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Medicine, Chapel Hill, NC, United States of America

* yongzhang@unr.edu.

Abstract

Circadian clocks control daily rhythms in behavior and physiology. In Drosophila, the small

ventral lateral neurons (sLNvs) expressing PIGMENT DISPERSING FACTOR (PDF) are

the master pacemaker neurons generating locomotor rhythms. Despite the importance of

sLNvs and PDF in circadian behavior, little is known about factors that control sLNvs mainte-

nance and PDF accumulation. Here, we identify the Drosophila SWI2/SNF2 protein DOM-

INO (DOM) as a key regulator of circadian behavior. Depletion of DOM in circadian neurons

eliminates morning anticipatory activity under light dark cycle and impairs behavioral rhyth-

micity in constant darkness. Interestingly, the two major splice variants of DOM, DOM-A and

DOM-B have distinct circadian functions. DOM-A depletion mainly leads to arrhythmic

behavior, while DOM-B knockdown lengthens circadian period without affecting the circa-

dian rhythmicity. Both DOM-A and DOM-B bind to the promoter regions of key pacemaker

genes period and timeless, and regulate their protein expression. However, we identify that

only DOM-A is required for the maintenance of sLNvs and transcription of pdf. Lastly, consti-

tutive activation of PDF-receptor signaling rescued the arrhythmia and period lengthening of

DOM downregulation. Taken together, our findings reveal that two splice variants of DOM

play distinct roles in circadian rhythms through regulating abundance of pacemaker proteins

and sLNvs maintenance.

Author summary

Circadian rhythms are critical for timing of animal bodily functions. In flies, sLNvs are the

master pacemaker neurons regulating locomotor rhythms, which release the neuropeptide

PDF. Little is known about factors that control sLNvs maintenance and PDF accumula-

tion. Here, we identified the Drosophila chromatin remodeler DOMINO (DOM) as a new

regulator of circadian behavior. Depletion of DOM in circadian neurons impaired behav-

ioral rhythmicity in constant darkness. Interestingly, two splice variants of DOM have

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008474 October 28, 2019 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Liu Z, Tabuloc CA, Xue Y, Cai Y, Mcintire

P, Niu Y, et al. (2019) Splice variants of DOMINO

control Drosophila circadian behavior and

pacemaker neuron maintenance. PLoS Genet 15

(10): e1008474. https://doi.org/10.1371/journal.

pgen.1008474

Editor: Gregory P. Copenhaver, The University of

North Carolina at Chapel Hill, UNITED STATES

Received: November 19, 2018

Accepted: October 11, 2019

Published: October 28, 2019

Copyright: © 2019 Liu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The numerical data

and summary statistics are available for download

at GitHub (https://github.com/yongzhangclock/

domino). All other data are within the manuscript

and its Supporting Information files.

Funding: YZ’s lab is supported by the National

Institutes of Health under grant numbers R15

ES030548, P20 GM103650, GM103554, and

GM103440. JCC is supported by NIH R01

GM102225 and NSF IOS 1456297. The funders

had no role in study design, data collection and

http://orcid.org/0000-0003-4236-9597
http://orcid.org/0000-0003-2624-6001
http://orcid.org/0000-0001-6448-8023
http://orcid.org/0000-0001-7613-8127
http://orcid.org/0000-0002-0936-9264
https://doi.org/10.1371/journal.pgen.1008474
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008474&domain=pdf&date_stamp=2019-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008474&domain=pdf&date_stamp=2019-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008474&domain=pdf&date_stamp=2019-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008474&domain=pdf&date_stamp=2019-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008474&domain=pdf&date_stamp=2019-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008474&domain=pdf&date_stamp=2019-11-07
https://doi.org/10.1371/journal.pgen.1008474
https://doi.org/10.1371/journal.pgen.1008474
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/yongzhangclock/domino
https://github.com/yongzhangclock/domino


distinct functions. DOM-A depletion mainly led to arrhythmia, while DOM-B knock-

down lengthened circadian period. Furthermore, we found DOM-A is critical for the

maintenance of sLNvs and transcription of pdf. Our findings reveal that DOM splice vari-

ants play distinct roles in rhythms through different mechanisms.

Introduction

Circadian clocks allow animals to anticipate daily oscillations in behavior, physiology and

metabolism [1]. The core of the molecular clock is a negative transcriptional-translational

feedback loop, which is evolutionarily conserved across species [2]. The fruit fly Drosophila
melanogaster has been a powerful model in dissecting the molecular and neuronal mechanisms

of circadian rhythms. In Drosophila, a heterodimeric complex of CLOCK (CLK) and CYCLE

(CYC) activates rhythmic transcription of clock-controlled genes, including the transcriptional

repressor period (per) and timeless (tim). PER and TIM dimerize and repress their own tran-

scription by blocking CLK-CYC transactivation [3]. A number of kinases (CK1, SGG, NEMO,

etc) and phosphatases (PP1, PP2A) also control the circadian clock at the post-translational

level [3].

Circadian locomotor rhythms are controlled by a small set of clock neurons expressing core

pacemaker proteins in the brain. In each hemisphere of the fly brain, there are ~75 clock neu-

rons, which are divided into clusters based on their anatomical locations and functions in cir-

cadian behavior [4]. There are three groups of dorsal neurons (DN1s, DN2s, and DN3s), the

lateral dorsal neurons (LNds), the lateral posterior neurons (LPNs), the large ventral lateral

neurons (lLNvs), and the small ventral lateral neurons (sLNvs). The lLNvs and four sLNvs

express the neuropeptide PIGMENT DISPERSING FACTOR (PDF), while the fifth sLNv is

PDF negative. The PDF positive sLNvs are the key pacemaker neurons: they control the circa-

dian rhythmicity under constant darkness (DD) [4]. They are also critical for generating

morning anticipatory activity before lights on (i.e. dawn) under light-dark cycle (LD) [5, 6].

The sLNvs send axonal projections towards the DN1s and DN2s, and the structural plasticity

of dorsal projections is under circadian control [7–9]. PDF positive sLNvs and their dorsal pro-

jections are formed in 4 hrs old first instar larvae after hatching [10]. Despite the importance

of sLNvs in the circadian behavior, little is known about the mechanisms that control the main-

tenance of sLNvs.

PDF is the most prominent neuropeptide in the regulation of circadian behavioral rhythms

[11]. PDF plays a critical role in the synchronization of different groups of clock neurons by

binding to PDF receptor (PDFR), and activating cAMP-activated protein kinase A (PKA) sig-

naling [12–15]. Loss of PDF or PDFR abolishes morning anticipation and significantly impairs

behavioral rhythmicity in DD. Not only as a critical circadian output signal, PDF/PDFR signal-

ing has also been shown to control the molecular clock by regulating the stability of pacemaker

proteins PER and TIM recently [16–18]. PDF abundance in the sLNvs is regulated by CLK and

CYC [19–21]. Another pacemaker protein VRILLE also promotes PDF levels [22]. Despite

these studies, mechanisms regulating PDF abundance remain poorly understood.

