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Abstract

We have measured the normalized gradient of the Casimir force between Au-coated surfaces of the

sphere and the plate and equivalent Casimir pressure between two parallel Au plates at T = 77K.

These measurements have been performed by means of dynamic force microscope adapted for

operating at low temperatures in the frequency shift technique. It was shown that the measurement

results at T = 77K are in a very good agreement with those at T = 300K and with computations at

T = 77K using both theoretical approaches to the thermal Casimir force proposed in the literature.

No thermal effect in the Casimir pressure was observed in the limit of experimental errors with the

increase of temperature from T = 77K to T = 300K. Taking this into account, we have discussed

the possible role of patch potentials in the comparison between measured and calculated Casimir

pressures.

PACS numbers: 07.20.Mc, 78.20.-e, 12.20.Fv, 12.20.Ds

1

http://arxiv.org/abs/1307.6888v1


I. INTRODUCTION

Rapid progress in nanotechnology has resulted in the growth of interest in fluctuation-

induced phenomena which can play a dominant role at short separation distances below a

micrometer.1,2 Among these phenomena a particular attention is focussed on the Casimir

effect3 which manifests itself as a force acting between two uncharged closely spaced material

boundaries. The Casimir force is caused by zero-point and thermal fluctuations of the

electromagnetic field. In the first approximation it depends only on the velocity of light c,

Planck constant ~, temperature T and separation distance a between the test bodies. A

more exact theory demonstrates dependence of the Casimir force on the material properties

of the bodies4 and geometry of their boundary surfaces.5,6

Taking into account both fundamental interest and potential applications in nanotech-

nology, many experiments have been performed on measuring the Casimir force (see the

monograph7 and reviews8–10). Specifically, measurements with different levels of precision

were done between two metallic surfaces (see, e.g., Refs.11–16) and between a metallic and a

semiconductor surfaces (see, e.g., Refs.17–24). Quite unexpectedly, the experimental data of

many experiments performed at room temperature13,15,16,18,23–26 were found to exclude the

theoretical predictions taking into account the relaxation properties of conduction electrons

for metals and the contribution of free charge carriers for semiconductors of the dielectric

type. The same data were found to be consistent with theory neglecting the relaxation prop-

erties of conduction electrons for metals and the free charge carriers for dielectric-type semi-

conductors (the two experiments which claim confirmation of the role of relaxation properties

of free electrons for metallic test bodies27,28 are critically discussed in the literature29–32).

Coincident with the experimental work, it was shown33,34 that the account of relaxation prop-

erties for metals and free charge carriers for dielectrics leads to violation of the Nernst heat

theorem (the third law of thermodynamics) in the Lifshitz theory. These results have led

to a critical discussion (see, e.g., Refs.35–38) which continues to the present day. Specifically,

it was hypothesized39 that the effect of large surface patches might bring the measurement

data25 in agreement with theory taking the relaxation properties of electrons into account.

However, measurements of the Casimir force between magnetic surfaces16,40 demonstrated

that this suggestion does not lead to the desired result.

Keeping in mind that the problems discussed above are connected with thermal depen-
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dence of the Casimir force, it would be elucidating to perform experiments at different

temperatures T . Measurements at varying T cannot entirely resolve the theoretical problem

of the Nernst theorem because experimentally it is not possible to achieve arbitrarily low

temperatures. Such measurements, however, can be helpful in many aspects, specifically,

for understanding the Casimir effect between superconducting test bodies. A suggestion to

measure the Casimir force at different T was proposed a decade ago41 but remained unre-

alized due to experimental difficulties. Recently, however, some progress in measuring the

Casimir force at low temperatures has been achieved. Thus, the effective Casimir pressure

between two parallel plates was determined42 at T = 2.1K, 4.2K and 77K by means of a

micromachined oscillator. This was done dynamically by measuring the change in resonant

frequency of an Au sphere oscillating near an Au plate with the help of the proximity force

approximation (PFA)7,8 (note that recently the applicability of PFA for the configuration of

a sphere and a plate made of real materials was confirmed to a high precision43–46). It was

shown42 that although the low temperature data are noisier than at room temperature, the

mean measured Casimir pressures coincide at all temperatures. Thus, it was experimentally

demonstrated that within a wide temperature region there is no thermal effect in the Casimir

pressure exceeding the measurement errors (no comparison with theory has been made).

