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ABSTRACT OF THE DISSERTATION

Exploiting Factor and State Space Symmetry for Inference in Graphical Models

By

Nicholas Gallo

Doctor of Philosophy in Computer Science

University of California, Irvine, 2020

Prof. Alexander Ihler, Chair

Probabilistic graphical models provide a powerful framework for representing and reasoning

about complex systems composed of many small overlapping subsystems. Key problems in

graphical models can be formulated as probabilistic inference queries, such as computing

the most likely configuration or the marginal probability of a random variable. Since these

problems are intractable in general, a large class of approximate inference algorithms that

exploit the factorization structure of graphical models have been developed.

In addition to the classic factorization structure, many graphical models also possess sym-

metric structure where groups of objects in the model are indistinguishable. Two types of

symmetry arise regularly in practice: first, a model with state space symmetry contains fac-

tors with groups of states that have identical values; second, a model with factor symmetry

contains groups of factors that have identical factor tables.

Although efficient inference algorithms for models with perfect symmetry have been well

developed, most real problems do not contain perfect symmetry. Often, for example, a model

with a symmetric substructure is perturbed by asymmetric evidence factors. Consequently,

there is a great need for methods that accurately approximate the desired inference quantities

x



using symmetric inference terms. While a few methods to address this problem exist, many

are heuristic or address only certain aspects of the problem.

The goal of this thesis is to develop more intelligent ways to perform inference in graphical

models with approximate symmetry. Our central strategy is to force groups of parameters

in a variational inference relaxation to be symmetric. These symmetry groups are iteratively

broken in a controlled manner to capture problem asymmetries more accurately; this proce-

dure gives rise to a flexible class of coarse-to-fine inference algorithms. Furthermore, by using

intelligently structured parameter symmetries, we are able to construct symmetric high-order

inference terms which are often necessary to obtain high accuracy inference estimates. We

develop algorithms both for models with state space symmetry and for models with factor

symmetry, highlighting the deep similarities between these two classes of problems which

has not been widely appreciated before.
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Chapter 1

Introduction

Many problems in science and engineering require modeling a large system that is composed

of many small interacting subsystems and characterized by uncertainty. Important problem

tasks often require analyzing of the global behavior of the system which arises from the

complex interactions of its many overlapping subsystems. A classic example is the Ising

model [McCoy and Wu, 2014] in statistical physics which models the spins of atoms laid out

in a two-dimensional lattice and encodes the probabilistic constraint that two neighboring

atoms likely have the same spin. Typical problem tasks include computing the configuration

of atomic spins with the lowest energy or computing a physical quantity, such as the en-

tropy, of the system. Another classic example is social network analysis where the system is

composed of many unstructured connections between pairs of people (friends) and encodes

similar behavior of two friends. For example, an election prediction model may encode the

probabilistic constraint that two friends probably vote for the same candidate and the desired

task is to predict who each person will vote for or to predict who will win the election.

1.1 Probabilistic Graphical Models (PGMs)

Probabilistic graphical models (PGMs) provide a powerful framework for representing and

reasoning about such problems. A PGM is composed of n discrete random variables (RVs)

1



(X1, . . . , Xn) where each RV Xv takes a value in a discrete set Dv called its domain. The

PGM represents the exponentially large joint configuration of RVs (corresponding to all

possible combinations of values for the n RVs) efficiently via a collection of small factors. A

factor θα : Dα → R is a function with domain Dα = ×v∈αDv, the set of all configurations

of a subset of RVs α ⊆ V , that assigns a score to each configuration where a high score

encourages the configuration and a low score discourages the configuration. The global joint

distribution is a product of local factors,

p(X = x; θ) =
1

Z(θ)
exp(θ(x)) where θ(x) =

∑
α∈I

θα(xα),

I contains all the subsets α associated with the factors, and the partition function, Z(θ) =∑
xn
· · ·
∑

x1
exp(θ(x)) normalizes the distribution. In the Ising model, each RV represents

the spin of an atom and each factor encourages labelings where pairs of neighboring atoms

in the lattice take the same spin. In our election modeling example, each RV represents a

person’s vote for a candidate and each factor encourages labelings where friends vote for the

same candidate.

Many important problem tasks can be formulated as a probabilistic inference query on the

PGM. The two most popular inference tasks are MAP inference and sum-inference. MAP

inference computes the most likely global configuration x∗ = arg maxx∈DV θ(x), while sum-

inference tasks include computing the partition function Z(θ) and computing the marginal

probability p(xv) =
∑

xV\v
p(xV) of a RV v ∈ V .

The inference tasks involve aggregating (via maximization or summation) the value of the

distribution’s exponentially large number of states. Although a näıve computation of the

inference quantities is intractable, the factorization structure of the PGM can often be ex-

ploited to perform the inference computation more efficiently. Unfortunately, this efficient

exact inference computation is also intractable for large problems. Consequently, much work

2



has been dedicated to the development of efficient approximate inference algorithms. For

example, some variational approximate inference algorithms (which we discuss in more detail

later) relax consistencies in the global inference problem to produce a collection of tractable

local inference problems (i.e., over a controlled number of RVs). A set of messages, repre-

senting local approximate inference quantities, are exchanged between the subproblems.

1.2 Symmetric Models

The factorization (or equivalently, graph structure) of a PGM is an important property that

enables efficient representation and reasoning about large probability distributions (either

exactly or approximatly). However, many PGMs also contain additional structure that

can be exploited to attain more efficient reasoning algorithms. In this thesis, we study

models that have symmetric structure which, broadly, means that the model contains groups

of objects whose items are indistinguishable from the others in the group. Two types of

symmetry arise in practice:

Factor Symmetry: In this case, groups of factors have identical factor tables, i.e., encode

the same relationship but within different sets of variables. For example, in the Ising

model, the strength of the interaction between two neighboring atoms is the same

throughout the system, and doesn’t depend on the absolute location of the atoms (a

form of translational invariance). Another class of examples is probabilistic first-order

logic networks, such as Markov Logic Networks (MLNs) [Richardson and Domingos,

2006], that encode rules with a “for all” relationship and can be used, for example, to

represent the rule in our election modeling example “for all pairs of people (A,B), if A

and B are friends, then A and B probably vote for the same candidate”.

State Space Symmetry: In this case, groups of states within a factor have identical value.

3



A classic example is a cardinality potential, whose value depends only on the number

of RVs that take a particular state (thus avoiding the exponential cost required to

represent which RVs take the state). For example, the task of assigning a semantic

label to each pixel in an image may encode a rule such as “an image patch that contains

a large fraction of ocean pixels may also contain a large fraction of boat pixels, but it

should contain no car pixels (with high probability)”.

Most algorithms that were designed for exploiting factor symmetry evolved separately from

algorithms designed to exploit state space symmetry. Nevertheless, there are deep similarities

between approximate inference algorithms for these two classes of models. Much of the

presentation in this thesis is aimed at highlighting these similarities, which are not widely

noted in the literature. Recognition of these similarities inspired several of the key insights

in this thesis (discussed at the end of this introduction chapter) and also paves the way for

future work that exploits factor symmetry and state space symmetry simultaneously. These

complementary symmetries arise naturally in many problems. For example, a MLN model

has considerable factor symmetry, while its factors also take the form of probabilistic truth

tables with significant state space symmetry. Similarly, in computer vision problems we may

wish to apply counting factor constraints (with state symmetry) to many patches of the

image simultaneously (factor symmetry).

1.2.1 Lifted Inference

Now that we have seen how symmetries are useful in modeling, we turn our attention to the

problem of performing lifted inference that exploits symmetry in inference computations (in

this setting, standard inference that does not exploit symmetry is called ground inference).

The basic idea of lifted inference is to first identify exact symmetries that would arise if

a ground inference procedure were run, then perform efficient inference on a lifted graph

which represents symmetry groups as a single node. In the ideal case, the model contains
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groups of symmetric objects that perfectly align with each other, and hence the inference

quantities also possess these symmetries. For example, in MLN models without evidence

we can perform reasoning by exchanging messages represented as probabilistic first-order

formulas, rather than passing identical messages associated with each ground object.

Over the past decade, lifted inference procedures have been developed for a large number

of popular ground inference algorithms such as belief propagation and variable elimination

[e.g., Singla and Domingos, 2008, Poole, 2003]. Unfortunately the ideal case, in which the

model is composed of perfectly aligned symmetry groups, rarely occurs in practice. In MLN

models, for example, we often observe different information about each individual ground

object (e.g., that some pairs of people are friends) and hence no two objects can be treated

identically during inference. In this case, lifted inference deteriorates into ground inference,

negating all the potential computational gain of the symmetric representation. This effect

of breaking model symmetries is sometimes referred to as shattering.

1.2.2 Mitigating the E�ects of Symmetry Shattering

Because of the shattering effect, in any practical scenario the key question is how to accu-

rately approximate the desired inference quantities using symmetric inference terms. Al-

though a considerable amount of effort has gone into developing solutions to this problem,

it still remains largely open.

In particular, many previous works that successfully control the computational cost of the

symmetric approximation incur error that is difficult to analyze. For example, projected

message passing algorithms compute the exact (relaxed) inference message, then project the

message to a tractable functional form (for both factor symmetry [e.g., Singla et al., 2014] and

state space symmetry [e.g., Gogate and Domingos, 2013]). Unfortunately, the error incurred

by the projection is difficult to analyze, as is the error incurred as it propagates through the
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graph [Ihler et al., 2005]. Another class of methods forms an approximation to the model

that has more symmetry than the model; exact lifted inference is then performed on this

over-symmetric model [e.g., Venugopal and Gogate, 2014a]. These methods must choose

the approximating structure before inference (which is often difficult to do accurately) and,

moreover, it is not clear how inference estimates on the over-symmetric model relate to

inference estimates on the original model.

An emerging class of methods performs inference in a coarse-to-fine manner. The basic

idea is to iterate between two steps: first, solve a coarse (low-cost) approximation to the

inference problem; then use this solution to instantiate a finer problem with higher cost and

accuracy. For example, Habeeb et al. [2017] develops a coarse-to-fine inference algorithm

for stereo vision. First, pixels are grouped together (via a heuristic metric) and forced to

take the same disparity label; then the constrained inference problem is solved by reasoning

over pixel groups (rather than individual pixels). A group of pixels is then split into finer

groups if the current inference results suggest that pixels in the subgroups should in fact

take different disparity labels. The coarse-to-fine inference algorithms are appealing since

they control the computational cost of the approximation while also maintaining a concrete

connection to the original problem.

1.2.3 Models with No Symmetries

In the framework above, where the model contains symmetric substructures perturbed by

asymmetric factors, the utility of incorporating symmetric functions to approximate inference

quantities is obvious. However, less obviously, models with no symmetry at all can still

benefit from incorporating symmetric inference terms. For example, Gogate and Domingos

[2013] use factors with state space symmetry to approximate messages in PGMs with dense

factor tables (i.e., factor tables with no symmetry). Another work, Sontag et al. [2009],

begins with an inference relaxation on dense factor tables, then tightens it by adding large-
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scope factors that use a coarse resolution of each RV domain (a special form of state space

symmetry).

In models with no symmetry, we expect symmetric inference terms to be useful if they

capture one of the following properties:

Nearly identical value: A set of states has nearly identical value and can be grouped

together while incurring small error.

Low value: A set of states has large relative disparity but low value and can be grouped into

one “low-scoring” group. Thus, the approximation incurs error only in low probability

mass regions of the distribution which have little or no effect on MAP inference or

sum-inference queries, which depend mostly (or only) on the most probable states.

Note that this case generalizes the popular idea of removing low-scoring states from

the problem.

1.3 Our Approach

The central goal of this thesis is to develop more intelligent ways to represent and reason

using (approximate) symmetries in PGMs. Our approach operates within a variational

inference framework which we believe is ideal for controlling the symmetry in the inference

approximation. The central idea of variational inference is to cast the inference problem

as an (intractable) optimization problem. In standard PGMs, a tractable approximation to

the optimization problem is obtained by restricting the variational parameters to a factored

form. For symmetric PGMs, our central idea is to restrict the variational parameters to have

a symmetric form. This allows us to develop inference approximations with the following

two crucial properties:
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Coarse-to-Fine Inference: The symmetry restrictions on the variational parameters can

be broken in a controlled manner. This lets us generate coarse-to-fine approximations

of increasingly fine resolution, and thus of increasing cost and increasing accuracy.

High-Order Terms: In classic (ground) inference, it is often necessary to augment the

model factors with high-order inference terms to attain high accuracy. In symmetric

problems, the controlled symmetry restrictions on the variational parameters allow us

to augment the model with symmetric high-order inference terms and ensure message

passing can be carried out without shattering.

The first half our of novel work (in Chapter 4 and Chapter 5) operates on models with

symmetric factors perturbed by asymmetric evidence. The second half of our novel work

(in Chapter 6) operates on classic PGMs (with no symmetry) and tightens the inference

relaxation by adding factors with state space symmetry using a sophisticated grouping of

states. As stated above, although these two problem classes are very different, the methods

we develop for exploiting and representing symmetry are similar. The following paragraphs

provide an outline of and specific contributions of each chapter of the thesis.

Chapter 2: Background: Standard PGMs We begin by providing background on classic

PGMs (without symmetry) and inference problems. We present background on variational

approximate inference algorithm that are relevant to our later development, such as the

generalized dual decomposition algorithm and weighted mini-bucket elimination algorithm

for sum-inference problems. Lastly, we discuss anytime inference which interleaves inference

on a fixed graph with transitions to a graph with higher cost and accuracy; each of the coarse-

to-fine inference algorithms for symmetric problems developed in subsequent chapters is an

instance of anytime inference.
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Chapter 3: Background: Symmetric PGMs This chapter presents background on PGMs

with symmetric structure. We first precisely define symmetry, then describe popular sym-

metric modeling frameworks such as Markov Logic Networks (MLNs). We then describe

lifted inference (for exploiting model symmetries) and the shattering problem (whereby in-

ference breaks model symmetries), first for models with factor symmetries then for models

with state space symmetries. We then discuss methods that have been developed for coping

with asymmetry; some of the ideas underlying these methods form the basis for our work

in subsequent chapters. For example, coarse-to-fine inference allows symmetry groups to be

selected dynamically, and models with domain-clustering (a special form of symmetry) allow

high-order inference terms to be constructed easily.

Chapter 4: Lifted Generalized Dual Decomposition This chapter presents our first algo-

rithm for performing inference in models with symmetric factors perturbed by asymmetric

evidence factors. The central idea is to force variational parameters in a generalized dual

decomposition approximation to be symmetric, then gradually break these symmetries to

obtain a sequence of coarse-to-fine inference estimates. Our contributions include:

� Strong control over inference symmetries which are gradually split in a coarse-to-fine

manner. The symmetry groups are selected using preliminary inference information,

in contrast to several previous approaches which that symmetry groups to be selected

a priori.

� The approximation maintains a concrete connection to the original problem while

maintaining strong control over the computational cost of the inference structure (most

previous approaches maintain only one or the other).

� The generalized dual decomposition allows MAP inference, sum-inference, and mixed-

inference (where we sum over a subset of RVs and maximize over another) queries to be
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performed within one framework (most previous approaches for coarse-to-fine inference

operate only on MAP inference problems).

This chapter is based on work originally published in Gallo and Ihler [2018a].

Chapter 5: Lifted Weighted Mini-Bucket This chapter presents a coarse-to-fine inference

algorithm for MLN models that adaptively constructs symmetric high-order inference terms

by joining symmetric factors with a first-order logic structure. Contributions include:

� A flexible class of bounds that complements the coarse-to-fine resolution split operation

used in Chapter 4 with a join operation that builds a large scope symmetric factor

from a collection of small-scope symmetric factors. Reasoning over these higher order

terms is often necessary for accurate approximate inference.

� The approximation structure is (nearly) equivalent to the structure of the popular

domain-clustering heuristic of Venugopal and Gogate [2014a] (e.g., we produce a clus-

tering of people into K groups and each variable in a FOL-formula ranges over a subset

of people, rather than the set of all people). However, rather than creating an over-

symmetric model with unknown bias (as in Venugopal and Gogate [2014a]), we perform

inference on the original problem with tied variational parameters, again giving both

a concrete connection to the original problem and allowing iterative refinement of the

approximation.

� Our framework is based on a lifted variant of the weighted mini-bucket elimination al-

gorithm, which typically provides faster convergence than an equivalent decomposition

bound (such as used in Chapter 4).

This chapter is based on work originally published in Gallo and Ihler [2018b].
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Chapter 6: Adaptive Hierarchical State Space Partitions While the preceding chapters

studied inference in models with factor symmetry perturbed by asymmetric evidence factors,

this chapter studies the problem of incorporating high-order inference terms with state space

symmetry into classic PGM models with fully asymmetric factors. Our basic idea is to

recursively build complex state space partitions over increasingly large groups of RVs; these

are used as a common basis over which high-order inference terms exchange messages without

shattering symmetry. Our contributions include:

� A novel method for constructing complex large-scope state space partitions recursively

from sets of small-scope state space partitions. This recursive partition generalizes

recursively constructed cardinality potentials used, for example, by Tarlow et al. [2012].

� These state space partitions are used as a basis for factors with domain-symmetry that

are introduced to tighten the relaxation. Although these factors have complex form

of state space symmetry, their symmetries are perfectly aligned (by construction) and

can therefore exchange messages without shattering symmetry.

� The state space partitions are constructed adaptively, in a coarse-to-fine manner. Thus,

preliminary inference estimates can be used to select the state space partitions; this is

crucial since a good state space partition is problem-dependent and cannot be deter-

mined a priori.

� Our method generalizes inference structures used previously from disparate lines of

work, including standard inference with large-scope factors, coarse univariate high

order factors [Sontag et al., 2009], and recursive cardinality models [Tarlow et al., 2012].

Furthermore, our inference structure is very flexible and opens up many avenues for

future research.
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Chapter 7: Conclusions and Future Directions The final chapter summarizes the contri-

butions of this thesis and suggests directions for future work. These include ideas for fusing

factor and state space symmetry, better methods for performing symmetry selection, and

applying the symmetry structures developed in this thesis to other inference problems (such

as maximum-likelihood learning).
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Chapter 2

Probabilistic Graphical Models (PGMs)

A probabilistic graphical model (PGM) is a locally factored probability distribution that

efficiently encodes a high-dimensional probability distribution. PGMs are used in a wide

variety of science and engineering problems which are naturally represented with a locally

factored form. This chapter defines PGMs and typical inference tasks in PGMs. We then

provide background on tractable approximate inference algorithms that are necessary in

most practical scenarios where exact inference is intractable.

2.1 Probabilistic graphical models (PGMs)

Let Xv be a discrete random variable (RV) taking value Xv = xv where xv ∈ Dv is a state and

Dv is a finite set called the domain, or state space, of Xv, for v ∈ V where V = {1, . . . , n} =:

[n]+ and n ∈ Z+ is the number of RVs. The set of n RVs X = (X1, . . . , Xn) =: (Xv)v∈V

collectively takes a joint state denoted x = [x1, . . . , xn] ∈ D1 × · · · × Dn =: DV where DV is

an exponentially large global joint domain.

A probabilistic graphical model (PGM) is a probability density function with a locally fac-
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tored structure

p(X = x; θ) =
1

Z(θ)
exp(θ(x)) where θ(x) =

∑
α∈I

θα(xα), (2.1)

and each α ∈ I is a subset of RVs, i.e., α ⊆ V , that represents the scope sc(θα) = α of a

model factor θα : Dα → R where the domain Dα := ×v∈αDv is the set of all configurations

of RVs α ⊂ V . Z(θ) =
∑

xn
· · ·
∑

x1
exp(θ(x)) is the partition function that normalizes

the distribution. The cost to represent the PGM is linear in the number of factors and

exponential in the largest factor scope, i.e., O(|I| ·Ka) where a = maxα∈I |α| is the largest

size of any model factor scope and K = maxv∈V |Dv| is the largest domain size of any RV. This

cost is much smaller than the cost to represent the global joint domain, which is exponential

in the number of model RVs, i.e., O(Kn).

A PGM is often represented with a graph G = (N,E) where the set of nodes maps to the set

of RVs, i.e., N ↔ V , and there is an undirected edge e = {v, v′} ∈ E between two nodes if

and only if both appear together in some factor function, i.e., if {v, v′} ⊆ α for some α ∈ I.

In Figure 2.1a, we show the graphical representation of a PGM on four nodes forming a loop,

i.e., with factor scopes I = {{A,B}, {B,D}, {C,D}, {A,C}}. In this example, each factor

table encourages two neighboring RVs to take on the same value (with score +1.0, compared

to score −1.0 for taking on opposite values); one factor table θAB is shown in Figure 2.1b.

These four factors implicitly and efficiently define a large unnormalized log-probability θ(x)

shown in Figure 2.1c. Note that although the factored and joint form use the same number

of parameters in this example (the factored form uses four factor tables of four parameters

each, for a total of 16 parameters, while the joint table over four RVs has 24 = 16 entries),

in larger problems, the factored form uses exponentially fewer parameters.
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𝐴 𝐶

𝐷𝐵

(a) MRF representation

xA xB θAB(xAB)

0 0 +1.0

0 1 -1.0

1 0 -1.0

1 1 +1.0

(b) factor table

xA xB xc xD θ(xABCD)

0 0 0 0 +4.0
...

...
...

...
...

0 1 1 0 0.0
...

...
...

...
...

1 1 1 1 +4.0

(c) joint pdf table

Figure 2.1: Example graphical model showing (a) a loop on 4 nodes, (b) a single factor table,
(c) implicit joint (unnormalized) distribution.

2.1.1 Inference Tasks in Graphical Models

Probabilistic inference refers to the task of answering probabilistic queries about a graphical

model. That is, it formalizes questions about the global behavior of the model’s many

interacting subsystems. Two central probabilistic inference tasks are maximum a posteriori

(MAP) inference and sum-inference, defined as follows.

MAP Inference MAP inference seeks the most likely configuration of the distribution:

x∗ = arg max
x

θ(x) and Φ0(θ) := max
x

θ(x) = θ(x∗) (2.2)

Note that the partition function Z(θ) does not affect the solution and thus does not appear

in the maximization.

Sum-Inference Computing the partition function Z(θ) is a central sum-inference task for

evaluating the (normalized) probability of an observation, or learning the parameters of a

graphical model from data. A closely related task is computing the marginal probability of

a subset of RVs

p(xβ) =
∑
xV\β

p(xV) where β ⊂ V (2.3)
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and the summation is carried out over joint states of RVs not including β. In many tasks,

the marginal probability of each RV i.e., p(xv) for all v ∈ V , is required.

2.1.2 Exact Inference Computation

Each inference computation requires aggregating (via maximization or summation) the joint

score over an exponentially large number of states. Clearly, a näıve computation is intractable

for realistically sized problems. However, in PGMs, the locally factored structure can often

be exploited to produce a more efficient computation by rewriting the joint maximization

as a sequence of maximizations over each RV. This computation is known as the variable

elimination algorithm.

We begin with a simple example to illustrate the basic idea of variable elimination. Consider

the loop structured PGM in Fig. 2.1a and assume we are interested in computing the log

MAP-value Φ0(θ). Using the distributive law, this computation can be rewritten as

Φ0(θ) = max
xD

max
xC

max
xB

max
xA

θAB(xAB) + θAC(xAC) + θBD(xBD) + θCD(xCD) (2.4)

= max
xD

max
xC

θCD(xCD) + max
xB

θBD(xBD) +
[

max
xA

θAB(xAB) + θAC(xAC)
]

= max
xD

max
xC

θCD(xCD) +
[

max
xB

θBD(xBD) +mBC(xBC)
]

= max
xD

max
xC

θCD(xCD) +mCD(xCD)

where we perform a sequence of maximizations over individual RVs along the order ō =

(A,B,C,D). The maximization over any RV Xv is said to eliminate the RV, and produces

a message function and which is incorporated into a smaller maximization problem that

does not include v. In the example above, the first maximization eliminates XA producing a

message mBC , and the second maximization eliminates XB producing a message mCD. Each

maximization takes place on a factor defined over a group of three RVs, and generates a
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Algorithm 1 Bucket (or variable) elimination for computing the log MAP-value Φ0(θ)
[Dechter, 1999].

Input: Factors of a graphical model F = {θα : α ∈ I}, an elimination order o =
(1, 2, . . . , n).

Output: The log MAP-value Φ0(θ).

for v = 1 to n do

Step 1 (Join): Find the set, or bucket Bv, of factors whose first RV (under o) is v

Bv ← {θβ ∈ F : mino sc(θβ) = v}

and sum, or join, them together

θBv(xBv) =
∑

θβ∈Bv θβ(xβ).

Finally, remove the bucket factors from the list, i.e., set F ← (F \ Bv).
Step 2 (Eliminate): Eliminate RV Xv to create a message factor

mv(xmv) = maxxv θBv(xBv)

whose scope includes all RVs used by factors in bucket Bv except v, i.e., sc(mv) =
∪θβ∈Bv sc(θβ) \ {v}, and add it to the factor list, i.e., set F ← (F ∪ {mv}).

end for
return The log MAP-value Φ0(θ) =

∑
θβ∈F θβ. Note that this is a sum of scalar values,

each corresponding to the log MAP-value of a connected component of the graph.

message over two RVs. Thus, the variable elimination procedure takes O(K3) time and is

less costly than the O(K4) time required for the näıve inference computation.

2.1.2.1 Bucket Elimination Algorithm

In general, the variable elimination calculation can be organized as a bucket elimination

(BE) procedure [Dechter, 1999] as shown in Algorithm 1. The factor list F is initialized

with the model factors, and o is an elimination order that dictates the order that RVs are

eliminated (without loss of generality we assume that the RVs are eliminated in numeric

order, i.e., o = (1, 2, . . . , n)). At the vth iteration of the loop, the factor list F holds the

set of factors from the model and previously generated messages that use only RVs equal

to or later than v in the elimination order o. In Step 1 (the join step), first the “bucket”
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Bv collects all factors using RV v. These factors are then summed, or joined, together to

produce a large bucket factor θmBv . Finally, the bucket factors are removed from the factor

list F . In Step 2 (the eliminate step), the RV Xv is eliminated from the joined (bucket)

factor and produces a message factor mv which is added to the factor list F .

The computational complexity of the algorithm is dominated by the the cost to represent the

(joined) bucket factor. Overall, this requires O(n ·Kωo+1) time where ωo = maxv∈V |sc(mv)|

is the size of the largest message generated during elimination along order elimination order

o, and is known as the induced width. Different elimination orders often lead to different

induced widths. Since the inference cost is exponential in the induced width along elimination

order o, it is highly desirable to select an elimination order producing the minimum induced

width, i.e., set o = arg mino′ ωo′ . However, in general, finding the optimal elimination order

is an NP-complete task. In practice, a number of greedy algorithms have been developed to

select a low-width elimination order, such as the min-fill and min-induced-width heuristics

(see Koller and Friedman [2009] and references therein).

2.1.3 Chapter Overview

The previous subsections showed how to perform exact inference with the classic bucket

elimination algorithm. Although bucket elimination is more efficient than a näıve inference

computation, it too is often intractable. This intractability result has motivated a large

body of research dedicated to developing tractable approximate inference algorithms. The

remainder of this chapter reviews approximate inference algorithms used in this thesis and

is organized as follows.

The basic idea of relaxed inference is to perform reasoning over subproblems consisting of a

controlled (small) number of RVs. We begin with a discussion of relaxed MAP inference al-

gorithms. In Section 2.2, we review the dual decomposition algorithm which (upper) bounds
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the intractable MAP objective as a sum of local MAP objectives. Then, in Section 2.3, we

review the mini-bucket elimination algorithm that can be viewed either as a tractable relax-

ation to the bucket elimination algorithm or as a method for choosing regions for the dual

decomposition algorithm. In Section 2.4, we discuss a coordinate-descent-based method to

optimize the dual decomposition bound. A symmetric variant of this optimization algorithm

is used in our work on Adaptive Hierarchical State Space Partitions in Chapter 6.

In Section 2.5, we present variational algorithms for sum-inference problems. Each algorithm

is a counterpart to a MAP inference algorithm, but with the maximization operator replaced

by a weighted log-sum-exp operator. First, we present the generalized dual decomposition

(GDD) which (as its name suggests) has the same structural form as the dual decomposition,

but produces an upper bound on the partition function (rather than MAP value). Second,

we present the weighted mini-bucket (WMB) elimination algorithm which has the same

structural form as the mini-bucket elimination algorithm, but produces an upper bound on

the partition function (rather than MAP value). Our Lifted GDD Algorithm in Chapter

4 and our Lifted WMB Algorithm in Chapter 5 are based on these two ground inference

algorithms.

In Section 2.6, we present a framework for anytime inference that iteratively interleaves infer-

ence with modification to the approximate inference structure. Anytime inference facilitates

the use of preliminary inference estimates to select the inference structure which is often

difficult to select a priori. Each of our main contributions (in Chapters 4–6) in this thesis

is built within an anytime inference paradigm that uses preliminary inference estimates to

select inference symmetry groups.
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2.2 Dual Decomposition for Approximate MAP Inference

The dual decomposition algorithm is an approximate inference algorithm that relaxes the

equality constraints in the global MAP inference problem. This produces a collection of

decomposed (independent) MAP inference problems each of which involves a small, user-

controlled number of RVs (and hence has controlled computational cost). The basic relax-

ation (defined on the model factors) bounds the intractable MAP objective as

max
xV

θ(x) = max
xV

∑
α∈I

θα(xα) ≤
∑
α∈I

max
xα

θα(xα)

where we applied the max-sum-swap inequality maxy f(y) + g(y) ≤ maxy f(y) + maxy g(y)

which holds for any two functions f and g with the same domain. That is, the LHS en-

forces consistency in the maximizing argument, while the RHS does not, i.e., it relaxes the

consistency requirement.

A more general class of bounds can be defined on a region graph G = (R, S,E) where R is

a set of region nodes (or regions), S is a set of separator nodes (or separators), and E is a

set of edges connecting each separator to exactly two regions. These terms are defined as

follows:

Regions: Each region r ∈ R is associated with a region model factor θr and is labeled with

the set of RVs in its scope sc(r) := sc(θr). Collectively, the region model factors must

represent the original distribution. That is,

θ(x) =
∑
α∈I

θα(xα) =
∑
r∈R

θr(xr)

where we abuse notation by indexing a subset of RVs with a region rather than its

corresponding factor scope, i.e., xr := xsc(θr).
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Separators and Edges: A separator s ∈ S connects two incident regions r ∈ R and r′ ∈ R

(via a pair of incident edges {{r, s}, {s, r′}} ⊂ E) and serves to exchange a cost-shifting

factor, or message, δs between the regions. (The scope of the cost-shifting factor is

equal to the subset of RVs common to both incident regions, i.e., sc(δs) = sc(s) =

sc(r) ∩ sc(r′).)

The cost-shifting factor is added to one incident region and subtracted from another;

this operation is represented by associating cost-shifting factors δrs(xs) = −δs(xs) and

δr′s(xs) = +δs(xs) of opposite sign with the pair of incident edges. Then, each region

node r ∈ R is associated with a reparameterized factor equal to the sum of cost-shifting

factors on its incident edges

θδr(xr) = θr(xr) +
∑
s∈N(r)

δrs(xs) (2.5)

where N(r) = {s ∈ S : {r, s} ∈ E} are the incident separators of region r ∈ R.

Clearly, the reparameterization operations leave the model distribution unchanged

(since each cost-shifting factor was added to one region and subtracted from another),

i.e.,
∑

r∈R θδr(xr) =
∑

r∈R θr(xr).

For compactness, we will often abuse notation and drop the region subscript on the

delta term in the reparameterization equation (2.5), and write it as θδr(xr) = θr(xr) +∑
s∈N(r) δs(xs).

We can now define a reparameterized Dual-Decomposition-objective (DD-objective) LDDG (δ)

that bounds the intractable MAP objective as a sum of MAP inference problems over local
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(b) iBound = 1

Figure 2.2: Mini-bucket elimination (MBE) graph for the loop on four RVs A−B−D−C−A
from Figure 2.1. (a) MBE where each message scope has size at most iBound = 2; this graph
is equal to the junction tree and provides the exact inference solution. (b) MBE where each
message scope has size at most iBound = 1.

regions as

max
xV

θ(x) = max
xV

∑
r∈R

θr(xr) = max
xV

∑
r∈R

θδr(xr)

≤
∑
r∈R

max
xr

θδr(xr) =: LDDG (δ). (2.6)

This bound holds for any setting of the cost-shifting factors δ and we seek the tightest bound

δ∗ = arg min
δ

LDDG (δ). (2.7)

Before considering an optimization of the DD-objective LDDG (δ) on a general graph structure,

we consider a special case in which a closed form solution can be obtained.

2.2.1 Bucket Elimination on a Region Graph

The bucket elimination algorithm (Algorithm 1) can be represented on a region graph. To
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Algorithm 2 Junction tree region graph construction [Dechter and Rish, 1997, Ihler et al.,
2012].

Input: A set of regions R corresponding to model factors {θr : r ∈ R}, an elimination order
o = (1, 2, . . . , n).

Output: A bucket elimination region graph G = (R, S,E).

for v = 1 to n do

Step 1 (Join): Find the set, or bucket Bv, of factors whose first RV (under o) is v

Bv ← {θr ∈ R : mino sc(θr) = v}

and sum, or join, them together

θrv(xrv) =
∑

r∈Bv θr(xr)

Finally, remove the bucket factors from the region graph, i.e., set R← (R \ Bv).
Step 1a: Reroute the backward separators to the bucket region rv. That is, for each
region r ∈ Bv in the bucket and each backward separator s↑ ∈ N↑(r) of the region
(with neighbors N(s↑) = {r↑, r}), set

R← (R \ r) and N(s↑)← {r↑, rv}.

Step 2 (Eliminate): “Simulate” elimination of RV Xv. That is, create a message
region r↓ whose scopes uses all of the RVs in the bucket except v, i.e., sc(r↓) = sc(rv)\v,
with value zero, i.e., θr↓ = 0. Connect the message region to the bucket region with
a message separator s↓, i.e., N(s↓) = {r, r↓}, and add them to the graph, i.e., set
R← (R ∪ {r↓}) and S ← (S ∪ {s↓}).

end for
return A bucket elimination region graph G = (R, S,E).

do this, we separate the algorithm into two parts. First, we construct a region graph, called

a junction tree, that uses placeholder regions to represent the message factors. Second, we

perform the actual message computations on the region graph and show that they minimize

the decomposed bound Eq. (2.7).

Algorithm 2 constructs the junction tree. In Step 1 (the join step), first the “bucket”

Bv collects all regions using RV v (these include region model factors and region message

placeholders). Then, these regions are joined to produce a region rv with factor equal to

the sum of region model factors and with scope equal to the scope of the bucket elimination

message. In Step 1a, we re-route the message regions to the bucket region; this organizes the
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Algorithm 3 Exact MAP inference in junction tree

Input: A bucket elimination region graph G, and an elimination order o = (1, 2, . . . , n).
Output: The set of messages (equivalent to bucket elimination messages) and the exact log

MAP-value Φ0(θ).

for v = 1 to n do

Step 1 (Gather): Gather the backward messages into the bucket region rv:

θmrv(xrv) = θrv(xrv) +
∑

s↑∈N↑(r)
N(s↑)={r,r↑}

mr↑→s↑(xs↑)

Step 2 (Eliminate): Eliminate RV v from the bucket region rv:

mrv→s↓(xs↓) = maxxv θ
m
rv(xrv)

where {s↓} = N↓(rv) is the forward separator.
end for

precise flow of messages on the region graph. In Step 2 (the eliminate step), we “simulate”

the elimination of Xv from the joined (bucket) region rv to create a forward region r↓ and

joined to the original region by a forward separator s↓. The forward region has the same

scope as the true message but has factor value zero.

A simple example of a junction tree on the loop PGM from Figure 2.1a is shown in Fig-

ure 2.2a. Note that the symbols used in Step 1 are based on the orientation shown in the

figure where the earlier RVs in the elimination order are organized at the top and elimination

passes a message downward. For example, at the first iteration where v = A, the bucket

region rv is labeled (A,B,C) and the forward separator s↓ is labeled (B,C).

In Algorithm 3, the bucket elimination message passing is computed on the region graph. In

Step 1 (gather step), we gather and sum the messages into the factor associated with the

bucket at RV v. In Step 2 (message step), we eliminate the RV Xv to produce the message

factor.

2.2.1.1 Decomposed form
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The last section showed how to represent bucket elimination messages on a region graph.

This section shows that the bucket elimination messages provide a closed form solution of the

optimal cost-shifting factors δ in the DD-objective, i.e., we set δs↓(xs↓) := mr→s↓(xs↓) for

each separator s ∈ S. To see this note that the reparameterized factor at region rv associated

with bucket v is equal to the accumulated factor (of messages) minus its forward message

θδrv(xrv) = θmrv(xrv) − mrv→s↓(xs↓).

Then, the reparameterized factor has maximum value zero

max
xv

θδrv(xrv) = max
xv

(
θmrv(xrv) − mrv→s↓(xs↓)

)
=
(

max
xv

θmrv(xrv)
)
− mrv→s↓(xs↓) = 0

for each state of the message scope xs↓ ∈ Ds↓ . Finally, each non-root region has maximum

value 0 and the root node has value equal to the MAP-value. That is,

max
xr

θδr(xr) =


Φ0(θ) if r is root

0 otherwise

(2.8)

and the accumulated value is equal to the MAP value

LDDG (δ) =
∑
r∈R

max
xr

θδr(xr) = Φ0(θ). (2.9)

2.3 Mini-Bucket Elimination

Although bucket elimination is more efficient than a näıve computation, it too is often

intractable in real problems. The mini-bucket elimination (MBE) algorithm [Dechter and
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Rish, 1997] is a relaxation of the bucket elimination algorithm (Algorithm 1) that provides a

flexible tradeoff between cost and accuracy. As a simple example to motivate this procedure,

consider the exact bucket elimination example in Eq. (2.4) above. The maximization over

xA can be relaxed as

max
xA

θAB(xAB) + θAC(xAC) ≤
[

max
xA

θAB(xAB)
]

+
[

max
xA

θAC(xAC)
]

(2.10)

using the max-sum-swap inequality. Note that the cost of the relaxed elimination is only

O(K2) rather than O(K3) for the exact elimination.

In general, the elimination at any variable v ∈ V can be bounded by a set of smaller elimina-

tions which produce a message factor using at most iBound RVs, where iBound is a hyper-

parameter that controls the computational cost. To achieve this, the factors in bucket Bv

are partitioned into zv non-empty sets, or mini-buckets, {Biv : i ∈ [zv]
+}. The factors at each

mini-bucket Biv are first summed (joined), denoted by a factor θBiv(xBiv) :=
∑

θ∈Biv
θ(xsc(θ)).

Then, a maximization over Xv eliminates v from this factor and produces a message that is

incorporated downstream. Note that mini-bucket elimination is equivalent to exact bucket

elimination when iBound is at least as large as the induced width ωo.

2.3.1 Mini-Bucket Region Graph

The mini-bucket elimination algorithm is organized on a region graph, as shown in Algo-

rithm 4. The basic structure and notation is similar to what we used to represent bucket

elimination on a region graph in Algorithm 2. (Although the original mini-bucket elimination

algorithm [Dechter and Rish, 1997] was not developed on a region graph, this connection

was made explicit in Ihler et al. [2012].)

In Step 1 (the join step), first the “bucket” Bv collects all regions using RV v (these regions

include region model factors and message placeholder regions). Then, we partition these
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Algorithm 4 Mini-bucket region graph construction [Dechter and Rish, 1997, Ihler et al.,
2012].

Input: A set of regions R corresponding to model factors {θr : r ∈ R}, an elimination order
o = (1, 2, . . . , n), and a bound on the largest message size iBound ≥ 1.