DOM is a chromatin-remodeling protein, which belongs to the SWI/SNF2 DNA-depen-

dent ATPase family [23]. DOM is in the TIP60 complex and plays a critical role for incorpo-

ration of the phosphorylated Histone H2A variant (H2Av) and exchange with H2Av in

Drosophila [24]. It has been found that DOM is involved in oogenesis, wing development, cell

viability and proliferation, neuroblast maintenance and polarity, as well as in dendrite develop-

ment [23, 25–27]. In the fly genome, two alternative splicing variants of dom encode DOM-A

DOMINO controls Drosophila circadian locomotor rhythms
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and DOM-B. Interestingly, a recent study identified that DOM-A and DOM-B play distinct

roles in cell-type specific development during Drosophila oogenesis [25].

A few chromatin remodelers have been shown to regulate circadian photo-responses and

gene expression [28–30]. However, the role played by chromatin remodeling in the control of

Drosophila circadian clocks is still largely unknown. Here, we report the functions of DOM in

the regulation of circadian rhythms. Using isoform-specific RNAi and rescue, we demonstrate

distinct functions of DOM-A and DOM-B in the regulation of circadian locomotor rhythms.

Depletion of DOM-A in tim-expressing circadian neurons leads to arrhythmic behavior and

long period, while DOM-B downregulation specifically lengthens the circadian period in flies.

Both DOM-A and DOM-B bind to the promoters of per and tim, and regulate the abundance

of PER and TIM levels, which is critical for the control of circadian period. However, DOM-A

is specifically necessary for maintenance of sLNvs as well as accumulation of PDF in these neu-

rons. Indeed, activation of PDFR signaling restores the locomotor rhythms of DOM downre-

gulation. Together, our results suggest that the two alternative spliced variants of DOM play

distinct roles in circadian rhythms.

Results

DOM regulates circadian locomotor rhythms

Mass spectrometry (MS) label-free quantitative proteomics approach was previously per-

formed to identify the BRAHMA (BRM) chromatin-remodeling protein complex as interactor

of circadian clock proteins [31]. In the same data set, we observed that several core subunits of

the ATP-dependent DOM chromatin-remodeling complex, including DOM, NIPPED-A,

PONT, REPT, and Mrg15, interact with CLK in the nucleus of Drosophila S2 cells (Table 1).

Since DOM is the ATPase subunit of the protein complex and shows significant binding to

CLK (especially C-terminal FLAG-tagged CLK) according to SAINT (Significant Analysis of

Table 1. Subunits of the DOM chromatin-remodeling complex interact with CLK in the nucleus of Drosophila Schneider (S2) cells as detected by FLAG affinity

purification followed by mass spectrometry.

Bait:

N-Terminus tagged CLK

Bait:

C-Terminus tagged CLK

Control

AP-MS

Symbol FlyBaseID peptidea Count(3

reps)

AvgPb MaxPc Falsed Discovery Rate

(FDR)

peptidea Count(3

reps)

AvgPb MaxPc Falsed Discovery Rate

(FDR)

Controle

Count (4)

Domino FBgn0020306 37|0|46f 0.6526 0.9825 0.0663 30|17|16 1 1 0 0|0|0|0g

Nipped-

A

FBgn0053554 53|21|114 1 1 0 75|45|55 1 1 0 0|0|0|0

His2AV FBgn0001197 7|1|8 0.8631 0.9896 0.0172 1|0|3 0.5466 0.8827 0.1643 0|0|0|0

Pont FBgn0040078 27|15|34 1 1 0 25|22|26 1 1 0 0|0|0|0

Rept FBgn0040075 28|16|30 1 1 0 30|9|14 0.9994 1 0.0001 2|0|1|0

E(Pc) FBgn0000581 17|0|20 0.6398 0.9638 0.1001 34|17|17 1 1 0 0|0|0|0

Mrg15 FBgn0027378 4|3|2 0.9874 0.9937 0.0010 6|0|3 0.6367 0.9718 0.0875 0|0|0|0

a Number of peptides mapped to the specified prey protein in affinity purification (AP) followed by mass spectrometry (MS).
b Average probability that protein interactions between the bait and prey protein are bona fide. Values were from all biological replicated as calculated by SAINT

(Significant Analysis of Interactome).
c Highest probability of protein interaction between the bait and prey protein across all replicate as calculated by SAINT.
d False discovery rate as calculated by SAINT using all biological replicates.
e Number of peptides mapped to prey protein in control AP-MS.
f Peptide counts for 3 biological replicates are shown.
g peptide counts for 4 biological replicates are shown.

https://doi.org/10.1371/journal.pgen.1008474.t001
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INTeractome) scoring [32], we decided to further investigate its role in circadian regulation.

Interestingly, prior studies indicated that dom mRNA levels in the sLNvs are clearly enriched

about 4.4-fold compared to other neurons [33].

Homozygous dom mutants are lethal, therefore we used RNAi to deplete DOM in circadian

neurons. Dicer 2 was co-expressed to enhance RNAi efficiency and has been shown to have no

effects on circadian rhythms [34, 35]. When we expressed dom dsRNAs using tim-GAL4, a cir-

cadian tissue-specific driver [36], most of the flies became arrhythmic, and the amplitude of

rhythm was significantly reduced (Fig 1A and S1 Table). Only 31% of flies with dom downre-

gulation (41% for another independent line dom RNAi#2) were rhythmic, and interestingly

the circadian period of these lines was about 1.5 hours longer than the control. The reduced

rhythmicity and amplitude were also observed when we only targeted the PDF positive LNvs

using pdf-GAL4 [11] (Fig 1A). However, no reduction on circadian rhythmicity was observed

when we targeted all PDF negative circadian cells, using a combination of tim-GAL4 with the

repressor transgene pdf-GAL80 (Fig 1A and S1 Table). Only a slight period-lengthening of

activity rhythm (~0.4hr) was detected. These results indicated that DOM primarily functions

in the LNvs to control circadian behavior, but could function in PDF negative circadian neu-

rons to fine-tune circadian period length.

Fig 1. Depletion of DOM disrupted circadian rhythms. A. Free-running period (top panel) and power (bottom panel) of DOM depleted flies. The percentages of

rhythmic flies are shown above each column. The number of tested flies is shown in each column. dom mRNA targeted by the two non-overlapping RNAi lines from the

TRiP stock center. domRNAi#1 (JF01502) is a long double-stranded RNAi line, while domRNAi#2 (HMS01855) is a short hairpin RNAi line. TD2 = tim-GAL4, UAS-dcr2,

PD2 = pdf-GAL4, UAS-dcr2, TD2; PG80 = TD2, pdf-GAL80. n = 50–90; error bars represent ± SD; n.s., non-significant, ��p< 0.01, ���p< 0.001, ����P< 0.0001; one-way

ANOVA. B. Average locomotor activity of flies under 3 days of 12:12 hr LD conditions. Dark activity bars represent the night, and white bars represent the day. The

significant differences of the values (shown above bars) indicate morning anticipation is severely disrupted in dom RNAi lines. C. Actograms showing the average

activities on the last day of LD followed by 5 days in DD. Light represents the day and gray darkness. From left to right: (Left panel) Gal4 control; (middle panel)

domRNAi#1 flies; and (right panel) domRNAi#2 flies (knockdown of dom in all circadian neurons). Depletion of DOM caused arrhythmia in DD.

https://doi.org/10.1371/journal.pgen.1008474.g001
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Because of the high arrhythmia in DD, we also examined the behavioral phenotype of dom
downregulation in tim-expressing circadian neurons under LD. We found that DOM knock-

down abolished the morning peak of anticipatory activity in flies (Fig 1B). Importantly, two

independent dom RNAi lines targeting non-overlapped regions of dom exhibited similar phe-

notypes in both LD and DD (Fig 1C and S1 Fig). Thus, it is unlikely that off-target effect of

dom RNAi cause these circadian phenotypes. Furthermore, quantitative RT-PCR results

showed that dom expression were significantly reduced in fly heads of DOM knockdown as

compared to controls (S1 Fig). Together, these results suggest that DOM is important for regu-

lation of circadian locomotor behavior.