In fact at short separation distances the predicted thermal effect depends on the theoreti-

cal approach, but in all cases it is rather small. Thus, for Au plates with neglected relaxation

properties of free electrons (the so-called plasma model approach, see Sec. III) spaced at sep-

aration a . 500 nm the relative thermal correction to the Casimir pressure at T = 77K is

less than 0.006%. At T = 300K the thermal correction varies from 0.02mPa (0.0026%) at

a = 180 nm to 0.005mPa (0.03%) at a = 500 nm. Such thermal corrections cannot be mea-

sured by the presently existing experimental means. For Au plates with included relaxation

properties of free electrons (the so-called Drude model approach, see Sec. III) at T = 77K

the thermal correction varies from –5.8mPa (–0.77%) at a = 180 nm to –0.35mPa (–2%)

at a = 500 nm. At room temperature T = 300K the thermal correction calculated using

the Drude model approach achieves –17mPa (–2.3%) at a = 180 nm and –1.3mPa (–7.7%)

at a = 500 nm. If such corrections were really exist, they could be observed experimentally

using available setups.

Furthermore, measurements of the gradient of the Casimir force between an Au sphere

and either an Au or a doped Si plate was performed47 at T = 4.2K by means of dynamic
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atomic force microscope (AFM). The experimental data were compared with theory taking

the relaxation properties of charge carriers into account, but were found above the theoretical

curve by 50%, i.e., much more than the experimental error. It was suggested that a possible

source of disagreement with theory is the unaccounted error in calibration of the piezoelectric

scanner extension.

Next, the dynamic AFM was adopted48 for precise measurements of the gradient of the

Casimir force between Au surfaces of the sphere and the plate in a wide temperature re-

gion from 5K to 300K. Unlike the previous work,47 the developed instrument measured

the extension of the piezoelectric scanner in real time during measurements of the Casimir

interaction. This has helped to avoid any unaccounted systematic errors in the measure-

ment. Some preliminary measurements were performed48 at T = 6.7K and demonstrated

an agreement with the measurement results at T = 300K within the limits of experimental

errors.

In this paper we use the instrument designed in Ref.48, which can operate between 5K

and 300K, for systematic measurements of the normalized gradient of the Casimir force

between sphere and plate at a liquid nitrogen temperature T = 77K. This is done by means

of dynamic AFM operated in the frequency shift mode. In contrast to all previous measure-

ments of the Casimir interaction at low temperature, here we present the detailed analysis of

both random and systematic errors and the comparison between the experimental data and

predictions of different theoretical approaches to the thermal Casimir force. We demonstrate

that the mean values of our data are in an excellent agreement with the respective means

at room temperature and with predictions of both theoretical approaches at T = 77K (note

that the difference between the latter at a liquid nitrogen temperature is well below the

experimental error). The importance of these results for the problem of thermal Casimir

force is discussed.

The paper is organized as follows. In Sec. II we briefly consider the low-temperature

setup for measurements of the Casimir interaction and present the measurement scheme.

Section III contains the measurement data at T = 77K, the error analysis and the com-

parison between experiment and theory. In Sec. IV the reader will find our conclusions and

discussion.
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II. MEASUREMENT SETUP AT LOW TEMPERATURE AND MEASUREMENT

SCHEME

We have used dynamic AFM operated in the frequency shift technique to measure the

gradient of the Casimir force normalized to the sphere radius between an Au-coated hollow

microsphere and an Au-coated sapphire plate at T = 77K. The experimental setup has

been described in detail elsewhere.48 In brief, however, the device we use to measure the

Casimir force gradient is a variable-temperature force sensor (VTFS). The apparatus is

based on the AFM technique but particularly designed to precisely measure the Casimir

force gradient at temperatures in the 5K to 300K range. Here measurements are done

at 77K. These measurements were performed at a vacuum pressure of . 10−6Torr using

an oil-free vacuum chamber. The measurement system was vibrationally isolated using

a double-stage spring system. Low temperatures were achieved by immersing the VTFS

vacuum chamber in a liquid nitrogen Dewar. The sensor consists of a modified conductive

Si rectangular microcantilever.48

The Casimir force gradient was measured between a sphere and a plate both coated with

Au. A hollow glass sphere of R ≈ 50µm radius made from liquid phase was attached to

the end of a rectangular Si cantilever. The sphere-cantilever system was coated uniformly

with greater than 100 nm of Au. The low inertia of the hollow sphere leads to higher

cantilever resonant frequencies and mechanical Q factors, both of which result in improved

sensitivities. Care should be taken to restrict the Au coating to only the cantilever tip. The

cantilever with the attached sphere had a quality factor Q = 871 and a resonant frequency

of ω0 = 2π × 2.766 kHz = 17.379 krad/s.

