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ORIGINAL ARTICLE
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Abstract

Rationale: Twomolecular phenotypes of sepsis and acute respiratory
distress syndrome, termed hyperinflammatory and hypoinflammatory,
have been consistently identified by latent class analysis in numerous
cohorts, with widely divergent clinical outcomes and differential
responses to some treatments; however, the key biological differences
between these phenotypes remain poorly understood.

Objectives: We used host and microbe metagenomic
sequencing data from blood to deepen our understanding of
biological differences between latent class analysis–derived
phenotypes and to assess concordance between the latent
class analysis–derived phenotypes and phenotypes reported
by other investigative groups (e.g., Sepsis Response Signature
[SRS1–2], molecular diagnosis and risk stratification of sepsis
[MARS1–4], reactive and uninflamed).

Methods: Weanalyzeddata from113patientswith
hypoinflammatory sepsis and 76 patientswith hyperinflammatory
sepsis enrolled in a two-hospital prospective cohort study.Molecular
phenotypes hadbeenpreviously assignedusing latent class analysis.

Measurements and Main Results: The hyperinflammatory and
hypoinflammatory phenotypes of sepsis had distinct gene expression
signatures, with 5,755 genes (31%) differentially expressed. The
hyperinflammatory phenotypewas associatedwith elevated
expression of innate immune response genes, whereas the
hypoinflammatory phenotypewas associatedwith elevated expression
of adaptive immune response genes and, notably, T cell response
genes. Plasmametagenomic analysis identified differences in
prevalence of bacteremia, bacterial DNA abundance, and composition
between the phenotypes, with an increased presence and abundance of
Enterobacteriaceae in the hyperinflammatory phenotype. Significant
overlapwas observed between these phenotypes and previously
identified transcriptional subtypes of acute respiratory distress
syndrome (reactive anduninflamed) and sepsis (SRS1–2). Analysis of
data from theVANISH trial indicated that corticosteroidsmight have a
detrimental effect in patientswith the hypoinflammatory phenotype.

Conclusions: The hyperinflammatory and hypoinflammatory
phenotypes have distinct transcriptional and metagenomic
features that could be leveraged for precision treatment strategies.
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To date, despite hundreds of clinical trials in
acute respiratory distress syndrome (ARDS)
and sepsis, few pharmacologic therapies have
demonstrated a consistent or generalizable
improvement in disease trajectory or
outcome, and treatment remains supportive,
with high mortality rates (1). This dismal
track record has been attributed in part to
the considerable clinical and biological
heterogeneity within ARDS and sepsis (2).
Two phenotypes of ARDS have been
identified using latent class analysis (LCA)
applied to clinical and plasma protein
biomarker data in six randomized controlled
trials (3–7) (RCTs) and, more recently,
in two observational cohorts (8). These
phenotypes, termed hyperinflammatory
and hypoinflammatory, have distinct
biological features and outcomes. The
hyperinflammatory phenotype is
characterized by higher levels of circulating
proinflammatory biomarkers and higher
mortality, relative to the hypoinflammatory
phenotype. Additionally, when stratifying by
phenotype, differential treatment responses
were observed in three secondary analyses of
RCT data (3–5), suggesting that these LCA-
derived phenotypes may represent treatable
traits. Our group recently reported that these
phenotypes are also identifiable in sepsis and
appear to respond differently to activated
protein C (9). These findings, along with
those of a previous study (10), suggest that
the hyperinflammatory and hypoinflammatory
phenotypes are shared between sepsis
and ARDS.

Although the consistency of these
phenotypes across critical illness syndromes
suggests new potential therapeutic directions
in the field, the key biological pathways
distinguishing them remain incompletely
understood, representing a major barrier to
identifying and testing novel phenotype-
specific therapies. Higher levels of plasma
proteins related to systemic inflammation,
dysregulated endothelial responses, and
coagulopathy in the hyperinflammatory
phenotype suggest that pathogen burden
may also differ markedly. This idea is
supported by our observation of a higher
prevalence of bacteremia in the
hyperinflammatory phenotype (9). Despite
this, our understanding of whether sepsis
phenotypes are driven by specific underlying
pathogens has remained limited.

Several groups have identified sepsis
and ARDS phenotypes using either only
transcriptional profiling (Sepsis Response
Signature [SRS1–2], molecular diagnosis and
risk stratification of sepsis [MARS1–4]) or
only protein biomarkers (reactive and
uninflamed) (11–13). The extent to
which these phenotypes overlap with the
hyperinflammatory and hypoinflammatory
phenotypes in sepsis has been unknown and
could provide insight into the generalizability
of phenotypes across critical illness
syndromes. Previous studies, including
analyses of sepsis (14) and LCA-derived
coronavirus disease (COVID-19) ARDS
(15) phenotypes, highlighted differential
treatment responses to corticosteroids.
Determining whether differential response
to corticosteroids is also a feature of the
hyperinflammatory and hypoinflammatory
sepsis phenotypes could shed light on
phenotype generalizability and inform
therapeutic strategies with the potential to
benefit certain patient subgroups.

