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ABSTRACT OF THE DISSERTATION 

 

 

 

 

Observation-Informed Methodologies for Site Response Characterization in Probabilistic 

Seismic Hazard Analysis 

 

by 

Kioumars Afshari 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2017 

Professor Jonathan Paul Stewart, Chair 

 

In this dissertation, I study the effects of site response on earthquake ground motions, the 

uncertainty in site response, and the means by which site-specific site response can be incorporated 

into probabilistic seismic hazard analysis. I contributed to the introduction of a guideline for 

evaluating non-ergodic (site-specific) site response using (a) observations from available recorded 

data at the site, (b) simulations from one-dimensional ground response analysis, or (c) a 

combination of both. Using non-ergodic site response is expected to be an improvement in 

comparison to using an ergodic model, which provides the average site response conditional on 

site parameters, as derived from a global dataset. The improvement in site response results from 

removal of bias from ergodic models by incorporating site-specific information. As a result of the 

site response being evaluated on a site-specific basis, when used in PSHA, the uncertainty can be 

reduced by removing site-to-site variability. The site-to-site variability is evaluated by partitioning 
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the residuals to different sources of variability. I illustrate application of these procedures for 

evaluating non-ergodic site response, and use examples to show how the reduction in site response 

uncertainty results in less hazard for long return periods. 

I utilize a dataset of recordings from vertical array sites in California in order to study the 

effectiveness of one-dimensional ground response analysis in predicting site response. I use the 

California dataset for comparing the performance of linear ground response analysis to similar 

studies on a dataset from vertical arrays in Japan. I use surface/downhole transfer functions and 

amplification of pseudo-spectral acceleration to study the site response in vertical arrays. For 

performing linear site response analysis for the sites, I use three alternatives for small-strain soil 

damping namely (a) empirical models for laboratory-based soil damping; (b) an empirical model 

based on shear wave velocity for estimating rock quality factor; and (c) estimating damping using 

the difference between the spectral decay () at the surface and downhole. The site response 

transfer functions show a better fit for California sites in comparison to the similar results on Japan. 

The better fit is due to different geological conditions at California and Japan vertical array sites, 

as well as the difference in the quality of seismic velocity data for the two regions. I use pseudo-

spectral acceleration residuals to study the bias and dispersion of ground response analysis 

predictions. The results of our study shows geotechnical models for lab-based damping provide 

unbiased estimates of site response for most spectral periods. In addition, the between- and within-

site variability of the residuals do not show a considerable regional between California and Japan 

vertical arrays. 

 In another part of this dissertation, we develop ground motion models for median and 

standard deviation of the significant duration of earthquake ground motions from shallow crustal 

earthquakes in active tectonic regions. The model predicts significant durations for 5-75%, 5-95%, 
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and 20-80% of the normalized Arias intensity, and is developed using NGA-West2 database with 

M3.0-7.9 events. I select recordings based on the criteria used for developing ground motion 

models for amplitude parameters as well as a new methodology for excluding recordings affected 

by noise. The model includes an M-dependent source duration term that also depends on focal 

mechanism. At small M, the data suggest approximately M-independent source durations that are 

close to 1 sec. The increase of source durations with M is slower over the range M5 to 7.2-7.4 than 

for larger magnitudes. I adopt an additive path term with breaks in distance scaling at 10 and 50 

km. I include site terms that increase duration for decreasing VS30 and increasing basin depth. Our 

aleatory variability model captures decreasing between- and within-event standard deviation terms 

with increasing M. I use the model for validating the duration of ground motion time series 

produced by simulation routines implemented on the SCEC Broadband Platform. This validation 

is based on comparisons of median and standard deviation of simulated durations for five 

California events, and their trends with magnitude and distance, with our model for duration. Some 

misfits are observed in the median and dispersion of durations from simulated motions and their 

trend with magnitude and distance. Understanding the source of these misfits can help guide future 

improvements in the simulation routines. 
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1 Introduction 

This dissertation concerns two issues regarding earthquake ground motion prediction. (1) 

Site response: The issue of non-ergodic site response, its uncertainty, and it’s implementation in 

probabilistic seismic hazard analysis (PSHA) as well as a validation study on site response using 

vertical array sites in California; (2) The duration of ground motions: developing a model for 

predicting the duration of ground motions, and using the model for validating the duration of a 

large number of simulated ground motions. 

1.1 SITE RESPONSE 

In ground motion prediction, several factors contribute to the characteristics of ground 

shaking at the surface of the earth during earthquakes. These factors are related to the earthquake 

source (fault), source-site path, and the site. Among source parameters, the most important 

parameter is the magnitude (M). There are also other parameters related to the source like stress 

drop. Stress drop is the amount of stress released when the fault ruptures, and this parameter is 

related to rupture area and earthquake duration. The second factor is the path through which the 

seismic waves will travel until reaching the site. The main parameter describing the path is the 

distance between the source and the site (R). The principal path effects are related to the geometric 

spreading of seismic energy away from the fault and anelastic attenuation effects associated with 

crustal damping. Both of these effects cause attenuation of ground motion with source-site 

distance. The third factor is the site. The seismic waves created by the source and traveled through 
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the path, have to propagate through the relatively shallow and softer geological structure before 

reaching the surface (shown schematically in Figure 1.1). Propagating through the site, the seismic 

waves can be amplified by soft soils, or deamplified because of damping effects. In site response, 

there are also different effects created by two or three dimensional propagation of waves like basin-

edge effect, or the effect of surface waves.  

 

Figure 1.1. Schematic description of the three main components in ground motion prediction, 
namely source, path, and site (Goulet, 2008) 

 

1.1.1 Site response in ground motion prediction 

A Ground Motion Model (GMM) predicts the median and standard deviation of the 

intensity measure at the surface (Assuming log-normal distribution for ground motion intensity 

measure). The general form of a GMM is shown below: 

 ( ) ( ) ( )ln( ) ( ) ( ) ( )E P SIM f source parameters f path parameters f Site parameters       (1.1) 

where the source, path, and site components are used to predict the ground motion at the surface. 

The GMM consists of different terms each relating to one component of ground motion prediction. 

In the general form of the equation, the site component represents the effect of amplification or 
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deamplification of the ground motion due to site response, and in empirical GMMs, the main 

parameters describing the site condition are the weighted average of shear wave velocity in the 

upper 30 meters and basin depth. The site terms are obtained empirically (using recorded data) or 

using a combination of simulation and recorded data and they are the easiest way to capture the 

effect of site response. 

1.1.2 The effects of site response 

In this section, a brief introduction is given about the physics of site response, and how site 

response affects ground motions. These effects are divided into three categories namely ground 

response, basin response, and topographic effects. 

1.1.2.1 Ground response 

Ground response is the effect of site on vertical traveling shear waves. Ground response 

effects, as produced by a model of a profile having a certain thickness, are only present for periods 

less than the soil column period. As these waves travel upwards, there are different phenomena 

affecting the characteristics of the waves. The first effect is Impedance Contrast. This phenomenon 

is due to the difference between shear wave velocity in different layers. As the wave travels from 

a stiff layer to a soft layer, the wave velocity drops. In order to have constant energy, the wave will 

have bigger amplitude. In other words, as the velocity drops, the amplitude increases. Therefore, 

the waves amplify as they reach a soft layer (soil).  

Another important ground response effect is the effect of resonance. The soil column above 

the bedrock has a fundamental period of oscillation (first mode) which is related to the shear wave 

velocity. The relationship is as follows: 
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 4
site

S

H
T

V
  (1.2) 

where Tsite is the first mode fundamental period of the soil column, H is the height of the soil 

column, and VS is the weighted average shear wave velocity in the soil column. When seismic 

waves traveling through the soil column have a period close to the site period, resonance will 

happen. Resonance can cause considerable amplification of seismic waves at periods close to the 

site period. 

The third ground response effect is the nonlinear behavior of soil. As shear waves travel 

through the soil, they cause shear strain. The behavior of soil is not linear elastic especially at high 

levels of strain (which are caused by strong motions). The nonlinear behavior of soil can be 

described by two parameters namely modulus reduction (G/Gmax) and damping (D). Both 

parameters are dependent on shear strain. Some samples of modulus reduction and damping curves 

are shown in Figure 1.2. It can be seen that nonlinearity increases as the shear strain increases. 

Therefore, for strong motions, I should expect more nonlinearity, which is the cause of 

deamplification of strong motions at soft sites because of high level of damping. For weak motions, 

the behavior of soil is close to linear. 
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Figure 1.2. (a) Modulus reduction and (b) damping curves for soils with different Plasticity indexes 
(Vucetic and Dobry, 1991) 

 

1.1.2.2 Basin response 

Many regions are located on deep sedimentary basins (like Los Angeles basin or Seattle 

basin). Deep basins can affect the characteristics of seismic waves in two ways. The first one is 

basin edge effect. As the seismic waves reach the basin edge, according to Snell’s law, they refract 

upwards towards the surface, after reaching the surface, they are reflected back towards the bottom 

of the basin. In some cases, the reflection angle of the reflecting wave is less than the critical 

reflection angle. Therefore, the wave reflects back again, and becomes trapped in the basin. This 

phenomenon creates surface waves which can be considerable especially at long periods. 

Another basin response effect is the focusing of shear waves. The geometry of the bottom 

of the basin can affect vertical propagating shear waves. In some places, the waves can be 



6 

 

scattered, and in some regions they can converge. The convergence of the waves around a region 

is called focusing. This phenomenon can cause concentrated damage at some areas on the surface. 

1.1.2.3 Topographic effects 

Uneven topography of the ground surface can also affect the intensity of ground motion. 

Ground motion can be amplified at the top of slopes or on top of hills, because at these points, 

there is less horizontal restraint for the soil, making it easier to move by the seismic waves. 

1.1.3 What is one dimensional ground response analysis? 

One practical way of capturing the effect of ground response is simulating the vertical 

propagation of shear waves through the site. This approach is sometimes referred to as a 1D ground 

response analysis (GRA) because the soil layer boundaries are assumed to be horizontal and wave 

propagation is assumed to be vertical. In some cases, this method is satisfactory for periods less 

than the site period. However in many cases, the site period is ill-defined because of a gradual 

increase of stiffness with depth making it difficult to define the extent of the soil domain to be 

considered in the 1D model. Experience has shown that 1D GRA can work reasonably well for 

periods less than about 1.0 sec but seldom is effective at longer periods (Baturay and Stewart, 

2003). In this period range, the wave type that dominates response spectral ordinates is generally 

shear waves. Therefore, modeling vertical propagation of shear waves is a reasonable assumption. 

GRA can be performed using Linear, Equivalent linear (EL) analysis and Nonlinear (NL) 

methods. In the linear method, the differential wave equation is solved with the assumption of 

stress-independent linear elastic behavior of the material and constant damping ratio. In equivalent 

linear method, we solve the differential wave equation assuming linear soil behavior. This method 

works well when nonlinear behavior of the soil is not very strong. In cases where high levels of 
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shear strain (because of strong motion and weak soil) is expected, NL analysis is preferred because 

it can better simulate time-dependent and highly nonlinear soil response. Nonlinear methods of 

analysis solve for the response of a multi-degree-of-freedom lumped mass or finite element system 

when shaken at the base. There are numerous computer programs capable of performing 1D 

ground response analysis like DEEPSOIL (Hashash et al., 2016), STRATA, D-MOD 2 

(Matasovic, 2006), OpenSees (McKenna and Fenves 2001), SHAKE (Youngs 2004) and 

SUMDES (Li et al. 1992). Some of the programs are capable of performing EL, some are able to 

perform NL, and some can do both of them. 

For modeling the 1D propagation of shear waves through the site, the accurate cyclic stress-

strain behavior of the material (soil) has to be known. In ground response analysis, the stress-strain 

behavior of the soil can be described by strain-dependent modulus and damping, which can be 

derived for a given depth from maximum shear modulus (Gmax), modulus reduction, and damping 

relations. Modulus reduction curve describes the strain-dependent shear modulus of the soil. The 

Gmax represents the maximum shear modulus of the backbone curve corresponding to very small 

strains, and damping curve represents the strain-dependent amount of energy dissipated in the soil 

mass in cyclic loading. In order to obtain Gmax, the most typical way is measuring the velocity of 

shear waves in different layers of the soil profile, and using the equation below: 

 2

max ( )SG V  (1.3) 

where ρ is the density of the soil.  

The velocity profile can be obtained in-situ by methods like spectral analysis of surface 

waves (SASW), downhole, or suspension logging. Modulus reduction and damping curves can be 

obtained by empirical relationships based on parameters like soil plasticity and overburden 
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pressure, or by site-specific laboratory tests. In Figure 1.3, a typical ground response analysis 

problem is shown schematically, in which the rock motion (or input motion), the soil column with 

its different properties (velocity profile and modulus reduction and damping (MRD) curves) are 

shown. The output motion or the surface motion will be obtained after the simulation of the rock 

motion propagating through the soil column towards the surface. 

 

Figure 1.3. Schematic illustration of 1D ground response analysis (Goulet, 2008) 

 

The method of 1D GRA is unable to capture two or three dimensional phenomena like 

surface waves or basin edge effect. These phenomena play a considerable role in the surface 

ground motion at long periods (usually more than 1.0-2.0 sec). Therefore, there is higher 

probability that 1D GRA gives unreliable results for predicting long period ground motion. 

However, short period motions are mainly controlled by 1D vertical propagation of shear waves, 

and the assumption of 1D GRA is more reasonable in predicting ground motion at short periods. 
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1.1.4 Site response and probabilistic seismic hazard analysis 

The goal of earthquake engineering is designing structures capable of withstanding certain 

amounts of seismic loads without sustaining unacceptable damage. However, the seismic loads are 

always associated with different kinds of uncertainties. Probabilistic seismic hazard analysis 

enables us to quantify these kinds of uncertainties, so that the design loads for a certain probability 

of exceedance can be obtained. In probabilistic seismic hazard analysis, we are able to input the 

source, path, and site effects, and summarize the hazard over different combinations of sources 

and paths for the site.  

A typical way of performing PSHA is the hazard integral. The equation of the hazard 

integral is shown in equation (1.4). The terms f(M) and f(R) are the probability density functions 

of magnitude (representing source), and probability density functions of distance (representing 

path). The term P(IM > im|M,R) is the probability that the surface ground motion intensity 

measure exceeds a certain value conditioned on an earthquake with magnitude M at distance R 

(im|M,R). This term can be computed using a ground motion model (GMM). The GMM gives a 

median and a standard deviation in logarithmic units, by means of which the probability of 

exceedance for the surface ground motion can be obtained. Finally, by summarizing the hazard 

coming from a number of sources (faults), we can calculate the mean return period of the 

exceedance of ground motion intensity measure over a certain amount. 

 
1

( ) ( ) ( ) ( , )
faultN

i

i

IM im f f R P IM im R d dR 


    M M M  (1.4) 

After performing PSHA, the hazard calculated for a certain site can be represented in two 

ways, one is the uniform hazard spectrum which shows the response spectrum of an oscillator with 

certain damping ratio (usually 5%). The response spectrum is associated with a certain hazard level 
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(e.g. APE of 2% in 50 years). Another way of representing the hazard is the hazard curve, which 

shows the annual probability of exceedance (APE) vs. the amount of the intensity measure. Site 

response can affect the hazard curve as well as the shape of the uniform hazard spectra, and 

therefore, they can affect the results of hazard analysis. In Chapter 2, I am interested in the effect 

of site response, and how to represent this effect in probabilistic seismic hazard analysis. There 

are multiple approaches for incorporating site response in PSHA which are discussed in detail in 

a guideline report (Stewart et al., 2014). The report also discusses the benefits and the drawbacks 

of each method. 

1.1.5 Scope of the research 

The goal in this research is studying site response, and developing a guideline about using 

non ergodic or site-specific site response by geotechnical engineers. I propose methodologies 

about how to use available recordings at a site, results of GRA, or a combination of both in order 

to have a site-specific estimate of site response. Using non ergodic site response has a benefit of 

reducing the uncertainty which is discussed in detail in Chapter 2. I study the effect of the reduction 

in uncertainty in the results of PSHA using three example sites. I also study the question of to what 

extent 1D GRA can be trusted by a validation study in Chapter 4. I evaluate the effectiveness of 

1D GRA, and estimate the uncertainties associated with 1D GRA using data from vertical array 

sites in California. The dataset that I compiled for this matter is discussed in Chapter 3, and the 

validation study on 1D GRA is discussed in Chapter 4. 

1.2 DURATION OF GROUND MOTIONS 

In ground motion prediction, there are several parameters representing the intensity of 

ground shaking called intensity measures (IM). The peak ground acceleration (PGA), spectral 
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acceleration at any oscillator period (Sa(T)), or the earthquake duration are some examples of 

earthquake intensity measures. Studies done on earthquake duration are relatively limited, while it 

has a considerable effect on some phenomena related to geotechnical earthquake engineering. For 

example, earthquake duration has a key role in estimating slope displacement in earthquakes, or 

in liquefaction analysis, the cyclic resistance ratio of the soil is affected by the number of loading 

cycles. The number of cycles are related to earthquake duration (The more the duration, the larger 

the number of cycles). The goal of the current study is on evaluating ground motion simulations 

from the Broadband Platform in terms of earthquake duration, and continuing on studying the 

effect of earthquake duration on geotechnical systems. 

I consider significant duration parameters, which are the most often used duration metrics 

in engineering applications. Significant duration is defined from the time elapsed between various 

percentages of Arias intensity, which is computed as: 
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It is also needed to normalize the arias intensity: 
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 (1.6) 

where gu  is the ground acceleration and g is acceleration of gravity. Figure 1.4 shows the 

accumulation of energy from zero to 100% of IA along with times where various percentages are 

reached. Significant duration parameters considered here are time intervals for 0.05-0.75, 0.05-

0.95, and 0.2-0.8 values of of NIA (denoted D5-75, D5-95, and D20-80, respectively).  
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Figure 1.4. Normalized Arias intensity and illustration of three significant duration parameters D5-75, 
D5-95, and D20-80 for an example record. 

 

Duration parameters have seen diverse application. The D5-75 and D5-95 parameters have 

been shown to correlate to collapse capacity of structures (Hancock and Bommer, 2007; 

Raghunandan and Liel, 2013, Chandramohan et al., 2015), with increased durations producing 

reduced capacities. Parameter D5-95 has been used in geotechnical applications including the 

seismic displacement of landslides (Bray and Rathje, 1998).  Zhang et al. (2012) have studied the 

effects of D5-95 and D15-85 on the dynamic response and accumulated damage of concrete gravity 

dams. Duration parameters have been shown to correlate to damping scaling factors for horizontal 

and vertical elastic response spectra, with D5-75 and D5-95 adopted as predictive parameters by 

Stafford et al. (2008) and D5-75 considered but not adopted by Rezaeian et al. (2014a, 2014b). 

Parameter D20-80 has not been used in engineering applications to our knowledge, but is considered 

here because it is less impacted by noisy acceleration signals (details below), and as a result of 

work by Boore and Thompson (2014) (hereafter BT14), who found: (1) it captures the duration of 

S-wave motions better than other duration metrics by excluding intervals dominated by P-waves 

and surface waves, and (2) it is strongly correlated to D5-95 in their stochastic simulations (Boore, 

2005) as D5-95  2D20-80. 
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In this research, we intend to validate the duration of recordings from SCEC Broadband 

Platform as a part of the ground motion simulation validation (GMSV) task. Duration has been 

chosen as a validation parameter because it is less studied in comparison with spectral ordinates, 

and it has an important effect on geotechnical systems as discussed earlier in this section. I 

considered ground motion models available in the literature at the time (Kempton and Stewart, 

2006, Bommer et al, 2008). Bommer et al., (2008) has a functional form which is not consistent 

with the physics of the problem as discussed in Chapter 5, therefore I did not use this model for 

the validation task. Kempton and Stewart (2006) model has a realistic functional form, however it 

is developed using a database which was about ten years old, and was much smaller than the most 

recent NGA-West2 database. Therefore, I felt the need for developing a new model based on NGA-

West2 database, and use this model as a part of validation “gauntlet” for SCEC Broadband 

Platform simulated motions. The development of the model is discussed in Chapter 5, and the 

validation effort is discussed in Chapter 6 of this dissertation. 
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2 Non-Ergodic Site Response in Seismic 
Hazard Analysis 

2.1 INTRODUCTION 

The vast majority of the path length for seismic waves traveling from source-to-site occurs through 

rock in the earth’s crust. As the waves approach the surface, they travel through geologic strata 

having progressively slower seismic velocities. This will tend to bend the wave propagation 

direction upward, per Snell’s Law, and change the amplitude. These and other effects of the local 

geology and morphology of the site on the ground motions are collectively referred to as 

site effects. Several phenomena have the potential to contribute to site effects: 

1. Local ground response describes the effects on ground motion of relatively shallow 

sediments (typically tens to hundreds of m in depth) having the slowest velocities. Because 

the dimensions of these soft sediments are limited, the affected frequencies are typically 

relatively high (>1 Hz). Factors contributing to local ground response will include some 

combination of impedance effects, soil nonlinearity, and potentially resonance effects.  

2. Basin effects are related to the deep structure of sediments that are present in many areas. 

Basins often include soft sediments near the surface that transition with depth to 

progressively stiffer sediments, including sedimentary rock, before basement conditions 
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(crystalline rock) are encountered. Because the dimensions of basins are often quite large 

(on the order of several km), the effected frequencies are relatively low (<  1 Hz).  

3. Topographic effects are related to irregularities in the ground surface morphology that can 

produce local amplification. The frequencies affected by topographic effects depend on the 

scale of the topographic features; a local steep hill will affect higher frequencies than large 

mountains.   

Semi-empirical ground motion models (GMMs) are derived from recordings made at 

accelerograph sites having various combinations of these site response mechanisms. Accordingly, 

the effects of each mechanism are present in an average sense in GMM predictions, conditional on 

the considered site parameters, which are typically time-averaged 30 m shear wave velocity (VS30) 

and some measure of basin depth. Site response predictions derived from global models 

conditional on such parameters are referred to as ergodic (Anderson and Brune, 1999).  

Actual (or non-ergodic) site response will differ from this global average. When the 

decision is made to consider location-specific site effects, as is common for critical projects, 

one-dimensional (1D) ground response analyses (GRA) are the most frequently utilized approach. 

Guidelines for performing such analyses are available elsewhere (NCHRP, 2012; Stewart et al., 

2014, hereafter Sea14). The point to be made here is that only some of the physical processes 

known to produce site effects (essentially, those related to local ground response) can be simulated 

in 1D GRA, hence error is likely for conditions where other site effects are appreciable. Errors of 

this sort bias the mean prediction of site response as estimated by GRA.  

The standard deviation of ground motion estimates is also needed for probabilistic seismic 

hazard analysis (PSHA). Because ergodic analysis using GMMs consider conditionally averaged 

site effects, their within-event standard deviation terms include a component of site-to-site 
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variability (e.g., Al Atik et al. 2010). Non-ergodic site response allows this component of 

variability to be removed, which has been referred to as single-station sigma (Atkinson, 2006). As 

described further, when this reduction of standard deviation is taken, epistemic uncertainties in the 

site amplification model must be considered. A practical question facing many projects is whether 

site-specific GRA can be considered to reliably estimate non-ergodic site response, thereby 

justifying the use of a standard deviation model in which site-to-site variability is removed. This 

issue is discussed in this chapter, but I note here that such assumptions have been applied in PSHA 

for critical projects, including the Pegasos Refinement Project (Renault et al. 2010), the Thyspunt 

Siting Project (Bommer et al. 2015, Rodriguez-Marek et al. 2014), the Hanford site (Coppersmith 

et al. 2016), and the South Western US project (GeoPentech, 2015).  

Ground motion analyses including site effects are performed with varying levels of 

sophistication. Most common is to perform PSHA for reference site conditions (typically rock), 

then to deterministically modify the rock motion using the mean site amplification. This is referred 

to as a hybrid analysis, due to its combination of probabilistic and deterministic methods, which 

produces a result with an unknown hazard level (e.g., Cramer, 2003; Goulet and Stewart, 2009). 

Convolution approaches (Bazzurro and Cornell, 2004a; Rathje et al., 2015) provide a more 

sophisticated modification of the rock hazard, but do not consider changes in standard deviation 

associated with non-ergodic site response nor differences in controlling sources that occur as site 

conditions are modified. The aforementioned projects in which non-ergodic site response was 

considered used convolution with simulation-based site amplification models; as such this 

approach effectively represents the state-of-practice for non-ergodic PSHA. The only approach for 

PSHA that rigorously incorporates site amplification effects is to modify the median and standard 

deviation of ground motion within the hazard integral. To date, this has generally only been 
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possible using GMMs with their site terms; the result is ergodic with its appurtenant issues of 

possible bias and large standard deviation. 

In this chapter, we describe a methodology for PSHA that utilizes a site-specific 

(non-ergodic) GMM and illustrate its application using capabilities implemented in open-source 

hazard code OpenSHA (Field et al. 2003).  I describe procedures for quantification of site-specific, 

nonlinear mean site response as derived using GRA results or on-site recordings (the use of which 

can overcome GRA bias). I describe analysis of within-event standard deviation considering 

nonlinear effects and removal of the site-to-site variability. Factors contributing to epistemic 

uncertainty are identified. I then illustrate the proposed approach, and its effect relative to more 

approximate procedures, on hazard curves and uniform hazard spectra. The findings and the 

explanations in this chapter are also published in a journal paper (Stewart et al., 2017). As a 

graduate student, I had a supporting role in this task, and my contributions were mostly in 

performing the analyses for the example sites, compiling literature for site response uncertainty, 

and developing the Bayesian/Frequentist approaches for evaluating site terms. 

2.2 NOTATION AND PARTITIONING OF GROUND MOTION VARIABILITY 

2.2.1 Probability Distribution for Site Amplification 

I express site amplification factors (Y) as the ratio of a ground motion intensity measure (IM) on 

the ground surface (Z) to the value of the same IM on the reference site condition (typically rock), 

X: 



18 

 

 
Z

Y
X

  or ln ln lnY Z X   (2.1) 

The implementation of site amplification factors in PSHA requires a probability density 

function for Y, which is usually taken as log-normal. The mean in natural log units is defined using 

the following nonlinear expression that has proven to be effective for representing X-dependent 

amplification:  
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Where Flin and Fnl indicate linear and nonlinear model components; f1, f2, and f3 are model 

parameters; and xIMref is the amplitude of shaking for the reference site condition. The intensity 

measure for xIMref is often taken as the median, RotD50-component peak ground acceleration 

(PGA) for rock (where RotD50 refers to the median of all possible rotated horizontal components 

for a given ground motion; Boore, 2010). Ergodic versions of Eq. (2.2) include site terms in many 

GMMs (Abrahamson et al., 2014; Boore et al., 2014; Campbell and Bozorgnia, 2014; Chiou and 

Youngs, 2014). I use Eq. (2.2) to represent site-specific mean amplification. 

2.2.2 Partitioning of Ground Motion Variability 

A particular realization of earthquake ground motion from event i at site j, lnzij, can be viewed as 

the sum of the mean from a GMM in natural log units, (lnZ)ij, and an error term,  

  ln lnln ij Z ij Zij
z      (2.3) 

where  is a standard normal variate, and lnZ is the total standard deviation for Z. The GMM mean 

has mean (ergodic) terms for source or event (FE), path (FP), and site (FS),  
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  ln , , ,Z E i P ij S ijij
F F F     (2.4) 

The mean terms are written with indices i and j to indicate that they depend on characteristics of 

the event (e.g., magnitude, focal mechanism) and site (location and site parameters). For any given 

event and ground motion, the actual source, path, and site effects differ from the ergodic estimate 

by their respective random effects, denoted E,i, P,ij, and S,j. These random effects represent the 

bias of the ergodic model for the particular event, source-site path, and site that produced motion 

zij. Hence, the actual (or non-ergodic) site response is FS,ij + S,j, and similar relations apply for the 

source and path terms.  

Eq. (4.3) can be re-written as follows to help visualize the random effects (adapted from 

Al Atik et al., 2010 with some modification): 

  ln , , , lnln ij Z E i P ij S j ij Yij
z            (2.5) 

where ij has the same meaning as in Eq. (2.3) (although the values are now different) and lnY is a 

standard deviation term reflecting the variability that remains when these random effects are 

considered. Effects of site amplification are more clearly expressed by re-writing Eq. (2.5) as 

  ln , , ln , lnln ij X E i P ij Y ij ij Yij
z            (2.6) 

in which  ln ,Z S jij
   from Eq. (2.5) is replaced with  ln ln ,X Y ijij

  , per Eq. (2.1).   

Each of the event, path, and site terms has corresponding standard deviations. Following 

the notation introduced by Al Atik et al. (2010), the standard deviation of between-event terms, 

and for repeatable path and site terms are denoted , P2P, and S2S, respectively. These combine 

to produce the total standard deviation as follows:  



20 

 

 
2 2 2 2

ln 2 2 lnZ P P S S Y         (2.7) 

The site-to-site standard deviation (denoted ϕS2S) contributes to the within-event standard deviation 

(lnZ) provided by GMMs with ergodic site terms, i.e.,  

 
2 2 2

ln 2 2 lnZ P P S S Y       (2.8) 

Site-to-site variability is not needed when the site response model is non-ergodic, as discussed 

subsequently. The variability that remains when each of the random effects is accounted for is 

represented by the lnY term in Eqs. (2.5-2.8). This term strictly represents variability in path and 

site effects when a non-ergodic model is used. However, prior studies summarized in the Site 

Response Variability, lnY section below, indicate that lnY is dominated by site amplification 

variability. 