An Au-coated sapphire plate was used as the second surface. The thickness of the Au

coating on the plate was 260± 1 nm. The Au plate was mounted at a top of a piezoelectric

ceramic tube. The fabrication and characterization methods for both surfaces have been

reported in the literature.15,48,49 The Casimir interaction was obtained through the direct

measurement of the shift of the microcantilever’s resonant frequency while the cantilever

was being lightly driven with an amplitude of 10 nm at its resonance frequency.50 The mi-

crocantilever oscillation was detected with an all-fiber interferometer.48 The resulting signal

was analyzed and controlled through a closed-loop feedback system provided by a phase-lock

loop (PLL). The PLL detection bandwidth was kept at 50Hz. The output of the feedback
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loop was the resonant-frequency shift, ωr(a)−ωPLL where ωr(a) is the resonance frequency in

the presence of an external force and ωPLL is some frequency fixed during the measurements.

It is convenient to keep it close but not equal to ω0.

Different voltages were applied to the plate, while the sphere remained grounded. The

resonant-frequency shifts were measured for different separations and DC voltages between

the interacting surfaces. The separation distance between the sphere and plate was changed

continuously by applying a 10mHz triangular voltage signal to the piezoelectric tube holding

the Au-coated sapphire plate. The movement of the plate was monitored in real time and

calibrated with a second all-fiber interferometer48 using 636.8± 0.4 nm wavelength light.

The relative distance moved by the piezo was calibrated with an end cleaved fiber in-

terferometer. We fitted the interference voltage to third order with a cosine function using

the χ2-fitting procedure. The obtained fitting parameters were used for calibration of piezo.

First, 11 voltages from 0.56 to 0.68V were applied to the plate while the sphere remained

grounded. In addition, 9 repititions of 0.62V were also applied to the plate, maintaining

the sphere grounded. The frequency shift was measured as a function of the distance moved

by the piezo at every 2.45 nm for each applied voltage. The set of measurements with 20

applications of the voltage to the plate was repeated 3 times and one time more with 19

applied voltages. A total of 79 runs for the frequency shift as a function of separation were

taken. We confirmed that at large separations between 2.2µm and 2.6µm the frequency shift

ωr(a)− ωPLL remains constant within the resolution limit. This means that at separations

above 2.2µm ωr(a) = ω0.

In the linear regime which occurs for small amplitudes of the cantilever the frequency

shift is given by

∆ω(a) = −
ω0

2k

∂Ftot(a)

∂a
≡ −

ω0

2k
F ′

tot(a). (1)

Here, k is the spring constant of the cantilever, a is the absolute sphere-plate separation

distance (including the relative distance moved by the plate piezo, zpiezo, and the closest

distance z0), and the frequency shift between ωr(a) and ω0 is determined according to the

following equation:

∆ω(a) ≡ ωr(a)− ω0 = [ωr(a)− ωPLL]− (ω0 − ωPLL). (2)

The total force between the sphere and the plate is the sum of the electrostatic force Fel(a)
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and the Casimir force FC(a)

Ftot(a) = Fel(a) + FC(a). (3)

The electric force between the sphere and the plate is expressed as

Fel(a) = X(a, R)(Vi − V0)
2, (4)

where V0 is the residual potential difference between the bodies, which can be caused by the

various connections and by different work functions of a sphere and a plate materials, and

X(a, R) is an explicitly known function.7,8 Using the expansion of this function in powers of

a small parameter a/R obtained in the literature,7,8,17 we can rewrite Eq. (1) in the form

∆ω(a) = −
ω0

2k
F ′

C(a)−
ω0

2k

∂X(a, R)

∂a
(Vi − V0)

2 (5)

= −
C̃

2πR
F ′

C(a)−
C̃ǫ0
2a2

[

1−

6
∑

i=1

ici

( a

R

)i+1

]

(Vi − V0)
2.