The primary objective of this study
was to compare the biological profiles of the
two LCA-derived hyperinflammatory and
hypoinflammatory sepsis phenotypes using
whole blood transcriptional profiling and
plasma metagenomic sequencing of
circulating microbial DNA.We also sought
to compare these sepsis phenotypes to other
previously identified phenotypes of ARDS
and sepsis to assess the concordance of
different phenotyping approaches across
syndromic definitions of disease. Last,
we evaluated phenotype-specific treatment
response to corticosteroids.

Some of the data in this article have been
previously included in a published study (16).

Methods

Clinical Cohort and Data
For this analysis, we selected patients who
developed sepsis, defined as suspected or
confirmed infection with at least two
systemic inflammatory response syndrome
criteria (e.g., sepsis-2 criteria), from the
Early Assessment of Renal and Lung
Injury (EARLI) observational cohort
(see Supplementary Methods in the online
supplement). For practical reasons, subjects
who were intubated and/or hypotensive

in the emergency department (ED) were
preferentially selected for PAXgene tube
collection and, therefore, for sequencing
(see Table E1 in the online supplement).
Sepsis phenotypes were assigned using LCA
as previously reported (9).

Whole blood samples were collected in
PAXgene tubes and utilized for sequencing.
We used kallisto (17) to generate gene counts
(Supplementary Methods).

Gene Expression Differences
We studied differences in gene expression
between LCA-derived hyperinflammatory
and hypoinflammatory sepsis phenotypes by
performing a differential expression analysis
using DESeq2 (18) in R (Supplementary
Methods). The analysis was reproduced using
the fraction of absolute neutrophil count per
white blood cell count as an additional
covariate to assess if the differences in gene
expression profiles between the phenotypes
were driven by differences in neutrophil
proportions. Gene ranks were compared
using Spearman’s correlation coefficient and
individual gene statistics.

To identify biological terms of interest,
we performed a pathway analysis using
Ingenuity Pathway Analysis (QIAGEN;
https://digitalinsights.qiagen.com/products-
overview/discovery-insights-portfolio/
analysis-and-visualization/qiagen-ipa/). To
assess the results’ consistency, we additionally
performed a gene set enrichment analysis (19)
using the list of genes ranked based on fold-
change values and the Reactome database of
gene sets (20) (SupplementaryMethods).

To infer cell-type fractions from bulk
gene expression data, we used CIBERSORTx
and the LM22 reference matrix (21), listing
22 types of human cell phenotypes
(Supplementary Methods).

Microbial Differences
DNA sequencing was performed on plasma
samples stored in ethylenediaminetetraacetic
acid tubes. Sequencing data were processed
using the IDseq pipeline (22). A rules-based
model, identifying overrepresented
pathogens in metagenomic data, was used
to flag pathogens (16). The abundance of
bacterial species was estimated using the
normalized number of reads mapping to a
given species. Data were aggregated at the
species level using phyloseq in R and

This article has a related editorial.

This article has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org.
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taxonomic information from the National
Center for Biotechnology Information
database (23). The Bray-Curtis dissimilarity
measure was used to assess differences in b
diversity between samples and the adonis2
function from the vegan package to compute
the associated P value using PERMANOVA.
Differential abundance analysis was
performed usingWilcoxon tests.

Comparison with Previously
Described Phenotypes
To study the similarities between the
hyperinflammatory and hypoinflammatory
phenotypes and previously described
subtypes of sepsis—SRS1 and SRS2 from the
GAinS study (13), sepsis MARS1–4 from the
MARS cohort (11), and ARDS and sepsis
reactive and uninflamed from theMARS study
(12)—we compared the hyperinflammatory
and hypoinflammatory fold changes in
EARLI to the fold changes for the SRS,
MARS, and reactive and uninflamed
subtypes in the external cohorts. More
specifically, we matched each of the two
phenotypes of interest to one of the external
phenotypes, on the basis of clinical
similarities, and compared gene expression
fold changes. For the MARS1–4 comparison,
we considered all possible phenotype pairs to
identify the groups being the most similar to
the hyperinflammatory and
hypoinflammatory phenotypes. Normalized
gene expression values were collected,
respectively, from the ArrayExpress database
(E-MTAB-4421 and E-MTAB-4451) and the
Gene Expression Omnibus website
(GSE65682; SupplementaryMethods).
Spearman’s correlation coefficient was
chosen to perform the comparison. Ninety-
five percentWilson confidence intervals (24)
were generated (Supplementary Methods).

Differential Therapeutic Responses
Array-based gene expression data from the
VANISH trial of septic shock (25) were
collected fromArrayExpress (E-MTAB-7581).
Support vector machine–based classifiers (26)
were built with the Python scikit-learn (27)
library. This model was then applied to
patients with transcriptomic data (N=117)
from the VANISH trial to allocate patients to
the hyperinflammatory or hypoinflammatory
phenotype. A logistic regression model was
used to test for phenotype-specific treatment
effect (Supplementary Methods).

