖l2H1

∼ ‖u0‖H1 .

The same applies to ‖u2‖L4
t l

2L∞x
. Since we already have the bounds for the rest of the linear

terms, all that is left are the nonlinear terms which can be easily bounded:

‖u2
1u2‖L1

tL
2
x
. ‖u1‖2

L4
tL
∞
x
‖u2‖L∞t L2

x

‖u1u
2
2‖L1

tL
2
x
. ‖u2‖2

L4
tL
∞
x
‖u1‖L∞t L2

x

‖u1u2Lu1‖L1
tL

2
x
. ‖u1‖L4

tL
∞
x
‖u2‖L4

tL
∞
x
‖Lu1‖L∞t L2

x

‖u2
1Lu2‖L1

tL
2
x
. ‖u1‖2

L4
tL
∞
x
‖Lu2‖L∞t L2

x
.

Combining all these estimates and apply (4.12) and (4.14), all these terms collapse on the
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right-hand side collapse to a simple estimate.∥∥∥∥∫ t

0

ei(t−s)∆/2u1(∂xu2)Lu1 ds

∥∥∥∥
L2

. ‖u0‖3
H1,1 + ‖u0‖2

H1,1‖∂xLu1‖L∞t L2
x
.

In a similar manner, we have that∥∥∥∥∫ t

0

ei(t−s)∆/2u2
1(∂xLu2) ds

∥∥∥∥
L2

. ‖u0‖3
H1,1 + ‖u0‖2

H1,1‖∂xLu1‖L∞t L2
x
.

Therefore we obtain

‖∂xLu1‖L∞t L2
x
. ‖u0‖H1,1 + ‖u0‖3

H1,1 + ‖u0‖2
H1,1‖∂xLu1‖L∞t L2

x
.

and we conclude that

‖∂xLu1‖L∞t L2
x
. ‖u0‖H1,1 .

4.2 Testing using wave packets

As mentioned in the introduction, we will use the technique of testing against the

wave packet Ψv supported on the ray ξ = v = x
t
. The precise definition is as follows: we let

χ be a smooth function with compact support around 0 and
∫
χ(x) dx = 1. We then define

φ(t, x) :=
x2

2t
,

Ψv(t, x) := χ

(
x− vt√

t

)
eiφ(x,t),

γi(t, v) :=

∫
ui(t)Ψv(t, x) dx, i = 1, 2.

We also make a convention that when a result holds for γ and u, it means that it holds for

γi and ui for i = 1, 2.
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The following results from Ifrim-Tataru allow us to estimate the solutions of (1.15) with

the help of γ1 and γ2.

Lemma 4.7 (Lemma 2.2 in [28]). Assume that u(t) ∈ L2
x ∩ L∞x and Lu(t) ∈ L2

x for all

t ∈ R and define γ(t, v) :=
∫
u(t)Ψv(t, x) dx. Then u and γ satisfy the following estimates:

‖γ‖L∞v . t1/2‖u‖L∞x , ‖γ‖L2
v
. ‖u‖L2

x
, ‖∂vγ‖L2

v
. ‖Lu‖L2

x
, (4.20)

‖u(t, vt)− t−1/2eiφ(t,vt)γ(t, v)‖L2
v
. t−1‖Lu‖L2

x
,

‖u(t, vt)− t−1/2eiφ(t,vt)γ(t, v)‖L∞v . t−3/4‖Lu‖L2
x
,

(4.21)

We also have the Fourier estimates

‖û(t, ξ)− e−itξ2/2γ(t, ξ)‖L2
ξ
. t−1‖Lu‖L2

x
,

‖û(t, ξ)− e−itξ2/2γ(t, ξ)‖L∞ξ . t−1‖Lu‖L2
x
,

(4.22)

The following Lemma tells us that the momentum operator on u corresponds to the position

operator on γ.

Lemma 4.8. Let u and γ be defined as in Lemma 4.7. Then we have the following

estimates: ∣∣ux(t, vt)− it−1/2eiφvγ
∣∣ . t−1/2(‖u‖L∞ + t−1/4‖Lux‖L2)∥∥ux(t, vt)− it−1/2eiφvγ

∥∥
L2
v
. t−1(‖u‖L2 + ‖Lux‖L2).

(4.23)

Proof. Note that
∫
χ dx = 1. We start with the triangle inequality.

∣∣ux − it−1/2eiφvγ
∣∣ ≤ ∣∣∣∣e−iφux − it−1/2

∫
x

t
uΨv dx

∣∣∣∣+

∣∣∣∣it−1/2

∫ (
x− vt
t

)
uΨv dx

∣∣∣∣
By Hölder inequality, we have∣∣∣∣it−1/2

∫ (
x− vt
t

)
uΨv dx

∣∣∣∣ . t−3/4‖u‖L2
x
.

85



For the first term, we will use integration by parts. By defining w̃ := e−iφux, we obtain

∣∣∣∣e−iφux − it−1/2

∫
x

t
uΨv dx

∣∣∣∣ =

∣∣∣∣e−iφux + t−1/2

∫
uχ

(
x− vt√

t

)
∂xe
−iφ dx

∣∣∣∣
=

∣∣∣∣e−iφux − t−1/2

∫
∂x

{
uχ

(
x− vt√

t

)}
e−iφ dx

∣∣∣∣
≤
∣∣∣∣t−1/2

∫
[w̃(t, vt)− w̃(t, x)]χ

(
x− vt√

t

)
dx

∣∣∣∣
+

∣∣∣∣t−1

∫
uχ′
(
x− vt√

t

)
e−iφ dx

∣∣∣∣ . (4.24)

Since the second term can be written as e−iφ(t,vt)u(t, vt) ∗v χ′(t1/2v), we can apply Young’s

inequality to obtain

∣∣e−iφ(t,vt)u(t, vt) ∗v χ′(t1/2v)
∣∣ . t−1/2‖u‖L∞x

and ∥∥e−iφ(t,vt)u(t, vt) ∗v χ′(t1/2v)
∥∥
L2
v
. t−1‖u‖L2

x
.

For the remaining term, we use Hölder inequality

∣∣e−iφ(t,vt)ux(t, vt)− e−iφux(t, x)
∣∣ =

∣∣∣∣∫ vt

x

∂y
[
e−iφ(t,y)ux(t, y)

]
dy

∣∣∣∣
=

∣∣∣∣− it
∫ vt

x

e−iφ(t,y)Lux(t, y) dy

∣∣∣∣
≤ |x− tv|

1/2

t
‖Lux‖L2

(4.25)

Therefore, by defining z = x−vt√
t

, we have that

∣∣∣∣t−1/2

∫
[w̃(t, vt)− w̃(t, x)]χ

(
x− vt√

t

)
dx

∣∣∣∣ . t−3/4‖Lux‖L2
x

∫
|z|χ(z) dz

. t−3/4‖Lux‖L2
x
.
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It remains to estimate the L2
v norm of this term. By (4.25) and Minkowski inequality, we

have ∥∥∥t−1/2

∫
[w̃(t, vt)− w̃(t, x)]χ

(
x− vt√

t

)
dx
∥∥∥
L2
v

≤ 1

t3/2

∥∥∥∥∫ ∫ vt

x

|Lux(t, y)|χ
(
x− vt√

t

)
dydx

∥∥∥∥
L2
v

=
1

t1/2

∥∥∥∥∫ ∫ 1

0

|Lux(t, vt+ t1/2zh)|zχ(z) dhdz

∥∥∥∥
L2
v

≤ 1

t
‖Lux‖L2 .

These results suggest that it might be better to focus on the dynamic of γ1, which

we can describe in the following lemma.

Lemma 4.9. γ1 and γ2 satisfy the following ODEs.