Output: A mini-bucket region graph G = (R, S,E).

for v = 1 to n do

Step 1 (Join): Find the set, or bucket Bv, of regions whose first RV (under o) is v

Bv ← {r ∈ R : mino sc(θr) = v}

and partition it into zv sets, or mini-buckets, {Biv : i ∈ [zv]
+}, where each set uses

at most iBound + 1 RVs. Then, for each i ∈ [zv]
+, sum, or join, the factors in each

mini-bucket together

θriv(xriv) =
∑

r∈Biv
θr(xr) where |sc(θriv)| ≤ iBound + 1

where the mini-bucket region riv is associated with mini-bucket Biv. Finally, delete the
original regions and add the mini-bucket region, i.e., set R← (R \ Biv) ∪ {riv}.
Step 1a: Reroute each backward separator s↑ ∈ N↑(r) of a region r ∈ Biv to its
containing mini-bucket region riv. That is, update the neighbors N(s↑) = {r↑, r} to
N(s↑)← {r↑, riv}.

Step 2 (Eliminate): “Simulate” the elimination of Xv from each mini-bucket re-
gion. That is, for each i ∈ [zv]

+, create a message region mi
v with scope sc(θmiv) =

sc(θriv) \ {v} connected to the mini-bucket region via separator siv, i.e., N(siv) =
{riv,mi

v}. That is, set R ← R ∪ {mi
v} and S ← S ∪ {siv}. Finally, associate the

placeholder message region with a factor θmiv whose value is zero for all states, i.e.,
θmiv(xmiv) = 0 for all xmiv ∈ Dmiv .

Step 3 (Cost-Shift): Allow cost-shifting among mini-bucket regions by creating a
“dummy” univariate region r0

v and horizontal separators connecting it to each mini-
bucket region. That is, set R← R∪{r0

v} and S ← S∪{si↔;v} where N(si↔;v) = {r0
v, r

i
v}

for each i ∈ [zv]
+.

end for
return A mini-bucket region graph G = (R, S,E).

regions into zv mini-buckets, or sets, consisting of at most iBound+1 RVs. Factors in each

mini-bucket are joined (and deleted) to create a mini-bucket region which is added to the

graph. In Step 1a, we re-route the messages to the new joined region.

The mini-bucket partition in Step 1 is often chosen in a greedy manner by prioritizing joins

of larger factors as follows. First, sort the factors in the bucket by decreasing scope size.
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Then, starting from the first (largest) factor, join it with the first factor in the sequence such

that the resulting scope is smaller than or equal to iBound+1. Repeat this step until the end

of the list is reached. The result factor represents one mini-bucket region. We then remove

the joined factors and repeat this process to create the remaining mini-bucket regions.

In Step 2 (the eliminate step), we simulate a message passing step by creating a placeholder

message region with factor value zero and add it to the graph. At the conclusion of the

algorithm, the regions and separators constructed during Step 1 and Step 2 constitute a

region graph known as a mini-bucket tree.

In Step 3 (the cost-shift step), we add cost-shifting factors between mini-buckets; this allows

the mini-bucket regions to reallocate factors before the elimination step and, in general, can

lead to tighter bounds. To do this, we create a cost-shifting term between all mini-buckets

via a “dummy” region r0
v. In addition, we add a cost-shifting separator si↔;v to connect a

region riv to the “dummy” region r0
v in its associated bucket. (The index of the separator

signifies that the cost-shifting separator connects horizontally aligned regions in the typical

depiction of the graph, as shown in the example discussed in the next paragraph.) Note

that cost-shifting through a “dummy” term can represent the same class of bounds as cost-

shifting between each pair of mini-bucket factors, but with a more compact representation,

i.e., using O(zv) rather than O(z2
v) parameters.*

We illustrate the mini-bucket region graph constructed from the loop graph in Figure 2.1.

In Figure 2.1a, we show a region graph with iBound = 1. In Figure 2.1b, we show a region

graph with iBound = 2. The latter region graph represents the exact bucket elimination

computation.

2.3.1.1 Message Passing on the Mini-Bucket Tree

*Note that if mini-buckets share a larger set of overlapping RVs, then we can perform cost-shifting over
that high-order scope ∩ki=1sc(θBi

v
), as done in Liu and Ihler [2011]. For simplicity, we do not do this here.
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Algorithm 5 Exact MAP inference in a mini-bucket tree

Input: A bucket elimination region graph G, and an elimination order o = (1, 2, . . . , n).
Output: The set of messages (equivalent to bucket elimination messages) and the exact log

MAP-value Φ0(θ).

for v = 1 to n do
for i = 1 to zv do

Step 1 (Gather): Add the (horizontal) cost-shifting factor (associated with
separator si↔;v) to mini-bucket region riv factor

θδ↔riv (xriv) = θriv(xriv) + δsi↔;v
(xv),

then add the backward messages

θmriv(xriv) = θδ↔riv (xriv) +
∑

s↑∈N(riv)

N(s↑)={riv ,r↑}

mr↑→s↑(xs↑)

Step 2 (Eliminate): Eliminate RV v from the mini-bucket region riv factor

mriv→s↓(xs↓) = max
xv

θmriv(xriv)

where {s↓} = N↓(r
i
v) is the forward separator.

end for
end for

In Algorithm 5, we compute the exact MAP value on the mini-bucket tree relaxation. That

is, for a fixed set of horizontal separator cost-shifting factors δS↔ = {δs↔ : s↔ ∈ S↔}, we

iterate over each mini-bucket region (in order) and eliminate its first RV to create a message.

The algorithm evaluates the mini-bucket objective LMBE
G (δS↔) which we write as

LMBE
G (δS↔) = max

xznn
· · ·max

x1
n

· · · max
x
z1
1

· · ·max
x1

1

∑
v∈V

i∈[zv ]+

θδ↔riv (xriv). (2.11)

where the notation “maxxiv” indicates elimination of the ith mini-bucket region associated

with v ∈ V , and, as defined in Step 1, θδ↔riv is the model factor reparameterized with its

horizontal cost-shifting factor. The quality of the bound depends on how cost is allocated

among the mini-bucket regions. To obtain the tightest bound, we optimize the mini-bucket
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objective over each setting of the horizontal cost-shifting factors

arg min
δS↔

LMBE
G (δS↔).

One way to perform this optimization is with standard black-box convex optimization tools.

Another way to optimize this class of bounds is to use Algorithm 4 to construct a mini-

bucket region graph but then optimize the cost-shifting factors as if it were generic region

graph, i.e., ignoring the mini-bucket tree substructure and not performing message passing

on the mini-bucket tree. For a generic region graph, a block coordinate-descent algorithm is

often employed to perform optimization of the cost-shifting factors. We describe this block

coordinate-descent algorithm in the next section.

2.4 Optimizing the Dual Decomposition with Block Coordinate-Descent

In the last section, we saw that tree-structured graphs admit a closed form solution to the

dual decomposition minimization (2.7). However, for general (loopy) graphs, there is no

closed form solution. The DD-objective is convex with respect to its variational parameters

and can, in principle, be optimized using any of a variety of iterative convex optimization

techniques [Boyd et al., 2004]. However, it is often more efficient to exploit the decomposed

form of the objective to perform a block-coordinate descent that optimizes a subset of cost-

shifting factors in closed form while holding the rest of the cost-shifting factors fixed. When

the subgraph is a tree, it can be optimized using the same message passing as the bucket

elimination region graph in the last section. A simple special case, pursued by Sontag and

Jaakkola [2009], is when the tree is a star-shaped region graph, meaning that it consists

of a single region node and its regions. This special case is presented in this section. Our

work on Adaptive Hierarchical State Space Partitions in Chapter 6 uses updates based on

star-shaped region graphs.
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Algorithm 6 Block coordinate descent for relaxed MAP inference (optimizing the DD-
objective)

Input: A region graph G = (R, S,E).
Output: Optimally reparameterized DD-objective LDDG (δ∗).

while LDDG (δ) has not converged do
for each region r ∈ R do

Goal: Form an optimal reparameterization on the star-shaped subgraph

min
δ
Sstarr

∑
r∈Rstarr

θδr(xr)

where r is the root, Rstar
r = ∪s∈N(r)N(s), and Rtail

r = Rstar
r \ {r}.

Step 1a: For each tail region r′ ∈ Rtail
r , form an outward message (towards root r).

mr′→s(xs) = maxxr′\s θ
δ
r′(xr′)

Step 1b: For each tail region r′ ∈ Rtail
r , form an inward message (away from root r).

mr→s(xs) = max
xr\s

(
θr(xr) +

∑
s′∈N(r)

{r,r′}=N(s′)

mr′→s′(xs′)
)

Step 2: Compute the optimal cost-shifting factors as a convex combination of mes-
sage. For each tail separator s ∈ N(r) where N(s) = {r, r′}

δ∗s(xs) = ρr′ ·mr′→s(xs) − (1− ρr′) ·mr→s(xs)

where the weights satisfy
∑

r′∈Rtailr
ρr′ ≤ 1. As a default, set ρr′ = 1

|Rtailr |+1
for each r′

to balance cost evenly through all roots.
end for

end while

The star-shaped region updates are as follows. Consider a root region r ∈ R and its inci-

dent separators Sstarr = N(r) and star-shaped region neighborhood Rstar
r = ∪s∈N(r)N(s).

Optimizing the block of parameters associated with these separators Sstarr only affects the

star-graph Rstar
r and the reparameterization at other regions R \Rstar

r are fixed. That is,

min
δ
Sstarr

LDDG (δ) = min
δ
Sstarr

( ∑
r∈Rstarr

θδr(xr) +
∑

r∈R\Rstarr

θδr(xr)

)

=

(
min
δ
Sstarr

∑
r∈Rstarr

θδr(xr)

)
+

∑
r∈R\Rstarr

θδr(xr)
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Optimization over the subgraph Rstar
r can be carried out in closed form by designating any

region as a root and directing messages toward it. Selecting any node as the root results in

a solution to the decomposed problem, but results in a different reparameterization of the

factors. Qualitatively, choosing one node as a root can be seen as “pushing” the cost of the

subsystem to that root. This reparameterization affects the neighboring subproblems that

are solved next in the sequence.

In general, the effect of the local reparameterization choice on the global convergence rate is

not well understood [Tourani et al., 2020]. A common heuristic is to utilize a mixed solution.

That is, to solve the local problem with each node as the root and take a convex combination

(with equal weights) of the reparameterizations. Clearly, a convex combination of optimal

solutions is also optimal.

Algorithm 6 describes the block coordinate descent approach on star-shaped subgraphs.

The outer loop iterates over the set of regions in a predefined sequence. The body of the

loop computes the optimum reparameterization, as specified in the first line of the loop

and implemented in the remaining steps. In Step 1a and Step 1b, we compute the set of

messages directed toward and from each node. In Step 2 we form a convex combination of

the messages.

2.5 Sum-Inference

In the previous sections we discussed mini-bucket elimination and dual decomposition meth-

ods for MAP inference problems. In this section, we discuss extensions of these methods for

sum-inference problems.

To derive these extensions, the basic idea is to substitute the max-sum-swap inequality in

the MAP inference elimination bound for Hölder’s inequality. Hölder’s inequality [Hardy
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and Littlewood, 1952], states that for any K non-negative functions h1, . . . , hK ,

∑
x

K∏
i=1

hi(x) ≤
K∏
i=1

wi∑
x

hi(x) (2.12)

where each weight is non-negative and the weights sum to one, i.e., wi ≥ 0 for all i ∈ [K]+

and
∑K

i=1wi = 1. The power-sum operator is defined as

w∑
x

h(x) =
[∑

x

h(x)1/w
]w
,

which reduces to the standard summation operator
∑

x h(x) when w = 1 and the standard

maximization operator maxx h(x) as w → 0+.

When working with PGMs, it will be convenient to define a log-sum-exp operator and a

weighted log-sum-exp operator as

lse
x
θ(x) = log

∑
x

exp(θ(x))

w
lsew
x

θ(x) = log
w∑
x

exp(θ(x))

respectively, for any function θ and non-negative weight w.

2.5.1 Weighted Mini-Bucket Elimination

The weighted mini-bucket algorithm can be broken up into two steps (as we did for the MAP

mini-bucket elimination algorithm). First, using Algorithm 4, we construct a region graph

whose messages use at most iBound RVs (i.e., the graph construction procedure as for MAP

inference). Second, we perform message passing on a mini-bucket tree as in Algorithm 5 but
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with the max elimination replaced by a weighted log-sum-exp elimination

mriv→s↓(xs↓) =
wir

lsew
xv

θmriv(xriv)

for each i ∈ [zv] where {s↓} = N↓(r
i
v) is the forward separator and the weights are non-

negative and sum to one, i.e., wir ≥ 0 for each i ∈ [zv] and
∑

i∈[zv ] w
i
r = 1 (where, recall, that

zv is the number of mini-buckets associated with a RV v ∈ V).

The bound on an exact sum-elimination at RV v is obtained via Hölder’s inequality as

log
(∑

xv

zv∏
i=0

exp(θmriv(xriv))
)
≤

zv∑
i=0

mriv→s↓(xs↓)

where the RHS is tractable, with cost exponential in iBound + 1, while the computation on

the LHS is intractable.

The weighted mini-bucket objective is a function of the horizontal separator cost-shifting

factors δS↔ and weight w parameters

LWMB
G (δS↔ ,w) =

wznn
lsew
xn
· · ·

w1
n

lsew
xn

· · ·
w
z1
1

lsew
x1

· · ·
w1

1

lsew
x1

∑
v∈V

i∈[zv ]+

θδ↔riv (xriv) (2.13)

which has the same form as the mini-bucket elimination objective (2.11) for MAP inference,

but with max operators replaced by lsew operators.

2.5.1.1 Gradient and Optimization

The gradient of the WMB-objective LWMB
G (δS↔ ,w) is derived in [Liu and Ihler, 2011] and

requires a backward pass that complements the forward pass (elimination). The backward

pass aggregates the effect of changing a parameter on mini-buckets later in the elimination

order. That is, a change in any parameter affects the outgoing message to its incident bucket,
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which then affects the value of that bucket’s message, and so on downstream.

For this thesis, we will not need to understand how the gradient is computed; we will simply

need compact symbols to describe it and a qualitative understanding of what it represents

in terms of the inference problem. The gradient with respect to the region factor can be

interpreted as a pseudo-marginal that approximates the true marginal probability (which is

equal to the gradient of the log partition function). We denote the pseudo-marginal with

the notation

µδr(xr) :=
∂ LWMB

G (δS↔ ,w)

∂ θδr(xr)

where the sum of these pseudo-marginals is equal to one, i.e.,
∑

xr
µδr(xr) = 1. The gradient

with respect to the cost-shifting factor incident to the reigon is a marginalization over a

subset of RVs

µδr→s(xs) :=
∂ LWMB

G (δS↔ ,w)

∂ δrs(xs)
=
∑
xr\s

µδr(xr)

The gradient of the objective with respect to a horizontal separator s ∈ S↔ incident to

RV-region v and region r is equal to a difference of the incident pseudo-marginals

gδs(xs) :=
∂ LWMB

G (δS↔ ,w)

∂ δs(xv)
= µδr→s(xs)− µδv(xv) (2.14)

since the cost-shifting factor δs appears in the first region with a positive sign and the second

with a negative sign (and xs = xv since the horizontal separator s has scope sc(s) = v).

When the gradient is zero, the pseudo-marginals in each region are equal. Thus, optimizing

the objective can be thought of as enforcing a weak consistency such that the multiple copies

of each RV (in different regions in the graph) have identical pseudo-marginals.

The gradient with respect to the weight has an interpretation as a conditional entropy. Since

the gradient of the weight parameters will not be referenced explicitly in the novel work of

this thesis, we simply refer the reader to Liu and Ihler [2011] for details.
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Optimization As shown in Liu and Ihler [2011], the WMB-objective is convex with respect

to the cost-shifting factors δS↔ and weights w. Liu and Ihler [2011] use a fixed point al-

gorithm to optimize the parameters However, this approach is not guaranteed to converge

or monotonically decrease the bound. Instead, in this thesis, we optimize the bound using

generic convex optimization procedures [Boyd et al., 2004] that are supplied with the ob-

jective function and gradient. In this thesis, we use the minFunc toolbox in MATLAB to

perform the optimization [Schmidt, 2005].

To maintain positivity of the weights we transform them into log-space and perform an

unconstrained optimization. This is a standard practice in convex optimization as it is often

more convenient to optimize an unconstrained objective. That is, we use an unconstrained

parameter ηir ∈ R which defines a weight

wir =
exp(ηir)∑

i′∈[zv ] exp(ηi′r )

for each i ∈ [zv] and each v ∈ V . We then perform optimization over the objective LDDG (δ,η).

2.5.2 Generalized Dual Decomposition

Ping et al. [2015] developed a generalized dual decomposition (GDD) objective for sum-

inference problems that extends the dual decomposition bounds for MAP inference problems.

The GDD bound is derived from Hölder’s inequality and decomposed into a set of tractable

weighted power-sum inference problems over local regions (as opposed to a set of local MAP

inference problems for the dual decomposition bounds).
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That is, the GDD bound on the log partition function is

log(Z(θ)) = lse
xV

∑
r∈R

θr(xr) (2.15)

≤
∑
r∈R

wr
lsew
xr

θr(xr) =: LGDDG (δ,w) (2.16)

where wr = (w1
r , . . . , w

|r|
r ) is a set of nonnegative weights, and the vector (log) power-sum

operation
ω

lsew
y

θ(y) =
ωk

lsew
yk
· · ·

ω1

lsew
y1

θ(y1, . . . , yk)

is a sequence of k power-sum operations where ω = (ωi)
k
i=1 is a vector of k nonnegative

weights, g is a function over k dimensions and the RVs are ordered by the elimination order

i.e., y1 ≺o . . . ≺o yk. Note that, in general, the vector power-sum operator does not commute.

However, when adjacent weights are identical, it does commute.

In the original GDD work [Ping et al., 2015], the weights associated with each RV across

all factors are restricted to sum to one, i.e.,
∑

r∈R:v∈rw
v
r = 1, where wv

r indexes the weight

associated with RV v ∈ V and region r ∈ R. However, in this thesis we allow the weights to

exceed one. (This will allow additional, necessary flexibility for our Lifted GDD Algorithm

in Chapter 4, which relies on tying weights and will, in general, not be able to force the

sum to be exactly one.) To represent this property, we require that the region graph has a

univariate factor associated with each RV, i.e., V ⊂ R, which will manage the weight sum.

Each multivariate region r ∈ R\V is associated with a weight vector wr and each univariate

region is associated with a weight

wv = max(0, 1− w∆
v ) where w∆

v =
∑
r∈R\V
sc(r)3v

wv
r (2.17)

accumulates the weights associated with RV v ∈ V on each multivariate factor. Thus, when
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w∆
v ≤ 1 we have that the total weight associated with RV v ∈ V sums to one, and otherwise

will exceed one. Note that when the total weight associated with v exceeds one, the bound

is valid, but loose; when fully optimized, the weights sum to exactly one.

2.5.2.1 Gradient

Optimization of the GDD objective requires its gradient. We use the same notation for the

gradient with respect to the GDD-objective LGDDG (δ,w) as we did for the gradient with

respect to the WMB-objective LWMB
G (δS↔ ,w) as there will be no ambiguity. That is, the

gradient at each region is a pseudo-marginal (the precise computation is given in Ping et al.

[2015])

µδr(xr) :=
∂ LGDDG (δ,w)

∂ θδr(xr)

and the sum of these pseudo-marginals is equal to one, i.e.,
∑

xr
µδr(xr) = 1. The gradient

with respect to the cost-shifting factor is a marginalization over a subset of RVs

µδr→s(xs) :=
∂ LGDDG (δ,w)

∂ δrs(xs)
=
∑
xr\s

µδr(xr)

The gradient of the objective with respect to a horizontal separator s incident to RV-region

v and region r is a difference of incident pseudo-marginals

gδs(xs) :=
∂ LGDDG (δ,w)

∂ δs(xs)
= µδr→s(xs)− µδv(xv) (2.18)

since the cost-shifting factor δs appears in the first region with a positive sign and the second

with a negative sign (and xs = xv since the separator s has scope sc(s) = v).
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Algorithm 7 Anytime inference for dense tabular factors

Input: An initial region graph G0, a function to select a higher cost and higher accuracy
graph Transition, a number of inference sweeps on each graph I, and the available
memory and computational cost τmem and τcpu.

Output: Inference summary as pairs of objective evaluation and iteration cost {(Lt;i, ct;i) :
t ∈ [m′], i ∈ [I]+}.
Initialize: t← 0

while
( ∑
t′∈[t−1]

∑
i∈[I]+

ct′;i ≤ τCPU

)
∧ ¬isJTree(Gt) do

Step 1 (Inference): Inference hot-started at the old parameterization:

(δt;I , Lt;·, ct;·) = Infer(Gt, δt−1;I ; I)

Step 2 (Transition): Transition to a graph with higher cost and accuracy:

Gt+1 = Transition(Gt, τmem)

Step 3: t← t+ 1;

end while

2.5.2.2 Relation to Weighted-Mini-Bucket

The decomposed GDD-objective represents the same class of bounds as the tree sub-structured

WMB-objective. GDD was originally proposed [Ping et al., 2015] to address convergence

issues with the weighted mini-bucket optimization used in Liu and Ihler [2011], which are

especially severe in marginal-MAP problems. However, for summation problems WMB opti-

mization is often quicker since its forward pass computes a closed form solution to the large

subset of variational parameters along the WMB tree.

2.6 Anytime Inference

The quality of an approximate inference relaxation depends heavily on its choice of inference

structure. For PGMs with dense factor tables (this chapter), we must choose the subsets of

RVs (region scope) used in the relaxation; in our novel work in this thesis (Chapters 4–6),

the selection of symmetric groups of factors is the fundamental choice.
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However, often, a high quality inference structure cannot be selected a priori. Instead, it

is desirable to use preliminary inference estimates to select the terms that appear most

promising to improve the inference objective. For decomposition bounds in PGMs, several

works join groups of factors such that the MAP dual decomposition bound is decreased

as much as possible [e.g., Batra et al., 2011, Sontag et al., 2012]. For sum-inference tasks,

Forouzan and Ihler [2015] performs a greedy joining procedure within a weighted mini-bucket

elimination framework; the basic idea is to select mini-buckets by joining regions within a

bucket that improves a local upper bound on the (tree-structured) WMB bound as much

as possible. For symmetric PGMs (introduced in the next chapter), coarse-to-fine methods

such as [Sarkhel et al., 2015, Habeeb et al., 2017] and our novel work in Chapters 4–6, break

inference symmetries that appear to improve the inference objective as much as possible.

Anytime inference provides a general framework for incrementally improving an inference

approximation (see Algorithm 7). It alternates two steps of (Step 1) performing iterative

inference on a fixed region graph with (Step 2) transitioning to a new graph structure

with higher cost and higher accuracy (where the cost must be below the memory bound

τmem); ideally preliminary inference estimates are used to select the transition. The anytime

inference framework outputs inference estimates at varying cost/accuracy tradeoffs. This in

itself is useful in many practical settings where the computational resources are not known

a priori and inference estimates may be queried at any time. In Algorithm 7, the bound on

the inference objective and the computational cost incurred by the inference iteration are

recorded as a pair (Lt;i, ct;i) for the tth graph in the transition sequence and the ith inference

sweep on that graph (in this thesis, we perform a fixed number of inference iterations on each

graph specified by a hyperparameter I). The algorithm is terminated when computational

resources (specified by τCPU) are exhausted or when an exact inference structure (here, the

junction tree) is reached.

When upper bound frameworks are used for inference (such as dual decomposition for MAP
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inference or WMB or GDD for sum-inference), the anytime inference algorithm monoton-

ically improves the bound. Consequently, the quality of two anytime inference algorithms

can be compared by plotting their reported cost-accuracy tradeoffs (where lower value of the

inference objective is better). Each of the novel works in this thesis, Chapters 4–6, report

results in this form.
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Chapter 3

Symmetric PGMs

In the previous chapter, we discussed inference in standard PGMs with dense factor tables.

In this chapter, we discuss classes of symmetric PGMs where groups of objects in the model

are indistinguishable. Two types of symmetry arise regularly in practice: first, a model

with state space symmetry contains factors with groups of states that have identical values;

second, a model with factor symmetry contains groups of factors that have identical factor

tables.

Symmetry provides another type of structure (in addition to the factorization structure of

the PGM) that can be exploited to perform inference efficiently. In this chapter, we review

lifted inference which, broadly, refers to any inference technique that exploits exact model

symmetry. Since exact symmetry rarely arises in practice, there is a great need for methods

that perform inference in models with approximate symmetry. We review methods that have

been developed for coping with asymmetry, and highlight some of their shortcomings that

motivate our novel work in subsequent chapters.

Although our focus in this chapter is to describe existing methods and approximations for

reasoning about models with symmetry or approximate symmetry, some of the conceptual

frameworks in which we describe these ideas are novel to our work, and are included here in

order to be consistent with, and highlight the parallels and similarities to our contributions
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in subsequent chapters. As one example, while our discussion highlights the deep similarities

between factor symmetry and state space symmetry and their respective approximate infer-

ence methods, these connections are not widely noted within the literature. Where possible,

we also describe many existing inference algorithms within the framework and using the

notation of decomposition inference methods, which serves to clarify their relationships both

to each other and to our proposed methods in subsequent chapters.

3.1 Introduction

In the previous chapter, we saw how the factored structure of PGMs leads to efficient in-

ference algorithms. In this chapter, we study PGMs which, in addition to the factorization

structure, possess a symmetric structure which leads to even more efficient inference algo-

rithms. In particular, we study two types of symmetry that may occur in a graphical model.

First, a model with state space symmetry contains factors with groups of states that have

identical values; for example, a “cardinality factor” constrains the number of on RVs in a

factor, e.g., to model a binary image prior [Tarlow et al., 2012]. Second, a model with factor

symmetry contains groups of factors that have identical factor tables; an important class of

models with this property is probabilistic first-order logic networks, such as Markov Logic

Networks (MLNs) [Richardson and Domingos, 2006], that encode rules with a “for all” rela-

tionship. For example, when modeling voting patterns in a social network, we might use a

rule such as, “for all pairs of people (A,B), if A and B are friends, then A and B are more

likely to vote for the same candidate”. In Section 3.2, we formally define models with state

space symmetry and factor symmetry, and in Section 3.3, we formally define MLNs.
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3.1.1 Lifted Inference

Lifted inference algorithms encompass a broad class of algorithms that exploit symmetry

during inference; in this setting, standard inference that does not exploit symmetry is called

ground inference. The basic idea of lifted inference is to first identify exact symmetries that

would arise if a ground inference procedure were run, then perform inference more efficiently

on a lifted graph which represents each symmetry group using a single node. In the ideal

case, the model contains groups of symmetric objects that perfectly align with each other,

and hence the inference quantities also possess these symmetries. For example, in MLN

models without evidence, we can reason about entire groups of problem objects as if they

were a single object, e.g., in the social network example, we can (roughly) reason about the

group of all people as if it were a single person.

Over the past decade, lifted inference procedures for most popular ground inference algo-

rithms have been developed. These include lifted variants of belief propagation [Singla and

Domingos, 2008], tree-reweighted inference [Bui et al., 2014], generalized BP [Apsel, 2016,

Smith et al., 2016], high-order MAP inference [Mladenov et al., 2014b], dual convex entropy

methods [Mladenov and Kersting, 2015], relax-compensate-recover [Van den Broeck et al.,

2012], and linear programming [Mladenov et al., 2012, 2014a]. For exact (unrelaxed) infer-

ence, lifted variable elimination algorithms have been developed [Poole, 2003, Braz et al.,

2005, Milch et al., 2008, Taghipour et al., 2012]; another work that performs unrelaxed

infernce is Bui et al. [2012] that identifies exact (non-relaxed) symmetries via graph au-

tomorphism algorithms which define inference symmetry groups. Lastly, lifted variants of

Markov chain Monte Carlo algorithms such as Gibbs sampling [Venugopal and Gogate, 2012]

and importance sampling [Venugopal and Gogate, 2014b] have also been developed.

Unfortunately this ideal case, where the model is composed of perfectly aligned symmetry

groups, rarely occurs in practice. In MLN models, for example, we often observe different
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information about each individual ground object (e.g., that some pairs of people are friends)

and hence no two objects can be treated identically during inference. In this case, lifted

inference deteriorates into ground inference, negating all potential computational gain of the

symmetric representation. This effect of breaking model symmetries is sometimes referred

to as shattering.

In Section 3.4, we present lifted inference and the shattering problem for models with factor

symmetries. Our presentation is couched within a decomposition-based inference framework

that we will make use of on in later chapters. In Section 3.5, we present lifted inference

and the shattering problem for models with state space symmetries. To do so, we develop

a graphical depiction of the states of the factors, and a corresponding lifted graph, which

will be helpful in developing our methods for Adaptive Hierarchical State Space Partitions

in Chapter 6. Lastly, our presentation is meant to highlight the deep similarities between

inference with state space symmetry and factor symmetry. This connection is not widely

noted in the literature but leads to important insights for handling asymmetry in this thesis.

3.1.2 Coping with Asymmetry

Because of the shattering effect, in any practical scenario, the key question is whether or

not useful inference quantities can be accurately approximated with symmetric terms. A

considerable amount of effort has gone into solving this problem; however, it remains still

largely open. Broadly, the algorithms that have been proposed to cope with asymmetry fall

into a few categories, such as projected message passing methods, which compute the

(asymmetric) inference messages, then project them back into a more tractable (symmet-

ric) functional form, or over-symmetric approximate models, which create a perturbed

model that has more symmetry than the original. Both these approaches control computa-

tional cost, but incur error which is difficult to analyze. An emerging class of methods are

coarse-to-fine approximations, which solve a coarse approximation to the inference prob-
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Concept State Space Symmetry Factor Symmetry

Dense representa-
tion

Dense factor table. Ground PGM.

Symmetric func-
tional form

Quantized factor table.
(Section 3.2.1)

Lifted RV and Lifted Factor.
(Section 3.2.2)

(a) Model Representation

Concept State Space Symmetry Factor Symmetry

Projected Mes-
sage Passing

ADD message projection
[Gogate and Domingos, 2013].

Lifted Approx. BP [Singla et al.,
2014].

Over-Symmetric
Approximate
Model

Cluster RV domains to define
coarse tabular factors.
(Section 3.7.1)

Cluster logical domain defines
small MLN coarse evidence.
(Section 3.7.2)

Coarse-to-Fine
Small to Large
scope

Split RV domains, join to form
large regions.
(Chapter 6)

Split logical domains, join to
form large lifted factors.
(Chapter 5)

(b) Inference: Coping with Asymmetries

Figure 3.1: Tables illustrate similarity between models with state space symmetry and models
with factor symmetry. The top table specifies concepts dealing with model representation.
The bottom table specifies methods for coping with inference asymmetry. Each table cell
contains a brief description and a reference or Section number where further details are
discussed.

lem, then use this solution to instantiate a finer-resolution approximation with higher cost

but higher accuracy. These methods are appealing since they control the computational cost,

while also maintaining a concrete connection to the original problem. Interestingly, these

same classes of methods have been used, in separate communities, for coping with both

factor asymmetry and state space asymmetry. However, their similarity has not previously

been widely appreciated; we highlight this similarity in Table 3.1.

In Section 3.6, we discuss these methods in more detail and highlight some of their relative

strengths and weaknesses; we also present desiderata for an ideal framework, which guides

the development of our novel algorithms in subsequent chapters. In Section 3.7, we discuss

domain clustering in detail since it forms the basis for our work in later chapters.
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3.1.3 Aggregate Symmetry

Finally, in Section 3.8 we discuss an important identity whereby symmetric groups of factors

are joined (summed) together to form a large “counting” factor, i.e., a factor with significant

state space symmetry. This identity is well-known in the MLN literature; in the context of

our work, it illustrates a deep connection between factor symmetry and state-space symme-

try when higher-order variable interactions are included in the inference procedure. This

connection inspired, and is then generalized by, our contributions on Adaptive Hierarchical

State Space Partitions in Chapter 6.

3.2 Symmetric Models

A set of objects is called symmetric if each element in the set is indistinguishable from the

others in the set. In this setting, a lifted object is said to be associated with the symmetric

set of ground objects. In this thesis, we study two different types of symmetric sets of objects:

first, where states within a factor are symmetric, and second, where factors (in the global

model) are symmetric. We discuss each of these two cases in turn.

3.2.1 State Space Symmetry

A Lifted-State-Space-factor (LSS-factor) θ̄α : D̄α → R represents state space symmetry in an

associated ground factor θα : Dα → R. The domain of the LSS-factor is a set of lifted states

D̄α where each lifted state yα ∈ D̄α is associated with a set of ground states gr(yα) ⊂ Dα;

collectively, the sets of ground states gr(D̄α) := {gr(yα) : yα ∈ D̄α} partition the factor’s

domain Dα. The ground factor assigns the same value to all ground states associated with

the same lifted state, i.e.,

(∀ yα ∈ D̄α, xα ∈ gr(yα)), θα(xα) = θ̄α(yα). (3.1)
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x1 x2 x3 #x1:3 θ(x)

0 0 0 0 a

0 0 1 1 b

0 1 0 1 b

0 1 1 2 c

1 0 0 1 b

1 0 1 2 c

1 1 0 2 c

1 1 1 3 d

(a) Counting factor

x1 x2 x3 σα(xα) θα(xα)

F F F T ω

F F T T ω

F T F T ω

F T T T ω

T F F T ω

T F T F 0

T T F F 0

T T T T ω

(b) Probabilistic logic

θ(x) =

 a a c

a a c

b b d


(c) MD-LSS-factor symmetry

x1 x2 𝜽(𝒙)

0 0 a

0 1 a

1 0 b

1 1 b

2 0 c

2 1 d

𝑥1

0 1 2

𝑥2

0 1
a b

c d

(d) Algebraic Decision Diagram

Figure 3.2: Example factors with state space symmetry. (a) Counting factor whose value
depends on the number of on states, #x1:n =

∑n
i=1 xi, (b) Probabilistic logic factor associated

with logical sentence σα(xα) = x1 ⇒ (x2 ⇔ x3) (with scope α = {1, 2, 3}) and weight ω. (c)
Ground factor associated with a MD-LSS-factor in which states within each RV are treated
identically (here, states 0 and 1 of each RV are identical). This gives rise to state space
symmetry defined over hypercubes. (d) Algebraic Decision Diagram where each joint state’s
value is obtained by traversing the tree to the leaves, at each node deciding which branch to
go down by testing a single RV for the value labeled on its edge.

3.2.1.1 Examples

Factors with state space symmetry are sometimes called quantized [Gogate and Domingos,

2013] or coarse [Sontag et al., 2009] factors in previous work. Such factors have been used

to efficiently represent structured model factors and/or approximate inference terms. Some

examples, illustrated in Figure 3.2, include:

(a) Counting factors over binary RVs, whose value depends only on the number of on RVs
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in a group. Some tasks that use counting factors include worker scheduling problems

(say, to encode a requirement that at least three workers are assigned to a given

task), and computer vision problems with binary variables like foreground/background

segmentation (to constraint the fraction of pixels in a patch that can be assigned to

the foreground) [Tarlow et al., 2012].

(b) Probabilistic logic extends standard (hard) logic by associating a logical truth-table

with a weight ω; this defines a factor table with value ω if the logical sentence eval-

uates to True and value 0 if the logical sentence evaluates to False. Markov Logic

Networks [Richardson and Domingos, 2006] provide a popular language for expressing

probabilistic logic, and are defined Section 3.3 and used throughout this thesis.

(c) A multidimensional-LSS-factor (MD-LSS-factor) is defined by symmetry in the states

of each RV; this partitions the factor into axis-parallel hypercubes of equal value. In

the depicted example, state groups {0, 1} and {2} are identical in both RVs. Factors

of this form are used to represent discretizations of continuous problems [Isard et al.,

2009] or to represent a grouping of states in discrete problems with large RV domains

(e.g., [Sontag et al., 2009] groups states representing molecular bond angles in a protein

design problem). Factors of this form give rise to efficient lifted inference computations,

which we discuss in Section 3.7.1. The central idea of our work on Adaptive Hierarchical

State Space Partitions in Chapter 6 is to build high-order inference terms that exploit

this type of symmetry.

(d) An Algebraic Decision Diagram (ADD) is a tree-structured graph where the path from

the root to a leaf consists of a set of tests on the value of one RV within a joint state.

All joint states associated with a leaf node are assigned the value associated with the

leaf. In the example shown, the state (X1, X2) = (2, 1) is assigned to the leaf in the

bottom right and has value d. Factors of this form were used by Gogate and Domingos

[2013] to represent the result of approximate message passing operations.
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3.2.2 Factor Symmetry

A lifted factor θ̄ᾱ is equal to the sum of identical ground factors

θ̄ᾱ(x̄ᾱ) =
∑

α∈gr(ᾱ)

θᾱ(xα) (3.2)

where its lifted scope symbol ᾱ is associated a set of ground scopes gr(ᾱ) ⊆ P(V), and its

template factor θᾱ : Dᾱ → R is equal to all associated ground factors, i.e.,

(∀α ∈ gr(ᾱ), xα ∈ Dᾱ) θα(xα) = θᾱ(xα) (3.3)

where each ground factor has domain equal to the template domain, i.e., Dᾱ = Dα for all

α ∈ gr(ᾱ). Note the subtle difference in notation: a lifted factor has a bar over its base

symbol θ̄ and a bar over its subscript index ᾱ, while a template factor has no bar over its

base symbol θ but has a bar over its subscript index ᾱ, and a ground factor has no bar over

either its base symbol θ or its subscript index α.

A model defined via lifted factors has a probability density function exp(θ(x)) that can be

defined solely in terms of the lifted factors, i.e.,

θ(x) =
∑
α∈I

θα(xα) (3.4)

=
∑
ᾱ∈Ī

∑
α∈gr(ᾱ)

θᾱ(xα) =
∑
ᾱ∈Ī

θ̄ᾱ(x̄ᾱ) (3.5)

where Ī is a set of lifted scope symbols.

It will sometimes be useful to define a set of lifted RVs V̄ which represent identically behaving

ground RVs. That is, each lifted RV v̄ ∈ V̄ is associated with a set of ground RVs gr(v̄) ⊆ V

and a template domain Dv̄ that is equal to the domain of each ground RV, i.e., Dv = Dv̄
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for each v ∈ gr(v̄). Collectively, the set of groundings associated with lifted RVs, gr(V̄) :=

{gr(v̄) : v̄ ∈ V̄}, partition the set of ground RVs V .

3.2.2.1 Examples

We now describe some example applications of PGMs with symmetric factors.

Computer Vision Many low-level computer vision problems are represented with a grid-

structured MRF which captures dependence between neighboring pixels, where each pixel

is associated with a RV. Often, the relationship between pixels is translationally invariant

and thus is represented by a single, identical (i.e., symmetric) factor function between any

neighboring pair of pixels. For example, in stereo vision, the goal is to estimate the depth of

the object at each pixel using a pair of images taken by adjacent cameras. Objects that are

nearer to the camera will appear to “shift” between the left and right images by a greater

horizontal distance than objects that are far from the camera. A basic model might compute

a local disparity score for each pixel, by measuring the visual similarity of a patch on the

left to a patch on the right for each possible shift, giving a univariate potential for each RV.

Then, a translationally invariant smoothness term enforces a constraint that two neighboring

pixels are likely to have the same or similar disparity. This model is a PGM with distribution

θ(x) =
∑
v∈V

θv(xv) +
∑

e∈gr(Ē)

θĒ(xe) (3.6)

where the first term represents a local disparity score and the second term represents the

translationally invariant smoothness term and gr(Ē) is the set of all neighboring pixels in the

image. Often the template factor θĒ(xe) is a function of difference in disparity gĒ(xv − xv′)

where e = (v, v′), and so may also have some state-space symmetry in addition to the factor

symmetry from translational invariance.
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Ising Model The Ising model [e.g., McCoy and Wu, 2014] is a classical model in statistical

mechanics. An Ising model consists of discrete (binary) RVs that represent magnetic dipole

moments of atomic “spins” that can be in one of two states (+1 or -1). The connectivity

of the graph defines which atoms can interact with each other; for example, in the basic

two-dimensional Ising lattice, each spin interacts with four neighbors. In attractive Ising

models, neighboring spins that agree have a lower energy than those that disagree. This is

represented with a graphical model of the same form as Eq. (3.6) above.