Results

Clinical Cohort and Data
We studied a subset of 189 intubated and/or
hypotensive patients with sepsis (see Figure E1
in the online supplement) who were enrolled
in the EARLI prospective cohort study at two
hospitals affiliated with the University of
California, San Francisco (Table E1). Samples
were collected at a median time of 15hours
after ED admission (Table E1) (28).
Demographics, clinical features, plasma
protein biomarker measurements, and
outcomes are presented in Table 1.
Differences between phenotypes were
consistent with previous analyses of LCA-
derived phenotypes in ARDS and sepsis (9).
(For additional characteristics, see Table E2
in the online supplement; for a summary of
the missing data, see Table E3 in the online
supplement.)

Gene Expression Differences
We first assessed biological differences
between the two sepsis phenotypes on the
basis of differential gene expression analysis
using DESeq2 (18). Of the 18,354 genes
compared, 5,755 (31%) were found to be
differentially expressed at a false discovery
rate threshold of 0.05 (Figure 1A). These
findings were consistent after adjusting for
the fraction of absolute neutrophil count per
white blood cell count (Spearman’s R=0.92),
which was significantly higher in the
hyperinflammatory phenotype (Table 1).

On the basis of these differentially
expressed genes, we sought to identify
associated pathways enriched in each
phenotype using Ingenuity Pathway
Analysis. Thirty-one pathways were found
to be significantly enriched (absolute
Z score. 2; Figure 1B). Gene set enrichment
analysis using the Reactome database
produced similar results (File E1).

Overall, the hyperinflammatory
phenotype was characterized by the
activation of pathways related to the innate
immune response and energy metabolism,
including oxidative phosphorylation,
glycolysis, and cholesterol biosynthesis
pathways. Immune response pathways also
showed elevated expression in patients with
the hyperinflammatory phenotype,
including the PD-1, PD-L1 cancer
immunotherapy, MSP-RON, and IL-8
signaling pathways. Additionally, several
cell motility pathways known to be essential
for innate immune responses (29), such as

At a Glance Commentary

Scientific Knowledge of the
Subject: Despite numerous clinical
trials in acute respiratory distress
syndrome (ARDS) and sepsis, few
pharmacologic therapies have
consistently improved outcomes,
attributing the challenges to the
clinical and biological heterogeneity
within these conditions. Latent
class analysis (LCA) identified
two ARDS and sepsis phenotypes,
hyperinflammatory and
hypoinflammatory, marked by
distinct features and outcomes.
These phenotypes exhibit
differential treatment responses,
suggesting treatable traits. As potential
therapeutic directions emerge, the
underlying biological pathways and
pathogen contributions remain
unclear, hindering the development
of phenotype-specific therapies.

What This Study Adds to the
Field: This study delves into the
biological foundations of two sepsis
phenotypes, revealing distinct host
and microbial characteristics. The
hyperinflammatory phenotype
exhibits heightened innate
immunity and metabolic gene
expression, paralleled by an
increased abundance of bacterial
DNA in the blood. Conversely, the
hypoinflammatory phenotype is
marked by T-cell signaling,
suggesting a link between
immunosuppression, metabolic
dysfunction, and poor outcomes.
Notably, the study exposes a breach
in the traditional concept of a
sterile bloodstream in sepsis, with
patients with the hyperinflammatory
phenotype showing greater bacteremia
and compositional differences. The
partial overlap with established
phenotypes emphasizes the complexity
of critical illness, urging further efforts
to consolidate and understand diverse
phenotyping schemas. These findings
contribute to refining biomarkers
for therapeutic targeting and hold
implications for predictive enrichment
in clinical trials for critical conditions.
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RHOA and Rho signaling, were enriched in
patients with the hyperinflammatory
phenotype.

In contrast, patients with the
hypoinflammatory phenotype exhibited
increased expression of genes related to
T cell responses, including CD28; Th1 and

Th2; nuclear factor of activated T cells, or
NFAT; protein kinase C; ICOS-ICOSL; and
T cell receptor signaling.

In silico analysis of cell type
proportions using CIBERSORTx (21)
(Figure 1C) predicted increased proportions
of innate immune cells, including

macrophages, mast cells, dendritic cells, and
natural killer cells, in patients with the
hyperinflammatory phenotype. Adaptive
immune cells, including T cells and plasma
cells, were found in greater proportions in
patients with the hypoinflammatory
phenotype.

Table 1. Cohort Characteristics

Characteristic All Included (N=189) Hypo (n=113) Hyper (n=76) P for Hyper vs. Hypo

Age, yr, mean (SD) 65 (15) 65 (15) 66 (15) 0.73*
Gender, n (%) 0.70†

Male 112 (59) 66 (58) 46 (61) —
Female 76 (40) 46 (41) 30 (39) —
Transgender 1 (1) 1 (1) 0 (0) —

Race, n (%) 0.82†

White 71 (38) 42 (37) 29 (38) —
Asian 58 (31) 35 (31) 23 (30) —
Black 34 (18) 22 (19) 12 (16) —
Other 23 (12) 12 (11) 11 (14) —
NA 3 (2) 2 (2) 1 (1) —