γ̇1(t, v) = −i(t−1v|γ1|2 +
1

2
t−2|γ1|4)γ1 +R1(t, v). (4.26)

γ̇2(t, v) = i(t−1v|γ1|2 +
1

2
t−2|γ1|4)γ2 +R2(t, v), (4.27)

where

‖R1‖L∞v . t−5/4‖Lu1‖L2 + ‖u1‖2
L∞(t−1/4‖L∂xu1‖L2 + ‖u1‖L∞)

+ t−1/4‖∂xu1‖L∞‖u1‖L∞‖Lu1‖L2 + t−1/4‖u1‖4
L∞‖Lu1‖L2 ,

‖R2‖L∞v . t−5/4‖Lu2‖L2 + ‖u1‖L∞‖u2‖L∞(t−1/4‖L∂xu1‖L2 + ‖u1‖L∞)

+ t−1/4‖∂xu1‖L∞‖u2‖L∞‖Lu1‖L2 + t−1/4‖u1‖3
L∞‖u2‖L∞‖Lu1‖L2

(4.28)
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and

‖R1‖L2
v
. t−3/2‖Lu1‖L2 + t−1/2‖u1‖2

L∞(‖L∂xu1‖L2 + ‖u1‖L2)

+ t−1/2‖∂xu1‖L∞‖u1‖L∞‖Lu1‖L2 + t−1/2‖u1‖4
L∞‖Lu1‖L2 ,

‖R2‖L2
v
. t−3/2‖Lu2‖L2 + t−1/2‖u1‖L∞‖u2‖L∞(‖L∂xu1‖L2 + ‖u1‖L2)

+ t−1/2‖∂xu1‖L∞‖u2‖L∞‖Lu1‖L2 + t−1/2‖u1‖3
L∞‖u2‖L∞‖Lu1‖L2 .

(4.29)

Proof. From the definition of γ1, we compute the time derivative and then utilize the PDE

4.11 for u1.

γ̇1(t) =

∫
∂tu1Ψv + u1∂tΨvdx =

∫
(i∂2

xu1 −
√

2u2u
2
1)Ψv + u1∂tΨv dx

=

∫
iu1(i∂t + ∂2

x)Ψv dx−
√

2

∫
u2u

2
1Ψv dx

=

∫
iu1(i∂t + ∂2

x)Ψv dx−
∫
u2

1

(
∂xu1 +

i

2
|u1|2u1

)
Ψv dx.

(4.30)

From direct calculation, we see that for x̃ = t−1/2(x− vt),

(i∂t + ∂2
x)Ψv =

1

2t1/2
eiφ∂x [χ′(x̃) + ix̃χ(x̃)] .

We then integrate by parts to obtain

∫
iu1(i∂t + ∂2

x)Ψv dx =
1

2t1/2

∫
i∂x [χ′(x̃)− ix̃χ(x̃)]u1e

−iφ dx

= − 1

2t3/2

∫
[χ′(x̃)− ix̃χ(x̃)]Lu1e

−iφ dx.

Therefore, by Hölder inequality,

∣∣∣∣∫ iu1(i∂t + ∂2
x)Ψv dx

∣∣∣∣ . t−5/4‖Lu1‖L2 . (4.31)
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We will now split the term.∫
u2

1∂xu1Ψv dx =

∫
u2

1Ψve
−iφ
(
e−iφ∂xu1 − e−iφ(t,vt)∂xu1(t, vt)

)
dx

+

∫
u1∂xu1(t, vt)Ψve

iφ(t,vt)
(
e−iφu1 − e−iφ(t,vt)u1(t, vt)

)
dx

+ γ1∂xu1(t, vt)
(
u1(t, vt)− t−1/2eiφ(t,vt)γ1

)
+ t−1/2eiφ(t,vt)γ2

1

(
∂xu1(t, vt)− it−1/2e−iφ(t,vt)vγ1

)
+ it−1v|γ1|2γ1

:= R31 +R32 +R33 +R34 + it−1v|γ1|2γ1 +R3

:= R3 + it−1v|γ1|2γ1.

The term R31 and can be estimated using (4.25).

|R31| . t−1/4‖u1‖2
L∞‖L∂xu1‖L2 .

The same goes for R32, but with ux replaced by u in (4.25).

|R32| . t−1/4‖∂xu1‖L∞‖u1‖L∞‖Lu1‖L2 .

The term R33 can be estimated using (4.20) and (4.21)

|R33| . t−1/4‖∂xu1‖L∞‖u1‖L∞‖Lu1‖L2 ,

and R34 can be estimated using (4.20) and (4.23).

|R34| . ‖u1‖3
L∞ + t−1/4‖u1‖2

L∞‖L∂xu1‖L2 .

In conclusion, we have

|R3| . ‖u1‖2
L∞(t−1/4‖L∂xu1‖L2 + ‖u1‖L∞) + t−1/4‖∂xu1‖L∞‖u1‖L∞‖Lu1‖L2 .
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We apply the same idea to the remaining term.

i

2

∫
|u1|4u1Ψv dx =

i

2

∫
u1Ψv

(
|u1|4 − |u1(t, vt)|4

)
dx

+
i

2
γ1

(
|u1(t, vt)|4 − t−2|γ1|4

)
+
i

2
t−2|γ1|4γ1

:=
i

2
t−2|γ1|4γ1 +R4

where R4 satisfies the estimate

|R4| . t−1/4‖u1‖4
L∞‖Lu1‖L2 .

Consequently, we obtain the L∞ bound for R1 := R3 +R4. The L2 bound for R1 can be

obtained in a similar manner, using the second estimates in (4.21) and (4.23) instead of

the first ones.

The proof for γ1 is finished after combining R1 := R3 +R4. With the same proof focusing

on the PDE for u2, we can obtain similar result for γ2.

4.3 Global Well-posedness and global bounds

Assume that the initial data is small in H1,1. Then, the DNLS has a unique solution

in L∞t H
1
x due to the conservation of mass and energy.

Proposition 4.10. Assume that u is a solution to (1.15) with the initial data satisfying

‖uo‖H1,1 ≤ ε <
√
π

2 4√28
. Then for all t ∈ R, we have the estimate

‖u(t)‖H1 . ε. (4.32)
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Proof. It follows from the conservation of mass that ‖u(t)‖L2
x
≤ ε. From Gagliardo-

Nirenberg inequality, we have that∣∣∣∣∫
R

3Im|u(t)|2u(t)ux(t) + 2|u(t)|6 dx
∣∣∣∣ ≤ 14

∫
R
|u|6 dx+

3

4

∫
R
|ux|2 dx

≤ 56

π2
‖ux‖2

L2
x
‖u‖4

L2
x

+
3

4
‖ux‖2

L2
x

≤
(

56ε4

π2
+

3

4

)
‖ux‖2

L2
x

=
7

8
‖ux‖2

L2
x
.

Therefore, E(u(t)) ∼ ‖ux‖2
L2
x
, and it follows that

‖u(t)‖2
H1
x
∼M(u(t)) + E(u(t)) = M(u(0)) + E(u(0)) ∼ ‖u(0)‖2

H1
x
≤ ε

as desired.

Corollary 4.11. The equation (1.15) with initial data u0 ∈ H1,1 has a unique solution in

H1.

Proof. This follows from the previous proposition and the H1 local theory for the DNLS.

We will now prove pointwise estimates of the solution. First, we will assume two

bootstrap assumptions

‖u‖L∞ ≤ Dε|t|−1/2, (4.33)

‖ux‖L∞ ≤ Dε|t|−1/2. (4.34)

where 1� D � ε−1.

This implies that

‖u1‖L∞ ≤ Dε|t|−1/2, (4.35)
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‖∂xu1‖L∞ . Dε|t|−1/2 +D3ε3|t|−3/2, (4.36)

‖u2‖L∞ . Dε|t|−1/2 +D3ε3|t|−3/2. (4.37)

Under these assumptions, we obtain the following estimates for Lui and L∂xu1.