Here, C̃ ≡ πω0R/k is the calibration constant [we label C with a tilde to indicate the

difference with C = ω0/(2k) used in the literature15,16,40], ǫ0 is the permittivity of free space

and the numerical coefficients ci can be found in Refs.7,8,17.

Any mechanical or thermal drift of the piezo leading to a change in the sphere-plate sep-

aration distance was found to be 1.11226±0.00455 nm/hour. The corresponding corrections

to this small drift were done as reported previously.15 After applying the drift correction,

the residual potential V0 was found at each separation from the parabolic dependence of

the measured frequency shift on Vi. The value of V0 at a fixed separation can be identified

as the position of the parabola maximum. The obtained V0 as a function of separation

is shown by dots in Fig. 1. As is seen in the figure, the mean V0 = 0.6125 ± 0.0015V is

independent of separation over the entire measurement range. To quantify this observation,

we have performed the best fit of V0 to the straight line leaving its slope as a free parameter

(solid line in Fig. 1). It was found that the slope is equal to −5.7 × 10−7V/nm, i.e., the

independence of V0 on separation was confirmed to a high precision.

The curvature of the parabolas of the measured frequency shift as a function of Vi corre-

sponds to the spatial dependence of the electrostatic force and the force calibration constant

C̃. In accordance with Eq. (5), this parabola curvature was fitted to the quantity

β ≡
C̃ǫ0
2a2

[

1−
6

∑

i=1

ici

( a

R

)i+1

]

(6)
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in order to determine the calibration constant C̃ and the closest mean sphere-plate separation

z0 taking into account that a = z0 + zpiezo. The fitting procedure was repeated by keeping

the start point fixed at the closest separation, while the end point zend measured from the

closest separation was varied over a wide range. Similar to Ref.15, z0 and C̃ so determined

were shown to be independent on zend. The obtained values of the calibration parameters

are z0 = 184.4 ± 1.5 nm and C̃ = 78.2 ± 1.0 radm2/Ns). The errors are determined by the

systematic errors in the fit.

The Casimir force and electrostatic force between sphere and plate are both attractive

and cause the cantilever to bend towards the plate by around 1 nm at the maximum applied

voltage at the closest separation. Here, there was no real time correction of the cantilever

bending using a proportional integral derivative loop, as reported in Ref.15. Thus, for a

precise measurement, all the values of absolute separations a have to be corrected for this

bending. The correction was done in the following manner. By integrating Eq. (1) from a

to ∞ we can get

Ftot(a) =
2k

ω0

∫

∞

a

∆ω(z) dz, (7)

where a < L = 2.2µm and L is the largest distance at which the frequency shift was

measured. Keeping in mind that at a ≥ L the Casimir force is nearly equal to zero, from

Eq. (3) we obtain Ftot(a) ≈ Fel(a) and then

2k

ω0

∫

∞

L

∆ω(z) dz ≈ Fel(L). (8)

Subdividing the integration region in Eq. (7) in two subregions [a, L] and [L,∞) and using

Eq. (8), we rewrite Eq. (7) in the form

Ftot(a) ≈
2k

ω0

∫ L

a

∆ω(z) dz + Fel(L). (9)

Finally, with the help of Eq. (4), Hooke’s law and the expansion of the function X(a, R)

in powers of a small parameter,7,8,17 one arrives to the following bending distance of the

cantilever:

b(a) =
Ftot(a)

k
=

2

ω0

∫ L

a

∆ω(z) dz +
Fel(L)

k
(10)

=
2

ω0

∫ L

a

∆ω(z) dz −
C̃ǫ0
ω0L

[

1 +
6

∑

i=0

ci

(

L

R

)i+1
]

(Vi − V0)
2.
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Now we can use Eq. (10) to correct all the values of absolute separation a = a0 = z0+zpiezo

at any applied voltage for a bending of the cantilever by means of an iteration procedure.