BMI, mean (SD) 26.3 (8.8) 26.8 (9.4) 25.4 (7.8) 0.30*
Temperature, �C, mean (SD) 37.9 (1.4) 37.9 (1.2) 37.8 (1.6) 0.80*
Heart rate, beats/min, mean (SD) 128 (27) 124 (25) 134 (30) 0.01*
SBP, mmHg, mean (SD) 82 (20) 87 (21) 75 (15) ,0.001*
PaCO2

, mmHg, mean (SD) 43 (19) 47 (21) 38 (14) ,0.001*
PaO2

/FIO2
, mmHg, median (Q1–Q3) 168 (101–279) 175 (114–304) 151 (78–261) 0.09‡

Respiratory rate, breaths/min, mean (SD) 35 (8) 34 (8) 36 (8) 0.12*
Hematocrit, %, mean (SD) 30 (7) 32 (7) 27 (6) ,0.001*
White cell count, 103/μl, median (Q1–Q3) 13 (9–19) 13 (10–17) 14 (8–22) 0.44‡

ANC/WBCs, %, median (Q1–Q3) 86 (76–92) 83 (73–90) 90 (83–94) ,0.001‡

Platelets, 103/μl, median (Q1–Q3) 151 (85–229) 193 (137–251) 84 (40–141) ,0.001‡

Sodium, mmol/L, mean (SD) 135 (6) 137 (6) 133 (6) ,0.001*
Creatinine, mg/dl, median (Q1–Q3) 1.4 (1–2.4) 1.1 (0.7–1.8) 2 (1.3–3.1) ,0.001‡

Bicarbonate, mmol/L, mean (SD) 20 (7) 23 (6) 16 (5) ,0.001*
Albumin, g/dl, mean (SD) 2.4 (0.7) 2.7 (0.6) 2.1 (0.6) ,0.001*
Bilirubin, (mg/dl, median (Q1–Q3) 1 (0.6–1.5) 0.7 (0.4–1.2) 1.3 (0.9–2.4) ,0.001‡

Vasopressor use at enrollment, n (%)
Yes 152 (80) 79 (70) 73 (96) ,0.001†

Mechanical ventilation at enrollment, n (%)
Yes 162 (86) 101 (89) 61 (80) 0.12†

Primary source of sepsis, n (%) ,0.001‡

Pulmonary 104 (55) 76 (67) 28 (37) —
Nonpulmonary 68 (36) 29 (26) 39 (51) —
Unclear 17 (9) 8 (7) 9 (12) —

Bacteremia, n (%) ,0.001†

Yes 46 (24) 9 (8) 37 (49) —
Berlin ARDS, n (%) ,0.01†

Yes 88 (47) 43 (38) 45 (59) —
No 64 (34) 47 (42) 17 (22) —
Other§ 37 (20) 23 (20) 14 (18) —

APACHE III, mean (SD) 115 (37) 101 (30) 135 (39) ,0.001*
In-hospital mortality to Day 60, n (%)
Yes 76 (40) 28 (25) 38 (50) ,0.001†

Definition of abbreviations: ANC=absolute neutrophil count; APACHE III =Acute Physiology and Chronic Health Evaluation III; ARDS=acute
respiratory distress syndrome; BMI=body mass index; Hyper= hyperinflammatory phenotype; Hypo=hypoinflammatory phenotype; NA=not
applicable; Q1= first quartile; Q3= third quartile; SBP= systolic blood pressure; WBCs=white blood cells.
Demographics and clinical outcomes are presented for the 189 selected samples. Values by phenotype label are presented, and differences
between the two phenotypes are tested for. For continuous variables, the mean or median and (SD or Q1–Q3) are reported. For categorical
variables, the numbers of patients falling into the different categories are reported. Corresponding (percentages) are reported as well.
*t test.
†Chi-square test.
‡Mann-Whitney test.
§Other indicates patients for which ARDS status could not be determined because of an underlying condition, a cardiac arrest, or an equivocal
chest X-ray that prevented the establishment of status.
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Figure 1. Gene expression differences between phenotypes identified by transcriptional profiling. (A) Volcano plot highlighting differentially
expressed genes between hyperinflammatory and hypoinflammatory phenotypes. Log2 fold change values are reported on the x-axis. 2Log10