2.3 MEAN SITE RESPONSE 

Eq. (2.2) is used herein to represent the natural log mean site response. Expressions of this type 

can be used in both ergodic and non-ergodic applications. In Eq. (2.2), the Flin=f1 term represents 

the weak-motion (visco-elastic) site amplification. The second term in the sum represents the 

effects of nonlinearity (Fnl); the physical meanings of the f2 and f3 parameters are depicted in Figure 

1.4. 
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Figure 2.1. Schematic depiction of nonlinear component of mean site amplification function. Term 
f2 represents the negative slope of Fnl for xIMref >> f3. Term f3 represents the approximate 
center of the xIMref range where amplification changes from visco-elastic (independent 
of xIMref) to log-linearly dependent on xIMref.  

 

Ergodic site terms take f1 as a function of VS30 and basin depth, while f2 is a function of VS30 

only. As discussed previously, such site terms can be in error due to site-specific geologic structure 

that is not captured by VS30 and basin depth parameters. Non-ergodic site terms can be developed 

from analysis of ground motion recordings made at the site of interest or GRA, as discussed below. 

2.3.1 Evaluation from Recordings 

Analysis of non-ergodic site response from recordings begins with the installation of seismic 

sensors (accelerometer or seismometer) at or near the target site.  Ground motions are then 

recorded for regional earthquake events, which are of interest when they fall in the 

magnitude-distance range of applicable GMMs. In the case of active crustal regions, the 

NGA-West2 GMMs (Bozorgnia et al., 2014) are generally applicable for M > 3 and site-source 

distances < 400 km. The GMM selected should suitably capture average path effects, otherwise 

bias in the path term could map to erroneous assessments of site response.  
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Denoting the target site with index j, the intensity measure for event i (following suitable 

signal processing for noise effects; e.g., Boore and Bommer, 2005) is denoted zij. Residuals (Rij) 

of these motions relative to a GMM applicable for the tectonic regime are then computed as: 

  lnlnij ij Z ij
R z    (2.9) 

The residuals in Eq. (2.9) contain random effects from each event i (E,i), which should be removed 

to evaluate the within-event residual (Wij), 

 
,ij ij E iW R    (2.10) 

The evaluation of E,i is non-trivial. For events considered in the development of GMMs, E,i is a 

product of mixed-effects regression procedures, which are commonly used. For events not 

considered in GMM development, a posteriori estimates of E,i (denoted ,
ˆ

E i ) are needed using 

available recordings of event i (this requires data from multiple sites, which can typically be 

retrieved using local sensor networks such as Southern California Seismic Network and Berkeley 

Digital Seismic Network in southern and northern California, respectively). There are alternate 

procedures for this calculation, which consider a variety of factors including the relative sizes of  

and lnZ, recording-to-recording correlation, and the number of records (Ni).  

2.3.1.1 Analysis of Random Effect Terms 

Two random effect terms are required when ground motion recordings from a site are used to 

develop a non-ergodic site term (Eq. 2.11). One is the random effect for source E, the other is the 

random effect for site S. The latter represents the difference between the actual site amplification 

and the estimate from an ergodic model.  

There are three approaches for computing random effects:  
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(1) As part of a mixed-effects regression (Abrahamson and Youngs, 1992);  

(2) Post-regression Bayesian inference;  

(3) Post-regression frequentist inference.  

Whereas (1) involves the estimate of random effects as part of the regression process, (2.11) and 

(3) use an existing model (GMM) and new data that was not considered in model development. 

 

2.3.1.1.1 Bayesian Inference 

Bayesian inference takes a prior distribution for a parameter of interest, which is then updated into 

a posterior distribution as a result of conditioning on data. Expressed in a generic form, this takes 

the form (Gelman et al. 2014):  

      | |p y p p y    (2.11) 

where p indicates a distribution,  indicates the parameters being estimated and y indicates the 

data. In the present application,  represents the random effect being estimated and y represents 

residuals, which are total residuals R (Eq. 2.9) for the estimation of E and within-event residuals 

W (Eq. 2.10) for the estimation of S. When applied to the present problem, term  |p y   

indicates residuals conditioned on a prior realization of parameter . Values of  produced by 

Bayesian inference are intermediate between the prior and those implied directly by data, with 

more weight given to the data as the size of the data set increases and the data dispersion decreases.  

The prior distribution p() for a random effect has zero mean and standard deviations of  

and S2S for random effects related to event and site, respectively. The posterior distribution 

 |p y  is described by a mean estimate of the random effect ̂  and standard deviation of that 
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estimate ˆ .  In the case of uncorrelated data, these estimates can be written as follows for the 

cases of event and site terms (adapted from Gelman et al., 2014): 

For event terms:   
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For site terms:   
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where Ni is the number of recordings of event i (all sites) and nj is the number of recordings at site 

j (all events). Terms iR  and ijW  are means of total residuals for event i and within-event residuals 

for site j, respectively.  

The assumption of uncorrelated data behind Eqs. (2.12-2.15) is appropriate for the site term 

calculation, but not for event terms (earthquake recordings exhibit spatial correlation, as given for 

example by Jayaram and Baker, 2009). Expressions similar to Eqs. (2.12-2.13) that account for 

recording-to-recording spatial correlations are given by Stafford (2012), modified to match the 

present notation as:  
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where R is the vector of total residuals, and Cc is a covariance matrix given by:  
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where j is the within-event standard deviation for site j. If we assume within-event standard 

deviation is the same for all sites, j terms will be replaced by constant  . The spatial correlation 

between residuals at sites j and k is denoted jk . Jayaram and Baker (2009) developed a distance-

dependent model for estimating jk : 
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  (2.19) 

where b is a model parameter, and 
j kx x  is the distance between sites. 

2.3.1.1.2 Frequentist Inference 

Frequentist inference involves analysis of data in a way that emphasizes the frequency or 

proportion of the data. The principle behind this approach is that a given data sample is one of an 

infinite sequence of statistically independent realizations of an underlying physical process 

(Everett, 2002).  If the distribution of the data (residuals) is normal with an unknown mean and 
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standard deviation, the maximum likelihood estimator of the mean is the sample average and the 

maximum likelihood estimator of the standard deviation is the sample’s standard deviation. The 

standard error of the mean is the sample’s standard deviation divided by square root of the number 

of data observations. This produces the following estimates for event and site terms:   

For event terms:   

 ,
ˆ

E i iR   (2.20) 
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For site terms:   
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where si and sj are the sample standard deviations. As explained in the main text, frequentist 

inference provides unbiased estimates of the mean, which is a desirable attribute for assessment of 

site-specific (non-ergodic) site response.  

 

 

2.3.1.1.3 Comparison between Bayesian and frequentist inference 

I present two examples to compare the Bayesian and frequentist approaches. The first pertains to 

the random effect for event ( ,
ˆ

E i ) and uses data from the 1994 M6.7 Northridge, California 

earthquake. The second pertains to the random effect for site ( ,
ˆ

S j ) and uses data recorded at the 
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Los Angeles, California, Obregon Park site. The calculations are for PGA, and I show the effect 

of the number of available observations for the selected event and site. 

The Northridge mainshock event has 147 records in the NGA-West2 database passing the 

Boore et al. (2014) criteria for ground motion selection. The event term as developed in the original 

regression is 0.251. To investigate the effect of different numbers of recordings, I randomly select 

Ni records from the 147 available records, with Ni ranging from 1 to 147. For each random sample, 

I estimate the event term and its standard error following the Bayesian and frequentist approaches. 

Moreover, for each Ni, I repeat the calculations for every possible combination of Ni from the set 

of 147, and compute average results, which has the effect of smoothing the dependence on Ni. The 

resulting event terms (and their standard errors) are shown in Figure 2.2, which are based on  = 

0.364, and lnZ = 0.552 (Boore et al., 2014). From trial and error, I found a small effect of spatial 

correlation on the outcome of the calculations; the values in Figure 2.2 are for zero between-site 

correlation.  

 

Figure 2.2. Different estimates of the mean and standard deviation of the Northridge earthquake 

event term ( ,
ˆ

E i ), as derived from GMM regression (mixed-effects regression) and as 

computed using Bayesian and frequentist approaches.  
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Figure 2.2 shows that the uncertainty of the mean decreases with Ni for both approaches. 

For small Ni, the Bayesian estimate of ˆE
  is close to the prior standard deviation, which is . The 

frequentist approach produces larger values of ˆE
 (in proportion to inverse-square root of Ni), 

without any effects from a prior distribution. Moreover, the Bayesian approach has a “shrinking” 

effect on the mean for small Ni (<  30 in this case). According to the Bayes theorem, the Bayesian 

inference for ,
ˆ

E i  is a compromise between a prior distribution (which has a mean of zero in this 

case), and the observations. For small Ni, less weight is given to the observations, and the posterior 

distribution is dominated by the prior distribution, causing the estimate of the mean to shrink and 

be closer to zero. This shrinking of the mean is not present with the frequentist approach.  

The Obregon Park site has 13 available observations for estimating site term ( ,
ˆ

S j ). I use 

S2S = 0.4 and lnY = 0.35 for the computations. I sample subsets of the available data in the manner 

described above, with the results shown in Figure 2.3. Similar effects of nj on the estimates of the 

mean and standard error are observed as described previously for the case of event terms. In the 

case of the site term computation, the data are too limited to achieve convergence between the 

estimates of ,
ˆ

S j at the largest values of nj.  
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Figure 2.3. Different estimates of the mean and standard error of the Los Angeles Obregon Park site 

term ( ,
ˆ

S j ) using Bayesian and frequentist approaches. 

 

2.3.1.1.4 Recommendations for mean site response from recordings 

We recommend computation of ,
ˆ

E i  using a Bayesian inference approach (Eq. 2.16, modified from 

Stafford 2012). As illustrated in Figure 2.2, ,
ˆ

E i  from Eq. (2.16) nearly matches the mean of event 

residuals when the number of observations Ni > 30. 

Figure 2.4 shows example results for 13 recordings made at the Obregon Park site, which 

has station sequence number SSN 337 in the NGA-West2 site database (Seyhan et al., 2014). 

Residuals were computed using the Boore et al. (2014) GMM (BSSA14 hereafter). This site has 

large positive residuals, indicating that the site response is stronger than anticipated from the 

ergodic site term. 
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Figure 2.4. Within-event residuals and their mean for Obregon Park site. The large positive bias 
indicates under-estimation of site response from the ergodic site term used in the 
calculation (in this case, BSSA14). SSN indicates the station sequence number for the 
site in the NGA-West2 flatfile (Seyhan et al. 2014). 

 

I recommend that random effect S,j be taken as the mean of Wij (Eq. 2.22, denoted ,
ˆ

S j ). 

This follows a frequentist inference approach, which is recommended because it provides an 

unbiased (though uncertain) estimate of S,j. Alternate Bayesian methods (Eq. 2.14) provide a 

biased mean estimate. Our preference for the unbiased mean is to provide the most accurate 

possible site response. Uncertainty in the mean estimate, ˆS
 is considered within the epistemic 

uncertainty characterization (explained further below). 

I recommend using the observations as reflected through site term S,j to set the Flin=f1 term 

in the non-ergodic site amplification model (Eq. 2.2) (nonlinear parameters will typically be set 

from simulations, next section). A first estimate of f1 can be taken as: 

  1 ,

erg

lin S jj
f F    (2.24) 

where erg

linF  is the ergodic (VS30- and depth-based) linear site amplification. Eq. (2.24) is effective 

if the recordings from which S,j is derived are sufficiently weak that the nonlinear component of 



31 

 

the GMM site term is not exercised in the residuals calculation (Eq. 2.9) or if the nonlinear site-

specific amplification is well represented by the ergodic model. When the ground motions used to 

evaluate ,S j  are strong enough to produce nonlinearity and the site-specific and ergodic nonlinear 

models are dissimilar, site residuals can be re-computed by taking site response as the sum of erg

linF  

and site-specific Fnl. The resulting ,S j  values are then used with Eq. (2.24) to set site-specific f1. 

The linear amplification for the Obregon Park site is shown in Figure 2.5 in arithmetic units 

(expf1). The amplification is relative to the reference site condition in the ergodic model, in this 

case 760 m/s. 

   

Figure 2.5. Ergodic (BSSA14) and non-ergodic (site-specific) linear site amplification relative to 
760 m/s for Obregon Park site. 

 

2.3.2 Evaluation from Simulations  

When GRAs are used to estimate site amplification, they should follow recommended practices 

for selecting an appropriate computational framework, developing dynamic material properties 

and their uncertainties, and identifying hazard-appropriate input motions. As described in the 
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Introduction, such recommendations are provided in NCHRP (2012) and Sea14; we assume GRA 

results compatible with these recommendations in the discussion that follows. 

GRA produces a series of discrete results, consisting of period-dependent amplification Y 

given a particular set of dynamic soil properties and a particular input motion with amplitude xIMref. 

In most cases, Eq. (2.2) is used to predict the RotD50-component of ground motion Z, in which 

case, per Baker and Cornell (2006) xIMref should be similarly computed for a pair of input motions 

using the RotD50 component, which is well estimated by the geometric mean (Shahi and Baker 

2014). Hence, even when only one scaled component of an input record is used in ground response 

simulations, a combination of the two original components (as RotD50 or geometric mean) should 

be used to represent its amplitude as xIMref. 

For the three example sites shown in Figure 2.6, two alternative approaches are used for 

small-strain damping (Dmin): (1) Darendeli (2001) and Menq (2003) models based on soil damping 

measured in laboratory; (2) estimating damping based on VS using Campbell (2009) model for 

rock quality factor, Qef (See Section 4.2.2) which is ovrepredicting soil damping (See Section 

(4.3.1). When multiple input motions are used, potentially also with multiple realizations of 

uncertain soil properties, a distribution of xIMref-Y results is obtained as shown in Figure 2.6. This 

distribution can typically be fit reasonably well using the mean amplification function in Eq. (2.2). 

Routines for performing these regression fits are provided in electronic supplements to Sea14. 

When the reference site ground motions are derived for a single hazard level, usually that 

prescribed for design purposes (e.g., 475 year return period), values of amplification Y are 

computed for a relatively narrow range of xIMref. In such cases, it is not possible to regress each of 

the parameters f1, f2, and f3; Sea14 (Section 2.6) suggest several options for addressing this situation 

and the aforementioned routines can accommodate this case. 
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Figure 2.6. Intensity measure amplification levels from individual GRAs (symbols) using two models 
for small-strain damping following reference site adjustment, fit curves from Eq. (2.2), 
and regression coefficients. The xIMref values used in the figures are the RotD50-
component. Amplification levels reflect record-to-record variability only (mean soil 
properties used in the GRA). Empirical site amplification (derived from recordings) is 
shown as a mean amplification with 95% confidence intervals beyond the limits of the 
abscissa, to indicate that this amplification is not associated with any specific value of 
xIMref. 

 

The example GRA results in Figure 2.6 are for amplification of PGA at one stiff and two 

soft soil sites (Obregon Park, El Centro #7, and APEEL #2; site attributes are presented in Figures 

2.12-2.13, and details on the example results are given subsequently). These results are from 

nonlinear GRA performed using DEEPSOIL (Hashash et al., 2016) following guidelines for 

parameter selection in Sea14. The trend of site amplification with the input motion PGA 

demonstrates weak nonlinearity for Obregon Park and strong nonlinearity for APEEL #2. These 

are typical patterns that reflect the larger strains that develop in soils at soft sites. 

The site amplification directly provided by the GRA result reflects the surface IM relative 

to the IM for the site condition at the base of the profile, which is 540 m/s for Obregon Park, 
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508 m/s for El Centro #7, and 1525 m/s for APEEL #2. These conditions are different than the 

GMM reference condition for X, which is typically 760 to 1100 m/s, hence the GRA-based 

amplification requires modification to represent Y per Eq. (2.1). If we denote the VS30 value 

corresponding to conditions at the base of the profile as 
30

B

SV  and the ground motion IM for that 

condition (corresponding to the GRA input motions) is XB, then the GRA-based site amplification 

is: 

 
B

B

Z
Y

X
  (2.25) 

The site amplification relative to the reference condition for X can then be evaluated as 

      ln 30ln ln B B

Y SY Y V   (2.26) 

where  ln 30

B

Y SV  is the mean site amplification from an ergodic model for the base-of-profile site 

condition. Likewise the ground motion amplitude used in the nonlinear site term computation is 

taken as:  

      ln 30ln ln B B

IMref IMref Yref Sx x V   (2.27) 

where B

IMrefx  is the corresponding value of that IM for the base-of-profile site condition and 

 ln 30

B

Yref SV  is the ergodic amplification of that reference IM for the site condition represented by 

30

B

SV . The site amplification and xIMref values shown in Figure 2.6 were adjusted in this manner. 

These procedures carry elevated epistemic uncertainty when 
30

B

SV  is near or beyond the limits of 

empirical models (i.e., > 1500-2000 m/s).  

An important consideration in the interpretation of GRA results is that the computed mean 

amplification may be biased relative to the true (generally unknown) mean site amplification. 
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Studies that investigate the effectiveness of GRA are most robust when the input motions are 

known, which only applies for vertical arrays. While numerous studies of data from vertical arrays 

at individual sites have found reasonably good fits to GRA results (e.g., Borja et al., 1999; 

Elgamal et al., 2001; Lee et al., 2006; Tsai and Hashash, 2009; Yee et al., 2013; 

Kaklamanos et al. 2014), other studies that systematically examine a broad set of such arrays 

generally find misfits for a substantial subset (Thompson et al. 2012; Afshari and Stewart, 2015a). 

This bias occurs because GRA does not capture some of the physical mechanisms that contribute 

to site response, especially for geologic conditions that cannot be reasonably represented as 1D. 

The three example sites (Figure 2.6) illustrate the issue  amplification levels observed from 

recordings (using procedures from previous section) are shown in the figure along with the 

simulation fits. Underprediction bias for PGA amplification occurs for Obregon Park; the bias is 

statistically significant in that the simulation mean is outside the 95% confidence interval for the 

empirical amplification. The El Centro #7 and APEEL #2 weak motion amplification levels from 

the data and simulations are relatively compatible.   

For situations where amplification is evaluated from recordings and the resulting f1 differs 

from the GRA-based estimate, I recommend adopting the empirical f1 value while maintaining the 

nonlinear function from GRA (coefficients f2 and f3). This amounts to a vertical shift of the 

simulation-based amplification function to the empirical value (e.g., to 3.2 in Figure 2.6a).  

When ground motion recordings are not available for a site, simulations are the only viable 

option for developing site-specific amplification functions. The suitability of simulation results 

derived from 1D analysis requires judgement on the part of the analyst, and is subject to significant 

epistemic uncertainty, as discussed next. However, a situation for which the inadequacy of GRA 

is clear is at periods higher than the fundamental-mode period of the soil column considered in the 
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simulations (e.g., Baturay and Stewart, 2003), which is typically tens to perhaps hundreds of 

meters in thickness. At these long periods, essentially no site response is computed because the 

quarter wavelength is longer than the profile dimension; in the limit the site displaces in an 

essentially rigid body manner. In contrast, long-period site response is empirically known (from 

ergodic models) to be pronounced, which is due to macroscopic features of the geologic column, 

and perhaps three-dimensional basin structure, that may be several km in dimension. As discussed 

subsequently (Implementation section), we recommend transitioning from simulation-based non-

ergodic coefficients to ergodic coefficients at these long periods. 

2.3.3 Epistemic uncertainty of mean site response 

PSHA with a site-specific (non-ergodic) GMM requires consideration of epistemic uncertainties 

in the mean site amplification model (this section) and aleatory uncertainty model (next section), 

typically following a logic tree framework (Abrahamson and Bommer, 2005; Bommer and 

Scherbaum, 2008). I suggest to characterize uncertainties in the mean model in two ways: (1) 

uncertainty in f1 (Eq. 2.2), which reflects the overall level of amplification; and (2) uncertainty in 

the nonlinear model (Fnl), potentially affecting parameters f2 and f3 (Eq. 2.2).  

Uncertainty in the overall amplification level (parameter f1 in Eq. 2.2) should be 

characterized differently when the model is derived partly from recordings versus being entirely 

GRA-based. When f1 is set from recordings, epistemic uncertainty is represented by the standard 

error of the mean of S,j (Eq. 2.23). When f1 is set by GRA, epistemic uncertainties should reflect 

the degree to which the physical processes modeled in 1D analysis capture the true site response 

given the local geologic structure. For example, sites having a large impedance contrast might be 

well characterized by GRA for oscillator periods below the site period. For such conditions, 
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epistemic uncertainty could be taken from the range of simulation results given alternate input 

motions and variable VS profiles (details for considering such uncertainties are given in Chapter 2 

of Sea14).  If geologic complexities not captured by GRA could reasonably be expected to 

influence site response (e.g., sites within large sedimentary basins with gradually increasing VS 

with depth), epistemic uncertainty is driven more by the (admittedly subjective) impacts of those 

complexities.  

Characterization of epistemic uncertainty in the nonlinear model (Fnl) is directly related to 

uncertainty in the soil properties that produce this response, which are the modulus reduction and 

damping versus shear strain relations. Sea14 (Sections 2.2.2 and 2.3) summarize current models 

for such uncertainties. The influence of these uncertainties on mean site amplification can be 

readily considered in appropriate suites of GRA. 

2.4 WITHIN-EVENT STANDARD DEVIATION 

Our objective in this section is to develop an expression for the within-event standard deviation of 

surface ground motion, lnZ, appropriate for use with a site-specific natural log mean in non-

ergodic PSHA. Epistemic uncertainty in within-event standard deviations models are also 

discussed. We note that lnZ is not required when using convolution approaches, which instead use 

the within-event standard deviation for reference rock, lnX, as well as the standard deviation of 

site amplification, lnY. 

2.4.1 Effect of Soil Nonlinearity 

Bazzurro and Cornell (2004a) showed that when the mean site amplification is described as,  



38 

 

  ln 1 2 lnY c c x    (2.28) 

the standard deviation for Z can be computed as follows:  

  
2 2 2

ln 2 ln ln1Z X Yc      (2.29) 

where lnX represents the total standard deviation of input motions (as used in GRA) and lnY is as 

defined previously (dispersion of site amplification). An important feature of Eq. (2.29) is that 

values of c2 < 0 (caused by nonlinearity) reduce the ground motion variance. This feature of ground 

motion has a physical explanation. Consider a distribution of reference ground motion X of 

sufficient amplitude to produce nonlinearity. The mean realization (lnX) produces a particular 

level of amplification according to Eq. (2.2). Considering now the tails of the X distribution, a low 

realization (negative epsilon) produces less nonlinearity and hence more amplification than at lnX, 

which has the effect of ‘squeezing’ the below-mean tail of the Z distribution. A high X realization 

produces the opposite effect (more nonlinearity, less amplification), squeezing the above-mean Z 

distribution tail. These reductions in the Z distribution width require reduction of lnZ, which is 

accommodated by the c2 term in Eq. (2.29); such effects of decreased within-event variability for 

soft soil sites are also observed empirically (e.g., Boore et al., 2014).  

The use of total standard deviation lnX in Eq. (2.29) indicates that both the between- and 

within-event components of variability are affected by site nonlinearity (per Eq. 2.7). Depending 

on how between-event terms are computed, it may or may not be appropriate to reduce  using the 

slope term as in Eq. (2.29). Al Atik and Abrahamson (2010) take the position that between-event 

variability  represents the standard deviation of random effects terms E,i for rock conditions only, 

which implies that nonlinear site response is not reflected in the data used in their computation. 
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The effects of nonlinearity are therefore added subsequent to the GMM regression, and appear 

because of the impact of between-event variability on xIMref. Interestingly, the effects of between-

event variability on xIMref are not considered in forward application (median values are used – 

discussed further in the Correlation Issues section below). Among GMMs, this approach is used 

by Abrahamson et al. (2014) and Campbell and Bozorgnia (2014). I take a different position that 

 is based on E,i terms for as-recorded conditions including rock and soil sites. In this case, the 

average site effect represented by the site term in the GMM affects the event terms and hence their 

variability. Following this approach, between-event dispersion for application is taken as that 

implied by the data and is not modified for site nonlinearity, nor is it considered in the specification 

of xIMref. Among recent GMMs, this approach is used by Boore et al. (2014) and Chiou and Youngs 

(2014). While I adopt the latter approach, I acknowledge the former could also be applied in 

combination with appropriate GMMs.  

Because I take  as a source attribute and site-independent, I modify Eq. (2.29) for 

applicability to within-event variability:  

  
2 2 2

ln 2 ln ln1Z X Yc      (2.30) 

The approximation in Eqs. (2.29-2.30) is used because its derivation assumed Y and X as 

uncorrelated, which is not strictly correct. These equations also apply for the case that the IMs for 

X and xIMref match; I provide in Section 2.4.3 expressions for the case that the X and xIMref IMs are 

different.  

In the present work, I use a nonlinear function for mean amplification (Eq. 2.2), requiring 

revision of Eq. (2.30) to account for nonlinear site effects. I replace c2 in Eq. (2.30) with the slope 

of Eq. (2.2) in log-space, 
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 

 
ln

ln

Y

IMref

d

d x


 (2.31) 

The numerator in Eq. (2.31) can be written as:  

   2

2 3

3

ln
IMref

IMref

IMref

f dx
d f x f

x f
  
  

 (2.32) 

The denominator is 

  ln
IMref

IMref

IMref

dx
d x

x
  (2.33) 

Combining, the slope from Eq. (2.31) becomes,  

 
 

 
2ln

3ln

IMrefY

IMrefIMref

f xd

x fd x





 (2.34) 

Replacing c2 in Eq. (2.30) with the slope in Eq. (2.34), I obtain the following expression 

for within-event standard deviation:  

 

2

2 2 2

ln ln ln

3

1
IMref

Z X Y

IMref

f x

x f
  

 
     

 (2.35) 

A similar version of Eq. (2.35) was originally derived by Goulet (2008), and subsequently given 

by Papaspiliou et al. (2012). As before, Eq. (2.35) applies for matching X and xIMref IMs; App. C 

presents equivalent expressions for non-matched IMs. Below I describe the evaluation of lnX and 

lnY.  



41 

 

2.4.2 Removing Effects of Site-to-Site Variability  

The term lnX in Eq. (2.35) represents the within-event variability of IMs for reference site 

condition X, prior to modification for nonlinear site effects. Per Eq. (2.8), the principal contributor 

to this standard deviation for non-ergodic applications is path-to-path variability (P2P). Site-to-

site variability (S2S) would also contribute for ergodic site response. Our challenge is that the 

within-event standard deviation terms published with GMMs generally do not include this 

partitioning (exceptions are Kotha et al. 2016 & Landwehr et al. 2016), hence only the total within-

event standard deviation is typically known (with contributions from P2P, S2S, and lnY). When 

these dispersions are taken from a GMM for the reference site condition X, they are referred to as 

lnXm, where ‘m’ in the subscript indicates its source is a model (GMM or a stand-alone standard 

deviation model). Some contemporary GMMs are heteroskedastic, in the sense they include site-

dependent standard deviation terms (Abrahamson et al., 2014; Boore et al., 2014; Campbell and 

Bozorgnia, 2014; Chiou and Youngs, 2014), making them well-suited to estimating lnXm. 

For ergodic applications, the problem is trivial  the lnX term in Eq. (2.35) is taken as lnXm.  

For non-ergodic applications, I propose two alternate procedures: 

Approach 1: Subtract some fraction of variance 2

2S S  from published values of 2

ln Xm , i.e., 

 
2 2 2

ln ln 2X Xm S SF   
 (2.36) 

The term S2S has been evaluated in prior work (Figure 2.7) using ground surface stations with 

multiple recordings, most of which are of sufficiently low amplitude that the nonlinear effects from 

the prior section are modest-to-negligible. It typically ranges between 0.3-0.5 and is regionally 

variable (Rodriguez-Marek et al., 2013; Kaklamanos et al. 2013; Lin et al. 2011). Results in Figure 
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2.7 by Rodriguez-Marek et al. (2014) are for downhole records and have lower S2S than the surface 

data, indicating much of the variability is from shallow portions of these KiK-net sites. The term 

F in Eq. (2.36) ranges from zero to one. A value of F = 0 indicates no confidence that the site 

amplification factors remove site-specific effects beyond the capability of an ergodic model. A 

value of F = 1 is fully non-ergodic. I recommend use of F = 1 when f1 is inferred from recordings; 

when the site amplification model is derived solely from simulations, F should be selected in 

consideration of the degree to which GRA could be expected to capture the most important site 

response physics (such considerations are discussed in the Epistemic Uncertainty of Mean Site 

Response section). In developing Eq. (2.36), I considered whether the subtraction of 
2

2S SF  could 

alternatively be applied to the product of 
2

ln X  and the nonlinear term in brackets in Eq. (2.35); the 

present choice reflects the concept that the reference site ground motions are partially non-ergodic, 

which are then further modified for nonlinear site effects.  

Approach 2: Take lnX from so-called ‘single station’ models (SSm) developed for region-specific 

applications, as available. 

 ln ,X SS m 
 (2.37) 

One such set of models is shown in Figure 2.8 along with an ergodic model (GeoPentech, 2015).  

While site-specific within-event standard deviations are typically reduced relative to 

ergodic models (as provided by Approaches 1 or 2), there is a possibility of especially high 

variability for particular sites (e.g., Bradley, 2015). I am currently unable to predict such conditions 

in the absence of recordings. 
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Figure 2.7. Site-to-site standard deviation (S2S) findings from prior studies. R-Mea13, 14 = 

Rodriguez-Marek et al. (2013, 2014); Kea13 = Kaklamanos et al. (2013); Lea11 = Lin et 
al. (2011). All results based on ground surface recordings except R-Mea14, which is 
based on downhole recordings. 