First we substitute a0 (zero iteration) in Eq. (10) and calculate b(a0) at any zpiezo. The

first iteration of absolute separations is defined as a1 = a0 − b(a0). Substituting this in

Eq. (10), we find b(a1) etc. In the iteration number i we have ai = ai−1 − b(ai−1). This is

iterated until the obtained value converge at any zpiezo and any applied voltage. Note that

for all separations and applied voltages the correction due to the bending of the cantilever is

smaller than 1 nm and decreases with increasing separation. Thus, it is below the error in the

determination of absolute separations. The obtained values of all calibration parameters V0,

C̃, z0 and absolute separations a can now be used to perform an independent measurement

of the Casimir interaction at the liquid nitrogen temperature.

III. MEASUREMENT DATA, ERROR ANALYSIS AND COMPARISON WITH

THEORY

As discussed in Sec. II, the frequency shift ∆ω caused by the combined action of the

electric and Casimir forces was measured as a function of separation 79 times with different

applied voltages over the separation region from 187 nm to 2.2µm. Then the normalized

gradients of the Casimir force, F ′

C(a)/(2πR), at different separations were found from Eq. (5).

For comparison purposes, it is convenient to recalculate the normalized gradients of the

Casimir force in sphere-plate geometry into the Casimir pressure PC(a) between two Au-

coated plane parallel plates. This can be done by means of the PFA7,8

FC(a) = 2πREC(a), (11)

where EC(a) is the Casimir energy per unit area of two parallel plates. The negative differ-

entiation of both sides of Eq. (11) leads to the desired result

PC(a) = −
1

2πR
F ′

C(a), (12)

i.e., the Casimir pressure coincides with the negative normalized gradient. At separations of

several hundred nanometers, important for this experiment, the error introduced by the use

of PFA does not exceed a fraction of a percent43–46, i.e., much less than the experimental

error (see below).
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In Fig. 2 all 79 individual values of the Casimir pressure measured at each point are

shown at short separation distances as gray dots with a step of 2.45 nm. In the same figure

the mean values of the measured Casimir pressure at each separation are interpolated and

presented as the solid line.

The statistical properties of the measurement data for the Casimir pressure are charac-

terized by the histogram in Fig. 3 plotted at a = 187 nm. Here, f is the fraction of 79

data points having the force values in the bin indicated by the respective vertical lines. The

histogram is described by the Gaussian distribution with the standard deviation equal to

σPC
= 11.5mPa and the mean Casimir pressure P̄C = −650.65mPa (see also below for the

comparison with predictions of different theoretical approaches indicated in Fig. 3 by the

solid and dashed vertical lines).

It is instructive to compare the measurement data at T = 77K and T = 300K. This is

done in Fig. 4(a,b) where the two histograms are presented at a = 234 nm, T = 77K (this

work) and at a = 235 nm, T = 300K (by the results of Ref.15), respectively. The respective

standard deviations and mean Casimir pressures are σPC
= 10.5mPa, P̄ expt

C = −287.87mPa

[T = 77K, Fig. 4(a)] and σPC
= 2.75mPa, P̄ expt

C = −284.17mPa [T = 300K, Fig. 4(b)].

As can be seen from the comparison of Fig. 4(a) and Fig. 4(b), at a ≈ 235 nm the mean

Casimir pressures measured at the liquid nitrogen and room temperatures are in very good

agreement although the data at T = 77K are less precise.

To compare our experimental data with the data of other experiments and with theory

over wide separation regions, we first analyze the experimental errors. The random error in

the measured Casimir pressure is calculated by using Student’s distribution. As a function

of separation, the random error determined at a 67% confidence level is shown by the

dotted line in Fig. 5. The largest value of the random error equal to 1.3mPa is achieved

at the shortest separation a = 187 nm. Then it decreases down to 0.8mPa when separation

increases up to 600 nm and preserves this value at larger separations. The systematic error

in this experiment is determined by the instrumental noise including the background noise

level and by the errors in calibration. In Fig. 5 the systematic error is shown by the long-

dashed line. As can be seen in this figure, the systematic error achieves the largest value

of 6.8mPa at a = 187 nm, decreases to 4.0mPa at a = 250 nm and is equal to 3.4mPa

at all separation distances larger than 340 nm. We emphasize that the systematic error in

this experiment is larger than in previously performed experiment15 by means of AFM at
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T = 300K (where it was approximately equal to 1.8–1.9mPa). The significant increase of

the systematic error in the low-temperature setup, as compared to the room temperature,

is due to internal vibrations when the cryogenic liquid is present.42 By adding the random

and systematic errors in quadrature, we obtain the total experimental error in the measured

Casimir pressure determined at a 67% confidence level. It is shown by the solid line in

Fig. 5. The total error is mostly determined by the systematic error. It is equal to 6.9mPa

at a = 187 nm, decreases to 4.1mPa at a = 250 nm, and preserves the value of 3.5mPa at

all separations exceeding 450 nm.