P values are represented on the y-axis. Each circle marker corresponds to a gene. Red dots indicate genes significantly differentially expressed. The
top 25 (ordered by adjusted P value) differentially expressed genes are highlighted. (B) Enriched pathways based on differentially expressed genes
between hyperinflammatory and hypoinflammatory phenotypes. Pathways were selected on the basis of Z score and P value and ordered given their
Z score, which is represented on the x-axis. All significant pathways are represented. Z-score values quantify the overlap between differentially
expressed genes and a given gene set. Z-score values also incorporate the direction of expression. Pathway terms are listed on the y-axis. The color
of each dot represents the direction of the enrichment; a positive value represents a term enriched in the hyperinflammatory phenotype, and a
negative value represents a term enriched in the hypoinflammatory phenotype. All reported terms were significantly enriched (absolute Z score.2).
(C) In silico deconvolution on the basis of the LM22 signature. Cell type proportions between the phenotypes for 11 types of cells are represented
(x-axis). The different types of cells are listed on the y-axis. Adjusted P values are reported. Differences were tested for using Wilcoxon tests and
Benjamini-Hochberg adjustments for multiple comparisons. gd=gamma delta; Hyper=hyperinflammatory phenotype; Hypo=hypoinflammatory
phenotype; LCA= latent class analysis; NFAT=nuclear factor of activated T cells; NK=natural killer; PKC=protein kinase C.
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Figure 2. Microbial differences between sepsis phenotypes identified by plasma metagenomics. (A) Nonmetric multidimensional scaling-
reduced representation of Bray-Curtis distances demonstrating potential plasma bacterial compositional differences between the
hyperinflammatory (Hyper; orange; n=74) and hypoinflammatory (Hypo; blue; n=111) phenotypes. (B) The relative dominance of the most
abundant pathogen detected by plasma metagenomics in hyperinflammatory versus hypoinflammatory phenotypes. Relative dominance
represents the proportion of sequencing reads mapping to the most abundant pathogen in each sample relative to all other bacterial
genera. The Wilcoxon-derived P value is reported. (C) Differences in the relative abundance of bacterial pathogens (30, 31) between the
hyperinflammatory and hypoinflammatory phenotypes measured in sequencing RPM. The Wilcoxon-derived P value is reported. (D) Differential
abundance analysis of sepsis-associated bacterial pathogens (genus level) detected in plasma from patients with hyperinflammatory versus
hypoinflammatory sepsis phenotypes. Log2 fold-change values for hyperinflammatory vs. hypoinflammatory phenotypes are reported on the x-
axis. Each one of the top five genera per fold-change direction is a bar on the y-axis. Lighter colored bars indicate genera that did not meet the
significance threshold of adjusted P , 0.05. (E) Proportion of total bacterial reads matching to the Enterobacteriaceae family per phenotype.
For each patient, represented by a dot, the proportion of total bacterial reads mapping to the Enterobacteriaceae family is reported on the
y-axis. The Wilcoxon P value for the comparison of Hypo to Hyper is reported. LCA= latent class analysis. RPM= reads per million.
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Microbial Differences
Next, we used plasmametagenomic DNA
sequencing (n=185) to compare microbial
composition between the hyperinflammatory
and hypoinflammatory phenotypes. Bray-
Curtis dissimilarity suggested significant
differences in b diversity between
phenotypes (PERMANOVA,,0.001)
(Figure 2A). Microbial alignments from the
hyperinflammatory phenotype were more
often characterized by dominance of a single
bacterial species (median read proportion of
highest represented species, 0.83 vs. 0.39;
Wilcoxon P, 0.001) (Figure 2B).

We next used a previously established
metagenomic rules-based model (16) to
identify probable sepsis pathogens (30, 31)
in the plasma metagenomics data. The
performance characteristics of this model
with respect to a gold standard of bacterial
culture in this population were recently
described (16). As previously reported, we
found that agreement with culture-based
microbiologic testing varied by species and
sampling site (see Table E4 in the online
supplement).

We found a higher abundance of
bacteria, measured in bacterial reads per
million, in plasma from patients with the
hyperinflammatory phenotype (Wilcoxon
P=0.03; Figure 2C), compared with patients
with the hypoinflammatory phenotype.
Plasmamicrobial DNAmass was also
significantly higher in patients with the
hyperinflammatory phenotype versus those
with the hypoinflammatory phenotype
(see Figure E2 in the online supplement).
Differential abundance analysis revealed
that Escherichia coli, ubiquitous enteric
commensals that can act as sepsis pathogens
in the bloodstream, were more abundant in
patients with the hyperinflammatory
phenotype (Figure 2D). To assess whether
translocation of enteric organisms might
contribute to the immunologic features of
the hyperinflammatory phenotype, we
calculated the proportion of bacterial reads
mapping to Enterobacteriaceae. We found
that Enterobacteriaceae species were
muchmore abundant in patients with the
hyperinflammatory phenotype, supporting
the hypothetical role of gut translocation in

this phenotype (Figure 2E). The relative
paucity of culture-confirmed Enterobacteriaceae
in the respiratory tract (n=3) or urinary tract
(n=3) further substantiates the hypothesis
that the source in bloodmay be originating
from the gut (Table E4).

Comparison with Previously
Described Phenotypes
Next, to assess overlap across different
phenotype schemas, we sought to compare
transcriptional differences between the
hyperinflammatory and hypoinflammatory
sepsis phenotypes in our cohort to the
differences between previously described
transcriptomic phenotypes of sepsis,
namely MARS1–4 and SRS1–2 (11, 13), as
well as to the reactive and uninflamed
phenotypes of ARDS and sepsis (12)
(Figure 3A).