 

 

 

 

Figure 2.8. Single-station standard deviation models (SSm) developed for South-Western US 
(SWUS) project (GeoPentech, 2015). Three alternate models are shown, one derived 
from global data with rupture distances < 50 km, and the other two derived from 
California data using different magnitude cutoffs (CA-1, CA-2). BSSA14 ergodic model 
shown for comparison (plotted results applicable for M > 5.5, Rjb < 79 km, and VS30 > 
300 m/s). 
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2.4.3 Standard Deviation Equations for Non-Matching X and xIMref IMs 

In Section 2.4.1, the standard deviation equations that account for the effects of site nonlinearity 

is derived for the case that the IM for which ground motions are being predicted (used for X and 

Z) matches that used to represent the amplitude of shaking for the nonlinear operator, xIMref.  Here 

we generalize these expressions for the case that these IMs are distinct.  

I begin by generalizing the total standard deviation expression from Bazzurro and Cornell 

(2004) (Eq. 2.29) using relations from Montgomery and Runger (2005) for the variance of the sum 

of correlated variables as derived using a bivariate normal density function. The counterpart 

expression to Eq. (2.29) is:  

 
2 2 2 2

ln 2 ln 2 ln ,ln ln ln ln ln2Z IMref X IMref X IMref X Yc c           (2.38) 

where ln IMref  is the standard deviation of xIMref, ln ,lnX IMref  is the correlation between X and 

xIMref, and other variables are as described in the main text.  

The corresponding expression for within-event variability terms (counterpart to Eq. 2.30) 

is:  

 
2 2 2 2

ln 2 ln 2 ln ,ln ln ln ln ln2Z IMref X IMref X IMref X Yc c           (2.39) 

where ln IMref  is the within-event standard deviation of xIMref. I now substitute the expression in Eq. 

(2.34) for c2 into Eq. (2.39), in order to adapt the model for the form of the site amplification 

relation from Eq. (2.2). This provides:  

 

2

2 22 2 2

ln ln ln ,ln ln ln ln ln

3 3

2
IMref IMref

Z IMref X IMref X IMref X Y

IMref IMref

f x f x

x f x f
      

   
             

 (2.40) 
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In the case that the IMs for X and xIMref match, their respective ln terms are identical, ln ,lnX IMref  

= 1.0, and Eq. (2.40) reverts to Eq. (2.35). 

Both Approaches 1 and 2 for the non-ergodic estimation of lnX can be applied with Eq. 

(2.40). In Approach 1, the reduction of model-based dispersions (lnXm) is applied as in Eq. (2.40) 

to the lnX term. For the ln IMref  term the corresponding expression is:  

 
2 2 2

ln ln , 2 ,IMref IMref m S S IMrefF   
 (2.41) 

where ln ,IMref m  is the model-based within-event variability for the IM used for xIMref, and 2 ,S S IMref  

is the site-to-site variability (e.g., from Figure 2.7) for that IM.  

For Approach 2, Eq. (2.37) is used for the lnX term in Eq. (2.39), and ln IMref  is taken as:  

 ln , ,IMref SS IMref m 
 (2.42) 

Where , ,SS IMref m  is the single-station variability (e.g., from Figure 2.8) for the xIMref IM.  

2.4.4 Site Response Variability, lnY  

Prior studies have investigated site response variability based on sensitivity analyses using GRA 

and based on analysis of ground motion data. The findings of this work have been synthesized by 

Afshari and Stewart (2015b) and provide a basis for estimation of ϕlnY. 

Suites of GRAs can evaluate the effects of random realizations of input motions, 

randomness in VS profiles, randomness in modulus reduction and damping (MRD) curves, and 

model-to-model variability (through the use of alternate codes). Sources of variability that are not 

captured comprise epistemic uncertainties associated with limitations of GRA with respect to 
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geologic structure and 3D wave propagation effects. Figure 2.9 presents a compilation of period-

dependent site-amplification dispersion values (lnY) from Kwok et al. 2008, Rathje et al. 2010, 

Bazzurro and Cornell 2004b, and Li and Assimaki 2011. These studies all considered VS profile 

and MRD uncertainties, but were inconsistent in their consideration of other sources. Nonetheless, 

the results exhibit broadly similar features, namely: (1) the level of variability at short periods is 

quite high at about 0.5-0.6; (2) there is an increased variability near the inelastic period of the soil 

column considered in the analysis (e.g., about 0.15 sec at the Turkey Flat site considered by Kwok 

et al. 2008, 1.2 sec at the La Cienega site considered by Li and Assimaki 2011); and (3) beyond 

the soil column period, the dispersion drops markedly. 

 

Figure 2.9. Synthesis of standard deviations of site amplification from GRA-based studies 
(Kea08=Kwok et al. 2008; Rea10=Rathje et al. 2010; BC04=Bazzurro and Cornell 2004b; 
LA11=Li and Assimaki 2011) and empirical studies based on recordings (R-Mea13, 
Kea13, Lea11). 

For sites having ground motion recordings from multiple earthquakes, lnY has been 

estimated in two general ways. One approach is to partition GMM residuals as in Eq. (2.5), which 

requires only ground surface records (Lin et al. 2011). In this case, lnY is affected by randomness 
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in path and site response. The second approach uses vertical array data in which site amplification 

(and its variability) is evaluated empirically using surface and downhole recordings (Rodriguez-

Marek et al. 2011, Kaklamanos et al. 2013); in such studies, lnY reflects site response variability 

only. Afshari and Stewart (2015b) explain how we have inferred values of lnY from this prior 

work.  

Figure 2.9 envelopes results from these studies for lnY, which are remarkably consistently 

within a band of width  0.1 centered over the period range of interest at 0.260.32, despite 

significant differences in the source data types and regions. Importantly, at periods below the site 

period, this variability is less than suggested by GRA, whereas it is greater at long periods. Our 

interpretation is that VS profile variability may be overestimated in the Toro (1995) model used in 

the prior GRA-based studies and that GRA cannot capture site response variability beyond the site 

period. Based on currently available information, I suggest that lnY can reasonably be estimated 

as falling in the range 0.26-0.32. Moreover, the relative consistency of lnY as evaluated from 

surface recordings (affected by site and path variability) and from surface/downhole recordings 

(site variability only) suggest that lnY is dominated by site amplification variability, as noted 

previously. 

2.4.5 Epistemic uncertainty 

Epistemic uncertainty of the within-event standard deviation model should be considered in PSHA 

along with uncertainties in the mean model (previous section). Considerations affecting this 

epistemic uncertainty are: 
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 Uncertainty in nonlinear parameters f2 and f3 from the mean model, which impacts lnZ per 

Eq. (2.35).  

 Uncertainty in the non-ergodic, reference-site within-event standard deviation per Eq. 

(2.36) or (2.37). If Approach 1 is used (Eq. 2.36), epistemic uncertainty should include 

alternate values of parameter F (subjective) and 2S S  (regionally variable, Figure 2.9). 

Epistemic uncertainty with Approach 2 involves consideration of alternate values of ,SS m . 

2.5 IMPLEMENTATION 

The preceding sections present procedures for evaluating site-specific natural log mean site 

amplification and within-event standard deviation. When combined with a reference site GMM, 

the result is a site-specific GMM suitable for non-ergodic PSHA. This approach has been 

implemented in the open-source hazard code OpenSHA (Field et al. 2003). Here I describe several 

details required for this implementation including correlation issues and an algorithm for 

interpolation of coefficients between periods. I then describe input fields required for the 

OpenSHA routines and currently enabled outputs. 

2.5.1 Correlation Issues  

PSHA provides one hazard curve for each IM at the surface (Z). The multi-variate hazard integral 

includes an integration across possible values of this ground motion conditional on M, site-source 

distance, and potentially other controlling variables. The IM for Z is characterized by its mean, 

lnZ, and total standard deviation, lnZ, and an individual realization (z) within the hazard integral 

can be written as: 
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 ln ln lnln Z Z Zz    
 (2.43) 

where lnZ is the standard normal variate used in the integration for Z. Expanding upon Eq. (2.1), 

the mean lnZ depends on X as follows:  

 ln ln ln |Z X Y IMrefx   
 (2.44) 

where lnX is the natural log mean returned by a GMM for the reference site condition and 

ln |Y IMrefx  is the mean site response model from Eq. (2.2). The quantity 
IMref

x  has its own 

distribution, and a particular realization within that distribution can be written as:  

 lnln lnln
IMref IMrefIMref IMrefx    

 (2.45) 

where lnIMref is the natural log mean and lnIMref is the standard deviation of 
IMref

x .  

Correlation issues arise because the IM controlling nonlinear site response (
IMref

x ) differs 

from the IM being predicted (Z) in two possible respects, even when both are for the RotD50 

component of ground motion: (1) they apply for different site conditions and (2) they may be 

different IMs (e.g., PGA for 
IMref

x  and pseudo-spectral acceleration, PSA, for Z). These 

correlations affect the relationship between lnZ and ln IMref ; since lnZ is the hazard integrand, I 

seek to estimate ln IMref  given lnZ.  

When the IM for Z and 
IMref

x  match, the conditional mean of ln IMref  (given lnZ) can be 

computed using the Z-X correlation coefficient 
ln ,lnZ X

 :  

 ln ,lnln ln Z XIMref Z  
 (2.46) 
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A conditional standard deviation would in principle apply as well, but I do not consider this source 

of dispersion, which would require another loop in the hazard integral. For the present 

implementation I take ln IMref  as its conditional mean and subsequently drop the overbar notation. 

When the Z and 
IMref

x  IMs do not match, a more general relationship is applied, 

 ln ,lnln ln Z IMrefIMref Z  
 (2.47) 

where correlation coefficient 
ln ,lnZ IMref

  reflects the effects of Z-X correlation and correlation 

between intensity measures 
1 2ln ,lnIM IM

 (previously investigated by Baker and Jayaram, 2008 and 

Bradley, 2011).  

Neither 
ln ,lnZ X

  nor 
ln ,lnZ IMref

  is presently known. I include this term in the formulation to 

offer flexibility to users and because its effects are significant (next section). Correlations 
ln ,lnZ X

  

and 
ln ,lnZ IMref

  are generally assumed as null in practice, which has the effect of taking 
IMref

x  as its 

mean value ( ln IMref =0). In future work, it should be possible to develop models for these 

correlations from array data. 

2.5.2 Coefficient Interpolation Between Periods 

In practice, it may be cumbersome to perform the fitting operations for parameters f1, f2, and f3 (as 

in Figure 2.6) for all of the periods used to construct a response spectrum. In lieu of this, it is 

possible for the analyst to compute these parameters for a selected number of periods over the 

range where GRA results are considered valid (usually this would be periods below the soil column 

period, elongated for effects of nonlinearity). With these established, values at intermediate periods 
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can be interpolated in a way that captures features of the data while mimicking known trends from 

ergodic models. 

Equations implementing such an interpolation scheme have been developed using the 

Boore et al. (2014) ergodic model, and are presented in Section 2.6.3 of Sea14. For brevity, the 

details are not presented here, but example results of such an interpolation are given in Figure 2.10. 

As shown in the figure, the routines provide the option of transitioning coefficients to ergodic 

values beyond a user-specified period (denoted Tsite in Figure 2.10; this is general taken as the 

elongated site period). The transition occurs over a range Tsite:NTsite, where N > 1. 

 

Figure 2.10. An example of interpolation for calculating f1 and f2 values between GRA-based values 
of f1 and f2 at 10 periods for example of El Centro #7 site. For f1, the ergodic model is 
taken as the sum of VS30-based term and basin depth term from Boore et al. (2014) 
(BSSA14). Basin depth taken as z1.0 = 1.54 km (depth to 1.0 km/s shear wave 
isosurface). GRA results adjusted for compatibility with reference condition in 
BSSA14 (760 m/s) (Eq. 2.26). 
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2.5.3 OpenSHA Input Fields and Output Options  

The OpenSHA routines for developing a site-specific GMM as described above are given in the 

Non-ergodic site response GMPE option as an intensity measure relation (along with a series of 

ergodic models, i.e., GMMs). Users enter the following information: 

 GMM for the reference site condition (i.e., for analysis of ground motions denoted X). The 

reference site condition is defined as that for which the site factor in the GMM is null (in 

natural log units).  

 Site parameter corresponding to conditions at base of profile ( 30

B

SV ) – needed when GRA 

are used to estimate site effects. This would typically be a relatively firm soil or rock 

condition corresponding to velocities at some depth in the profile. This condition is often 

different from the reference site condition in the GMM. 

 The VS30 and depth parameter appropriate for surface conditions (used in the interpolation 

algorithm).  

 Coefficients for the mean site amplification model (f1, f2, f3) and standard deviation model 

(lnY, and either SS or 2S S  and F).  

 Option for upper bound limit to site amplification, Ymax (default is expf1). 

 Definition of the IM used for xIMref (PGA or PSA at oscillator period of interest). 

 Correlation coefficient 
ln ,lnZ IMref

  (default is zero).  

 Option to adjust coefficients to ergodic model at long periods.  
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OpenSHA outputs using this intensity measure relation are the same as with other GMMs – 

deterministic medians and standard deviations for specified conditions, hazard curves, uniform 

hazard spectra, and disaggregation. 

2.6 EXAMPLE HAZARD RESULTS 

Figures Figure 2.11-Figure 2.13 present site location maps, geologic logs, and shear wave velocity 

(VS) profiles for three sites in California – Obregon Park (OP), El Centro #7 (EC7), and APEEL 

#2 (A2). Geotechnical conditions at the three selected sites are given in Table 2.1. We perform 

PSHA for these sites to (1) illustrate the differences between ergodic and non-ergodic site response 

as implemented in PSHA; (2) demonstrate differences between non-ergodic amplification 

functions and associated PSHA results derived solely from GRA vs. those derived from the semi-

empirical approach (weak motion amplification from recordings combined with nonlinearity from 

GRA); (3) illustrate the significance of X-Z correlation (described in preceding section) on hazard 

results; and (4) demonstrate differences between site-specific PSHA and more approximate 

convolution approaches. For brevity, I do not show the different results obtained from site-specific 

PSHA and hybrid approaches, which has been shown previously (e.g., Cramer, 2003; Bazzurro 

and Cornell, 2004a; Goulet and Stewart, 2009). GRA are performed using Deepsoil version 6.1 

(Hashash et al., 2016) following the protocols for ground motion selection and parameter selection 

in Sea14 with one exception  small-strain soil damping Dmin is taken from geotechnical models 

(Darendeli, 2001; Menq, 2003) without modification. 



54 

 

 

Figure 2.11. Location map, geologic log, and profiles of shear-wave velocity and small-strain 
damping (Dmin) for the site LA – Obregon Park (VS data and geotechnical log from 
ROSRINE).  
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Figure 2.12. Location map, geologic log, and profiles of shear-wave velocity and small-strain 
damping (Dmin) for the site El Centro array #7 (VS data and geotechnical log from 
KAJIMA). 
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Figure 2.13. Location map, geologic log, and profiles of shear-wave velocity and small-strain 
damping (Dmin) for the site APEEL #2-Redwood City (VS data and geotechnical log from 
USGS). 
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Table 2.1. Geotechnical conditions at example sites selected for analysis 

Site Description 30

B

SV  

(m/s) 

VS30 

(m/s) 

z1.0 

(km) 

Tsite 

(sec) 

Obregon 

Park (OP) 

stiff soil overlying weathered rock, lacking 

appreciable impedance contrast over the depth 

of exploration 

540 449 0.56 0.57 

El Centro #7 

(EC7) 

very deep soil with soft near-surface sediments, 

without a pronounced impedance contrast over 

depth of exploration 

508 211 1.54 1.5 

APEEL #2 

(A2) 

soft clay (Bay Mud) overlying stiffer sediments 

and rock, and having large impedance contrasts 

at the base of the soft clay and at the soil-rock 

interface 

1525 133 0.09 1.6 

 

Figure 2.14(a) shows the variation of linear PSA amplification with oscillator period for 

the three sites.  Results are shown from the interpretation of recordings (Eq. 2.25), GRA, and an 

ergodic model (BSSA14). The empirical results are shown as a median and 95% confidence 

interval, which reflect the uncertainty of site term ,S j associated with the finite number of 

recordings. The GRA results are fit using Eq. (2.2) for each IM as shown in Figure 2.6; the result 

plotted here is exp(f1) (small-strain amplification). There is no increase of Dmin for performing 

GRA which is computed using Darendeli (2001) model for clays and Menq (2003) for granular 

soils. The ergodic results reflect VS30-scaling and basin effects from BSSA14. For the OP site, the 

GRA underprediction bias for PGA originally shown in Figure 2.6 is seen to persist across the full 

period range. The ergodic model also underpredicts, but is less biased for T > 1 sec than GRA. 

EC7 has relatively modest underprediction bias for T < 0.3 sec, but substantial bias at longer 

periods including near an apparent site period at 4 sec (possible fundamental mode for the deep 

sediment column in this part of the Imperial Valley). The match of GRA to observations is quite 

good for A2, including amplification near the site period of 1 sec. The ergodic model improves 

upon GRA predictions at long periods for EC7 but not for A2. Figure 2.14(b) shows results for a 
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nonlinear case in which xIMref = 5f3; as such, the difference from the linear result reflects the size 

of the f2 term. Nonlinear effects are small for OP, but pronounced for EC7 and A2 for periods T < 

 2 sec. Nonlinearity increases the site period for A2. 

 

Figure 2.14. (a) Linear amplification vs. period as inferred from recordings and as estimated from 
GRA and ergodic model. (b) Amplification for nonlinear condition in which xIMref/f3 = 5 
for ergodic and GRA-based models. 

Figure 2.15 shows uniform hazard spectra (UHS) for 2475 year return period computed by 

OpenSHA with alternate site models: non-ergodic site response based on GRA alone, semi-

empirical non-ergodic (f1 set empirically, Fnl from GRE results), the ergodic site model, and 

ergodic reference site. The analyses using GRA for site response are applied across the full period 

range (no transition to empirical model at long period, as described in previous section), so as to 

highlight differences from other modeling approaches. The reference site GMM is taken as 
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BSSA14 and the source model is UCERF3 FM3.1 (Field et al. 2014). The hazard results presented 

in Figure 2.15 and subsequently are based on the site-specific natural log mean amplification and 

standard deviation models.  

 

Figure 2.15. Uniform hazard spectra 2475 year return period for example sites using ergodic and 
non-ergodic site amplification models. Reference site hazard computed using reduced 

within-event standard deviation (S2S removed), in conformance with standard-of-
practice for non-ergodic hazard analysis with convolution approach. Non-ergodic 

models use F=1, and S2S =0.4. No transition to ergodic model at long periods applied. 
The jagged appearance of non-ergodic spectra result from a limited number of GMM 
periods implemented in OpenSHA. 

 

For the OP site (Figure 2.15a), the effect of the underprediction bias from the ergodic model 

and GRA is clear, as is the more favorable performance of the ergodic model at long periods. For 

EC7 (Figure 2.15b), the GRA under-predicts long-period (>  0.7 sec) site amplification associated 

with deep basin structure. Those long period site effects are reasonably well captured by the 

ergodic model; results of this sort motivate the use of the ergodic model transition (Figure 2.10). 

The non-ergodic UHS for A2 (Figure 2.15c) exhibits a peak in the spectrum near the site period 

( 1 sec) that is captured by GRA  the ability to capture features of this sort is an advantage of 

non-ergodic site response procedures. The large impedance contrast at A2 causes ground response 
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to dominate the site response, which is demonstrated by the similarity of the GRA and semi-

empirical results in Figures Figure 2.14 and Figure 2.15.  

Figure 2.16 shows example hazard curves for the three example sites derived using the 

reference site condition, the semi-empirical non-ergodic site model, and the ergodic site model. 

The sort and long period IMs were selected to illustrate results for cases with nonlinearity varying 

from strong (PGA) to weak but non-zero (0.5 sec PSA for OP). The non-ergodic site model is 

applied using both the convolution approach and the recommended site-specific GMM 

implementation. For the latter, I show results computed with 
ln ,lnZ X

  set to 0 (default), 0.5, and 1.0. 

Per typical practice on recent projects (as described in Introduction), the convolution approach is 

applied with reduced within-event standard deviation, per Eq. (2.36). Two key findings from these 

hazard curves are:  

 As 
ln ,lnZ X

  increases, the nonlinear component of the site term becomes more pronounced, 

which reduces the hazard (PGA, Figure 2.16a). Where the site nonlinearity is not 

significant (1.5 sec PSA, Figure 2.16b), the effect of 
ln ,lnZ X

  on hazard disappears.   

 For IMs subject to strongly nonlinear site response (Figure 2.16a), the use of convolution 

produces lower hazard at long return periods than site-specific PSHA when applied with 

the default zero correlation. This occurs because the amplitude of shaking driving the 

nonlinear site term (xIMref) in convolution is taken from the reference (X) hazard, which is 

‘positive epsilon’ (exceeds the mean). When nonlinearity effects are modest (Figure 

2.16b), the differences between convolution and site-specific PSHA results are small. 
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Figure 2.16. Hazard curves for OP (a and b), EC7 (b and c) and A2 (e and f) site derived using non-
ergodic and ergodic site amplification models. The non-ergodic (semi-empirical) model 
is applied in hazard computations with varying levels of reference-to-site correlation. 
The model is also applied through convolution with the non-ergodic reference rock 
hazard. 
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2.7 CONCLUSIONS AND RECOMMENDATIONS 

We seek to explain the meaning of non-ergodic site response and the manner by which it can be 

applied to develop site-specific GMMs for use in hazard analyses. The concept of using site-

specific GMMs in PSHA has been proposed previously (McGuire et al., 2001), but a specific 

methodology has not been described in the open literature and such approaches have seldom been 

applied in practice. I describe a methodology and demonstrate its use (in a module within the 

OpenSHA hazard code), from which several benefits are evident relative to the use of ergodic 

models: 

 Non-ergodic mean site response is estimated using truly site-specific information that 

improves the accuracy and reliability of hazard estimates and related outcomes (e.g, 

disaggregation results) relative to ergodic models. 

 The standard deviation of ground motion is reduced, which tends to lower ground motion 

estimates for hazard levels of interest in design (return periods of 500 years or more). 

I show how non-ergodic (i.e., site-specific) site response can be evaluated using on-site 

ground motion recordings in combination with GRA simulations, or by using GRA simulations 

alone. The former is preferred when practicable, because GRA results may be biased, particularly 

at long periods (i.e., beyond the fundamental period of the 1D model). These errors arise from 

physical processes that affect site response (e.g., surface waves, basin effects) but that cannot be 

readily incorporated into typical GRA simulations performed for engineering purposes. 

The methodology presented in this chapter can be distilled to the following steps: 

1. Perform detailed site characterization, including geotechnical borehole logging and 

geophysical logging (details in Sections 2.2-2.3 of Sea14). 



63 

 

2. (Optional, but recommended): Install ground motion instrumentation at the site of interest 

(accelerometers or seismometers) and record data over time. When such data is 

unavailable, it may be possible to use recordings from instruments in the vicinity of the site 

of interest. Future research will investigate the viability of this approach, which will depend 

on the spatial correlations of random effect terms S. 

3. Analyze ground response using suitable equivalent-linear or nonlinear procedures 

(NCHRP, 2012; Sections 2.4 of Sea14). Compute amplification values using Eq. (2.25) 

(YB) for each simulation outcome (combination of dynamic soil properties and input 

motion).  

4. Adjust computed amplification values as needed to correct for incompatibility between the 

reference condition in the GMM and the base of profile condition ( 30

B

SV ) using Eqs. (2.13-

2.14). Adjusted amplification values are denoted as Y. 

5. Select the IM for the reference site condition to use for xIMref. Fit Eq. (2.2) to adjusted 

amplification values (Y) over the range of xIMref considered in the simulations. 

6. (Optional): Compute empirical site response from ground motions recorded at the site 

using Eq. (2.24); adjust coefficient f1 from Step 5 as needed to match these results. 

7. Evaluate the extent to which the computed site response is non-ergodic, which is often 

subjective. If on-site ground motions are used, I posit that the site response is non-ergodic, 

which implies that the within-event standard deviation should be taken using Eq. (2.35) 

with lnX taken using either Eq. (2.36) (with F = 1) or Eq. (2.37) (alternate expressions for 

unmatched IMs for X and xIMref given in Section 2.4.3). If recordings are not used, lnX is 

best taken using Eqs (2.36) with F set by judgement (when site response is judged to be 
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dominated by ground response, F can be nearly unity; when this is not the case, F should 

be less than one). 

8. Consider Z-X and between-IM correlation effects as explained in the Correlation Issues 

section. These correlations affect the implementation of the mean amplification function 

per Eqs (2.27-2.29). 

9. The mean site amplification function (Eq. 2.2) and within-event standard deviation terms 

(Eq. 2.35) are combined with regionally appropriate ground motion models to define site-

specific GMMs for use in hazard analyses. It is common for results of such calculations in 

active regions like California to lower ground motion estimates at long return periods (e.g., 

475 or 2475 years) by 20% or more, due in large part to standard deviation reductions. 

10. Repeat hazard analyses to consider epistemic uncertainties of the mean amplification 

function, alternate representations of standard deviation (e.g., due to variations in F), and 

alternate correlation models (especially for Z-X correlation).  It is not appropriate to take 

the standard deviation reduction associated with the use of a non-ergodic model without 

considering these site response uncertainty effects. 

Clearly the level of effort involved in developing a non-ergodic site amplification model 

(with corresponding site-specific GMMs) is greater than the use of relatively simple ergodic 

models. While conceding that point, our view is that the profession should continue to move in 

this direction, at least for critical projects. The increased effort provides additional knowledge, 

which lowers aleatory variability and frequently reduces hazard. 

Moreover, the proposed approach using a site-specific GMM in the hazard integral offers 

advantages relative to convolution methods that comprise the current state of practice for non-

ergodic PSHA. These advantages include consideration of nonlinear effects on within-event 
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standard deviation terms, consideration of rock-soil and between-IM correlation issues as 

described above, and the identification of controlling sources (through disaggregation) in a manner 

than considers the site response. I show that the use of convolution methods tends to underestimate 

hazard when the site response is nonlinear.  

As described in this chapter, two technical challenges will affect projects utilizing the 

proposed approach: (1) difficulty in identifying a priori when GRA results provide an unbiased 

estimate of site effects and (2) lack of knowledge regarding surface-reference (Z-X) correlations. 

Future progress on these subjects will affect specific steps in the proposed procedure, but not the 

framework itself. 
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3 California Vertical Array Dataset 

3.1 INTRODUCTION 

Vertical arrays are valuable tools for distinguishing the effects of shallow site conditions from the 

other effects (source, path, etc.) on ground motions. They allow for the observation of ground 

motions from the same source both at the surface and the depth at which the downhole sensor is 

installed. Therefore, a vertical array directly reveals the effects of site response between surface 

and downhole instruments. In addition to allowing for direct observation of site response effects, 

a well characterized vertical array site, which includes a high quality shear wave velocity (Vs) 

profile and possibly a geotechnical log, allows for validating numerical site response models.  

In this study, I compile a database of recordings from vertical arrays owned and operated 

by the California Strong Motion Instrumentation Program (CSMIP) and University of California 

at Santa Barbara (UCSB). A similar database from Japan has been compiled by Dawood et al. 

(2015), which utilized data from the Kiban-Kyoshin network (KiK-net) (Aoi et al., 2001). The 

Dawood et al. database updates an earlier KiK-net database by Pousse (2005). In order to compile 

the large database of about 157,000 recordings, Dawood et al. (2015) developed a step-by-step 

automated protocol to systematically process the data, and produce a flatfile which is available at 

NEEShub (https://nees.org/resources/7849). Other major vertical array networks are operated in 

Taiwan (Downhole Earthquake Monitoring Network, 

http://scweb.cwb.gov.tw/Twenty.aspx?ItemId=41&loc=en) and Greece (EuroSeis test, Raptakis et 

al., 2000, Chavez-Garcıa et al., 2000 at http://euroseisdb.civil.auth.gr/).  
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3.2 ARRAY ATTRIBUTES  

We have collected site data for 39 vertical arrays in California as listed in Table 3.1. Our main 

source of site properties and ground motion data is the Center for Engineering Strong Motion Data 

(CESMD) website (http://www.strongmotioncenter.org/). Velocity profile data is available for 30 

sites, and ground motion time series can be downloaded through a search engine. In addition, 

CESMD maintains an FTP folder containing a database of weaker motions for all vertical array 

and surface-only sites. I have also considered four sites owned and maintained by the University 

of California at Santa Barbara (UCSB). The site information and recorded motions for these sites 

are available at http://nees.ucsb.edu/.  

Interestingly, a major factor limiting the inventory of usable vertical array sites in 

California is the availability of VS profile data; of the 39 vertical arrays, I have been able to collect 

usable VS profile data for 30 sites (26 CESMD, 4 UCSB), and boring logs are available for 24 sites 

(20 CESMD and 4 UCSB). Given the relative cost of array installation (high) vs VS profile 

development (low), a priority in future work should be to fill this data gap. 

Boring logs for the sites were obtained from multiple sources. For two of the four sites 

owned by UCSB, the boring logs were available at http://nees.ucsb.edu/. For the Hollister Digital 

Array site and Borrego Valley Downhole Array site, boring logs were provided by J. Steidel 

(personal communication, Feb, 2016). For 17 CESMD sites located at California Department of 

Transportation bridges, I obtained logs from Javier V. Ortiz (personal communication, July, 2015). 

Three of CESMD sites have been part of calibration sites for validation of nonlinear geotechnical 

models project for which high quality boring logs are available. The VS profiles and the details of 

boring logs is shown in Figures 4.5-4.25. 

http://nees.ucsb.edu/


68 

 

For our study, I utilize vertical array sites with measured VS profiles and having at least 

four pairs of surface/downhole recordings to increase the statistical significance of the results. 