DOM regulates the abundance of PER and TIM

Depletion of DOM severely decreased the rhythmicity and lengthened circadian period. To

understand how DOM affects circadian rhythms, we first measured the oscillations of mRNA

abundance of three core pacemaker genes in fly heads with expression of dom dsRNAs using

tim-GAL4. For clk, the abundance and oscillation of mRNA under LD and DD were not

affected in dom RNAi flies (Fig 2A). However, we found that the abundance of per and tim
mRNA was reduced, especially at the time point of peak expression under LD (Fig 2A). Under

Fig 2. Downregulation of DOM decreases the abundance of PER and TIM. A. Quantitative RT-PCR showing the expression of clk, per and tim. Flies were collected at

the indicated time points (ZT = Zeitgeber Time or CT = circadian time). Downregulation of dom decreased per and tim mRNA levels (middle and right panels), while clk
was normal (left panel). B. ChIP assays detecting H2Av binding more at the per CRS and tim E-box in flies downregulation of dom in tim-expressing cells with dicer2 as

compared to control TD2 flies. Non-specific DOM binding was detected by amplifying an intergenic region (FBgn0003638) of the Drosophila genome and subtracted

from the signal from the per CRS and tim E-box 1 signals. Results shown are from at least three biological ChIP replicates, with technical triplicates performed during

qPCR for each biological replicate. Error bars represent ± SEM; n.s., non significant,�P< 0.05,��p< 0.01, ���p< 0.001, one-way ANOVA. C. Whole mount

immunostaining showing the expression pattern of PER in sLNvs. Red represents PER and green is PDF. Flies were entrained for 4 days in LD and transferred to DD and

dissected every 4 h on the fifth day. Downregulation of DOM decreased PER levels at CT1-5 and CT17-21. (Scale bar: 50 um.) D. Quantification of the staining in sLNvs,

LNds and DN1s. For each genotype, 16–20 fly brains and 60–80 neurons were used for quantification. White and black bars indicate lights-on and lights-off, respectively.

Gray and black bars indicate subjective day and subjective night, respectively. Time (h) is indicated as ZT or CT where CT0 is 12 h after lights-OFF of the last LD day. Two

independent experiments were done for each genotype/condition with very similar results. Error bars correspond to SEM. ��p< 0.01, ���p< 0.001, ����p< 0.0001 as

determined by the t-test.

https://doi.org/10.1371/journal.pgen.1008474.g002
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DD, depletion of DOM also decreased the level of per and tim mRNA, which indicates that the

effects are not due to masking effects of light (Fig 2A). We hypothesized that DOM may facili-

tate CLK-driven rhythmic transcription by regulating the balance between H2Av and phos-

phor-H2Av via binding to CLK. So we examined the H2Av occupancy at per and tim
promoter by performing chromatin immunoprecipitation (ChIP) in fly heads using the com-

mercialize Drosophila H2Av antibodies. We entrained flies under LD and collected head sam-

ples at ZT4 and ZT16, close to the trough and peak time of CLK binding [37]. Consistent with

our hypothesis, we observed a significant increase in H2Av binding at both promoters when

dom is knocked down in tim-expressing circadian cells after normalized to an intergenic

region control (Fig 2B). This data indicate that DOM interacts with CLK to regulate transcrip-

tion of circadian genes by replacing H2Av at the promoters. However, we did not observe sig-

nificant difference in binding between ZT4 and ZT16 (Fig 2B), which indicates that the effect

of DOM might not be time-dependent.

Next we examined the oscillation of PER protein in major groups of pacemaker neurons

with tim-GAL4 expressing dom dsRNA across 24 hours under DD. Consistent with the

changes at mRNA level, the level of PER was also significantly reduced in the sLNvs with DOM

depletion (Fig 2C and 2D). In other groups of circadian neurons, such as the LNds and DN1s,

decreased abundance of PER was also observed (Figs 2D and S2). Taken together, our results

suggest that DOM regulates the H2Av occupancy at promoters of circadian genes and controls

the abundance of PER.

DOM-A but not DOM-B is regulated by CLK

There are two major splice variants of dom: dom-A and dom-B, which has distinct functions

during Drosophila oogenesis [25]. We wondered whether these two isoforms would have dif-

ferent functions in circadian rhythms. We first examined the expression pattern of dom-A and

dom-B in the fly head across different times of the day. Interestingly, dom-A exhibited a strong

oscillation pattern with a trough around zeitgeber time 9 (ZT9, as ZT0 is light on and ZT12 is

light off) and a peak expression near ZT21 (S3A Fig). Oscillation of dom-A was also observed

under DD. In addition, the oscillation of dom-A expression was abolished in the Clock null

mutant Clkout (S3A Fig) [38]. Together, these data indicate that dom-A is controlled by circa-

dian clock. However, we did not observe a clear oscillation for dom-B expression (S3B Fig). In

order to detect changes at protein level, we took advantage of isoform-specific antibodies to

DOM-A or DOM-B [25]. We confirmed the specificity of these antibodies by altering the level

of DOM-A or DOM-B using RNAi and overexpression (S3C and S3D Fig). Similar to mRNA

level, DOM-A protein abundance was dramatically reduced in Clkout, however, no oscillation

of DOM-A was observed in wild type flies (S3E and S3F Fig). This loss of DOM-A oscillation

at protein level indicates that DOM-A protein might be quite stable. The levels of DOM-B

were not affected in Clkout (S3G and S3H Fig).

DOM-A and DOM-B have distinct roles in circadian regulation

Differential regulations of DOM-A and DOM-B by CLK suggest that they might have different

roles in circadian rhythm. We therefore performed isoform-specific downregulation in circa-

dian tissues using small hairpin RNA (shRNA) targeting dom-A or dom-B. These transgenic

fly lines have been previously shown to specifically knockdown these alternative isoforms (S1

Fig) [25]. We first quantified the efficiency of dom-A and dom-B downregulation by expressing

shRNAs in circadian cells of fly heads using quantitative real-time PCR. Consistent with previ-

ous report [25], we observed that each shRNA line specifically downregulated dom-A or dom-
B (S1B Fig). Interestingly, when we depleted DOM-A or DOM-B in all circadian clock neurons

DOMINO controls Drosophila circadian locomotor rhythms
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by tim-GAL4, we observed two distinct circadian behavioral phenotypes. Most of the flies

expressing dom-A shRNA lost locomotor rhythms, except for ~20% that were rhythmic and

showed a longer period as compared to the control (Fig 3A and 3B; S1 Table). As with deple-

tion of all dom isoforms, DOM-A specific knockdown also blunted the morning activity peak

under LD (S4 Fig). However, for DOM-B knockdown, flies exhibited a lengthened period of

~1.5 hrs in DD (Fig 3A and 3B), but no effect on amplitude of rhythms or morning anticipa-

tion was observed under LD (Fig 3B and S4 Fig). When we expressed dom-A or dom-B shRNA

only in LNvs using pdf-GAL4, or in PDF negative circadian neurons, we found similar effects

on rhythmicity or period-lengthening (Fig 3B). These results suggested that DOM-A and

DOM-B are required in both PDF positive and negative circadian neurons for behavior. It is

unlikely that the different circadian phenotype is due to greater efficiency of dom-A over dom-
B shRNA (S1B Fig). Actually a previous study has also validated the knockdown efficiency and

found that dom-B shRNA is in fact slightly stronger than dom-A in the fly nervous system [25].