Lemma 4.12. For t ≥ 1, we have that

‖Lui(t)‖L2 . εtCD
2ε2 (4.38)

for some C > 1 independent of D and ε.

Proof. Multiply equation ((4.13)) by Lu1 and integrate. We have

d

dt
‖Lu1(t)‖2

L2 = Re

∫ [
−i2
√

2u1u2|Lu1|2 + i
√

2u2
1Lu1Lu2

]
dx

d

dt
‖Lu2(t)‖2

L2 = Re

∫ [
i2
√

2u2u1|Lu2|2 − i
√

2u2
2Lu1Lu2

]
dx

This leads to an inequality

d

dt

[
‖Lu1(t)‖2

L2 + ‖Lu2(t)‖2
L2

]
.
[
‖u1‖2

L∞ + ‖u2‖2
L∞ + ‖u1‖L∞‖u2‖L∞

] [
‖Lu1(t)‖2

L2 + ‖Lu2(t)‖2
L2

]
.

Note that ‖Lui‖L2 . ‖xui(0)‖L2
x
≤ ε for i = 1, 2. By applying Gronwall’s inequality, we

obtain

‖Lu1(t)‖2
L2 + ‖Lu2(t)‖2

L2

≤
(
‖Lu1(1)‖2

L2 + ‖Lu2(1)‖2
L2

)
e
∫ t
1 ‖u1‖

2
L∞+‖u2‖2L∞+‖u1‖L∞‖u2‖L∞ dt

. ε2e
∫ t
1 ‖u1‖

2
L∞+‖u2‖2L∞+‖u1‖L∞‖u2‖L∞ dt

≤ ε2tC0D2ε2 .

(4.39)

For some C0 > 2.
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The last thing we need is an L2 estimate for L∂xu1:

Lemma 4.13. For t ≥ 1, we have an estimate

‖L∂xu1‖L2 .
(
ε+ t−1D2ε3

)
tCD

2ε2 . εtCD
2ε2 . (4.40)

where the last inequality has an implicit constant depending on D.

Proof. Recall that we have ∂xu1 =
√

2u2− i|u1|2u1. Applying L to both sides, we compute

L|u1|2u1 = it∂x(|u1|2)u1 + |u1|2Lu1.

This allows us to estimate

‖L∂xu1‖L2 . ‖Lu2‖L2 + ‖∂xu1‖L∞‖u1‖L2‖u1‖L∞ + ‖Lu1‖L2‖u1‖2
L∞

. εtCD
2ε2 +D2ε3 +D2ε3tCD

2ε2−1

≤
(
2ε+ t−1D2ε3

)
tCD

2ε2 .

We can now close the bootstrap argument and obtain global bounds.

Proposition 4.14. For any t ≥ 1, we have that

‖u‖L∞ . εt−1/2, (4.41)

‖ux‖L∞ . εt−1/2. (4.42)

with the implicit constants not depending on D.
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Proof. It suffices to prove in the case t ≥ 0. We first obtain the global bounds. By defining

w1 := e−iφu1, we can use the local well-posedness result to obtain the bound for t ∈ (0, 1].

|u(t)| = |u1(t)| = |w1(t)| . ‖∂xw1(t)‖L2‖w1(t)‖L2 = t−1/2‖Lu1(t)‖1/2

L2 ‖u1(t)‖1/2

L2 . εt−1/2.

(4.43)

To advance from t = 1, we will use (4.21), (4.26) and (4.28). First, note that

‖u1(t, vt)− t−1/2eiφ(t,vt)γ1(t, v)‖L∞v . t−3/4‖Lu1‖L2
x
. εt−

3
4

+CD2ε2 . (4.44)

Thus, it suffices to bound γ1. Since i|γ|2 is purely imaginary, we have that

|γ1(t)| ≤ |γ1(1)|+
∫ t

1

|R1(s, v)| ds (4.45)

From (4.20) and (4.43), we have

|γ1(1)| . t1/2‖u1(1)‖L∞ . ε.

From (4.28), (4.33)-(4.37),(4.38) and (4.40), we have

|R1| . ε(1 +D2ε2)t−5/4+CD2ε2 . (4.46)

By integrating this estimate, we obtain

‖u(t)‖L∞ = ‖u1(t)‖L∞ . t−1/2‖γ1(t, v)‖L∞v

. t−1/2
(
|γ1(1)|+

∫ t

1

|R1(s, v)| ds
)

. ε(1 +D2ε2)t−1/2

. εt−1/2,
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from the assumption 1� D � ε−1. We then obtain (4.41) from the bootstrap argument

as desired.

We will now prove the bound for ux. We have that for t ∈ (0, 1]

‖∂xu1‖L∞ . t−1/2‖L(∂xu1)‖1/2

L2 ‖∂xu1‖1/2

L2 . t−1/2ε. (4.47)

Now assume that t ≥ 1. It follows from the estimate (4.21) that

‖u2(t, vt)− t−1/2eiφ(t,vt)γ2(t, v)‖L∞v . t−3/4‖Lu2‖L2 . εt−
3
4

+CD2ε2 . (4.48)

As before, we have that

|γ2(t)| ≤ |γ2(1)|+
∫ t

1

|R2(s, v)| ds (4.49)

From (4.20), (4.47) and (4.43), we have

|γ2(1)| . t1/2‖u2(1)‖L∞ . t1/2(‖∂xu1(1)‖L∞ + ‖u1(1)‖3
L∞) . ε.

We then estimate the remainder R2 in the same way that we did for R1.

|R2| . ε(1 +D2ε2)t−5/4+CD2ε2 . (4.50)

From this, we see that the bound for u2 is the same as that of u1.

‖u2(t)‖L∞ . t−1/2‖γ2‖L∞v . t−1/2
(
|γ2(1)|+

∫ t

1

|R2(s, v)| ds
)
. εt−1/2.

and we conclude that

‖ux(t)‖L∞ . ‖u2(t)‖L∞ + ‖u1(t)‖3
L∞

. ‖u2(t)‖L∞ + ‖u1(t)‖3
L∞

. εt−1/2
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as desired.

Corollary 4.15. For t ≥ 1, we have an estimate

‖L∂xu1‖L2 . εtCD
2ε2 . (4.51)

Proof. The proof is the same as Lemma 4.13, but the implicit constant now does not

depend on D because of (4.41) and (4.42).

4.4 Asymptotic profiles

We will extract profiles from u1 and u2 and use them to construct a profile for u.

The following estimate will be used to reverse the Gauge transformation from u1 to u.

Lemma 4.16. Let 0 ≤ s ≤ 1.

1. For any f ∈ Hs and g ∈ Hs,

∥∥∥∥f(x) exp

(
i

∫ x

−∞
|g(x′)|2 dx′

)∥∥∥∥
Hs

. ‖f‖Hs + ‖f‖L2‖g‖L2‖g‖Hs . (4.52)

2. For any f ∈ Hs+1 and g ∈ Hs+1,

∥∥∥∥f(x) exp

(
i

∫ x

−∞
|g(x′)|2 dx′

)∥∥∥∥
Hs+1

. ‖f‖Hs+1 + ‖f‖L∞‖g‖Hs(‖g‖L∞ + ‖g‖2
L2).

(4.53)
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Proof. For a proof of (4.52) we refer to [23]. In order to prove (4.53), we will apply the

product estimate for Sobolev spaces: for any α ≥ 0 and f1, f2 ∈ Ḣα ∩ L∞, we have that

‖f1f2‖Hα . ‖f1‖L∞‖f2‖Hα + ‖f1‖Hα‖f2‖L∞ (4.54)

‖f1f2‖Ḣα . ‖f1‖L∞‖f2‖Ḣα + ‖f1‖Ḣα‖f2‖L∞ . (4.55)

See, for instance, [31] for proofs of these inequaliies. It follows that∥∥∥∥f exp

(
i

∫ x

−∞
|g(x′)|2 dx′

)∥∥∥∥
Hs+1

∼ ‖f‖L2 +

∥∥∥∥f exp

(
i

∫ x

−∞
|g(x′)|2 dx′

)∥∥∥∥
Ḣs+1

. ‖f‖L2 + ‖f‖Ḣs+1 + ‖f‖L∞
∥∥∥∥exp

(
i

∫ x

−∞
|g(x′)|2 dx′

)∥∥∥∥
Ḣs+1

∼ ‖f‖Hs+1 + ‖f‖L∞
∥∥∥∥|g|2 exp

(
i

∫ x

−∞
|g(x′)|2 dx′

)∥∥∥∥
Ḣs

.