These data selection criteria resulted in 21 sites, of which 17 have available boring logs. The 

locations of those vertical array sites are shown in Figure 3.1. Figure 3.2 shows the histograms of 

VS30 for the KiK-net sites used by Thompson et al. (2012), all California sites listed in Table 3.1, 

and the California sites selected to be used in this study with a measured VS profile and at least 

four surface/downhole recording pairs. The median VS30 is 413 m/s for the KiK-net sites, 309 m/s 

for all California sites, and 321 m/s for the California sites used in this study. The median values 

as well as the shape of the histograms in Figure 3.2 indicates that KiK-net sites are generally stiffer 

than the California sites. This is due to the fact that KiK-net arrays were installed with the primary 

purpose of source detection, for which installation of the base instrument in rock is preferred. This 

led to a large number of KiK-net vertical arrays being located on geology consisting of weathered 

rock or shallow soil overlying rock, often in mountainous areas. In contrast, most of the California 

sites are located next to bridges, which are mostly located in topographically flat areas with 

relatively soft soils near the surface of deep sedimentary basins. 
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Figure 3.1. The location of vertical array sites in California (The sites used in this study are shown 
in blue) 
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Figure 3.2. Histograms of VS30 for vertical array sites from Table 3.1, vertical array sites selected to 
be used in this study, and vertical arrays from KiK-net used by Thompson et al. (2012). 

 



  71 

 

 

Table 3.1. Summary of site characteristics for California vertical arrays. Sites considered in present work are bolded 

Site 
Station NO 

(CSMIP) 
Owner 

No. of 

Rec 
Latitude Longitude Site geology VS30 (m/s) 

5

SDH
V

S

V
R

V
  

VS profile 

available

? 

Boring log 

available? 

Source of 

boring log 

Alameda - 

Posey & 

Webster 

58137 
CGS - 

CSMIP 
7 37.790 -122.277 Deep alluvium 208 (inferred) NA N Y Caltrans1 

Antioch-San 

Joaquin N 
67265 CGS 4 38.0377 -121.7515 Deep Alluvium 

Problematic 

Measurements 
NA 

top 20 m 

missing 
N NA 

Antioch-San 

Joaquin S 
67266 CGS 4 38.018 -121.752 Deep Alluvium 253 3.76 Y Y Caltrans 

Aptos - 
Seacliff Bluff 

47750 
CGS - 
CSMIP 

4 36.972 -121.910 Alluvium 
463 (profile not 

available) 
NA N N NA 

Benicia North 68321 
CGS - 

CSMIP 
2 38.051 -122.128 

Shallow fill 

over bay mud 
582 Not measured Y Y Caltrans 

San 

Francisco - 

Bay Bridge 

58961 

CGS - 

CSMI

P 

9 37.787 -122.389 
Thin alluvium 

over soft rock 
391 6.58 Y N NA 

Benicia-

Martinez 

South 

68323 

CGS - 

CSMI

P 

10 38.033 -122.117 

Sediments 

underlain by 

slightly more 

competent 

rock 

547 1.48 Y Y Caltrans 

Borrego 

Valley 

Digital Array 

NA UCSB 16 33.322 -116.376 

Shallow alluv 

over rock 

(granodiorite) 

340 12.22 Y Y 
Jamison 

Steidle2 

Crockett-

Carquinez Br 

#2 

68259 
CGS - 

CSMIP 
4 38.055 -122.226 

Shallow clay 

over rock (sed.) 
-- NA N Y Caltrans 

Corona 

I15/Hwy 91 
13186 

CGS - 

CSMI

P 

31 33.882 -117.549 
Shallow clay 

over soft rock 
321 16.68 Y Y Caltrans 

Coronado 

East 
3192 

CGS - 

CSMI

P 

10 32.698 -117.145 Deep alluvium 329 1.89 Y Y Caltrans 

Coronado 

West 
3193 

CGS - 

CSMI

P 

21 32.688 -117.164 Deep alluvium 214 4.53 Y Y Caltrans 

Half Moon 
Bay - Tunitas 

58964 
CGS - 
CSMIP 

2 37.358 -122.398 

Shallow alluv 

over rock 
(chert/greenston

e) 

309 Not measured Y Y Caltrans 
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Site 
Station NO 

(CSMIP) 
Owner 

No. of 

Rec 
Latitude Longitude Site geology VS30 (m/s) 

5

SDH
V

S

V
R

V
  

VS profile 

available

? 

Boring log 

available? 

Source of 

boring log 

Crockett-

Carquinez 

Br #1 

68206 

CGS - 

CSMI

P 

8 38.054 -122.225 

Alluvium over 

soft rock 

(granite) 

335 3.08 Y Y Caltrans 

El Centro - 

Meloland 
1794 

CGS - 

CSMI

P 

19 32.774 -115.449 

Alluvium over 

soft rock 

(siltstone) 

238 4.45 Y Y 
Calibratio

n sites3 

Eureka 89734 

CGS - 

CSMI

P 

14 40.819 -124.166 Deep alluvium 160 6.31 Y Y Caltrans 

Foster City-

San Mateo 
58968 

CGS - 

CSMI

P 

7 37.573 -122.264 Deep alluvium 810 22.40 Y N Caltrans 

Los Angeles –

Vincent Thm 
Geo Array 

W1 

14783 
CGS - 

CSMIP 
3 33.750 -118.275 

Alluvium over 

crystalline rock 
149 Not measured Y N NA 

Los Angeles –

Vincent Thm 
Geo Array 

W2 

14784 
CGS - 
CSMIP 

3 33.750 -118.278 Deep alluvium 149 Not measured Y N NA 

Los Angeles –

Vincent Thos 

W 

14786 
CGS - 

CSMIP 
2 33.750 -118.280 

Deep alluvium 

over rock 

(sandstone) 

149 Not measured Y Y Caltrans 

Moorpark - 
Hwy118/Arro

yo Simi 

24185 
CGS - 

CSMIP 
1 34.288 -118.865 Deep alluvium -- NA N Y Caltrans 

Oakland – 

Bay Bridge 
58204 

CGS - 

CSMIP 
3 37.821 -122.327 Deep alluvium -- Not measured 

top 20 m 

missing 
N NA 

Palo Alto – 

Dumbarton Br 
W 

58526 CGS 1 37.499 -122.129 Deep alluvium -- Not measured 
missing in 

website 
Y Caltrans 

Parkfield – 

Turkey Flat 

#1 

36529 
CGS - 

CSMIP 
1 35.878 -120.359 

Shallow 

alluvium rock 

(sandstone) 

907 Not measured Y N NA 

Parkfield – 

Turkey Flat 
#2 

36520 
CGS - 

CSMIP 
0 35.882 -120.351 Alluvium (fill) 467 Not measured Y N NA 

Petrolia - 

Downhole 

[abandoned] 

89289 
CGS - 
CSMIP 

1 40.317 -124.292 Deep alluvium -- NA N N NA 

Rohnert Park 

- Hwy 101 
68797 

CGS - 

CSMIP 
2 38.347 -122.713 

Rock 

(sandstone) 
223 Not measured Y N NA 
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Site 
Station NO 

(CSMIP) 
Owner 

No. of 

Rec 
Latitude Longitude Site geology VS30 (m/s) 

5

SDH
V

S

V
R

V
  

VS profile 

available

? 

Boring log 

available? 

Source of 

boring log 

Garner 

Valley 
NA UCSB 10 33.669 -116.674 

Shallow 

alluvium over 

rock 

(sandstone) 

241 14.08 Y Y 

NEES @ 

UCSB 

Website4 

Hayward-

580W 
58487 CGS 5 37.689 -122.107 

Shallow 

alluvium over 

rock 

(greywacke) 

489 0.94 Y N NA 

Hayward-

San Mateo 
58798 CGS 5 37.617 -122.154 Alluvium 185 3.10 Y N NA 

Hollister 

Digital Array 
NA UCSB 23 36.758 -121.613 Deep alluvium 385 10.36 Y Y 

Jamison 

Steidle 

San Rafael – 

Richmond 

Brdg 

58267 CGS 1 37.943 -122.481 

Shallow 

alluvium over 
soft rock 

(sandst) 

921 Not measured Y N NA 

Tarzana – 

Cedar Hill B 
24764 

CGS - 

CSMIP 
4 34.161 -118.535 

Thin fill/alluv 

over soft rock 
(sandst) 

302 NA N N NA 

La-Cienega 24703 

CGS - 

CSMI

P 

20 34.036 -118.378 

Fill over 

shallow alluv 

over soft rock 

242 3.62 Y Y 
Calibratio

n sites 

Obregon 

Park 
24400 

CGS - 

CSMI

P 

23 34.037 -118.178 

Thin Alluvium 

over 

weathered 

rock 

(Franciscan) 

452 1.28 Y Y 
Calibratio

n sites 

San 

Bernardino 
23792 

CGS - 

CSMI

P 

5 34.064 -117.298 
Thin alluvium 

over shale 
252 4.85 Y Y Caltrans 

Treasure 

Island 
58642 

CGS - 

CSMI

P 

11 37.825 -122.374 

Shallow fill 

over deep 

alluvium (Bay 

mud) 

157 16.00 Y Y Caltrans 

Vallejo - 

Hwy 37/Napa 

River 

68310 

CGS - 

CSMI

P 

17 38.122 -122.275 Bay mud 528 1.54 Y Y Caltrans 

Wildlife 

Liquefaction 

Array 

NA UCSB 21 33.097 -115.530 

Silty clay with 

a granular 

layer 

200 1.44 Y Y 

NEES @ 

UCSB 

Website 
 

1 Caltrans: California Department of Transportation (Javier V. Ortiz, personal communication). 
2 Jamison Steidle: Personal communication with Jamison Steidle of UCSB. 
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3 Calibration sites: Calibration sites for validation of nonlinear geotechnical models project 

(http://www.seas.ucla.edu/~jstewart/CalibrationSites/Webpage/main.htm). 
4 NEES @ UCSB Website: http://nees.ucsb.edu/ 
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The sites as shown in Figure 3.1 are primarily located in the San Francisco Bay Area in 

northern California, and the Los Angeles, San Diego, and Imperial Valley regions of southern 

California. Due to the diverse geological conditions at the sites, the vertical arrays selected for this 

study cover site classes from rock (NEHRP class B) to soft soil (NEHRP class E). There are also 

differences in the stiffness of the soil/rock at the depth of the downhole instrument, as well as 

difference in the relative change in the stiffness between surface and downhole. In order to quantify 

the latter conditions, I define a surface/downhole shear wave velocity ratio (RV) as the ratio of the 

time-averaged VS at the top 5 meters (VS5) to the time-averaged VS at the 5 meter interval below 

the downhole instrument (VSDH): 

 
5

SDH
V

S

V
R

V
  (3.1) 

A high value of RV indicates a large change of stiffness from downhole to surface, which is 

indicative of either a steep gradient in the VS profile and/or a large impedance contrast, either of 

which causes large ground response. Low values of RV (close to 1) indicate a small gradient and 

lack of impedance contrast, which in turn should produce little amplification. Small RV values tend 

to occur when the downhole instrument in a vertical array is within the sediment stack and not 

within underlying bedrock materials, which is typical of arrays in deep basins (e.g., Los Angeles, 

Imperial Valley). A histogram of RV values is shown in Figure 3.3, and the spatial distribution of 

RV is shown in Figure 3.4. 
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Figure 3.3. Histograms of RV for vertical array sites used in this study. 
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a)  

b)  

Figure 3.4. The location of vertical array sites in California used for this study in (a) northern 
California and (b) southern California (Red: Low values of RV, blue: High values of RV). 
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3.3 DATA ATTRIBUTES 

In this section, I describe a dataset of 287 surface/downhole processed recording pairs from 

207 events. The times of the events have been extracted from the unprocessed data files, and the 

characteristics of the events (magnitude and epicenter location) are found on a USGS website 

(https://earthquake.usgs.gov/earthquakes/search/). Event magnitudes vary from small (M2.5) to 

large (M7.2 El Mayor Cucapah earthquake). Epicenter locations are shown in Figure 3.5 with 

circle diameters proportional to magnitude. Also shown in Figure 3.5 are station locations.  

 

 

 

 

 

https://earthquake.usgs.gov/earthquakes/search/
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a)  

b)  

Figure 3.5. The location of vertical array sites in California used for this study in (a) Northern 
California and (b) Southern California (Red: Low values of RV, blue: High values of RV). 
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3.3.1 Available recordings 

The 287 surface/downhole recording pairs used in this study include two horizontal components 

recorded at the surface and two horizontal components recorded downhole (total of four individual 

recordings). The vertical array sites often have instruments at multiple levels to record ground 

motions at different depths. In the case of multiple downhole instruments, we have chosen the 

deepest level in order to capture the effects of site response over a longest path for upcoming shear 

waves, therefore the recordings at the intermediate depths were not processed for inclusion in this 

database. Figure 3.6 shows the distribution of the data with respect to magnitude and epicenteral 

distance, with the plot symbol size being proportional to the RotD50 peak ground velocity (PGV) 

at the surface. I choose (PGV) because it can be related to maximum shear strain in the profile 

caused by the ground motions (Kim et al., 2016). 

 

Figure 3.6. Magnitude and distance distribution of data used in the current work; the size of the 
symbols represent the PGV of the surface recording. 
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3.3.2 Data processing 

Unprocessed records for the sites identified in the previous section were downloaded from 

CESMD and the nees.ucsb websites. Acceleration time series were visually inspected to identify 

and exclude low-quality, noise-dominated records. The data were processed using procedures 

developed in the NGA-West2 research project (Ancheta et al., 2014) and coded into an R routine 

(T. Kishida, personal communication, 2015). Low-cut and high-cut corner frequencies have been 

identified for each record by visual inspection, and low- and high-pass acausal Butterworth filters 

are used for filtering high and low frequency noise in the frequency domain. Baseline correction 

is also applied as needed. 

Figure 3.7 shows an example of a record processed using these procedures, including time 

series (acceleration, velocity, displacement for processed record) and Fourier amplitude spectra 

and pseudo-acceleration response spectra at 5% damping for the unprocessed and processed 

versions of the record. Based on the records I have been able to access and process thus far, the 

usable database currently includes 21 sites and 288 record pairs. Figure 3.8 shows the number of 

usable records as a function of period; the decrease as period increases is due to application of 

low-cut corner frequencies in the record processing. The longest usable period is taken as 

(0.877/fc), where fc is the low-cut corner frequency selected in record processing. 



82 

 

 
Figure 3.7. Example of record processed using PEER protocols developed in NGA-West2 project 

(Ancheta et al., 2014), including (a) acceleration time series, (b) velocity time series, (c) 
displacement time series, as well as (d) Fourier amplitude spectra and (e) pseudo-
acceleration response spectra (PSA) at 5% damping for raw and filtered records. 
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Figure 3.8. Number of available record pairs in the database according to their longest usable 

periods. 
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4 Effectiveness of 1D Ground Response 
Analysis at Predicting Site Response at 
California Vertical Array Sites 

4.1 INTRODUCTION 

Evaluating the role of local site conditions on ground shaking is an essential part of 

earthquake ground motion prediction, which can be done using ergodic models or site-specific 

(non-ergodic) analyses. One-dimensional (1D) simulation of shear waves propagating vertically 

through shallow soil layers, also known as ground response analysis (GRA), is a common approach 

for capturing the effects of site response on ground shaking. In GRA, different approaches have 

been used for modeling soil behavior, namely linear, equivalent-linear (EL), and various nonlinear 

(NL) methods. Much attention has been directed in recent research to which of these approaches 

is best suited to a particular problem, with the intention of guiding the selection of an appropriate 

method of analysis (e.g., choosing when NL is preferred to EL) (e.g., Kim et al., 2015; Kaklamanos 

et al, 2013, 2015; Zalachoris and Rathje, 2015). However, a crucial issue that has received much 

less attention is the degree to which 1D simulations (the essential assumption behind all GRA 

methods) are effective. While site response can include important contributions from the wave 

propagation mechanics simulated in GRA, site response as a whole is considerably more complex. 

True site response represents the difference between ground motions for a given site condition and 

what would have occurred had the site had a reference condition (typically rock with a particular 
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VS30). Aside from ground response, processes that can affect site response include surface waves, 

basin effects (including focusing and basin edge-generated surface waves), and topographic 

effects. Because GRA only simulates a portion of the physics controlling site response, there 

should be no surprise that it is not always effective at accurately predicting site effects. 

When GRA are performed for engineering projects, it is usually with the expectation that 

they provide an unbiased, site-specific estimate of site response. The site response computed in 

this manner can be interpreted in the form of a site-specific amplification function, which in turn 

can be implemented in probabilistic seismic hazard analysis (PSHA) (e.g., Chapter 2 and 

references therein). If the ground response computed in this manner accurately reflects the primary 

physical mechanisms controlling site response, it provides the basis for a non-ergodic hazard 

analysis, which has appreciable benefits with regard to standard deviation and hazard reduction, 

as discussed in Chapter 2. The essential question in this process is whether GRA is indeed effective 

at predicting site response? While numerous studies of data from vertical arrays at individual sites 

have found reasonably good fits of data to GRA results (e.g., Borja et al., 1999; Elgamal et al., 

2001; Lee et al., 2006; Tsai and Hashash, 2009; Yee et al., 2013; Kaklamanos et al., 2014, 2015), 

another study that systematically examined a broad set of KiK-net vertical array sites found misfits 

for about 80% of the investigated sites (Thompson et al. 2012). In this Chapter, I use California 

vertical array data in order to further examine this issue. As described in Chapter 3, the geologic 

conditions and seismic velocities represented at the California vertical array sites differ from those 

at Japanese KiK-net sites, so some differences in the effectiveness of GRA might be expected. 

Validation and testing of 1D GRA is possible by studying recordings from vertical array 

sites. The KiK-net array in Japan provides a large inventory of vertical arrays that has been 

extensively used for validation purposes (Thompson et al., 2012; Kaklamanos et al, 2013, 2015; 
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Zalachoris and Rathje, 2015). When viewed as a whole, these KiK-net data challenge the notion 

that 1D GRA provides a reliable estimate of site response. Were this result found to be widely 

applicable, it would upend a good deal of current practice that relies on GRA to estimate first-

order site response. The objective of this study is to utilize the growing body of vertical array data 

from California to investigate applicability of 1D GRA to predict observed site response. In short, 

I seek to answer the question – are the poor matches of 1D GRA from the KiK-net array a product 

of predominant geological conditions at sites in that array, which may be different from conditions 

in California, hence limiting the applicability of those results in California? I also seek to quantify 

uncertainty in the prediction of site response as estimated from GRA. This is of interest for PSHA 

in which site terms are taken from the results of GRA, in which case epistemic uncertainties in the 

site response should be considered using a logic tree (or similar) framework (Bommer et al. 2005). 

I present a methodology for quantifying these uncertainties, present results as derived from the 

California data, and compare to comparable results obtained previously for KiK-net sites 

(Kaklamanos et al., 2013). 

The data from California used for this work is presented in Chapter 3, and is not discussed 

further here. This chapter is organized as follows. First, I describe how the ground response 

analyses were performed, including the selected analysis platform and the manner by which small-

strain hysteretic damping was assigned. Next, I compare observed and predicted transfer functions, 

which are amplitudes of surface/downhole Fourier spectra. I consider several metrics regarding fit 

of observation to data, and contrast our approach with that used previously (Thompson et al. 2012). 

I then perform similar comparisons of observation to prediction using 5% damped pseudo spectral 

acceleration (PSA), which also facilitates the aforementioned uncertainty quantification exercise. 
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4.2 GROUND RESPONSE ANALYSIS PROCEDURES 

4.2.1 Ground Response Analysis Platform 

There are many options for performing 1D GRA as explained in chapter 1. Studies in the 

literature have used different programs for GRA depending on the level of nonlinearity that is 

expected in the profile (as discussed in Chapter 1) and capability of each code to perform Linear 

(more specifically, visco-elastic), Equivalent-Linear (EL), or Nonlinear (NL) analysis. As one 

example, Thompson et al. (2012) used the program NRATTLE, which is a part of the ground 

motion simulation program SMSIM (Boore, 2005). NRATTLE performs linear GRA using 

NRATTLE is Thomson–Haskell matrix. Kaklamanos et al. (2013) used NRATTLE for linear and 

SHAKE for EL GRA, and Kaklamanos et al. (2015) used SHAKE for EL and DEEPSOIL for NL 

analysis to compare the effectiveness of different methods for site response problems involving 

different levels of nonlinearity. In a similar study, Zalachoris and Rathje (2015) used STRATA for 

EL and DEEPSOIL for NL analysis.  

In this study, I model the soil as linearly visco-elastic because almost all of the recordings 

compiled in our database are not strong enough to cause soil nonlinearity, as discussed further 

below. Therefore, I only perform linear analysis similar to Thompson et al. (2012) in order to 

validate GRA under small levels of ground shaking. I have chosen to use the Linear option in 

Frequency Domain Analysis module in DEEPSOIL for linear analysis. I acknowledge there are 

several other GRA programs which are capable of performing linear GRA, including NRATTLE, 

SHAKE, and STRATA. All of these programs are freely available and were tried at some point by 

the author (with exception of SHAKE). I selected DEEPSOIL in consideration of its user-

friendliness. For parameter selection in GRA, I apply protocols recommended by Stewart at al. 



88 

 

(2014), with the exception of small strain damping (Dmin). The issue of Dmin is discussed in Sections 

4.2.2-4.2.3. 

Methods of analysis for EL and NL are familiar to geotechnical engineers and are well 

documented elsewhere (e.g., NCHRP, 2012; Stewart et al. 2014). Hence, I do not describe such 

methods here. I next describe quarter-wavelength theory, because this approach is less familiar to 

engineers (although it is well documented, Joyner et al. 1981, Boore, 2013).   

 The most simple and efficient approach for evaluating linear GRA is quarter wave length 

theory. This theory is based on a simple equation for evaluating amplification of Fourier Amplitude 

Spectra for a vertical ray path: 

 

0.5

0 ( ) R RV
A f

V





 
  
 

 (4.1) 

where A0 is the amplification, R and VR are density and shear wave velocity at the reference 

(downhole condition), and  and V  are average density and shear wave velocity for a depth 

interval corresponding to the top quarter wavelength of the profile. While this method is simple 

and efficient, it cannot capture the effects of resonance and nonlinearity. Moreover, in the form 

represented by Eq. (4.1), it does not include the effects of damping, which is evident by the 

amplification value at high frequencies approaching a plateau of unrealistic large values as shown 

in Figure 4.1.  


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Figure 4.1. Unrealistic plateau of amplification at high frequencies when using quarter wave length 

theory without proper use of .  

In order to overcome this problem, a spectral decay parameter () is used in order to 

introduce a decay in FAS space, which reduces the amplification function at high frequencies 

(Anderson and Hough, 1984). The application of  is schematically shown in Figure 4.2, and will 

modify the amplification as: 

 0( ) ( ) exp( )A f A f f    (4.2) 

 

Figure 4.2. Modifying amplification from quarter wave length theory at high frequencies by 

introducing . 
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I do not intend to use quarter wave length theory for GRA, however I will use  for 

estimating small strain damping, as described further below. 

4.2.2 Small Strain Damping from Models  

I consider two classes of models for small strain hysteretic damping in soils. The first class of 

models are collectively referred to as geotechnical models, because they are derived from 

advanced cyclic testing performed in geotechnical labs. The second are VS-based models originally 

developed for stochastic ground motion simulations in central and eastern North America.  

The geotechnical models relate small-strain damping as measured from geotechnical 

laboratory cyclic testing, denoted min

LD , to various predictor variables related to soil type and 

confining pressure.  I estimate laboratory-based min

LD  using Darendeli (2001) relations for clays 

and silts, and Menq (2003) relations for granular soils. The input parameters for the min

LD  models 

are plasticity index (PI), overconsolidation ratio (OCR), and effective stress for Darendeli (2001), 

and mean grain size (D50), coefficient of uniformity (Cu), and effective stress for Menq (2003). 

The min

LD  relations can only be used when geotechnical log and/or description of soil conditions 

are available for the site. 

The second class of models for Dmin draw from the seismology literature. Seismological 

simulations often convolve ground motions derived from source and path models, which apply for 

a reference rock site condition, with a site amplification function derived from an assumed (or 

measured) soil column VS profile. The site amplification function is typically derived using quarter 

wavelength procedures (Sec. 4.2.1) that evaluate impedance effects from the VS profile (Eq. 4.1) 
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and damping effects from the 0 diminutive parameter (Eq. 4.2). The 0 parameter represents the 

cumulative effect of damping through the soil column, which is commonly represented by (Hough 

and Anderson 1988; Chapman et al. 2003; Campbell 2009):  

 
   0

0

z

ef S

dz

Q z V z
    (4.3) 

where z is the soil column depth and Qef  is the depth-dependent effective material quality 

factor, representing both the effects of frequency-dependent wave scattering and frequency-

independent soil damping. Quantity Qef can be readily converted to soil damping as follows 

(Campbell, 2009):  

 min

ef

100
(%)

2
D

Q
  (4.4) 

In order to facilitate ground motion prediction in central and eastern U.S., several 

investigators have developed models for either depth-dependent Qef or 0 in particular regions 

(e.g., Boore and Joyner 1991, Gomberg et al. 2003, Cramer et al. 2004). Campbell (2009) reviewed 

many of these studies and proposed a suite of models relating Qef to VS, one of which is given by 

 ef 7.17 0.0276 SQ V   (4.5) 

Eq. (4.2) is one of four models proposed by Campbell (2009) and has seen application in a 

number of subsequent studies (Hashash et al., 2014; E. Rathje, personal communication) (more so 

than the other three models). I choose to use this model over an older model by Olsen et al. (2003) 

which works for long periods (>2 sec). An advantage of this approach for modeling Dmin is that it 

is only based on VS as an input parameter, and therefore it does not require a geotechnical log. I 

apply this approach for all 21 sites used in this study. 
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4.2.3 Kappa-Informed Small Strain Damping 

The use of site diminutive parameter  in ground response prediction was introduced in Section 

4.2.1. Here I describe in more detail conceptual background information for this parameter and 

how it can be used for sites with ground motion recordings to adjust values of small-strain damping 

derived from models like those in Section 4.2.2 to represent site-specific effects. Whether such 

adjustments are effective for ground motion prediction is investigated in Section 4.4.1.  

As it was shown in Eq. (4.2), κ is the controlling spectral decay parameter for amplification 

of Fourier Amplitude Spectra. The value of κ applicable to a particular ground motion recording 

can be partitioned into two components,  namely a zero distance κ or site κ (κ0), and the attenuation 

with distance (κRR) (adapted from Anderson, 1991): 

 0 RR   
 (4.6) 

where R is the source-site distance, and κR is the slope by which the decay parameter (κ) increases 

with distance capturing the effects of anelastic attenuation. Adopting notation from Hough and 

Anderson (1988), the site damping parameter κ0 can be taken as (Campbell, 2009): 

 
1 1

0 0,
0

( ) ( )
z

ref ef SQ z V z dz       (4.7) 

where κ0,ref is the attenuation parameter for the bedrock and the integral represents the contribution 

from the soil column (Eq. 4.3). Note that κ0,ref  as used in simulations may not match the site 

condition at the downhole sensor. However, for the present application, I take κ0,ref  as applying for 

the downhole geologic condition. Adopting this definition and using Eq. (4.4) to convert Qef to 

Dmin, I re-write Eq. (4.7) as: 
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 1min
0 0,

0

2 ( )
( )

100

z

ref S

D z
V z dz      (4.8) 

 The following sub-sections describe how vertical array data can be used to estimate the 

integral in Eq. (4.3), which in turn can be used to adjust model-based Dmin to reflect site-specific 

conditions. 

4.2.3.1 Inference of profile contribution to 0 from vertical array data 

Using recordings from vertical arrays, κ0 and κ0,ref cannot be measured directly because the source-

site distance component (κRR) still exists in κ measured from the surface and downhole recordings. 

However, if I take the distance component (κRR) as identical for the surface and downhole κ as 

observed for a given event, the difference (κ) in total becomes a profile attribute: 

    0 0, 0 0,ref R ref R refR R                  (4.9) 

where κref is the total κ for the downhole recording. Combining Eqs (4.8) and (4.9), I can relate κ 

to Dmin as: 

 
min

0

2 ( )

100 ( )

z

S

D z dz

V z
    (4.10) 

The conceptually simplest way to estimate κ from vertical array recordings is to evaluate 

κref and κ from the recorded Fourier amplitude spectra (FAS) of downhole and surface recordings, 

and take the difference (per Eq. 4.9). It is recognized that the downhole recording is a ‘within’ 

record that contains attributes of reflected waves from the ground surface, and hence is different 

from the outcropping condition at the surface. In other words, comparing κ and κref  may not be 

exactly apples-to-apples comparison. However, the differences between outcropping and within 
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motions are localized at site frequencies, and hence are unlikely to significantly affect the 

downhole κref measurement. 

I measure κ using procedures introduced by Anderson and Hough (1984), in which a line 

is fit to the decaying part of the FAS, as shown for example recordings in Figure 4.3. As shown in 

the figure, it is necessary to pick a frequency range over which the line is fit. The lower and upper 

limit of the fit frequency range are denoted f1 and f2, respectively. I adopt the criteria below for 

choosing the frequency range (similar to Cabas and Rodriguez-Marek, 2017). It is acknowledged 

that there are other approaches for measuring  in the literature (Ktenidou et al., 2014). 

- Avoid the 1st site response peak in the transfer function. 

- Avoid the flat part of the high frequency ETF which is not expected to be dominated by 

shear waves. 

- Avoid frequencies outside of the usable frequency rage chosen for filtering in the 

processing stage. 

In order to select f1 and f2 values producing the most stable κ, I initially select a reasonable 

range for both  f1 and f2 based on the above criteria, and then use a search module to pick the 

combination of f1 and f2 producing the least variability with azimuth for κ (Eq. 4.9). Note that 

one set of f1 and f2 is chosen for all four components of a recording (two horizontal components 

each for surface and downhole). In order to compute variability with azimuth, the search module 

uses the two horizontal components of κ for a range of orientations, and then computes the 

coefficient of variation (COV) across κ values from all orientations. The COV is computed for 

every combination of f1 and f2 inside the introduced range, and the combination that generates the 

smallest COV for κ is selected and then applied to all four components. The summary of findings 

on measuring κ from surface and downhole recordings in our dataset as the difference between 
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 and ref is shown in Table 4.1. In the table, the average and limits of f1 and f2 chosen for  

measurements are summarized for each site. 