However, we cannot fully exclude the possibility that DOM-A protein is more stable than

DOM-B and cause this difference of circadian phenotypes.

Our isoform-specific knockdown indicated that DOM-A and DOM-B have distinct func-

tions in circadian rhythms. Although the shRNA lines have been shown here and in a previous

Fig 3. DOM-A and DOM-B have distinct functions in regulating circadian locomotor rhythms. A. Actograms showing the average activities on the last day of LD

followed by 5 days in DD. Light represents the day and gray darkness. From top to bottom: domARNAi (Top left panel); domARNAi ;UAS-domA rescue(Top right panel);

and domBRNAi (Bottom left panel); domBRNAi ;UAS-domB rescue(Bottom right panel). Depletion of domA caused arrhythmia in DD, while knocking down domB
lengthened circadian period. domARNAi and domBRNAi phenotypes can be rescued by restoring domA and domB expressing in all circadian neurons respectively. B. Free-

running period and percentage of rhythmicity of domA and domB depleted flies. The percentages of rhythmic flies are shown above the error bar. The numbers of tested

flies are shown in each column. C. Free-running period and percentage of rhythmicity of flies with restoring DOM-A or DOM-B in domA or domB depletion. D. ChIP

assays detecting DOM-A and DOM-B binding more at the per CRS and tim E-box in flies expressing domA (BL64261) and domB (BL64263) in tim-expressing cells as

compared to control TG4 flies. Quantification was done same as Fig 2B. Error bars represent ± SEM; n.s., non significant,�P< 0.05,��p< 0.01, ���p< 0.001,
����P< 0.0001; one-way ANOVA.

https://doi.org/10.1371/journal.pgen.1008474.g003
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study [25] to specifically knockdown the dom-A or dom-B isoforms, off-target effects could

still contribute to the observed phenotypes. Thus, we performed rescue experiments with UAS

transgenic flies expressing either dom-A or dom-B cDNA. Circadian behavior defects were res-

cued when we overexpressed corresponding UAS lines in the DOM-A or DOM-B knockdown

(Fig 3A and 3C), which indicated that the isoform specific phenotype we observed was not due

to off-target effects. Remarkably, with overexpression of dom-A, we were not able to rescue the

long period phenotype of DOM-B knockdown (Fig 3C, and S1 Table). Similarly, overexpres-

sion of dom-B could not rescue the arrhythmic phenotype of DOM-A knockdown, although

we did notice that the period-lengthening effect was partially rescued in the remaining 13% of

rhythmic flies (Fig 3C).

Since we observed DOM regulates the occupancy of H2Av at per and tim promoters, we

therefore examined whether DOM-A and DOM-B might be bound to the promoters of per
and tim. We used the DOM-A- and DOM-B-specific antibodies to perform ChIP in fly heads

with overexpression of dom-A or dom-B at two time points: ZT4 and ZT16. We observed sig-

nificant enrichments of DOM-A and DOM-B binding on both per and tim promoters, com-

pared to an intergenic region control (Fig 3D). Similar with H2Av ChIP, we did not observe

significant difference in binding between ZT4 and ZT16 (Fig 3D), which indicates that the

binding of DOM-A and DOM-B might not be time-dependent.

DOM-A, but not DOM-B, is required for the maintenance of sLNvs and

PDF abundance

The blunted morning activity peak and arrhythmia in DOM and DOM-A knockdown flies

suggest that there might be defects in the sLNvs or in PDF signaling. There are three major

projections of PDF positive LNvs. The lLNvs send projections to the optic lobes and the contra-

lateral brain hemisphere, while the sLNvs send projections to the DN1s and DN2s region [39].

Based on whole mount immunohistochemistry in fly brains, we did not observe obvious

defects in the brain structure or projections of the lLNvs, however, PDF levels in the dorsal

projections of the sLNvs were barely detectable in DOM and DOM-A knockdown flies (Fig

4A). Absence of the dorsal projection or low PDF expression in the sLNvs could lead to

decrease of PDF in the dorsal projection [20, 40]. Our data are consistent with both possibili-

ties. Using pdf-GAL4 and a membrane tethered GFP (CD8-GFP) to label axons of sLNvs, we

observed that the dorsal projections of sLNvs were clearly shortened in DOM and DOM-A

(Fig 4B–4D). Interestingly, the sLNvs dorsal projections were normal in DOM-B downregula-

tion, which is consistent with the behavior results. Furthermore, close observation of the PDF

positive sLNvs revealed that both the number of sLNvs and PDF levels were reduced (Fig 5A

and 5B). For each hemisphere, the average number of PDF positive sLNvs in DOM and

DOM-A knockdown flies was approximately 2, compared to 4 in the control flies or DOM-B

knockdown (Fig 5A and 5B). However, with DOM-B knockdown, we did not observe any

obvious loss of sLNvs or reduction in PDF levels, which indicates that this process is specifi-

cally controlled by DOM-A (Fig 5A and 5B). Consistent with the ChIP results, the levels of

PER and TIM were found to be significantly decreased in the sLNvs with knockdown of

DOM-A or DOM-B (Fig 5A and 5B). This may also explain why depletion of DOM-A or

DOM-B had an effect on period-lengthening.

Next we examined which step of regulation causes the reduction of PDF levels in DOM and

DOM-A knockdown. DOM regulates gene expression at the transcription level [24]. We there-

fore examined the expression of pdf using a transcriptional reporter line, pdfTomato [21].

Consistent with PDF staining, we observed significant reduction of pdf transcription in sLNvs

of both DOM and DOM-A knockdown (Fig 5C and 5D). Interestingly, the decrease in neuron
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number and reduction of PDF level were unique to sLNvs, which were not detected in the

lLNvs (Fig 5C and 5D).

In summary, consistent with differences in circadian behavior, DOM-A and DOM-B

knockdown also exhibit differences at the molecular level. Knockdown of DOM-A causes

loss of sLNvs and decrease in sLNv PDF levels, which is not observed in DOM-B

downregulation.