Notice that we can estimate the last term using (4.52) and (4.54).∥∥∥∥|g(x′)|2 exp

(
i

∫ x

−∞
|g(x′)|2 dx′

)∥∥∥∥
Ḣs

. ‖|g|2‖Hs + ‖g‖2
L2‖g‖Hs

. ‖g‖L∞‖g‖Hs + ‖g‖2
L2‖g‖Hs ,

which gives the desired inequality.

We begin by recalling the estimates (4.46) in the proof of Proposition 4.14:

‖R1‖L∞v . εt−5/4+CD2ε2 . (4.56)

We can also obtain an L2 bounds using (4.29), (4.38), (4.51), (4.41) and (4.42):

‖R1‖L2
v
. εt−3/2+CD2ε2 . (4.57)
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Moreover, the estimate (4.20) together with the global estimates (4.41) and (4.42) allow us

to obtain the following bounds for γ1 and γ2:

‖γi‖L∞v . ε, ‖γi‖L2
v
. ε, (4.58)

for i = 1, 2. We recall the ODE of γ1 from (4.26):

γ̇1(t, v) = −it−1v|γ1|2γ1 −
1

2
it−2|γ1|4γ1 +R1(t, v). (4.59)

Since the last two terms on the right-hand side are integrable on t ∈ [1,∞) and are small

compared to the first term as t→∞, we can obtain an approximated solution to this ODE

by assuming that these terms vanish. This can be expressed as

γ1(t, v) = W1(v)e−iv|W (v)|2 log t + err0(t, v), (4.60)

where ‖err0‖L∞v . εt−1/4+CD2ε2 and ‖err0‖L2
v
. εt−1/2+CD2ε2 . Then we can approximate u1

by γ1 using (4.21) and (4.38):

u1(t, x) =
1

t1/2
W1

(x
t

)
e−i|W1(x/t)|2 x

t
log t+ix

2

2t + errp(t, x)

:= ũ1(t, x) + errp(t, x).

(4.61)

where ‖errp‖L∞x . εt−3/4+CD2ε2 and ‖errp‖L2
x
. εt−1+CD2ε2 . By setting t = 1, we have that

‖W1(x)‖L∞x . ‖u1(1, x)‖L∞x . ε, ‖W1(x)‖L2
x
. ‖u1(1, x)‖L2

x
. ε. (4.62)

Since u(t, x) = u1(t, x) exp(2i
∫ x
∞|u1(t, x′)|2 dx′), we can give an expression for u:

u(t, x) = ũ1(t, x) exp
(

2i

∫ x

−∞
|ũ1|2 + 2Re[ũ1errp(t)] + |errp(t)|2 dx′

)
+ err′1(t, x) (4.63)
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Note that (4.62) implies

‖ũ1errp‖L1
x
≤ 1

t1/2
‖W1(x/t)‖L2

x
‖errp‖L2

x
. ε2t−1+CD2ε2 .

Thus we can take the integrand in (4.63) as a small perturbation of |ũ1|2. Therefore, as

t→∞, we can write

u(t, x) = ũ1(t, x) exp
(

2i

∫ x

−∞
|ũ1|2 dx′

)
+ err1(t, x)

where ‖err1‖L∞x . εt−3/4+CD2ε2 and ‖err1‖L2
x
. εt−1+CD2ε2 .

By defining W (x) := W1(x) exp
(

2i
∫ x
−∞|W1(x′)|2 dx′

)
, we obtain

u(t, x) =
1

t1/2
W
(x
t

)
e−i|W (x/t)|2 x

t
log t+ix

2

2t + err1(t, x), (4.64)

as desired. The same technique can also be applied to prove (4.6). First, we apply the

estimate (4.23) on u1 to obtain

∂xu1(t, x) =
ix

t3/2
W1

(x
t

)
e−i|W1(x/t)|2 x

t
log t+ix

2

2t + err′3(t, x), (4.65)

where ‖err′3‖L∞x . εt−3/4+CD2ε2 and ‖err′3‖L2
x
. εt−1+CD2ε2 . The result then follows from

∂xu(t, x) = (∂xu1(t, x) + 2iu1(t, x)|u1(t, x)|2) exp
(

2i

∫ x

−∞
|u1(x′)|2 dx′

)
=

ix

t3/2
W
(x
t

)
e−i|W (x/t)|2 x

t
log t+ix

2

2t + err3(t, x).

To find the regularity of W , we go back to (4.65) and use u2 = 1√
2
(∂xu1 + i|u1|2u1) to

obtain

u2(t, vt) =
iv√
2t1/2

W1 (v) e−iv|W1(v)|2 log t+iφ(t,vt) +OL2
v
(εt−3/2+CD2ε2). (4.66)
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From (4.21) and (4.38), we have that

u2(t, vt) =
1

t1/2
eiφ(t,vt)γ2(t, v) +OL2

v
(εt−1+CD2ε2).

It follows that

γ2(t, v) =
iv√

2
W1 (v) e−iv|W1(v)|2 log t +OL2

v
(εt−1/2+CD2ε2). (4.67)

We then multiply both sides by eiv|W1(v)|2 log t and observe that the exponent contains a prod-

uct of |W1(v)| = |γ1(t, v)|+OL2
v
(εt−1/2+CD2ε2) and v|W1(v)| = |γ2(t, v)|+OL2

v
(εt−1/2+CD2ε2).

Therefore, (4.67) gives us an L2
v approximation for vW1(v) for all large t.

‖vW1 (v) + i
√

2γ2(t, v)ei|γ1(t,v)||γ2(t,v)| log t‖L2
v

. ‖γ2‖L∞v (‖γ1‖L2
v
‖γ2‖L∞v + ‖γ1‖L∞v + ‖γ2‖L∞v )εt−1/2+CD2ε2 log t

. εt−1/2+CD2ε2 log t.

From (4.20), we have

∥∥∂v[γ2(t, v)ei|γ1(t,v)||γ2(t,v)| log t
]∥∥

L2
v
. εtCD

2ε2 log t.

Therefore, we obtain the asymptotic for vW1(v):

vW1(v) = OH1
v
(εtCD

2ε2 log t) +OL2
v
(εt−1/2+CD2ε2 log t). (4.68)

We can make the same analysis on (4.60) alone to obtain the asymptotic for W1(v):

W1(v) = OH1
v
(εtCD

2ε2 log t) +OL2
v
(εt−1/2+CD2ε2 log t). (4.69)

One can multiply both sides of (4.68) and (4.69) by exp
(

2i
∫ x
−∞|W1(x′)|2 dx′

)
, apply (4.52)

and (4.62) to obtain the same asymptotics for vW (v). The regularity of W can then be
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achieved by interpolation:

‖W‖
H

1−C0ε
2,1

v
. ε,

for large enough C0.