First, using publicly available data,
we compared the LCA-derived
hyperinflammatory and hypoinflammatory
phenotypes with the SRS1 and SRS2
sepsis phenotypes derived from blood
transcriptional profiling in the GAinS

A

B C D

Figure 3. Transcriptional comparison of the Early Assessment of Renal and Lung Injury (EARLI) sepsis phenotypes and other sepsis and/or
acute respiratory distress syndrome (ARDS) phenotypes. (A) Summary of datasets comparatively evaluated. Each row corresponds to a dataset
with described phenotypes of sepsis and/or ARDS. The names of the cohorts, corresponding condition, external phenotype names, and number
of subjects with available gene expression data are listed. (B) Comparison between EARLI hyperinflammatory and hypoinflammatory
phenotypes and the SRS1 and SRS2 phenotypes. Each dot represents a gene measured in GAinS and EARLI cohorts. The x-axis coordinates
represent the log2 fold-change values for the comparison of hyperinflammatory with hypoinflammatory phenotypes in EARLI. The y-axis
coordinates represent the log2 fold-change values for SRS1 versus SRS2. On the y-axis, positive values represent genes that are overexpressed
in SRS1 when compared with SRS2. Spearman’s correlation coefficients (R) are reported. Pie charts represent a comparison of DE genes. (C)
Comparison of EARLI hyperinflammatory and hypoinflammatory phenotypes with the MARS4 and MARS2 phenotypes. (D) Comparison between
EARLI hyperinflammatory and hypoinflammatory phenotypes and the reactive and uninflamed phenotypes. DE=differentially expressed.
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cohort (13). We compared gene expression
fold changes among patients in the GAinS
cohort (SRS1 vs. SRS2 phenotypes) with gene
expression fold changes among patients in
the EARLI cohort (hyperinflammatory vs.
hypoinflammatory phenotypes; Figure 3B).
The correlation between gene expression fold
changes in the hyperinflammatory versus
hypoinflammatory phenotypes and SRS1
versus SRS2 phenotypes was moderate,
with a Spearman’s R=0.5, and a statistically
significantWilson score interval (,0.001,
,0.01).

Next, we compared differences in gene
expression between theMARS phenotypes
(10, 11) and the hyperinflammatory and
hypoinflammatory phenotypes. As more
than twoMARS phenotypes are described,
we identified the two phenotypes most
closely matching the hyperinflammatory and
hypoinflammatory phenotypes on the basis
of Spearman’s correlation.We determined
that theMARS2 andMARS4 phenotypes
most closely corresponded with
hyperinflammatory and hypoinflammatory
phenotypes, respectively, on the basis of the
highest correlation value. Comparative
evaluation of gene expression between
phenotypes (Figure 3C) demonstrated a
nonsignificant Spearman’s R=0.5 (Wilson
score interval: 0.08, 0.11). Despite this
correlation value being identical to the
GAinS-derived value, the range of fold
changes was narrower and, thus, more
likely to occur by chance.

Last, we compared our phenotypes with
the reactive and uninflamed sepsis-associated
ARDS phenotypes (12). We compared the
differences in gene expression between
the reactive and uninflamed phenotypes in
the MARS cohort with the differences in gene
expression between the hyperinflammatory
and hypoinflammatory phenotypes,
respectively. Correlation between gene
expression in the phenotypes was high
(Spearman’s R= 0.7; Wilson score interval:
,0.001,,0.01; Figure 3D), indicating a
strong overlap between these independently
identified phenotypes. As a sensitivity
analysis, we reproduced the aforementioned
analyses; that is, comparing gene expression
fold-change values between each external
phenotyping approach and hyperinflammatory
phenotype versus hypoinflammatory
phenotype in EARLI, including only genes
identified as differentially expressed in
EARLI. The conclusions reached were
the same (see Figure E3 in the online
supplement).

For each external phenotyping
approach, we independently quantified
the enrichment of pathways identified
as differentially enriched in the
hyperinflammatory phenotype versus the
hypoinflammatory phenotype to assess
overlap. Comparison of activated and
inhibited pathways with the results of our
main analysis confirmed the overlap, with
11 out of 31 pathways in common for SRS1
versus SRS2, 6 out of 31 for MARS2 versus
MARS4, and 19 out of 31 for reactive versus
uninflamed (see Figure E4 in the online
supplement). Notably, the pathways
previously identified as the most activated
when comparing the hyperinflammatory
phenotype with the hypoinflammatory
phenotype (oxidative phosphorylation and
PD-1, PD-L1 cancer immunotherapy) were
also identified as activated when comparing
the reactive phenotype with the uninflamed
phenotype.

Differential Therapeutic Responses
Previous studies of LCA-derived ARDS
phenotypes have suggested that they may
represent treatable traits with phenotype-
specific treatment responses (3–5).
Likewise, we recently reported that the
hyperinflammatory and hypoinflammatory
sepsis phenotypes exhibited differential
responses to activated protein C in a
secondary analysis of the PROWESS-
SHOCK dataset (9). We sought to further
test the hypothesis that these phenotypes
would respond differently to treatment in a
secondary analysis of the VANISH trial (25),
which tested the effect of randomly assigned
vasopressin versus norepinephrine and
hydrocortisone versus placebo in patients
with septic shock. We used gene expression
data from EARLI to create a bagged support
vector machine classifier, which was trained
and tested using cross-validation in the
EARLI dataset to allocate patients in the
VANISH trial to the hyperinflammatory or
hypoinflammatory phenotype. The resulting
area under the receiver operating curve was
0.89 (SD=0.07). A logistic regression model
was then fitted to test for the interaction
between phenotype and treatment, and for
its effect on 28-day mortality. We found
that treatment responses in VANISH
significantly differed on the basis of
phenotype (interaction P , 0.01; Figure E5;
see Table E5 in the online supplement). The
mortality rate was similar for patients with
the hyperinflammatory phenotype who were
treated with hydrocortisone or placebo (both