Probabilistic First-Order Logic First-order logic (FOL) is widely used in mathematics,

philosophy and artificial intelligence to represent knowledge efficiently using “for all” state-

ments [Russell and Norvig, 2002]. Probabilistic first-order logic (probabilistic FOL) uses

a FOL-like representation to define a PGM with symmetric factors. A classic example is

modeling the smoking habits of people within a social network [Richardson and Domingos,

2006]. This friend-smoker-MLN is shown in Figure 3.3. Figure 3.3a shows the RVs used

by the model (friendship relations between all pairs of people, smoking attribute of each

person, cancer attribute of each person) while Figure ?? shows the weighted FOL-formulas

used by the model, e.g., (∀ l1 6= l2 ∈ gr(∆̄ppl)) Fr(l1, l2) ⇒ (Sm(l1) ⇔ Sm(l2)) encodes the

rule that if two people are friends, then they probably both smoke or both do not smoke (for

completeness, in Figure 3.4a we show a ground probabilistic logic factor associated with this

sentence). Figure 3.3c shows a lifted region graph (which will be discussed in detail later)

that is used to efficiently represent and reason about FOL-formulas and Figure 3.3d shows

the associated ground region graph which explicitly represents the rules for each person or

group of people.

In practice, models contain both (symmetric) statements in probabilistic FOL and (asym-

metric) statements about each individual, called evidence, e.g., the observation that Ana

and Bob are friends. In Figure 3.4b we show an example set of evidence observations. The

evidence, as we will see in subsequent sections, breaks the symmetry present in the FOL-
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English Predicate Argument Type Ground RVs

Friendship Relation Fr (∆̄ppl, ∆̄ppl) {Fr(L1, L2) : L1 6= L2 ∈ gr(∆̄ppl)}

Smoke Attribute Sm (∆̄ppl) {Sm(L1) : L1 ∈ gr(∆̄ppl)}

Cancer Attribute Ca (∆̄ppl) {Ca(L1) : L1 ∈ gr(∆̄ppl)}

(a) Predicates and associated sets of ground RVs.

English First-order logic Weight

Friends of friends are prob-
ably friends.

(∀ l1 6= l2 6= l3 ∈ gr(∆̄ppl)) (Fr(l1, l2) ∧
Fr(l2, l3))⇒ Fr(l3, l1)

+2.2

Friends probably both
smoke or don’t smoke.

(∀ l1 6= l2 ∈ gr(∆̄ppl)) Fr(l1, l2) ⇒ (Sm(l1) ⇔
Sm(l2))

+1.6

A person who smokes prob-
ably gets cancer.

(∀ l1 ∈ gr(∆̄ppl)) Sm(l1)⇒ Ca(l1) +0.5

Two arbitrary people are
probably not friends.

(∀ l1 6= l2 ∈ gr(∆̄ppl)) Fr(l1, l2) −6.1

Friendship is symmetric. (∀ l1 6= l2 ∈ gr(∆̄ppl)) Fr(l1, l2) 6⇔ Fr(l2, l1) − inf

(b) Weighted first-order formulas.

1

1

1

(c) lifted region graph (d) ground region graph

Figure 3.3: Example friend-smoker-MLN [Richardson and Domingos, 2006] (a) Predicates
and ground RVs, and (b) Weighted first-order formulas. The bottom pair of figures show
the associated (c) lifted region graph where each lifted region corresponds to a FOL-formula
and is labeled with the predicates used by the formula, and (d) ground region graph where
each ground region corresponds to a grounding of the lifted region of the same color. Each
ground region is labeled only with its logical constants for compactness. For example, the
yellow region labeled “A” corresponds to the grounding Sm(A) ⇒ Ca(A) and the purple
region labeled “A,B” corresponds to the ground sentence Fr(A,B)⇒ (Sm(A)⇔ Sm(B)).

53



xFr(A,B) xSm(A) xSm(B) σᾱ(xα) θᾱ(xα)

F F F T +1.6
...

...
...

...
...

T T T F 0

T T T T +1.6

(a) Template factor representing friendship and smoking
habits

Evidence Formulas

xFr(Ana,Bob) ⇔ True

xFr(Bob,Cathy) ⇔ True

xSm(Ana) ⇔ True

xSm(Bob) ⇔ False

xCa(Bob) ⇔ True
...

xCa(Cathy) ⇔ False

(b) Example Evidence

Figure 3.4: Details for friend-smoker-MLN model. Panel (a) shows the template factor table
associated with the formula σᾱ(xFr(A,B), xSm(A), xSm(B)) = xFr(A,B) ⇒ (xSm(A) ⇔ xSm(B)) with
weight +1.6. Panel (b) shows an example of observed evidence associated with the MLN.

formulas and prevents lifted inference from being applied directly.

Other languages In the next section, we give a detailed overview probabilistic FOL repre-

sented using Markov Logic Networks (MLNs) [Richardson and Domingos, 2006] which will

be used in subsequent chapters of this thesis. We emphasize that MLNs simply provide a

convenient language to represent problems with repetitive model structure. That is, other

languages that represent repetitive structure using a combination of first-order-logic and

probability (e.g., Blog [Milch et al., 2007], IBAL [Pfeffer, 2001], Problog [De Raedt et al.,

2007], PSL [Kimmig et al., 2012]) could be used instead and should not fundamentally alter

the strategies for approximate inference developed in this thesis.

3.3 Markov Logic Networks

In this section, we discuss Markov Logic Networks (MLNs) [Richardson and Domingos, 2006]

which express a symmetric model using probabilistic first-order logic. One of the central

motivations for MLNs is to unify first-order logic with probability theory, a long-standing

goal in artificial intelligence with applications to many domains [Russell and Norvig, 2002].
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We begin in Section 3.3.1, by discussing (hard) logic which provides the foundation for many

knowledge representation systems. In Section 3.3.1.1, we discuss relational logic models which

index variables in real-world problems in a special way. In particular, many logical systems

are used to model a set of objects in the world (e.g., the set of all people), and each variable

in logical model represents an attribute of an object (e.g., Ana smokes, or Bob has cancer), or

a relationship between objects (e.g., Ana and Cathy are friends). In Section 3.3.2, we discuss

first-order logic (FOL) which efficiently represents a logical rule that is applied over a range

of objects, corresponding to a “for all” sentence in English. Finally, in Section 3.3.3, we

discuss Markov Logic Networks (MLNs) which are structurally identical to a hard first-order

logic (FOL) networks, but the hard logical rules are replaced by probabilistic rules which

encourage, rather than require, individual logical sentences to be True.

3.3.1 Hard Logic

Logic forms the basis for knowledge representation and inference in many problems [Russell

and Norvig, 2002]. There are two propositions with fixed meaning: True (or T) is the always-

true proposition and False (or F) is the always-false proposition. A logical sentence is

constructed from simpler sentences, using parentheses and logical connectives, which consist

of negations ¬, conjunctions ∧, disjunctions ∨, implication ⇒, and equivalence ⇔ [Russell

and Norvig, 2002]. A logical sentence over a set of variables α ⊂ V is associated with a truth

table σα : {T, F}|α| → {T, F} that assigns value T or F to each input. An example logical

sentence is σα(xα) = x1 ⇒ (x2 ⇔ x3) which means that “if x1 is true then x2 and x3 are

both True or both False”, where α = {1, 2, 3} is the index of variables used. The truth

table for this formula is shown in Figure 3.2b.

A ground (propositional) logic network is a collection of logical sentences. The truth value

of the network is equal to the conjunction of truth value of the logical sentences. That is,

σ(x) =
∧
α∈I σα(xα) where I is the set of scopes of each logical sentence. A typical task
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in a logic network is determining satisfiability, that is, determining if any configuration x

satisfies all formulas simultaneously [Russell and Norvig, 2002]. Note that a logic network is

a special case of a constraint network [Dechter et al., 2003] where each constraint is defined

by a logical formula.

3.3.1.1 Relational Logic Models

A logical description is often used to model problems whose variables are named in a special

way. In particular, the model contains sets of auxiliary objects and the variables of the

problem are defined by attributes associated with each object or by relationships between

groups of objects [Russell and Norvig, 2002]. The objects often represent nouns in the

problem definition, e.g., a set of people, or a set of items that can be purchased, the attributes

associated with an object often represents a verb or adjective in the problem definition, e.g.,

whether or not a person smokes or whether or not he has cancer, and the relations among

objects often represent verbs in the problem definition, e.g., if two people are friends.

Formally, the auxiliary objects and the problem variables are defined as follows:

Auxiliary Objects: ∆̄ is a set of lifted logical constants where each ∆̄ ∈ ∆̄ is associated

with a set of ground logical constants gr(∆̄) which represent objects in the problem.

For example, in a social network there is one set of constants ∆̄ = {∆̄ppl} where

gr(∆̄ppl) = {Ana, Bob, Cathy} represents the set of all people in the problem.

Predicates: P is a set of predicates where each predicate p̄ ∈ P is associated with a vector

(ordered set with repeats) of lifted logical constants ∆̄p̄ = (∆̄p̄;1, . . . , ∆̄p̄;Ap̄) where

∆̄p̄;i ∈ ∆̄ is the type of the ith argument of the predicate for each i ∈ [Ap̄]
+ where

Ap̄ is the arity of the predicate. The predicate p̄ is associated with ground RVs whose

56



index is any tuple of distinct ground logical constants of the appropriate type

Vp̄ = {p̄(l1, . . . , lAp̄) : li ∈ gr(∆̄p;i), all-diff(l1, . . . , lAp̄)}.

where all-diff(l1, . . . , lk) is true if and only if li 6= lj for all i, j.*

An example is the friendship predicate Fr which is associated with two copies of people

(∆̄ppl, ∆̄ppl).

A (hard) logic network is defined on the set of variables associated with each predicate, i.e.,

V = ∪p̄∈P Vp̄. Each formula represents a logical relationship between objects, e.g.,

σα(xα) = xFr(Ana,Bob) ⇒ (xSm(Ana) ⇔ xSm(Ana))

has scope α = {Fr(Ana,Bob), Sm(Ana), Sm(Bob)} and the formula in English states that

“If Ana and Bob are friends, then either both smoke or neither smokes”.

3.3.2 First-Order Logic

A First-order logic (FOL) formula applies a propositional logic formula to all objects (or

tuples of objects) in the model. An example FOL-formula is

(∀ l1 6= l2 ∈ gr(∆̄ppl)) xFr(l1,l2) ⇒ (xSm(l1) ⇔ xSm(l2)) (3.7)

which states that “For all pairs of people, if the people are friends, then either both smoke

or neither smokes”. This one FOL-formula efficiently represents np · (np − 1) propositional

formulas for each possible substitution of a pair of people for the logical variables (LVs)

(l1, l2) in the FOL-formula, where np = |gr(∆̄ppl)| is the number of people in the model.

*To model a relationship with duplicate ground logical constants, we can use another predicate without
duplicates. For example, rather than Fr(Ana,Ana) we can use FrSelf(Ana). However, we will not deal with
problems of this form in this thesis.
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For our work later, we will need a slightly different representation of a FOL-formula that

makes the sets of variables in its propositional representation explicit. A FOL-formula is as-

sociated with symbol ᾱ, sets of ground logical constants grLV(ᾱ), a predicate-index template

ρᾱ, and a template truth table σᾱ where

Sets of Auxiliary Objects: The set grLV(ᾱ) contains tuples of kLV logical constants where

each tuple represents the set of objects (e.g., two people) that participate in the formula.

This set could, in theory, contain any tuples of logical constants, but, often, ᾱ is

associated with a set of object types s̄c∆̄(ᾱ) = (∆̄ᾱ;1, . . . , ∆̄ᾱ;kLV ), known as its logical

scope, and

grLV(ᾱ) = {(l1, . . . , lkLV ) : li ∈ gr(∆̄ᾱ;i), all-diff(l1, . . . , lkLV )}.

is the set of all combinations of elements of the appropriate type, with no repeat

elements.

Set of Variable Scopes: The predicate-index template ρᾱ is used to convert each tuple of

logical constants l ∈ grLV(ᾱ) into a set of ground variable as

gr(ᾱ) = {{p̄(lĪ1
, . . . , lĪ|Ī|) : (p̄, Ī) ∈ ρᾱ} : l ∈ grLV(ᾱ)}

where each element (p̄, Ī) ∈ ρα, consists of a predicate p̄ ∈ P and a vector of local

indices Ī := (Ī1, . . . , Ī |Ī|) where Ī i ∈ [kLV ]+ is a valid integer index into a tuple of kLV

logical constants. We denote kRV := |ρᾱ| as the number of variables in each set.

Template Truth Table: The template truth table σᾱ : {T, F}kRV → {T, F} is applied to

each set of ground variables such that the FOL formula

σ̄ᾱ(xᾱ) =
∧

α∈gr(ᾱ)

σᾱ(xα)
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is True if and only if each setting of the ground variables is True.

As an example to illustrate this notation, the FOL-sentence in Eq. (3.7) uses types (∆̄ppl, ∆̄ppl)

and predicate-index template ρᾱ = {(Fr, (1, 2)), (Sm, (1)), (Sm, (2))}. One set of ground

logical constants l = (Ana,Bob) is associated with variables α = {Fr(Ana,Bob), Sm(Ana),

Sm(Bob)} since Fr(l1, l2) = Fr(Ana,Bob), Sm(l1) = Sm(Ana), and Sm(l2) = Sm(Bob).

First-Order Knowledge Base (with Evidence) A first-order knowledge base [Genesereth

and Nilsson, 2012] consists of a set of sentences in first-order logic (FOL) as well as sentences

in propositional logic. The sentences in propositional logic are often known as the evidence

and are associated with a single individual, e.g., we may observe that “Ana smokes” or “Bob

does not have cancer”. Given a first-order knowledge base, the goal is often to determine

the configurations that satisfy all FOL-formulas and all propositional formulas. A familly of

lifted inference algorithms solve this efficiently by reasoning using a first-order representation

as much as possible [Russell and Norvig, 2002].

3.3.3 Probabilistic Logic

Although first-order logic (FOL) provides a powerful language for knowledge representation,

its utility is limited by the fact that it can only represent hard True and False values for

each formula; consequently, if even one formula evaluates to False, the entire network (i.e.,

the conjunction of FOL-formulas and evidence formulas) evaluates to False. Probabilistic

logic networks remedy this problem by penalizing rather than prohibiting configurations.

A probabilistic first-order logic (FOL) factor is a lifted factor (Eq. (3.2))

θ̄ᾱ(xᾱ) =
∑

α∈gr(ᾱ)

θᾱ(xα) (3.8)
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where the template factor

θᾱ(x̄ᾱ) =


ωᾱ if σᾱ(x̄ᾱ) = True

0 if σᾱ(x̄ᾱ) = False

is a probabilistic logic factor that assigns weight of ωᾱ to a True value and a weight of 0 to

a False value of the template configuration x̄ᾱ.

3.3.3.1 Markov Logic Networks (MLNs)

A Markov Logic Network (MLN)M = (∆̄,P , ĪFOL,ω,E) is a tuple where the typed logical

constants ∆̄ and predicates P define relational RVs, ĪFOL defines probabilistic first-order

logic (FOL) formulas associated with weights ωᾱ for each ᾱ ∈ ĪFOL, and E = {Ep̄ : p̄ ∈ P }

where Ep̄ ⊂ Vp̄ is a subset of RVs with observed evidence.

A MLN has a (log-unnormalized) probability distribution equal to the sum of all probabilistic

FOL-formulas and evidence

θ(x) =
∑

ᾱ∈ĪFOL
θ̄ᾱ(xα) +

∑
p̄∈P

(
θ̄Ẽp̄

(x̄Ẽp̄
) +

∑
v∈Ep̄

θv(xv)
)

(3.9)

where θ̄Ẽp̄
(x̄Ẽp̄

) =
∑

v∈Ẽp̄
θẼp̄

(xv) and Ẽp̄ := Vp̄ \ Ep̄ is the set of RVs associated with

predicate p̄ without observed evidence. The univariate factors associated with these RVs are

either unobserved or they have a default problem-dependent value, e.g., in some problems it

is appropriate to assume that a pair of people with no friendship observation are not friends.
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3.4 Lifted Inference { Factor Symmetry

Now that we have seen how models with symmetric factors are represented, we turn our

attention to the problem of exploiting symmetry during inference, a process known as lifted

inference. Lifted inference algorithms first identify groups of objects that can be treated

identically. This is often done by “simulating” a ground inference algorithm, i.e., by reasoning

about which computations are identical rather than performing them numerically. Each

group of symmetric regions (or separators) is then represented as a single lifted region (or

lifted separator) in a lifted region graph, and numerical inference is performed on the lifted

region graph. Lifted inference produces the same answer as ground inference but with

computational cost proportional to the, ideally much smaller, size of the lifted region graph

rather than the size of the ground region graph.

In general, lifted inference is applicable to most algorithms that have been developed for

standard ground inference in PGMs, including tree-structured message passing algorithms,

decomposition bounds, MCMC sampling, and other strategies (some of these works were

mentioned in this chapter’s introduction). In this chapter, we present and discuss lifted

inference from the point of view of MAP inference using decomposition bounds. This choice

gives a concrete connection to algorithms that will be developed later in the thesis, however,

many of the ideas for exploiting and identifying symmetry are applicable more broadly to

other classes of inference algorithms (such as tree-structured message passing algorithms). In

Section 3.4.1, we discuss lifted inference computations with known symmetry groups. Then,

in Section 3.4.2, we present a standard iterative coloring algorithm to detect symmetries.

3.4.1 Lifted Objective

Consider a region graph G = (R, S,E) and an associated lifted region graph Ḡ = (R̄, S̄, Ē)

defined by a set of lifted region nodes (lifted regions) R̄, lifted separator nodes (lifted
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separators) S̄, and lifted edges Ē. Each lifted object represents a set of symmetric ground

objects, giving rise to lifted versions of our usual graphical relationships:

Lifted Regions: A lifted region r̄ ∈ R̄ is associated with a set of ground regions gr(r̄) ⊂ R

whose reparameterized factors are each equal to a common template reparameterized

factor θ̄δ̄r̄ , i.e., θ̄δ̄r̄ = θδr for each r ∈ gr(r̄).

Collectively, the sets of ground regions associated with the lifted regions gr(R̄) :=

{gr(r̄) : r̄ ∈ R̄} partition the set of ground regions R.

Lifted Separators: A lifted separator s̄ ∈ S̄ is associated with a set of ground separators

gr(s̄) ⊂ S whose cost-shifting factors are each equal to a common template cost-shifting

factor δs̄, i.e., δs̄ = δs for each s ∈ gr(s̄).

Collectively, the sets of ground separators associated with the lifted separators gr(S̄) :=

{gr(s̄) : s̄ ∈ S̄} partition the set of ground separators S.

Lifted Edges: A lifted edge ē = (r̄, s̄) ∈ Ē connects a lifted region r̄ ∈ R̄ to a lifted separa-

tor s̄ ∈ S̄ and represents all ground edges between the associated ground regions gr(r̄)

and ground separators gr(s̄), i.e., gr(ē) = E ∩ (gr(r̄)× gr(s̄)). The lifted edge ē repre-

sents a symmetric relation between a number of ground regions and ground separators;

we define a weight Mē that captures the number of such relations represented:

Mē = |Ns̄(r)| where Ns̄(r) := N(r) ∩ gr(s̄). (3.10)

Here, Ns̄(r) is the set of neighbors of ground region r ∈ gr(r̄) associated with the lifted

separator s̄, so that the lifted edge weight is the number of neighbors of each ground

region r ∈ gr(r̄) associated with the lifted edge ē.

Collectively, the sets of ground edges associated with the lifted edges gr(Ē) := {gr(ē) :

ē ∈ Ē} partition the set of ground edges E. Furthermore, we denote the neighbors
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in the lifted region graph as N̄(r̄) = {s̄ : (r̄, s̄) ∈ Ē} for a lifted region r̄ ∈ R̄, and

N̄(s̄) = {r̄ : (r̄, s̄) ∈ Ē} for a lifted separator s̄ ∈ S̄.

A lifted region graph defined in this way has identical reparameterized factors for each ground

region r ∈ gr(r̄) associated with any lifted region r̄ ∈ R̄ as

θδr(xr) = θr(xr) +
∑
s∈N(r)

δs(xs)

= θr(xr) +
∑
s̄∈N̄(r̄)

∑
s∈Ns̄(r)

δs(xs)

= θr̄(x̄r̄) +
∑
s̄∈N̄(r̄)

M(r̄,s̄) · δ̄s̄(x̄s̄) =: θ̄δ̄r̄(x̄r̄) (3.11)

where the second summation groups cost-shifting factors with identical value, and xr = x̄r̄,

meaning that the index into the ground factor equals the index into the template factor.

Symmetries in the reparameterized factors can be exploited to compute the ground-DD-

objective efficiently as

LDDG (δ) =
∑
r∈R

max
xr

θδr(xr) =
∑
r̄∈R̄

∑
r∈gr(r̄)

max
xr

θδr(xr)

=
∑
r̄∈R̄

|gr(r̄)| ·max
x̄r̄

θ̄δ̄r̄(x̄r̄) =: L̄DDḠ (δS̄) (3.12)

since the maximization at each r ∈ gr(r̄) is identical and hence is computed just once on

a template and then scaled by the number of corresponding ground regions |gr(r̄)|. The

term L̄DD
Ḡ

(δS̄) is known as the lifted-DD-objective and makes this computation mechanism

explicit.
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3.4.1.1 Optimizing the Lifted Objective

The lifted-DD-objective (Eq. (3.12)) could, in theory, be optimized for any symmetry groups

of the inference parameters, i.e., for any grouping of the ground separators gr(S̄). However,

for an arbitrary grouping, the optimized lifted-DD-objective (Eq. (3.12)) produces an upper

bound

min
δS̄

L̄DDḠ (δS̄) ≥ min
δ
LDDG (δ) (3.13)

on the exact ground solution. Our Lifted GDD Algorithm in Chapter 4 takes up the

idea of controlling the symmetry groups to perform approximate inference with varying

cost/accuracy tradeoffs. In this chapter, however, we are concerned with the classic case that

identifies symmetry groups gr(S̄) such that the optimized lifted-DD-objective (Eq. (3.12))

provides a solution to the ground-DD-objective (Eq. (2.6)), i.e.,

min
δS̄

L̄DDḠ (δS̄) = min
δ

LDDG (δ) (3.14)

The symmetry groups used during lifted inference are often depicted by a coloring of the

ground region graph. That is, each node in the lifted region graph is assigned a color, and

each of its corresponding nodes in the ground region graph is assigned the same color. Using

the coloring terminology, the symmetry groups that solve the exact inference problem (3.14)

are known as a stable coloring of the ground region graph. An example model and coloring

is shown in Figure 3.5; this example will be discussed in further detail in the next subsection

where we discuss the standard coloring algorithm used to detect exact inference symmetries.

3.4.2 Finding a Stable Coloring

One way to identify a coloring that satisfies this ground optimality property is to “simulate”

a ground inference algorithm; but rather than performing the actual numeric computation,
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we simply reason about and keep track of which regions and separators have identical compu-

tations. Each inference operation propagates asymmetries through the region graph, forcing

the ground regions and ground separators to be grouped into finer groups – the so-called

shattering phenomenon. When no further regrouping occurs, the simulated inference is termi-

nated and the computed coloring represents symmetries S̄ in the exact ground-DD-objective

in Eq. (3.14).

For concreteness and to connect to the algorithms developed in the sequel, in this section, we

simulate a (block coordinate) gradient descent algorithm.� That is, we iteratively simulate

a gradient step on the block of ground separators associated with a single lifted separator s̄.

This results in a recoloring of separators with identical ground gradient.

The symmetries in the ground DD gradient are represented as follows:

Lifted-Gradient-Separator: A lifted-gradient-separator s̄(r̄,r̄′) is associated with a lifted

separator s̄ ∈ S̄ and two of its incident lifted regions {r̄, r̄′} ⊂ N̄(s̄). It represents

each ground separator that is associated with the lifted separator s̄ and has incident

regions associated with the lifted regions r̄ and r̄′, i.e., gr(s̄(r̄,r̄′)) := {s ∈ gr(s̄) : N(s) ∈

gr(r̄) × gr(r̄′)}. Each associated ground separator s ∈ gr(s̄(r̄,r̄′)) with incident regions

r ∈ gr(r̄) and r′ ∈ gr(r̄′) is associated with gradient factors that are each equal to a

common template gradient factor

gδs(xs) = µδr→s(xs)− µδr′→s(xs)

= µδr̄→s̄(x̄s̄)− µδr̄′→s̄(x̄s̄) := gδs̄(r̄,r̄′)(x̄s̄)

�Note that, since we are reasoning about which elements must remain symmetric (same color), and which
symmetries may be broken (changing their color), the precise ground inference algorithm that we choose to
simulate has no effect on the final stable coloring; in fact, the stable coloring can be computed entirely in
graph theoretic terms, i.e., without reference to probabilistic inference. We discuss both of these points at
the end of this section.
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where xs = x̄s, meaning that the index into the ground factor equals the index into

the template factor.

The set of lifted-gradient-separators associated with at least one ground separator is

denoted s̄gradAll := {s̄(r̄,r̄′) : gr(s̄(r̄,r̄′)) 6= ∅}.

Note that a lifted-gradient-separator s̄(r̄,r̄′) represents information about the ground sepa-

rators that is not contained in the lifted region graph. Although it would be possible to

develop a graphical depiction to represent the lifted-gradient-separator s̄(r̄,r̄′), this level of

detail will not be necessary.

Now, the simulated gradient descent step at a lifted separator s̄ ∈ S̄ affects symmetries in

one of two ways:

Stable: The lifted separator s̄ ∈ S̄ has exactly two incident lifted regions, i.e., N̄(s̄) =

{r̄, r̄′}, and is associated with one lifted-gradient-separator, i.e., s̄gradAll = {s̄(r̄,r̄′)}. In

this case, each ground separator s ∈ gr(s̄) has identically colored incident regions and

identical gradient. Thus, a gradient step does not change the separator coloring, and

the ground region sub-graph is said to have a locally stable coloring.

Non-Stable: The lifted separator s̄ ∈ S̄ has more than two incident lifted regions and is

associated with more than one lifted-gradient-separators, i.e., |s̄gradAll| > 1. Thus, a

gradient step recolors ground separators according to their lifted-gradient-separator

group. That is, we replace the lifted separator with lifted-gradient-separator

S̄ ← (S̄ \ {s̄}) ∪ s̄gradAll

The ground separator recoloring induces a recoloring of the ground regions to ensure

that each region in the color group has identically colored neighborhood as in Eq. (3.11).
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(a) First coloring iteration (b) Second coloring iteration

11

22

(c) Stable lifted graph

Figure 3.5: Illustration of stable coloring algorithm for models with factor symmetry. The
left panel shows the original coloring of factors with identical model factors. The middle
panel shows the result of one iteration of the coloring algorithm which is a stable coloring.
The right panel shows the lifted region graph associated with the stable coloring.

The simulated block coordinate descent algorithm iteratively chooses a non-stable lifted sep-

arator s̄ ∈ S̄ and splits it into groups with identical gradient, and terminates when each lifted

separator is stable. In this case, the region graph is said to have a stable coloring (meaning

that each node of the same color has identically colored neighborhood). Optimization of

the lifted-DD-objective can then be performed entirely on the lifted region graph at a much

cheaper cost than optimization of the ground-DD-objective on the ground region graph.

Example An example of the iterative recoloring algorithm along with the stable coloring

and its associated lifted region graph is shown in Figure 3.5. The model contains two sets

of RVs gr(ā) = {a1, a2} and gr(b̄) = {b1, b2} with distinct univariate evidence on a1 and a2

(colored purple and red, respectively, in Figure 3.5a), with identical evidence on b1 and b2

(both colored blue), and each pair of RVs from group ā and b̄ is connected by a factor with

identical value (all colored yellow). This is the initial coloring of the ground region graph.

A gradient step splits the green separators into two groups. The separators with one yellow

and one purple neighbor remain green; the separators with one yellow and one red neighbor
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become magenta. These newly colored separators induce a recoloring of the regions: The

yellow regions (a2, b1) and (a2, b2) incident to a magenta separator are recolored orange. This

is shown in Figure 3.5b, and corresponds to a stable coloring of the graph; notice that each

node of the same color has an identically colored neighborhood, e.g., each purple region has

two green neighbors, each yellow region has one green and one cyan neighbor, and so forth.

The associated lifted region graph is shown in Figure 3.5c. Each node in the lifted region

graph corresponds to the ground nodes with the same color. The edge weights indicate

the number of neighbors of each color, e.g., each purple has two green neighbors. For

compactness, an unlabeled edge is sometimes used to indicate a weight on one, e.g., each

yellow has one green and one cyan neighbor and neither of these are labeled.

3.5 Lifted Inference { State Space Symmetry

In this section, we show how to perform lifted inference using factors with state space sym-

metry. At a high level, lifted inference using factors with state space symmetry is identical

to lifted inference using factor symmetry developed in the last section, but with groups of

symmetric factors replaced by groups of symmetric states. In Section 3.5.1, we develop a

state space region graph that allows us to visualize individual states. In Section 3.5.2, we

show how to perform lifted inference with symmetric groups of states on this graph. In

Section 3.5.3, we show how to detect symmetries.

3.5.1 State Space Graph

A standard region graph G = (R, S,E) represents only the scope of factors and hence

does not provide the necessary precision for discussing operations on states. To represent

states explicitly, we associate the region graph G with a State-Space-Graph (SS-Graph)

G = (R,S, E) where R is a set of SS-region nodes (SS-regions), S is a set of SS-separator
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Figure 3.6: (a) A simple region graph and (b) an associated state space region graph (SS-
Graph) where each node represents a state.

nodes (SS-separators), and E is a set of SS-edges. The SS-Graph G has a block structure

isomorphic to the region graph G, defined as follows.

Each region r ∈ R is associated with a block of SS-regions Rr that represents the set of

states associated with the region r, i.e., Rr ↔ Dr. Each separator s ∈ S is associated with

a block of SS-separators Ss that represents the set of states associated with the separator s,

i.e., Ss ↔ Ds. Each edge e = (r, s) ∈ E is associated with a block of SS-edges Ee between

the SS-regions Rr and SS-separators Ss. A SS-edge connects a SS-region xr ∈ Rr to a

SS-separator xs ∈ Ss if and only if xs is a subconfiguration of xr.

An example of a SS-Graph is shown in Figure 3.6. Figure 3.6a shows a region graph G =

(R, S,E) on three RVs V = {A,B,C}. Figure 3.6b shows an associated SS-Graph G =

(R,S, E) assuming each RV v ∈ V has domain Dv = {(v; 0), (v; 1), (v; 2)}. The left block of

SS-regions Rr is associated with region r = (A,B). Some of the SS-regions are labeled, e.g.,

(AB; 00) represents the event that XA and XB take value 0.
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3.5.2 Lifted Objective

A factor’s state space symmetry is represented by a coloring of the associated SS-nodes in

the SS-Graph G. Collectively, these colorings are represented on a Lifted-State-Space-Graph

(LSS-Graph) Ḡ = (R̄, S̄, Ē) defined by a set of LSS-region-nodes (LSS-regions) R̄, LSS-

separator-nodes (LSS-separators) S̄, and LSS-edges Ē . The lifted objects represent sets of

symmetric ground objects as follows:�

LSS-regions: Each region r ∈ R is associated with a block of LSS-regions R̄r. Each LSS-

region yr ∈ R̄r is associated with a set of ground SS-regions gr(yr).

Collectively, gr(R̄r) := {gr(yr) : yr ∈ R̄r} partitions the set of ground SS-regions Rr

associated with region r and is associated with a LSS-factor θ̄r : R̄r → R.

LSS-separators: Each separator s ∈ S is associated with a block of LSS-separators S̄s.

Each LSS-separator ys ∈ S̄s is associated with a set of ground SS-separators gr(ys).

Collectively, gr(S̄s) := {gr(ys) : ys ∈ S̄s} partitions the set of ground SS-separators Ss

associated with separator s and is associated with a LSS-factor δ̄s : S̄s → R.

LSS-edges: Each edge e = (r, s) ∈ E is associated with a block of LSS-edges Ēe between

region r ∈ R and separator s ∈ S.

A LSS-Graph defined in this way is associated with symmetric reparameterized factors which

are written as

θδr(xr) = θr(xr) +
∑
s∈N(r)

δrs(xs)

= θ̄r(yr) +
∑
s∈N(r)

δ̄s(ys) = θ̄δ̄r(yr) (3.15)

�Note how the definition of the LSS-Graph parallels the definition of the lifted region graph in Section
3.4.1.
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for each xr ∈ gr(yr) and each yr ∈ R̄r.

Symmetries in the reparameterized factors can be exploited to compute the ground-DD-

objective efficiently as

LDDG (δ) =
∑
r∈R

max
xr

θδr(xr)

=
∑
r∈R

max
yr∈Rr

θ̄δ̄r(yr) =: L̄DDG (δS̄) (3.16)

where the lifted maximization (second line) takes place over the lifted regions, since each

corresponding ground state has identical value.

Example To depict state space symmetry, we color the LSS-region yr ∈ R̄r and its as-

sociated ground SS-nodes in the set gr(yr) the same color. Figure 3.7a shows an example

coloring where the region (A,B) on the left has factor function θAB =

r r u
u u u
u r r

 with states

of value r colored red and value u colored blue, and the region (B,C) on the right has factor

function θBC =

 b b b
b b w
w b b

 with states of value b colored black and value w colored white.

3.5.3 Finding a Stable Coloring

To detect state space symmetries, we use a coloring algorithm similar to the coloring al-

gorithm for detecting factor symmetries presented in Section 3.4.2. We give only a brief,

informal overview to illustrate the similarity between the two algorithms since the state space

stable coloring algorithm will not be explicitly required in the sequel.

At each iteration of the coloring algorithm, we consider a separator s ∈ S and incident

regions r ∈ R and r′ ∈ R. For each LSS-separator ys ∈ S̄s, we recolor its associated ground

SS-separators gr(ys) that have identical gradients. Two ground SS-separators have identical

gradient if and only if they have identically colored neighborhood. First, symmetry in the
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(a) First coloring iteration.
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(b) Second coloring iteration, stable coloring.
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(c) LSS-Graph.

Figure 3.7: Detecting stable coloring (symmetry partition) of SS-Graph G. (a) One iteration
of state space color propagation, (b) Two iterations producing stable coloring, (c) Associated
LSS-Graph Ḡ

max-marginals can be identified as

µδr→s(xs) =
∑
xr\s

µδr(xr)

=
∑

ys∈N̄ (yr)

µ̄δ̄r(yr) =: µ̄δ̄r→s(ys)

for each xs ∈ gr(ys) and each ys ∈ S̄s where N̄ (yr) is the set of neighbors of yr in the
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LSS-Graph. Then, the ground gradient has symmetry groups defined by identically colored

neighborhoods in both incident regions. That is,

gδs(xs) = µδr→s(xs)− µδr′→s(xs)

= µ̄δ̄r→s(ys)− µ̄δ̄r′→s(ys) := ḡδ̄s(yr,yr ′)
(ys)

for each ys ∈ gr(s(yr,yr ′)) and gr(s(yr,yr ′)) is a set of SS-separators with identically colored

neighborhood.

The recoloring is iterated until no more changes take place. The final coloring is called the

stable coloring of the SS-Graph G.

Example An example illustrating the gradient symmetry and the state space stable coloring

algorithm is shown in Figure 3.7. An initial coloring is shown in Figure 3.7a. At the second

iteration, we recolor the separators with identical (ignoring counts) colored neighborhood.

For example, consider the dark yellow SS-separators. The top one has a red, blue, and dark

orange neighbor, while the bottom one has a red, blue, and light orange neighbor.

These are split into separate colors in the next iteration in Figure 3.7b. The incident rows

of each SS-region group are then split (corresponding to newly reparameterized factors θδ).

This figure represents a stable coloring and is associated with the LSS-Graph Ḡ in Figure

3.7c. Note how the initial model has two symmetry groups for each pairwise factor (A,B)

and (B,C) but when they are combined to solve the global inference problem, they each

shatter into five symmetry groups. In general, shattering can fully reduce the model factor

symmetries to ground symmetries, leaving are no symmetries to exploit during inference.

Relation to Binarized Graphical Model It is worth drawing a connection between a SS-

Graph and a “binarized” graphical model [Koller and Friedman, 2009], i.e., where we replace

each variable Xv with a set of variables, one for each value of Xv, and a “one-hot” constraint
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which ensures that exactly one such variable is active. A binarized model would have the

same structure as an SS-Graph, but where the nodes represent RVs and factors instead of

states, and there is an additional factor encoding the one-hot constraint (this constraint does

not affect the symmetry detection at all). With this equivalence, symmetry detection and

exploitation on the binarized graphical model could, in theory, proceed using standard lifted

inference techniques for factor symmetries. Although we do not do this, we presented this

connection to provide the reader with another perspective for establishing the qualitative

equivalence between methods for detecting and exploiting state space symmetry and methods

for detecting and exploiting factor symmetry.

3.6 Coping with Asymmetry

In the previous two sections, we saw how to perform lifted inference in models with ex-

act symmetry, first for models with factor symmetries, then for models with state space

symmetries. As we saw in those sections, exact inference symmetries rarely exist due to

the shattering effect, whereby inference operations break unaligned symmetry groups into

finer groups. In many models, this shattering process is complete and exact lifted infer-

ence is forced to ground the model, negating all the potential efficiency of the symmetric

representation.

Consequently, the practicality of lifted inference hinges upon our ability to intelligently iden-

tify, represent, and exploit approximate symmetry during inference. In the following subsec-

tions we discuss the broad classes of methods that have been developed previously to cope

with asymmetry, highlighting the strengths and weaknesses of each approach. (Recall that

these methods are, as summarized in Table 3.1, projected message passing, over-symmetric

model approximation, and coarse-to-fine inference.) We then detail the criteria that an

ideal lifted inference procedure would have and briefly discuss our strategies in subsequent
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chapters of this thesis to remedy the shortcomings of previous approaches.

3.6.1 Projected Message Passing

The basic idea of projected message passing is to approximate each exact message computa-

tion with a tractable symmetric function. Specifically, at each iteration, the exact message

is computed; then an approximate message is then constructed by minimizing a distance

between the exact message and an approximation from a tractable class, such as a function

using a fixed number of symmetry groups. Projected message passing is a popular approx-

imation in both models with state space symmetry and factor symmetry as well as models

with other parametric (non-symmetric) structure:

State Space Symmetry: Gogate and Domingos [2013] present a junction graph belief

propagation algorithm where each message is represented with an algebraic decision

diagram (ADD). (An example of an ADD is shown in Figure 3.2d.) At each iteration,

the product of messages with different ADD structures produces an intractably large

ADD which must be (approximately) projected back to a tractable ADD (with a fixed

number of nodes).

Factor Symmetry: In MLN models, Singla et al. [2014] presents a lifted belief propagation

algorithm that represents symmetry in messages as a union of hypercubes over logical

domain objects. Each hypercube represents, for example, an identical belief for all

friendship RVs between two subsets of people. At each iteration, each message is

(approximately) projected to a representation with a small set of hypercubes.

Parameteric Structure: There is a large body of work on projected message passing using

factors with other (non-symmetric) structure in classic PGMs. For example, many

works [e.g., Sudderth et al., 2005, Minka, 2001, Ramakrishnan et al., 2011] approximate

continuous messages with Gaussian distributions or mixtures of Gaussians. Message
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updates result in a function outside the desired family, which is then re-approximated

by a new Gaussian or Gaussian mixture. In Sudderth et al. [2005], each iteration

produces a message that is a mixture of a large number of Gaussians, which is then

approximated using a smaller, fixed size mixture distribution.