It remains to prove (4.5), a profile for û. We can approximate û1 by γ1 using (4.22)

and (4.38):

û1(t, ξ) = W1(ξ)e−iξ|W1(ξ)|2 log t−itξ2/2 + errf (t, ξ),

where ‖errf‖L∞ξ . εt−1/4+CD2ε2 and ‖errf‖L2
ξ
. εt−1/2+CD2ε2 . To obtain a similar profile

for û, we need the factorization technique for the Schrödinger propagator U(t) := eit∆/2

from [24] and [16]. By defining Mt = e
ix2

2t and D, a dilation operator, by

(Dtφ)(x) =
1

(it)1/2
φ
(x
t

)
,

we have that for any f ∈ L2
x and any t ≥ 1,

[U(t)f ](t, x) = [F−1e−itξ
2/2Fxf ](t, x)

= F−1F
[

1

(2πit)1/2
e
ix2

2t ∗ f(x)

]
=

1

(2πit)1/2

∫
R
e
i(x−ξ)2

2t f(ξ) dξ

= e
ix2

2t
1

(it)1/2

[
1

(2π)1/2

∫
R
e−

ixξ
t e

iξ2

2t f(ξ) dξ

]
= [MtDtFMtf ](t, x).

Note that f in the first line depends on x while the one in the last line depends on ξ. From

this, we have [U(−t)f ](t, x) = [M−tF−1D 1
t
M−tf ](t, x). By applying this to our function u,
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it follows that

FU(−t)u = FU(−t)
[
u1(t, x) exp

(
2i

∫ x

−∞
|u1(x′)|2 dx′

)]
= FM−tF−1D 1

t
M−t

[
u1(t, ξ) exp

(
2i

∫ ξ

−∞
|u1(y)|2 dy

)]
= FM−tF−1

[(
D 1

t
M−tu1

)
exp

(
2i

∫ tξ

−∞
|u1(y)|2 dy

)]
= FM−tF−1

[(
D 1

t
M−tu1

)
exp

(
2i

∫ ξ

−∞
t|M−tu1(tξ′)|2 dξ′

)]
= FM−tF−1

[(
D 1

t
M−tu1

)
exp

(
2i

∫ ξ

−∞
|D 1

t
M−tu1|2 dξ′

)]
= FM−tF−1

[(
FMtU(−t)u1

)
exp

(
2i

∫ ξ

−∞
|D 1

t
M−tu1|2 dξ′

)]
=
(
FU(−t)u1

)
exp

(
2i

∫ ξ

−∞
|D 1

t
M−tu1|2 dξ′

)
+G(t, ξ),

where

G(t, ξ) = F(M−t − 1)F−1

[(
FMtU(−t)u1

)
exp

(
2i

∫ ξ

−∞
|D 1

t
M−tu1|2 dξ′

)]
+
(
F(Mt − 1)U(−t)u1

)
exp

(
2i

∫ ξ

−∞
|D 1

t
M−tu1|2 dξ′

)
= F(M−t − 1)F−1

[(
FMtU(−t)u1

)
exp

(
2i

∫ ξ

−∞
|FM−tU(−t)u1|2 dξ′

)]
+
(
F(Mt − 1)U(−t)u1

)
exp

(
2i

∫ ξ

−∞
|FM−tU(−t)u1|2 dξ′

)
:= G1 +G2.

Note that for any small 0 < γ < 1
2
, we have |M−t − 1| .γ

∣∣∣x2t ∣∣∣ γ2 . Therefore, for any

1
2
< α ≤ 1− γ, it follows from the Sobolev embedding, (4.52) and duality that

‖G1‖L∞ξ . ‖G1‖Hα

.
1

t
γ
2

∥∥∥∥(FMtU(−t)u1

)
exp

(
2i

∫ ξ

−∞
|FM−tU(−t)u1|2 dξ′

)∥∥∥∥
Hα+γ
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.
1

t
γ
2

(
‖FMtU(−t)u1‖H1 + ‖FMtU(−t)u1‖2

L2‖FMtU(−t)u1‖H1

)
=

1

t
γ
2

(
‖U(−t)u1‖H0,1 + ‖u1‖2

L2‖U(−t)u1‖H0,1

)
.

and similarly

‖G2‖L∞ξ = ‖F(Mt − 1)U(−t)u1‖L∞ξ

. ‖F(Mt − 1)U(−t)u1‖Hα

.
1

t
γ
2

‖xα+γU(−t)u1‖L2

≤ 1

t
γ
2

‖U(−t)u1‖H0,1 .

Since L = U(t)xU(−t), we can use (4.38) and set γ = 1
2
− 2CD2ε2 to find a global bound

for G.

‖G‖L∞ξ .
1

t
γ
2

[
‖u1‖L2 + ‖Lu1‖L2 + ‖u1‖2

L2(‖u1‖L2 + ‖Lu1‖L2)
]

. εt−
γ
2

+CD2ε2

. εt−1/4+2CD2ε2 .

We can estimate G in L2
ξ using the same proof. Since there is no need for the Sobolev

embedding, we can take α = 0 and γ = 1− 2CD2ε2, which yield

‖G‖L2
ξ
. t−1/2+2CD2ε2 .

Continuing the computation of FU(−t)u, we observe that the asymptotic (4.61) of u1

implies |D 1
t
M−tu1(t, ξ)| ≤ |W (ξ)|+ t

1
2 |errp(t, tx)|. Therefore,

FU(−t)u =
(
FU(−t)u1

)
exp

(
2i

∫ ξ

−∞
|D 1

t
M−tu1|2 dξ′

)
+ εt−1/4+2CD2ε2
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=
(
FU(−t)u1

)
exp

(
2i

∫ ξ

−∞
|W1(ξ′)|2 dξ′

)
+ err′2(t, ξ)

= W1(ξ)e−iξ|W1(ξ)|2 log t exp
(

2i

∫ ξ

−∞
|W1(ξ′)|2 dξ′

)
+ err′′2(t, ξ)

= W (ξ)e−iξ|W (ξ)|2 log t + err′′2(t, ξ).

The error term can be approximated (ignoring the lower order terms in t) as follows:

‖err′′2‖L∞ξ ≤ ‖errf‖L∞ξ + ‖err′2‖L∞ξ + εt−1/4+2CD2ε2

. ‖errf‖L∞ξ + t1/2‖FU(−t)u1‖L∞ξ ‖W1errp(t, tx)‖L1
ξ

+ εt−1/4+2CD2ε2

. ‖errf‖L∞ξ + ‖W1‖L∞ξ ‖W1‖L2
ξ
‖errp(t)‖L2

ξ
+ εt−1/4+2CD2ε2

. εt−1/4+2CD2ε2

‖err′′2‖L2
ξ
≤ ‖errf‖L2

ξ
+ ‖err′2‖L2

ξ
+ εt−1/2+2CD2ε2

. ‖errf‖L∞ξ + t1/2‖u1‖L2
ξ
‖W1errp(t, tx)‖L1

ξ
+ εt−1/2+2CD2ε2

. εt−1/2+2CD2ε2 .

By defining err2(t, ξ) := e−itξ
2
err′′2(t, ξ), we obtain the wave profile for û as stated in (4.5).

4.5 The asymptotic completeness

We will now prove (C) in Theorem 4.1, which is the asymptotic completeness of

equation (1.15). Let W ∈ H1+Cε2,1(R). Roughly speaking, we want to show the existence

of a small initial data u0 ∈ H1,1 whose profile in (4.4) is associated with W . Let W1 be the
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gauge transformation of W :

W1 = W exp

(
2i

∫ x

−∞
|W (x′)|2 dx′

)
.

An application of (4.53) and (4.62) shows that

‖W1‖H1+Cε2,1 =

∥∥∥∥W exp

(
2i

∫ x

−∞
|W (x′)|2 dx′

)∥∥∥∥
H1+Cε2,1

. ‖W‖H1+Cε2,1 .