41%), but it was higher for patients with the
hypoinflammatory phenotype receiving
hydrocortisone than for those receiving
placebo (44% vs. 10%). This observed
interaction was similar to a previously
published analysis of the SRS1 and SRS2
phenotypes, which is consistent with a
significant overlap between the SRS1 and
SRS2 phenotypes and the LCA-derived
hyper- and hypoinflammatory phenotypes
(14). Additionally, we compared predicted
labels to SRS labels and observed a significant
overlap between the two phenotyping
schemas (P, 0.001; see Table E6 in the
online supplement). We found no evidence
of differential treatment effect for
vasopressors (vasopressin versus
norepinephrine, P =0.52).

Discussion

Our results provide new insights into the
biological underpinnings of two established
sepsis phenotypes from both host and
microbial perspectives. We found that
the hyperinflammatory phenotype is
characterized by increased expression of
innate immunity and metabolism-related
genes in the blood, whereas the
hypoinflammatory phenotype is enriched
in T cell and adaptive immunity signaling
pathways. Using plasmametagenomics,
we discovered that circulating microbial
composition differs between phenotypes,
with patients with the hyperinflammatory
phenotype characterized by an increased
abundance of DNA from bacterial sepsis
pathogens. Comparison against external
transcriptomic datasets demonstrates
conservation of critical illness inflammatory
phenotypes across studies, with the
hyperinflammatory and hypoinflammatory
phenotypes exhibiting significant similarities
with the reactive and uninflamed phenotypes
of ARDS and sepsis andmoderate
similarities with the SRS1 and SRS2 sepsis
phenotypes, respectively.

We found that increased expression of
innate immune genes characterized the
hyperinflammatory phenotype; in particular,
genes involved inMSP-RON (32) and IL-8
signaling, which is consistent with the
increased abundance of plasma IL-8 that
is an intrinsic feature of this phenotype
(Table E2). Conversely, in patients with the
hypoinflammatory phenotype, a strong
signal associated with T cell response was
identified. This finding supports the
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hypothesis that patients with the
hyperinflammatory phenotype are
characterized by T cell exhaustion and an
immunosuppressed phenotype (33). This
was also reflected by our in silico cell
proportion analysis, which demonstrated
increased proportions of several T cell
populations—in particular, CD4 T cells—in
patients with the hypoinflammatory
phenotype. The PD-1, PD-L1 cancer
immunotherapy pathway, describing
inhibition of PD-1 signaling, was the second
most enriched pathway in patients with
the hyperinflammatory phenotype. PD-1
downregulates T cell activity during immune
response, suggesting that patients with the
hyperinflammatory phenotype may have
attenuated T cell signaling. It is interesting
that the inhibition of the PD-1, PD-L1 axis
has been proposed as a therapeutic strategy
in the treatment of sepsis (34). Indeed,
immunosuppression caused by T cell
exhaustion has been observed in patients
with sepsis, and inhibiting PD-1 signaling
might have the potential to partially restore
T cell activity. These findings suggest that
such a therapeutic strategy might have
differential effects in the two LCA-derived
phenotypes, pending the results of additional
studies examining cell type–specific activity
related to PD-1 signaling.

We also found that the
hyperinflammatory phenotype was
characterized by increased expression of
genes associated with energy metabolic
pathways. This may reflect increased energy
demand of rapidly proliferating immune cell
populations—in particular, macrophages—
which were predicted to be enriched in the
hyperinflammatory phenotype. Given the
worse outcomes, metabolic acidosis, and
organ dysfunction characteristic of patients
with the hyperinflammatory phenotype,
these gene expression patterns suggest that
metabolic dysfunction may contribute to the
pathophysiology inherent to this phenotype.
The elevation of lactate levels could be a
consequence of an imbalance in energy
metabolism. Additionally, in a recent
metabolomics study comparing the
hyperinflammatory and hypoinflammatory
phenotypes, higher lactate levels were observed
in patients with the hyperinflammatory
phenotype (35). Vitamin C transport was
found to be dysregulated as well in the
hyperinflammatory phenotype. Conceptually,
vitamin C has the potential to reduce
mitochondrial dysfunction and inflammation;
however, several studies in which it has been

trialed as a treatment for sepsis have had
mostly disappointing results (36).