Now we plot our mean experimental data as crosses in Fig. 6(a,b), where the vertical

arms are equal to the total experimental error in the measured Casimir pressure and the

horizontal arms are equal to the error in the measurement of separations ∆a = ∆z0 = 1.5 nm

(the error in zpiezo is negligibly small). The separation regions are chosen for the comparison

with the mean measured Casimir pressures of Ref.15 and Refs.25,26 shown by the solid lines

in Figs. 6(a) and 6(b), respectively. As can be seen in Fig. 6(a,b), our measurement data

at T = 77K are in a very good agreement in the limits of experimental errors with the

measurement data of Ref.15 obtained by means of AFM and Refs.25,26 obtained by means of

micromachined oscillator at T = 300K. This demonstrates that there is a mutual agreement

between all these experiments and that there is no thermal effect exceeding the measurement

errors when the temperature increases from 77K to 300K.

Next we compare the measurement data for the mean Casimir pressure with theory. The

thickness of Au coatings is large enough to consider our effective parallel plates as semispaces

made of gold.7 The Lifshitz formula for the Casimir pressure between two semispaces at

temperature T is given by4,7–9

PC(a) = −
kBT

π

∞
∑

l=0

′
∫

∞

0

qlk⊥dk⊥
∑

α

r2α
e2aql − r2α

, (13)

where kB is the Boltzmann constant and the laboratory temperature is T = 77K. The

quantity q2l = k2
⊥
+ξ2l /c

2 where k⊥ is the projection of the wave vector on the plane of plates,

and ξl = 2πkBT l/~ with l = 0, 1, 2, . . . are the Matsubara frequencies. The prime near the

first summation sign multiplies the term with l = 0 by 1/2, and the second summation

sign summarizes over the transverse magnetic (α = TM) and transverse electric (α = TE)

polarizations of the electromagnetic field. The reflection coefficients rα are calculated along
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the imaginary frequency azis. They are given by

rTM ≡ rTM(iξl, k⊥) =
ε(iξl)ql − kl
ε(iξl)ql + kl

,

rTE ≡ rTE(iξl, k⊥) =
ql − kl
ql + kl

, (14)

where the dielectric permittivity of Au calculated at the imaginary Matsubara frequencies

is ε(iξl) and

kl =

[

k2
⊥
+ ε(iξl)

ξ2l
c2

]1/2

. (15)

As discussed in Sec. I, there are two approaches on how to apply the Lifshitz theory

to metallic bodies. The Drude model approach7,8,35,36 takes into account the relaxation

properties of conduction electrons. In the framework of this approach, the optical data of

boundary metal are extrapolated down to zero frequency by means of the Drude model

and are used to calculate ε(iξl) with the help of the dispersion relation. The tabulated

optical data51 of Au are well extrapolated52 by the Drude model with the plasma frequency

ωp = 9.0 eV and relaxation parameter γ = 0.035 eV determined at T = 300K. [Note that

although ωp is temperature-independent, the relaxation parameter decreases with decreasing

temperature, so that γ(77K) ≈ 0.9meV.] The consistency of this extrapolation was recently

confirmed by using the weighted Kramers-Kronig relations.53 The immediately measured

optical data for Au films, similar to those used in experiments of Refs.15,25,26, by means

of ellipsometry lead to the same Casimir pressures as the tabulated optical data.42 In the

framework of the plasma model approach, the same optical data with the contribution of

free charge carriers subtracted are extrapolated down to zero frequency by means of the

plasma model with the same ωp.