Fig 4. Eliminations of dorsal projections in DOM and DOM-A downregulation were due to reduced number of sLNvs and decrease of PDF. A. Representative

confocal images showing PDF expression in whole brain and dorsal axonal projection of sLNvs. Brains were dissected at ZT1 for anti-PDF (green) and anti-PER

antibodies (red). Comparing to the control (Top left panel), dorsal projection of sLNvs was disrupted in dom (Top right panel) and domA downregulation (Bottom left

panel) no effects were observed in the presence of domB RNAi (Bottom right panel) (Scale bar: left, 500 um; right, 100 um). B. Associated genotypes adults brains collected

at ZT1 were immunostained with GFP (green) and PDF (red) antibodies and imaged (see Materials and Methods) (Scale bar: 500 um). C. Representative confocal images

of dorsal axonal projection of sLNvs (Scale bar: 100 um). D. Representative images of sLNvs of associated lines. Merged GFP+PDF images were shown as yellow (Scale bar:

50 um).

https://doi.org/10.1371/journal.pgen.1008474.g004
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Fig 5. Depletion of DOM-A, but not DOM-B affects s-LNvs maintenance and PDF accumulation. A. Representative images of sLNvs of associated

lines. Brains were dissected at ZT1 for anti-PDF (green) and anti-PER antibodies (red) or dissected at ZT23 for anti-PDF (green) and anti-TIM
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DOM is required during development and adulthood for circadian rhythms

Decrease of sLNvs numbers and dorsal projections in adult flies might be due to abnormal

development or maintenance defects. Therefore, we performed brain dissections at larval stage

and pupal stage. The number of sLNvs precursor in the DOM knockdown condition was

unchanged compared to the control at 3rd instar larvae (Fig 6A and 6B), which suggests that

DOM does not affect sLNvs development. However, same as adulthood, even at early pupal

stage (3 days after pupation), there were only 1–2 sLNvs detected in dom downregulation (Fig

6C and 6D). These data indicate that DOM is required for the maintenance but not for the

development of sLNvs. DOM probably affects sLNvs during larval-pupal metamorphosis. Con-

sistent with adult flies, both PDF and PER levels of dom downregulation were reduced in

sLNvs compared to the control in larvae or pupae (Fig 6B and 6D).

The decrease of axonal projections and number of sLNvs we observed in DOM knockdown

flies (Figs 4 and 5) suggested that DOM might play a role during development to properly regu-

late circadian rhythms. Thus, we used tim-GAL4 and GAL80ts TARGET system to temporally

express dom dsRNA during development or after eclosion [41]. GAL80 is active at 18˚C thus

blocks GAL4 function and prevents dsRNA production, while 30˚C inactivates GAL80 and

allows expression of dsRNA to downregulate DOM. When we grew flies at 18˚C and tested cir-

cadian behavior at 30˚C, we observed strong rhythmicity but around 1–2 hr period-lengthening

with adult-specific DOM or DOM-A knockdown (Fig 6E and S1 Table). However, knockdown

DOM-A only during development led to high arrhythmic activity (Fig 6E and S1 Table). Thus,

developmental expression of dom or dom-A dsRNA appears to affect the rhythmicity, while

adult specific depletion appears to be sufficient for period-lengthening. Furthermore, knock-

down of DOM-B only in adulthood caused a ~1 hr increase in period length, suggesting that

unlike DOM-A, the DOM-B splice form is mainly necessary for the regulation of circadian

clocks in adult stage (Fig 6E and S1 Table). We observed a slight but significant lengthening of

period (~0.6 hr, S1 Table), when we specifically depleted DOM-B in circadian neurons during

development, which indicates that DOM-B might also play a role during development.

To exclude anatomical defects in the circadian circuitry, we grew flies at 18˚C and entrain

them under LD for 5 days at 30˚C, then performed brain dissections at ZT1. As expected, the

dorsal projections and number of sLNvs in the flies with adult-specific DOM downregulation

were normal, and PDF abundance was not affected (Fig 6F and 6G). These data further suggest

that the arrhythmia we observed in DOM knockdown was mainly due to the function of DOM

during development. Indeed, the abundance of PER in sLNvs was still reduced, which could

explain the lengthened period phenotype (Fig 6G). Since we observed DOM binding to the per
and tim promoters, and since DOM is required at adulthood for the period-lengthening, we

checked whether adulthood specific downregulation of DOM affects per and tim transcription

by using quantitative RT-PCR. The pattern of per and tim oscillation was still present in adult-

specific DOM knockdown, however the abundance of transcripts is dramatically reduced,

especially for the early night time points of per (S5 Fig), which is consistent with the PER pro-

tein level (Fig 6F and 6G).

antibodies (red). Cell number of sLNvs (marked as square brackets), PDF, PER and TIM levels in sLNvs were decreased in dom and domA
downregulation flies brains (Top right and bottom left panels), while only affected PER and TIM levels in domB downregulation flies (Bottom right

panel). (Scale bar: 50 um). B. Quantification of sLNvs numbers in each brain hemisphere, as well as PDF, PER and TIM levels in sLNvs. n = 32

hemispheres was used for quantification. C. Pdf transcriptional level in lLNvs and sLNvs using TOMATO fluorescence signal. Pdf transcriptional levels

in sLNvs (marked as circle) were decreased in dom and domA downregulation fly brains (middle two panels), while sLNv numbers and pdf
transcriptional levels in domB downregulation flies were normal (right panel) (Scale bar: 100 um.). D. Quantification of sLNvs numbers and TOMATO

fluorescence signal in sLNvs and lLNvs. n = 24 hemispheres were used. Error bars correspond to SEM. ��p< 0.01,���p< 0.001,����p< 0.0001 as

determined by t test.

https://doi.org/10.1371/journal.pgen.1008474.g005
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Taken together, these data indicate that DOM/DOM-A is required during development for

the rhythmic activity, while both DOM-A and DOM-B are necessary for period determination

post development.

Activation of PDFR signaling in circadian neurons rescues the behavioral

phenotype of DOM depletion

Since we observed low PDF levels in the sLNvs with DOM knockdown, we wondered whether

the decrease of PDF signaling was the cause of arrhythmia. To test this hypothesis, we deter-

mined whether hyperactivation of PDFR could rescue the phenotypes that accompany reduc-

tion in DOM expression. To increase PDFR signaling, we expressed a membrane-tethered

Fig 6. DOM-A is required during development for circadian rhythmicity and adulthood for regulation of period length, while DOM-B is only required in

adulthood. A. Representative larva brain confocal images. L3 stage larvae collected at ZT1 were immunostained with PDF and PER antibodies. Silence the expression of

dom in larvae stage affected PDF and PER levels in sLNvs (marked as circle), while number of sLNvs were not affected (Scale bar: left, 200 um; right, 50 um.). B.

Quantification of larva sLNvs, as well as PDF and PER levels. For each genotype, ~22 flies brains and ~85 neurons were used for quantification. C. Representative pupal

brain confocal images. Flies pupa (3 days after pupation) were collected at ZT1 were immunostained with PDF and PER antibodies. Silence the expression of dom in pupal

stage affected number of sLNvs, PDF and PER levels in sLNvs (marked as circle) (Scale bar: left, 500 um; right, 50 um). D. Quantification of pupal sLNvs, as well as PDF

and PER levels. For each genotype, ~25 flies brains and ~100 neurons were used for quantification. E. Free-running period and percentage of rhythmicity of DOM,

DOM-A and DOM-B depleted flies in adulthood (left part) or during development (right). Stage specific silencing the was done by using the conditional tim-Gal4;tub-
Gal80ts driver system. F. Representative confocal images of fly brain showing projections of PDF positive LNvs. Flies were grown at 18˚C until eclosion, and adult flies

were entrained for 5 days in LD 30˚C. Brains were dissected at ZT1 for anti-PDF (green) and anti-PER antibodies (red) (Scale bar: left, 500 um; right, 50 um). G.