An important advantage of the class of projected message passing methods is that they

select the symmetry (or other) structure using preliminary inference estimates, in contrast

to several methods described in the sequel, which require the approximate symmetry groups

to be selected a priori. However, projected message passing methods also suffer from the

following problems:

Lossy Messages: The projection step introduces error into the approximation. This error

is often difficult to quantify, both at one iteration and in its global effect as it propagates

through the graph [Ihler et al., 2005].

Fixed Graph: Inference is usually performed on a fixed graph structure, that is, no higher-

order terms are introduced (by joining regions) after inference has begun. Introducing

such terms on the fly is difficult, for two primary reasons. First, joining would shatter

the current symmetry into an uncontrolled number of groups, which would likely have

to be projected back onto a tractable representation. Second, it is not clear how error

introduced by previous lossy message passing operations would affect the join.

3.6.2 Domain Clustering { Over-Symmetric Approximate Model

Since shattering causes many difficulties in inference, it is useful to study a class of symmetric

models on which shattering does not occur. In this class of models, symmetry is defined on

the domains of the model’s fundamental objects and lifted inference is structurally equivalent

to ground inference on a compressed model. Models of this form with both state space

symmetry and factor symmetry arise as follows:
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State Space Symmetry: The states of each RV are partitioned into symmetry groups,

meaning that states in each group are indistinguishable within all factors in the model.

In this case, each lifted factor has the form of a small table and lifted inference opera-

tions are structurally equivalent to standard ground inference operations using tables,

but where an element of each table axis represents a group of ground states rather

than an individual state.

MLN Models (Factor Symmetry): The domains of auxiliary objects are partitioned

into symmetry groups, meaning that objects within each group are indistinguishable

throughout the model. In the friend-smoker-MLN, for example, each person in a group

has identical attribute (smoking and cancer) evidence, and identical friendship rela-

tionships with all of each other group’s members, i.e., between any two groups, all

pairs of people are either friends or not friends. Collectively, the lifted factors have

(nearly) the same structure as a ground MLN with a small number of auxiliary objects,

in which each element represents a group of ground objects rather than an individual

object.

Again, of course, in realistic models this precise structure will not exist. In practice, a

popular strategy is to approximate the original model with an over-symmetric model with

domain symmetry and perform inference on the over-symmetric model:

State Space Symmetry: For a model with continuous factors, Isard et al. [2009] approx-

imates each factor with a grid-structured piecewise constant factor. Continuous belief

propagation on this over-symmetric model is equivalent to (weighted) belief propaga-

tion on a set of discrete tabular factors, where each element in a table corresponds

to a contiguous range of the underlying continuous-valued variables. The resulting

discretization can be made adaptive, in order to concentrate higher resolution (smaller

size) cells in areas of high probability mass.
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MLN Models (Factor Symmetry): The auxiliary objects in a MLN are clustered into

groups where the evidence is approximately identical, e.g., most pairs of people within

two groups are friends (or most are not friends), and the original evidence is replaced

with over-symmetric approximate evidence, in which all evidence associated with a

group is identical. Venugopal and Gogate [2014a] directly constructs a MLN of reduced

size (e.g., where formulas relate objects representing groups of people, rather than an

individual person) and performs inference on the reduced MLN. Another work, Van den

Broeck and Darwiche [2013] performs exact inference (for a restricted class of MLNs)

using the over-symmetric evidence.

The advantages of this family of approximations include:

Controlled Cost: The number of clusters is a hyper-parameter which can be made arbi-

trarily small to produce an approximation with controlled cost.

Generality (High-Order Inference Terms): Since the approximation is (nearly) identi-

cal to a small model, any inference technique can be used to solve the over-symmetric

approximation. In particular, it can be possible to join symmetric inference groups to

construct high-order inference terms without shattering symmetry.

However, there are a number of disadvantages as well:

Biased Inference Estimates: It is difficult to quantify how well the inference estimates

on the over-symmetric model approximate inference quantities on the original model.

In particular, the model approximation introduces bias both due to the representation

of asymmetric evidence as a single symmetry group, and also due to the model com-

pression which substitutes individual objects for groups of objects in each formula (e.g.,

the same formula used to constrain friendship of three individual people in the original
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model is used to constrain friendship among three groups of people in the compressed

model). These two sources of bias are discussed in further detail in Section 3.7.2.

A-Priori Symmetry Choice: For MLN models, Venugopal and Gogate [2014a] and Van den

Broeck and Darwiche [2013] build the over-symmetric approximation a priori, without

using inference information and without the ability to improve the approximation in

an anytime fashion. To use a finer clustering, these works must restart inference, and

cannot easily leverage the coarse approximation results to improve their performance.

However, for state space symmetry, Isard et al. [2009] does select the partition adap-

tively, using preliminary inference estimates. Thus, although selecting symmetry

groups a priori is not fundamental to this class of methods, many works have not

successfully incorporated adaptive symmetry selection, which presents additional com-

plications.

In Section 3.7, we present details of domain clustering which will be needed for subsequent

chapters.

3.6.3 Coarse-to-Fine Inference

An emerging class of methods performs inference in a coarse-to-fine manner [Sarkhel et al.,

2015, Habeeb et al., 2017] by alternating the following two steps. First, restrict subsets

of inference parameters to be identical; this creates a coarse (low-cost) inference problem

which is (approximately) solved. Then, break a set of symmetry restrictions to create a finer

problem with higher cost and higher accuracy; instantiate this problem with the solution

to the coarse problem. This generates a sequence of inference estimates of monotonically

improving accuracy.

A concrete example of this procedure is the work of Habeeb et al. [2017] which develops a

coarse-to-fine inference algorithm for stereo vision. First, pixels are grouped together (via a
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heuristic metric) and forced to take the same disparity label; then the constrained inference

problem is solved by reasoning over pixel groups (rather than individual pixels). A group of

pixels is then split into a finer grouping if it is believed that pixels in the groups should in

fact take different disparity labels.

The coarse-to-fine inference algorithms are appealing for the following reasons:

Adaptive: The symmetry groups are chosen adaptively, using preliminary inference esti-

mates (as opposed to methods that require symmetry groups to be selected a priori).

Lossless: Each restricted inference problem is solved exactly. This is in contrast to lossy

projected message passing methods (which also select the symmetry groups adaptively)

where each message passing operation incurs error and the converged solution does not

solve any easily specifiable approximate inference problem.

However, current coarse-to-fine inference algorithms have a number of shortcomings. First,

only MAP inference algorithms have been developed so far; furthermore, only configuration-

based MAP inference algorithms have been developed (i.e., not using variational approxi-

mations like the dual decomposition). Second, to our knowledge, no coarse-to-fine inference

algorithm exploiting state space symmetry has been developed; previous works exploit fac-

tor symmetries (Sarkhel et al. [2015] does so for stereo vision problems, while Habeeb et al.

[2017] does so for MLN models).

3.6.4 Ideal Framework and Our Work

An ideal lifted inference procedure that exploits approximate symmetries would have the

following properties:

Controlled Cost: Perform approximate inference with a user-controlled degree of symme-

try, and hence a user controlled computational cost.
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Accuracy Guarantees: Maintain a concrete connection to the original problem, e.g., a

bound on the inference objective or inference error.

Adaptive Selection: Since symmetries cannot be determined a priori, we must adaptively

choose symmetry groups using preliminary inference estimates.

Anytime Improvement: The approximation quality should monotonically improve with

additional resources such as time or memory. For example, a modified inference struc-

ture, e.g., from splitting symmetry groups, should be able to utilize the current infer-

ence information (i.e., inference should not have to be restarted on the new structure).

Exact Solution: Given sufficient resources, anytime inference should terminate at the ex-

act (non-relaxed) inference solution. Ideally, the anytime inference procedure should

traverse approximations using factors of increasingly large scope.

Inference Queries: We should be able to perform a variety of inference queries, including

MAP inference, sum-inference, marginal MAP inference (where we sum over a subset

of RVs and maximize over another set), using the same strategies for controlling and

introducing symmetry.

Many existing methods satisfy some but not all of these desiderata. Methods that exploit

exact inference symmetry are guaranteed to produce the same answer as ground inference

but have an uncontrolled cost (since the degree of symmetry a function of the model itself

and cannot be reduced). On the other hand, many of the methods for exploiting approximate

symmetry (discussed in previous sections) have controlled cost but provide no guarantees

on the approximation quality. The coarse-to-fine inference algorithm discussed in the last

section satisfies many of these properties, but has been developed only for MAP inference

for factor symmetries and does not incorporate high-order inference terms.
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3.6.4.1 Our Work

Our work in this thesis is aimed at addressing the shortcomings of previous approaches.

Each of our novel works in subsequent chapters is developed within a coarse-to-fine inference

framework, which allows us to adaptively select the symmetry groups, control computational

cost, and maintain a concrete connection to the ground inference problem (i.e., not introduce

irrecoverable bias). Furthermore, much of our work exploits and introduces substructures

with domain symmetry which allow us to adaptively build symmetric high-order inference

terms. In summary:

State Space Symmetry: Rather than creating an over-symmetric model, in Sontag et al.

[2009], the original model factors are left in place and the inference relaxation is tight-

ened with large-scope domain-symmetric factors (i.e., large scope factors are repre-

sented at a coarse resolution). Our work Adaptive Hierarchical State Space Partitions

in Chapter 6 can be seen as a generalization of this basic structure that incorporate

more sophisticated state space symmetry over the joint space of large collections of

RVs. Furthermore, the inference structure is selected adaptively, adding factors of

increasingly large size and increasingly fine state space symmetry.

MLNs (Factor Symmetry): Our Lifted GDD Algorithm in Chapter 4 performs coarse-

to-fine inference in symmetric models perturbed by evidence; inference is performed on

(low-order) model factors. Our Lifted WMB Algorithm in Chapter 5 introduces high-

order inference terms into the relaxation by reasoning with symmetry groups defined

by a partition of the logical domains. That is, the inference relaxation is structurally

equivalent to a small MLN (just like Venugopal and Gogate [2014a]) but maintains

a concrete connection to the ground problem (unlike Venugopal and Gogate [2014a]

which creates an over-symmetric model).

Furthermore, our frameworks are capable of handling a variety of inference algorithms. Our
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Lifted GDD Algorithm in Chapter 4 and Lifted WMB Algorithm in Chapter 5 operate within

a sum-inference framework but should be easy to extend to MAP inference and marginal

MAP inference. Our work on Adaptive Hierarchical State Space Partitions in Chapter 6

operates within a MAP inference framework, but should be able to be extended to sum-

inference (as we discuss in future work section).

3.7 Domain Symmetry

In this section, we present details of domain clustering, first by clustering the domains of

RVs to induce state space symmetry, then by clustering the domains of logical constants in

MLN models to induce factor symmetry. These details will be needed for our development

in subsequent chapters.

3.7.1 RV Domain Symmetry { MS-LSS-Factors

In this section, we discuss models with state space symmetry defined by partitions of each

RV domain, meaning that a group of states associated with each RV behaves identically

throughout the model. In models with this type of symmetry, message passing and joining

inference operations can be performed without shattering the model factors’ state space

symmetry. The notation developed in this section will be used in our work on Adaptive

Hierarchical State Space Partitions in Chapter 6.

For each RV v ∈ V , let its domainDv be partitioned as gr(D̄v) := {gr(yv) : yv ∈ D̄v} where D̄v

is a set of lifted domain states. A multidimensional LSS-factor (MD-LSS-factor) θ̄α : D̄α → R

with scope α ⊂ V has domain that is a table of all combinations of lifted domain states

associated with RVs in its scope, i.e., D̄α := ×v∈α D̄v. Each element of the domain yα ∈ D̄α

is associated with a hypercube gr(yα) = ×v∈α gr(yv) equal to the Cartesian product of its
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(a) Colors indicating state space symmetry with stable coloring
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(b) Lifted graph representing state space symmetry groups (labeled)

Figure 3.8: (a) SS-graph graph R associated factors with domain symmetry groups gr(D̄v) =
{{0, 1}, {2}} at each RV (meaning states 0 and 1 of each RV behave identically in each factor).
(b) Associated LSS-Graph Ḡ which is isomorphic to a standard tabular SS-Graph but with
axes corresponding to subsets of domain elements (rather than individual elements). The
tabular form allows (nearly) standard inference operations to be performed.

associated ground domain sets. Collectively, these sets of ground states

gr(D̄α) := {gr(yα) : yα ∈ D̄α} = ×v∈α gr(D̄v) (3.17)

partition the factor’s state space Dα into a grid of hypercubes with axes defined by the

RV-domain partitions {gr(Dv) : v ∈ α}. In other words, each pair of ground joint states is

in the same hypercube {xα, xα′} ⊂ gr(yα) if and only if each of their elements is in the same

RV-domain partition, i.e., {xv, xv ′} ⊂ gr(yv) for each v ∈ α.

A region graph G = (R, S,E) defined by MD-LSS-factors can be represented with a coloring

of the SS-Graph G = (R,S, E) where each block of SS-regions and SS-separators has a coarse

tabular structure. This represents a stable coloring of the SS-Graph G since the nodes of each
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color class have identically colored neighborhood (as we illustrate with an example shortly).

Consequently, no shattering occurs during inference.

A SS-Graph with symmetries of this form can be represented as a LSS-Graph Ḡ = (R̄, S̄, Ē)

with a small tabular structure.

Example An example is shown in Figure 3.8a. Each RV domain Dv is partitioned into

D̄v = {{(v; 0), (v; 1)}, {(v; 2)}} for each of the RVs v ∈ {A,B,C}. For region r = (A,B),

the domain D is partitioned as gr(D̄sc(r)) = {{(AB; 00), (AB; 01), (AB; 10), (AB; 11)},

{(AB; 02), (AB; 12)}, {(AB; 20), (AB; 21)}, {(AB; 22)}} corresponding to colors red, cyan,

blue, and pink, respectively. The LSS-Graph is shown in Figure 3.8b.§

3.7.2 Logical Domain Clustering

One strategy for handling asymmetry in a MLNM = (∆̄,P , ĪFOL,ω,E) pursued by Venu-

gopal and Gogate [2014a], is to cluster its domain elements into groups that are expected to

have similar marginal probability for each attribute and relationship predicate (e.g., cluster

people into groups expected to have the same likelihood of smoking, cancer, and friendship

relations with each other person).

These cluster centers are then substituted for ground auxiliary objects in the original MLN

to form a cluster-MLN M′ = (∆̄′,P , ĪFOL,ω,E′) where ∆̄′ represents a set of groups of

domain elements, and E′ is the average evidence on each cluster group. In other words, we

form an MLN with the same formulas, but rather than ranging over individual elements, the

logical variables range over individual groups.

§This example has two properties that are not required in general: (i) domain symmetry at each RV
need not group the same states at each RV, i.e., we need not group states 0 and 1 at each RV, and (ii) the
domain partition may group noncontiguous labels, e.g., D̄A = {{(A; 0), (A; 2)}, {(A; 1)}} is also valid but
obviously leads to different factor symmetry.
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An example FOL-formula is,

(∀ l1 6= l2 ∈ gr(∆̄′ppl)) Fr(l1, l2)⇒ (Sm(l1)⇔ Sm(l2)) (3.18)

with the same weight +1.6 as the model formula. In English, this states that “If two groups

of people are friends, then the two groups probably either both smoke or both don’t smoke”.

The cluster-MLN is associated with a clustered-model θM′ . Inference is performed on the

model θM′ to compute marginal probabilities p′(xv′) =
∑

xV′\v′
exp(θM′)/Z(θM′) of each

cluster-RV. Each ground RV associated with the cluster-RV is assigned the same marginal

probability in the original model, i.e., p(xv) = p′(xv′) for each v ∈ gr(v′).

3.7.2.1 Sources of Bias

The primary advantage of this approach is its flexibility: we have full control over the

computational cost of inference (by controlling the number of clusters in the cluster-MLN

M′) and we can use any inference algorithm (exact or relaxed) to compute the inference

quantities. The primary disadvantage of this approach is that the cluster-MLN and its

inference quantities bears no concrete connection to the original MLN and its inference

quantities. The bias is introduced in two forms:

Evidence bias: One source of bias is the approximation of the evidence with a single value.

If each block of RVs is associated with identical evidence, this is not a source of error,

i.e., if θv′ = θv for each v ∈ gr(v′). If most of the RVs in the block have identical

evidence, we expect little error to be incurred, but there are no guarantees.

Size bias: The formulas in the cluster-MLN are identical to those in the original MLN. How-

ever, it does not seem appropriate to take a rule that was learned to relate individual

elements and apply it to relate clusters of elements For example, it seems reasonable
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that a ground factor (in the clustered MLN) penalizing groups for not obeying a rule

should incur larger penalty if it relates large groups of people rather than small groups

of people. One possible heuristic to fix this is to scale each factor θᾱ′ over a set of

clusters by the number of underlying ground clusters, i.e., to set θᾱ′ = θᾱ · |gr(ᾱ′)|.

However, this heuristic choice is not pursued by Venugopal and Gogate [2014a] or any

follow-up work; furthermore, it too would lack accuracy guarantees.

3.7.2.2 Related work

In a related work, Van den Broeck and Darwiche [2013] shows that exact inference can be

computed efficiently in a restricted class of MLNs when the evidence has a small Boolean

rank. Using this result, they propose performing approximate inference by first approxi-

mating the model evidence with low-rank evidence, then performing exact inference on the

model with over-symmetric approximate evidence. The primary advantage of this approach

is that it produces exact inference estimates when the evidence is exactly of this form. That

is, it does not suffer from the “size biasedness” problem of Venugopal and Gogate [2014a]

mentioned above. The primary shortcoming of this approach is that it is only applicable

to a subset of MLN formulas while the method of Venugopal and Gogate [2014a] presented

above is applicable to any general MLNs.

Fixing the Biasedness Problem Van den Broeck and Niepert [2014] proposes a method

to fix the bias introduced by the over-symmetric evidence approximation of Van den Broeck

and Darwiche [2013]. The basic idea is use the over-symmetric approximation to define

the proposal distribution of a Markov chain Monte Carlo (MCMC) inference algorithm.

The advantage of this method is that the MCMC procedure is asymptotically unbiased.

Furthermore, if the asymmetries in the evidence are small, then the proposal matches the

original distribution well and is expected to converge quickly. However, even though this
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(b) Bipartite symmetric graph

Figure 3.9: Two graphs with symmetric factors whose product is a large factor with state
space symmetry. (a) Complete graph with symmetric potentials is equivalent to a counting
factor over all RVs, (b) Bipartite graph between RVs groups V1 (top) and V2 (bottom) with
symmetric potentials is equivalent to a joint counting factor over RV groups V1 and V2.

method is expected to converge quickly, there are no guarantees on convergence rate and,

moreover, the convergence is difficult to diagnose.

3.8 Aggregate Symmetry

The previous sections showed how to perform exact (relaxed) lifted inference and how to cope

with model asymmetries. In Section 3.8.1, we present an identity where the a complete graph

with factor symmetry aggregates to a large counting factor; this implies that exact (non-

relaxed) lifted inference can be performed efficiently. This identity provides an important

relationship between the two types of symmetry we have seen so far (factor symmetry and

state space symmetry) and inspired our work on Adaptive Hierarchical State Space Partitions

in Chapter 6. Our work in that chapter constructs large scope factors with (arbitrary) state

space symmetry from small scope factors with finer (or no) state space symmetry, generalizing

the counting-factor identity and expanding the utility of this basic idea to a large class of

problems.
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3.8.1 Joint Counting Factor Aggregation

A LSS-counting-factor (LSS#-factor) θ̄#
V ′ : D̄#

V ′ → R over a subset of RVs V ′ ⊂ V is a LSS-

factor where

gr(y#i
V ′ ) = {(xv)v∈V ′ :

∑
v∈V ′

xv = i} (3.19)

is the set of joint states of binary RVs V ′ with exactly i on RVs and the factor’s domain

D̄#
V ′ = {y#i

V ′ : i ∈ [|V ′|]} (3.20)

is a set of symbols for each count. We will sometimes abuse notation to index a counting

factor with an integer count, i.e., we will write θ̄#
V ′(i) := θ̄#

V ′(y
#i
V ′ ). Recall that we saw an

example of a factor table associated with a counting factor on three RVs in Figure 3.2a.

Symmetric Complete Graph Consider the symmetric complete graph in Figure 3.9a cor-

responding to a single lifted factor with ground scopes gr(ᾱ) = {{v, v′} : v 6= v′ ∈ V} and

template θᾱ =

[
a b
b c

]
for any a, b, c. The sum of these symmetric factors is equivalent to a

LSS#-factor ∑
α∈gr(ᾱ)

θᾱ(xα) = θ̄#
V ′(
∑
v∈V ′

xv)

where

θ̄#
V ′(y

#i
V ′ ) =

(
n− i

2

)
· a+

(
i

1

)(
n− i

1

)
· b+

(
i

2

)
· c. (3.21)

This holds since for any configuration xV with i on RVs and n − i off RVs there are
(
n−i

2

)
pairs with two off RVs,

(
i
1

)(
n−i

1

)
pairs with one on RV and one off RV, and

(
i
2

)
pairs with

two on RVs. The factor template θᾱ assigns values a,b, and c, respectively, to these pairs.

Since this model can be written as a compact LSS#-factor, exact inference can be performed

efficiently by iterating over the groups of symmetric states rather than the exponentially
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large group of ground states. That is,

Φ0(θ) =
n

max
i=0

θ̄#
V ′(y

#i
V ′ ) and

log(Z(θ)) = log
n∑
i=0

(
n

i

)
· exp

(
θ̄#
V ′(y

#i
V ′ ))

)

where
(
n
i

)
is the number of configurations with i on RVs. Each of these quantities can be

computed in O(|V ′|) time rather than O(2|V
′|) time it would take to iterate over the ground

states. This identity is sometimes called the binomial rule in the lifted inference literature

[Gogate and Domingos, 2012, Jha et al., 2010].

Symmetric Bipartite Graph Consider the symmetric bipartite graph shown in Figure 3.9b

where each RV in groups V1 (top) and V2 (bottom) are connected. The RVs in each group

are indistinguishable and the joint distribution depends only on the number of on RVs in

each group. The distribution can be written as a joint LSS#-factor θ̄#
V1V2

: D̄#
V1
× D̄#

V2
→ R

whose domain ranges over all counts of on RVs in each group V1 and V2. That is,

gr(y#ij
V1V2

) = gr(y#i
V1

) × gr(y#j
V2

)

= {(xv)v∈V :
∑
v∈V1

xv = i,
∑
v∈V2

xv = j}

is the set of ground states with i on RVs in V1 and j on RVs in V2 where y#ij
V1V2

:= (y#i
V1
, y#j
V2

)

is a tuple of count symbols for both groups. The factor template is θᾱ =

[
a b
c d

]
for any

a, b, c, d. The factor value is

θ̄#
V1V2

(y#ij
V1V2

) = ((n1 − i) · (n2 − j)) · a + ((n1 − i) · j) · b +

(i · (n2 − j)) · c + (i · j) · d
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with i on RVs in V1 and j on RVs in V2 which holds since the first term is the number of

off RVs in group one and off RVs in group two, the second term is the number of off RVs

in group one and on RVs in group two, the third term is the number of on RVs in group

one and off RVs in group two, and the fourth term is the number of on RVs in group one

and on RVs in group two. The factor template θᾱ assigns values a,b,c, and d, respectively,

to these pairs.

Since this model can be written as a compact LSS#-factor, exact inference can be performed

efficiently by iterating over the groups of symmetric states rather than the exponentially

larger group of ground states. That is,

Φ0(θ) =
n2

max
j=0

n1
max
i=0

θ̄#
V1V2

(y#i
V1
, y#i
V2

) and

log(Z(θ)) = log

n2∑
j=0

n1∑
i=0

(
n1

i

)(
n2

j

)
· exp

(
θ̄#
V1V2

(y#i
V1
, y#j
V2

)
)

where
(
n1

i

)(
n2

j

)
is the number of configurations with i on RVs in V1 and j on RVs in V2.

Each of these quantities can be computed in O(|V1| · |V2|) time rather than the O(2|V1|+|V2|)

time it would take to iterate over the ground states. This identity is sometimes called the

generalized binomial rule in the lifted inference literature [Gogate and Domingos, 2012, Jha

et al., 2010].

3.8.2 Other Identities

We note that the counting-factor identity is a special case of a more general class of MLN

models where the repetitive factor structure can be exploited to perform exact (non-relaxed)

inference efficiently. Other examples include rules for computing the partition function of a

symmetric transitivity formula (e.g., the friendship rule used in the symmetric friend-smoker

MLN) and an encoding of the classic “birthday paradox” in FOL [Kazemi et al., 2016].

When such rules are available, they produce an exponential reduction in the inference cost;
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consequently, developing a more complete set of rules and is an active area of research.

Although we are rarely interested in purely symmetric models, these specialized inference

rules can sometimes be exploited within sub-models [e.g., Milch et al., 2008, Gogate and

Domingos, 2012]. For example, Milch et al. [2008] performs a lifted variable elimination

algorithm but at each bucket checks if accumulated bucket factor can be represented as a

counting factor; if so, the factors are implicitly aggregated and eliminated to produce a count-

ing factor message. We do not discuss more general identities or methods for incorporating

them into exact lifted inference procedures as this is not the focus of our thesis.
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Chapter 4

Lifted Generalized Dual Decomposition

In this chapter, we develop a coarse-to-fine lifted inference framework for models with large

symmetric groups of factors perturbed by asymmetric evidence factors. Our framework is

based on the technique of generalized dual decomposition (GDD) for sum-inference queries.

Our key idea is to artificially impose symmetry restrictions on the inference relaxation which

are incrementally split to allow the approximation to represent model asymmetries more

accurately. In contrast to the majority of lifted inference frameworks that exploit exact

symmetry, our lifted GDD algorithm has strong control over the computational cost of the

approximation. In contrast to heuristic frameworks that control cost, our lifted GDD algo-

rithm maintains a concrete connection to the ground inference problem. We verify the utility

of our approach empirically, demonstrating increasing gains for increasingly large models,

and demonstrating the benefit of using preliminary (over-symmetric) inference estimates to

select the split of symmetry groups.

This chapter is based on our work originally published in Gallo and Ihler [2018a].
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4.1 Introduction

Standard lifted inference procedures identify and exploit exact symmetries in inference com-

putations. However, in general, real problems contain no exact symmetries; instead they

often contain a symmetric substructure perturbed by asymmetric evidence factors. In web-

based collective classification, for example, no two web pages have the exact same link

structure or local classification score (since each web page has distinct text). In models

of this form, lifted inference techniques that exploit exact symmetry deteriorate to ground

inference, negating all potential efficiency of the symmetric representation.

Many approximate inference algorithms that have been developed to exploit this symmetric

substructure provide control over the computational cost of the approximation but do not

provide accuracy guarantees. For example, in MLN models, Singla et al. [2014] executes a

lifted loopy belief propagation algorithm that projects messages to a symmetric form with

controlled cost; however, the error incurred by this procedure is difficult to analyze. Another

body of work constructs an over-symmetric approximate model (i.e., a model with more sym-

metries that approximates the original model in some way) on which inference is performed

[Venugopal and Gogate, 2014a, Van den Broeck and Darwiche, 2013] (see Section 3.7.2 for

details on these methods). The degree of symmetry in the approximate model is a user-

specified parameter that controls the computational cost. However, it is not clear how the

inference estimates on the approximate model relate to desired inference quantities on the

original model. Additionally, models of this class are often forced to select the approximate

symmetry groups a priori using the initial model potentials which may not represent the

final inference quantities well. Ideally, preliminary inference estimates should be used to

select the symmetry groups used in the inference approximation.

An emerging class of methods [Sarkhel et al., 2015, Habeeb et al., 2017], known as coarse-to-

fine inference, has controlled computational cost but, unlike the aforementioned approaches,
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also maintains a concrete connection to the ground problem. The basic idea of coarse-to-

fine inference is to set up and solve a restricted inference problem with artificially imposed

symmetry. The symmetry restrictions produce a problem whose solution has low accuracy

but is obtained at a low cost. One of the symmetry restrictions is then split to produce a

problem whose solution has higher accuracy but is obtained at a higher cost. These two steps

– of solving a restricted problem, then choosing and splitting a symmetry restriction – are

iterated until an exact solution is obtained or until computational resources run out. This

coarse-to-fine procedure is used, for example, in Habeeb et al. [2017] to perform stereo depth

perception. First, groups of pixels are forced to take the same label and MAP inference

is performed using this restriction. This MAP inference problem is more efficient than the

original problem since it requires reasoning over groups of pixels rather than individual pixels.

To make the solution more accurate, a set of pixels in a symmetry group is split into its own

group if it is believed that the solution can be improved by assigning it its own disparity

label.

In this chapter, we develop a coarse-to-fine inference procedure for sum-inference queries

based on the generalized dual decomposition (GDD) method [Ping et al., 2015] (see Section

2.5.2 for a discussion of GDD). Like other coarse-to-fine approaches, we maintain full control

over the inference cost while maintaining a concrete connection to the ground problem (in

contrast to lifted inference approaches that exploit exact symmetries with no control over

cost and in contrast to heuristic methods that control cost with no accuracy guarantees).

However, in contrast to the coarse-to-fine approaches mentioned above [Sarkhel et al., 2015,

Habeeb et al., 2017], our approach is based on enforcing symmetry on variational parameters

in the GDD algorithm, rather than enforcing symmetry in the RV configurations. This

allows us to perform sum-inference queries and a variational optimization that produces a

monotonically improving upper bound on the partition function.

Selecting the split of symmetry groups is a critical problem; in this chapter, we develop
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a cheap yet effective approach that clusters groups of parameters with similar gradients.

Similar gradients suggest that these parameters can be treated equivalently, at least at

the current point in the optimization process, while significant gradient differences suggest

that the objective could be improved significantly by allowing the parameters to evolve

independently. We empirically demonstrate the utility of this symmetry selection over purely

structural choices.

Chapter Organization We organize the chapter as follows. In Section 4.2, we introduce a

new over-symmetric generalized dual decomposition (GDD) inference objective and develop

a modified lifted region graph that is capable of representing restricted symmetry sets (in

contrast to the lifted region graph used in Section 3.4 which represents exact symmetries). In

Section 4.3, we present an anytime coarse-to-fine inference algorithm that interleaves splitting

(where we group parameters with similar gradient) with inference on the over-symmetric

objective developed in the preceding section. In Section 4.4, we present experimental results

demonstrating the utility of our approach.

4.2 Over-symmetric Lifted Inference

Classic lifted inference techniques exploit exact symmetries in a ground inference problem.

As we discussed in Section 3.4, for decomposition bounds represented on a ground region

graph G = (R, S,E), the inference symmetries can be represented compactly on a lifted

region graph Ḡ = (R̄, S̄, Ē). An example from that section is repeated here in Figure 4.1.

In Figure 4.1c, we show a stable coloring of the ground region graph, and in Figure 4.1d, we

show its associated lifted region graph.

In most practical problems, which contain no inference symmetries, lifted inference deterio-

rates into ground inference, negating all potential efficiency of the symmetric representation.
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(a) Initial ground coloring

2

2 2

(b) Nonstable
lifted graph

(c) Stable ground coloring

11

22

(d) Stable lifted
graph

Figure 4.1: Nonstable and stable colorings of a ground region graph and their corresponding
lifted region graphs. (a) Ground graph colored by model symmetries and (b) correspond-
ing nonstable symmetric lifted region graph – this chapter presents the first lifted inference
algorithm that is able to represent inference computations on this structure. (c) Stable (sym-
metric) coloring and (d) corresponding stable lifted graph – classic lifted inference algorithms
can only reason with exact symmetries of this form.

In this chapter, we remedy this problem by forcing groups of variational parameters to be

symmetric, i.e., we force groups of ground separators in the ground region graph to be col-

ored identically. Then, groups of ground regions are colored identically if and only if they

have identically colored separator neighbors since each region is associated with an identical

reparameterized factor (the region symmetries are the same as in Eq. (3.11) when we dealt

with exact inference symmetries).

Roughly speaking, our method amounts to utilizing symmetries that would typically be

traversed during the symmetry detection phase of an exact lifted inference procedure (see

Section 3.4 for an example of the iterative symmetry detection algorithm) to form a valid

variational objective and produce inference estimates. Inference computations are repre-

sented on an over-symmetric lifted region graph where each lifted region represents a sym-

metric set of ground regions, each lifted separator represents a symmetric set of ground

separators, and each lifted edge ē = (r̄, s̄) ∈ Ē corresponds to the set of ground edges

gr(ē) = Ē ∩ (gr(s̄)× gr(r̄)) between ground separators associated with lifted separator s̄ ∈ S̄

97



and ground regions associated with lifted region r̄ ∈ R̄. However, unlike the case of exact

symmetry, in this over-symmetric case, each lifted separator may have more than two inci-

dent lifted regions in the lifted region graph. For example, for the initial model symmetries in

Figure 4.1a, we are able to produce an inference estimate represented on an over-symmetric

lifted region graph in Figure 4.1b.

4.2.1 Lifted Generalized Dual Decomposition

This section discusses how to perform over-symmetric sum-inference using the GDD bound

presented in Section 2.5.2. The basic idea is to tie parameter weights w in addition to tying

the cost-shifting factors δ. These symmetries can be exploited in the GDD bound (2.16) on

the log partition function as

LGDDG (δ,w) =
∑
r∈R

wr
lsew
xr

θδr(xr)

=
∑
r̄∈R̄

∑
r∈gr(r̄)

wr
lsew
xr

θδr(xr)

=
∑
r̄∈R̄

|gr(r̄)| ·
wr̄

lsew
x̄r̄

θ̄δ̄r̄(x̄r̄) =: L̄GDDḠ (δS̄,wS̄) (4.1)

where the lifted-GDD-objective L̄GDD
Ḡ

(δS̄,wS̄) makes the symmetry exploitation explicit.

4.2.1.1 Optimizing the Lifted Objective

We use a black-box convex optimization procedure to optimize the lifted objective Eq. (4.1)

using its objective and gradient information. The gradient of the over-symmetric objective

is equal to the sum of gradients of associated ground parameters (by the chain rule). That
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is, letting ḡδs̄(x̄s̄) := ∂ L̄
∂ δ̄s̄(x̄s̄)

be shorthand for the gradient,

ḡδs̄(x̄s̄) =
∑
s∈gr(s̄)

gδs(xs)

=
∑

s̄(r̄,r̄′)∈s̄gradAll

∑
s∈gr(s̄(r̄,r̄′))

gδs(xs)

=
∑

s̄(r̄,r̄′)∈s̄gradAll

|gr(s̄(r̄,r̄′))| · gδs̄(r̄,r̄′)(x̄s̄)

where the second line groups ground separators with identical gradients, the third line lifts

the computation by performing the template computation and scaling it by the number of

identical ground terms, and xs = x̄s̄, meaning that the index into the ground factor equals

the index into the template factor. (Recall from Section 3.4.2 that s̄gradAll corresponds to

sets of ground separators associated with s̄ and with identical gradient.)

In practice, we utilize unrestricted parameters ηS̄ = {ηs̄ : s̄ ∈ S̄} and transform the weights

by defining ws̄ = ε + exp(η̄s̄) where ε > 0 is a small number. This transformation ensures

positivity of the weights and allows us to perform unrestricted optimization over ηS̄. We

also relax the sharp w0
v = max(0, w∆

v̄ ) defining the univariate weight (from Eq. (2.17)) to

w0
v̄ = a(w∆

v̄ ) where

a(x) = ε+ t · log(1 + exp(x/t)) (4.2)

for a small t > 0. Since a(x) ≥ max(0, x), our relaxation produces larger univariate weights

and hence a valid upper bound on the true GDD bound (and hence on the log partition

function).

Note that the global descent we use in this work does not take full advantage of the decom-

posed form of the objective. It may be possible to perform the optimization more efficiently

by performing a block coordinate descent on the lifted objective, analogous to the strat-

egy employed by Ping et al. [2015] for the ground GDD objective. However, we leave this
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direction to future work.

4.3 Coarse-to-Fine Anytime Inference

Having defined a tractable over-symmetric lifted inference objective and optimization pro-

cedure, we now show how to adaptively select the symmetry groups in a coarse-to-fine

manner, producing approximations that can trade off quality versus time. We first address

the question of how to select the split in Section 4.3.1. We then present an anytime inference

algorithm that interleaves inference updates with splitting operations in Section 4.3.2.

4.3.1 Gradient Clustering

A key component of any coarse-to-fine process is the concept of splitting, in which we relax

some of the over-symmetric assumptions that make the procedure efficient but inexact. In

this section, we develop our procedure for splitting a symmetric group of ground separa-

tors into two finer groups. We first present the basic concepts, then show how to exploit

symmetries within the computations.

To judge the quality of a partition, we measure the distance of its associated ground gradients

to an over-symmetric projection of those gradients. When the distance is zero, the over-

symmetric and unrestricted gradients are identical and the over-symmetric restriction incurs

no error (locally). Similarly, when the distance is small, we expect the error incurred by the

over-symmetric restriction to be small.

For any lifted separator s̄ ∈ S̄, the distance of the gradients associated with its ground

separators gr(s̄) to their over-symmetric projection is

d(s̄, γs̄) =
∑
s∈gr(s̄)

||gδs − γs̄||22, where γs̄(x̄s̄) =
1

|gr(s̄)|
∑
s∈gr(s̄)

gδs(x̄s̄) (4.3)
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is the average gradient factor, i.e., the factor that is nearest to the ground gradients in

L2-norm, and x̄s̄ ranges over all values in the domain.

Now that we have a way to measure the quality of a partition, we are interested in splitting

s̄ into lifted separators s̄′1 and s̄′2 (with associated ground separators {gr(s̄′1), gr(s̄′2)} that

partition gr(s̄)), such that the over-symmetric projected gradient is as close as possible to

the ground gradient. That is, we seek

arg min
{gr(s̄′1), gr(s̄′2)}

d(s̄′1, γs̄′1) + d(s̄′2, γs̄′2). (4.4)

Note that the partitions gr(s̄′1) and gr(s̄′2) associated with the lifted separators appear im-

plicitly in the definitions of d(s̄′1, γs̄′1) and d(s̄′2, γs̄′2).

4.3.1.1 Lifted Computation

The above computations can be lifted by exploiting symmetry in the ground gradients. For

a lifted separator s̄, recall that gr(s̄gradAll) partitions ground separators gr(s̄) into groups of

identical gradient. Using this gradient symmetry, we rewrite the projected distance compu-

tation (4.3) as

d(s̄, γs̄) =
∑

s̄(r̄,r̄′)∈s̄gradAll

|gr(s̄(r̄,r̄′))| · ||gδs̄(r̄,r̄′) − γs̄(r̄,r̄′)||
2
2 where (4.5)

γs̄ =
1

gr(s̄)

∑
s̄(r̄,r̄′)∈s̄gradAll

|gr(s̄(r̄,r̄′))| · gδs̄(r̄,r̄′) . (4.6)

By a symmetry argument, we can conclude that the optimal split (4.4) groups identical

ground gradients together. Thus, we perform a search only over a split {s̄′1, s̄′2} of the
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gradient separators s̄gradAll

arg min
{s̄′1, s̄′2}

d(s̄′1, γs̄′1) + d(s̄′2, γs̄′2). (4.7)

The problem (4.7) corresponds to a standard weighted clustering problem. Here, the gradient

templates {gs̄(r̄,r̄′) : s̄(r̄,r̄′) ∈ s̄gradAll} act as the “data” and the term |gr(s̄(r̄,r̄′))| appearing

in Eq. (4.5) and Eq. (4.6) weights the data by the number of associated identical ground

gradients.