Therefore, it suffices to find initial data u1,0 ∈ H1,1 and u2,0 ∈ H0,1 so that the system of

equations (4.11) has a solution whose profiles in (4.61) and (4.66) are associated with W1,

because we can then obtain u0 from u0 = u1 exp(
∫ x
−∞|u1|2 dx′). To simplify the proof below,

we will make an abuse of notations and replace W1 by W . Here, we assume a stronger

bound on W :

‖W‖H1+2δ,1(R) ≤M � 1 where M, δ > 0 and M2 � δ. (4.70)

Let v1 and v2 be the asymptotic profiles of u1 and u2 defined by

v1(t, x) :=
1

t1/2
W
(x
t

)
ei|W (x/t)|2(x/t) log t+ix2/(2t),

v2(t, x) :=
ix√
2t3/2

W
(x
t

)
ei|W (x/t)|2(x/t) log t+ix2/(2t).

In the argument below, we will take a look at L∞ and L2 behavior of (i∂t + 1
2
∂2
x)vi and

L(i∂t + 1
2
∂2
x)vi for i = 1, 2, which requires the spatial regularity of W up to the third order.

For this reason, we create a new profile that resemble W and has the desired regularity

using the frequency cutoff.

W(t, v) := P≤t1/2W (v)
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where F(P≤t1/2W )(t, ξ) := ψ≤1(ξ/t1/2)Ŵ (t, ξ). Then the approximate profiles are

w1(t, x) :=
1√
t
W (t, x/t) ei|W(t,x/t)|2(x/t) log t+ix2/(2t),

w2(t, x) :=
ix√
2t3/2

W (t, x/t) ei|W(t,x/t)|2(x/t) log t+ix2/(2t).

By Bernstein’s inequality, we have

‖W(t, v)−W (v)‖L2
v
.Mt−1/2−δ, ‖W(t, v)−W (v)‖L∞v .Mt−1/4−δ.

We see that w1 is a good approximation of v1.

|v1 − w1| .
1√
t
|W (x/t)−W(t, x/t)|

+
log t√
t

∣∣∣x
t
W(t, x/t)(|W (x/t)|2 − |W(x/t)|2)

∣∣∣
Some factors in the second term can be bounded by Sobolev embedding.

|W (v)|+ (|v|+ 1)|W(v)| . ‖W‖H1+2δ,1(R) ≤M.

Therefore, we can see that w1 is a good approximation of v1.

‖v1 − w1‖L2
x
.Mt−1/2−δ(1 +M2 log t),

‖v1 − w1‖L∞ .Mt−3/4−δ(1 +M2 log t).

To get an approximation for v2, we note that w2 contains the term x
t
W(t, x/t). Applying

the Fourier transform,

F(vP≤t1/2W ) ≈ ∂ξ[ψ(ξ/t1/2Ŵ (ξ)] = ∂ξψ(ξ/t1/2)Ŵ (ξ) + ψ(ξ/t1/2)∂ξŴ (ξ),

it follows from the duality and Young’s inequality that

‖vP≤t1/2W‖L2
v
. ‖P≤t1/2vW‖L2

v
+ t−1/2‖W‖L2

v

‖vP≤t1/2W‖L∞ . ‖P≤t1/2vW‖L∞ + t−1/2‖W‖L∞ .
(4.71)
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It follows that for v2 and w2,

‖v2 − w2‖L2
x
.Mt−1/2−δ(1 +M2 log t),

‖v2 − w2‖L∞ .Mt−3/4−δ(1 +M2 log t).

Thus we know that w1 and w2 are good approximations of v1 and v2. Let u1 and u2 be

any solution to (4.11). By defining Ui := ui − wi for i = 1, 2, we see that if the profile

of ui is associated with W1, then Ui(∞) := limt→∞ U(t, x) = 0 for all x ∈ R and vice

versa. Therefore, using the information that u1 and u2 solve (4.11), we can reformulate the

problem as a PDE for Ui with zero initial data at t =∞. To do this, we let n,m to be a

permutation of the indices 1, 2 and define the error function fn by

fn := (i∂t +
1

2
∂2
x)wn − i(−1)n

√
2wmw

2
n, (4.72)

and then consider the equations for Un:

(i∂t +
1

2
∂2
x)Un = −i(−1)n

√
2(Um + wm)(Un + wn)2 + i(−1)n

√
2wmw

2
n − fn.

This can be rewritten as

(i∂t +
1

2
∂2
x)Un = Nn(U,w)− fn, Un(∞) = 0, (4.73)

where U := (U1, U2) and w := (w1, w2) and

Nn(U,w) = i(−1)m
√

2(U2
nUm + U2

nwm + 2UnUmwn + 2Unwnwm + Umw
2
n).

The equation can be rewritten as

Un(t, x) = Φ(t)Nn(U,w)− Φ(t)fn
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where Φ(t)f := i
∫∞
t
e
i(t−s)

2
∆f(s) ds. The Strichartz-type estimate for this problem can be

stated as follows:

‖Φ(t)f‖L∞t L2
x(T,∞) + ‖Φ(t)f‖L4

tL
∞
x (T,∞) . ‖f‖L1

tL
2
x(T,∞). (4.74)

We will solve for Un using the contraction argument. The solution space X is defined by

‖Un‖X := sup
T≥1

T 1/2+δ

(1 +M2 log T )2

(
‖Un‖L∞t L2

x(T,2T ) + ‖Un‖L4
tL
∞
x (T,2T )

)
, (4.75)

and the space for LUn is defined by

‖LUn‖X̃ := sup
T≥1

T δ

(1 +M2 log T )3

(
‖LUn‖L∞t L2

x(T,2T ) + ‖LUn‖L4
tL
∞
x (T,2T )

)
. (4.76)

To make a contraction argument, we need the following estimate for the inhomogeneous

terms, whose proof is postponed until the next section.

Lemma 4.17. For n = 1, 2 the function fn defined in (4.72) satisfies the following estimate:

‖Φfn‖X + ‖ΦLfn‖X̃ .M. (4.77)

In view of (4.77), it suffices to prove that the map U 7→ (N1(U,w), N2(U,w)) is a contraction

for a small ball in X ×X. This can be done by proving the following estimate

2∑
n=1

‖Nn(U,w)−Nn(Ũ , w)‖L1
tL

2
x(T,∞) .

2∑
n=1

‖Un − Ũn‖X(M + ‖Un‖2
X + ‖Ũn‖2

X). (4.78)

Let C be the implicit constant in (4.78). Then, by choosing M � C−1, the map is a

contraction on the ball {(U1, U2) ∈ X ×X : ‖U1‖X + ‖U2‖X} ≤ CM . Consequently, we

obtain solutions U1 and U2 satisfying

‖U1‖X + ‖U2‖X .M (4.79)
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The estimate (4.78) can be simplified by taking Ũ = 0, resulting in

2∑
n=1

‖Nn(U,w)‖L1
tL

2
x(T,∞) .

2∑
n=1

M‖Un‖X + ‖Un‖3
X , (4.80)

and the proof of (4.78) will follow in the same manner. To begin the proof, we divide [T,∞)

into dyadic intervals on each of which we will estimate. In the following computations, we

let k, l ∈ {1, 2}

‖Ukwkwl‖L1
tL

2
x(T,2T ) . T‖wk‖L∞x,t(T,2T )‖wl‖L∞x,t(T,2T )‖Uk‖L∞t L2

x(T,2T )

‖UkUlwm‖L1
tL

2
x(T,2T ) . T 3/4‖wm‖L∞x,t(T,2T )‖Uk‖L∞t L2

x(T,2T )‖Ul‖L4
tL
∞
x (T,2T ),

‖U2
nUm‖L1

tL
2
x(T,2T ) . T 1/2‖Um‖L∞t L2

x(T,2T )‖Un‖2
L4
tL
∞
x (T,2T ).

From the definitions of w1 and w2, we have

‖Ukwkwl‖L1
tL

2
x(T,2T ) .M2T−1/2−δ(1 +M2 log T )2‖Uk‖X

‖UkUlwk‖L1
tL

2
x(T,2T ) .MT−3/4−2δ(1 +M2 log T )4‖Uk‖X‖Ul‖X

‖U2
nUm‖L1

tL
2
x(T,2T ) . T−1−3δ(1 +M2 log T )6‖Um‖X‖Un‖2

X .