Quantification of the numbers of sLNvs and PDF, PER levels in sLNvs of associated lines. Error bars correspond to SEM. �P< 0.05,���p< 0.001, ����p< 0.0001 as

determined by the t-test.

https://doi.org/10.1371/journal.pgen.1008474.g006
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PDF (t-PDF) in circadian cells with tim-GAL4, which has been shown to mimic high PDF lev-

els [42]. A scrambled peptide sequence (t-PDF SCR) with similar length as PDF was used as a

negative control. Strikingly, co-expression of t-PDF using tim-GAL4 restored the rhythmicity

to 89% for dom RNAi (71% for another independent dom RNAi line)(Fig 7A and 7B), whereas

the t-PDF SCR control was unable to restore rhythmicity (Fig 7A and 7B). Not only the rhyth-

micity, but also the period of DOM knockdown was rescued with co-expression of t-PDF (Fig

7B). To exclude the possibility that the behavior rescue in t-PDF was due to ceased expression

of dom dsRNA, we measured the dom transcripts in fly heads. Co-expression of t-PDF with

tim-GAL4 downregulated dom to the similar level as dom RNAi control (S6A Fig). Since the

circadian period was also restored in dom knockdown with expression of t-PDF, we then

stained fly brains with PDF and pacemaker proteins PER and TIM (Fig 7C and S6B Fig). With

expression of t-PDF in DOM knockdown flies, we made two interesting observations. First,

PDF level as well as the dorsal projection of sLNvs were restored, while the number of sLNvs

was still lower (Fig 7C and 7D). Second, the abundance of PER and TIM in sLNvs was also

restored (Fig 7C and 7D and S6B and S6C Fig). Together, our data showed that activation of

PDFR signaling in circadian neurons rescues the arrhythmic and period-lengthening pheno-

type of dom knockdown.

Discussion

Here, we identify that two alternatively spliced variants of DOM play distinct roles in circadian

rhythms. Both DOM-A and DOM-B determine the circadian period of locomotor rhythms by

regulating core pacemaker protein PER/TIM abundance. However, DOM-A plays specific

roles for maintenance of sLNvs and PDF abundance during development thus controls morn-

ing anticipatory activity and circadian rhythmicity.

The abolished morning anticipatory activity in light dark cycle and low rhythmicity under

constant darkness in DOM/DOM-A knockdown flies is reminiscent of the phenotypes seen in

pdf mutant (Fig 1 and Fig 3) [43]. Based on these observations, we hypothesized that PDF sig-

naling is disrupted with dom or dom-A RNAi. Indeed, we found that PDF abundance was

decreased both in the soma and dorsal axonal projections of sLNvs (Fig 4). Furthermore, by

restricting RNAi to adulthood, we restored the PDF expression and projection, which also

restored the rhythms (Fig 6). These results suggest that the arrhythmic phenotype is due to the

decrease of PDF levels in dom or dom-A downregulation.

Despite the importance of sLNvs in circadian rhythms, the mechanism underlying sLNvs

maintenance is still unclear. Here we find that DOM-A plays important roles in the mainte-

nance of sLNvs. PDF positive sLNvs and dorsal projections are formed in first instar larvae

[10]. During development, both DOM-A and DOM-B start to be expressed in embryos [23].

Our data suggest that DOM-A does not affect sLNvs development in larvae, but rather regu-

lates sLNvs maintenance at later stages (Fig 6). Knockdown of DOM-A may trigger apoptosis

or necrosis pathways and cause programmed cell death in sLNvs. In fact, chromatin-modifying

pathway has been shown to regulate neuronal necrosis in flies [44]. In the future, it will be

interesting to examine whether DOM-A is involved these programmed cell death pathways

and blocking necrosis or apoptosis pathway can restore the sLNvs in DOM downregulation.

Here we found that depletion of DOM-A seems to specifically affect the maintenance of

PDF positive sLNvs and PDF accumulation in sLNvs, while the PDF positive lLNvs is not

affected (Fig 5). This suggests that as master pacemaker neurons, sLNvs may have some unique

regulatory program for maintenance and gene expression, which requires DOM-A. Interest-

ingly, a phosphatase LAR has recently been found to specifically regulate PDF expression in

the dorsal projection of sLNvs during development [40]. The pacemaker protein VRI also

DOMINO controls Drosophila circadian locomotor rhythms

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008474 October 28, 2019 13 / 22

https://doi.org/10.1371/journal.pgen.1008474


played important roles in controlling PDF abundance and dorsal arborization rhythms of

sLNvs [22]. Future efforts to identify specific regulatory mechanisms in sLNvs will help us

understand the maintenance and function of circadian neuronal network.

Fig 7. Constitutive activation of PDFR signaling rescued the circadian behavior phenotype of DOM downregulation. A. Actograms showing the average activities on

the last day of LD and during 5 days in DD. Light represents the day and gray darkness. From left to right: (Left panel) flies expressing the membrane-tethered scrambled

PDF; (middle panel) domRNAi#1 flies expressing a membrane-tethered scrambled PDF (negative control); and (right panel) domRNAi#1 flies expressing the membrane-

tethered PDF. Arrhythmia and long period of dom downregulation are rescued with tethered PDF. B. Free-running period of dom RNAi flies expressing the membrane-

tethered PDF. C. Representative confocal images of brains of dom RNAi flies expressing the membrane-tethered PDF or scrambled PDF. Flies were entrained for 4 days in

LD 25˚C, and brains were dissected at ZT1 for anti-PDF antibody (green) and anti-PER antibody (red). From top to bottom: (Top panel) fly brain expressing the

membrane-tethered scrambled PDF; (middle panel) domRNAi#1 flies expressing a membrane-tethered scrambled PDF; and (bottom panel) domRNAi#1 flies expressing the

membrane-tethered PDF. Confocal images are whole brain, dorsal projection and soma of sLNvs from left to the right (Scale bar: whole brain, 500 um; projection, 100 um;

sLNvs, 50 um). D. Quantification of the number and relative PDF and PER levels of sLNvs. For each genotype, totally, 20–25 flies brains and 50–80 neurons were used for

quantification of the staining. Error bars correspond to SEM. ��p< 0.01, ����p< 0.0001 as determined by t-test.

https://doi.org/10.1371/journal.pgen.1008474.g007
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Why does DOM-A, but not DOM-B, regulate sLNv maintenance and pdf transcription?

One possibility might be that DOM-A and DOM-B are associated with different protein com-

plexes. Compared to DOM-B, DOM-A has two unique domains in the C-terminus: a SANT

domain and a poly-Q domain. Both of these two domains are known to mediate protein inter-

actions. Interestingly, only DOM-A is identified to bind the Tip60 complex when Tip60 was

purified by a tagged protein subunit from Drosophila S2 cells [24]. A previous study finds that

depletion of Tip60 or overexpression of a histone acetyltransferase-defective Tip60 decreases

axonal growth of the sLNvs in the fly model of Alzheimer’s disease [45]. These results suggest

that DOM-A might interact with Tip60 to control the axonal projection and PDF expression

of sLNvs.

Here we found that activation of PDFR signaling by t-PDF in tim-GAL4 expressing neurons

not only restored the circadian rhythmicity but also the length of period and PER abundance

in DOM knockdown (Fig 7). How does PDFR signaling affect PER? PDF is an important neu-

ropeptide as both being an circadian output factor and adjusting the molecular clock [16].

After activation, PDFR signaling increases cAMP-PKA pathway and stabilized PER in PDF

positive neurons [17]. This may explain why we saw a restoration of PER with co-expression

of t-PDF and dom dsRNA. In addition to PER, we also observed a restoration of TIM abun-

dance. Previous results on the effect of PDF signaling on TIM in non-PDF circadian cells are

controversial [18, 46]. The exact mechanism of how TIM level is rescued by t-PDF here is still

unclear.