Finding the optimal clustering requires a search over a number of splits exponential in the

number of data points. This optimization is generally intractable, but many efficient and

accurate approximations, such as K-means [MacQueen et al., 1967, Friedman et al., 2001],

have been developed and can be employed here. When the model contains only binary RVs,

which is typical in probabilistic logic and MLNs, an additional simplification arises. In this

case, each ground gradient vector is length two, but defined by a single scalar value (the

other element is redundant since the ground gradients are pseudo-marginals that sum to

one). Thus, the clustering is performed on scalar data, and the optimal clustering can be

found efficiently, simply by sorting the gradient values and evaluating the sum of squared

differences for all possible splits efficiently via dynamic programming.

Selecting a Separator to Split Previously, we discussed how to partition the ground

separators associated with a single lifted separator. But we also need to select which lifted

separator to split. A natural choice is to select the lifted separator whose split produces the

largest change in gradient distance

arg min
s̄∈S̄

d(s̄′1, γs̄′1) + d(s̄′2, γs̄′2) − d(s̄, γs̄). (4.8)
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Note that this criterion is biased toward choosing lifted separators with large ground sets.

To see this, consider the case of binary variables (so that each gradient can be represented

as a scalar quantity); then, the maximum value of the distance (4.3) is proportional to the

ground set size: d(s̄) ∈ [0, 4 · |gr(s̄)|]. The upper bound results from the fact that the sum

ranges over |gr(s̄)| terms, each of which is bounded by 4, since each gradient is a difference of

pseudo-marginals and hence gδs ∈ [−1, 1]. Similarly, since their average is in the same range,

the difference gδs − γs̄ ∈ [−2, 2], and hence its square is in the range [0, 4].

4.3.1.2 Baseline Splitting Methods

In our experiments (Section 4.4), we compare our gradient-based split selection to a number

of simple split selection techniques that do not use inference estimates. One method, labeled

Syntactic in the experiments, selects a separator group uniformly at random and splits it.

This corresponds to the split method used in the standard stable coloring algorithm (which

is not concerned with the quality of any intermediate partitions). Another choice, labeled

Largest in the experiments, splits the largest separator group into two random partitions

of roughly equal size. Intuitively, this seems reasonable if no other information is available.

4.3.2 Coarse-to-Fine Anytime Inference

In this section, we show how to perform coarse-to-fine inference which interleaves inference

with splitting modifications. The sequence of refinements eventually terminates at the sta-

ble coloring which represents a solution to the ground problem (i.e., the solution obtained

by standard lifted inference algorithms which detect exact symmetries before performing

inference). This procedure is summarized in Algorithm 8.

An important practical difficulty is deciding how to allocate computational work between

inference and splitting. An ideal system would predict the benefit of spending a fixed amount
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Algorithm 8 Coarse-to-Fine anytime inference

Input: A region graph G, an initial lifted region graph Ḡ, a number of full inference sweeps

I, a multiplicative splitting cost increment β.

t← 0

while Ḡ is not stable do

Step 1 (Inference): Perform I inference sweeps hot-started at the old parameteri-

zation:

[δ̄
t
, w̄t, Lt;·, ct;·] = infer(Gt, δ̄

t−1
, w̄t−1; I)

Step 2 (Split): Sequentially split groups until inference cost increases by β:

Compute optimal clustering and scores for each s̄ ∈ S̄ (via Eq. (4.5))

τold ← Cost(Ḡ) // Old inference cost

while (Cost(Ḡ) ≤ β · τold) ∧ (Ḡ not stable) do

Select the lifted separator s̄ ∈ S̄ with minimum split score (via Eq. (4.8))

S̄ ← (S̄ \ s̄) ∪ {s̄′1, s̄′2} // Replace lifted separator s̄ and ground groups

Split R̄ with finer S̄.

Compute clustering scores for new lifted separators s̄′1 and s̄′2 (via Eq. (4.5))

end while

Step 3: t← t+ 1

end while

[δ̄, w̄] = infer(Gt, δ̄
t
, w̄t) // Inference at stable coloring

of work on each operation and use the prediction to choose the more effective operation.

However, assessing the (long-term) benefit of either operation is difficult. Consequently, in

this work we pursue a less ambitious approach that uses a fixed cost allocation between

inference and splitting. The allocation is controlled by two metaparameters, I ∈ N+ and

β > 1 where I is the number of inference sweeps to perform before iteratively performing

splits (as in Section 4.3.1) until the inference cost increases by a factor of β. Note that after

a split, only the scores associated with incident nodes need to be updated (the final line of

the loop in Step 2) since the others remain unchanged until more inference is performed.

An inference summary, consisting of the inference costs ct;· and objective values Lt;· is pro-

duced by an inference call on the tth graph structure in Step 1. In the experiments section,
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the anytime performance of the algorithm is reported by plotting these inference summaries.

Cost to Recolor the Graph Care must be taken to update the ground separators associated

with the split efficiently (the line S̄ ← (S̄ \ s̄) ∪ {s̄′1, s̄′2}). We implement the update

operation by recoloring the smaller ground group, leaving the larger ground group its original

color. Recoloring only the smaller group guarantees that each node changes color at most

log2(|R| + |S|) times, and consequently, the total cost of all recolorings is O((|R| + |S|) ·

log2(|R|+ |S|)), equal to the cost of the standard stable coloring algorithm [Berkholz et al.,

2013].

When evaluating the timing performance of our model, we measure the cost of performing

inference, but not the cost of identifying symmetries, which requires touching the ground

model. Reporting results in this way is common in experiments on relaxed lifted inference

in prior work [Mladenov et al., 2014a, Van den Broeck and Niepert, 2014, Venugopal and

Gogate, 2014a], as well as for exact lifted variational inference approaches [Bui et al., 2012,

2014, Mladenov and Kersting, 2015] which assume problem symmetries are available before

inference. Works such as Singla et al. [2014], Kersting et al. [2010] note that identifying (ap-

proximate) symmetries on the ground graph can significantly outweigh the cost of inference

on a compact lifted graph. Although we do not address this potential issue in this chapter,

in Chapter 5 we build approximations using MLN models and FOL-formulas that do not

explicitly represent the symmetric sets of ground factors.

4.4 Experiments

This section provides an empirical illustration of our coarse-to-fine lifted GDD algorithm.

We demonstrate excellent any-time performance on problems with distinct soft evidence

on every RV compared to exact lifted variational approaches which are forced to ground
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(b) Binary Collective Classification
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(c) Clique Cycle

Figure 4.2: Comparison of anytime inference at stable coloring (exact model symmetries)
with our coarse-to-fine lifted GDD algorithm for three different splitting methods. Black
dashed vertical lines indicate coarse-to-fine transitions for objective-based splitting (blue
curve); others transition at approximately the same point. In general, the objective-based
splitting (blue) method is superior to the methods that do not utilize inference information
to select the split (red and yellow curves). The coarse-to-fine methods generally perform
better than the stable coloring (green curve) that utilizes exact model symmetries, which
are equivalent to the ground model in this case since models contain distinct univariate
evidence.
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the entire problem. We demonstrate the superiority of selecting the split using objective

information (via gradient clustering) over purely syntactic selection approaches.

4.4.1 Models and Methodology

Models The left panes of Figure 4.2 show the types of models we use for evaluation. Similar

models, without evidence, were used in Mladenov and Kersting [2015] and Bui et al. [2014]

to evaluate the performance of lifted reasoning on marginalization tasks. In all models,

we use the pairwise strength parameter b = 2.5. The terms with base symbol u specify

simulated evidence, which is drawn uniformly on [−ζ, ζ] where ζ = log((1 − 10−2)/10−2);

this ensures that each marginal probability is in the range [0.01, 0.99] when pairwise terms

are omitted. For the collective classification problem, we also choose a random 10% of the

x, y values associated with links L(x, y) and set lxy to a uniformly sampled value in the range

[0, 5.0]. This quantity can be interpreted as the strength of a link between two web pages;

in practice, this strength value might be obtained, for example, from a sentiment score on

the text surrounding the link.

Note that, due to the presence of random evidence, these models contain no exact symme-

tries. Thus, standard lifted inference techniques which identify exact symmetries are forced

to ground the model.

Parameter settings We set ε = 10−3, t = 10−2 in the definition of the softening function

in Eq. (4.2) for the softened objective lifted GDD objective. We perform a LBGFS black

box optimization with rank 20 Hessian correction. To balance the work allocation between

inference and model refinement, we perform I = 30 inference iterations, and interleave

splitting refinement steps that increase the model cost by a factor of β = 1.25 (i.e., twenty

five percent higher cost).
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(e) d = 320

Figure 4.3: Scalability comparison. Panels (a)-(e) show the bound vs. time on instances of
complete graphs with evidence, while varying the logical variable domain size d in the MLN
specification (corresponding to the number of ground variables in the model). C2F exhibits
increasing advantage as the model grows larger.

4.4.2 Results

Figure 4.2 compares our coarse-to-fine procedure with several baselines on each of our three

test models. The blue curve (“C2F - objective”) performs splitting using gradient clustering

as discussed in Section 4.3.1. The yellow (“C2F - syntactic”) and red (“C2F - Size”) curves

perform syntactic and size-based splitting; these methods do not use inference information

to select the split and are described in Section 4.3.1.2. The green (“Stable”) curve per-

forms exact lifted inference on the graph’s stable coloring; since our test models contain no

symmetry, the stable coloring is simply the ground region graph.

We see that objective-based refinement significantly outperforms the other methods, with

size-based refinement performing better than syntactic splitting. Objective-based splitting

provides orders of magnitude speed-up over the stable coloring for similar quality results,
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and all methods provide better early performance than the stable coloring, which must touch

the entire model to even provide an initial bound.

Figure 4.3 demonstrates the scalability of our approach. Using the complete graph, we vary

the number of model RVs, ranging from d = 20 to d = 320. As before, each RV is given

random evidence ux, resulting in a model with no exact symmetries. Each panel shows the

running time for our coarse-to-fine method (“C2F - Objective”, blue) and the stable coloring

method (green). As the model size becomes large, our method improves its bound more

quickly than the stable coloring approach does, resulting in increasingly superior anytime

performance.

4.5 Conclusions and Future work

In this chapter, we developed a coarse-to-fine lifted inference framework for symmetric models

perturbed by asymmetric evidence factors. Our method works by imposing over-symmetric

constraints on the variational parameters of a GDD approximation, then, guided by pre-

liminary inference estimates, selects the symmetry split that best represents the problem

at hand. Our method provides orders of magnitude speed-up on our benchmarks, with

increasing advantages on larger models.

Although this chapter focuses on sum-inference problems, the GDD framework is also appli-

cable to MAP and marginal MAP problems (in which one subset of variables is marginalized

and another maximized). Thus, it should be easy to extend our methods for controlling

symmetry in the sum-inference objective to these other inference objectives.
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Chapter 5

Lifted Weighted Mini-Bucket

In the preceding chapter, we developed a coarse-to-fine inference algorithm for symmetric

models perturbed by asymmetric evidence. That algorithm’s primary shortcoming is that

it reasons over model factors and does not form high-order inference terms which are often

necessary to obtain accurate inference estimates. In this chapter, we develop a coarse-

to-fine inference algorithm that incorporates high-order inference terms while maintaining

control over the degree of symmetry in the relaxed inference structure. Experimental results

demonstrate the utility of high-order inference terms in (approximately) symmetric models,

especially in models with strong repulsive potentials.

This chapter is based on work originally published in Gallo and Ihler [2018b].

5.1 Introduction

Computing inference quantities is a central problem in probabilistic graphical models. How-

ever, in many models, an exact inference computation is intractable and relaxed inference

algorithms that reason over factors with a controlled number of RVs are necessary (as we

discussed in Chapter 2). In some models, such as those with attractive factors (factors

which encourage neighboring RVs to take the same value), accurate inference estimates may
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be obtainable with a fully relaxed inference structure. However, in many other models, such

as those with repulsive factors (which encourage neighboring RVs to take different values),

inference on the fully relaxed structure produces inaccurate inference estimates, and it is

necessary to reason over high-order terms (larger sets of RVs) in order to ensure consistency

among the various sub-configurations.

In models with (approximately) symmetric structure, it is desirable to introduce symmetric

high-order inference terms which can can be exploited during inference. Although intro-

ducing symmetric high-order inference terms is straightforward in principle, in practice, a

number of difficulties arise. Most previous works that attempt to address these difficulties

fall into one of two classes.

The first class of methods performs lifted inference with high-order inference terms assuming

the model possesses exact symmetry (although this is often unrealistic). For exact inference,

the lifted variable elimination algorithm [Poole, 2003, Braz et al., 2005] identifies elimination

operations that are identical then performs each (exponentially large) computation one time;

works such as Milch et al. [2008], Taghipour et al. [2012] extend the basic variable elimina-

tion algorithm to exploit counting factors that arise when symmetric factors are joined and

eliminated (see the discussion in Section 3.8.1). For relaxed inference, the goal is to identify

groups of high-order inference terms that can be treated identically; works such as Mladenov

et al. [2014b] use high-order terms for MAP inference, while works such as Van den Broeck

et al. [2012], Smith et al. [2016], Apsel [2016] use high-order terms for sum-inference.

The second class of methods is applicable to models with approximate (rather than exact)

symmetry. The basic idea is to form an over-symmetric approximation to the model on which

high-order inference terms can be easily incorporated. The method of Venugopal and Gogate

[2014a] (reviewed in Section 3.6.2) forms a small MLN by clustering the logical constants into

groups that are expected to have approximately identical marginals – for example, in a social
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network we might heuristically form groups of people with similar attribute and relationship

evidence. Any standard inference algorithm, including high-order relaxed inference and

variable elimination for exact inference, can then be applied to the small over-symmetric

model. Another work, Van den Broeck and Darwiche [2013], performs exact inference on

the original model using an over-symmetric approximation to the evidence (which is chosen

such that the exact inference computation can be performed efficiently). Lastly, Sen et al.

[2009] allows a group of factors that are identical up to a user-defined error to be replaced

with a symmetric group of factors (each with value equal to the group’s average value). This

creates an over-symmetric model on which a mini-bucket inference algorithm that exploits

exact symmetry can be applied. These methods suffer, primarily, from two shortcomings.

First, inference on the over-symmetric model produces biased inference estimates whose error

is difficult to quantify, and second, the over-symmetric model must be constructed a priori.

This latter restriction prevents preliminary inference estimates from being used to select the

approximate symmetry groups.

In short, the first class of methods introduces high-order inference terms into a symmetric

model but incurs no error, while the second class of methods incurs error but is able to

introduce high-order inference terms into an asymmetric model. An emerging class of meth-

ods is coarse-to-fine inference algorithms that provides a principled (rather than heuristic)

way to reason in models with approximate symmetry [Sarkhel et al., 2015, Habeeb et al.,

2017]. We introduced a coarse-to-fine inference algorithm in the last chapter; however, that

algorithm performed inference with lifted model factors and was not able to build symmetric

high-order inference terms.

In this chapter, we develop a coarse-to-fine inference algorithm that incorporates high-order

inference terms by joining several low-order lifted factors. Although performing a lifted join

is straightforward in principle, in practice an important difficulty arises. Namely, although a

group of lifted factors may possess low-order symmetry necessary for efficient lifted inference,
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this group does not necessarily possess high-order symmetry and joining will, in general,

produce high-order terms with no symmetry (this is an example of the shattering effect

which occurs when symmetries do not line up, as discussed in Section 3.4). In this chapter,

we focus on MLN models since their FOL-formulas can (often) be joined without breaking

symmetry; that is, the FOL-formulas with low-order symmetry required by low-order relaxed

inference also possess high-order symmetry needed to perform the lifted join operation.

All-in-all, our coarse-to-fine inference algorithm with high-order inference terms for MLN

models interleaves inference with one of the following two modifications to the inference

structure:

Splitting: This modification splits the symmetry of the variational parameters which allows

the approximation to represent asymmetric evidence more accurately (this is the same

basic idea as the algorithm in the previous chapter). In a MLN model, we split a

group of logical constants, which in turn splits all lifted factors that use that group.

For example, a group of people may be split into a two finer groups of people, and all

lifted factors using the original group are then split into lifted factors using the finer

groups.

Joining: This modification joins groups of lifted factors to create a high-order lifted factor

which allows the approximation to resolve inconsistencies present in the low-order

relaxation. In a MLN model, joining two lifted factors produces a lifted factor with

the same form as a FOL-formula whose variables range over all subsets of objects in the

operand factors. For example, joining a lifted factor over two groups of people ∆̄ppl;1

and ∆̄ppl;2 with a lifted factor over two groups of people ∆̄ppl;2 and ∆̄ppl;3 produces a

lifted factor over all three groups of people.

Our framework allows the flexibility to decide how best to invest additional computation:

either in resolving differences within the current symmetry groups (splitting), or in resolving
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inconsistencies in the joint values of several lifted variables (joining). At a high level, we

expect joining to be essential in repulsive models which produce strong local inconsistencies,

while we expect joining to provide little benefit in attractive models which produce weak local

inconsistencies. In this latter case, it is better to utilize small scope regions which can be split

to finer symmetry groups than large scope regions can be (for the same computational cost)

and thus capture problem asymmetry better. Our empirical results confirm this expected

behavior.

Chapter Overview This chapter is organized as follows. We begin in Section 5.2 by in-

troducing a modification to the lifted region graph presented in the last chapter. The mod-

ification incorporates additional structure that explicitly represents symmetry in groups of

RVs; this additional structure will be necessary for our lifted join operations later in the

chapter. In Section 5.3, we present a coarse-to-fine inference algorithm for MLN models

where the relaxation is incrementally refined by splitting sets of logical constants; we present

a gradient-based clustering algorithm to select the domain split. In Section 5.4, we show

how two FOL-formulas with disjoint logical domains can be joined to produce a larger FOL-

formula. Collectively, these sections define a complete algorithm for coarse-to-fine decom-

posed inference with high-order inference terms. In Section 5.5, we present a lifted variant

of the weighted-mini-bucket algorithm [Liu and Ihler, 2011] which represents the same class

of bounds as the decomposed form, but provides a good way to select the high-order re-

gions (via relaxed variable elimination operations) and an efficient way to pass messages. In

Section 5.6, we present empirical results justifying the utility of our method.

5.2 Lifted GDD with RV Symmetry

In Section 5.2.1, we introduce a modification to the lifted region graph presented in the

last chapter that explicitly represents symmetry within groups of RVs. This class of relax-
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ations requires additional symmetry restrictions (compared to the last chapter) that facilitate

symmetry-preserving split and join operations in MLN models, as we will see in the following

sections. In Section 5.2.2, we see how the RV symmetry can be used to define a symmetric

elimination order ; we exploit this property in the next section to select the elimination order

(in addition to the other inference parameters) in a coarse-to-fine fashion.

5.2.1 Lifted Region Graph

Consider a lifted region graph Ḡ = (R̄, S̄, Ē) with a factor graph topology. That is, each

lifted separator s̄ ∈ S̄ is incident to one lifted RV v̄ ∈ V̄ and one lifted region r̄ ∈ R̄\V̄ where

the set of lifted RVs V̄ associated with groups of ground RVs gr(V̄) := {gr(v̄) : v̄ ∈ V̄} that

partition the set of model RVs V .

Each lifted RV v̄ is associated with univariate evidence factors associated with its set of

ground RVs. With this representation, the lifted GDD bound (4.1) of the last chapter can

be written as

L̄GDDḠ (δS̄,wS̄) =
∑

r̄∈(R̄\V̄)

|gr(r̄)| ·
wr̄

lsew
xr

θ̄δ̄r̄(xr̄)

+
∑
v̄∈V̄

∑
v∈gr(v̄)

w0
v̄

lsew
xv

(
θv(xv) + δ0

v̄(xv)
)

(5.1)

where the first line is the lifted computation of factor power-sum terms, the second line

incorporates evidence at each lifted RV, and

δ0
v̄ = −

∑
s̄∈N̄(v̄)

δs̄ and w0
v̄ = max(1−

∑
s̄∈N̄(v̄)

ws̄, 0)

are the sums of the cost-shifting factors (and weights) incident to the lifted RV v̄.
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An example lifted region graph using the lifted RV representation is shown in

the embedded figure on the right. The model contains two lifted RVs labeled

ā and b̄ and associated with ground RVs gr(ā) = {a1, a2} and gr(b̄) = {b1, b2},

respectively. Each ground RV is associated with a univariate evidence factor,

shown as a white node; each ground RV is connected to its containing lifted

RV via a black square node (note that this node is not a separator in the

graph, even though, like a separator, it is represented as a square). Note that

this lifted region graph represents the same set of parameter tying constraints

as the graph in Figure 4.1b from the last chapter.

5.2.2 Lifted Elimination Order

A lifted elimination order ō = (v̄1, . . . , v̄n̄) is an order on lifted RVs V̄ that corresponds to

all ground elimination orders in which a ground RV associated with a lifted RV appears

before a ground RV associated with a later lifted RV. For example, a lifted elimination

order ō = (v̄1, v̄2) where the lifted RVs are associated with ground RVs gr(v̄1) = {1, 2}

and gr(v̄2) = {3, 4} is associated with the set of ground elimination orders {(1, 2, 3, 4),

(2, 1, 3, 4), (1, 2, 4, 3), (2, 1, 4, 3)}, each of which orders ground RVs associated with v̄1 before

ground RVs associated with v̄2. As another example, consider the friend-smoker-MLN with

the problem’s predicates ordered as ō = (Fr(∆̄ppl, ∆̄ppl), Sm(∆̄ppl), Ca(∆̄ppl)). One possible

ground elimination order is

(
Fr(A,B), Fr(C,A), Fr(A,C), Fr(B,A), Fr(B,C), Fr(C,B),

Sm(A), Sm(C), Sm(B), Ca(C), Ca(B), Ca(A)
)

which orders the friendship ground RVs, then the smoke ground RVs, then the cancer ground

RVs for people {A,B,C}.
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We want to ensure that the lifted GDD objective (Eq. 5.1) evaluated on lifted elimination

order ō is equal to any ground computation carried out along a ground elimination order

consistent with the lifted elimination order ō. To do this, we restrict all weights in a lifted

region associated with the same lifted RV to be identical; this means that the power-sum op-

erator commutes (as we discussed in Section 2.5.2) along all permutations of the ground RVs.

For example, consider a ground region r ∈ R with scope sc(r) = {Fr(A,B), Sm(A), Sm(B)}

(corresponding to the rule “if A and B are friends then probably both smoke or both don’t

smoke”). By restricting the weight parameters associated with the smoking predicate to be

identical, i.e., wr̄S̄m = wrSm(A) = wrSm(B), the decomposed inference terms

wr̄
F̄r

lsew
xFr(A,B)

wr̄
S̄m

lsew
xSm(A)

wr̄
S̄m

lsew
xSm(B)

θδr(xr) =
wr̄
F̄r

lsew
xFr(A,B)

wr̄
S̄m

lsew
xSm(B)

wr̄
S̄m

lsew
xSm(A)

θδr(xr)

corresponding to an elimination over order (Fr(A,B), Sm(A), Sm(B)) on the LHS, and over

order (Fr(A,B), Sm(B), Sm(A)) on the RHS (where smoke RVs are swapped), are identical.

5.3 Anytime Inference: Logical-Domain Splitting

This section presents a coarse-to-fine anytime inference algorithm for MLN models with

asymmetric evidence, which is codified in Algorithm 9. Each step of the algorithm splits a

set of logical constants (such as a set of people) into two sets. Each FOL-formula using that

set is then split into a set of FOL-formulas whose LVs range over the smaller sets. Thus,

in contrast to the coarse-to-fine algorithm in the last chapter (Algorithm 8) which splits

a single lifted separator, we perform a structured split that preserves the FOL-structure

of the formula. Maintaining this structure is crucial for joining operations (Step 3 of the

algorithm) which require a FOL-formula representation, as we will discuss in the next section.

The rest of this chapter discusses the split operation and the selection of the split. In
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Algorithm 9 Coarse-to-Fine anytime inference with joins for MLN models

Input: A region graph G, an initial lifted region graph, a number of full inference sweeps

I, a multiplicative splitting cost increment β, a maximum separator size iBound.

t← 0

while Ḡ is not stable do

Step 1 (Inference): Perform I sweeps of inference hot-started at the old parame-

terization:

[δ̄
t
, w̄t, Lt;·, ct;·] = infer(Ḡt, δ̄

t−1
, w̄t−1; I)

Step 2 (Split): Sequentially split groups until inference cost increases by β:

Set τold ← Cost(Ḡ)

repeat

Step 2a (Gradient Clustering): Select ∆̄ ∈ ∆̄ and a split ∆̄′ = {∆̄′1, ∆̄′2}
via gradient clustering (Alg. 10).

Step 2b (Structure Split): Split lifted logical domains, separators, regions,

RVs, and elimination order:

∆̄ ← (∆̄ \ ∆̄) ∪ ∆̄′

S̄ ← (S̄ \ S̄∆̄) ∪ S̄∆̄′

R̄ ← (R̄ \ R̄∆̄) ∪ R̄∆̄′

V̄ ← (V̄ \ V̄∆̄) ∪ V̄∆̄′

ō ← Split(ō, V̄∆̄, V̄∆̄′)
until Cost(Ḡ) ≥ β · τold

Step 3 (Join): Perform a sequence of joins with maximum factor size iBound+1.

Step 4: t← t+ 1

end while

Section 5.3.1, we discuss the structure of the lifted region graph after a given domain split. In

Section 5.3.2, we show how to select the split via a structured gradient clustering algorithm,

similar to the unstructured gradient clustering algorithm we presented in the last chapter.

5.3.1 Splitting the Graph Structure

In this section, we describe the effect of splitting a lifted logical constant ∆̄ into two lifted

logical constants ∆̄′1 and ∆̄′2 where the associated ground sets {gr(∆̄′1), gr(∆̄′2)} partition
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1

1

1

(a) Original: Predicate Labels

1

1

1

(b) Original: Domain Labels

. . .

(c) Split Domain

Figure 5.1: Splitting the domain ∆̄ (corresponding to the set of all people) of a friend-smoker-
MLN into ∆̄′1 and ∆̄′2 (corresponding to two subsets of people). (a) The original lifted region
graph labeled with predicate symbols. (b) The original lifted region graph labeled with
domain symbols. (c) The lifted region graph after the split; the friends-transitivity formula
(gray node) splits into eight groups (one for each combination of three copies of ∆̄′1 and ∆̄′2)
which are abbreviated with dots.
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the original set of ground logical constants gr(∆̄). We first give an example of how a single

FOL-formula splits. In the friend-smoker-MLN, if we split the set of people ∆̄ = ∆̄ppl, the

FOL-formula relating friendship and smoking habits among all pairs of people

(∀l1 ∈ gr(∆̄), l2 ∈ gr(∆̄) \ l1) xFr(l1,l2) ⇒ (xSm(l1) ⇔ xSm(l2))

is split into FOL-formulas

(∀l1 ∈ gr(∆̄′1), l2 ∈ gr(∆̄′1) \ l1) xFr(l1,l2) ⇒ (xSm(l1) ⇔ xSm(l2))

(∀l1 ∈ gr(∆̄′1), l2 ∈ gr(∆̄′2)) xFr(l1,l2) ⇒ (xSm(l1) ⇔ xSm(l2))

(∀l1 ∈ gr(∆̄′2), l2 ∈ gr(∆̄′1)) xFr(l1,l2) ⇒ (xSm(l1) ⇔ xSm(l2))

(∀l1 ∈ gr(∆̄′2), l2 ∈ gr(∆̄′2) \ l1) xFr(l1,l2) ⇒ (xSm(l1) ⇔ xSm(l2))

where the first and fourth FOL-formulas relate pairs of people within the same subgroup

(for each split subgroup ∆̄′1 and ∆̄′2) and the second and third FOL-formulas relate pairs of

people between subgroups (for each direction).

In general, a lifted factor θ̄ᾱ with qᾱ copies of ∆̄ in its lifted LV-scope sc∆(ᾱ) is split into

ᾱ∆̄′ = {ᾱ∆̄′

j : j ∈ {1, 2}qᾱ}

where ᾱ∆̄′

j substitutes all copies of the lifted domain ∆̄ for the split domains indexed by

j = (j1, . . . , jqᾱ), i.e.,

s̄c∆̄(ᾱ) = (. . . , ∆̄, . . . , ∆̄, . . .)

s̄c∆̄(ᾱ∆̄′

j ) = (. . . , ∆̄′j1 , . . . , ∆̄
′
jqᾱ
, . . .) (5.2)

and its factor template is equal to the the original factor template i.e., θᾱ = θᾱ∆̄′
j

for all j.
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5.3.1.1 Splitting the Lifted Region Graph

In Step 2b, we split all lifted regions, lifted RVs, and lifted separators that use the lifted

logical constant ∆̄ (R̄∆̄, V̄∆̄, and S̄∆̄, respectively) into new lifted regions, lifted RVs, and

lifted separators that use the split lifted logical constants ∆̄′1 and ∆̄′2 (R̄∆̄′ , V̄∆̄′ , and S̄∆̄′ ,

respectively). These terms are denoted as

R̄∆̄ = {r̄ ∈ R̄ : ∆̄ ∈ s̄c∆̄(r̄)} and R̄∆̄′ = ∪r̄∈R̄∆̄ r̄∆̄′ ,

V̄∆̄ = {v̄ ∈ V̄ : ∆̄ ∈ s̄c∆̄(v̄)} and V̄∆̄′ = ∪v̄∈V̄∆̄ v̄∆̄′ ,

S̄∆̄ = {s̄ ∈ S̄ : ∆̄ ∈ s̄c∆̄(s̄)} and S̄∆̄′ = ∪s̄∈S̄∆̄′ s̄∆̄′ ,

where each lifted region, lifted RV, and lifted separator splits as follows:

Lifted Region: A lifted region r̄ ∈ R̄∆̄ associated with qr̄ copies of ∆̄ is associated with all

possible combinations of splits

r̄∆̄′ = {r̄′j : j ∈ {1, 2}qr̄}

where r̄′j substitutes all copies of the lifted domain ∆̄ for the split domains indexed by

j = (j1, . . . , jqr̄); the ground scopes associated with the lifted region are defined as in

Eq. (5.2) above.

Lifted RV: A lifted RV v̄ ∈ V̄∆̄ associated with qv̄ copies of ∆̄ is associated with all possible

combinations of splits

v̄∆̄′ = {v̄′j : j ∈ {1, 2}qv̄}

where v̄′j substitutes all copies of the lifted domain ∆̄ for the split domains indexed by

j = (j1, . . . , jqv̄); again, the ground scopes are defined as in Eq. (5.2).

Lifted Separator A lifted separator s̄ ∈ S̄∆̄ incident to lifted RV v̄ ∈ V̄∆̄ and lifted region
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r̄ ∈ R̄∆̄ splits into a set of lifted separators s̄∆̄′ where each lifted separator s̄′ ∈ s̄∆̄′

is incident to a split lifted RV v̄′ ∈ v̄∆̄′ and a split lifted region r̄′ ∈ r̄∆̄′ . The lifted

separator s̄′ is associated with all ground separators incident to a ground region and a

ground RV from both groups, i.e.,

gr(s̄′) = {s ∈ gr(s̄) : v ∈ gr(v̄′), r ∈ gr(r̄′), where N(s) = {v, r}}

In Figure 5.1, we illustrate the effect of splitting one domain and all corresponding FOL-

formulas in the friend-smoker-MLN. The top two subfigures show the lifted region graph

where lifted regions and lifted RVs are labeled in two different ways: in the top left they are

labeled with predicate symbols, and in the top right they are labeled with logical domain

symbols. The bottom figure shows the effect of splitting ∆̄ into ∆̄′1 and ∆̄′2 on the lifted region

graph. Each lifted region (or lifted RV) with q copies of ∆̄ splits into 2q lifted regions (or

lifted RVs). Note that the distinct univariate evidence associated with each lifted RV (as in

the embedded figure at the end of Section 5.2.1) is not shown on this graph for compactness.

5.3.1.2 Splitting the Lifted Elimination Order

Having described how the structure of the graph is altered by splitting a domain ∆̄, we now

discuss how the lifted elimination order will be adapted to account for the split. To do so,

we replace each lifted RV v̄ ∈ V̄∆̄ with (any arbitrary) ordered sequence of its split lifted

RVs v̄∆̄′ in the lifted elimination order ō.

For example, if the lifted elimination order is ō = (Fr(∆̄ppl, ∆̄ppl), Sm(∆̄ppl), Ca(∆̄ppl)), before

the split, then, a possible lifted elimination order after the split is

ō′ =
(
Fr(∆̄′1, ∆̄

′
1), Fr(∆̄′2, ∆̄

′
2), Fr(∆̄′2, ∆̄

′
1), Fr(∆̄′1, ∆̄

′
2),

Sm(∆̄′1), Sm(∆̄′2), Ca(∆̄′2), Ca(∆̄′1)
)
.
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Algorithm 10 Logical domain splitting for MLN Models

Input: A lifted logical constant ∆̄ ∈ ∆̄, a set of split lifted separators S̄∆̄′ , a number of
iterations M .

Output: A set of domain partitions {gr(∆̄′1), gr(∆̄′2)} that approximately minimizes the
gradient-clustering objective

min
γ
S̄∆̄′

min
{gr(∆̄′1), gr(∆̄′2)}

d(S̄∆̄′ , γS̄∆̄′ )

Step 0 (Initialize): Randomly initialize the domain partition {gr(∆̄′1), gr(∆̄′2)}.
for iter = 1 to M do

Step 1 (Cluster Center): Compute the gradient cluster center factor for each
s̄′ ∈ S̄∆̄′ incident to lifted RV v̄′ and lifted region r̄′

γs̄′ =

∑
v∈gr(v̄′) g

δ
s̄′
(v,r̄′)

|gr(v̄′)|

Step 2 (Assignment): Assign each logical constant to its nearest cluster center.
That is, for each i ∈ {1, 2}, set

gr(∆̄′i) ← {l ∈ gr(∆̄) : i∗l = i}

where the nearest cluster center for logical constant l ∈ gr(∆̄) is

i∗l = arg mini∈{1,2} d̄l(S̄
∆̄′i , γ

S̄∆̄′
i
).

end for

We expect the choice of the lifted elimination order to have a potentially large impact on the

bound quality. However, in this work, we use the simple and expedient approach of selecting

a random permutation of each split lifted RV. A potential direction for future work is to

identify more intelligent ways of ordering the new sets of lifted variables.

5.3.2 Choosing the Domain Split

As in our refinement procedure from the previous chapter (in Section 4.3.1), we elect to

judge the quality of a partition by measuring the distance of its associated ground gradients

to an over-symmetric projection of those gradients. When the distance is zero, the over-
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symmetric and unrestricted gradients are identical and the symmetric restriction incurs no

error. Similarly, when the distance is small, we expect the inference error to be small.

The distance for a single split-lifted separator s̄′ ∈ S̄∆̄′ , incident to lifted RV v̄′ and lifted

region r̄′, is

d(s̄′, γs̄′) =
∑

s∈gr(s̄′)

||gδs − γs̄′||22 =
∑

v∈gr(v̄′)

∑
s∈N(v)∩gr(r̄′)

||gδs − γs̄′||22

= Ms̄′
(v̄′,r̄′)

·
∑

v∈gr(v̄′)

||gδs̄′
(v,r̄′)
− γs̄′ ||22 =: d̄(s̄′, γs̄′) (5.3)

where Ms̄′
(v,r̄′)

= Ms̄′
(v̄′,r̄′)

is the number of separator neighbors of each ground RV v ∈ gr(v̄′),

and the calculation in the second line exploits symmetry in the computation in the first line.

A notable change from the last chapter is that in this chapter, the separator sets are not split

directly, but instead are split indirectly via the domain split operation creating new domains

{gr(∆̄′1), gr(∆̄′2)}, as detailed in Section 5.3.1. In this case, the clustering is obtained by the

following optimization

min
γ
S̄∆̄′

min
{gr(∆̄′1), gr(∆̄′2)}

d(S̄∆̄′ , γS̄∆̄′ ) (5.4)

where γS̄∆̄′ = {γs̄′ : s̄′ ∈ S̄∆̄′} is the set of all cluster center factors, and

d(S̄∆̄′ , γS̄∆̄′ ) =
∑
s̄′∈S̄∆̄′

d(s̄′, γs̄′)

is the sum of distances associated with lifted separators associated with the split domains

∆̄′1 and ∆̄′2.

5.3.2.1 Clustering Algorithm

The clustering optimization defined by Eq. (5.4) is carried out iteratively, by alternating

between minimizing over the cluster centers γS̄∆̄′ and the assignment of ground constants to
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clusters {gr(∆̄′1), gr(∆̄′2)}. This alternating minimization procedure is codified in Algorithm

10, and resembles the standard K-Means clustering algorithm [MacQueen et al., 1967] for

K = 2 cluster centers. This algorithm assumes that each lifted factor has exactly one copy

of the lifted logical domain symbol ∆̄. This allows each ground constant to be assigned to

a domain cluster center independently (as we will see shortly). The general case, where a

lifted factor uses more than one copy of ∆̄ is more difficult as it couples the constants in

each cluster. Our strategy in the general case, as we discuss in the next subsection, is to

solve a relaxed clustering problem where each lifted factor uses a single copy of ∆̄ (and is

thus amenable to the clustering algorithm presented in this section).

We now describe each step of the algorithm. In Step 1, for a fixed clustering {gr(∆̄′1), gr(∆̄′2)},

each element of the cluster center factors γS̄∆̄′ is optimized by setting it to the mean value

of the associated ground gradients.

In Step 2, the assignment step, for a fixed set of cluster center factors γ
S̄∆̄′1

and γ
S̄∆̄′2

, the

clustering {gr(∆̄′1), gr(∆̄′2)} is optimized by associating each logical constant l ∈ gr(∆̄) with

the nearest set of cluster center factors. Here, we defined S̄∆̄′i = {s̄′ ∈ S̄∆̄′i : ∆̄′i ∈ s̄c∆̄(s̄′)}

as the set of lifted separators and γ
S̄∆̄′

i
= {γs̄′ : s̄′ ∈ S̄∆̄′i} as the set of cluster center factors

associated with the ith domain split for i ∈ {1, 2}. This distance of logical constant l to its

associated lifted separators is

d̄l(S̄
∆̄′i , γ

S̄∆̄′
i
) =

∑
s̄′∈S̄∆̄′

i

d̄l(s̄
′, γs̄′) (5.5)

where

dl(s̄
′, γs̄′) =

∑
s∈N s̄′

LV (l)

||gδs − γs̄′||22 =
∑

v∈N v̄
LV (l)

∑
s∈N(v)∩gr(r̄′)

||gδs − γs̄′||22

= Ms̄′
(v̄′,r̄′)

·
∑

v∈N v̄
LV (l)

||gδs̄′
(v,r̄′)
− γs̄′ ||22 =: d̄l(s̄

′, γs̄′)
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is the distance associated with ground separators N s̄′
LV (l) = {s ∈ gr(s̄′) : l ∈ sc∆(s)}

that are associated with lifted separator s̄′ ∈ S̄∆̄′i and use logical constant l. In these

equations, s̄′ is incident to lifted RV v̄′ and lifted region r̄′. Furthermore, the computation

in the second line exploits symmetry in the computation in the first line where we defined

N v̄
LV (l) = {v ∈ gr(v̄) : l ∈ sc∆(v)} as the set of ground RVs associated with lifted RV v̄ that

use logical constant l; note that N v̄
LV (l) is used to index symmetric gradients.

Our algorithm’s alternating computation of the cluster center with the assignment of each

logical constant to a cluster center has (nearly) the same form as the standard K-means

algorithm [MacQueen et al., 1967] with K = 2 where each logical constant plays the role

of a data point and the gradient associated with a logical constant’s attribute or relational

predicate plays the role of a feature. We illustrate this similarity via an example.

Example Consider a MLN with predicates Sm(∆̄ppl), Ca(∆̄ppl), and Buy(∆̄ppl, ∆̄items) rep-

resenting smoking attributes, cancer attributes, and the relations that a person buys an

item, respectively. This example is like the friend-smoker-MLN with an additional predicate

Buy introduced to illustrate a relational predicate with a single copy of the split domain

∆̄ppl, while removing the friend predicate, which would comprise self-relational term that

we defer handling until the next subsection. For the example, let the ground sets of people

gr(∆̄ppl) = {A,B,C,D} and items gr(∆̄items) = {1, 2, 3}.