 

Figure 4.3. The customary approach of measuring κ by directly fitting a line to the two components 
of surface (top) and downhole (bottom) FAS, where fc is the corner frequency of the 
event. 

 

Although the above approach of separately evaluating  for surface and downhole records 

was applied, the measurements are somewhat ‘noisy’ due to sensitivities to limiting frequencies, 

and the differences between surface and downhole  is often small. As a result of these issues,  

values were negative for a surprising number of cases (35% of recordings) as shown in Table 4.1, 

which is clearly a spurious result. Accordingly, I considered a different approach in which  is 

evaluated directly from surface/downhole transfer functions. Because the line is fit in semi-
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logarithmic space, the slope of the transfer function is the difference between the slopes of 

respective FAS. An advantage of this approach is that the transfer function lacks peaks and valleys 

due from effects other than surface-downhole site response, which allows the line to be fit over 

lower frequency ranges than is possible for  measurements (Figure 4.3. ). An example of  

inference from a transfer function is shown in Figure 4.4.  

I measure κ by directly fitting a line to the ETF over a frequency range that is expected 

to be dominated by shear waves. The protocols for selecting that frequency range are similar to 

those described above (for FAS). However, in addition to those criteria, I find the 

surface/downhole ratio of FFT for background noise useful in order to find the frequency ranges 

less dominated by noise and more dominated by seismic shear waves. For this purpose, I compute 

the FFT ratio for the first 5 seconds of the raw recordings, which I found to comprise a pre-event 

time window (before seismic shaking). For the example in Figure 4.4, for frequencies above 

approximately 22 Hz, the FFT ratio for the noise becomes similar to the FFT ratio for the actual 

seismic event (ETF). Although this cannot lead to a definite conclusion that for f > ~22Hz the 

transfer function is dominated by noise, the visual comparison of the shape and the amplitude of 

spectral ratios for noise and the seismic event can be helpful for identifying frequency ranges 

dominated by seismic shear waves and not surface waves, which are expected to more dominate 

the noise spectrum.  

Summary results obtained by measuring  in this manner are shown in Table 4.2. 

Summary statistics of directly measuring κ for the vertical array sites from transfer functions. 

In this case, only two sites (less than 10%) produced negative . Comparing the limiting 

frequencies in Tables 4.1 and 4.2, the ETF-fitting approach produces lower ranges for f1 and f2.  
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Figure 4.4. This study’s approach of measuring κ by directly fitting a line to ETF for each 

recording. The shaded areas show the frequency ranges used for choosing f1 and f2. 
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Table 4.1. Summary statistics of measuring κ for the vertical array sites as the difference between  and ref. 

Site 

Station 

NO 

(CSMIP) 

No. of 

Rec 
1f  

(Hz) 

2f  

(Hz) 

f1 range 

(Hz) 

min, max 

f2 range 

(Hz) 

min, max 

  

(sec) 

 range 

(sec) 

min, max 

ref  

(sec) 

ref range 

(sec) 

min, max 

  

(sec) 

 range 

(sec) 

min, max 

Antioch-San 

Joaquin S 
67266 4 3.1 13.0 2.0, 5.0 10, 17 0.121 0.105, 0.133 0.109 0.092, 0.133 0.0119 -0.0005, 0.0213 

Bay Bridge 58961 9 7.9 21.4 5.5, 10 15.3, 27.2 0.069 0.038, 0.113 0.051 0.03, 0.074 0.0184 0.0034, 0.0387 

Benicia 

South 
68323 10 8.6 28.8 6.1, 10 21.9, 44.7 0.049 0.026, 0.085 0.050 0.023, 0.104 -0.0006 -0.0183, 0.0162 

Borrego 

Valley 
NA 16 8.1 33.4 4.0, 20.9 20.0, 50.5 0.042 0.016, 0.069 0.048 0.028, 0.0616 -0.0057 -0.0147, 0.0084 

Corona 13186 31 10.4 55.2 4.0, 23.7 10.0, 79.5 0.024 0.009, 0.084 0.028 0.009, 0.0987 -0.0035 -0.0354, 0.0181 

Coronado 

East 
3192 10 8.0 29.6 2.9, 16.6 23.9, 51.3 0.040 0.019, 0.055 0.048 0.025, 0.073 -0.0080 -0.0321, 0.0236 

Coronado 

West 
3193 21 6.4 23.5 3.3, 14.5 10.8, 45 0.063 0.025, 0.096 0.057 0.014, 0.094 0.0060 -0.0214, 0.0459 

Crockett-1 68206 8 10.6 31.7 5.3, 14.7 21.1, 46.8 0.041 0.027, 0.052 0.056 0.024, 0.072 -0.0150 -0.0276, 0.0227 

El Centro-

Meloland 
1794 19 10.0 31.6 5.5, 14.8 17.3, 51.3 0.049 0.013, 0.074 0.049 0.035, 0.073 0.0004 -0.0253, 0.0185 

Eureka 89734 14 7.3 24.3 2.0, 9.5 15.0, 30.0 0.073 0.046, 0.093 0.045 0.026, 0.057 0.0285 0.0018, 0.0502 
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Site 

Station 

NO 

(CSMIP) 

No. of 

Rec 
1f  

(Hz) 

2f  

(Hz) 

f1 range 

(Hz) 

min, max 

f2 range 

(Hz) 

min, max 

  

(sec) 

 range 

(sec) 

min, max 

ref  

(sec) 

ref range 

(sec) 

min, max 

  

(sec) 

 range 

(sec) 

min, max 

Foster City 58968 7 7.2 25.7 3.0, 12.0 13.2, 42.6 0.034 0.008, 0.069 0.052 0.003, 0.114 -0.0173 -0.0445, 0.0043 

Garner 

Valley 
NA 10 12.6 53.4 7.1, 19.5 42.6, 70.0 0.028 0.018, 0.046 0.011 0.001, 0.030 0.0178 0.0146, 0.0223 

Hayward-

580W 
58487 5 11.9 44.4 5.8, 26.8 25.0, 63.2 0.042 0.015, 0.084 0.038 0.018, 0.065 0.0040 -0.0120, 0.0185 

Hayward-

San Mateo 
58798 5 8.0 22.1 6.9, 9.7 18.0, 32.4 0.051 0.024, 0.079 0.043 0.002, 0.073 0.0080 -0.049, 0.072 

Hollister 

digital 
NA 23 10.9 28.3 5.7, 22.4 17.0, 47.9 0.060 0.013, 0.111 0.048 0.009, 0.0100 0.0122 -0.0576, 0.0554 

La-Cienega 24703 20 13.0 43.6 5.0, 35.8 22.0, 80.0 0.040 0.007, 0.096 0.032 0.008, 0.084 0.0076 -0.0162, 0.0179 

Obregon 

Park 
24400 23 12.9 34.0 4.8, 19.5 16.2, 75.0 0.067 0.032, 0.118 0.046 0.019, 0.101 0.0214 0.0089, 0.0380 

San 

Bernardino 
23792 5 7.6 23.8 2.0, 11.8 12.0, 32.0 0.059 0.025, 0.130 0.060 0.031, 0.119 -0.0008 -0.0171, 0.0111 

Treasure 

Island 
58642 11 9.9 38.4 9.5, 10.0 20.0, 60.0 0.049 0.029, 0.072 0.033 0.021, 0.068 0.0157 0.0036, 0.0332 

Vallejo 68310 17 12.1 31.2 5.5, 19.3 20.0, 45.0 0.053 0.035, 0.077 0.049 0.025, 0.059 0.0043 -0.0139, 0.0180 

Wildlife 

Liquefaction 
NA 21 7.4 38.1 5.0, 10.0 7.0, 63.2 0.043 0.000, 0.079 0.049 0.029, 0.066 -0.0051 -0.0665, 0.0244 
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Table 4.2. Summary statistics of directly measuring κ for the vertical array sites from transfer functions. 

Site 

Station 

NO 

(CSMIP) 

No. 

of 

Rec 

1f  

(Hz) 

2f  

(Hz) 

f1 range 

(Hz) 

min, max 

f2 range 

(Hz) 

min, max 

  

(sec) 

 range 

(sec) 

min, max 

Antioch-San 

Joaquin S 
67266 4 2.8 12.8 2.0, 3.0 8.0, 17.0 0.0116 -0.0014, 0.0197 

Bay Bridge 58961 9 7.4 18.3 7.0, 8.0 17.0, 20.0 0.0085 -0.0023, 0.0174 

Benicia 

South 
68323 10 4.4 24.3 4.0, 5.0 17.0, 35.0 0.0044 0.0005, 0.0120 

Borrego 

Valley 
NA 16 1.5 16.3 1.0, 2.0 8.0, 20.0 0.0053 0.0003, 0.0159 

Corona 13186 31 3.8 18.2 3.0, 5.0 15.0, 22.9 0.0078 -0.0223, 0.0264 

Coronado 

East 
3192 10 1.6 15.8 1.0, 2.5 10.0, 24.5 0.0133 0.0044, 0.0295 

Coronado 

West 
3193 21 2.0 14.9 1.0, 3.0 4.0, 21.9 0.0063 -0.0175, 0.0490 

Crockett-1 68206 8 3.2 16.2 2.0, 5.0 6.0, 19.9 0.0016 -0.0094, 0.0154 

El Centro-

Meloland 
1794 19 1.1 12.0 1.0, 2.0 5.0, 24.1 0.0013 -0.0053, 0.0119 

Eureka 89734 14 1.4 18.1 1.0, 1.8 8.1, 19.9 0.0203 0.0115, 0.0276 
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Site 

Station 

NO 

(CSMIP) 

No. 

of 

Rec 

1f  

(Hz) 

2f  

(Hz) 

f1 range 

(Hz) 

min, max 

f2 range 

(Hz) 

min, max 

  

(sec) 

 range 

(sec) 

min, max 

Foster City 58968 7 1.5 14.6 1.0, 2.0 6.9, 21.4 -0.0033 -0.0475, 0.0148 

Garner 

Valley 
NA 10 1.9 21.2 1.3, 3.0 12, 24.5 0.0136 -0.0185, 0.0239 

Hayward-

580W 
58487 5 2.3 16.1 1.0, 3.0 11.8, 20.0 0.0234 0.0126, 0.0304 

Hayward-

San Mateo 
58798 5 1.4 12.9 1.0, 2.0 4.0, 24.5 0.0330 0.0053, 0.0802 

Hollister 

digital 
NA 23 1.5 16.6 1.0, 3.0 15.0, 19.5 0.0236 0.0097, 00413 

La-Cienega 24703 20 2.1 18.2 1.0, 3.0 5.0, 23.9 0.0042 -0.1216, 0.0354 

Obregon 

Park 
24400 23 2.1 23.4 1.0, 3.0 17.0, 24.5 0.0074 -0.0200, 0.0156 

San 

Bernardino 
23792 5 2.7 22.6 2.2, 3.0 20.0, 24.5 0.0000 -0.0162, 0.0168 

Treasure 

Island 
58642 11 2.6 17.8 1.0, 3.0 15.0, 20.0 0.0118 0.0040, 0.0182 

Vallejo 68310 17 5.3 23.9 4.0, 6.0 15.0, 29.5 -0.0080 -0.0191, 0.0046 

Wildlife 

Liquefaction 
NA 21 1.7 16.5 1.5, 2.0 15.0, 18.7 0.0167 0.0068, 0.0309 
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4.2.3.2 Modifying damping profiles based on measured  

I begin with the laboratory-based estimate of the Dmin profile ( min

LD ) and multiply it by a constant 

value (FD) at all layers. Eq. (4.10) is modified as: 

 
1min

0

2 ( )
( )

100

L
z

D
S

D z F
V z dz 

    (4.11) 

where  is the mean κ for all recordings at the site and FD is the multiplicative modification 

factor. For sites without a geotechnical log we do not have the min

LD  profile – in these cases I assume 

min

LD = 1% for use with the above procedures. This application as well as the other two approaches 

for estimation of damping are shown for all sites in Figure 4.5-4.25. In the figures the damping 

profiles are shown even if they are available for that site. 

Table 4.3 summarizes for each site values of   as measured from ETFs,  implied by 

the min

LD  profile without any modification (FD=1), and FD values computed using Eq. (4.11). The 

later two are not shown for sites without a geotechnical log. 
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Figure 4.5. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Antioch-San Joaquin site. 
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Figure 4.6. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for San Francisco Bay Bridge site. 
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Figure 4.7. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Benicia-Martinez South site. 
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Figure 4.8. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Borrego Valley Downhole Array site. 
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Figure 4.9. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Corona vertical array site. 
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Figure 4.10. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Coronado East site. 
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Figure 4.11. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Coronado West site. 
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Figure 4.12. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Crockett-Carquinez Br site. 



 

111 

 

 

 

Figure 4.13. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Eureka site. 
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Figure 4.14. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Foster City-San Mateo site. 
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Figure 4.15. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Garner Valley site. 
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Figure 4.16. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Hayward-I580/238 site. 
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Figure 4.17. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Hayward-San Mateo site. 
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Figure 4.18. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Hollister Digital Array site. 
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Figure 4.19. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Los Angeles-La Cienega site. 



 

118 

 

 

 

Figure 4.20. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for El Centro-Meloland vertical array site. 
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Figure 4.21. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Los Angeles-Obregon Park site. 
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Figure 4.22. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for San Bernardino vertical array site. 
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Figure 4.23. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Treasure Island vertical array site. 
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Figure 4.24. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Vallejo-Hwy 37/Napa River E. site. 
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Figure 4.25. VS profile and Dmin profiles based on geotechnical models for laboratory damping 

( min

LD  ), Campbell (2009) model for Qef, and  for Wildlife Liquefaction Array (WLA) site. 
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Table 4.3. Summary statistics of κ (measured from ETF), κ implied from min

LD profiles, and FD. for 

the vertical array sites. 

Site 
Station NO 

(CSMIP) 
  

(sec) 

 implied by  

(sec) 
FD 

Antioch-San 

Joaquin S 
67266 0.0116 0.00366 3.18 

Bay Bridge 58961 0.0085 NA 4.97 

Benicia 

South 
68323 0.0044 NA 4.53 

Borrego 

Valley 
NA 0.0053 0.00632 0.74 

Corona 13186 0.0078 0.00085 9.15 

Coronado 

East 
3192 0.0133 0.00415 3.21 

Coronado 

West 
3193 0.0063 0.00324 1.95 

Crockett-1 68206 0.0016 0.00121 0.94 

El Centro-

Meloland 
1794 0.0013 0.00656 0.22 

Eureka 89734 0.0203 0.00456 4.46 

Foster City 58968 -0.0033 NA NA 

Garner 

Valley 
NA 0.0136 0.0025 5.43 

Hayward-

580W 
58487 0.0234 NA 8.19 

Hayward-

San Mateo 
58798 0.0330 NA 4.64 

Hollister 

digital 
NA 0.0236 0.00429 5.50 

min

LD
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Site 
Station NO 

(CSMIP) 
  

(sec) 

 implied by  

(sec) 
FD 

La-Cienega 24703 0.0042 0.00325 1.29 

Obregon 

Park 
24400 0.0074 0.00212 3.48 

San 

Bernardino 
23792 0.0000 0.00139 1.72 

Treasure 

Island 
58642 0.0118 0.00684 1.62 

Vallejo 68310 -0.0080 0.00136 NA 

Wildlife 

Liquefaction 
NA 0.0167 0.00628 2.67 

  

min

LD
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4.3 INFERENCES OF SITE RESPONSE EFFECTS FROM TRANSFER 

FUNCTIONS 

4.3.1 Calculation of Transfer Functions 

Empirical transfer functions (ETFs) representing site response between the downhole and surface 

accelerometers are computed from ratios of Fourier amplitudes as follows:   

 
1

2

( , )
( )

( , )

G f x
H f

G f x
  (4.12) 

where H(f) is the ETF, G(f,x1) is the surface FAS and G(f,x2) is the downhole FAS. ETFs are only 

used over the usable frequency range based on record processing. The ETF is taken as the 

geometric-mean of ETFs for the two horizontal components of the recordings (at their as-recorded 

azimuths) for each site. The results shown subsequently are smoothed through the use of a 

logarithmic window function proposed by Konno and Ohmachi (1998) with the coefficient for 

bandwidth frequency (b) equal to 20.  

 Theoretical transfer functions (TTF) are a direct outcome of linear and equivalent-linear 

analysis (Section 4.2.1). In other words, the calculation of TTFs does not require analysis of ground 

motions and their Fourier amplitudes as in Eq. (4.1). When time-domain procedures are used, the 

ground motions must be calculated, their FAS computed, and then TTF can be taken using Eq. 

(4.12). It is worth mentioning that what is defined here as the ratio of surface/downhole ground 

motion amplitudes is a bit different than the definition for PSA amplification. Unlike for PSA 

amplification, or transfer functions, I do not convert the downhole motion to equivalent-outcrop, 

therefore the downhole motion amplitude used for computing the ratio will have the effects of 

downgoing waves. 
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4.3.2 Transfer Function Comparisons from KiK-Net Array in Japan 

Thompson et al. (2012) studied 100 KiK-net sites in Japan in order to assess the variability in site 

amplification and the performance of linear 1D GRA. These sites have recorded a large number of 

surface and downhole recordings. For GRA, they used the program NRATTLE, which is a part of 

the ground motion simulation program SMSIM (Boore, 2005). NRATTLE performs linear GRA 

using Thomson–Haskell matrix method. The input parameters for NRATTLE include shear wave 

velocity (VS), soil density, and the intrinsic attenuation of shear-waves (
1

SQ
) which represents 

damping. Soil density was estimated from P-wave velocity using the procedures suggested by 

Boore (2008), and 
1

SQ
was estimated using a grid-search algorithm to optimize the fit to H(f). Note 

that by optimizing damping in this manner, Thompson et al. (2012) do not assess the performance 

of alternative damping models, as described in Section 4.2.3. Moreover, this optimization would 

not be possible to perform in a forward sense when vertical array recordings from a site are not 

available.  

Thompson et al. (2012) computed ETFs with Eq. (4.11) using available data meeting 

certain selection requirements. In order to minimize the potential for nonlinear effects, only records 

having a ground surface PGA < 0.1 g were selected. In total, 3714 records from 1573 earthquakes 

were considered for the 100 KiK-net sites. The mean and 95% confidence intervals were computed 

across all selected recordings at a given site, with the example results (for two sites) given in Figure 

4.26. TTFs from the GRA are also shown in Figure 4.26. 

Figure 4.4 (a) provides an example of poor fit between the ETF and TTF whereas Figure 

4.4 (b) shows a good fit. Goodness-of-fit was quantified using Pearson’s sample correlation 

coefficient (r) as a measure of how well the model predictions and the data are correlated. 
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Parameter r quantifies how well the shapes of the transfer functions align, including the locations 

and shapes of peaks. Parameter r is insensitive to relative overall levels of amplification, which is 

better quantified in the next subsection in PSA amplifications. Similar to this study, I calculate the 

Pearson’s sample correlation coefficient for ith earthquake and jth analysis (based on damping 

estimation approach) as follows for a given site: 

 
  

   
2 2

ETF ( ) ETF TTF ( ) TTF

ETF ( ) ETF TTF ( ) TTF

i i j j

ij

i i j j

f f
r

f f

 


 



 
 (4.13) 

The summations in Eq. 4.13 are taken over a frequency range with a lower bound fmin 

corresponding to the first peak in the TTF and an upper bound fmax that is the minimum of the 

frequency of the fourth peak of the TTF or 20 Hz. The summation is performed over all frequency 

points between fmin and fmax, which are equally spaced in logarithmic units. The mean value of r 

across all events (rj) for a given site is denoted r .  

A value of r=0.6 was taken by Thompson et al. as the threshold for good fit. The 

corresponding r values for the two sites in Figure 4.26 are 0.10 for the poor fit site and 0.79 for 

the good fit site. Dispersion curves (phase velocity vs. frequency) for the two example sites are 

shown in Figure 4.26. The results show that there is a large degree of variability in the dispersion 

curves for the poor fit site and consistency in the dispersion curves for the good fit site. Multiple 

dispersion curves are only available for two of the 100 sites considered by Thompson et al. (2012). 

Nonetheless, the limited available data indicate that geologic complexity, as reflected by spatial 

variability in the Rayleigh wave velocity structure, may correlate to the accuracy of GRA 

prediction. More complex geologic structure would be expected to produce 3D site effects that are 

not captured by GRA. 
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Figure 4.26. Examples of a poor fit (a) and good fit (b) between ETF and TTF at two KiK-net sites 

along with the dispersion curves from multiple SASW tests for both sites (adapted from 
Thompson et al., 2012). 

 

Results for the 100 considered sites show that only 18% have a good fit between ETFs and 

TTFs, indicating 1D GRA fails to provide an accurate estimation of site response for a larger 

majority of KiK-net sites. Subsequent to Thompson et al. (2012), Kaklamanos et al. (2013) use  

the same sites to study the bias and variability of 1D GRA, and Kaklamanos et al. (2015) use a 

subset of six KiK-net sites where a good ETF-TTF fit was obtained to study the issue of when 

increased levels of sophistication in nonlinear modeling is needed in GRA. They use results from 

Kaklamanos et al. (2013), and use SHAKE for additional Equivalent-Linear (EL) and DEEPSOIL 



 

130 

 

 

and Abaqus (Dassault Systèmes, 2009) for additional Nonlinear (NL) GRA. Using a wide range 

of weak to strong ground motions, they determine the strain levels at which each model breaks 

down. They recommend not using linear GRA when strain levels exceed (0.01% to 0.1%).  

A second metric considered by Thompson et al. (2012) concerns the inter-event variability 

of transfer function ordinates, which they computed as a median value of the standard deviations 

computed across the frequencies within the range to compute r. Large values of this standard 

deviation indicate large event-to-event differences in observed site amplification, suggesting 

potential complexities from 3D geologic structure. The two sites shown in Figure 4.4 have low 

levels of variability (0.09); results for all sites and a comparison to California data is presented in 

the next section.  

4.3.3 Transfer Function Comparisons for California Vertical Array Data  

Using the data set described in Chapter 3, I compute ETF ordinates for each of the 21 selected 

California vertical array sites. In this sense our approach is similar to that of Thompson et al. 

(2012) – I ‘cast the net widely’ to study site response performance over a wide range of conditions. 

Unlike several studies conducted since Thompson et al. (2012), I do not screen sites to identify 

those for which the ETF matches the shape of a TTF; instead I seek to understand how frequently 

such a match is achieved in relatively weak motion data from California vertical array sites. 

Similar to Thompson et al. (2012), I exclude recordings with strong ground shaking (PGA 

at surface instrument > 0.1 g) so as to minimize nonlinear effects. Figure 4.27 shows histograms 

of PGA and PGV for the downhole instrument records used in the present work.  
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Figure 4.27. Histograms of PGA (a) and PGV (b) for downhole recordings used in this study. 

 

I assume a log-normal distribution for ETF ordinates and compute for each site the median 

(ln) (equivalent to the exponent of the natural log mean) and the natural log standard deviation of 

ETF (σln) at each frequency using all available record pairs. Figure 4.28 shows example ETFs for 

all record pairs at the San Bernardino and Obregon Park sites along with the median and 95% 

confidence intervals of ETF. For plotting purposes, I show results over a frequency range between 

0.5 and 10 Hz. The all-inclusive usable frequency range is 0.2-28 Hz for San Bernardino site 

recordings, and 1.4-18 Hz for Obregon Park. Therefore, the range shown focuses attention on 

frequencies that significantly contribute to PSA ordinates. The median ETF and its standard 

deviation are shown for all sites in plots in the Appendix. 
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Figure 4.28. Empirical transfer functions plots for (a) San Bernardino site with low ETF variability, 

and (b) Obregon park with high ETF variability. 
 

Theoretical transfer functions (TTFs) are computed by linear visco-elastic 1D GRA in 

DEEPSOIL. As the downhole sensor is recording both up-going and down-going waves, we take 

the boundary condition at the base of the model as rigid (Kwok et al., 2007). The visco-elastic 

analysis in DEEPSOIL is performed in the frequency domain, and the transfer function predicted 

by the model is independent of the input motion. Similar to ETFs, the TTFs are smoothed by 

Konno and Ohmachi (1998) function with b= 20. Input soil properties for the visco-elastic analysis 

include the VS profile, layer mass densities (assumed based on soil types and material descriptions), 

and material damping. I utilize alternate approaches for estimating small-strain soil damping as 

described in Section 4.2.2-4.2.3 to provide insight and guidance on best practices for selection of 

small-strain damping (Dmin). Note that this aspect of our analysis departs from the prior work of 

Thompson et al. (2012), who back-calculated damping to optimize the ETF-TTF fit. 

Figure 4.3729-4.38 shows model-data comparisons by plotting together TTFs and ETFs. 

Unlike the amplification of PSA which is discussed in Section 4.4, transfer functions are able to 

show multiple modal frequencies for the soil column from both recordings and simulations. The 

comparison of position of the first several peaks in TEF and TTFs are a good indicator of if there 
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is a good agreement between the shapes of the transfer functions. In the example of El Centro-

Meloland site (Figure 4.37), the simulations are not able to capture the position of any of the visible 

five peaks seen in ETF plot. This is an indication that 1D GRA is unable to simulate the site 

response between surface and downhole regardless of  damping model. On contrary, for Treasure 

Island site (Figure 4.35), the position of all six peaks in ETF are captured by GRA, which is an 

indication that 1D assumption is valid for this site. 

In addition to the above qualitative assessments of goodness of fit, it is also useful to 

consider quantitative metrics. One such metric is the Pearson’s sample correlation coefficient r 

(also used by Thompson et al., 2012), which was computed in the manner described in Section 

4.3.2. I use the mean value over all recordings at a given site, 𝑟̅, which is shown in Figure 4.39. 

Generally, sites with qualitatively good fit between ETF and TTF have values of 𝑟̅ > 0.6 (e.g., 

Treasure Island site in Figure 4.10) and sites with poor fit have 𝑟̅ < 0 (e.g., El Centro-Meloland 

site).  
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Figure 4.29. Comparison of ETF and TTFs for Antioch-San Joaquin S and San Francisco Bay Bridge. 

Values of r for each damping model are shown in different colors (red: min

LD , green: 

VS-based, blue: -informed). 

 

 

Figure 4.30. Comparison of ETF and TTFs for Benicia-Martinez S and Borrego Valley (BVDA). Values 

of r for each damping model are shown in different colors (red: min

LD , green: VS-based, 

blue: -informed). 
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Figure 4.31. Comparison of ETF and TTFs Corona and Coronado East. Values of r for each 

damping model are shown in different colors (red: min

LD , green: VS-based, blue: -

informed). 

 

 

Figure 4.32. Comparison of ETF and TTFs for Coronado West and Crockett-Carquinez Br #1. Values 

of r for each damping model are shown in different colors (red: min

LD , green: VS-based, 

blue: -informed). 
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Figure 4.33. Comparison of ETF and TTFs for Garner Valley and Hayward-I580W. Values of r for 

each damping model are shown in different colors (red: min

LD , green: VS-based, blue: -

informed). 

 

 

Figure 4.34. Comparison of ETF and TTFs for Hayward-San Mateo and Hollister Digital Array (HEO). 

Values of r for each damping model are shown in different colors (red: min

LD , green: 

VS-based, blue: -informed). 
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Figure 4.35. Comparison of ETF and TTFs for LA Obregon Park and Treasure Island. Values of r

for each damping model are shown in different colors (red: min

LD , green: VS-based, blue: 

-informed). 

 

 

Figure 4.36. Comparison of ETF and TTFs for Eureka and Foster City-San Mateo. Values of r for 

each damping model are shown in different colors (red: min

LD , green: VS-based, blue: -

informed). 
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Figure 4.37. Comparison of ETF and TTFs for El Centro-Meloland and Treasure Island. Values of r

for each damping model are shown in different colors (red: min

LD , green: VS-based, blue: 

-informed). 

 

 

Figure 4.38. Comparison of ETF and TTFs for Wildlife Liquefaction array (WLA). Values of r for 

each damping model are shown in different colors (red: min

LD , green: VS-based, blue: -

informed). 
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Figure 4.37 shows histograms of 𝑟̅from the California vertical array sites using the three 

damping models (geotechnical, VS-based, -informed). Also shown for comparison is the 

distribution from Thompson et al. (2012) for KiK-net sites, although the optimization of damping 

performed in that study makes the comparison somewhat ‘apples-to-oranges’, with Japan sites 

expected to have higher 𝑟̅. I see that California sites have higher values of 𝑟̅ in aggregate, with a 

higher population median and lower standard deviation. There is also a higher percentage of sites 

with strong correlation ( 𝑟̅ > 0.6) in comparison to their counterparts for the KiK-net arrays in 

Japan regardless of the damping model. This suggests that the ability of GRAs to match 

observation is better for the California vertical arrays than for KiK-net sites.  

 

 
Figure 4.39. Histograms of r for California and KiK-net sites as well as their medians and standard 

deviations. Values and summary statistics of r for each damping model are shown 

in different colors for California sites (red: min

LD , green: VS-based, blue: -informed 

model). 

 

As described in Section 4.3.2, Thompson et al. (2012) introduced a metric of ETF 

variability that is useful to consider in combination with 𝑟̅ because it quantifies event-to-event 
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variability in observed site response across the vertical array. This metric is computed by first 

taking the natural log standard deviation of ETF ordinates for each of the frequencies considered 

in the analysis of 𝑟̅ (i.e., between the lower and upper bound frequencies fmin and fmax).  Then the 

median across those standard deviations is taken, which is denoted 𝜎𝑙𝑛
𝑀. Figure 4.40 shows the 

distribution of 𝜎𝑙𝑛
𝑀 for the California vertical array sites, with the values reported by Thompson et 

al. (2012) for the KiK-net sites also shown for comparison (the method of computation is the same 

in both cases). The inter-event dispersion is notably smaller for the California sites, with only two 

(10%) exceeding the value of 0.35 considered as ‘high dispersion’ by Thompson et al. (2012).  