(4.81)

Those account for all terms in N1(U,w) and N2(U,w). After taking the summations in T ,

we obtain (4.80) as desired.

We will now find the L2
x bounds for LU1 and LU2. Note that both functions satisfy the

system of equations in V1 and V2:

(i∂t +
1

2
∂2
x)Vn = LNn(U,w)− Lfn, LUn(∞) = 0. (4.82)

By the uniqueness of the solution obtained from the contraction argument, we are guaranteed

that (LU1, LU2) is the only solution to (4.82). We rewrite these equations as

LUn(t, x) = Φ(t)LNn(U,w)− Φ(t)Lfn

= P (LUn) +Q(LUm) + gn − Lfn,
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where

P (LUn) = i(−1)m2
√

2(LUnUnUm + LUnUnwm + LUnUmwn + LUnwnwm),

Q(LUm) = i(−1)n
√

2(U2
nLUm − 2UnLUmwn − LUmw2

n),

gn = i(−1)m
√

2(2UmwnLwn − U2
nLwm

+ 2UnUmLwn + 2UnLwnwm − 2UnwnLwm).

We estimate as in (4.81), using (4.79) for U1 and U2. Notice that the worst terms, namely

the last terms of P (LUn) and Q(LUm), give the lowest order of decay in T .

‖P (LUn)‖L1
tL

2
x(T,2T ) .M2T−δ(1 +M2 log T )3‖LUn‖X̃ ,

‖Q(LUm)‖L1
tL

2
x(T,2T ) .M2T−δ(1 +M2 log T )3‖LUm‖X̃ .

After taking the summation over dyadic T ≥ 1, we have

2∑
n=1

‖P (LUn)‖L1
tL

2
x(T,∞) . δ−1M2T−δ(1 +M2 log T )3

2∑
n=1

‖LUn‖X̃ (4.83)

Let C be the implicit constant. In order to get a contraction map, we can pick any positive

M �
(
δ
C

) 1
2 . To estimate gn, we need the bounds on Lwn which we get from the direct

calculations.

‖Lw1‖L2
x
. ‖∂vW‖L2

v
+ log t‖W‖2

L∞v
‖v∂vW‖L2

v

.M(1 +M2 log t),

‖Lw2‖L2
x
. t−1‖W‖L2

v
+ ‖v∂vW‖L2

v
+ log t‖vW‖2

L∞v
‖∂vW‖L2

v

.M(1 +M2 log t).

Consequently,

‖gn‖L1
tL

2
x(T,2T ) .M3T−1/4−2δ(1 +M2 log T )3.
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Taking the summation over dyadic T ≥ 1, we have

‖gn‖L1
tL

2
x(T,∞) .M3T−1/4−2δ(1 +M2 log T )3.

We then take T = 1. From the Strichartz estimate (4.74) and (4.83), we conclude that

2∑
n=1

‖LUn‖L∞t (1,∞;L2
x) .M

as desired.

4.6 Proof of Lemma 4.17

In view of (4.74), it suffices to estimate ‖fn‖L1
tL

2
x(T,∞) and ‖Lfn‖L1

tL
2
x(T,∞). We begin

with computing fn. We denote a function W≤t1/2(t, v) by

Ŵ≤t1/2(t, ξ) = ψ<1

(
ξ

t1/2

)
Ŵ (t, ξ).

Observe that

d

dt
ψ<1

(
ξ

t1/2

)
=

ξ

t3/2
ψ′<1

(
ξ

t1/2

)
.

where the hidden constants in the approximation only depend on our choice of ψ1. We see

that

∂tW(t, v) =

∫
R

ξ

t3/2
ψ′<1

(
ξ

t1/2

)
Ŵ (ξ)eivξ dξ :=

1

t
Wt1/2(v).
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Consequently,

f1 =
1

t1/2
ei
x2

2t
+ix

t
log t|W|2

{
1

t

[
Wt1/2 + 2i

x

t
log tWR(Wt1/2W)

]
+

1

2t2

[
W ′′ + 2i

x

t
log tWR(W ′′W) + 2i log tW ′|W|2

]
+

1

t2

[
i
x

t
log tW ′R(W ′W) + i

x

t
log tW|W ′|2 − 2W

(x
t

log tR(W ′W)
)2

− (log t)2W|W|4 − 2x

t
(log t)2W|W|2R(W ′W)

]}

f2 =
i√

2t1/2
ei
x2

2t
+ix

t
log t|W|2

{
x

t2

[
Wt1/2 + 2i

x

t
log tWR(Wt1/2W)

]
+

x

2t3

[
W ′′ + 2i

x

t
log tWR(W ′′W) + 2i log tW ′|W|2

]
+
x

t3

[
i
x

t
log tW ′R(W ′W) + i

x

t
log tW|W ′|2 − 2W

(x
t

log tR(W ′W)
)2

− (log t)2W|W|4 − 2x

t
(log t)2W|W|2R(W ′W)

]
+

1

t2

[
W ′ + 2i

x

t
log tWR(W ′W) + i log tW|W|2

]}
.

(4.84)

From the definition (4.70) and (4.71), Bernstein’s inequality yields

‖〈v〉W‖L∞ .M, ‖〈v〉W ′‖L∞ .Mt1/4−δ,

‖〈v〉W ′‖L2
v
.M, ‖〈v〉W ′′‖L2

v
.Mt1/2−δ, ‖〈v〉W ′′′‖L2

v
.Mt1−δ,

‖〈v〉Wt1/2‖L2
v
.Mt−1/2−δ, ‖〈v〉W ′

t1/2‖L2
v
.Mt−δ.

(4.85)

Therefore, we obtain the estimate

‖fn‖L2
x
.Mt−3/2−δ(1 +M2 log t)2. (4.86)

By integration in time and the Strichartz estimate (4.74), we obtain the bound for Φfn in

(4.77). To estimate Lfn, we use L(ei
x2

2t g(x/t)) = iei
x2

2t ∂vg(x/t) to obtain

‖Lfn‖L2
x
.Mt−1−δ(1 +M2 log t)3. (4.87)
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However, an integration in time gives an extra δ−1 factor.

‖Lfn‖L1
tL

2
x(T,2T ) . δ−1MT−δ(1 +M2 log T )3.

Applying (4.74) directly gives us an extra δ−1 factor which does not imply (4.17) since

δ �M2, so more careful analysis on Lfn is required. Notice that the problem arises from

the terms in Lfn that give time decay t−1−δ in L2
x; For example, we estimate the first term

in Lf2, ignoring terms with higher decay in t:∥∥∥L [ x

t5/2
ei
x2

2t
+ix

t
log t|W|2Wt1/2

(x
t

)]∥∥∥
L2
x

.
1

t3/2

∥∥∥∣∣x
t
Wt1/2

(x
t

) ∣∣+
∣∣W ′

t1/2

(x
t

) ∣∣∥∥∥
L2
x

=
1

t
‖|vWt1/2(v)|+ |W ′

t1/2(v)|‖L2
v

.Mt−1−δ,

where we used (4.85) for the last inequality. In fact, the terms that give t−1−δ decay are

precisely those that contain W ′′′ or W ′
t1/2

. Since the rest of the terms do not contribute a

factor of δ−1 to ‖Lfn‖L2
x

via (4.74), it suffices to estimate these terms. In order to do so,

we let

hn := iL
1

t3/2
ei
x2

2t Zn(t, x/t) =
1

t1/2
ei
x2

2t ∂x(Zn(t, x/t)) =
1

t3/2
ei
x2

2t ∂vZn(t, v)

where v = x
t

and

Z1 := eiv log t|W|2
(
Wt1/2 + 2iv log tWRe(Wt1/2W) +

W ′′

2t
+ i

v

t
log tWRe(W ′′W)

)
Z2 :=

i√
2
vZ1.