Our goal is to select a split of the domain of people into two groups. As in standard K-Means,

we organize the data (here, the gradients) as a matrix gAll where columns are data points

and rows are features. The columns (from left to right) represent people A, B, C, D, and

the rows (from top to bottom) represent the Sm attribute, the Ca attribute, and each Buy

relationship with the three items. The data matrix is shown in Figure 5.2a.

The data matrix gAll is partitioned by solid vertical lines that represent one possible clus-

tering of the people into groups {A,B} and {C,D}, and by dashed horizontal lines that
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gAll =


gSm(A) gSm(B) gSm(C) gSm(D)

gCa(A) gCa(B) gCa(C) gCa(D)

gBuy(A,1) gBuy(B,1) gBuy(C,1) gBuy(D,1)

gBuy(A,2) gBuy(B,2) gBuy(C,2) gBuy(D,2)

gBuy(A,3) gBuy(B,3) gBuy(C,3) gBuy(D,3)


(a) Gradient data matrix

γAll =


γSm1 γSm1 γSm2 γSm2

γCa1 γCa1 γCa2 γCa2

γBuy1 γBuy1 γBuy2 γBuy2

γBuy1 γBuy1 γBuy2 γBuy2

γBuy1 γBuy1 γBuy2 γBuy2


(b) Cluster center matrix

Figure 5.2: MLN-gradient clustering represented as a standard (e.g., K-Means) clustering
problem. (a) A data matrix of ground gradients gAll with data points (columns) and features
(rows). The columns represent people A, B, C, D (from left to right), and the rows represent
the Sm attribute, the Ca attribute, and each Buy relationship with three items (from top to
bottom). The solid vertical lines represent one possible clustering of the people into groups
{A,B} and {C,D} and the dashed horizontal lines separate predicate groups. (b) The set
of cluster center factors γAll associated with each gradient in the data matrix.

separate features associated with different predicates. (Note that although we cluster adja-

cent columns in our example, other non-adjacent clusterings are possible, e.g., into {A,C}

and {B,D}.)

This clustering problem is associated with cluster center factors {γSmi, γCai, γBuyi} for each

cluster group i ∈ {1, 2}. Each ground term in the data matrix gAll is associated with

a cluster center factor collected in γAll (shown in Figure 5.2b). Note that each block of

elements (demarcated by the vertical lines grouping people and horizontal lines grouping

predicates) has the same cluster center factor. In particular, the block of relational gradients

associated with the Buy feature has γBuy1 replicated three times (for all items) rather than

having a distinct value for each item.

As is evident from this organization, this problem has the same form as a standard clustering

problem with four data points (columns) and five features (rows), but, the value of the last

three dimensions of the cluster center must be identical (since they are associated with the

same relational predicate).
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
× gFr(A,B) gFr(A,C) gFr(A,D)

gFr(B,A) × gFr(B,C) gFr(B,D)

gFr(C,A) gFr(C,B) × gFr(C,D)

gFr(D,A) gFr(D,B) gFr(D,C) ×


(a) Unrelaxed clustering.

× gFr(A,B) gFr(A,C) gFr(A,D)

gFr(B,A) × gFr(B,C) gFr(B,D)

gFr(C,A) gFr(C,B) × gFr(C,D)

gFr(D,A) gFr(D,B) gFr(D,C) ×


(b) Relaxaed clustering: Split row but not col-
umn.


× gFr(A,B) gFr(A,C) gFr(A,D)

gFr(B,A) × gFr(B,C) gFr(B,D)

gFr(C,A) gFr(C,B) × gFr(C,D)

gFr(D,A) gFr(D,B) gFr(D,C) ×


(c) Relaxaed clustering: Split column but not
row.

Figure 5.3: Grouping of ground gradients associated with a FOL-formula Fr(∆̄, ∆̄) relating
people in the same group (each element of each table corresponds to a pair of people and
the cross “×” means no entry, i.e., no person has a friendship relation with himself). In all
cases, the solid lines demarcate an RV clustering associated with the clustering of people into
groups {A,B} and {C,D}. The subfigures show (a) Unrelaxed clustering on both dimensions
into four groups; (b) Relaxed clustering that splits only the rows (a row represents out-links
of a person’s friendship); and (c) Relaxed clustering that splits only the columns (a column
represents out-links of a person’s friendship).

5.3.3 Self-Relations

When a lifted RV uses one copy of the lifted logical constant ∆̄, the assignment step can be

performed independently for each ground logical constant (as we saw above). That is, we

can compute the distance incurred by assigning logical constant A ∈ gr(∆̄) to the split sets

gr(∆̄′1) and gr(∆̄′2) and choose the best one, as we saw in the last section.

However, when a lifted RV uses two copies of the lifted logical constant ∆̄ (representing a

relationship between objects in the same domain), the assignment step can not be performed

independently for each ground logical constant. For example, consider a friendship relation

Fr(∆̄, ∆̄) between all pairs of people of the group ∆̄ = ∆̄ppl. In this case, the split of ∆̄

produces four lifted RVs (as shown in Figure 5.1). If the logical constant A ∈ gr(∆̄) is

assigned to the first domain cluster ∆̄′1, then for each l ∈ gr(∆̄), Fr(A, l) is assigned to one
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of two clusters

Fr(A, l) ∈ gr(Fr(∆̄′1, ∆̄
′
1)) if l ∈ gr(∆̄′1)

Fr(A, l) ∈ gr(Fr(∆̄′1, ∆̄
′
2)) if l ∈ gr(∆̄′2)

Consequently, we cannot perform the assignment of logical constant A without knowing

which domain cluster the other logical constants are assigned to.

To obtain a problem admitting an independent assignment, we relax the gradient split by

not splitting the dimension associated with the second copy of ∆̄. That is, we force Fr(∆̄, ∆̄)

to split only on its first copy of ∆̄ into Fr(∆̄′1, ∆̄) and Fr(∆̄′2, ∆̄). This split has the same

form as a relational predicate with only a single copy of the splitting domain, e.g., the Buy

predicate. (Note that we only relax the clustering problem; after the clustering is selected,

the lifted region graph is split along both copies of ∆̄, as detailed in Section 5.3.1.)

We depict the effect of the domain clustering relaxation in Figure 5.3. Each subfigure il-

lustrates the ground gradients for all pairs of people laid out in a matrix; the solid lines

demarcate the partition of gradients associated with the partition of the domain of four

people {A,B,C,D} into two sets {A,B} and {C,D}. The first subfigure depicts the unre-

laxed clustering that partitions each dimension of the table into these two groups (the top

left block represents links between people in group one, the top right block represents links

from people in group one to group two, the bottom left block represents links from people in

group two to group one, and the bottom right block represents links between people in group

one). The second subfigure depicts the relaxed clustering discussed above where only the

first dimension splits (hence only rows of the data matrix are partitioned). The third subfig-

ure depicts a clustering relaxation obtained by instead splitting only the second dimension

(hence only columns of the data matrix are partitioned).
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gAll =



gSm(A) gSm(B) gSm(C) gSm(D)

gCa(A) gCa(B) gCa(C) gCa(D)

gBuy(A,1) gBuy(B,1) gBuy(C,1) gBuy(D,1)

gBuy(A,2) gBuy(B,2) gBuy(C,2) gBuy(D,2)

gBuy(A,3) gBuy(B,3) gBuy(C,3) gBuy(D,3)

× gFr(A,B) gFr(A,C) gFr(A,D)

gFr(B,A) × gFr(B,C) gFr(B,D)

gFr(C,A) gFr(C,B) × gFr(C,D)

gFr(D,A) gFr(D,B) gFr(D,C) ×


(a) Gradient data matrix

γAll =



γSm1 γSm1 γSm2 γSm2

γCa1 γCa1 γCa2 γCa2

γBuy1 γBuy1 γBuy2 γBuy2

γBuy1 γBuy1 γBuy2 γBuy2

γBuy1 γBuy1 γBuy2 γBuy2

× γFr1 γFr2 γFr2

γFr1 × γFr2 γFr2

γFr1 γFr1 × γFr2

γFr1 γFr1 γFr2 ×


(b) Cluster center matrix

Figure 5.4: Concatenation of data matrix with smoking, cancer, and buy predicates from
Figure 5.2 with data matrix of friendship predicates from Figure 5.3. Vertical line demar-
cates a clustering into {A,B} an {C,D} and we use the relaxed partition of self-relational
friendship predicate that only partitions columns.

Putting it Together We can now depict a clustering for a general problem with multiple

predicates and self-relational lifted RVs. We augment the example in the last section (with

smoking, cancer, and buy predicates) with the relaxed clustering on the friendship predicate

discussed in this section. We concatenate these two data matrices as shown in Figure 5.4.

Thus, our clustering algorithm, Algorithm 10, acts like K-means (with K = 2) on this

data matrix where the cluster centers associated with each predicate (in between the dashed

horizontal lines) are restricted to be equal.

Finally, we note that previous work that pre-clusters the MLN domains [Venugopal and

Gogate, 2014a] encounters a similar with self-relational predicates in MLN models and also

copes with the problem by performing clustering on a relaxed problem.

5.4 Lifted Join

In ground inference problems, reasoning over relaxations formed from the original model fac-

tors often produces inaccurate inference estimates. These estimates can often be improved
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by joining a group of model factors to produce a large-scope factor, allowing the approxima-

tion to reason about the consistency of larger subsets of variables at a time. Analogously,

lifted inference relaxations that use regions defined by the model factors (as in our Lifted

GDD Algorithm in Chapter 4) can be similarly limited and produce inaccurate inference es-

timates. To improve the approximation quality, it is desirable to join groups of lifted factors

to produce a large-scope lifted factor.

More specifically, we want to join two lifted factors θ̄ᾱ and θ̄β̄ to produce a third lifted factor

θ̄j̄ that is equivalent, i.e.,

∑
j∈gr(j̄)

θj̄(xj̄) =
∑

α∈gr(ᾱ)

θᾱ(xα) +
∑

β∈gr(β̄)

θβ̄(xβ). (5.6)

That is, we would like for a single lifted factor, with a single template, to represent the sum.

Unfortunately, in general this equivalence is not possible; instead, the sum of our two lifted

factors may shatter, producing an uncontrolled number of new lifted factors.

However, in the special case that the model consists of FOL-formulas, it is often possible to

perform a lifted join without shattering. In this case, the resultant factor is a FOL-formula

using a set of logical domains used by each factor. We illustrate the joining of FOL-formulas

with two examples.

In the simplest case, each formula is an attribute over the same logical domain, and the

lifted join corresponds to a set of identical non-overlapping joins. For example, consider a

problem with attributes Smokes (Sm), Has Cancer (Ca), and Regularly Exercises (Ex), and

model factors that consist of pairwise relations among all three pairs (e.g., a person who

smokes probably has cancer, a person who regularly exercises is unlikely to smoke, a person

who regularly exercises is unlikely to get cancer). The lifted join corresponds to a set of

131



identical ground joins which closes the loop at each ground group, so that

θj̄(xSm(l1), xCa(l1), xEx(l1)) = θᾱ(xSm(l1), xCa(l1)) + θβ̄(xCa(l1), xEx(l1)) + θγ̄(xSm(l1), xEx(l1))

for each logical constant l1 ∈ gr(∆̄ppl). In other words, for each person, we join three factors,

and these groups of three factors are identical for each person.

More generally, to join two formulas that contain multiple logical variables, we must match

the logical variables in one formula to logical variables in the other formula. Consider joining

two FOL-formulas relating friendship and smoking habits over disjoint groups of people with

ground factor scopes

gr(ᾱ) = {{Fr(l1, l2), Sm(l1), Sm(l2)} : l1 ∈ gr(∆̄ppl;1), l2 ∈ gr(∆̄ppl;2)}

gr(β̄) = {{Fr(l2, l3), Sm(l2), Sm(l3)} : l2 ∈ gr(∆̄ppl;2), l3 ∈ gr(∆̄ppl;3)}

Joining these two formulas produces a formula over all three groups of people:

gr(j̄) = {{Fr(l1, l2), Fr(l2, l3), Sm(l1), Sm(l2), Sm(l3)} :

l1 ∈ gr(∆̄ppl;1), l2 ∈ gr(∆̄ppl;2), l3 ∈ gr(∆̄ppl;3)}

and a template factor

θj̄(xFr(l1,l2), xSm(l1), xSm(l2), xFr(l2,l3), xSm(l3)) = θᾱ(xFr(l1,l2), xSm(l1), xSm(l2)) ·
1

|gr(∆̄ppl;3)|

+ θβ̄(xFr(l2,l3), xSm(l2), xSm(l3)) ·
1

|gr(∆̄ppl;1)|

at each ground factor j ∈ gr(j̄). That is, each of the operand factors is scaled by the number

of people in the group of people it does not use. In this example, each pair of people (l2, l3)

from groups two and three appears in |gr(∆̄ppl;1)| three-tuples (l1, l2, l3), each corresponding
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to some person l1 in group one. Thus, the total collection of θ̄β̄’s ground factors in gr(j̄) will

be equivalent to the original total collection in the grounding gr(β̄).

Self-Relations A more difficult case arises when certain logical variables (LVs) in a formula

range over the same domain, i.e., two people from the same group. Unlike the case above,

there is no longer a unique way to match logical variables between formulas. There are two

possible ways to resolve this. First, we can select a single matching and form a join; second,

we can select all possible matchings and form all possible joins. In the first approach, we are

faced with the difficulty of selecting one of the matchings – although any one is technically

valid it is not clear how this affects the bound. The second approach seems appealing since

it does not require such a choice; however, it is more complicated and can also result in

excessively large-scope factors.

In this chapter, we only consider joins of formulas with one copy of any LV ranging over

any set of objects (as discussed in the last section); we leave the development of rules that

allow joining of formulas where multiple LVs range over a single set of objects to future

work. Note that although many MLNs contain formulas with LVs over the same domain,

our splitting operation will typically create a number of formulas with LVs that all range

over different domains. For example, in Figure 5.1, the original FOL-formula with scope

{Fr(∆̄, ∆̄), Sm(∆̄), Sm(∆̄)} contains two LVs over the set of all people ∆̄ = ∆̄ppl and thus

cannot be joined by our rule. When ∆̄ is split into ∆̄′1 and ∆̄′2, however, this formula is

split into multiple formulas, a number of which use a single LV over each group of people,

e.g., formulas defined on (∆̄′1, ∆̄
′
2) and (∆̄′2, ∆̄

′
1). Thus, the limitation on joins with matching

variables becomes less restrictive as the domains are successively refined through splitting.
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5.4.1 Impact of Lifted Join on Later Splits

The lifted join operation presented in the last section produces a single lifted factor with a

predictable and controlled cost (by controlling the number of RVs in the template). How-

ever, the compactness of the resultant lifted factor can often conceal a loss of flexibility in

controlling the cost incurred by later splitting modifications.

The problem arises when the lifted join operation implicitly produces a much larger number

of ground terms. In our second example in the last section we joined two lifted factors each

over two groups of people (hence associated with O(n2) ground factors) to produce a lifted

factor that is associated with all O(n3) ground factors associated with three people, one from

each group, where each group has n people. This increase in ground representation size does

not have an immediate impact on lifted inference cost. However, as we continue, splitting

will eventually reach the ground model, and each of these O(n3) factors will be represented

explicitly.

On the other hand, suppose that instead of joining the two lifted factors, we split them

repeatedly until we reach a set of O(n2) ground factors, and we seek to join these ground

factors. There are a total of O(n3) possible triples (which use one logical constant from

each group) that could be added to tighten the relaxation. One possibility is to add all such

triples, which would produce the relaxation above. A more flexible approach would select

only the subset of the O(n3) terms that improve the approximation appreciably. If only a

small subset is selected, then we would produce a high quality bound at a cost much smaller

than O(n3).

Clearly, the relative quality of each approximation depends on the problem. However, it

is also clear that we do not want to join “too early” as it causes each subsequent splits

to produce a larger number of lifted regions, incurring a correspondingly higher cost. We

leave the question of selecting between split and join operations to future work. In our
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(b) LWMB graph after split

Figure 5.5: A LWMB graph and a split of the graph. (a) A LWMB graph on three lifted
RVs with lifted elimination order ō = (ā, b̄, c̄). Each lifted RV is associated with three
ground RVs, gr(ā) = {a1, a2, a3}, gr(b̄) = {b1, b2, b3}, gr(c̄) = {c1, c2, c3}; each ground RV
is associated with asymmetric evidence connected via a solid square node to the region
associated with its lifted RV. (b) Splitting the lifted RV ā into ā1 and ā2, associated with
ground RVs gr(ā1) = {a1} and gr(ā2) = {a2, a3}. The split is selected using gradients on the
two horizontal separators labeled ā and colored red and green in panel (a).

experiments, we take the simple expedience of performing joins at predefined times. It is

also worth noting that this issue, of creating lifted factors with an excessively large number

of ground factors, could be avoided if we had more precise control over the approximation.

More specifically, if we could perform splitting operations on individual lifted factors, rather

than globally on all lifted factors using ∆̄ as we currently do, then we could control the cost

by selecting only a promising subset of lifted factors to split.

5.5 Lifted Weighted Mini-Bucket (LWMB)

In the previous sections, we described an anytime lifted GDD algorithm for MLN models

that interleaves inference with splits (to represent asymmetric evidence more accurately) and

135



joins (which produce formulas over larger groups of objects). Our initial implementation

utilized this exact framework. However, in our initial experiments, the inference algorithm

was slow to converge. To remedy this problem, we developed a lifted weighted mini-bucket

(LWMB) algorithm which represents the same class of bounds, but with a tree-structured

(rather than a decomposed) form which allows a closed form message passing sequence over

a large tree-structured set of regions (this difference in convergence speed was discussed in

Section 2.5.2.2 for ground inference).

Although the modifications necessary to present the anytime LWMB algorithm are fairly

straightforward, they are notationally complex and would repeat (with only slight modifica-

tion) several of algorithms already presented. Consequently, we simply describe the required

modifications, using an example in Figure 5.5 to illustrate the concepts concretely. In our

example, the model contains lifted RVs ā, b̄, and c̄ that are eliminated along lifted elimina-

tion order ō = (ā, b̄, c̄), and the model contains lifted factors labeled (ā, b̄), (b̄, c̄), and (ā, c̄).

Each lifted RV is associated with three ground RVs, gr(ā) = {a1, a2, a3}, gr(b̄) = {b1, b2, b3},

and gr(c̄) = {c1, c2, c3}. In the left pane of Figure 5.5a, we show a LWMB graph constructed

with iBound = 1; in the right pane we show the LWMB after a split of the lifted RV ā into

ā1 and ā2, associated with ground RVs gr(ā1) = {a1} and gr(ā2) = {a2, a3}. For LWMB,

the variational parameters used to select the split appear on the lifted horizontal separators,

which are colored in red and green in the left pane. These are split to form the red and dark

red, and green and light green separators, respectively, in the right pane.

5.5.1 Constructing the LWMB Graph

To construct the LWMB graph, we use a lifted variant of the ground mini-bucket con-

struction algorithm (Algorithm 4) that, essentially, substitutes lifted objects for the ground

objects – notationally, this amounts putting a bar over the ground objects (the ground region

graph, the ground elimination order, etc.). We now describe the LWMB algorithm and its
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modifications to various steps of Algorithm 4.

The lifted region graph is constructed by simulating a relaxed lifted variable elimination

procedure along lifted elimination order ō = (v̄1, . . . , v̄n̄) where n̄ is the number of lifted

RVs.

The ground join-step (Step 1 of Algorithm 4) is replaced by a lifted join-step where, at the

iteration associated with lifted RV v̄, we first collect the set of lifted factors whose earliest

lifted RV (under the lifted elimination order ō) is v̄. We then partition these lifted factors

into groups such that the lifted factors in each group can be joined into a resultant lifted

factor that uses at most iBound+1 RVs, and, furthermore, we prohibit FOL-formulas from

joining if any of their LVs range over the same set of logical constants, as required by our

joining rule in Section 5.4.

The simulated ground elimination step (Step 2 of Algorithm 4) is replaced by a simulated

lifted elimination step. For each lifted region r̄ whose earliest lifted RV is v̄, we eliminate all

copies of v̄ which produces a lifted region using all lifted RVs except v̄. This message region

is added to the graph as a lifted region and connected via a lifted separator to r̄.

Finally, in the cost-shift step (Step 3 of Algorithm 4) we augment the graph with cost-

shifting terms to reallocate cost between lifted regions associated with the current elimina-

tion. To do this, we add a lifted RV v̄ to the region graph and connect it to each lifted

mini-bucket region. Lastly, all evidence factors associated with ground RVs gr(v̄) are linked

to v̄ in the graph.

Within the context of the anytime inference algorithm in Algorithm 9, the LWMB graph

construction replaces the join step in Step 3 to construct high-order inference terms.
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5.5.2 Optimizing the LWMB Objective

The lifted WMB objective is

L̄WMB
Ḡ (δ̄S̄↔ ,w) =

w̄
zn̄
n̄

lsew
x̄n̄
· · ·

w̄1
n̄

lsew
x̄n̄

· · ·
w̄
z1
1

lsew
x̄1

· · ·
w̄1

1

lsew
x̄1

∑
v̄∈V̄

i∈[zv̄ ]+

θ̄δ̄↔
r̄iv̄

(x̄r̄iv̄)

+
∑
v̄∈V̄

∑
v∈gr(v̄)

w0
v̄

lsew
xv

(
θv(xv) + δ0

v̄(xv)
)

(5.7)

where the first line computes the forward message pass and is notationally identical to the

ground WMB objective Eq. (2.13) but with bars over terms to index lifted, rather than

ground, objects, and the second line is the collection of evidence terms associated with each

lifted RV (note that this term also appeared in our lifted GDD bound (5.1)).

We then seek the tightest such bound

arg min
δ̄S̄↔ ,w̄

L̄WMB
Ḡ (δ̄S̄↔ ,w).

As in the ground case, we perform a black box optimization using the objective evaluation

and gradient (not shown) where the weights are transformed into log-space to maintain

positivity.

5.5.3 Splitting

We select the split using gradient clustering on the variational parameters, as in the decom-

posed case in Section 5.3.2. However, for the LWMB algorithm, the variational parameters

are located only on the horizontal separators δ̄S̄↔ and thus, only these separators (and not

the message separators) are used in the clustering. That is, in Algorithm 10, when we select

the split of logical domain ∆̄, rather than splitting all lifted separators S̄∆̄ associated ∆̄,

we split only lifted horizontal separators S̄∆̄
↔ := {s̄ ∈ S̄↔ : ∆̄ ∈ s̄c∆̄(s̄)} associated with ∆̄.
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Otherwise, the clustering algorithm is identical.

Modifying the LWMB structure after the split requires some extra work. We must split

the lifted regions and lifted separators as we would for the decomposed case (the structure

split step, Step 2b, in Algorithm 9), but also must maintain a tree structure. This can be

accomplished by simply executing the LWMB graph construction (detailed in Section 5.5.1)

on the decomposed regions where we disallow any joins. A more economical strategy, which

we take, only modifies the LWMB graph on regions that split. That is, if a region does not

split, then keep its forward separator structure the same; if it does split, then generate a

new message region by a simulated elimination step.

5.6 Experiments

This section provides an empirical illustration of our anytime LWMB algorithm. We demon-

strate the utility of relaxations that incorporate both split and join modifications. We show

that in models with strong low-order inconsistencies, relaxations with high iBound are signifi-

cantly more accurate. In contrast, in models with weak low-order inconsistencies, relaxations

with high iBound can be less accurate. This is because they perform fewer splits than lower

iBound relaxations do for the same cost. By performing more splits, the lower iBound ap-

proximation is able to represent asymmetric evidence more accurately, giving better results

when this is the dominant source of approximation error.

5.6.1 Models

We consider a standard collective classification MLN with one FOL-formula (∀x 6= y ∈

gr(∆̄page)) L(x, y) ∧ (C(x) ⇔ C(y)) with weight λ where C is a Class and L is a Link

predicate. If λ < 0, a hard True observation on the link L(x, y) induces a repulsive potential

between C(x) and C(y). Otherwise, if λ > 0, it induces an attractive potential. gr(∆̄page) is
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Figure 5.6: Anytime LWMB results on simulated collective classification examples, illustrat-
ing the tradeoff between using different values of scope size iBound. (a)-(b) The models use
repulsive λ < 0 potentials. Large iBound is important for resolving low-order inconsistencies
and consequently significantly outperforms relaxations with lower iBound. (c-d) The mod-
els use attractive λ > 0 potentials. Low order inconsistencies are weak and large iBound

regions do not produce a significant impact, but incur high cost. Consequently, for the same
cost, large iBound relaxations underperform smaller iBound relaxations (which invest more
time in splitting and representing evidence more accurately). In all plots, dashed black lines
indicate a batch domain split (Step 2 in Algorithm 9) for the blue curve (split transitions
for other curves occur at similar locations) in all subfigures.

an arbitrary set of |gr(∆̄page)| = 512 web pages.

We generate models with synthetic observed evidence. The evidence is defined by a perturbed

symmetric domain clustering as follows. Let ∆′ = {∆′k : k ∈ [K]+} be a partition of ∆̄page

into K = 16 random clusters of equal size. Let q : gr(∆̄page)→∆′ map each web page to its
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cluster center.

Class: The evidence associated with C(i) is a univariate factor θC(i)(xC(i)) = [0; ci] where

ci ∼ c̄q−1(i) +N (0, 0.4) and c̄k ∼ N (0, 2) for k ∈ [K]+. That is, each domain element i

in cluster ∆′k has a shared value c̄k perturbed by an asymmetric term.

Link: The evidence associated with L(i, j) is generated as follows: each pair of clusters

[k]+× [k′]+ is associated with ē(k,k′) = True with probability 0.25 and False otherwise.

Then, each L(i, j) has evidence ē(q−1(i),q−1(j)) with probability 0.75 and its negation

otherwise. That is, each of the K2 blocks has True evidence with each other block with

probability 0.25; the individual evidence in each block is then flipped with probability

0.25.

5.6.2 Selecting Split or Join

When refining our approximations, we select a domain split using gradient clustering as

discussed in Section 5.3.2. Lifted joins are performed by prioritizing the join of large-scope

regions, as is common in ground mini-bucket [Dechter and Rish, 1997]; future work will

look into selecting the join using preliminary inference information, as Forouzan and Ihler

[2015] does for ground inference. As discussed in Section 5.4.1, it is difficult to select the

appropriate time to perform a join, given its impact on the cost of future splits. In this work,

we use a fixed schedule for splits and join operations, so that we perform ten domain splits

then a global lifted join by building a LWMB-Graph with pre-specified iBound.

5.6.3 Inference

We perform inference on a LWMB relaxation by numerical optimization over its variational

parameters. We use the minFunc toolbox in MATLAB as a black-box optimizier to perform
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the optimization [Schmidt, 2005] using conjugate gradients and allowing a maximum of 1000

function evaluations.

5.6.4 Timing

We report time performing inference and not time updating the inference structure. Code

for the former was written in C++ while code for the latter was written in MATLAB and

thus provides unreliable timing. However, in a real system where the latter is written in

C++, it should consume a negligible amount of time. This is because it touches the factor

tables one time, compared to I times for I inference iterations. Our timing approach is

consistent with other works on lifted inference, which commonly report only inference time

(e.g.,Mladenov et al. [2014a], Van den Broeck and Niepert [2014] and our work in Chapter 4).

However, those works can actually incur significant overhead during symmetry detection, i.e.,

by touching the entire ground model. In contrast, our LWMB algorithm with FOL-formulas

never instantiates the full ground model, and so should be far more efficient if inference

structure time is accounted for.

5.6.5 Results

Figure 5.6 shows results for (a) a strongly repulsive potential model, with λ = −0.5; (b) a

weakly repulsive potential model, λ = −0.05; (c) a weakly attractive model, λ = +0.05; and

(d) a strongly attractive model, λ = +0.5. In the repulsive cases (a) and (b), higher iBound

relaxations significantly outperform lower iBound relaxations. This is because the repulsive

models produce strong low-order inconsistencies which are (partially) resolved by higher

order factors. In the attractive cases (c) and (d), higher iBound relaxations perform slightly

worse. This is most likely because the smaller scope methods are able to build approximations

with finer resolution for the same cost (meaning that they are able to represent model

asymmetries more accurately). We see this effect, for example, in panel (c), where iBound =
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5 performed 31 splits, iBound = 2 performs 60 splits, and iBound = 1 performs 73 splits by

the final time-step. (The number of splits reported here are not represented on the plot.)

5.7 Conclusion

This chapter introduced the first lifted inference algorithm capable of controlling both the

symmetry resolution and factor size of a lifted inference relaxation. We developed our algo-

rithm within an anytime inference framework which adaptively chooses and performs split

and join modifications to gradually provide more accurate results as more computational

effort is applied. Furthermore, the entire algorithm operates in a FOL representation. This

is a significant advantage over many other works on lifted inference, since this means that

our method does not incur any significant hidden costs due to (approximate) symmetry

detection procedures, which may touch the entire ground model.

Future work might look into improving the precision of the approximating structure, in

particular, methods that coherently integrate factors with multiple resolutions of logical sets

into a single inference structure. In practice, this may be useful to represent groups of

people at a fine resolution within factors connecting strongly interacting groups, and groups

of people at a coarse resolution within factors connecting weakly interacting groups. For

example, for people known to be located in New York, we may need to reason about fine

groups to determine their friendship relations, while we can reason about the friendships

using coarse groups if people from one group are known to be in New York while people

from one group are known to be in Kansas City (e.g., that most are unlikely to be friends).
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Chapter 6

Adaptive Hierarchical State Space

Partitions

High quality approximate inference in graphical models often requires reasoning over large

sets of random variables. However, this reasoning incurs exponential cost when performed

using the dense tabular factors typical of most inference algorithms. One approach to miti-

gate this cost is to introduce large factors with controlled state space symmetry. Although

this restriction is straightforward in principle, many difficulties arise in practice which have

forced many previous approaches to adopt unrealistic restrictions on the approximate infer-

ence structure, or to require an inference structure with exact symmetries encoded a priori.

In this chapter, we develop a more flexible and general solution with the following properties:

we recursively construct complex state space symmetries needed to accurately capture the

structure in real problems, we introduce groups of large factors with aligned symmetry

such that they can exchange symmetric messages, and we select these structures adaptively,

using preliminary inference estimates, to best capture the problem at hand. The resulting

framework generalizes a number of previously proposed frameworks from disparate domains,

shows promising initial results, and possesses a flexibility that invites many extensions.
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6.1 Introduction

Computing inference quantities is a central problem in probabilistic graphical models. Since

an exact inference computation is often intractable, relaxed inference algorithms that reason

over factors with a controlled number of RVs are often necessary (as we discussed in Chapter

2). However, in many problems, to obtain accurate inference estimates, we must reason over

large sets of RVs which incurs exponential cost for dense tabular factors required by most

approximate inference algorithms.

This cost is mitigated if the factors – either model factors or factors introduced to tighten

the inference relaxation – possess state space symmetry. In this case, large groups of states

can be reasoned about with a single computation rather than individually, corresponding to

a form of lifted inference described in Chapter 3.

In some applications, the model can be designed such that both the model and exact inference

computations use a controlled number of symmetry groups. For example, Tarlow et al. [2012]

models a hierarchical collection of counting factors over increasingly large groups of RVs.

Each counting factor captures, for example, constraints on the fraction of pixels in a binary

image patch that are on, e.g., for motion detection applications. Exact inference can be

carried out in this model by viewing the hierarchy as a tree and passing messages structured

as counting factors between neighboring resolutions [Tarlow et al., 2012].

However, models with exact inference symmetry are applicable only to a narrow range of

problems. A wider class of models contains factors with state space symmetry but not

inference symmetry. In these cases, the symmetry groups of model factors are unaligned

and inference shatters symmetries into fine groups (as we discussed in Section 3.5.1). For

example, consider a model with counting factors that constrain the number of on pixels

within overlapping image regions. To first order, two pixels can be treated identically if and
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only if they appear in the exact same set of overlapping regions. For a model with general

pixel groupings, this results in no symmetries.

Even more generally, many graphical models are defined by dense tabular factors with no

(or little) state space symmetry. Although it may seem counterintuitive at first, factors with

state space symmetry can be very useful for approximating inference quantities in these

models. We expect symmetric terms to be useful when the model (or a submodel) has one

of following properties:

Nearly Identical Value: A set of states has nearly identical value and can be grouped and

reasoned about together while incurring small error.

Low Value: A set of states has large relative disparity but low value and can be grouped into

one “low-scoring” group. Thus, the approximation incurs error only in low probability

mass regions of the distribution which have little or no effect on MAP inference or

sum-inference queries, which depend mostly (or only) on the most probable states.

Note that this case generalizes the popular idea of removing low-scoring states from

the problem.

Symmetric Aggregation: Some MLN models contain symmetric factors laid out in a sym-

metric structure; the aggregation (or join) of this collection of factors is equivalent to

a large factor with counting symmetry (see Section 3.8 for two examples with this

property: a symmetric complete graph and a symmetric bipartite graph). For small

perturbations of these models, we expect the aggregation (or join) of small factors to

be approximately equal to a counting factor.

Several previous works for general PGMs have been developed to exploit the first two approx-

imate symmetry properties. Gogate and Domingos [2013] performs lossy projected message

passing on a region graph, where each message passing operation produces an unstructured
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message factor which is then projected into a tractable symmetric form. This representation

is useful when the message contains many nearly identical values or many small values. Son-

tag et al. [2009] tightens a standard inference relaxation by introducing high-order inference

terms with a course resolution, defined by coarse groups of states of each RV (this is a spe-

cial type of state space symmetry). In that work, each state of a RV with high belief (from

preliminary inference estimates) is given its own group while the remaining states comprise

a single low-scoring group. Thus, in the coarse-resolution high-order inference terms, each

high scoring state is represented exactly and all of the low-scoring states are represented as

one group. The utility of this approach is demonstrated on protein design problems whose

RVs have large domain size (often one hundred or more states per variable).

Several works in the MLN literature exploit the symmetric aggregation rule. For example,

Milch et al. [2008] performs a lifted bucket elimination algorithm; before factors in a bucket

are joined (added), they check to see if the model contains a symmetric group of factors that

can be joined to produces a large counting factor. If so, they efficiently form large-scope join

with counting symmetry. Other works such as probabilistic theorem proving [Gogate and

Domingos, 2012] also detect and exploit such rules.

A downside of these methods is that each is applicable to a narrow range of problems or is

forced to adopt unrealistic restrictions. For example, the lossy message passing of Gogate

and Domingos [2013] requires a fixed graph structure (i.e., it does not allow joins once

inference has begun), the coarse factor tables of Sontag et al. [2009] are only applicable to

problems whose RVs have large domain, and the rules used by Milch et al. [2008] and Gogate

and Domingos [2012] require the user to identify an exact symmetric factor structure. The

goal of this chapter is to introduce large-scope inference factors with controlled state space

symmetry in a more intelligent and flexible way than previous work. The next subsection

gives a brief overview of our approach, and the following subsection contrasts it with previous

approaches.
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6.1.1 Our approach

At a high level, the main components of our algorithm are as follows:

Hierarchical State Space Partitions: Our algorithm centers around a hierarchical state

space partition that is constructed by alternating coarsening operations – that merge

groups of states together to create a coarser group – with joining operations – that form

large-scope state space partitions from a set of smaller-scope state space partitions.

This structure provides a natural way to incrementally construct large-scope symmetry

groups that efficiently (implicitly) represent complex state space symmetries, which are

necessary to capture the complex structure of real problems.

Aligned Factor Symmetry: These partitions in turn define a collection of inference fac-

tors with common domain symmetry which allow symmetric messages to be exchanged

between them. All-in-all, we obtain a hierarchical collection of factors that represent

inference information at varying sizes and resolutions which are coherently reasoned

about via a standard message passing algorithm (with slight modifications).

Adaptive Inference: In general, it is difficult to select good symmetry groups a priori

(before any inference). Instead, it is preferable to select, and subsequently refine, our

symmetry groups using preliminary inference estimates. Our method admits flexible,

anytime inference that allows us to adaptively add new levels and split symmetries

on the fly. That is, we begin with small-scope factors with coarse symmetry, and

gradually incorporate factors with larger scopes, while also splitting the symmetry of

existing factors.
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6.1.2 Comparison to Other Approaches

Although introducing terms with state space symmetry to represent inference quantities is

straightforward in principle, several important practical difficulties arise, as we discussed

above. Previously developed frameworks have addressed some of these difficulties, but each

is feasible in a limited range of scenarios. In contrast, our framework offers a more com-

plete and flexible solution. Relative to these other frameworks, our framework represents a

generalization as follows:

Standard tabular join: Compared to methods which join dense tabular factors, our ap-

proach can obtain the same region graph and high-order inference terms. However, we

use factors with controlled state space symmetry to mitigate the exponential cost of

the higher-order terms.

Coarse clusters: From the point of view of Sontag et al. [2009], we build domain partitions

with a much richer functional form. That is, we build a hierarchy of domain partitions

over increasingly large groups of RVs, rather than a single partition of each univariate

domain. From a technical perspective, this approach is closest to ours, as we discuss

in more detail in Section 6.2.1.

Projected message passing: Compared to Gogate and Domingos [2013], we do not incur

error via lossy message passing, and we adaptively form high order factors, which are

difficult to incorporate into a lossy framework since the join incurs error that is difficult

to analyze.

Recursive cardinality models: Our approach can be used to represent recursive cardi-

nality models [Tarlow et al., 2012]; however, rather than a fixed, predefined counting

partition, we utilize unstructured state space partitions which are more general and

flexible, adaptively build high order factors rather than require them to already be
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present in the model, and build a loopy structure that encompasses the hierarchical

tree as a subgraph.

Counting aggregation: Comparing to Milch et al. [2008] and other methods that exploit

the symmetric counting identity (see Section 3.8), our method builds state space parti-

tions formed from arbitrary collections of factors, rather than being restricted to only

incorporate counting factors corresponding to a collection of exactly symmetric factors.

In the following section we present a simple motivating example, which is essentially an

instance of Sontag et al. [2009]. This example showcases the basic idea behind our algorithm

and allows us to develop some technical notation and concepts. Using these concepts, we

then, present an overview of our algorithm with slightly more technical precision. The

remainder of the chapter then elaborates on each of these concepts.

6.2 Motivating Example

This section motivates the need for approximate inference structures that use state space

symmetry in the context of a simple example; this example is (essentially) an instance of the

approach taken by Sontag et al. [2009]. Following this example, we discuss shortcomings with

this approach, namely that it uses univariate domain partitions, which can severely restrict

our ability to represent certain useful inference patterns. We then present an overview of

our approach to constructing large multivariate state space partitions that addresses these

shortcomings. We conclude with an overview of the chapter which develops these concepts

in detail.

150



𝐶0𝐵0𝐴0 𝐷0

𝐴, 𝐶 1

𝐴, 𝐵 0

𝐴, 𝐵 0
1

𝐵, 𝐶 0

𝐵, 𝐶 0
1

𝐶, 𝐷 0

𝐶, 𝐷 0
1

𝐴, 𝐷 0

𝐴, 𝐷 0
1

𝐴, 𝐵, 𝐶 1 𝐴, 𝐶, 𝐷 1

Figure 6.1: A two-level hierarchical region graph with univariate RV domain symmetry. The
bottom level shows (small scope, fine resolution) subgraph G0, the top level shows (large
scope, coarse resolution) subgraph G1, and in between levels are inter-level separators S1

0

and edges E1
0 that carry cost between levels. In this chapter, R0 represents model factors

(outlined in black) while R1 represents terms introduced to tighten the relaxation (with
factor value zero, outlined in gray).