We have calculated the Casimir pressure at T = 77K using Eqs. (13)–(15) over the entire

measurement region from 187 nm to 2µm in the framework of both approaches (note that

the surface roughness in this experiment contributes a small fraction of a percent and can

be neglected in comparison to the error bars15). The computational results are presented by

the solid lines in Fig. 7(a) within the separation region from 187 to 300 nm and in Fig. 7(b)

within the region from 300 to 500 nm. We emphasize that with the scale used the differences

between predictions of the Drude and plasma model approaches are below resolution. In

the same figures, the experimental data are shown as crosses, as discussed above. From

Fig. 7(a,b) it can be seen that the measured mean Casimir pressures are in good agreement
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with theory. In order to trace the differences between the predictions of the Drude and

plasma model approaches, we return to Figs. 3 and 4 where both predictions are shown by

the dashed and solid vertical lines, respectively. In Fig. 3 (a = 187 nm), P th
D = −652.25mPa

and P th
p = −653.61mPa leading to only a 1.36mPa difference. This is much smaller than the

total experimental error at this separation (6.9mPa) and also smaller than the theoretical

error equal to 3.3mPa.

To compare the predictions of both computational approaches at T = 77K and T = 300K

one should look to Figs. 4(a) and 4(b), respectively. In Fig. 4(a), one has P th
D (T = 77K) =

−286.53mPa and P th
p (T = 77K) = −288.16mPa. This leads to a 1.63mPa difference still

smaller than the total experimental error ∆totP̄ expt

C (T = 77K) = 4.4mPa. In contrast in

Fig. 4(b) plotted at T = 300K, P th
D (T = 300K) = −273.99mPa and P th

p (T = 300K) =

−283.35mPa leading to the difference of 9.36mPa much larger than the total experimental

error in this experiment equal to ∆totP̄ expt

C (T = 300K) = 1.9mPa. [Note that the difference

between the plasma model predictions in Figs. 4(a) and 4(b) is equal to –4.81mPa; the

major part of this –4.82mPa, is due to the change of separation from 234 to 235 nm and only

0.01mPa is due to the change of temperature from 77K to 300K. This reflects the fact that

in the framework of the plasma model approach the thermal effect at short separations is very

small.] We emphasize also that P th
D (T = 300K) − P th

p (T = 300K) > ∆totP expt

C (T = 77K).

As can be seen in Fig. 4(b), the prediction of the plasma model approach is in a very good

agreement with the measurement data, whereas the prediction of the Drude model approach

is excluded by the data.

To get an idea on the comparison between experiment and theory at larger separation

distances, in Fig. 8 we show the theoretical predictions for the Casimir pressure at T = 77K

within the region from 500 to 2000 nm by the white bands (for the scale used the difference

between the predictions of both approaches is again below the resolution). The results of all

individual pressure measurements are indicated as dots in Fig. 8(a), whereas mean Casimir

pressures with their total experimental errors are shown as crosses in Fig. 8(b). As can be

seen in Fig. 8(a,b), the data are meaningful up to approximately 700 nm and at a > 1µm

the measured signal is averaged to zero. Thus, there is no offset in the calibration of our

setup.
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IV. CONCLUSIONS AND DISCUSSION

In the foregoing we have presented the measurement results for the normalized gradient of

the Casimir force at liquid nitrogen temperature between Au-coated surfaces of a sphere and

a plate. Using the PFA, these results were recalculated into the Casimir pressure between

two Au-coated plates and compared with theoretical predictions of the Drude and plasma

model approaches at T = 77K and with the Casimir pressure measured at T = 300K.

It was found that although measurements at cryogenic temperatures are burdened with a

larger systematic error, they are in a very good agreement with the measurement results

at T = 300K and with theoretical predictions of both approaches at T = 77K. We have

calculated the differences between the predictions of the Drude and plasma model approaches

at T = 77K and shown that they are below the instrumental sensitivity. We have also traced

that with the increase of temperature up to T = 300K the difference between the predictions

of both approaches exceeds the increased instrumental sensitivity, so that the measurement

data exclude the Drude model approach and are consistent with the plasma model approach.

The performed cryogenic measurements have been possible due to the use of dymanic

AFM which can operate in high vacuum environments and temperatures between 5K and

300K. This setup opens prospective opportunities for measuring the Casimir interaction

between different samples at variable temperature and for comparison of the obtained mea-

surement data with theory. As is shown in this paper, there are no detectable changes in the

thermal Casimir pressure when the measurement data taken at T = 77K and T = 300K

are compared.