Our findings suggest that
corticosteroids, through their
immunosuppressive effects, might have
differential benefits on the basis of the sepsis
phenotype. This hypothesis is supported by
our observation that patients with the
hypoinflammatory phenotype in the
VANISH cohort had higher mortality with
hydrocortisone treatment, and it is also in
line with findings from a previously
published analysis of the SRS1 and SRS2
phenotypes (14). A recent study of patients
with COVID-19 found that corticosteroids
were associated with poor outcomes in
those with a previously described
hypoinflammatory COVID-19 ARDS
phenotype (15), further supporting the idea
that steroids may be detrimental in patients
with the hypoinflammatory phenotype.

Although the bloodstream has
been traditionally considered a sterile
environment, this concept is breached
in sepsis, where microbial invasion and
gut translocation play a direct role
in pathogenesis (16, 37, 38). Using
metagenomics, we found that bacteremia
was more prevalent in patients with
the hyperinflammatory phenotype
when compared with those with the
hypoinflammatory phenotype, supporting
our previous culture-based findings (9).
Through the novel use of plasmametagenomic
sequencing to probe microbial differences
between sepsis phenotypes, we found that
patients with the hyperinflammatory
phenotype had a greater abundance of
circulating DNA from bacterial pathogens,
as well as differences in the composition of
detected bacterial taxa, including a greater
proportion of Enterobacteriaceae species and,
in particular, Escherichia coli (which were
often also identified in culture-based blood
samples). Given that Enterobacteriaceae
species are classically enteric microbes, these
observations suggest that translocation
from the gut into the bloodstreammight be
disproportionately occurring in patients with
the hyperinflammatory phenotype (39).

We identified a strong, although
incomplete, overlap between the
hyperinflammatory and hypoinflammatory
sepsis phenotypes and the previously
described reactive and uninflamed
phenotypes, as well as the SRS1 and SRS2
phenotypes of sepsis and/or ARDS. This
finding supports the idea that conserved
phenotypes exist across critical illness

syndromes. For instance, oxidative
phosphorylation and cholesterol biosynthesis
were enriched in the same direction in
both the hyperinflammatory and reactive
phenotypes. Likewise, the hypoinflammatory
and uninflamed phenotypes had similar
overexpressed pathways, such as T cell
signaling, NFAT signaling, and dendritic cell
maturation. Overlap in selected biological
pathways was also observed between the
hyperinflammatory and SRS1 high-risk
phenotypes, both of which were marked
by transcriptional signatures of adaptive
immune suppression. Despite these
similarities, it should be noted that the
overlap between the transcriptionally derived
SRS1 and SRS2 phenotypes and the protein
biomarker–derived hypoinflammatory
and hyperinflammatory phenotypes
was incomplete. This is perhaps,
unsurprising, as the reactive and uninflamed
phenotypes, like the hyperinflammatory and
hypoinflammatory phenotypes, were derived
from similar plasma protein biomarkers.
These findings suggest that these
phenotyping schemas—and, consequently,
the data types used to derive them—may
offer complementary information to one
another, and inclusion of several approaches
in future analyses may be of additive value in
understanding the heterogeneity of sepsis.

Our study has several strengths. We
describe a novel approach to studying sepsis
phenotypes by assessing both host and
microbial elements using a combination
of protein biomarker measurements,
transcriptional profiling, and plasma
metagenomic sequencing of microbial DNA.
All samples were consistently collected early
in the hospitalization trajectory, eliminating
the risk of bias that would have stemmed
from large differences in recruitment times.
Additionally, our cohort included patients
with diverse demographic characteristics,
collected at two different hospitals, each
serving unique populations.

This study also has some limitations.
The primary analysis was conducted in a
single cohort, so findings may not be
representative. Similarities in signal observed
with several independent cohorts, however,
strongly support the hypothesis that our
findings are generalizable. It will be crucial to
reproduce this analysis in an independent
sepsis cohort to refine biomarkers that
have the potential to be used as therapeutic
targets. In addition, we assessed only the
most severely ill patients with sepsis, who
were either intubated or on vasopressors in
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the ED. The higher severity in our subset of
patients might influence gene expression
patterns, and future studies reflecting a
greater spectrum of sepsis severity will be
required. The analysis of differential
treatment effect in the VANISH cohort
should be interpreted cautiously, as
phenotypes were inferred from gene
expression data, and there is no validated
model or gold standard available at this time.
Future studies should seek to prospectively
validate these findings.

In conclusion, our analyses have
identified biologically plausible and

informative differences between LCA-
derived hyperinflammatory and
hypoinflammatory phenotypes of sepsis at
both the gene expression andmicrobial
levels, suggesting that the hyperinflammatory
phenotype is characterized by innate
immune activation, metabolic dysregulation,
and a higher bacterial pathogen burden,
compared with the hypoinflammatory
phenotype. The partial overlap between these
LCA-derived phenotypes and alternative
approaches to phenotyping of ARDS and
sepsis highlights the ubiquity of informative
biological heterogeneity in critical illness and

the need for additional efforts to harmonize
and synthesize phenotyping schema.
Biomarkers associated with genes, pathways,
and bacterial profiles highlighted here might
be important markers of outcome and
treatment response. These findings have
implications for the development of
therapeutic strategies and, specifically,
predictive enrichment in clinical trials of
patients with sepsis and other critical
illnesses.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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