6.2.1 Univariate Domain Partitions: Example

As a motivating example, we consider a graph consisting of a simple cycle, A−B−C−D−A,

where each RV takes on k0 possible states. A fully relaxed region graph G0 = (R0, S0, E0)

representing this model is shown in the bottom row of Figure 6.1. The top row corresponds

to a higher order subgraph G1 = (R1, S1, E1) introduced to tighten the relaxation where

each region r1 ∈ R1 has factor value zero, i.e., θr1 = 0, and, hence, does not change the

distribution. A set of inter-level separators S1
0 and edges E1

0 shift cost between the low-order

and high-order regions. These high-order regions incur cost k3
0, which may be prohibitively

large. For example, the protein design problems considered in Sontag et al. [2009] can have

domain size k0 > 100.

6.2.1.1 Exact Symmetry

This cost is reduced if inference operations produce high-order factors with state space

symmetry with many fewer than k3
0 groups. This occurs, for example, when each model

factor r0 ∈ R0 has RV domain symmetry associated with RV domain partitions D̄ where

each domain partition has k1 < k0 groups. Recall from Section 3.7.1 that model factors of
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this form give rise to LSS-factors with a coarse tabular structure; moreover, factors of this

form give rise to inference operations that do not shatter the LSS-factor symmetries. In the

current example, model factors with these symmetries give rise to high-order LSS-factors

that also take a coarse tabular form defined by domain partitions D̄. Here, each table has

size k1 × k1 × k1, yielding a computational cost of k3
1.

As a concrete example, suppose that our variables have k0 = 3 states, but the each factor has

RV domain symmetry defined by domain partitions D̄v = {{0, 1}, {2}} with k1 = 2 groups

at each RV v ∈ V , i.e., states 0 and 1 in each RV are indistinguishable. In this case, the

model contains LSS-factors such as θ̄AB0 =

[
e f
g h

]
of size k1×k1 (here, 2×2) which specifies

a ground factor θAB0 =

 e e f
e e f
g g h

 of size k0 × k0 (here, 3 × 3) with tabular state space

symmetry.

An exact solution to the (ground) variational inference problem is obtained by setting each

cost-shifting factor equal to the model factor, e.g., δ̄AB1
0

= θ̄AB0 . A cost-shifting operation

leaves value zero in the low-order regions, i.e., θ̄AB0 − δ̄AB1
0

= 0, and produces high-order

regions with RV domain symmetry that uses the same domain partitions D̄ as the low-

order regions. In our running example, the high-order regions are LSS-factors with table

size k1 × k1 × k1 (here, 2 × 2 × 2) which, as above, corresponds to treating states 0 and 1

identically at each RV. For example, at the region (ABC)1, its neighboring sum δ̄AB1
0

+ δ̄BC1
0

is a LSS-factor with this form.

6.2.1.2 Exploiting Approximate Symmetry via Inter-Level Parameter Tying

In practice, models with exact symmetry are unlikely to arise; in fact, PGMs are often defined

by dense factor tables with no state space symmetries. In this case, our goal is to exploit

approximate state space symmetries. To do this, we seek to tighten the (asymmetric) low-

order inference relaxation with high-order regions restricted to have state space symmetry.
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This restriction allows high-order interactions to be represented efficiently, albeit at a coarser

than optimal resolution.

We accomplish this by restricting the inter-level separators to have RV domain symmetry

associated with RV domain partitions D̄. As in the case of exact symmetry above, this

gives rise to high-order terms with RV domain symmetry over which symmetric inference

operations can be performed. The inter-level separators mediate between regions with finer

state space resolution but smaller cliques (lower level) and a coarser-resolution version of

these factors with the larger cliques at the upper level.

We first discuss two different scenarios in which approximate symmetries are likely to be

useful. We then describe the inference relaxation for two levels in mathematical detail.

Nearly Identical Value In our running example, suppose that the model factor is symmetric

up to a small perturbation of its values, i.e., θAB0 =

 e1 e2 f1

e3 e4 f2

g1 g2 h1

 where values with the

same base character are approximately identical, i.e., ej ≈ e, fj ≈ f , gj ≈ g, hj = h

for all valid indices j. This is approximated by an inter-level cost-shifting factor δAB1
0

= e e f
e e f
g g h

. A cost-shifting operation leaves near-zero mass at the lower level, i.e., θAB0 −

δAB1
0
≈ 0 (as opposed to leaving exactly zero mass at the lower level, as in the case of exact

model symmetry). At the upper level, we have LSS-factors with coarse tabular state space

symmetry (over 2× 2× 2 tables in this example). These factors have the same dimensions

as they did in the example with exact model symmetry in the last subsection.

Low Value States Factors with state space symmetry can also provide useful approxima-

tions when the factor values have large relative disparity but low score. In this case, we can

group the states with low value together and incur little error in marginal or MAP inference

queries which inherently depend on high-scoring configurations. In our running example

where states 0 and 1 are grouped together, this grouping incurs little error if the factor val-
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ues for each configuration using states 0 or 1 are low (relative to the score for configuration

2). For example, a factor such as θAB0 =

 −11 −9 −5
−5 −8 −4
−20 −4 +0

 has values with large disparity

in each cell, however, all cells have much lower value than the one at the bottom right which

corresponds to both RVs taking state 2.

It is important to contrast this approach to a simple but common approach in which we

simply throw away low-scoring states to form RVs with smaller domains. Discarding variable

states can remove joint configurations that have non-zero probability, making it difficult or

impossible to produce an upper bound with such methods. Moreover, states that look

unlikely at first may later come to be important; but once removed, it is difficult to re-

include additional states later to improve the approximation accuracy. By merging states

into a single group, we are able to continue to reason about the existence of those states

while approximating their value, an approach which allows the approximation to be refined

as more information becomes available.

6.2.1.3 Two Resolution Lifted Inference

Intra-level parameter tying gives rise to an inference approximation using factors at two

resolutions; that is, the upper level contains coarse resolution LSS-factors while the lower

level contains fine resolution (ground) factors. This can be seen by examining the form of

the reparameterized factors at each level. For any region r1 ∈ R1 at the upper level, the

ground reparameterization equation (Eq. (2.5)) has an equivalent lifted form as

θδr1(xr1) = θr1(xr1) +
∑

s1∈N(r1)∩S1

δs1(xs1) +
∑

s10∈N(r1)∩S1
0

δs10(xs10)

= θ̄r1(yr1) +
∑

s1∈N(r1)∩S1

δ̄s1(ys1) +
∑

s10∈N(r1)∩S1
0

δ̄s10(ys10) =: θ̄δ̄r1(yr1)
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for any ground state xr1 ∈ gr(yr1) where the lifted auxiliary variables yr1 ∈ D̄r1 in the second

line range over the joint set of RV domain partitions; furthermore, the first summation (in

each line) ranges over the intra-level separators incident to r1, and the second summation

(in each line) ranges over the inter-level separators incident to r1. Note that in this chapter,

the higher order potentials θ̄r1(yr1) = 0 for all yr1 , since these regions are introduced during

inference to tighten the relaxation.

For any region r0 ∈ R0 at the lower level, the ground reparameterization (Eq. (2.5)) is

θδr0(xr0) = θr0(xr0) +
∑

s0∈N(r0)∩S0

δs0(xs0) +
∑

s10∈N(r0)∩S1
0

δs10(xs10) (6.1)

for any ground state xr0 ∈ Dr0 .

We can then rewrite the costly O(k3
0) ground inference objective (first line) as a LSS-

inference-objective (second line) with cheaper cost of only O(k3
1) as

L(δ) =
∑
r0∈R0

max
xr0∈Dr0

θδr0(xr0) +
∑
r1∈R1

max
xr1∈Dr1

θδr1(xr1)

=
∑
r0∈R0

max
xr0∈Dr0

θδr0(xr0) +
∑
r1∈R1

max
yr1∈D̄r1

θ̄δ̄r1(yr1) = L̄(δ̄).

We emphasize again that the lifted auxiliary variables y are just used to index the efficient

lifted objective and not additional RVs introduced into the model.

6.2.1.4 Coarse-to-Fine State Set Splitting

In general, it is not possible to accurately select the RV domain symmetry groups D̄v for each

RV v ∈ V a priori. Instead, we must use preliminary inference estimates to select groups that

we believe will best approximate desired inference quantities. For example, in the protein

problems used in Sontag et al. [2009], relaxed inference on pairs of RVs results in identifying
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many states that are nearly ruled out, despite not being ruled out in the original model

factors. In essence, the relaxed inference discovers that these states are inconsistent with

the high-scoring configurations of other variables. Then, states that have been identified as

low-value can be grouped together.

Sontag et al. [2009] performs a symmetry grouping in one-shot; that is, they perform some

number of relaxed inference iterations, then add the high-order inference terms and select

the k1 states set partitions for each RV. However, a more attractive framework is to select the

domain partition gradually, in a coarse-to-fine manner where inference is interleaved with

splitting of a domain partition D̄(t)
v at time-step t to a finer partition D̄(t+1)

v at time-step

t + 1 for each RV v ∈ V . Ideally, this split should be selected using preliminary inference

estimates. (Recall that we used a similar framework for models, such as MLNs, with factor

symmetries in the previous two chapters.)

Each domain split has the effect of splitting the high-order factor tables. At iteration t, the

high-order factor table has size k
(t)
1 ×k

(t)
1 ×k

(t)
1 where we assume that the domain of each RV

is partitioned into |D̄(t)
v | = k

(t)
1 sets. In our example above where each RV has k0 = 3 states,

at the first split, each domain is partitioned into two groups and each high-order factor table

has size 2× 2× 2. The next split produces three groups and each high-order factor table has

size 3× 3× 3. In this case, each group of states is a single state (since we have k0 = k1 = 3)

and the factors are equivalent to those obtained by a dense join operation.

6.2.2 Univariate Hierarchical Region Graph

For the moment, let us again consider a static inference structure, i.e., we do not perform any

anytime inference or splitting operations. To incorporate larger regions, we can apply the

idea of domain partitioning recursively. That is, we generate a sequence of increasingly coarse

univariate domain partitions. For example, for an RV with six states Dv = {0, 1, 2, 3, 4, 5},
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at the first level we might form a partition {{0, 2}, {4}, {1, 3, 5}}, and at the second level we

might form and a coarser partition {{0, 2, 4}, {1, 3, 5}} (which treats group {4} identically

to group {0, 2}). These increasingly coarse partitions can then be used to define increasingly

large region factors with controlled cost. This forms a hierarchical region graph which repre-

sents information at multiple resolutions and sizes. The hierarchy of regions can be reasoned

over coherently by passing messages within the same level and messages between adjacent

levels, as in the two level example above.

Shortcomings However, such univariate domain partitions are often either infeasible or

unhelpful in practice, for two reasons. First, for RVs with small domains, only a few levels

of partitions can be applied – for binary RVs, no partitioning of a single variable’s domain

is possible. While we could potentially pre-groups sets of RVs to define a new model over

“hyper-RVs” whose domains are joint configurations of several original variables, this relies

on knowing a priori which variables would be useful to group together.

Second, the symmetry groups formed by univariate partitions are generally inefficient for

large-scope regions. Imagine that we have coarsened several RVs in order to reason about

them jointly. The resulting large-scope region will look like a function over many variables

with few states each, and (just as with binary variables) we will be unable to exploit any

symmetries that appear in this joint space. In practice, these larger regions often have low

mass in many of the joint configurations, which should ideally be grouped together.

Another illustration of this effect is when groups of RVs strongly covary within the model

– for example, in stereo vision problems, the factors depend on the difference in disparity,

i.e., θ(xi, xj) = g(xi − xj). Then, coarsening xi or xj is not helpful, despite the fact that

many joint configurations of (xi, xj) should be grouped together. Some methods take the

approach of forcing certain variables to take on the same value; however, this provides only

a lower bound (since it does not consider states where the linked variables are not equal),
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and allows only a specific type of refinement (splitting the sets of linked variables).

6.2.3 Our Approach: Hierarchical State Space Partitions

Since univariate symmetry groups are insufficient in many settings, more flexible symmetry

groups are required. However, recall from our discussion in Section 3.5.2 that unrestricted

symmetry groups quickly become infeasible, since symmetry groups that are unaligned will

shatter the symmetry of inference quantities. In this chapter, we develop a framework that

satisfies the two competing desires of flexibility and alignment. The basic idea of our approach

is to substitute a more flexible class of multivariate domain partitions for the univariate ones

considered above. This flexible class of partitions is then used to define factors with aligned

symmetry over which messages can be passed.

The centerpiece of our method is a tree-structured collection of state space partitions over

increasingly large groups of RVs, rather than individual RVs, called a Coarsen-Join-Tree

(CJ-Tree). These state space partitions represent complex groupings of joint states that are

constructed recursively via an alternating sequence of coarsening and joining operations. A

coarsening operation merges a collection of groups of states into fewer groups, forming a new

state space partition in which the groups are treated identically; by controlling the number

of state space symmetry groups, we can control the cost of representing the partition. A

joining operation combines partitions over disjoint sets of RVs and allows us to construct a

partition over the larger joint state space; this provides a natural way to incrementally build

up large-scope state space partitions from small-scope partitions.

The CJ-Tree can be used to represent an interesting class of distributions in its own right.

We allow the state space partition at a node to represent symmetry groups in a LSS-factor,

so that the model consists of functions at multiple resolutions of state space symmetry. As

a special case, we will see that we can recover the same structure of counting factors at
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multiple resolutions used by Tarlow et al. [2012] and mentioned in the chapter introduction.

However, our goal is not to use the CJ-Tree directly as an inference structure, but rather

to use it to guide the construction of state space symmetry for factors in region graph with

a general loopy topology, which is required for realistic inference problems. A region graph

of this form is known as a hierarchical region graph and its factors are composed of state

sets from the CJ-Tree. From the point of view of region graphs defined by univariate RV

domain symmetry used in the two-level example above, the hierarchical region graph can be

viewed as a substitution of the univariate partitions for a much richer class of multivariate

state space partitions.

Since the inference symmetries can not be determined a priori, we develop an adaptive in-

ference procedure that selects symmetry groups using preliminary inference estimates. In

our framework, the modifications take two forms: either splitting a symmetry group to

obtain finer symmetries, or joining to add another level of factors of larger scope. Signifi-

cantly, although we build complex state space symmetries and a complex model structure,

we maintain flexibility of selecting each of them adaptively.

Chapter Organization The remainder of the chapter provides the details and is organized

as follows. In Section 6.3, we develop the CJ-Tree and its associated coarsening and joining

operations. We discuss the complex class of functions that the CJ-Tree can represent and

show how inference operations on a CJ-Tree can be computed efficiently. In Section 6.4 we

show how to construct a hierarchical region graph using symmetry groups defined on the

CJ-Tree. This allows us to reason within a loopy graph composed of large-scope factors with

aligned state space symmetry. In Section 6.5, we develop an anytime inference procedure

that interleaves inference with splitting operations that form finer resolution state space

partitions (on the CJ-Tree) and joining operations that form larger-scope regions, i.e., adds

additional levels to the CJ-Tree. We present simple heuristics for selecting these operations;
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future work will examine this selection step in more detail. Finally, Section 6.6 concludes

with experimental results demonstrating high quality results in general inference problems.

6.3 Hierarchical State Space Partitions

In this section, we show how to construct complex multivariate state space partitions effi-

ciently. These symmetry groups can be used define a tree-structured region graph whose

factors are of increasingly large size but have controlled state space symmetry. Moreover,

this structure provides the basis for our more general loopy inference procedure presented in

Section 6.4.

The state space partitions are constructed via an alternating sequence of coarsening and

joining operations. A coarsening operation merges groups of states into a single group of

states; by controlling the number of groups, the coarsening operation can control the cost

of the representation. A joining operation concatenates states from symmetry groups over

(non-overlapping) subsets of RVs to form a symmetry group in a higher dimensional space;

the joining operation provides a natural way to incrementally build up large-scope state

space partitions.

The coarsening and joining operations are represented at a high level (as relationships be-

tween groups of RVs) on a graph called a Coarsen-Join-Tree (CJ-Tree). A CJ-Tree is struc-

turally identical to a standard tree-structured region graph that is oriented upward where

each leaf node has univariate scope and nonleaf nodes are of increasingly large scope size

up the tree. Associated with the CJ-Tree is a Coarsen-Join-Lifted-State-Space-Tree (CJ-

LSS-Tree) that represents state space symmetries within each factor and the relationships

between them. The CJ-LSS-Tree is an instance of a LSS-Graph that we saw in Section 3.5.2

where the ground state space partitions are defined implicitly via the coarsening and joining

160



operations. Figure 6.2 shows an example that will be discussed in detail later; on the left is

a CJ-Tree and on the right a corresponding CJ-LSS-Tree.

Section Overview In Section 6.3.1, we define the CJ-Tree and in Section 6.3.2, we define its

associated CJ-LSS-Tree. In Section 6.3.3, we present the coarsening and joining operations.

In Section 6.3.4, we show how lifted inference operations are represented on a CJ-LSS-Tree.

Finally, in Section 6.3.5, we discuss how the CJ-Tree relates to previous work.

6.3.1 Region Graph

A Coarsen-Join-Tree (CJ-Tree) T = (D◦, D�, Ė) is a tree-structured region graph consisting

of region nodes, or join-nodes, D◦ (drawn as circles), separator nodes, or coarsen-nodes, D�

(drawn as squares), and edges Ė that each connect one coarsen-node and one join-node.*

Each model RV v ∈ V is associated with exactly one leaf join-node j ∈ D◦ with univariate

scope sc(j) = {v}. The neighbors of any node η ∈ D◦ ∪D�, denoted N(η) = N↓(η)∪N↑(η),

are divided into children N↓(η) which are closer to the leaves and one (or zero) parent N↑(η)

which is further from the leaves. The graph consists of (at least) one root which has zero

parents; note also that the leaves have zero children.

Nodes are of increasingly large scope size up the tree (away from leaves). Each coarsen-node

c ∈ D� has exactly one child, N↓(c) = {j↓} (which is a join-node, j↓ ∈ D◦), and it has the

same scope as its child sc(c) = sc(j↓). Each non-leaf join-node j ∈ D◦ has multiple children

N↓(j) (which are all coarsen-nodes, N↓(j) ⊂ D̄�) and has scope sc(j) = ∪c↓∈N↓(j) sc(c↓) equal

to the union of its childrens’ scopes.

*We reserve the traditional terminology and symbols G = (R,S,E) for the loopy region graph in the
next section.
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(a) CJ-Tree T (region graph)

𝐴; 0 𝐴; 1 𝐴; 2 𝐵; 0 𝐵; 1 𝐵; 2

{0,1}

{0, 1}
× {0, 1}

{0,1} × {0,1}
∪ {2} × {2}

C; 0 𝐶; 1 C; 2 D; 0 𝐷; 1 𝐷; 2 𝐷; 3

{2} ×
{2}

{1} × {0,1} ∪
{0,2} × {2,3}

{0,2} ×
{2,3}

{2,3}

{0,1} × {0,1} ∪ {2} × {2} ×

({1} × {0,1} ∪ {0,2} × {2,3})

(b) CJ-LSS-Tree T̄ (LSS-Graph)

Figure 6.2: (a) A CJ-Tree T represents alternating levels of coarsening and joining operations.
Join-nodes are depicted as circles and coarsen-nodes are depicted as squares. Each node
is labeled with its scope and a level index. (b) A CJ-LSS-Tree T̄ represents details of
the coarsening and joining operations; this correspondence is highlighted with boxes of the
same color in each subfigure. Each LSS-node represents a set of ground states and select
nodes are labeled; non-leaf labels abbreviate a state by dropping its scope symbol, e.g.,
{0, 1} ≡ {(A; 0), (A; 1)} in the dark red box.

Example An example CJ-Tree over four RVs V = {A,B,C,D} is shown in the left panel of

Figure 6.2�. Each node is indexed with a concatenation of RVs in its scope plus integer sub-

and super-scripts that represents a level index (which, for now, serves only to disambiguate

between nodes). For an example coarsening operation boxed in light red, the parent coarsen-

node has the same scope as its child sc(AB2
1) = sc(AB1) = {A,B}. For an example joining

operation boxed in light blue, the parent join-node has scope equal to the union of its

childrens’ scopes, sc(ABCD2) = {A,B,C,D} = {A,B} ∪ {C,D} = sc(AB2
1) ∪ sc(CD2

1).
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6.3.2 LSS-Graph

The CJ-Tree is associated with a CJ-LSS-Tree that represents the state space symmetry of

its region and separator factors. A CJ-LSS-Tree is a special type of LSS-Graph where, as

described Section 3.5.2, each node represents a group of states and each edge represents a

relationship (alignment) between two groups of states. Our primary motivation for making

this equivalence is it allows us to reuse the notation and graphical depiction (where each node

is a set of states) of the LSS-Graph. However, it is also worth noting that the CJ-LSS-Tree is

distinguished from a generic LSS-Graph in the way that it is constructed. In a CJ-LSS-Tree,

groups of states are defined implicitly via an alternating sequence of coarsening and joining

operations among groups of ground states. In contrast, in Section 3.5.2, the LSS-Graph

was defined by detecting symmetries on a SS-Graph (representing dense tabular factors).

The implicit representation of the CJ-LSS-Tree is critical as it avoids the exponential cost

incurred by an explicit SS-Graph representation.

For clarity, this section reviews the LSS-Graph representation using the notation for a CJ-

LSS-Tree. The next section discusses coarsening and joining operations that define state

space symmetry groups.

6.3.2.1 De�nition

A Coarsen-Join-Lifted-State-Space-Tree (CJ-LSS-Tree) T̄ = (D̄◦, D̄�, ¯̇E) is a LSS-Graph

associated with CJ-Tree T = (D◦, D�, Ė) where D̄◦ is a set of LSS-regions (depicted as

circles), D̄� is a set of LSS-separators (depicted as squares), and ¯̇E is a set of LSS-edges.

Recall that each node in the LSS-Graph represents a group of ground states and that each

edge in the LSS-Graph represents a relationship (alignment) between its incident groups of

ground states.

�Note that the graph is defined by directed edges that point upward in this example. But for compactness,
the arrowheads are not drawn; thus we abuse representation to depict this as an undirected graph.
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Model LSS-Factor: Each join-node j ∈ D◦ is associated with a set of join-LSS-nodes

D̄◦j ⊂ D̄◦. Each LSS-node in the set is denoted as y◦j ∈ D̄◦j and is associated with a set of

ground states gr(y◦j ) ⊂ Dsc(j). Collectively, these sets represent the symmetry groups of a

model ground factor θj : Dj → R which is represented as a LSS-factor θ̄j : D̄◦j → R where

θj(xj) = θ̄j(y
◦
j ) for any xj ∈ gr(y◦j ) (note we also require that each state xj ∈ Dj is in exactly

one symmetry group).

Cost-shifting LSS-Factor: Similarly, each coarsen-node c ∈ D� is associated with a set

of coarsen-LSS-nodes D̄�
c ⊂ D̄�. Each LSS-node in the set is denoted as y�c ∈ D̄�

c and is

associated with a set of ground states gr(y�c ) ⊂ Dsc(c). Collectively, these sets represent the

symmetry groups of a cost-shifting ground factor δc : Dc → R which is represented as a

LSS-factor δ̄c : D̄�
c → R where δc(xc) = δ̄c(y

�
c ) for any xc ∈ gr(y�c ) (note we also require that

each state xc ∈ Dc is in exactly one symmetry group).

LSS-Reparameterization An edge (j, c) ∈ Ė between join-node j ∈ D◦ and coarsen-

node c ∈ D�, is associated with LSS-edges of the form (y◦j , y
�
c ) ∈ ¯̇E where y◦j ∈ D̄◦j and

y�c ∈ D̄�
c . The LSS-edge represents alignment between ground symmetry groups such that

[xj ∈ gr(y◦j )] ⇒ [xc ∈ gr(y�c )]; that is, for any ground state xj ∈ gr(y◦j ) associated with the

region-LSS-node y◦j , its substate xc ∈ gr(y�c ) is associated with the separator-LSS-node y�c

(where xc is the substate of xj associated with RVs of c).

Since these alignments hold at each edge, a ground reparameterization operation does not

shatter model symmetries and we can form a lifted reparameterization operation. That is,

for any join-node j ∈ D◦ and associated LSS-node y◦j ∈ D̄◦j , the ground reparameterization

equation (Eq. (2.5)) has an equivalent lifted form, represented by the neighborhood in the
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LSS-Graph, as

θδj (xj) = θj(xj) +
∑
c∈N(j)

θc(xc)

= θ̄j(y
◦
j ) +

∑
c∈N(j)

{y�c }=N̄ (y◦j )∩D̄�
c

δ̄c(y
�
c ) =: θ̄δ̄j (y

◦
j ) (6.2)

for any xj ∈ gr(y◦j ). In the second line, the first row of the summation range indexes separator

neighbors in the region graph and the second row selects the LSS-neighbor associated with

that separator.

6.3.3 Coarsening and Joining Operations

Groups of states are defined implicitly via an alternating sequence of coarsening and joining

operations among groups of ground states. At the bottom of the tree, each leaf join-node

j ∈ D◦ is associated with an uncoarsened partition of the domain of a single RV (i.e.,

gr(D̄◦j ) = {gr(y◦j ) : y◦j ∈ D̄◦j} = {{d} : d ∈ Dv} where sc(j) = {v}). At the next level, a

coarsening operation merges distinct groups of states into a single group of states; thus, states

that were treated distinctly at the child are treated identically at the parent. By controlling

the number of such groups, we can control the cost of the representation. A joining operation

then concatenates coarsened groups of states over disjoint sets of RVs to form a group of

joint states in a higher dimensional space; this provides a natural way to incrementally

build up large-scope state space partitions from small-scope state space partitions. These

two operations are alternated up the tree to efficiently produce large complex state space

symmetry groups.

We begin in this section by describing the coarsening operation; we then describe the joining

operation. We then provide a detailed example to illustrate these operations. Finally, we

discuss the types of functions that can be represented with coarsening and joining opera-
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tions. These included structured symmetry classes used in previous works, such as recursive

counting partitions.

6.3.3.1 Coarsening Operation

A coarsening operation is represented in the CJ-Tree by a parent coarsen-node c↑ ∈ D�

and its child join-node j ∈ D◦, i.e., N↓(c↑) = {j} (e.g., the subgraph boxed in dark red in

Figure 6.2). The details of the coarsening operation are represented on the CJ-LSS-Tree by

the set of parent coarsen-LSS-nodes D̄�
c↑

and children join-LSS-nodes D̄◦j as follows.

Each parent coarsen-LSS-node y�c↑ ∈ D̄
�
c↑

is associated with the ground state set equal to the

union of its children LSS-nodes’ ground state sets

gr(y�c↑) = ∪y◦j∈ N̄↓(y�c↑ ) gr(y◦j ),

To ensure that each ground state is covered by exactly one parent LSS-node, each child

LSS-node y◦j ∈ D̄◦j must have exactly one parent LSS-node, i.e., |N̄↑(y◦j )| = 1.

6.3.3.2 Joining Operation

A joining operation is represented in the CJ-Tree by a join-node j ∈ D◦ and its children

N↓(j) ⊂ D̄� coarsen-nodes (e.g., the nodes boxed in dark blue in Figure 6.2). The details of

the joining operation are represented on the CJ-LSS-Tree by a set of parent join-LSS-nodes

D̄◦j and children coarsen-LSS-node sets {D̄�
c↓

: c↓ ∈ N↓(j)} as follows.

The ground state set of each parent LSS-node y◦j ∈ D̄◦j is equal to the Cartesian product of

its children LSS-nodes’ ground state sets

gr(y◦j ) = ×c↓∈N↓(j) gr(y�j;c↓),
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Collectively, the parent LSS-nodes represent a grid of hypercubes gr(D̄◦j ) = ×y�c↓∈N̄↓(y◦j ) gr(D̄�
c↓

)

that partitions the joint state space Dsc(j) associated with join-node j.

6.3.3.3 Example: Recursive State Set De�nition

This section illustrates the recursive coarsening and joining operations with an example

shown in Figure 6.2; the left pane (Figure 6.2a) shows a CJ-Tree and the right pane (Figure

6.2b) shows a CJ-LSS-Tree.

Select coarsening and joining operations are highlighted with colored boxes in the CJ-Tree;

the details of how each operation relates groups of states is represented on the subgraph of

the CJ-LSS-Tree boxed in the same color. For compactness, each block of join-LSS-nodes D̄◦j

is laid out linearly, rather than as a |N↓(j)|-dimensional table (which would clearly illustrate

that it represents all combinations of its children nodes).

Select nodes in the CJ-LSS-Tree are labeled with their associated ground state set. For

compactness, we drop the scope symbol associated with non-leaf nodes of the CJ-LSS-Tree;

for example, the label {0, 1} of the coarsen-LSS-node in the dark-red box represents state

set {(A; 0), (A; 1)}.

An alternating sequence of coarsening and joining operations in this example is represented

as follows:

Coarsen at dark-red box: At the bottom level, the dark-red box represents a coarsening

operation associated with coarsen-node A1
0 and its child leaf node N↓(A

1
0) = {A0}. In

the right pane, the top row of coarsen-LSS-nodes represents a coarse partition gr(A1
0) =

{{0, 1}, {2}} of the ground domain DA = {(A; 0), (A; 1), (A; 2)} associated with the leaf

node A0 (i.e., the coarsening operation treats states 0 and 1 identically).

Join at dark-blue box: At the next level, the dark-blue box represents a joining operation
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associated with join-node AB1 and its children N↓(AB1) = {A1
0, B

1
0}. In the right

pane, the top row of join-LSS-nodes is associated with a partition gr(AB1) = gr(A1
0)×

gr(B1
0) = {{0, 1}, {2}}×{{0, 1}, {2}} of the ground state setDAB = DA×DB associated

with the parent’s scope sc(AB1) = {A,B}.

Coarsen at dark-red box: At the next level, the light-red box represents a coarsening

operation associated with coarsen-node AB2
1 and its child N↓(AB

2
1) = {AB1}. In the

right pane, the top row of coarsen-LSS-nodes is associated with a partition gr(AB1) =

{{0, 1} × {0, 1} ∪ {2} × {2}, {0, 1} × {2} ∪ {2} × {0, 1}} of the ground state set

DAB = DA × DB associated with the parent’s scope sc(AB2
1) = {A,B}. Note the

first state set in the top row merges state sets of the first and fourth LSS-nodes in

the bottom row while the second state set merges state sets of the second and third

LSS-nodes in the bottom row, i.e., their children in the CJ-LSS-Tree.

Join at light-blue box: At the next level, the light-blue box represents a joining operation

associated with join-node AB2 and its children N↓(AB2) = {AB2
1 , CD

2
1}. In the right

pane, the top row of join-LSS-nodes is associated with four state sets that partition

the ground state set DABCD = DA×DB×DC ×DD associated with the parent’s scope

sc(ABCD2) = {A,B,C,D}. For compactness, only one ground state set is labeled

gr(y�ABCD2
) =

(
{0, 1}× {0, 1} ∪ {2}× {2}

)
×
(
{0, 1}× {2} ∪ {2}× {0, 1}

)
. Note that

this represents a fairly complex grouping of states.

Note that this recursive structure efficiently represents a partition of an exponentially large

number of states. For example, the top node represents a partition of the joint state space

DA ×DB ×DC ×DD into four groups. However, instead of explicitly enumerating the joint

state space of size 3·3·3·4 = 108, the partition is represented recursively on the CJ-LSS-Tree.

In this example, the CJ-LSS-Tree only uses 37 nodes. Clearly, the potential savings of the

compact representation is much larger for larger problems.
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6.3.4 Inference on the CJ-LSS-Tree

The reparameterization and inference operations on the CJ-LSS-Tree take an intuitive form

which we discuss in this section.

6.3.4.1 Reparameterization

For a CJ-LSS-Tree, the reparameterization equation on a generic LSS-Graph (Eq. (6.2))

can be written in a more intuitive way by separating parent and child neighbors in the

summation. That is, for a join-node j ∈ D◦ and associated join-LSS-node y◦j ∈ D̄◦j

θδj (xj) = θj(xj) +
∑

c↑∈N↑(j)

δc↑(xc↑) +
∑

c↓∈N↓(j)

δc↓(xc↓)

= θ̄j(y
◦
j ) +

∑
c↑∈N↑(j)

δ̄c↑(y
�
c↑

) +
∑

c↓∈N↓(j)

δ̄c↓(y
�
c↓

) = θ̄δ̄j (y
◦
j ) (6.3)

for any ground state xj ∈ gr(y◦j ), where {y�c↑} = N̄↑(y◦j ) is the parent LSS-node (or empty if

at root), and {y�c↓} = N̄↓(y�c ) ∩ D̄�
c↓

is the child LSS-node associated with child c↓ ∈ N↓(j)

(or empty if leaf).

The first term of Eq. (6.3) is a symmetric model potential; the second term is a parent factor

at a coarser resolution (which assigns identical value to many states at this (finer) level); the

third summation over children factors aggregates one-dimensional factors associated with

each dimension of the factor table.

Example As an example to illustrate the reparameterization equation (Eq. 6.3), consider

the join-node AB1, its parent N↑(AB1) = {AB2
1}, and its two children, N↓(AB1) = {A1

0, B
1
0}

in Figure 6.2. Let the model LSS-factor be θ̄AB1 =

[
a b
c d

]
, and let its parent cost-shifting

LSS-factor be δ̄AB2
1

= [i, j], and its children cost-shifting LSS-factors be δ̄A1
0

= [e, f ] and

δ̄B1
0

= [g, h].
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We then have the reparameterized LSS-factor from Eq. (6.3) as

θ̄δ̄AB1
=

[
a b
c d

]
+

[
i j
j i

]
+

([
e e
f f

]
+

[
g h
g h

])

where the parent and child LSS-factors are expanded to the larger LSS-factor associated

with AB2
1 based on the neighborhood in the LSS-Graph. Specifically,

Parent (Coarsen) term: The second term

[
i j
j i

]
results from spreading the values δ̄AB2

1
=

[i, j] to indices associated with the children LSS-nodes as follows. The first and fourth

LSS-nodes at AB1 are children of the first LSS-node at AB2
1 (associated with value i)

and the second and third LSS-nodes at AB1 are children of the second LSS-node at

AB2
1 (associated with value j).

Child (Join) term: The third term

[
e e
f f

]
results from spreading the values δ̄A1

0
= [e, f ]

across the second dimension (since the coarsen-LSS-nodes of A1
0 are indexed on the first

dimension). The fourth term

[
g h
g h

]
results from spreading the values δ̄B1

0
= [g, h]

across the first dimension (since the coarsen-LSS-nodes of B1
0 are indexed on the second

dimension).

6.3.4.2 LSS-Inference Objective

The ground objective (first line) using reparameterized ground factors can now be written

as a LSS-objective (second line) using reparameterized LSS-factors

L(δ) =
∑
j∈D◦

max
xj∈Dj

θδj (xj)

=
∑
j∈D◦

max
y◦j∈D̄◦j

θ̄δ̄j (yj) =: L̄(δ̄)
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where the LSS-objective is computed on the LSS-factors, and the parameters δ̄ are associated

with LSS-factors. In other words, this equation exploits the symmetry of the problem and

hence admits an efficient computation.

6.3.5 Relation to Previous Work

The class of hierarchical state space models developed in this section bears an interesting

relationship to two previous lines of work. First, as discussed in the next subsection, our

hierarchical state space partitions can represent the recursive cardinality models used by

Tarlow et al. [2012] as a special case. Another parallel in the literature is to Sum-Product

Networks (SPNs) [Poon and Domingos, 2011], which represent a hierarchical mixture model

defined via an alternating sequence of sum and product nodes. Loosely speaking, the sum

nodes constitute an analogue to our coarsening nodes, and the product nodes an analogue

to our joining nodes. However, although both result in a similar computational structure,

the models they are used to define are quite different: our approach is used to represent

a standard, exponential family graphical model, while the SPN framework can be used to

represent a more general class of mixture models.

More significantly, however, our work differs from these two previous works in our final inten-

tion. In the two works, the model is learned under the restriction that it has a hierarchical

tree-structure; thus, the computational structure needed for efficient inference dictates the

model structure. In contrast, in our work, we make no assumptions on model structure

and our CJ-LSS-Tree is used to define symmetry in the class of approximate inference algo-

rithms (as the factors of a hierarchical region graph), and moreover, is built adaptively (see

Section 6.5) to the inference problem at hand rather than being specified a priori.
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6.3.5.1 Recursive Counting Factor

In this section, we show how to represent nested cardinality potentials (e.g., Tarlow et al.

[2012]) with the coarsening and joining operations developed in the preceding subsections.

For simplicity, we assume that the CJ-Tree forms a balanced binary partition of the ground

RVs, i.e., each join node has two children.

Each coarsen-node c ∈ D� represents an aggregate count over its scope, while each join-node

j ∈ D◦ represents a joint count over its childrens’ scopes. Collectively,

D̄�
c = {y�#k

c : k ∈ [|sc(c)|]}

D̄◦j = {y◦#abj : a ∈ [|sc(c)|], b ∈ [|sc(c′)|]}

where N↓(j) = {c, c′} are the two children of join-node j. Each individual LSS-node corre-

sponds to a ground set representing aggregate counts and joint counts, respectively, as

gr(y�#k
c ) = {xc ∈ Dsc(c) :

∑
v∈sc(c)

[xv = 1] = k}

gr(y◦#abj ) = {xj ∈ Dsc(j) :
∑
v∈sc(c)

[xv = 1] = a,
∑

v∈sc(c′)

[xv = 1] = b}

where the first is the set of ground states with k on RVs, the second is the set of ground

states with a on RVs in the set sc(c) and b on RVs in the set sc(c′).

The coarsening and joining operations are represented as follows:

Coarsening: The coarsening operation merging sets corresponding to joint counts with the

same aggregate count. That is, the coarsen-LSS-node y�#k
c has children

N̄↓(y�#k
c ) = {y◦#abj ∈ D̄◦j : a+ b = k} (6.4)
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and hence corresponds to the aggregate-count ground set

gr(y�#k
c ) =

⋃
a,b

a+b=k

gr(y◦#abj )

which says that the set of states with k on RVs in sc(j) can be formed as the union of

all state sets with a on RVs in sc(c) and with b = k − a on RVs in sc(c′), for all a.

Joining: The joining operation combines aggregate counts to create a joint count. That is,

N̄↓(y◦#abj ) = {y�#a
c , y�#b

c′ }

which corresponds to ground sets

gr(y◦#abj ) = gr(y�#a
c ) × gr(y�#b

c′ ).

Figure 6.3 shows an example of a CJ-Tree associated with counting partitions. The top

pane (Figure 6.3a) shows a CJ-Tree on eight RVs {A,B,C,D,E, F,G,H} where RVs are

recursively grouped by alphabetic order. Select nodes in the CJ-Tree (top pane) on the left

are labeled with a scope and level index; select nodes on the right are labeled with their

associated counting state space partition. The bottom pane (Figure 6.3b) shows a subgraph

of the CJ-LSS-Tree, corresponding to the subgraph of the CJ-Tree boxed in red. This pane

illustrates the relationship between state sets of the counting partition. The neighborhood

structure illustrates Eq. (6.4); that is, each coarsen-LSS-node is connected to join-LSS-nodes

with equal aggregate count.

Reparameterized LSS-factor The reparameterization operation combines counting func-

tions at multiple resolutions. That is, for any join-node j ∈ D◦ with children N↓(j) = {c↓, c′↓}

in the CJ-Tree, and any y◦#abj ∈ D̄◦j which represents ground states with a on RVs in c↓ and
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(b) CJ-LSS-Tree T̄ (LSS-Graph)

Figure 6.3: (a) A CJ-Tree T associated with recursive cardinality state space partitions.
Select nodes (on the left) are labeled with their scope and level index. Select nodes (on the
right) are labeled with their associated state space partition; each coarsen-node (square) is a
counting partition over its scope each join-node (circle) is a joint counting partition over its
childrens’ scopes. (b) A subgraph of an associated CJ-LSS-Tree T̄ that shows state groups,
corresponding to subgraph boxed in red in the top pane.
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b on RVs in c′↓, the reparameterization (Eq. (6.3)) is

θ̄δ̄j (y
◦#ab
j ) = θ̄j(y

◦#ab
j ) + δ̄c↑(y

�#(a+b)
c↑

) +
(
δ̄c↓(y

�#a
c↓

) + δ̄c′↓(y
�#b
c′↓

)
)

where the first term is a model factor, the second term represents a factor with aggregate

count a+b on RVs over the set sc(c↓)∪sc(c′↓), while the third and fourth represent univariate

counts with a on RVs in c↓ and b on RVs in c′↓, respectively.