The obtained results shed some additional light on the possible role of surface patches

in the comparison between measured and calculated Casimir pressures.39 As mentioned

in Sec. I, measurements of the Casimir interaction between magnetic surfaces16,40 are not

compatible with this hypothesis. Under some assumptions a similar conclusion that there is

no significant contribution of patches can be arrived for nonmagnetic (Au) surfaces when the

measurement data at two different temperatures are compared. To see this, let us assume

for a while that at T = 300K there is large contribution of patch potentials to the measured

pressure equal to |Ppatch| = |P th
p (T = 300K)−P th

D (T = 300K)| ≈ 9.36mPa > ∆totP̄ expt

C (T =

300K) = 1.9mPa at a = 235 nm (see Sec. III), such that P th
D (T = 300K) + Ppatch ≈

P̄ expt(T = 300K). This, however, comes into conflict with the fact that at T = 77K our

14



measurement data are in a good agreement with theoretical predictions of both the Drude

and the plasma model approaches, which are very close: P th
D (T = 77K)− P th

p (T = 77K) ≈

1.63mPa < ∆totP̄ expt

C (T = 77K) = 4.4mPa (see Sec. III). Really, if one would add the

patch effect of –9.36mPa to P th
D (T = 77K), the obtained result of –295.9mPa differs from

P̄ expt

C (T = 77K) = −287.9mPa by 8mPa, i.e., larger than the total experimental error

determined at a 67% confidence level. Thus, under the assumption that the patch effect

does not depend on temperature (i.e., it is the same at T = 300K and T = 77K) the

presence of a large patch effect brings the experimental data at T = 77K in disagreement

with both the Drude and plasma model approaches to the Casimir force (the possibility of

temperature-dependent patch potentials awaits further investigation).

To conclude, we express a hope that the fundamental understanding of the thermal

Casimir interaction between real material bodies will be achieved in the near future.
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FIG. 1: The residual potential difference V0 between an Au-coated sphere and an Au-coated plate

at T = 77K as a function of separation. The best fit of V0 to the straight line is shown by the

solid line.
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FIG. 2: (Color online) All 79 individual values of the Casimir pressure at T = 77K measured at

each point are shown as gray dots with a step of 2.45 nm. The mean measured Casimir pressure

as a function of separation is indicated by the solid line.
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FIG. 3: (Color online) The histogram for the measured Casimir pressure at T = 77K at the

separation a = 187nm. The corresponding Gaussian distribution is shown by the dashed curve.

The solid and dashed vertical lines indicate the theoretical predictions from the plasma and Drude

model approaches, respectively (see text for further discussion).
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FIG. 4: (Color online) The histogram for the measured Casimir pressure (a) at a = 234nm,

T = 77K and (b) a = 235nm, T = 300K measured in this work and in Ref.15, respectively.

The corresponding Gaussian distributions are shown by the dashed curves. The solid and dashed

vertical lines indicate the theoretical predictions from the plasma and Drude model approaches,

respectively (see text for further discussion).
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FIG. 5: (Color online) The random, systematic and total experimental errors in the measured

mean Casimir pressure at 77K determined at a 67% confidence level are shown by the dotted,

dashed, and solid lines, respectively.
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FIG. 6: The mean Casimir pressures previously measured at T = 300K (a) by means of dynamic

AFM15 and (b) by means of micromachined oscillator25,26 are shown by the solid lines as functions

of separation. The mean Casimir pressures measured in this work at T = 77K with their total

experimental errors determined at a 67% confidence level are indicated as crosses.
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FIG. 7: Comparison between the mean experimental data for the Casimir pressure at T = 77K

(crosses plotted at a 67% confidence level) and the common theoretical prediction of the Drude

and plasma model approaches at T = 77K (solid lines) within the separation region (a) from 187

to 300 nm and (b) from 300 to 500 nm.
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FIG. 8: Comparison between (a) the individual and (b) mean experimental data for the Casimir

pressure at T = 77K (dots and crosses, respectively) and the common theoretical prediction of the

Drude and plasma model approaches at T = 77K (white lines).
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