Lastly, how does DOM control circadian period? This is probably through regulation the

balance between H2Av and phosphor-H2Av at the promoter of per and tim via binding to

CLK. Interestingly, compared to the decrease of per and tim mRNA in DOM downregulation,

the master circadian transcription factor clk mRNA is not affected. Indeed, we found that

from Drosophila S2 cell affinity pull-down, CLK interacts with DOM complex (Table 1). Fur-

thermore, DOM-A and DOM-B binding is enriched in the E-box region of per and tim pro-

moters. Even though no binding differences were observed in DOM-A and DOM-B at ZT4

and ZT16 (Fig 3), it is possible that other subunits in the DOM complex bind rhythmically,

leading to rhythmic activity of the complex. Given that the conserved functions of DOM and

human SRCAP/p400 in Notch signaling and histone variant exchange, it is possible that simi-

lar mechanisms are leveraged to control circadian rhythms in mammals.

Materials and methods

Fly stocks

All the flies were raised on cornmeal/agar medium at 25˚C under a LD cycle. The following

strains were used: yw,w1118, yw; tim-GAL4/CyO [36], yw;Pdf-GAL4/CyO [11]; yw;tim-GAL4/
CyO;Pdf-GAL80/TM6B [47], tublin-GAL80ts, UAS-cd8-GFP, clkout. The following stocks were

obtained from the Bloomington Drosophila Stock Center (http://flystocks.bio.indiana.edu/):

UAS-domRNAi#1 (BL31054), UAS-domRNAi#2 (BL38941), UAS-domA (BL64261) and UAS-
domB (BL64263). DomARNAi (sh-domA) and domBRNAi (sh-domB) fly lines were generous gifts

from Dr. Peter B. Becker. PdfTomato line was generated by Dr. Sebastian Kadener.

Behavioral experiments and analysis

For behavioral experiments, adult male flies (2–4 days old) were used for testing locomotor

activity rhythms. Flies were entrained for 4 full days LD cycle at 25˚C, using about 500 lux

light intensities, and then released into DD at 25˚C for at least 6 days. Locomotor activity was

measured with TriKinetics Activity Monitors in I36-LL Percival Incubators. Locomotor activ-

ity was averaged over the 4 days entrainment for LD and 6 days for DD. Analyses of period
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and power were carried out using FaasX software as previously described [48]. Actograms

were generated using a signal-processing toolbox implemented in MATLAB (MathWorks)

[49]. For GAL80ts experiments, flies were raised at 18˚C and tested at 30˚C. They were

entrained for 5 days and then released in DD for at least 6 days. Morning anticipation was cal-

culated by the ratio of activity counts between 2 hrs before light on and 6 hrs before light on.

We first measured the single fly activity counts obtained in twelve 30-min bins between Zeitge-

ber Time (ZT) 17.5 and ZT24 (6 hr before lights on) and six 30-min bins between ZT22.5 and

ZT24 (2 hrs before lights on). The first value is divided by the second to obtain the morning

activity index. Morning anticipations of individual flies were then averaged and plotted on the

graphs.

Whole-Mount immunohistochemistry

Whole-mount immunohistochemistry for fly brains were done as previously described [50].

Adult fly (3–6 days old) or L3 stage larval brains were dissected in chilled PBT (PBS with 0.1%

Triton X-100) at the indicated time points and fixed in 4% formaldehyde diluted in PBS for 30

min at room temperature. For pupal brains dissection, Drosophila were fully developed and

hatched 7 days after pupation in the same cross, pupa were collected 3 days after pupation

using a small wet paintbrush and transfer to a dissection dish. After 2–3 times PBS wash, the

pupal brains were dissected and fixed as previously described method. The brains were rinsed

and washed with PBT three times (10 min each). Then, brains were incubated with 10% nor-

mal Goat serum diluted in PBT to block for 60 min at room temperature and incubated with

primary antibodies at 4˚C overnight. For PER, TIM and CLK staining, we used 1:1,500 rabbit

anti-PER, 1:2,000 rat anti-TIM (gift from Dr. Rosbash) and guinea pig 1:2,500 anti-CLK (gift

from Dr. Hardin), respectively. We used a 1:200 dilutions for mouse anti-PDF and 1:200 for

rabbit anti-GFP (DSHB). After six washes with PBT (20 min each), brains were incubated with

relative secondary antibody at 4˚C overnight, followed by another six washes with PBT. For

PdfTomato staining, flies were directly dissected in chilled PBT at the indicated time points

and moutained in the medium (VECTOR). All samples were imaged on a Leica Confocal SP8

system, with laser settings kept constant within each experiment. 10 to 12 fly brains for each

genotype were dissected for imaging. Representative images are shown. Image-J software

(National Institutes of Health [NIH]) was used for PER, PDF, TIM and CLK quantification in

15–30 sLNvs from at least seven brains. For quantification, signal intensity in each sLNv and

average signals in three neighboring non-circadian neurons were measured, and the ratio

between signals in sLNvs and non-circadian neurons was calculated.

Chromatin immunoprecipitation (ChIP)

Chromatin immunoprecipitation (ChIP) was performed based on published protocols [31].

Flies entrained in 12 hr light:12 hr dark (LD) conditions at 25˚C for four days were collected at

two time-points (ZT4 and ZT16) on the fifth day. Briefly, chromatin was isolated from 500 μl

of fly heads homogenized with a dounce homogenizer (Kimble Chase) for 20 strokes using the

loose “A” pestle. Homogenate was sieved by a 70 μm cell strainer (Falcon) then centrifuged to

remove cell debris. Pellets were cross-linked using formaldehyde. Samples were sonicated

using a focused-ultrasonicator (Covaris M220) on setting for 400–500 bp cDNA and then cen-

trifuged at 10,000 rpm for 10 minutes. Supernatant was collected in two 130 μl aliquots for IP

and 26 μl was collected for input and frozen at -80C for analysis. Sonicated chromatin was

roughly 500 bp in length (<1000 bp). For each IP, 30 μl of a Protein G Dynabead slurry (Life

Technologies) was washed then incubated along with the appropriate antibodies for 4 hours at

4˚C with rotation. Amount of antibodies used for ChIP is as follows: anti-H2Av (10 ug/ml,
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rabbit, Active Motif), anti-DOM-A (20 μg/ml, rabbit, GenScript) which was generated in our

lab (antigen protein sequence designed according to 2008–2349 aa of DOM-A), anti-rabbit-

IgG (20 μg/ml, Life Technologies), anti-DOM-B (10 μg/ml, mouse, from Dr. Peter B. Becker),

anti-mouse-IgG (10 μg/ml, Life Technologies). Following incubation, beads were collected

and incubated with chromatin overnight at 4˚C with rotation. DNA was eluted using the Qia-

gen PCR purification kit and subjected to qPCR. At least three technical replicates of qPCR

were performed for each biological ChIP replicate and three biological replicates were per-

formed for H2Av, DOM-A and DOM-B assays. Background binding to a nonspecific antibody

(anti-IgG; Life Technologies) bound to Dynabeads was subtracted from input samples and

results are presented as the percentage of the input samples. For each assay, at least three bio-

logical replicates were performed. The specific primers used for qPCR are described in S2

Table. The technical qPCR triplicates were averaged for each biological replicate as no signifi-

cant differences were found between the technical replicates, and the error bars represent SEM

calculated from variance between biological replicates. Two-tailed t-tests were used to deter-

mine statistical differences between control and experimental treatment at each ZT.