The better fit and smaller ETF dispersion encountered for the California sites as compared 

to the KiK-net sites may result from the former mostly being located within large sedimentary 

basins and relatively flat areas, whereas the later are often on firmer ground conditions (often 

weathered rock or thin soil over rock) with uneven ground conditions. The geologic conditions at 

the KiK-net sites are such that horizontal layering of sediments is less likely to be an acceptable 

assumption, with the site response being strongly influenced by 2D and 3D effects associated with 

irregular stratigraphy and (in some cases) topography. The 2D and 3D effects in site response in 

KiK-net sites has been studied by De Martin et al. (2013) which suggests the period and amplitude 

of site response peaks are significantly sensitive to 2D and 3D effects due to non-horizontal 

layering. Another possible factor resulting in a better fit for California sites is the quality of VS 

measurements. The vertical arrays in California used in this study have high-resolution suspension 

logging measurements (with Garner Valley being the only exception), while the KiK-net sites are 

characterized with lower-resolution downhole measurements.  
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Figure 4.40. Histogram of ETF between-event standard deviation term 𝜎𝑙𝑛
𝑀 for California and KiK-

net vertical array sites. 

 

4.4 ANALYSIS OF PSA AMPLIFICATIONS 

In this section, I examine features of site amplification for the inventory of California vertical array 

sites from Chapter 3 in the form of PSA amplification. The objective of the analysis presented here 

is in part complimentary to the analysis of transfer function results, in that I seek insight into GRA 

model effectiveness for the three considered damping models. However, in addition, I will present 

an approach that can be used to quantify uncertainty in the prediction of site response as estimated 

from GRA. This uncertainty quantification is of interest for PSHA in which site terms are taken 

from the results of GRA, in which case epistemic uncertainties in the site response should be 

considered using a logic tree framework.  

Subsequent sections describe the methodology for statistical analysis of the data to infer 

bias and uncertainty, present results as derived from the California data, and compare to 

comparable results obtained previously for KiK-net sites (Kaklamanos et al., 2013).  
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4.4.1 Residuals Analysis to Quantify Bias and Uncertainty of Site Response 

Predictions from GRA 

Our analysis of epistemic uncertainty is based on comparing observations (in this case, the surface 

recordings at California vertical array sites) to predictions. I use 5%-damped PSA of the recorded 

and predicted surface ground motions. I use the RotD50 parameter which is the median single-

component horizontal ground motion across all non-redundant azimuths (Boore 2010). In order to 

quantify the misfits between the predictions and recordings, I compute the residuals between the 

recorded and predicted PSA in natural logarithmic space: 

    , ln lnobs pre

G kj kj kjR Z Z   (4.14) 

where RG,kj is the residual for recording j at site k, 𝑍𝑘𝑗
𝑜𝑏𝑠 is the observed intensity measure (generally 

PSA at a certain oscillator period), and 𝑍𝑘𝑗
𝑝𝑟𝑒

 is the predicted intensity measure. Quantity 𝑍𝑘𝑗
𝑝𝑟𝑒

 has 

source, path and site attributes; source, path, and site attributes below the level of the input motion 

are fully captured by the downhole input motion, and only the site response is computed.  

4.4.2 Results from California Data 

One example of predicted/recorded PSA plots and the computed residual is shown in Figure 4.41. 

Positive residuals indicate underprediction and negative residuals indicate overprediction of the 

recorded ground motion by GRA. Because the downhole recording is used in the calculation of 

𝑍𝑘𝑗
𝑝𝑟𝑒

, any misfit in the prediction of the surface motions is attributed to the misfits in site response.  
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Figure 4.41. An example of (a) response spectrum plots of the downhole motion, surface recorded 
motion, and surface predicted motion at Eureka (M5.4, epicenteral distance: 62 km); (b) 
The plot of residuals between observed and predicted ground motions. 

 

Because one objective of our analysis is to assess the performance of alternative small-

strain damping models, I sought to identify recordings for which the dynamic soil behavior could, 

as a first approximation, be represented by layer-specific small-strain shear moduli (Gmax) and 

damping (Dmin). Kaklamanos et al. (2015) recommend that linear, visco-elastic GRA procedures 

can be used when the maximum shear strain in a soil column, max < 0.01-0.1%. In the selection of 

recordings used in these analyses, I sought record sets with max<0.01%, to ensure that soil 
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nonlinearity is not appreciably affecting the GRA and resulting findings on damping models. In 

order to exclude strong recordings which are dominated by the effects of soil nonlinearity, I use 

shear strain index (I) defined by Kim et al. (2016) as the ratio of input motion PGV to VS30 in order 

to approximate the maximum shear strain (max) in the soil profile. After applying this screening, 

the data set consists of 250 recordings at 21 stations.  

I perform mixed-effects regression with the LME routine in program R (Pinheiro et al., 

2013) to partition the residuals into multiple components: 

 , , , , ,G kj G l G S k G kjR c      (4.15) 

where cG,l is the overall model bias, G,S,k is the between-site residual (site term) for site k, 

which represents the average deviation from the prediction for an individual site, and ɛG,ij is the 

within-site residual, which is the remaining misfit after removing the overall bias and the between-

site residual. It should be noted that there is no event-to-event variability in the computed residuals 

because for the predicted motion (𝑍𝑘𝑗
𝑝𝑟𝑒

), the actual downhole recording has been used as the input 

motion. The lack of event-to-event variability eliminates any contribution from the variability in 

source effects (event terms). This makes Eq. (4.15) slightly different from what is customary in 

the analysis of residuals when utilizing ground motion data only from surface recordings. The term 

G,S,k is the indicator of how well GRA is predicting site response for site k, with large absolute 

values of G,S indicating poor prediction of site response. Two examples of G,S plots for a site with 

good fit (La-Cienega) and poor fit (Corona) are shown in Figure 4.13.  
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Figure 4.42. Plots of between-site residuals (G,S) for La-Cienega with a good fit; and Corona with a 

poor fit between recordings and predictions. The smaller values of (G,S) indicate a 

better fit. 

 

The overall bias is plotted in Figure 4.43 for the three different damping models used in 

this study. The cl  for the three damping models have relatively similar trends with period, each 

having a relatively flat trend with period for T >~0.1 sec and negative residuals (indicating over-

prediction) at short periods. The geotechnical model exhibits the least bias for T >~0.1 sec and the 

largest over-prediction bias at shorter periods. The VS-based model tends to produce the largest 

damping, and has bias terms 0.2-0.4 larger than the geotechnical model. The -informed model 

provides intermediate results.  
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Figure 4.43. The overall bias (cG,l) of GRA models in prediction of site response. 
 

Figure 4.44-4.21 show the average total residuals (cG,l+G,S,k) for all sites starting from the 

ones with lowest RV=VSDH/VS5. In these figures, the site-specific bias can be studied for each 

individual site. I seek to find any trend between the behavior of sites with their characteristics. The 

figures show that the bias plots have a decrease (valley) near the site period, and do not show any 

trend with RV. For example, both Wildlife Liquefaction array (RV=1.44) and Borrego Valley 

(RV=12.22) have a similar behavior despite very different levels of impedance contrast. 

Furthermore, there is no evidence of any significant trend between the behavior of sites 

with the depth of the array. For example, La Cienega and Borrego Valley are the deepest arrays 

(depth: 245 and 235 m, respectively), however their behavior is not systematically different from 

the shallowest arrays, Benicia South and Bay Bridge (depth: 35 and 40 m, respectively) except for 

the valley near the site period happening at a shorter period (as expected). 

Figure 4.44-4.21 also show no significant pattern in the performance of damping models 

with the properties of the sites (e.g. depth and RV). The general pattern of overprediction and 

underprediction with the three damping models are similar to what is reflected in Figure 4.43 with 

the geotechnical model having the least bias, the VS-based model being the most biased 
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(underpredicting) for long periods and the least biased for very short periods, and -informed 

model between the other two. This is the overall trend, and does not happen for all of the sites.  
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Figure 4.44. Comparison of total residuals (bias+site term) using the three models for damping for 
sites with different values of RV: (a) Hayward-580 W, (b) Obregon Park, and (c) Wildlife 
Liquefaction Array (WLA). 
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Figure 4.45. Comparison of total residuals (bias+site term) using the three models for damping for 

sites with different values of RV: (a) Benicia-Martinez South, (b) Vallejo - Hwy 37/Napa 
River, and (c) Coronado East. 
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Figure 4.46. Comparison of total residuals (bias+site term) using the three models for damping for 

sites with different values of RV: (a) Crockett-Carquinez Br #1, (b) Hayward-San Mateo, 
and (c) La-Cienega. 
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Figure 4.47. Comparison of total residuals (bias+site term) using the three models for damping for 

sites with different values of RV: (a) Antioch-San Joaquin S, (b) El Centro - Meloland, 
and (c) Coronado West. 
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Figure 4.48. Comparison of total residuals (bias+site term) using the three models for damping for 

sites with different values of RV: (a) San Bernardino, (b) Eureka, and (c) San Francisco 
- Bay Bridge. 

 



 

153 

 

 

 
Figure 4.49. Comparison of total residuals (bias+site term) using the three models for damping for 

sites with different values of RV: (a) Hollister Digital Array, (b) Borrego Valley Digital 
Array, and (c) Garner Valley. 
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Figure 4.50. Comparison of total residuals (bias+site term) using the three models for damping for 

sites with different values of RV: (a) Treasure Island, (b) Corona I15/Hwy 91, and (c) 
Foster City-San Mateo. 
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The standard deviations of the residuals are computed as follows: 

 
2 2 2

, G,lnY G S Y     (4.16) 

In the equation above, Y, G,S, and G,lnY are the standard deviation of RG,kj, G,S,k, and ɛG,ij, 

respectively. In this study, I am mainly interested in G,S which represents the site-to-site variability 

of the misfit in the prediction of ground motion using GRA. In other words, the epistemic 

uncertainty about how well GRA is able to predict the effects of site response is quantified by G,S. 

Figure 4.51 shows the period-dependence of the between-site variability G,S and the within-site 

variability G,lnY. For G,S, the results of this study on the sites in California are slightly better for 

the -informed model for periods between 0.1 and 1 sec, showing that relating damping to  can 

slightly improve the GRA and reduce the site-to-site variability, however I acknowledge that this 

difference is not very significant. The comparison to results in Japan is presented in the next 

section.  
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Figure 4.51. Comparison of (a) between-site standard deviation (S), and (b) within-site standard 

deviation (G,lnY) for sites in California and KiK-net sites studied by KEA13 (Kaklamanos 
et al., 2013). 

 

4.4.3 Comparison to Prior Results 

Bias: Our results show the small-strain damping from geotechnical models provides the least bias 

in estimated site amplification at California vertical array sites for periods longer than 0.1 sec. This 

is contrary to the findings by previous studies on a small number of vertical array sites by Tsai and 

Hashash (2009), Elgamal et al. (2001), and Yee et al. (2013). Tsai and Hashash (2009) used vertical 

array data from the Lotung, Taiwan, (soft silts) and La-Cienega, California, (soft clay) arrays in a 

neural network based inverse analysis to extract soil properties. Because their analyses were not 
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constrained by model-based assumptions of soil behavior, they hold the potential to provide 

insights into in situ soil behavior. However, the approach does have the potential to map-modeling 

errors unrelated to soil behavior (e.g., lack of 1D response) into inverted soil properties. Shear-

wave velocity models were slightly adjusted from data in the “learning” process and stress-strain 

loops were extracted. Modulus reduction and damping curves were then computed from the loops, 

which demonstrate stronger nonlinearity than laboratory-based curves (i.e., lower modulus 

reduction and higher damping). The observation of higher damping is also in agreement with 

system identification results obtained from Lotung data by Elgamal et al. (2001). In another study, 

Yee et al. (2013) analyzed vertical array data from the Kashiwazaki, Japan, Service Hall Array site 

(stiff deep soil) under relatively weak and strong shaking conditions. The weak motion data 

showed that Dmin should be increased by 2-5% for GRA results to adequately capture observations. 

Increasing Dmin by 2-5% will make the Dmin estimations very close to the estimations from VS-

based model.  

Kaklamanos and Bradley (2016) used recordings from two KiK-net sites, and observed 

positive (under-prediction) bias in linear GRA with lab-based Dmin. In order to improve the results, 

they used a depth-dependent gradient for the VS profile for eliminating unrealistically large steps 

in the VS profiles, and decreased the lab-based Dmin by 50%. This reduction of geotechnical model 

damping to achieve fit to data is the opposite of the observation from Tsai and Hashash (2009), 

Elgamal et al. (2001), and Yee et al. (2013). Given the fact that all of these studies are based on 

analyzing only one or two sites, it is not surprising that there is not a clear consensus on the issue 

of Dmin in the available literature. By considering multiple sites, I anticipate the findings from 

California vertical arrays will be a valuable addition to the literature.  
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Variability: I compare our results of G,S and  G,lnY with prior studies in the literature in Figure 

4.17a and 4.17b, respectively. The only applicable study of which I am aware is Kaklamanos et al. 

(2013), who used the same KiK-net sites used by Thompson et al. (2012). Similar to Thompson et 

al. (2012), Kaklamanos et al. (2013) optimize damping for each site and recording, which improves 

fit to data relative to the application of damping models as in the present application.  

The comparable values of G,S shown in Figure 4.51a indicate levels of variability in 

California comparable to KiK-net sites. Therefore, while I observe no considerable regional 

dependency in dispersion of residuals when using PSA amplifications, I recognize the potential for 

countering trends: (1) the KiK-net site-to-site dispersion is likely reduced by the damping 

optimization, at least for high frequencies, and (2) the KiK-net dispersion would otherwise be 

expected to be higher than in California due to the relatively poor fit of 1D models to the 

observations.  

In Figure 4.51b, the G,lnY plot from California is slightly higher than G,lnY for KiK-net 

sites, but interestingly, I see the California results fitting inside the approximate range for lnY 

recommended in Chapter 2. The results of these studies on lnY have a flat trend with period, and 

are remarkably consistent despite the differences in their methods of analysis and their databases. 

 

4.5 SUMMARY OF THE RESULTS AND RECOMMENDATIONS 

In this study, I utilized a database of recordings from vertical array sites in California in 

order to study the performance of 1D GRA in predicting site response effects between the 

downhole and surface instruments. The performance of the 1D assumption was studied by 

computing theoretical and empirical transfer functions, and a goodness of fit parameter (r) was 
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used as an indicator of how well the shapes of theoretical and empirical site response transfer 

functions are matching. The shape of the transfer functions are mainly controlled by the position 

of the peaks, and a good match (r>0.6) indicates the 1D model is able to predict the frequencies of 

different resonance modes. I also quantified the dispersion in empirical transfer functions with the 

assumption of a log-normal distribution for the transfer function. The goodness of fit parameter 

(r) and the median standard deviation (σln) of the transfer functions from California vertical array 

sites were compared to the similar results from Thompson et al. (2012) study on KiK-net sites. I 

observed a better goodness of fit and less dispersion for California sites, which indicates better 

predictability of site response transfer functions. However, it is worth mentioning that the goodness 

of fit for a vertical array does not necessarily indicate that 1D GRA would perform well for 

predicting the surface ground motion at a site. In fact, the ability of vertical arrays for validation 

of 1D GRA is limited by their depth if the array does not go deep enough to reach a stiff bedrock 

representing “reference” conditions. For example, the high value of the goodness of fit parameter 

( r ) for WLA site is an indicator of good performance of 1D GRA for predicting site response 

between the surface and the downhole sensor which is 100 m deep. However, the site is located in 

a large basin which is several kilometers deep, and the downhole sensor is located in a soil layer 

with VS =257 m/s. In this case, the effects of the deep basin on surface waves and the amplification 

of long period ground motions are expected, but the amplification would affect the motions both 

at the surface and the downhole, therefore the amplification of long periods cannot be observed 

using the recordings from the vertical array. In other words, 1D GRA can work well for site 

response between surface and downhole, but it may not work as accurately for site response 

between the deep bedrock and the surface if the downhole sensor does not reach the bedrock depth. 

Therefore, caution needs to be taken when using 1D GRA for deep basin sites as discussed in 
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Chapter 2. Another example of a deep basin site (LA La Cienega) is shown in Figure 4.52. In this 

case, the measurements are compared to the estimation from SCEC Community velocity model 

version 4 (See Small et al., 2017). The SCEC model estimations go much deeper, and reach more 

competent materials which are located far below the downhole sensor (Note that depth is shown 

in logarithmic space). As such, we do not expect the vertical array to capture the global site 

response modal frequencies. 

 

Figure 4.52. Shear wave velocity measurements for LA La Cienega site and comparison to the 
prediction by SCEC velocity model (Magistrale et al., 2000) 
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We also quantified the bias and dispersion of 1D GRA predictions of PSA amplifications 

with three different models for small-strain damping. I used bias to compare the effectiveness of 

the three models for estimating in-situ small strain damping. For most of the period range (T >~0.1 

sec) the lab-based damping provides an unbiased estimate of site response, and the VS-based model 

is unbiased for very short periods (T <~0.02 sec), and the bias from GRA with -informed damping 

falling between the two other damping models. The lab-based and VS-based model are completely 

empirical based on geotechnical parameters and VS respectively. In the -informed model, the 

actual recordings at the site have been used as input parameters which makes the -informed model 

site-specific, and the site-specific nature of the -informed model leads to a slight decrease in site-

to-site variability (ηG,S). This indicates a potential predictive power in  for estimation of in-situ 

Dmin in 1D GRA. 

I compared the between-site and within site standard deviations of PSA amplification 

residuals for California sites to the results from KiK-net sites in Japan (Kaklamanos et al., 2013), 

and compare within site standard deviations to the empirical range recommended in Chapter 2. 

Unlike the results from transfer functions, the results indicate no significant regional dependency 

of dispersion for PSA amplification. 
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5 A physically Parametrized Model for 
Significant Duration in Active Crustal 
Regions 

5.1 INTRODUCTION 

We develop prediction equations for metrics describing the duration of strong ground 

motion using a global database for active crustal regions recently developed for the Next 

Generation Attenuation NGA-West2 project (Ancheta et al., 2014). I utilize functions in which 

source and path duration are additive (in arithmetic units, i.e., units of sec), consistent with prior 

work by Abrahamson and Silva (1996) and the second author (Kempton and Stewart, 2006 – 

hereafter KS06). The present work is, for the most part, an update of KS06 using the much larger 

NGA-West2 data set, which allows for broadening of the moment magnitude (M) and rupture 

distance (Rrup) ranges for which the equations are applicable, as well as some adjustments of the 

equations themselves to capture features of the data. 

Prediction equations related to duration parameters published since KS06 include Bommer 

et al. (2009), Lee and Green (2014), Bora et al. (2014), and Boore and Thompson (2014). None of 

these studies utilize the large NGA-West2 data set to provide prediction equations for the 

significant duration parameters most often used for engineering applications. In particular, 

Bommer et al. (2009) utilize the older and smaller NGA-West1 data set (Chiou et al., 2008); Lee 

and Green (2014) focused principally on duration parameters for stable continental regions, but 
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perform comparative analysis using a small subset of active crustal region data compiled in 2001 

(McGuire et al., 2001); Bora et al. (2014) utilize a European data set (Akkar et al., 2014) to develop 

predictive models for durations computed to optimize the fit of a stochastic ground motion 

simulation procedure to pseudo spectral accelerations computed from recordings (i.e., the 

durations are not measured directly from time series); and Boore and Thompson (2014) utilize the 

NGA-West2 data set, but focus solely on the path term (they do not present source or site terms). 

After our model was developed, Du and Wang (2016) also developed a model based on NGA-

West2 database which expanded the usable magnitude range to M3-7.9 (similar to our model). Du 

and Wang (2016) has a different functional form in comparison to our model as discussed below. 

A distinguishing feature of our model relative to other recent duration GMMs (Bommer et 

al., 2009; Lee and Green, 2014; Bora et al., 2014; and Du and Wang, 2016) is that I take the source 

and path contributions to duration as additive in arithmetic units (i.e., sec) and the source term is 

parameterized in physical terms. Other models take source, path, and site terms as additive in 

natural log units, which is multiplicative in arithmetic units. Source terms are typically linear 

functions of M. I hypothesize that path durations would be better represented as additive to those 

for source, based on the physics of the problem. In particular, path durations arise in part from the 

“spreading” of wave arrivals in time due to their different seismic velocities, a process that would 

be expected to produce path durations that scale approximately with site-to-source distance and to 

be essentially independent of source duration. I acknowledge that wave scattering provides another 

physical mechanism that contributes to path duration, and this mechanism is not unambiguously 

additive to source duration. Ultimately, the selected path function must have compatibility with 

the data, which I found to support an additive path duration function (described further in the Path 

Model section).  
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Subsequent sections of this chapter present the prediction equations and regression 

coefficients. This is followed by descriptions of the manner by which the coefficients were 

developed, and a review of model performance in terms of residuals analysis and comparisons to 

prior results in the literature. 

The findings in this chapter have been published in a journal article by Afshari and Stewart 

(2016). 

5.2 DATA SELECTION 

I utilize the NGA-West2 database described by Ancheta et al. (2014). The version of the 

flatfile that I used in our analysis is dated 29 August 2013 and contains 21,539 pairs of duration 

parameters for two as-recorded horizontal components. Metadata accompanying each recording 

that is used in our work includes moment magnitude (M), rupture distance (Rrup), focal mechanism 

(based on T- and P-axis plunge angles; Boore et al., 2013), and the VS30 site parameter (time-

averaged shear wave velocity in upper 30 m of recording site). Some sites also include the depth 

to the 1.0 km/s shear wave isosurface (z1). 

I initially adopted the data screening protocols of Boore et al. (2014) (hereafter BSSA14), 

some important aspects of which include requiring availability of magnitude, distance, and site 

metadata, using only data from active crustal regions, excluding records from large structures, and 

screening of data at large distance as a function of magnitude and instrument type (Figure 1 of 

BSSA14). I consider ground motions from Class 1 (CL1: mainshocks) and Class 2 (CL2: 

aftershocks) events (Wooddell and Abrahamson, 2014), using only events having at least four 

recordings. I exclude any records flagged as questionable by manual inspection by Ancheta et al. 
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(2014); specifically, I require that the “Spectra Quality Flag” under Column JK in the flatfile equals 

0. This screening reduced the size of the data set to 11,284 duration pairs.  

Records were further screened to remove accelerograms judged to be noise-dominated for 

a sufficient portion of the record length that much of the energy accumulation is unrelated to 

seismic wave arrivals. This was a non-trivial process that required considerable data analysis and 

judgement. To illustrate the issue, Figure 5.1(a) shows a record that is noise-dominated in the sense 

that the normal sequence of wave arrivals is obscured in the accelerogram and high-frequency 

energy is persistent throughout the recording. Conversely, the record in Figure 5.1(b) has clearly 

evident p- and s-wave arrivals and the frequency content changes across the signal duration. Both 

records pass screening criteria for GMMs predicting peak accelerations, velocities, and pseudo-

spectral accelerations (such as BSSA14) because spectral ordinates are reliable over some 

frequency range, whereas I posit that the record in Figure 5.1(a) should not be selected for duration 

GMM development. 
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Figure 5.1. Examples of (a) low-amplitude record with duration parameters affected by noise (small 
value of D20-80(v) / D20-80); (b) usable record with duration measures judged as reliable. 

The reason for excluding records such as that in Figure 5.1(a) is the duration measured 

from the accelerogram is unreasonably large, reflecting signal noise. While these problems are 

often obvious from visual inspection, I sought to develop a relatively automated procedure given 

the large number of records in the NGA-West2 database. A feature I found to often be 

characteristic of the condition in Figure 5.1(a) is that durations measured from velocity time series 

are much shorter than those from accelerograms [the calculation of significant duration for velocity 

time series mimics that for acceleration, but with velocity substituted for acceleration in Eq. (1.5) 

(similar to Trifunac and Brady, 1975); result is denoted D20-80(v)]. For screening purposes I flag 
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records with D20-80(v) / D20-80 < 0.65 for visual inspection, and exclude records which appear to be 

noisy.  

Following application of the above criteria, the data set consists of 22,390 individual-

component duration values (11,195 pairs) for each duration parameter. I combine significant 

durations from the two as-recorded horizontal components to produce 11,195 geometric mean 

values. Figure 5.2 shows in red the data distribution in moment magnitude - rupture distance space 

as well as the subset of data also used by KS06 in blue. Data points shown in grey are those from 

the NGA-West2 database that did not pass BSSA14 screening criteria, while those in black were 

excluded by the duration ratio criteria and visual inspection. 

   

 

Figure 5.2. Magnitude and distance distribution of data used in the current work and KS06 (records 
with Rrup < 1 km are shown at 1 km). Data points in black were excluded based on the 
proposed duration ratio criteria and visual inspection. 

5.3 THE EQUATIONS 

I formulated equations in consideration of the physical factors described in the Introduction as 

well as subjective interpretation of nonparametric plots of data such as in Figure 5.3. Those plots 
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show the magnitude- and distance-dependence of duration for strike-slip earthquakes. The data are 

adjusted to a uniform site condition of VS30 = 760 m/s, using the site model described below (these 

corrections are small). Important features of the data that are evident from these plots include: the 

data are insensitive to changes in M for M < 6, with modest increases at larger magnitudes; 

duration increases substantially with distance (i.e., the path duration)  when plotted on log-log 

axes, the path duration increases with distance in a nonlinear manner, generally becoming 

progressively steeper with increasing Rrup (this feature is consistent with the notion of path and 

source durations being additive in arithmetic units, whereas multiplicative models would be linear 

when plotted in log-log space as in Figure 5.3); the aforementioned trends with M and Rrup are 

consistently observed for the three considered duration parameters; and data dispersion decreases 

with increasing M and is smaller for D5-95 than for D5-75 or D20-80. 
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Figure 5.3. Variation with rupture distance of duration parameters for strike-slip earthquakes binned 
by M. Records with Rrup < 1 km are shown at 1 km. 

 

I predict ground motion duration using the following expression: 

         30 1ln ln , ,E P rup S S nD F mech F R F V z     M M  (5.1) 

where lnD is the natural log of significant duration; FE and FP are functions for source 

(“event”) and path durations, respectively, expressed in units of sec; FS is a site term that is additive 

in natural log units (hence multiplicative with the source and path durations); n is the standard 

normal variate representing the fractional number of standard deviations of a single predicted value 

of lnD away from the mean (e.g., n= -1.5 is 1.5 standard deviations smaller than the mean); and 
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 is the total standard deviation of the model. Although not shown here for brevity, the data were 

found to be log-normally distributed at confidence levels > 95% (using the Pearson chi-square 

normality test; Pearson, 1900) when de-trended in the form of residuals.  

Source duration is taken as the inverse of the corner frequency (fc) in the Fourier Amplitude 

Spectrum (Hanks and McGuire, 1981): 

 
 

0 1

0 1

1
E

f
F

b mech






M M

M M
 (5.2) 

The use of a constant duration (b0) at small magnitudes (M ≤ M1) is motivated by the lack 

of M-dependence in the data for small magnitudes, as shown in Figure 5.3. Corner frequency is 

related to seismic moment and stress drop as (Brune, 1970, 1971): 

  
1 36

0 04.9 10 /f M     (5.3) 

where  is the shear wave velocity at the source (taken as 3.2 km/s),  is stress parameter 

in bars (following KS06, I interpret  as an index parameter loosely related to stress drop for 

model-building purposes), and M0 is the seismic moment in dyne-cm, which is computed as 

(Hanks and Kanamori, 1979): 

 
1.5 16.05

0 10M  M
 (5.4) 

Stress index parameter   as used here is intended to capture source duration 

characteristics only, and as such, should not be confused with terms such as stress drop or stress 

parameter used elsewhere in studies of ground motion amplitude (e.g. Atkinson and Beresnev, 

1997; Boore, 2003). I relate  to M using two connected line segments: 
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 (5.5) 

where b1, b2, b3, and M2 are model parameters and M* is a reference magnitude (taken as 6).  

Path duration is linearly dependent on distance Rrup, but with different slopes for three 

Rrup intervals with changing slopes at R1 and R2: 

   
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 (5.6) 

where c1 to c3, R1 and R2 are model parameters. Site term FS is taken as: 
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 (5.8) 

Parameters c4, c5, Vref, V1, and z1,ref are model parameters set by regression or by visual inspection 

of the data. The model produces scaling with VS30 only for VS30 ≤ V1. The basin depth term 
1zF

captures the effects of depth to bedrock which is dependent on sediment depth differential z1. The 

scaling is present for z1 smaller than the upper limit z1,ref. According to BSSA14, z1 is calculated 

as the difference between the depth to shear wave velocity of 1000 m/s for the site (z1), and a 

median depth z1 conditional on VS30: 



 

172 

 

 

 1 1 ( )z1 S30z z V    (5.9) 

Depth z1 is best obtained from a site-specific VS profile that penetrates the 1000 m/s shear-wave 

horizon. Lacking that information, z1 can be estimated using basin models in the literature, which 

are currently available for Japan and urban portions of California (links and references given in 

Seyhan et al., 2014) as well as Seattle (Frankel et al., 2007) and Taipei, Taiwan (Wang et al., 

2014). Median depth z1 conditional on VS30 can be computed for California and Japan as: 

 California:  
4 4

4 4
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4 1360 570.94
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 Japan:  
2 2

2 2
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2 1360 412.39
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 
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 
 (5.11) 

where z1 is in units of km and VS30 is in units of m/sec. Models for z1 are not currently available 

outside of California and Japan; such applications should use a default value of z1 = 0. 