The proof is finished after we estimate Φhn in X̃. First, using (4.85) and their weighted

version, we have

‖∂jvZn‖L2
v
. t−1+ j

2 (1 +M2 log t)j+1‖〈v〉W ′′
≤t1/2‖L2

v
, j = 0, 1, 2. (4.88)
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Since

‖〈v〉W ′′
≤t1/2‖L2

v
. t

1
2
−δ‖W‖H1+2δ,1

v
≤ t

1
2
−δM, (4.89)

inequality (4.88) with j = 1 tells us that ∂vZn (and hence hn) decays in L2
v sense in the

region of frequencies greater than t1/2.

With that in mind, we compute

Φhn(t) = ieit∆/2F−1
ξ

{∫ ∞
t

∫
1

s3/2
e−ixξeisξ

2/2ei
x2

2s ∂vZn(s, x/s) dxds

}
= ieit∆/2F−1

ξ

{∫ ∞
t

∫
1

s1/2
eis(ξ−v)2/2∂vZn(s, v) dvds

}
= ieit∆/2F−1

ξ

{∫ ∞
t

1

s1/2
eisξ

2/2 ∗ ∂vZn(s, ξ)ds

}
= ieit∆/2

∫ ∞
t

s−1ei
x2

2s ∂̂vZn(s,−x)ds

= eit∆/2
∫ ∞
t

s−1xei
x2

2s Ẑn(s,−x)ds.

(4.90)

To estimate the right hand side under the norm of L1
tL

2
x(T,∞), we claim that the following

estimate holds:

‖t−1xei
x2

2t Ẑn(t, x)‖l2xL1
tL

2
x(T,∞) .MT−δ(1 +M2 log T )3. (4.91)

where the l2x norm is the l2 sum taken with respect to the dyadic intervals in x. Notice

that there is no more δ−1 factor.

Assuming that (4.91) is true, we then define zn(t) := e−it∆/2Φhn(t). In other words,

zn(t) =

∫ ∞
t

s−1xei
x2

2s Ẑn(s,−x)ds

From (4.88) with j = 1, we see that zn : [T,∞)→ L2
x(R) is continuous and the estimate

(4.91) implies that zn ∈ l2xẆ
1,1
t L2

x(T,∞). Even though the l2x norm and the Ẇ 1,1
t norm
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cannot be interchanged, we can embed Ẇ 1,1
t in a larger space which allows us to do so.

First, we introduce the space V p of functions of bounded p variation with respect to a

Banach space B defined by the seminorm:

‖z‖V pB(T,∞) := sup
T=t0<...<tK<∞

(
K∑
k=1

‖z(tk)− z(tk−1)‖pB

)1/p

.

Notice that V 1 is the space of functions of bounded variation and Ẇ 1,1
t L2

x(T,∞) is the

space of absolutely continuous functions from [T,∞) to L2
x(R), so we have an embedding

Ẇ 1,1
t L2

x(T,∞) ⊂ V 1L2
x(T,∞). Therefore, in view of (2.75) and (2.77), we have the following

chain of inclusions:

l2xẆ
1,1
t L2

x(T,∞) ⊂ l2xV
2L2

x(T,∞) ⊂ V 2l2xL
2
x(T,∞) = V 2L2

x(T,∞).

Since zn is continuous and zn(∞) = 0, so it satisfies the hypothesis in Proposition 2.19

after a time reflection t 7→ −t. Therefore, by (2.76),

‖eit∆/2zn(t)‖L∞t L2
x(T,∞) + ‖eit∆/2zn(t)‖L4

tL
∞
x (T,∞) . ‖zn‖V 2L2

x(T,∞).

It follows that

‖Φhn(t)‖L∞t L2
x(T,∞) + ‖Φhn(t)‖L4

tL
∞
x (T,∞) . ‖zn‖V 2L2

x(T,∞)

.MT−δ(1 +M2 log T )3.

This leads to the desired estimate ‖ΦLfn‖X̃ .M .

It remains to prove (4.91). We divide this into two cases:

Case 1: |x| < T 1/2. From (4.88) with j = 0 and (4.89), we obtain

‖t−1xẐn(t, x)‖l2xL1
tL

2
x(T,∞) . T 1/2‖t−1Ẑn(t, x)‖l∞L1

tL
2
x(T,∞)
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. T 1/2‖t−2(1 +M2 log t)〈v〉W ′′
≤t1/2‖l∞L1

tL
2
v(T,∞)

. T−1/2(1 +M2 log T )‖〈v〉W ′′
≤t1/2‖L2

v

.MT−δ(1 +M2 log T ).

Case 2: |x| ≥ T 1/2. We consider each term in the l2 sum where |x| ≈ R ≥ T 1/2.

In the following integral with respect to t, we apply the estimate (4.88) with j = 0 for

R < t1/2 and j = 2 for R ≥ t1/2 (note that ‖∂2
v Ẑn‖ ≈ R2‖Ẑn‖ in this region),

‖t−1xẐn(t, x)‖L1
tL

2
x(T,∞;|x|≈R)

.
∫ R2

T

1

Rt
(1 +M2 log t)3‖〈v〉W ′′

≤t1/2‖L2
v(|v|≈R) dt

+

∫ ∞
R2

R

t2
(1 +M2 log t)‖〈v〉W ′′

≤t1/2‖L2
v(|v|≈R) dt

≤ R

(∫ R2

T

1

R2t2
(1 +M2 log t)6‖〈v〉W ′′

≤t1/2‖
2
L2
v(|v|≈R) dt

)1/2

+
1

R

(∫ ∞
R2

R2

t2
(1 +M2 log t)2‖〈v〉W ′′

≤t1/2‖
2
L2
v(|v|≈R) dt

)1/2

.

(∫ ∞
T

1

t2
(1 +M2 log t)6‖〈v〉W ′′

≤t1/2‖
2
L2
v(|v|≈R) dt

)1/2

.

Taking the l2 sum with respect to R ∈ 2Z, we have

‖t−1xẐn(t, x)‖2
l2xL

1
tL

2
x(T,∞) .

∫ ∞
T

1

t2
(1 +M2 log t)6‖〈v〉W ′′

≤t1/2‖
2
L2
v
dt. (4.92)

Note that by the duality,

‖〈v〉W ′′
≤t1/2‖L2

v
. ‖P≤t1/2vW ′′‖L2

v
+ t−1/2‖W ′′

≤4t1/2‖L2
v

. t−δ‖P≤t1/2〈D〉v〈D〉1+2δW‖L2
v

+ ‖P≤t1/2W‖H1+2δ
v

+ t−δ‖W≤4t1/2‖H1+2δ
v

.
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It suffices to use the first term to estimate the integral in (4.92), as the other terms will

give lower orders of t in the following argument. Since M2 � δ, we have that∫ ∞
T

t−2−2δ(1 +M2 log t)6‖P≤t1/2〈D〉v〈D〉1+2δW‖2
L2
v
dt

. T−2δ(1 +M2 log T )6

∫ ∞
T

t−2‖P≤t1/2〈D〉v〈D〉1+2δW‖2
L2
v
dt.

(4.93)

Now we split the integral over dyadic intervals

∫ ∞
T

t−2‖P≤t1/2〈D〉v〈D〉1+2δW‖2
L2
v
dt

=
∑

2N>T1/2

2

∫ 22N+2

22N
t−2


∑

T1/2

2
<2k<2t1/2

‖P2k〈D〉v〈D〉1+2δW‖2
L2
v

 dt

.
∑

2k>T1/2

2

∑
N≥k

∫ 22N+2

22N

22k

24N
‖P2kv〈D〉1+2δW‖2

L2
v
dt

≤
∑

2k>T1/2

2

∑
N≥k

22k

22N
‖P2kv〈D〉1+2δW‖2

L2
v

. ‖W‖2

H1+2δ,1
v

≤M.

Combined with (4.93), we get (4.91) as desired.
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