Real time quantitative reverse transcription PCR

Flies were collected at the indicated time points and isolated heads were stored at −80˚C. Total

RNA was extracted from 25–30 heads with TRIzol based on the manufactures protocol (Life

Technologies, USA). A 2-μg quantity of RNA was reverse-transcribed with reverse transcrip-

tion reagents (Invitrogen). For real-time PCR (qRT-PCR) of per, tim, clk, dom, domA, domB
and actin, we used a qPCR detection kit (SYBR Select Master Mix For CFX) (Life Technolo-

gies, USA). The specific primers used for qPCR are described in S2 Table. All the experiments

were performed in the CFX96 Real-Time System (BIO-RAD).

Western blot analysis

Fly heads were collected at the indicated time points and homogenized with pestles, protein

extracts were prepared with HEPES-Triton lysis buffer (1X HEPES-Triton buffer, 1 mM DTT,

0.4%NP-40, 0.1% SDS, 10% glycerol, 1X tablet protease inhibitor). Proteins were quantified

using BSA assay. For immunoblot analysis, proteins were transferred to PVDF membranes

(Genesee Scientific) and incubated with anti-DOM-A (1:300, GenScript), anti-DOM-B (1:5,

from Dr. Peter B. Becker) and anti-ACTIN (1:100,DSHB) in blocking solution. Band intensity

was calculated and analysed with Image J.

Statistics analysis

Statistical analysis of two data points was performed with Student’s t-test. Statistical analysis of

multiple data points was performed with one-way analysis of variance with Tukey post-hoc

tests using GraphPad software.

Supporting information

S1 Fig. Dom RNAi efficiency. A. Schematic map of the domA and domB locus. Regions of the

domA and domB mRNA targeted by the four specific RNAi lines. domRNAi#1 and domRNAi#2

are RNAi lines targeting different regions of dom. domARNAi and domBRNAi are short hairpin

RNAi lines specifically targeting domA or domB isoform CDS regions.

B. Quantitative RT-PCR showing the expression of dom, domA and domB. Flies were collected

at ZT1. Downregulation of dom (domRNAi#1 and domRNAi2) in circadian neurons decreased

dom mRNA levels, comparing to the controls. Downregulation of domA and domB (domARNAi
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and domBRNAi) in circadian neurons specifically decreased domA and domB mRNA levels,

comparing to the relative controls. Error bars correspond to SEM. n.s., nonsignificant;
��p< 0.01;���p< 0.001;����p< 0.0001 as determined by t-test.

(TIF)

S2 Fig. PER expression pattern in other groups of circadian neurons. A-B. Whole mount

immunostaining showing the expression pattern of PER in LNds and DN1s. Red is PER and

green is PDF. Flies were entrained for 4 days in LD and transferred to DD and dissected every

4 h on the fifth day. Downregulation of DOM decreased PER levels at CT1-9 and CT17 in

LNds, while reduced PER levels at CT1-5 and CT17-21 in DN1s (Scale bar: LNds, 50 um;

DN1s, 150 um).

(TIF)

S3 Fig. DOM-A, but not DOM-B was clk dependent. A-B. Quantitative RT-PCR showing

the expression patterns of domA and domB in w1118 and Clkout flies heads. Flies were collected

at the indicated time points (ZT = Zeitgeber Time or CT = circadian time). Dom-A exhibited a

strong oscillation pattern with a trough around ZT9 and CT9 while has a peak expression near

ZT21 and CT21 in w1118 flies heads, while the oscillation of dom-A expression was abolished in

Clkout. There is no obvious oscillation for dom-B expression in w1118 and Clkout flies heads

both ZT and CT conditions.

C-D. Validation of specificity for domA and domB shRNA knockdowns and overexpression.

UAS-domA, UAS-domB and UAS-shRNA of domA and domB males for domA and domB were

crossed with tim-Gal4 females. F1 offspring adult brains are probed with anti-DOM-A and

anti-DOM-B antibodies in western blot. ACTIN signals provided controls.

E-H. Western blot showing the expression patterns of DOM-A and DOM-B in w1118 and

Clkout flies heads. Flies were collected at the indicated time points (ZT = Zeitgeber Time).

DOM-A did not show a strong oscillation pattern in w1118 flies heads, while the expression lev-

els of DOM-A were remarkably decreased in Clkout. There is no obvious change for DOM-B

expression in w1118 and Clkout flies heads. Band intensity was calculated and analyzed with the

Image J. Error bars correspond to SEM. �P< 0.05;��p< 0.01,���p< 0.001 as determined by

the t-test.

(TIF)

S4 Fig. DomA and domB locomotor activity. A. Average locomotor activity of flies of differ-

ent genotypes under 3 days of 12:12 hr LD conditions. Dark activity bars represent the night,

and white bars represent the day. Comparing to the control (left panel),morning anticipation

was severely disrupted in domA shRNAi lines (middle panel),while morning anticipation was

normal in domB downregulation flies (Right panel).

B. Morning anticipation was calculated following the method described before. Error bars cor-

respond to SEM. n.s., nonsignificant;����p< 0.0001 as determined by t-test.

(TIF)

S5 Fig. Downregulation of DOM in adult stage decreases the mRNA levels of per and tim.

A-B. Quantitative RT-PCR showing the expression of per and tim. Flies were collected at the

indicated time points (ZT = Zeitgeber Time). Downregulation of dom in adult stage decreased

per and tim mRNA levels.

(TIF)

S6 Fig. Constitutively activation of PDFR signaling rescued the TIM expression in sLNvs.

A. Quantitative RT-PCR showing the expression of dom. Flies were collected at ZT1. Downre-

gulation of dom (domRNAi#1) in circadian neurons decreased dom mRNA levels (positive

DOMINO controls Drosophila circadian locomotor rhythms

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008474 October 28, 2019 18 / 22

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008474.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008474.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008474.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008474.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008474.s006
https://doi.org/10.1371/journal.pgen.1008474


control). Dom mRNA level is still reduced by dom RNAi even expressing the membrane-teth-

ered PDF. Error bars correspond to SEM. ���p< 0.001;����p< 0.0001 as determined by t-test.

B. Representative confocal images of brains of dom RNAi flies expressing the membrane-teth-

ered PDF or scrambled PDF. Flies were entrained for 4 days in LD 25˚C, and brains were dis-

sected at ZT23 for anti-PDF antibody (green) and anti-TIM antibody (red). From top to

bottom: (Top panel) fly brain expressing the membrane-tethered scrambled PDF; (middle

panel) domRNAi#1 flies expressing a membrane-tethered scrambled PDF; and (bottom panel)

domRNAi#1 flies expressing the membrane-tethered PDF. Confocal images are whole brain and

soma of sLNvs from left to the right (Scale bar: whole brain, 500 um; sLNvs, 50 um).

C. Quantification of the number and relative PDF and TIM levels of sLNvs. For each genotype,

totally, 14–20 flies brains and 30–55 neurons were used for quantification of the staining.

Error bars correspond to SEM. n.s., nonsignificant;���p< 0.001, ����p< 0.0001 as determined

by t-test.

(TIF)

S1 Table. DOM regulates drosophila circadian behavior.

(PDF)

S2 Table. Primers used in this study.

(PDF)
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