The total standard deviation  is partitioned into components representing between- and within-

event standard deviations ( and , respectively): 

      2 2   M M M  (5.12) 

The M-dependent component standard deviations are given by: 
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where parameters 1, 2, 1, and 2 are estimated based on values of M-dependent  and . Model 

coefficients are given in Tables 5.1 – 5.3. 

Table 5.1. List of parameters used for source model (N: normal, R: reverse, SS: strike-slip) 

 M1 M2 M* b0 (sec) b1 b2 b3 

D5-75 5.35 7.15 6 

1.555 (N) 

0.7806 (R) 

1.279 (SS) 

1.280 (Unknown) 

4.992 (N) 

7.061 (R) 

5.578 (SS) 

5.576 (Unknown) 

0.9011 -1.684 

D5-95 5.2 7.4 6 

2.541 (N) 

1.612 (R) 

2.302 (SS) 

2.182 (Unknown) 

3.170 (N) 

4.536 (R) 

3.467 (SS) 

3.628 (Unknown) 

0.9443 -3.911 

D20-80 5.2 7.4 6 

1.413 (N) 

0.7754 (R) 

0.8833 (SS) 

0.8851 (Unknown) 

4.778 (N) 

6.579 (R) 

6.188 (SS) 

6.182 (Unknown) 

0.7414 -3.164 

 

 

Table 5.2. List of parameters used for the path model and site terms 

 
c1 

(sec/km) 

c2 

(sec/km) 

c3 

(sec/km) 
c4 

c5  

(1/km) 

R1 

(km) 

R2 

(km) 

V1 

(m/s) 

Vref 

(m/s) 
z1,ref 

(m) 

D5-75 0.1159 0.1065 0.0682 -0.2246 0.0006 10 50 600 368.2 200 

D5-95 0.3165 0.2539 0.0932 -0.3183 0.0006 10 50 600 369.9 200 

D20-80 0.0646 0.0865 0.0373 -0.4237 0.0005 10 50 600 369.6 200 
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Table 5.3. List of parameters used for standard deviation components 

 1 2 1 2 

D5-75 0.28 0.25 0.54 0.41 

D5-95 0.25 0.19 0.43 0.35 

D20-80 0.30 0.19 0.56 0.45 

5.4 MODEL DEVELOPMENT 

Our GMMs were developed in a phased process in which certain model elements were held 

constant (e.g. path and site) while one was regressed against the data (e.g., source). The subsequent 

phase would then hold the just-established model element fixed while regressing another 

component. Phasing of this sort was required because a single mixed-effects regression with the 

full function would not converge. I describe the specific implementation of this approach for the 

source, path, and site terms in the following sections. 

5.4.1 primary source model: M-scaling 

The source model consists of constant term b0 for M < M1 and M-dependent terms at larger 

magnitudes. Per Eqs. (5.2)(5.4), a source model in which duration is constant with respect to M 

requires linear scaling of  with M at a slope of b2 = b3 = 3.45. This slope is shown in Figure 5.4 

with a dashed blue line. The steep increase of  with M shown by this line is required to keep f0 

high and duration low as M increases. 

I regress the duration data to investigate the variation of  with M, expecting slower 

scaling of  than required for the constant duration model. In the first phase of this regression, I 

adopted the function in Eqs. (5.1)(5.5) but with no site term (FS = 0), path coefficient c1 in Eq. 

(5.6) set from KS06 (c2 and c3 were taken as zero for this preliminary analysis), and  as a free 

parameter I evaluated source duration for each individual earthquake using mixed-effects analysis 
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performed with the LME routine in program R (Pinheiro et al., 2013). The estimated source 

duration is then converted to using Eqs. (5.2)(5.3), with results similar to those shown by the 

discrete symbols in Figure 5.4. Using this same process, I also evaluate median values of  for 

events within bins 0.5 magnitude units in width using mixed effects procedures (marked as ‘binned 

medians’ in Figure 5.4). 

The discrete data points and binned medians shown in Figure 5.4 were derived following 

several phases of analysis in which source and path terms were incrementally adjusted (details 

below). The plotted points reflect the  values that are derived when the final recommended path 

and site terms are considered in the derivation of the event-specific stress drop indices . The 

results in Figure 5.4 are for the D20-80 duration parameter – similar results for the other duration 

parameters are given in the Electronic Supplement.  

Source durations for some earthquakes do not appear in Figure 5.4  this occurs when 

source durations (obtained from the subtraction of path durations from observations) are negative, 

in which case  is undefined for that event. In contrast, the binned median values of  are 

computed using all events within the bin, including those producing a negative source duration. 

This can cause the binned median values of  in Figure 5.4 to not plot near the center of the data 

(this occurs near M1 for D20-80 and D5-95).  
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Figure 5.4. Stress drop index values calculated for each event for D5-75 (a), D5-95 (b), and D20-80 (c) as 
well as the binned medians and fitted function (mechanism-independent). 

 

The trends of the results in Figure 5.4 indicate that  increases with M at progressively 

slower rates as M increases across the considered range of M=38. I parsed the full range into 
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three intervals bounded by M1 (at about 55.5) and M2 (at about 77.5). For M < M1,  increases 

with M at approximately the rate required for M-independent source duration for D20-80, (Figure 

5.4c) and at even faster rates for other duration parameters (Figure 5.4a and b). I consider this 

feature of the computed stress drop indices to be influenced by difficulties in properly separating 

path from source durations for small M events, where source durations are small and noise effects 

in the data are large. Nonetheless, the data in Figure 5.4 support the M-independent model 

represented by coefficient b0 in Eq. (5.2), which is the source duration at M = M1 in units of 

seconds. As such, our model can be used to provide duration predictions for M < M1, albeit with 

a higher degree of epistemic uncertainty than at higher magnitudes. I recognize that this M-

independent duration feature of the low-magnitude data requires the stress drop term to exhibit 

stronger magnitude-dependence than has been observed previously for amplitude-related ground 

motion intensity measures (Allmann and Shearer, 2007 and 2009). This presumably occurs 

because source attributes affecting low-frequency ground motions (i.e., near corner frequency f0) 

are not perfectly correlated with those controlling duration, at least with respect to their relative 

magnitude-dependencies. I accept these differences in  trends because our objective is to capture 

features of duration data. This underscores our previous remark that  is a stress index and should 

not be confused with other stress parameters in the literature used for prediction of ground motion 

amplitude.      

For M > M1,  increases with M at a slower rate that required for a constant duration 

model, indicating that source duration increases with M as expected. For the two largest events in 

the NGA-West2 data set (M 7.9 Denali, Alaska and M 7.9 Wenchuan, China),  is markedly 

lower than suggested by a trend line established at lower magnitudes. I considered ignoring these 

features and simply extending the linear relation between  and M beyond M2. However, such 
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an approach produces severe distortion of residuals at large magnitudes, and so we elected to 

capture this feature of the data in our model. I acknowledge that other modelers may make different 

decisions in this regard, and as such, that model performance at large magnitudes (M > M1) is 

subject to larger epistemic uncertainty than at lower M. I considered alternate functions to capture 

this feature of the data (bi-linear with second line being flat, parabolic), but after much trial and 

error settled upon the tri-linear model shown in Figure 5.4 that allows  to have a negative slope 

set by data at large magnitudes (M > M2). The model fit shown in Figure 5.4 for M > M1 is based 

on a simple least-squares linear regression through the binned medians to set coefficients b1b3. 

Attempts to set these coefficients through alternative procedures (linear mixed effects regression 

and least-squares linear regression through event-specific values) produced poorer fits to the 

data than the adopted approach.  

Focal mechanism affects the low-M duration (b0) and the apparent stress drop scaling term 

b1. I initially estimated those parameters as overall averages set by regression without 

consideration of mechanism. Those values are given in Table 5.1 with the mechanism marked as 

‘unknown’. The adjustments for focal mechanism were then set following establishment of path 

scaling through residuals analysis, as described further in the Secondary Effects section below. 

Results of those analyses are reflected in the mechanism-dependent b0 and b1 coefficients in Table 

5.1 and are illustrated in Figure 5.5. Normal fault earthquakes have the largest source durations for 

a given M and reverse mechanisms the smallest, with strike-slip being intermediate. Also shown 

in Figure 5.5 are event-specific source durations compatible with their associated stress drop 

indices (from Figure 5.4). 
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Figure 5.5. Average source durations for D5-75 (a), D5-95 (b), and D20-80 (c) by event type, evaluated from 
stress drop index per Eq. (5.2) and (5.3). Source durations smaller than 0.1 sec are 
plotted at 0.1 sec. 

Because of the aforementioned difficulties in separating source and path durations for low 

magnitude data (i.e., for events with M < M1), work on other model components (other than 
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primary magnitude-scaling) utilized data with M ≥ M1. This smaller subset of data consists of 

5903 recordings from 107 earthquakes for D5-75, and 6089 recordings from 114 earthquakes for 

D5-95 and D20-80. The applicability of path and site models developed on this basis for lower 

magnitudes is verified subsequently through residuals analysis. 

5.4.2 path model 

The path model consists of distance scaling coefficients c1 to c3, which differentiate path 

scaling rates for three distance ranges: Rrup ≤ R1, R1 < Rrup ≤ R2, and Rrup > R2. As indicated in the 

Introduction, our path term is additive with source duration, which is different from most recent 

duration GMMs but consistent with KS06 and BT14. KS06 used a simple linear path scaling 

function, whereas BT14 use a multi-linear function with slope breaks at 7, 45, 125, 175, and 270 

km. 

As described in the previous section, our first iteration in developing the source model 

regressed for parameters b1-b3 with path terms fixed at the values from KS06. In order to guide 

our selection of a path function, I then sought to ‘turn off’ the path model and identify misfits of 

the data relative to a path-removed model with adjustments for event-specific data/model misfits. 

This was done by first computing residuals between data and model: 

  ln ,ij ij ij rupR D R  M  (5.15) 

where ij is the GMM mean in natural log units for recording j in event i. Those residuals were 

then partitioned into between- and within-event components as follows using mixed-effects 

analysis as implemented in the LME command in program R (Pinheiro et al., 2013): 

 ij k i ijR c      (5.16) 
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In this approach, ck is the overall model bias (nearly zero since residuals are being computed for 

the same data used in model development), i is the between-event residual (event term) for 

earthquake i, which represents the degree to which an individual event is high or low relative to 

the average, and ij is the within-event residuals for recording j in event i. 

Armed with i 
values, I then computed record-specific path duration against an approximately 

bias-removed source model as follows:  

  0

, exp , 0P ij ij ij rup iF D R     
 

M  (5.17) 

where the superscript ‘0’ on 
0
ij  is to indicate that the duration prediction has the path term removed 

(equivalent to setting Rrup = 0). I plot in Figure 5.6 the quantity FP,ij (in units of sec) against Rrup 

for the D20-80 duration parameter. I found this form for the plots to be useful in guiding selection 

of a path duration function. The data points shown in Figure 5.6 are derived from the final model, 

following multiple iterations whereby in each iteration the path model is modified, and those 

modified path models are used to re-derive the source model. Through this process the trends of 

the path terms were relatively consistent from iteration-to-iteration. Moreover, whereas initial 

stages of this analysis did not consider site effects in the derivation of FP,ij, in the final iteration 

site effects were included in the analysis of 
0
ij  in Eq. (5.17). 
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Figure 5.6. Path durations calculated for D5-75 (a), D5-95 (b), and D20-80 (c); path duration points 
calculated for records with M>M1 after subtracting the source duration and the effects 

of event-to-event variability (i). Binned medians also shown along with model fit. 

 

Figure 5.6 shows individual path durations for M>M1 along with median values within 

equally spaced distance bins. The most clearly evident data trends in Figure 5.6 are relatively linear 
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above and below a transition distance of 50 km, with faster path scaling at closer distances. When 

the data was fit in this manner, I encountered misfit for Rrup < 10 km, so a second break in the path 

term was introduced at 10 km. Coefficients for the resulting tri-linear distribution were derived 

from nonlinear least squares regression as part of the iterative model derivation [the use of least 

squares in this case is compatible with the principles of mixed effects regression, because random 

effects (event terms) have been removed from each data point]. The resulting fits to data are shown 

in Figure 5.6. The model fit is slightly higher than the binned medians because model coefficients 

are set to fit the mean of the data. Figure 5.7 shows that path durations are ordered as 

D20-80 < D5-75 < D5-95 (total durations typically order as D20-80  D5-75 < D5-95; Figure 5.7 shows 

model fits only). 

I queried the path durations for possible M-dependency. When the path durations are 

separated into distinct M bins, F-tests (Cook and Weisberg, 1999) do not show the results to be 

significantly distinct. The finding that path durations are not significantly different over the wide 

M range in the data set indicates that an additive path function is preferred to a multiplicative 

function, which would necessarily couple path duration with magnitude. I note that BT14 also 

recommend an M-independent path duration.  

A;s jd;j 
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Figure 5.7. Mean path durations predicted for the three duration measures. 

 

5.4.3 Primary Site model: Vs30 -scaling 

Our model development process reached stable and consistent results for the source and 

path models by performing multiple iterations in which these model components were successively 

regressed using the function in Eq. (5.1) with the site term FS set to zero. I then examined site 

effects using mixed effects residuals analysis (Eq. 15-16) with records from events with M>M1. I 

investigated VS30-scaling by plotting within-event residuals (ij from Eq. 5.16) against VS30 as 

shown in Figure 5.8. The figure shows individual data points, binned means, and the fit line as 

described further below.  
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Figure 5.8. VS30-dependence of within-event residuals of model in which site term FS in Eq. (5.1) is 
set to zero for D5-75 (a), D5-95 (b), and D20-80 (c). Individual data points are shown for records 
with M>M1 along with binned means, their 95% confidence intervals, and the final fit. The 
final model uses the slope (c4) and limiting velocity (V1) marked in the figure. 

  



 

186 

 

 

I find the binned means of residuals to decrease essentially linearly with VS30 up to a 

limiting value (V1) of 600 m/s. The slopes are modest, being approximately -0.22, -0.32, and -0.42 

for D5-75, D5-95, D20-80, respectively. For comparison, VS30-gradients for PGA and PGV are 

approximately -0.6 and -0.84, respectively (Seyhan and Stewart, 2014). The trends shown in 

Figure 5.8 motivated selection of the VS30-scaling function in Eq. (5.7). The regression results are 

indicated in Table 5.2.  

Final coefficients for the site model were obtained using an iterative process in which the 

fit through the binned means is added to the site term from previous step until reaching a flat trend 

in ij against VS30 at the final iteration. Once the site model had been established in this manner, 

site corrections were applied in the development of the final source and path durations and related 

regressions, with the results presented in prior sections.  

5.4.4 Secondary effects 

Once the primary M-scaling function (using the mechanism-independent b0 and b1 values), 

path function, and VS30-scaling had been established, I investigated additional effects related to 

focal mechanism, event type, and basin depth through mixed-effects residuals analysis carried out 

using Eqs. (5.15)-(5.16). 

The effects of focal mechanism are investigated by binning event terms i by event type 

for M>M1, as shown in Figure 5.9 along with binned means. Relative to a mechanism-independent 

model, I find strike-slip earthquakes to be effectively unbiased (unsurprising as they dominate the 

data set) and normal- and reverse-slip events to have positive and negative bias, respectively. These 

trends for duration are opposite to those for high-frequency pseudo-spectral accelerations (high 

amplitudes are associated with short durations and vice-versa), which is consistent with prior work 
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showing negative correlation between these ground motion intensity measures (Bradley, 2011). 

The mean values for the respective bins guided the mechanism-specific b0 and b1 values in Table 

5.1. 

 

Figure 5.9. Between-event residuals binned by focal mechanism for records with M>M1 along with 
binned means and their 95% confidence intervals indicating the systematic biases for 
different focal mechanisms. Results shown for all three investigated duration 
parameters. 

 

In Figure 5.11(a, c, and e), I show event terms for CL1 and CL2 event types against M. 

The regions contributing the majority of the CL2 data are China and California. The CL2 events 

from China are generally in the range M ~ 4.5-6 and have negative event terms. Similar trends for 

Chinese CL2 events, but with positive event terms, were found by Boore et al. (2013) for some 

amplitude-related intensity measures. While casual inspection of Figure 5.11(a, c, and e) suggests 

the presence of M ranges with significant bias of CL2 events relative to CL1 events, an evaluation 

of this type fails to account for several key features of the data: (1) of the 104 CL2 events, 49 are 

from a single event (Wenchuan) and 14 are single CL2 events trailing a mainshock CL1 event. 

Hence, the data sampling (in terms of numbers of CL2 events following the parent CL1 events) is 

highly non-uniform. 
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As was done for amplitude by BSSA14 and Boore et al. (2013), we consider the differences 

between CL2 events and the parent CL1 event to be a more robust means by which to assess the 

effects of event type, because it accounts for possible correlations between parent and child event 

terms. I consider CL1 events with 3 or more child CL2 events. For each pairing, I compute (

2 1C C     ), where 2C  is the mean of the CL2 event terms and C1 is the event term for the 

parent CL1 event. Figure 5.10(b, d, and f) shows the resulting values of  as a function of M for 

the CL1 event. I see no significant trend in the results, nor any particular bias. Accordingly, I 

conclude that the GMMs, which were developed using both CL1 and CL2 events, can be 

considered applicable to both.  
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Figure 5.10. Between-event residuals plotted against M for CL1 and CL2 events for D5-75 (a), D5-95 (c), 

and D20-80 (e); and differential event terms () plotted against the magnitude of their 
parent event along with 95% confidence intervals for D5-75 (b), D5-95 (d), and D20-80 (f). 

 

As shown in Figure 5.11, the effects of basin depth were investigated by plotting 

within-event residuals for M>M1 against basin depth differential z1 for the subset of the data 

where this parameter is available. I find no scaling with z1 for z1 > 200 m; note this does not 

imply no dependence of duration on depth in this range, but merely indicates that information on 

basin depth does not carry predictive power beyond the default basin depths associated with VS30. 
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For z1 < ~ 200m, residuals increase with z1 in a statistically significant manner (based on non-

overlapping confidence intervals of binned means at the limits of the range). A two-segment linear 

function was fit through the binned means to establish the coefficients in Eq. (5.8). 
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Figure 5.11. Variation of within-event residuals with basin depth differential z1 for D5-75 (a), D5-95 (b), 
and D20-80 (c) using records with M>M1. The plotted residuals were derived without using 
a basin depth term in the site model. 

 



 

192 

 

 

5.5 MODEL PERFORMANCE 

5.5.1 residuals 

The performance of the final model, following the many adjustments and iterations 

described in the prior sections, is tested by mixed-effects residuals analysis (Eqs. 5.15 and 5.16). 

These residuals analyses are performed both for the subset of data with M>M1 (encompassing 

most engineering applications) and for the full data set including smaller magnitudes.  

For the M>M1 data, overall model bias term ck is 0.0099, -0.0002, and 0.0393 for 

parameters D5-75, D5-95, and D20-80, respectively. These are considered acceptably small. Plots of 

between-event residuals (i) and within-event residuals (ij) against relevant independent variables 

are shown in Figures 5.12-5.14. Performance of the source model is judged by plots of i versus 

M and by binned means within focal mechanism groups. As shown in Figures 5.12-5.14, these 

trends are flat for M > M1. Performance of the path and site models is judged from trends of ij 

against rupture distance Rrup and VS30, respectively. The trends are flat, suggesting these effects are 

properly captured in the model. The data for Rrup <  3 km are sparse, so I have less confidence in 

the robustness of the trends in this range. Although not shown in Figures 5.12-5.14, there are also 

no trends with z1. 
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Figure 5.12. Plots of between-event and within-event residuals for D5-75 along with their binned 
means and 95% confidence intervals showing their trends with (a) magnitude, (b) focal 
mechanism, (c) distance, and (d) VS30. 
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Figure 5.13. Plots of between-event and within-event residuals for D5-95 along with their binned 
means and 95% confidence intervals showing their trends with (a) magnitude, (b) focal 
mechanism, (c) distance, and (d) VS30. 
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Figure 5.14. Plots of between-event and within-event residuals for D20-80 along with their binned 
means and 95% confidence intervals showing their trends with (a) magnitude, (b) focal 
mechanism, (c) distance, and (d) VS30. 

 

Residuals analyses were also performed for the full data set. The model exhibits some bias 

relative to this data, which I illustrate by plotting the sum ck + i against M in Figure 5.15(a, c, and 

e). The bias occurs for M < M1 events, being negative near M5 and positive for M < 4.5. I 

consider these source duration trends from the data to be unrealistic and to reflect aforementioned 

difficulties in separating source and path effects at small magnitudes. For this reason, I did not 

attempt to model these features, instead adopting a relatively simple M-independent source 

duration for M < M1.  Figure 5.15(b, d, and f) shows trends of ij with distance for the M < M1 

data only. The binned means of these residuals retain a nearly flat trend with distance, with the 
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95% confidence interval for most bins encompassing zero. This indicates that the path durations 

derived for larger magnitude data remain applicable for M < M1.  

 

  

Figure 5.15. Plots of between-event residuals for D5-75 (a), D5-95 (c), and D20-80 (e) across the full M 
range; and within-event residuals for D5-75 (b), D5-95 (d), and D20-80 (f) showing trend with 
rupture distance, using data for M < M1 only along with their binned means and 95% 
confidence intervals. 
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5.5.2 Standard Deviation 

The standard deviation model has two components: between-event standard deviation () and 

within-event standard deviation (). Figures 5.16-5.18 shows binned values of both  and  with 

M and  with Rrup. These standard deviations were derived using the full data set (including M < 

M1 events). Key features from these plots are that the  term is larger, and that while both terms 

are M-dependent, the sensitivity to M is greater for  than for . Given the magnitude dependence 

of , the trends of  vs Rrup were evaluated using data from events with M > 5.75, as shown in 

Figures 5.16-5.18(c). Unlike with amplitude parameters (Boore et al., 2014), standard deviation  

has no clear dependence on Rrup. I capture the M-dependence of  and  by computing standard 

deviations within relatively broad M bins (defined per Eqs. 5.13-5.14). I considered many possible 

limiting magnitudes for the upper bound of the low-M bin and the lower bound of the high-M bin. 

The bounding magnitudes reflected in Eqs. (5.13-5.14) reflect limits beyond which systematic 

changes in these standard deviations were observed from these analyses. I use a simple linear 

interpolation between the limiting magnitudes, as shown in Figures 5.15-5.18.  
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Figure 5.16. Binned standard deviation terms for D20-80 plotted against independent variables along 
with standard deviation models per Eqs. (5.13)-(5.14): (a) between-event standard 

deviation  vs. magnitude, (b) within-event standard deviation  vs. magnitude, and (c)  
vs. distance for M > 5.75 data. Confidence intervals for binned standard deviations are 
assumed to follow the chi distribution, which is not symmetric. 

 

 

Figure 5.17. Binned standard deviation terms for D5-75 plotted against independent variables along 
with standard deviation models per Eqs. (5.13)-(5.14): (a) between-event standard 

deviation  vs. magnitude, (b) within-event standard deviation  vs. magnitude, and (c)  
vs. distance for M > 5.75 data. Confidence intervals for binned standard deviations are 
assumed to follow the chi distribution, which is not symmetric. 
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Figure 5.18. Binned standard deviation terms for D5-95 plotted against independent variables along 
with standard deviation models per Eqs. (5.13)-(5.14): (a) between-event standard 

deviation  vs. magnitude, (b) within-event standard deviation  vs. magnitude, and (c)  
vs. distance for M > 5.75 data. Confidence intervals for binned standard deviations are 
assumed to follow the chi distribution, which is not symmetric. 

 

5.6 COMPARISON TO OTHER MODELS 

I compare the present model to the other recent duration GMMs referenced in the Introduction. 

Separate comparisons are made for source, path, and total durations and I comment on epistemic 

uncertainties as inferred from these comparisons.  

5.6.1 Source duration 

Source durations are computed from the GMMs using zero distance, a reference site condition of 

VS30 =760 m/s, and a strike-slip focal mechanism. Resulting trends of median D5-75 and D5-95 source 

durations with M are shown in Figure 5.19.  

For D5-75, all source models except Du and Wang (2016) model have an exponential form 

resulting in linear trends in semi-logarithmic space (as plotted, KS06 appears as slightly nonlinear 

due to an additive site term that is non-zero for VS30 =760 m/s). Our model also has an exponential 

form for source duration, but the tri-linear function for  introduces slope changes at M1 and M2. 

the gradient of the two NGA-Ist2 models expressing the scaling of source duration with M for 
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M1<M< M2 is somewhat flatter than older models. I note here that the prior models generally did 

not use data from the two M7.9 events in the NGA-West2 data set (exception is Bommer et al. 

2009, who used the NGA-West1 data set, which included the 2004 Alaska earthquake recordings), 

hence the two new models are presumably better constrained at large magnitude. Results for D5-95 

are similar, except that Lee and Green (2014) use a nonlinear-exponential source function that 

produces a nonlinear trend in semi-logarithmic space (Figure 5.19). That nonlinear trend flattens 

at small M, approaching the constant source duration term employed in our model for M < M1. 

Bearing in mind that the ordinate axis has a logarithmic scale, the ratio of upper/lower 

bound median models near the middle of the data range (around M 6) is approximately a factor of 

1.5 for D5-75 and two for D5-95. This level of epistemic uncertainty almost certainly increases 

considerably beyond the approximate limits of the older models, namely for M < 4-5 and M > 

7.5. For both D5-75 and D5-95, our model and Du and Wang (2016) model deviate in their trends 

with M from extrapolations of older models in the literature for small magnitudes. I have 

introduced the flat trend while Du and Wang (2016) model still has a small M-scaling for small 

magnitudes. For M > 7.5, the Du and Wang (2016) model does not reflect a sharp change in 

magnitude scaling. This shows a difference in M-scaling in the two models despite the fact that 

they are based on the same database. The difference is due to the fact that I have chosen to 

introduce a sharp change in M-scaling in order to better capture the long duration of the two M7.9 

events (Denali and Wenchuan), while Du and Wang (2016) decided not to change M-scaling 

because of these two specific events. The difference between M-scaling between the two models 

as discussed above, must be noted, and reflected in the epistemic uncertainty of prediction of very 

small or very large magnitude events. 
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Figure 5.19. Comparison of the prediction by different models for zero distance and reference site 
condition (VS30=760 m/s) for (a) D5-75 and (b) D5-95. CENA=central and eastern north 
America; WNA=western north America; KS06=Kempton and Stewart (2006); LG14=Lee 
and Green (2014); BEA09=Bommer et al. (2009); DW16=Du and Wang (2016). 

5.6.2 path duration 

Our path duration term is additive, and as such can only be compared to similarly formatted 

additive path duration models in the literature (KS06; BT14). As shown in Figure 5.20, the path 

durations for different models have general similarity, although KS06 use a single slope and BT14 

use a multi-linear model with somewhat different trends than those found here (i.e., flatter between 

40 and 120 km).  

 

Figure 5.20. Comparison of path duration predicted by different models 
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5.6.3 Total duration 

We compare in Figure 5.21 total median durations predicted by our model with those for 

other duration GMMs. I include each of the GMMs discussed in the Introduction with the 

exception of Bora et al. (2014), which is not for significant duration. The source durations (at Rrup 

= 0) exhibit model-to-model variability (largest/smallest) of about a factor of 1.5 for M ≥ 6.25, 

which grows to a factor of more than two at a distance of 200 km.  

The results in Figure 5.17 provide a more complete picture of model-to-model variability 

inclusive of path duration, because the use of total duration allows models with multiplicative path 

duration functions to be included. The variability is somewhat higher than is reflected in Figure 

5.20, which is driven in part by the LG14 CENA model (which often provides upper bounds at 

large magnitudes) and the BEA09 model. The BEA09 model has a much flatter trend with distance 

at large magnitudes, which results from their use of an M-dependent path term in which path 

scaling decreases with M. For M5, there is a notable difference between our model and DW16 

model in their trends with distance. Similar to what was observed for the source durations, this 

difference is a result of different assumptions in developing the two models. I suspect that the weak 

recordings having a small magnitude and large distance can be affected by noise, so I introduced 

methodologies to address the issue, and introduced a flat trend with M for small magnitudes, while 

this approach was not taken in developing DW16 model.  
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Figure 5.21. Comparisons of median durations predicted by other models for a reference site 
condition (VS30=760 m/s) and the duration parameters of D5-75 and D5-95. 

 

5.7 CONCLUSIONS 

I present GMMs for three significant duration parameters derived from the NGA-West2 

database. The new relations are a significant improvement over KS06 and other recent duration 

GMMs because of the size of the database and associated improvements in the reliability of the 

models. 

Our GMMs are intended for application in tectonically active crustal regions. I recommend 

the following limits for the predictor variables used in our GMMs: 
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 Strike-slip and reverse-slip earthquakes, M = 3 to 8.0. As discussed in the text, epistemic 

uncertainties are relatively large below M 5 (due to difficulties in separating source and 

path durations) and above M 7.5 (due to only two events).  

 Normal-slip earthquakes, M = 3 to 7 

 Distance, Rrup = 0 to 300 km 

 Time-averaged shear wave velocities of VS30 = 150 to 1500 m/s 

 Basin depth, z1 = 0 to 3.0 km 

 CL1 (mainshock) or CL2 (aftershock) event types 

These limits are subjective estimates based on the distributions of the recordings used to 

develop the equations. Unlike KS06, I have not considered near-fault effects (such as pulse-like 

ground motions) in our formulation of the duration model. This was done in large part because of 

the lack of consensus from the NGA-West2 project on optimal parameterizations of near-fault 

effects. I expect these effects to be considered in future work. 
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6 Validation of Duration Parameters from 
SCEC Broadband Platform Simulated 
Ground Motions 

6.1 INTRODUCTION 

The Southern California Earthquake Center (SCEC) has developed a broadband platform 

(BBP) that hosts five finite source simulation methods, with the intention of developing those 

methods to a degree that they can be considered suitable for engineering application. Achieving 

this level of acceptance requires validation of the motions produced by the simulation routines, 

which has been undertaken through a coordinated program involving different validation 

approaches considering different ground motion intensity measures. The validation studies can be 

divided into two groups: (1) studies which compare the intensity measures from the simulation to 

the ones from recorded data or empirical models, and (2) studies that validate simulated motions 

indirectly by comparing computed structural responses for the cases of excitation from simulations 

vs. recorded ground motions. 

An example of the first type of validation is Goulet et al. (2015), who investigated the 

suitability of predicted pseudo-spectral accelerations as estimated from 1D simulation models (i.e., 

Green’s functions used in the simulations assumed a laterally constant site condition). This 

evaluation was completed by Dreger et al. (2015) using SCEC BBP version 14.3 simulation 

methods denoted EXSIM, GP, SDSU, and UCSB (Atkinson and Assatourians, 2015; Graves and 
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Pitarka, 2010 and 2015; Olsen and Takedatsu, 2015; and Crempien and Archuleta, 2015 

respectively). Based on comparisons of the simulations to recorded pseudo-spectral accelerations 

(PSAs) from specific earthquakes and trends from semi-empirical ground motion models, and 

focusing on median trends only (i.e., not considering dispersion), Dreger et al. (2015) found that 

these simulations can “provide acceptable estimates of median PSA from 0.01 to 3 s oscillator 

period within the validation magnitude range (M 5.4-7.2)”. Burks and Baker (2014) proposed a 

list of checks beyond PSA that can be considered as part of validation exercises including the 

correlations of spectral acceleration across periods, ratio of maximum-to-median component 

spectral accelerations, and ratios of inelastic-to-elastic spectral displacements for single degree-

of-freedom oscillators. Rezaeian et al. (2015) conducted a validation study based on the evolution 

of intensity and frequency content of ground motions. Duration was used as a validation parameter 

by Hartzell et al. (1999), who considered duration along with Fourier amplitude and response 

spectra to validate simulations of 1994 Northridge earthquake ground motions using the 13 

simulation techniques. Examples of the second type of validation have typically examined the 

response of nonlinear, multi-degree of freedom structural systems (Galasso et al., 2013; Zhong 

and Zareian, 2016). 

This study fits into the first group –comparisons of intensity measures (in this case, 

duration) from simulations to those from a semi-empirical GMM. I acknowledge that validation 

solely on the basis of duration provides an inadequate basis for judging the suitability of a 

particular set of simulations for engineering practice because the amplitude and frequency-content 

of ground motion are more important features controlling structural response. As such, the present 

work is intended to supplement the prior work of Goulet et al. (2015) and Dreger et al. (2015), 
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which did not consider duration, as a part of a broader ‘validation gauntlet’ being undertaken by 

SCEC (http://collaborate.scec.org/gmsv/Main_Page). 

I utilize the significant duration metric (Trifunac and Brady, 1975), which is defined from 

the time variation of normalized Arias intensity (IA). I consider significant duration parameters for 

time intervals between 5-75%, 5-95%, and 20-80% of normalized IA, which are denoted D5-75, D5-

95, and D20-80, respectively. Various significant duration parameters have been found to have 

predictive power for a number of engineering applications, including structural collapse capacity 

(Hancock and Bommer, 2007; Raghunandan and Liel, 2013; Chandramohan et al., 2016), landslide 

displacement (Bray and Rathje, 1998), and response of concrete dams (Zhang et al., 2013). Both 

D5-95 and D5-75 have been considered in these applications. Boore and Thompson (2014) used D20-80 

for predicting path effects on duration, anticipating that it would better represent the time window 

of shear-wave arrivals, and was less affected by noise effects. To our knowledge there are no 

uniformly agreed upon (and published) criteria for judging one significant duration parameter 

against another in terms of its usefulness in engineering application. Rather, the use of these 

parameters has been rather ad hoc, with the primary factor driving the choice of D5-75 vs. D5-95 

being whether the analyst is mostly interested in the shear-wave portion of records (in which case 

they typically pick D5-75) vs. the combination of shear waves and some amount of surface 

waves/coda (D5-95). 

I compare duration predictions from simulation methods to trends from observation as 

reflected by a the GMM discussed in Chapter 5 (Afshari and Stewart, 2016 – hereafter AS16). I 

use version 15.3 simulated ground motions for this validation study, as obtained from SCEC 

servers in December 2015. Version 15.3 is the most recent version available as of this writing. I 

http://collaborate.scec.org/gmsv/Main_Page
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am unaware of other validation exercises performed specifically with this version of the simulation 

codes. 

The AS16 GMM for the significant duration of ground motions was derived using the 

NGA-West2 database for active crustal regions (Ancheta et al., 2014). The model consists of 

equations for the effects of magnitude (M), rupture distance (Rrup), and time-weighted average 

shear wave velocity in upper 30 m of the site (VS30) on the mean and standard deviation (between- 

and within-event components) of D5-75, D5-95, and D20-80. The model is also able to capture the 

effects of focal mechanism and depth to the 1.0 km/s shear wave velocity isosurface (z1). The 

AS16 GMM is developed as an update of the prior work by Kempton and Stewart (2006) which 

was developed using a smaller database. Both of these GMMs have functional forms adapted from 

an earlier GMM by Abrahamson and Silva (1996). Other available GMMs for duration include 

Bommer et al. (2009), which is based on NGA-West1 database for active crustal regions (Chiou 

et al., 2008); Lee and Green (2014) for stable continental regions; and Bora et al. (2014), which is 

based on a European data set (Akkar et al., 2014). 

The AS16 GMMs were used for the present validation because they were developed using the 

largest and most recent database for active crustal regions. Significantly, each of the validation 

events considered in the following section contributed data to the flatfile used in the development 

of AS16. 

The findings in this chapter have been published in a journal article by Afshari and Stewart 

(2016). 
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6.2 VALIDATION OF SIMULATED GROUND MOTIONS 

We consider simulated ground motions as computed for five events loosely associated with 

previous California earthquakes (1986 M6.1 North Palm Springs (NPS), 1987 M6.0 Whittier, 

1989 M6.9 Loma Prieta, 1992 M7.3 Landers, and 1994 M6.7 Northridge). Figure 6.1 shows the 

epicenter locations. The SCEC BBP has ground motions for 50 realizations of each event. All 

simulations were performed for a 1D crustal model with surface site condition with time-averaged 

shear wave velocity VS30 = 863 m/s. Additional details regarding the source and path conditions 

considered in the simulations are given by Goulet et al. (2015). I consider all 50 realizations for 

each event and examine trends in the simulated motions to evaluate distance scaling, M scaling, 

and dispersion of the simulated motions. Those ground motion features are, in turn, compared to 

the corresponding trends observed empirically as represented by the AS16 GMMs. 

 

Figure 6.1. Location of epicenters for the five simulated events (1986 M6.1 NPS, 1987 M6.0 Whittier, 
1989 M6.9 Loma Prieta, 1992 M7.3 Landers, and 1994 M6.7 Northridge). 
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Figures 6.2-6.7 show the simulated ground motion durations from EXSIM, GP, SDSU and 

UCSB plotted against Rrup along with GMM predictions for D5-75, D5-95, and D20-80. The GMMs 

are represented by event-term adjusted medians and medians  one within-event standard 

deviations () in the plots. The event terms used for the adjustment are based on the recorded data 

for the five events, and hence are unrelated to the simulations. The rationale for including the event 

term adjustment is that a particular event may have non-mean centered data arising from its source 

attributes that I cannot expect the GMM to capture, but which should be captured by the finite 

fault and slip models used in the simulations. Hence, making this adjustment to the GMM provides 

for a more ‘apples-to-apples’ comparison of GMM and simulations. 
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Figure 6.2. Variation with distance of simulated ground motion duration D5-75 for five events (Whittier, NPS, Loma Prieta, Northridge, and 
Landers) from finite fault methods (EXSM and GP) and event-term adjusted prediction from GMM. GMM was exercised for the 
site condition used in the simulations, which is VS30 = 863 m/s. 
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Figure 6.3. Variation with distance of simulated ground motion duration D5-75 for five events (Whittier, NPS, Loma Prieta, Northridge, and 
Landers) from finite fault methods (SDSU and UCSB) and event-term adjusted prediction from GMM. GMM was exercised for 
the site condition used in the simulations, which is VS30 = 863 m/s. 
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Figure 6.4. Variation with distance of simulated ground motion duration D5-95 for five events (Whittier, NPS, Loma Prieta, Northridge, and 
Landers) from finite fault methods (EXSM and GP) and event-term adjusted prediction from GMM. GMM was exercised for the 
site condition used in the simulations, which is VS30 = 863 m/s. 
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Figure 6.5. Variation with distance of simulated ground motion duration D5-95 for five events (Whittier, NPS, Loma Prieta, Northridge, and 
Landers) from finite fault methods (SDSU and UCSB) and event-term adjusted prediction from GMM. GMM was exercised for 
the site condition used in the simulations, which is VS30 = 863 m/s. 
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Figure 6.6. Variation with distance of simulated ground motion duration D20-80 for five events (Whittier, NPS, Loma Prieta, Northridge, and 
Landers) from finite fault methods (EXSM and GP) and event-term adjusted prediction from GMM. GMM was exercised for the 
site condition used in the simulations, which is VS30 = 863 m/s. 
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Figure 6.7. Variation with distance of simulated ground motion duration D20-80 for five events (Whittier, NPS, Loma Prieta, Northridge, and 
Landers) from finite fault methods (SDSU and UCSB) and event-term adjusted prediction from GMM. GMM was exercised for 
the site condition used in the simulations, which is VS30 = 863 m/s 
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The event-specific results in Figures 6.2-6.7 illustrate how the path effects produced by the 

simulations compare to those in the GMMs. In most cases the durations of simulated motions 

increase with Rrup at approximately the same rate as provided by the GMMs, although there are 

some exceptions. In particular, GP durations decrease with increasing distance in several cases, 

especially for Rrup > 10-20 km (Whittier, North Palm Springs, Northridge) and the simulations 

have a small slope or flat trend with Rrup for Loma Prieta (except the SDSU and UCSB methods). 

Formal evaluation of the simulated data entails analysis of residuals between the 

simulations and GMMs. Residuals are computed as: 

lnsim sim

ij ij ijR D    (2.1) 

where 
sim

ijD  is the geometric mean duration from pairs of horizontal-component simulated ground 

motions at site j from event i, and ij is the corresponding GMM mean in natural log units. EXSIM 

motions are generated only for a single arbitrary horizontal orientation, hence a single-component 

definition of 
sim

ijD  was used in that case. The superscript ‘sim’ is used here and elsewhere to 

emphasize that the residuals are computed from simulations, and not from recorded data (as is 

more customary in GMM development). Residuals can then be partitioned into between- and 

within-event components through mixed effects regression using the nlme command in R 

(Pinheiro et al., 2013) as: 

sim sim sim sim

ij i ijR c       (2.2) 

where 
simc  is the model bias, 

sim

i  is the between-event residual (event term) for simulated event 

i, and 
sim

ij  is the within-event residual for simulated motion j in event i. It should be noted that 



 

218 

 

 

residuals in this context take on a different meaning than what is customary for analysis of ground 

motion recordings (natural log of data minus model). In the analysis of recordings, positive 

residuals indicate an underprediction bias by the GMM, whereas in the present case positive 

residuals indicate an overprediction bias of the simulations.  

Figure 6.8 shows the model bias (
simc ) for each of the simulation methods. The results 

show that the EXSIM and SDSU simulations are generally biased towards overprediction, UCSB 

underpredicts, and GP is nearly unbiased. The over- and underpredictions from SDSU and UCSB 

simulations, respectively, are on the order of 0.5 in natural log units. To put this level of bias in 

context, it is useful to consider what has been observed previously for these same simulation 

methods and events using PSA intensity measures. Dreger et al. (2015) computed a combined 

goodness-of-fit (CGOF) metric that represents the absolute value of PSA bias for each simulation 

method and event. As such, CGOF has a similar meaning to the absolute value of 
simc  in the 

present work. Dreger et al. (2015) found CGOF for the five considered events to generally be in 

the range 0.3-0.7. Hence, the biases of the SDSU and UCSB methods are within the ranges that 

have been observed in past simulation validations. 
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Figure 6.8. Model bias (
simc ) for EXSIM, GP, SDSU, and UCSB methods as defined by mean misfit 

of simulated data for 50 realizations each of five events relative to AS16 GMM. 

 

I compute the mean of 50 event terms derived from mixed effects analysis for each of the 

considered earthquakes (denoted 
sim ). In Figures 6.9-6.11 I plot 

sim  for the five earthquakes 

against M using D5-75, D5-95, and D20-80 durations. These results are of interest to assess M-scaling 

in the simulations vs. what is captured in the GMM. The event term trends are generally flat for 

GP, indicating similar scaling. Upward trends are found for EXSIM and UCSB, indicating a more 

rapid increase of duration with M than given by the GMM, whereas a negative trend is found for 

SDSU. Also shown in Figures 6.9-6.11 is the corresponding event terms for the five earthquakes 

from data denoted as i  (these were derived during GMM development). These event terms exhibit 

a flat trend, which would be expected over the full range of events considered in GMM 

development, but is coincidental in the present case. The flatness of the trend for these five events 

indicates that their M-trend is consistent with the global average. Accordingly, the aforementioned 

trends in 
sim arise from features of the simulations themselves, and do not appear to be a by-

product of the selected earthquakes. 
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Figure 6.9. Mean of simulation event terms (
sim ) and event terms from data for D5-75 plotted vs. M 

for (a) EXSIM, (b) GP, (c) SDSU, (d) UCSB.` 

 

 

Figure 6.10. Mean of simulation event terms (
sim ) and event terms from data for D5-95 plotted vs. M 

for (a) EXSIM, (b) GP, (c) SDSU, (d) UCSB. 
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Figure 6.11. Mean of simulation event terms (
sim ) and event terms from data for D20-80 plotted vs. 

M for (a) EXSIM, (b) GP, (c) SDSU, (d) UCSB. 

 

Figure 6.12 shows within-event standard deviations from simulations (i.e., standard deviations of 

sim

ij ) for the five considered earthquakes along with values from the AS16 GMMs. The simulation 

dispersions are generally significantly lower than those derived empirically, with only UCSB 

being close to the GMM results at small magnitudes. These relatively low dispersions are 

consistent with previous findings for PSA (e.g., Star et al. 2011). Interestingly, the variations of 

dispersion among duration parameters observed in the GMMs (order of increasing dispersion: 

D5-95 < D5-75 < D20-80) is preserved in the simulations. 
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Figure 6.12. Average standard deviation of simulation residuals computed using simulated 
durations and the GMM for (a) EXSIM, (b) GP, (c) SDSU, (d) UCSB. The standard 

deviations are plotted against M as well as within-event standard deviation () predicted 
by the GMM. 

   

Based on these results, I find that most of the simulation methods recommended by Dreger 

et al. (2015) for PSA have shortcomings for duration. Specifically, for median ground motion 

predictions, I am concerned with the large overall bias of the SDSU and UCSB methods, distance 

scaling problems in the GP method, and M-scaling problems in the EXSIM, SDSU, and UCSB 

methods. These problems suggest some issues in the source and path models that warrant further 

consideration and which may affect other intensity measures as well. Of the simulation methods 

considered, GP has the best overall performance with respect to observed median durations as 

reflected by the GMMs. With regard to dispersion, the general underestimation for durations and 

other parameters is problematic for seismic hazard or risk applications. 
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6.3 CONCLUSIONS 

In this study, we use recently-developed GMMs to validate the durations of SCEC BBP simulated 

ground motions. This work is part of a broader validation gauntlet organized by SCEC that includes 

checks of PSA similar to those described here (Goulet et al. 2015; Dreger et al. 2015) and many 

additional checks of differences between simulated and recorded ground motions (details in 

http://collaborate.scec.org/gmsv/Main_Page). Relative to several sets of simulated ground 

motions, the GMMs produce durations that generally have different medians, larger dispersions, 

and in some cases different scaling with M and distance. Accordingly, although several simulation 

methods have recently been recommended for use to estimate PSA, their use for applications 

involving duration-sensitive geotechnical or structural systems should be undertaken with caution. 

Considering the fact that the current BBP simulations are based on wave propagation through a 

1D crustal model, the future use of 2D and 3D models similar to CyberShake (Graves et al., 2010) 

may provide improved results. 
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7 Summary and Conclusions 

7.1 SCOPE 

In this dissertation, two matters were studied: site response and duration of ground motion. For the 

first part, I developed a framework for how to evaluate non-ergodic site response using available 

recordings at a site, simulations from ground response analysis, or a combination of both. I studied 

a methodology for quantifying uncertainties in ground motion prediction, and compiled the 

available literature on the variability of site response. I showed the variability in ground motion 

prediction can be reduced as the result of reducing the uncertainty in site response. I used 

probabilistic seismic hazard analysis for three example sites to show the effect of reduced 

uncertainty in site response leads to reduction in hazard for long return periods. 

In another part of the dissertation concerning site response, I compiled a dataset from 

vertical array sites in California in order to perform a validation study on 1D ground response 

analysis (GRA). The validation study was performed using site response transfer functions and 

amplification of Pseudo-Spectral Accelerations (PSA). The goodness of fit in transfer functions 

are used to validate the assumption of one-dimensional soil columns under vertically propagating 

shear waves, and PSA amplifications are used for studying misfits and quantifying uncertainty in 

GRA. I studied three approaches for damping namely (1) Using geotechnical models for 

laboratory-based damping; (2) Using an empirical model to estimate damping from shear wave 

velocity; and (3) Estimating damping from spectral decay parameter (). I used mixed effects 
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analysis of residuals to quantify the uncertainty in the predictions by 1D GRA. The results of this 

study are compared to a similar study on vertical array sites in Japan. 

In the part of this dissertation concerning duration of ground motion, I developed a ground 

motion model by utilizing NGA-West2 database for active crustal regions. The model is an update 

to an older model (Kempton and Stewart, 2006), and has a similar functional form. The functional 

form of this model is intended to be consistent with the physics of the problem as discussed in 

Chapter 5. I developed a methodology to exclude weak recordings which are affected by noise, 

and used it in addition to record selection criteria from Boore et al. (2013) to select recording for 

developing the model. The developed ground motion model was used for validating the 

magnitude- and path-scaling, as well as dispersion in simulated ground motions from SCEC 

Broadband Platform. 

7.2 RESULTS 

In Chapter 2, I show how non-ergodic site response analysis has the benefit of increasing accuracy 

and decreasing uncertainty in site response in comparison with using ergodic models for site 

response. In the three example sites, I show how 1D GRA fails to capture the amplification of long 

period ground motions (potentially 2D and 3D effects of basin effects and surface waves) in deep 

basin sites (LA Obregon Park and El Centro #7), while GRA provides a much better prediction of 

site response in the shallow site example (APEEL #2). I also show analyzing recordings at the site 

(if available) is the best way of evaluating linear site response. Finally, the three example PSHA 

results show the sensitivity of hazard levels to uncertainty in the predictions. The examples show 

the reduction in uncertainty due to non-ergodic analysis leads to a considerable reduction in hazard 

for long return periods. 
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In Chapter 3, I discuss and summarize the vertical array dataset which was used in Chapter 

4 for a validation study of GRA. Analysis of site response transfer functions for California vertical 

arrays suggest better fit between the data and predictions in comparison to a similar study by 

Thompson et al. (2012) on KiK-net vertical array sites in Japan. Analysis of the residuals of PSA 

predictions allow for quantifying bias and dispersion in predictions. The results of PSA predictions 

show for the most part of the period range (0.01-10 sec) the geotechnical models for small-strain 

damping have the least bias, and the VS-based model is the most biased (mostly positive bias). The 

results also show site-to-site variability in California sites is similar to site-to-site variability in 

KiK-net sites which suggests a lack of regional dependency in site-to-site variability. Also, the 

within-site variability of site response in California vertical arrays is consistent with the other 

studies in the literature as summarized in Chapter 2. 

In Chapter 5, ground motion model for duration is presented, which is developed using the 

recent NGA-West2 database. The model is used for validation of SCEC Broadband Platform 

simulations in Chapter 6. The results of the validation study show the simulations generally 

underpredict the variability in the duration of simulated ground motions, and the medians are often 

different between our model and the simulations.  

7.3 FUTURE WORK 

There are a number of aspects of the topics studied in this dissertation that can be improved in a 

future research project. The potential areas of improvement are as follows: 

 In Chapter 3, we provided the methodology for evaluating and implementing non-ergodic 

site response. I included only three examples because I relied on NGA-West2 database for 

sites and the available recordings. Compiling richer datasets (potentially for dense areas 
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such as Los Angeles or San Francisco Bay Area) will allow for evaluating many more 

examples of non-ergodic site response which will allow for better conclusions on the 

comparison between different approaches for non-ergodic site response analysis (In this 

case GRA and using recordings). Potential conclusions can be made on the effects of 

geology, region, or other parameters on the performance of different methods. 

 The correlations between the residuals at surface and downhole (within-event Z-X 

correlation coefficient), ln ,lnZ X
 can be evaluated by a model. The model can be developed 

based on a large enough vertical array dataset (potentially KiK-net). The predictive 

parameters for the model can be site parameters (e.g., VS30, VS at downhole, z1, array depth, 

etc.). 

 For studying site response in California vertical arrays, gathering more data will allow for 

performing analysis of residuals in order to evaluate between-event and within-event 

residuals. This task was not possible in this study due to the limited size of the dataset. 

Evaluation of within-event residuals at surface and downhole will allow for evaluating 

ln ,lnZ X
 for California, and studying the possibility of any regional dependency in ln ,lnZ X

 . 

 Regarding the duration of ground motions, the ground motion model can potentially be 

improved by incorporating the near-fault effects such as rupture directivity. Near fault 

effects were not taken into account in this study. 
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8 Appendix: Output plots of site response in 
vertical arrays 

In this appendix, the results of site response transfer function and PSA amplification for all 21 

vertical array sites using the three damping models are shown. The figures show the empirical and 

theoretical transfer functions, Empirical and theoretical PSA amplifications as well as their 

standard deviations. The amplification residuals are also shown. The following figures are the 

output of a program in MATLAB which is developed as a part of this research. 
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Figure A 1. Observed and simulated site response for Antioch-San Joaquin S site with min

LD model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation 
of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation 
of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 



 

230 

 

 

 

Figure A 2. Observed and simulated site response for Antioch-San Joaquin S site with VS-based model for damping; Top left: Theoretical 
and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 3. Observed and simulated site response for Antioch-San Joaquin S site with -informed model for damping; Top left: Theoretical 

and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 4. Observed and simulated site response for San Francisco Bay Bridge site with VS-based model for damping; Top left: 
Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± 
standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 5. Observed and simulated site response for San Francisco Bay Bridge site with -informed model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± 
standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 6. Observed and simulated site response for Benicia-Martinez S site with min

LD model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation 
of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation 
of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 7. Observed and simulated site response for Benicia-Martinez S site with VS-based model for damping; Top left: Theoretical and 
median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 



 

236 

 

 

 
Figure A 8. Observed and simulated site response for Benicia-Martinez S site with -informed model for damping; Top left: Theoretical 

and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 9. Observed and simulated site response for Borrego Valley site with min

LD model for damping; Top left: Theoretical and median 

± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation of PSA 
amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation of 
empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 10. Observed and simulated site response for Borrego Valley site with VS-based model for damping; Top left: Theoretical and 
median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 11. Observed and simulated site response for Borrego Valley site with -informed model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 12. Observed and simulated site response for Corona-I15/Hwy 91 site with min

LD model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation 
of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation 
of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 13. Observed and simulated site response for Corona-I15/Hwy 91 site with VS-based model for damping; Top left: Theoretical 
and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 14. Observed and simulated site response for Corona-I15/Hwy 91 site with -informed model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median 
± standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom 
left: standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted 
PSA amplification residuals. 
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Figure A 15. Observed and simulated site response for Corona-I15/Hwy 91 site with min

LD model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation 
of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation 
of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 16. Observed and simulated site response for Corona-I15/Hwy 91 site with VS-based model for damping; Top left: Theoretical 
and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 17. Observed and simulated site response for Corona-I15/Hwy 91 site with -informed model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median 
± standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom 
left: standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted 
PSA amplification residuals. 
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Figure A 18. Observed and simulated site response for Coronado East site with min

LD model for damping; Top left: Theoretical and median 

± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation of PSA 
amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation of 
empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 19. Observed and simulated site response for Coronado East site with VS-based model for damping; Top left: Theoretical and 
median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 20. Observed and simulated site response for Coronado East site with -informed model for damping; Top left: Theoretical 

and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 21. Observed and simulated site response for Coronado West site with min

LD model for damping; Top left: Theoretical and median 

± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation of PSA 
amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation of 
empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 22. Observed and simulated site response for Coronado West site with VS-based model for damping; Top left: Theoretical and 
median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 23. Observed and simulated site response for Coronado West site with -informed model for damping; Top left: Theoretical 

and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 24. Observed and simulated site response for Crockett-Carquinez Br #1 site with min

LD model for damping; Top left: Theoretical 

and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 25. Observed and simulated site response for Crockett-Carquinez Br #1 site with VS-based model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± 
standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 26. Observed and simulated site response for Crockett-Carquinez Br #1 site with -informed model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median 
± standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom 
left: standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted 
PSA amplification residuals. 
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Figure A 27. Observed and simulated site response for El Centro-Meloland site with min

LD model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation 
of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation 
of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 28. Observed and simulated site response for El Centro-Meloland site with VS-based model for damping; Top left: Theoretical 

and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 29. Observed and simulated site response for El Centro-Meloland site with -informed model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median 
± standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom 
left: standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted 
PSA amplification residuals. 
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Figure A 30. Observed and simulated site response for Eureka site with min

LD model for damping; Top left: Theoretical and median ± 

standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation of PSA 
amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation of 
empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 31. Observed and simulated site response for Eureka site with VS-based model for damping; Top left: Theoretical and median ± 

standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation of PSA 
amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation of 
empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 32. Observed and simulated site response for Eureka site with -informed model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 33. Observed and simulated site response for Foster City-San Mateo site with VS-based model for damping; Top left: Theoretical 

and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 34. Observed and simulated site response for Garner Valley site with min

LD model for damping; Top left: Theoretical and median 

± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation of PSA 
amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation of 
empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 35. Observed and simulated site response for Garner Valley site with VS-based model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 36. Observed and simulated site response for Garner Valley site with -informed model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation 
of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation 
of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 37. Observed and simulated site response for Hayward - I580/238 West site with VS-based model for damping; Top left: Theoretical 

and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 38. Observed and simulated site response for Hayward - I580/238 West site with -informed model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± 
standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 39. Observed and simulated site response for Hayward - San Mateo Br site with VS-based model for damping; Top left: Theoretical 

and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 40. Observed and simulated site response for Hayward - San Mateo Br site with -informed model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± 
standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 41. Observed and simulated site response for Hollister Digital Array (HEO) site with min

LD model for damping; Top left: Theoretical 

and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 42. Observed and simulated site response for Hollister Digital Array (HEO) site with VS-based model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± 
standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 43. Observed and simulated site response for Hollister Digital Array (HEO) site with -informed model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± 
standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 44. Observed and simulated site response for La-Cienega site with min

LD model for damping; Top left: Theoretical and median ± 

standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation of PSA 
amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation of 
empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 45. Observed and simulated site response for La-Cienega site with VS-based model for damping; Top left: Theoretical and median 

± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation of 
PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation of 
empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 46. Observed and simulated site response for La-Cienega site with -informed model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation 
of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation 
of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 47. Observed and simulated site response for Obregon Park site with min

LD model for damping; Top left: Theoretical and median 

± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation of PSA 
amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation of 
empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 48. Observed and simulated site response for Obregon Park site with VS-based model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 49. Observed and simulated site response for Obregon Park site with -informed model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation 
of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation 
of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 50. Observed and simulated site response for San Bernardino site with min

LD model for damping; Top left: Theoretical and median 

± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation of PSA 
amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation of 
empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 51. Observed and simulated site response for San Bernardino site with VS-based model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 52. Observed and simulated site response for San Bernardino site with -informed model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation 
of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation 
of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 53. Observed and simulated site response for Treasure Island site with min

LD model for damping; Top left: Theoretical and median 

± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation of PSA 
amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation of 
empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 54. Observed and simulated site response for Treasure Island site with VS-based model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 55. Observed and simulated site response for Treasure Island site with -informed model for damping; Top left: Theoretical and 

median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard deviation 
of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard deviation 
of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification residuals. 
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Figure A 56. Observed and simulated site response for Vallejo - Hwy 37/Napa River E site with min

LD model for damping; Top left: Theoretical 

and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± standard 
deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: standard 
deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA amplification 
residuals. 
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Figure A 57. Observed and simulated site response for Vallejo - Hwy 37/Napa River E site with VS-based model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± 
standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 58. Observed and simulated site response for Wildlife Liquefaction Array (WLA) site with min

LD model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± 
standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 



 

287 

 

 

 
Figure A 59. Observed and simulated site response for Wildlife Liquefaction Array (WLA) site with VS-based model for damping; Top left: 

Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median ± 
standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals. 
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Figure A 60. Observed and simulated site response for Wildlife Liquefaction Array (WLA) site with -informed model for damping; Top 

left: Theoretical and median ± standard deviation of empirical transfer functions, Top middle: observed and predicted median 
± standard deviation of PSA amplification, Top right: median ± standard deviation of PSA amplification residuals, Bottom left: 
standard deviation of empirical transfer functions, Bottom middle: standard deviation of observed and predicted PSA 
amplification residuals.
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