6.4 Loopy Hierarchical Region Graph

In this section, we develop a hierarchical region graph that coherently reasons about factors

of varying scope size and state space resolution that are connected in a general (loopy)

topology. By controlling the state space resolution we can reason about factors of large

scope with controlled cost; by allowing a loopy topology, we are able to represent realistic

inference problems. A hierarchical region graph can be viewed as a generalization of two

separate inference structures that we have seen so far:

Hierarchical tree model: From the point of view of CJ-Tree models discussed in Sec-

tion 6.3, we augment the CJ-Tree graph with factors that relate terms from different

branches of the tree. For example, we can handle a structure where the tree in Fig-

ure 6.2a is augmented with a factor (A,D)0 linked to nodes A0 and D0 from different

branches of the tree; this forms a loop and breaks the tree structure.

Univariate domain symmetry: Recall that our motivating example in Section 6.2.1,

used univariate domain symmetry and two levels of resolution. A hierarchical region

graph substitutes the univariate domain partitions for the more expressive multivariate

partitions defined on a CJ-Tree via recursive coarsening and joining operations. Fur-

thermore, a hierarchical region graph incorporates more than two levels of coarsening.
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The main difficulty in constructing the hierarchical region graph is ensuring that inference

operations do not shatter factor symmetry. This is facilitated by forcing each factor in the

graph to be composed of symmetry groups defined by a subset of nodes, called its CJ-scope,

in a CJ-Tree associated with the hierarchical region graph. Factors defined in this way

can exchange symmetric messages with factors at the same resolution and can exchange

symmetric messages with factors at adjacent resolutions (the notion of resolution is defined

in the next section).

6.4.1 Hierarchical Region Graph

A hierarchical region graph G = (R, S,E) is a region graph whose separators S = Sl ∪ S↔

and edges E = El ∪ E↔ are divided into intra-resolution sets, S↔ and E↔, that shift cost

between regions at the same resolution, and inter-resolution sets, Sl and El, that shift cost

between regions at adjacent resolutions. The region graph is associated with a CJ-Tree

T = (D◦, D�, Ė) that is used to define the “resolution” of each node in the region graph.

CJ-scope The “resolution” of a region or separator node is defined via a Coarsen-Join-

scope (CJ-scope) γ ⊂ D◦∪D� associated with non-overlapping sets of RVs (i.e., for all pairs

{a, a′} ⊂ γ, sc(a)∩ sc(a′) = ∅; or, equivalently, a is not a descendant or ancestor of a′ in the

CJ-Tree). The region or separator node’s scope is defined indirectly as the union of scopes

of nodes in its CJ-scope, i.e., sc(η) = ∪a∈γ sc(a).

The CJ-scope of each region or separator node consists of all join-nodes or all coarsen-nodes as

follows: each region node r ∈ R is associated with a CJ-scope sc◦(r) ⊂ D◦ consisting of join-

nodes; each inter-resolution separator sl ∈ Sl is associated with a CJ-scope sc�(sl) ⊂ D�

consisting of coarsen-nodes; each intra-resolution separator s↔ ∈ S↔ is associated with a

CJ-scope sc�(sl) ⊂ D◦ consisting of join-nodes.
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6.4.1.1 Neighborhood Relationship

Each region node is connected to factors at the same resolution and at adjacent (coarser

and finer) resolutions. The region node is related to its neighbors by a set of coarsening and

joining operations applied to each dimension of the factor table.

The neighbors of each region node r ∈ R are divided as N(r) = N↔(r) ∪
(
N↑(r) ∪ N↓(r)

)
where N↔(r) ⊂ S↔ are intra-resolution separators, N↑(r) ⊂ Sl is a parent intra-resolution

separator, and N↓(r) ⊂ Sl are child intra-resolution separators. The region node is related

to separator nodes of each of these sets as follows:

Coarsening (parent): A parent intra-resolution separator s↑ has exactly one childN↓(s↑) =

{r}. The parent separator’s CJ-scope is equal to the union of (one) parent of each el-

ement of the child separator’s CJ-scope, sc�(s↑) = ∪j∈sc◦(r) N↑(j). This means that

each dimension of the parent separator factor is coarser than each dimension of the

child region factor.

Joining (children): A parent region node r ∈ R has multiple children N↓(r). The parent’s

CJ-scope is sc◦(r) = ∪s↓∈N↓(r) ∪c↓∈sc�(s↓) N↑(c↓); the first union ranges over all child

separators and the second union ranges over the CJ-scope of the child (consisting of

coarsen nodes). As we will see, this has the effect of adding coarse factors associated

with the children together, to produce a parent with scope large enough to contain the

sum.

Lower-dimension (intra-resolution): An intra-resolution separator s↔ ∈ S↔ links re-

gion node r ∈ R and region node r′ ∈ R and has CJ-scope equal to the intersection

of its incident regions’ CJ-scopes, i.e., sc◦(s) = sc◦(r) ∩ sc◦(r′). The region nodes shift

cost over this lower dimensional space.
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Figure 6.4: A subgraph of of hierarchical region graph G corresponding to an original model
that is a complete PGM. Nodes are labeled with their CJ-scope and a level index. Several
important subgraphs of the graph are marked: (i) The subgraph corresponding to the CJ-
Tree T is shown with dashed nodes and edges. (ii) Boxed in green is a subgraph consisting of
regions and intra-resolution separators; this corresponds to coarsening and joining operations
on each dimension of the MD-LSS-factor table (e.g., the parent of factor AE0 := (A0, E0) is
coarsened on each dimension yielding AE1

0 := (A1
0, E

1
0)). (iii) Boxed in red, in the bottom

row, is an intra-resolution subgraph of regions that share common CJ-scope; a pair of regions
shift cost over the intersecting elements of their CJ-scopes.

Example We now give an example to illustrate a hierarchical region graph and the terms

defined above for a graphical model whose factors are all pairs of RVs where the set of RVs

is V = {A,B,C,D,E, F,G,H}. The hierarchical region graph is associated with a CJ-Tree

where RVs are recursively grouped by alphabetic order, i.e., the form as Figure 6.3a, but, in

this example, we don’t require that its nodes are associated with counting factors.

Figure 6.4 shows a subgraph of the hierarchical region graph consisting of all pairwise factors

on RVs {A,B,E, F}. The CJ-Tree is a subgraph of the hierarchical region graph, depicted

by the dashed nodes and edges (the nodes corresponding to EF1 and its children, and the

nodes corresponding to AB1 and its children). At the bottom of the graph, intra-level terms
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associated with model factors are boxed in red. Shown in the green box is a set of inter-

resolution separators connecting regions from each level. The CJ-scope of each region or

separator consists of nodes in the CJ-Tree at the same level (at the same vertical height

in the figure). For example, the CJ-scope of the node in the top level labeled (ABEF )1 is

(AB1, EF1) and each of these nodes is a dashed node in the top level, the CJ-scope of the

node in between levels labeled (AE)1
0 is (A1

0, E
1
0) and each of these nodes is a dashed node

in between levels.

6.4.2 State Space Symmetry in Factor Tables

In this section, we define a multidimensional LSS-factor (MD-LSS-factor) composed from

symmetry groups represented on a CJ-LSS-Tree T̄ = (D̄◦, D̄�, ¯̇E) (corresponding to the

CJ-Tree T used to define factors’ CJ-scopes).

6.4.2.1 MD-LSS-factor

A multidimensional LSS-factor (MD-LSS-factor) θ̄γ : D̄◦γ → R with CJ-scope sc◦(θ̄γ) = γ

assigns has domain equal to all combinations of LSS-nodes associated with its CJ-scope

D̄◦γ := ×j∈γD̄◦j . An element of its domain is denoted (y◦j )j∈γ =: y◦γ ∈ D̄◦γ and is associated

with all ground states whose substates are in the ground state set of each individual index,

gr(y◦γ) = ×j∈γgr(y◦j ). The MD-LSS-factor defines a ground factor with these symmetric

groups of states, i.e., θ̄γ(y
◦
γ) = θγ(xγ) for all xγ ∈ gr(y◦γ) and each y◦γ ∈ D̄◦γ.

A MD-LSS-factor for a CJ-scope using coarsen-nodes σ ⊂ D� is similarly defined (details

are not shown for compactness).

Region Graph Terms Each region or separator node is defined as a MD-LSS-factor asso-

ciated with its CJ-scope as follows: each region r ∈ R is associated with a model MD-LSS-

factor θ̄r : D̄◦r → R and CJ-scope sc◦(r) := sc◦(θ̄r) ⊂ D◦, each intra-resolution separator
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s↔ ∈ S↔ is associated with a cost-shifting MD-LSS-factor δ̄s↔ : D̄◦s↔ → R, and each inter-

resolution separator sl ∈ Sl is associated with a cost-shifting MD-LSS-factor δ̄sl : D̄�
sl
→ R.

Note that we abused notation to allow graph nodes to act as domain subscripts (i.e., D̄�
r :=

D̄◦sc◦(r), D̄�
s↔ := D̄�

sc�(s↔)
, and D̄�

sl
:= D̄�

sc�(sl)
) and to act as index subscripts (i.e., y◦r = y◦sc◦(r),

y◦s↔ = y◦sc◦(s↔), and y�sl = y�
sc�(sl)

).

6.4.3 Lifted Reparameterization

The alignment of state space symmetry groups in the CJ-LSS-Tree implies alignment of

state space symmetry groups comprising each dimension of the MD-LSS-factors; that is,

cost-shifting operations do not shatter the state space symmetry of region factors.

For any region node r ∈ R, the ground reparameterization equation (Eq. (2.5)) has an

equivalent lifted form as

θδr(xr) = θr(xr) +
∑

s↑∈N↑(r)

δs↑(xs↑) +
∑

s↓∈N↓(r)

δs↓(xs↓) +
∑

s↔∈N↔(r)

δs↔(xs↔)

= θ̄r(y
◦
r) +

∑
s↑∈N↑(r)

δ̄s↑(y
�
s↑

) +
∑

s↓∈N↓(r)

δ̄s↓(y
�
s↓

) +
∑

s↔∈N↔(r)

δ̄s↔(y◦s↔) =: θ̄δ̄r(y
◦
r) (6.5)

for a joint index y◦r ∈ D̄◦r in the region LSS-factor domain, and any associated ground state

xr ∈ gr(y◦r). The indexing of the terms is defined as follows:

Model: The first term is the model factor indexed with y◦r .

Coarsening (parent): Recall that a parent intra-resolution separator s↑, (i.e., N↑(r) =

{s↑}) has coarser resolution CJ-scope, i.e., sc�(s↑) = ∪j∈sc◦(r)N↑(j).

The index y�s↑ is a vector of parents of each join-LSS-node element of y◦r , i.e., y�s↑ =

(y�s↑;j)j∈sc◦(r) where {y�s↑;j} = N̄↑(y◦j ) is the (one) parent LSS-node for the join-node

(acting as a dimension) j, for each j ∈ sc◦(r) in the CJ-scope of r.
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Joining (children): Recall that each child s↓ ∈ N↓(r) of a parent region node r ∈ R has

same coarsening resolution, but smaller dimension.

The index y�s↓ is a vector of child coarsen-LSS-nodes associated with sc�(s↓), i.e., y�s↓ =

(y�s↓;c↓)c↓∈sc�(s↓) where {y�s↓;c↓} = N̄↓(y◦r)∩D̄�
c↓

is the child LSS-node associated with the

coarsen-node (acting as a dimension) c↓, for each c↓ ∈ sc�(s↓) in the CJ-scope of s↓.

Lower-dimension (intra-resolution): Recall that the CJ-scope of an intra-resolution sep-

arator s↔ ∈ S↔ is a subset of the CJ-scope of the region node r, i.e., sc◦(s↔) ⊆ sc◦(r).

The index y◦s↔ = (y◦j )j∈sc◦(s↔) indexes a lower dimensional subspace.

Example Consider the graph shown in Figure 6.4 where MD-LSS-factors are defined by a

basis of recursive cardinality potentials (the CJ-Tree representing this basis corresponds to

the CJ-Tree used in our example in Figure 6.3a). This CJ-Tree corresponds to a subgraph

(depicted with dashed nodes and edges) of Figure 6.4. The lifted reparameterization (Eq.

6.5) around the region node labeled ABEF1 is

θ̄δ̄AB,EF (y◦#abAB , y◦#efEF ) = θ̄AB,EF (y◦#abAB , y◦#efEF ) (6.6a)

+
[
δ̄AB,EF (y�#a+b

AB , y�#e+f
EF )

]
(6.6b)

+
[
δ̄A,E(y�#a

A , y�#e
E ) + δ̄B,E(y�#b

B , y�#e
E )

δ̄A,F (y�#a
A , y�#f

F ) + δ̄B,F (y�#b
B , y�#f

F )
]

(6.6c)

+
[
δ̄AB(y◦#abAB ) + δ̄EF (y◦#efEF )

]
(6.6d)

where the RHS of the first line (Eq. (6.6a)) is the model factor, the second line (Eq. (6.6b))

is the parent term that is indexed by aggregate counts (for each of two groups of RVs) the

third and fourth lines (Eq. (6.6c)) are children terms indexed by aggregate counts over

subsets of RVs, and the fifth line (Eq. (6.6d)) are the intra-resolution terms that are each

indexed by one joint count.
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6.5 Adaptive Inference: Structure Selection

Up until now we have assumed that the inference structure was fixed. Of course, the infer-

ence quality depends on how well the inference structure represents the relevant inference

quantities. However, in general, this structure will not be known a priori and it must be

selected adaptively using preliminary inference information.

In our framework, the inference structure has two things to select. The first is the CJ-Tree

that specifies the hierarchical grouping of RVs. The second is the associated CJ-LSS-Tree

that specifies the state space partitions. In theory, we also have flexibility in selecting the

regions that are used and how they are connected via separators to other regions. However,

as we will see, the structure of the CJ-Tree and CJ-LSS-Tree in conjunction with the model

factors can be used to fully determine the hierarchical region graph structure; we use this

simplifying assumption in this chapter.

We begin in Section 6.5.1 by discussing an AddLvl operation that incrementally builds up

the hierarchical grouping of RVs; this is represented by joining root nodes in the CJ-Tree.

Then, in Section 6.5.2 we describe a SplitSS operation that incrementally splits a group

of states into a finer group of states; this is representing by splitting a coarsen-LSS-node in

the CJ-LSS-Tree. Lastly, in Section 6.5.3, we present an anytime inference algorithm that

interleaves inference with either AddLvl or SplitSS modifications to the inference structure.

6.5.1 AddLvl { Joining RV groups

Initially, the CJ-Tree is a forest of disconnected leaf nodes. The CJ-Tree is built up by

incrementally joining together root join-nodes (recall a join-node j ∈ D◦ is a root if it has no

parents, i.e., N↑(j) = ∅). In the simplest case we select two root join-nodes and join them.

That is, for two root join-nodes j′ and j′′, we add parent coarsen-nodes c′ and c′′ connected
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to the two roots, i.e., N↓(c
′) = {j′} and N↓(c

′′) = {j′′}, and a new root parent join-node j↑

whose children are the coarsen-nodes i.e., N↓(j↑) = {c′, c′′}.

In this chapter, instead of performing one join at a time, we perform joins of all root nodes

in a batch. That is, we partition the root nodes into groups of size two and each group is

joined as above (if there is an odd number of roots, one of the groups has group size one).

To represent this structure, each node in the graph is associated with a level. The leaf nodes

of the CJ-Tree (initial disconnected roots) are at level 0. The joining join-nodes at level

l results in coarsen-nodes that are said to be between levels l and l + 1, and join-nodes at

level l + 1. In our depictions, each join-node is labeled with its level as a subscript, and

each coarsen-node is labeled with its lower level l as a subscript and upper level l + 1 as a

superscript.

In our running example in Figure 6.2, leaf nodes are labeled with level 0. An initial join of

join-nodes at level 0 in groups {A0, B0} and {C0, D0} produces coarsen-nodes A1
0, B1

0 , C1
0 ,

and D1
0 between levels 0 and 1, and join-nodes AB1 and CD1 at level 1.

Organizing nodes in levels like this is advantageous for two reasons. First, it results in a

simple region graph structure as we discuss in the next section. Second, it results in a

(roughly) balanced CJ-Tree, i.e., two CJ-nodes at the same level correspond (roughly) to

the same number of underlying RVs. This balancing is desirable since, as discussed in other

sections of this thesis, it is often difficult to decide how to allocate disparate work throughout

the inference structure.

6.5.1.1 Modifying the Region Graph

The CJ-Tree and model factors can be used to specify the region graph structure as we

describe in this section.
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Each factor in the region graph has a level. A region or intra-resolution separator is said to

be at level l if its CJ-scope uses only join-nodes at level l in the CJ-Tree; an inter-resolution

separator is said to be between levels l and l + 1 if its CJ-scope uses only coarsen-nodes

between levels l and l + 1 in the CJ-Tree.

Initially, the CJ-Tree consists of a set of disconnected leaf nodes (at level 0) and the region

graph consists of model factors connected in a factor graph structure, i.e., each model factor

is connected to a CJ-Tree region node via a separator. Joining roots at level l of the CJ-Tree

to produce join-nodes at level l+ 1 in the CJ-Tree modifies the hierarchical region graph by

creating inter-resolution separators between levels l and l + 1, which are joined to produce

regions at level l+1; finally, separators between regions at level l+1 are added. These terms

are detailed as follows:

Inter-Resolution Separators: For each region r at level l, its parent separator’s CJ-scope

is equal to the union of parents of each element of the child separator’s CJ-scope,

sc�(s↑) = ∪j∈sc◦(r) N↑(j). This means that each dimension of the parent separator

factor is coarser than each dimension of the child region factor.

Regions: The regions at level l+1 are formed by joining the intra-resolution separators along

with the join-nodes at level l + 1 in the CJ-Tree. The region scopes are determined

as follows. First, define the operator pushUp(s) = ∪c∈sc�(s)N↑(c) that expands each

dimension of the scope to higher levels in the CJ-Tree and is applied to intra-resolution

separators. The region scopes at level l + 1 are the set of unique scopes sc◦(Rl+1) =

{pushUp(s) : s ∈ Sl+1
l }, and the children of each region are equal to the set of intra-

resolution separators whose up-scope matches it N↓(rl+1) = {s ∈ Sl+1
l : pushUp(s) =

sc◦(rl+1)}.

For example, in the Figure 6.4, the separators CJ-scope sc�(s) = (A1
0, E

1
0), sc�(s′) =

(A1
0, F

1
0 ), sc�(s′′) = (B1

0 , E
1
0), and sc�(s′′) = (B1

0 , F
1
0 ) have pushUp(s) = pushUp(s′) =
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pushUp(s′′) = pushUp(s′′′) = (AB1, EF1) which is the CJ-scope of their common parent.

Intra-Resolution Separator: There is an intra-resolution separator between any region

and a uni-CJ-variate region. That is, for each region rl+1 at level l + 1, and each uni-

CJ-variate region j ∈ sc◦(rl+1), there is a separator s with CJ-scope sc◦(s) connecting

rl+1 and j.

Global Structure The region graph at level l + 1 can be seen as a lower resolution region

graph than the graph at level l. That is, it has the same structure as the level l graph but

over larger hyper-RVs.

For example, consider G0 as the region graph of a pairwise complete graph. At level l, Gl

consists of all regions with CJ-scope size two connected via separators to all regions with

CJ-scope size one Figure 6.4 shows a subgraph of the region graph G; at the bottom of the

figure (boxed in red) is a subgraph of the level l subgraph Gl; at the top of the figure is a

subgraph of the level l + 1 subgraph Gl+1.

Another example is a where G0 is a n×n grid where each RV has domain size k. If we form

groups of RVs as 2× 2 blocks, then G1 is a n/2× n/2 grid where each hyper-RV represents

k4 ground states.

6.5.1.2 Selecting the Join

The quality of the bound depends heavily on the grouping of RVs at each level. This problem

is related to the choice of regions in a standard region graph relaxation which is a difficult

and still largely open problem. One option to tackling this problem is to compare joins based

on their (local) decrease in the variational objective. In our framework using factors with

state space symmetry, this would also require selecting the initial state space partitions for

the joined factors. These choices present us with an interesting but difficult problem that
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we defer until future work. In the experiments in this chapter, we test on graphs where

a reasonable grouping can be selected from the graph structure. For example, in complete

graphs, no structural information can be used to distinguish among groupings; in grid graphs,

we use a linear ordering that forms groups of neighboring nodes.

6.5.2 SplitSS { Splitting a State Space Partition

A SplitSS operation keeps the structure of the CJ-Tree fixed and selects a group of states

in the CJ-LSS-Tree to split into two finer groups. This allows us to represent functions that

treat the two finer groups distinctly (whereas before the split they were treated identically).

We first describe the modification to the inference structure that is induced by the split of

a single state space partition into two groups; this modifies the CJ-LSS-Tree and associated

MD-LSS-factors. Then we discuss how to select the partition to split and how to split it.

6.5.2.1 Structure Modi�cation

A SplitSS operation splits the ground state set associated with a coarsen-LSS-node y�c ∈ D̄�
c

into two sets represented by new coarsen-LSS-nodes y�c
′

and y�c
′′
. This operation does not

affect the ground state sets of any other coarsen-LSS-nodes.

Figure 6.5 will guide our discussion; for simplicity, it represents a univariate coarsening

whose CJ-Tree T is a simple chain. Figure 6.5b shows a CJ-LSS-Tree and Figure 6.5c shows

the CJ-LSS-Tree after splitting the middle coarsen-LSS-node y�c associated with ground

state sets gr(y�c ) = {1, 3, 5} into two coarsen-LSS-nodes associated with ground state sets

gr(y�c
′
) = {1} and gr(y�c

′′
) = {3, 5}.

A SplitSS operation requires the following modifications to the CJ-LSS-Tree:

Children: We split the children set of y�c into two groups, such that {N̄↓(y�c
′
), N̄↓(y�c

′′
)}
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(a) CJ-Tree T

{0,2}
{4}

{1,3,5}

(𝑣; 0) (𝑣; 1) (𝑣; 2) (𝑣; 3) (𝑣; 4) (𝑣; 5)

{0,2,4} {1,3,5}

(b) CJ-LSS-Tree T̄ t at time-step
t

{0,2}
{4}

{1} {3,5}

(𝑣; 0) (𝑣; 1) (𝑣; 2) (𝑣; 3) (𝑣; 4) (𝑣; 5)

{0,2,4} {1,3,5}

(c) CJ-LSS-Tree T̄ t+1 at time-
step t+ 1

Figure 6.5: Example showing modifications to the CJ-LSS-Tree resulting from splitting a
single ground state set into two. (a) Univariate CJ-Tree T is a simple chain; squares represent
coarsening, circles represent joins (the node has no siblings, so the join is simply an identity
operation), (b) CJ-LSS-Tree T̄ t at time-step t, (c) CJ-LSS-Tree T̄ t+1 at time-step t+ 1 after
coarsen-LSS-node (square) associated with ground set {1, 3, 5} is split into {1} and {3, 5}.
The modified nodes and edges are highlighted while the unmodified are shown in original
colors. Note that each top nodes represents the same ground state set before and after the
split (both have the same labels). This illustrates that splitting only affects local symmetry
(and does not propagate up the tree).

partitions N̄↓(y�c ); this is represented by blue square nodes and magenta edges in the

figure. Note that the finer ground state sets {gr(y�c
′
), gr(y�c

′′
)} partition the original

ground state set gr(y�c ) since the ground state set associated with each LSS-node is

the union of its childrens’ ground state sets.

Parent Join Node: Splitting the coarsen-LSS-node y�c into two causes each of its parent

join-LSS-nodes y◦j ∈ N̄↑(y�c ) to split into two join-LSS-nodes y◦j
′ and y◦j

′′ (this is rep-

resented by the green nodes and the light red edges in the figure). Each of these

new nodes has the same LSS-children as y◦j except with y�c replaced by y�c
′

and y�c
′′
,
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respectively. That is,

N̄↓(y◦j
′) = (N̄↓(y◦j ) \ y�c ) ∪ y�c

′

N̄↓(y◦j
′′) = (N̄↓(y◦j ) \ y�c ) ∪ y�c

′′

Parent Edges: Each parent coarsen-LSS-nodes y�c↑ ∈ D̄
�
c↑

must have identical ground state

set before and after the split. This is accomplished as follows: if a node was in the

child set, then both of its split nodes are in the child set (this is represented by the

dark red edges in the figure). That is,

N̄↓(y�c↑) = (N̄↓(y�c↑) \ N̄↑(y
�
c )) ∪

∪y◦j∈N̄↓(y�c↑ )∩N̄↑(y�c ) {y◦j
′, y◦j

′′}

where the set N̄↓(y�c↑) ∩ N̄↑(y
�
c ) ⊂ D̄◦j↑ is the set of join-LSS-nodes that are children of

y�c↑ and that split.

Splitting the Region Graph Factors Each table element in the region graph that is asso-

ciated with a LSS-node that split, splits into two. Each new node is assigned the same value

in its factor table as the node that split. Thus, the factor after the split can represent a finer

resolution function, but it is initialized with the old coarser resolution function.

For example, for an initial MD-LSS-factor table,

 a d g
b e h
c f i

 splitting the second LSS-node,

as in Figure 6.5, into two results in a MD-LSS-factor table whose second row is split into

two rows with identical value


a d g
b e h
b e h
c f i

.
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6.5.2.2 Selecting the Split

The previous section showed how the inference structure changes when a coarsen-LSS-node

y�c ∈ D̄�
c (associated with coarsen-node c ∈ D�) is split into two finer groups y�c

′
and y�c

′′
.

This section discusses how to select (i) the state set y�c ∈ D̄�
c to split, and (ii) the finer

groups y�c
′

and y�c
′′
.

First, we select the state set attaining the local MAP configuration y�c
∗

= arg maxy�c ∈D̄�
c
θ̄δ̄c(y

�
c )

where θ̄δ̄c(y
�
c ) are the preliminary estimates of the max-marginals. Second, we split the fine

resolution children N↓(y
�
c
∗
) into two groups of (roughly) equal size based on their max-

marginals: those with the highest scoring max-marginals in one group and those with the

lowest scoring max-marginals in the other group. Intuitively, we expect the high scoring

group to represent more precise information at the upper level, thus allowing a higher quality

solution to be found; we expect the lower scoring group to not attain the MAP configuration

(that is, after inference information propagates). The equal size restriction is a heuristic that

prevents us from having to choose an unequal allocation of group size (which is difficult to

do based on local information).

Note that the split selection presented here is similar to the selection used by Sontag et al.

[2009]. In that work, they created a group for each of the top-scoring (by max-marginal)

k1 states and an “other” group for the lower scoring states. Our approach of splitting into

larger groups allows for more gradual splits, thus allowing inference information to propagate

before choosing future splits.

Balanced Cost The previous section showed how to select a coarsen-LSS-node associated

with coarsen-node c ∈ D� to split and how to split it. Another issue is selecting the coarsen-

node c ∈ D�. In theory we can allocate work disparately throughout the graph; that is,

we can introduce finer resolution state sets where they have the biggest impact on inference

quality. However, making this selection is difficult.
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To avoid the selection problem, we assume that work is balanced throughout the graph. That

is, each coarsen-node c ∈ D� corresponds to the same number k̄ of state space partitions,

i.e., |D̄�
c | = k̄. Our anytime inference algorithm in Section 6.5.3 incrementally increases k̄,

resulting in finer and finer inference approximations.

Other Ways to Select the Split Other ways to select the split are possible. One alternative

would measure the (local) decrease in the inference bound. That is, it would examine the

effect of the split on the high-order interactions. This would potentially lead to more accurate

selection, but seems to be a fairly difficult problem for two reasons. First, the split affects

the factor tables at (many) incident regions. Second, this would require a search over an

exponential number of splits.

In contrast, our simple approach above provides a very cheap way to select the split. Never-

theless, future work should be directed toward a more systematic analysis of the split selection

problem, including appropriate metrics for the selection, and trading off computational cost

spent in selecting the split with inference cost.

6.5.3 Anytime Inference

This section presents an anytime inference algorithm, shown in Algorithm 11, that inter-

leaves inference with SplitSS and AddLvl modifications. The outer loop executes until all

computational resources have been exhausted. It performs inference on the current graph

structure (in Step 1) then, if memory resources are not exhausted, chooses a transition to a

higher cost and higher accuracy graph via SplitSS operation or AddLvl operation (in Step

2) We describe some aspects of the algorithm that require further detail below.
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Algorithm 11 Anytime Inference for Hierarchical Region Graphs

Input: An initial region graph G0, a number of inference sweeps on each modified graph I,
the available memory and computational cost τmem and τcpu.

Output: Inference summary as pairs of objective evaluation and iteration cost {(Lt;i, ct;i) :
t ∈ [m′], i ∈ [I]+}, transition types between graphs {markert+1

t : t ∈ [m′ − 1]}.
Initialize: t← 0, marker0

−1 ← Init, τ−1:0
SS ← C(G0), k̄0 ← 1;

while
( ∑
t′∈[t−1]

∑
i∈[I]+

ct′;i ≤ τCPU

)
do

Step 1 (Inference): Inference hot-started at the old parameterization:

(δt, Lt;·, ct;·) = InferDD(G
t−1, δt−1; I)

Step 2 (Transition): Transition to a graph with higher cost and accuracy:

(i) τ t;t+1
SS ← min(τ t−1;t

SS · 4, τmem), k̄t+1 = k̄t · 2;

(ii) (Gt+1
SplitSS, marker SplitSS) = SplitSS(Gt, τ t;t+1

SS , k̄t+1)

(iii) (Gt+1
AddLvl, marker AddLvl) = AddLvl’(Gt, τ t;t+1

SS , k̄t+1)

(iv) token = SelectSplitOrJoin(GsplitSS, GaddLvl)

(v) Gt+1 = Gt+1
(token), markert+1

t ← flag (token);

3. t← t+ 1;
end while

6.5.3.1 Balancing Inference Cost with Structure Modi�cation

One aspect that we have not discussed so far is balancing the inference cost with selection

of the modification (SplitSS or AddLvl). In theory, this could be selected adaptively by

predicting the benefit of another iteration of inference versus any of the modifications. But,

in practice, this selection is difficult. Instead, we use a balanced allocation that performs I

global inference iterations (where I is a meta-parameter) then transitions to a graph with

an inference cost that is approximately τ t;t+1
SS .

The inference cost is controlled by the parameter k̄t that controls the number of state space

partitions at each node. This is multiplied by a constant factor at each iteration. Thus,

the SplitSS function in this algorithm iteratively performs individual splits (as described in
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Section 6.5.2.2) until each coarsen-node c ∈ D� has k̄t partitions, i.e., |D̄�
c | = k̄t.

The function AddLvl’ performs an AddLvl operation then SplitSS operation throughout the

graph. The reason for this is that at higher levels, the AddLvl operation adds only a small

amount of work to the graph, i.e., it does not attain the desired doubling of inference cost.

Splitting throughout the graph ensures that the modified graph has double the cost of the

original graph.

6.5.3.2 Choosing Between SplitSS and AddLvl

In our initial experiments, it seemed beneficial to add levels as soon as possible. This allows

very large scope regions with coarse state space symmetry to be added early and refined later.

Thus, we did not develop a way to select between SplitSS and AddLvl’ (which, additionally,

would be a difficult problem); instead, we chose AddLvl’ until all the RVs have been joined

(i.e., the inference structure contains a large clique over all RVs); at this point, only the

SplitSS operation is available. The move that was taken is represented by the ”marker”

tag which will be denoted in the plots in the experiments section.

Note that the property that the CJ-LSS-Tree can be split at an intermediate level – and is

not prevented from doing do by the presence of higher levels – provides a crucial source of

flexibility in our anytime framework. In particular, it allows us to quickly add high-order

regions before splitting the lower levels to their final resolutions. Thus, choosing to add a

level at “the wrong time” is not as detrimental as it would be if intermediate splits in the

CJ-LSS-Tree were prohibited.
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(c) UAI 20x20 wrapped grid

Figure 6.6: Comparison of three different state space splitting procedures (colored curves)
on three different model instances (subfigures). The y-axis measures the decomposed MAP
objective. Each method was allowed a maximum of 108 table elements in the hierarchical
region graph (to bound memory cost). Methods were run for 600 seconds. The UAI object
detection instance (panel (b)) did not visually converge in that time and was run for longer
to better distinguish among methods. The main text contains further discussion of these
results.

6.6 Experiments

This section empirically validates the main claims in this chapter. Namely, (a) that we can

efficiently incorporate larger-scope factors than possible with conventional methods (dense

join), (b) that we can adaptively discover a good hierarchical coarsening using inference

information, and (c) that this procedure can be applied without model assumptions such as

large RV domain size (e.g., required by Sontag et al. [2009]) or exact symmetry in factors

and structure (e.g., required by [Milch et al., 2008]). We demonstrate good performance on

generic graphical models. These initial results are promising. Furthermore, future work that

selects the inference structure more accurately should produce increasing gains.

6.6.1 Setup

The main goal of our work is to demonstrate the effectiveness of using hierarchically defined

state space partitions for inference. We compare between the standard method of full-join
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(yellow curve) with no coarsening and two methods for selecting the state space partitions

(i.e., the CJ-LSS-Tree): splitting using inference information as described in Section 6.5.2.2

(blue curve), and splitting the largest group at each node such that state space partitions

represent (roughly) the same number of ground states (red curve).

To facilitate this comparison, we ensure that each method uses the same CJ-Tree (RV hier-

archy); this ensures that performance differences between methods result from the choice of

state space partitions. In these experiments, we test on models where a reasonable grouping

can be selected from the graph structure a priori ; in complete graphs, all groupings are

structurally indistinguishable; in grid graphs, we use a linear ordering that forms groups of

neighboring nodes.

Inference Inference is performed using block-coordinate descent with star neighborhood

blocks centered at each region. For ground inference, this optimization algorithm was de-

scribed in Section 2.4. For coarse univariate factors (which we discussed in Section 6.2),

Sontag et al. [2009] presents a similar block coordinate descent algorithm where closed-form

updates use a coarse max-projection operation. In our hierarchical model, we essentially use

the same updates but over larger clusters of RVs.

Initialization and Plotting Recall that our goal is to evaluate the effectiveness of different

structures tightening the “standard” dual decomposition relaxation whereby each model fac-

tor is connected to a univariate factor associated with each RV in its scope (the “factor-graph”

topology). Consequently, inference on this initial structure is first run for 100 iterations for

each method. The top left of the plot begins after its completion.

After this, we interleave a fixed number, I = 20, of global inference iterations with structure

modification. Each modification either chooses and refines a set of coarsenings throughout

the current graph (marked with an “x” on the plot) or adds another level of RVs before
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refinement throughout the graph (marked with an “o” around an “x”). At each modification,

the method quadruples its work (or gets as close as possible). If only a larger step is possible,

e.g., the full-join method, the method is permitted to take it as long as it does not exceed

a memory bound. When the memory bound is reached, it continues inference at its current

structure (marked with a “*”) until it hits a time bound.

In our preliminary experiments, always choosing to add a level (until none are left, then

splitting) often performed best, hence we use it in our reported experiments. Thus, curves

have circled x’s until all the RVs are joined, then they have regular x’s. Note that we can

read off the number of RVs in the scope of the largest join-node from the graph (indicating

the size of regions being reasoned over). The number of RVs in the scope of the largest

join-node doubles with each level and consequently is equal to 2k where k is the number of

crossed o’s before it.

6.6.2 Models and Results

We now discuss the test models and results.

Perturbed Symmetric Complete Graph This is a simulated model. It is a complete

symmetric graph perturbed by a deletion of 50% of its edges at random. Recall from this

chapter’s introduction (and detailed in Section 3.8) that a symmetric complete graph gives

rise to a counting factor over all RVs; we expect a similar set of state space partitions to

work well in the perturbation. In this model, we expect methods that reason using factors

with state space partitions to provide a huge gain over the standard method that reasons

with dense table (since the counting factor is represented with a small number of state space

partitions).

The pairwise terms in the model have potential

[
a 0
0 a

]
. Since the low-order relaxation is

accurate for attractive (a > 0) models, we test on a repulsive model with a = −1 where
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high-order regions are crucial for accurate approximate inference.

Methods that look for exact symmetry, like Milch et al. [2008], or methods that perform

coarsening on RVs with large domain size, like Sontag et al. [2009], cannot be applied to a

model of this form. Our results show that our hierarchical methods are able to build large-

scope terms and moreover that these result in a significant improvement over full join which

only incorporates moderate sized groups. The utility of objective-based selection (blue) over

none (red) is also demonstrated.

UAI Object Detection This model comes from the UAI challenge benchmark Elidan et al.

[2012]. Models of this class have moderately-size RV domains (10-20), often dense connec-

tivity. Our test model (Giraffe rescaled 5025.K20.F100) is a complete graph on 60 with RV

domain size 21. This test demonstrates the effectiveness of our method on problems where

the model factor tables are unstructured.

The full join (yellow curve) performs one RV grouping (yielding CJ-Tree representing pairs

of nodes, and a region graph whose factors use four RVs) before exceeding the memory

bound. In the plot, a single join is performed then all markers are stars (“*”) meaning that

memory has been exhausted and batches of inference with I iterations are continued on

this structure. In contrast, methods that use state space partitions can tractably perform

many joins, producing large scope factors, eventually over the entire model. We see that

the objective-based split selection (blue curve) is superior to the non-objective-based split

selection (red curve).

Wrapped Grid This model is a 20x20 wrapped grid (grid20x20.f15.wrap) from the UAI

benchmark Elidan et al. [2012]. This is a sparsely connected model in contrast to the previous

two complete graphs. Additionally, it has binary RVS so the univaraite coarsening method

of Sontag et al. [2009] would be inapplicable. While the full join (yellow curve) reaches
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its memory bound quickly, the other methods are able to continue. Again, objective-based

splitting (blue curve) is superior to non-objective-based splitting (red curve).

6.7 Conclusions and Future Work

In this chapter, we introduced an inference framework that reasons about factors with state

space symmetry. In contrast to standard inference methods that use dense tablular factors

which are restricted restricted to reasoning over small groups of RVs, we are able to construct

inference terms over large groups of RVs at controlled cost. We showed that our framework

generalizes many previous attempts to incorporate factors with state space symmetry. These

include projected message passing algorithms [Gogate and Domingos, 2013] (which require a

fixed region graph), univariate domain coarsening [Sontag et al., 2009] (which requires RVs

with large domain size), recursive cardinality models [Tarlow et al., 2012] (which is specific

to counting factors and requires a fixed graph structure), and symmetric counting models

[Milch et al., 2008] (which use a specific rule to identify symmetric group of factors that

aggregate to a counting factor).

Our framework centers around a hierarchical state space partition over increasingly large

groups of RVs. The state space partitions were defined recursively via coarsening and joining

operations; this allows large and complex state space partitions to be built up efficiently.

Furthermore, our structure can be interleaved with inference and selected adaptively. We

demonstrated good results on a wide variety of problems; our experiments showcased our

ability to select the inference structure adaptively using preliminary inference information.

Some directions for future work are detailed below.

The inference quality depends heavily on the choice of inference structure; in our framework,

this is the choice of RV groups (via AddLvl operation) and state space partitions (via SplitSS
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operation). Future work should look into more intelligent ways to select the grouping of RVs

and state space partitions. This should include a systematic investigation of different metrics

for judging the quality of each transition.

The central contribution of this chapter was a method for intelligently selecting a symmetric

inference structure. This chapter focused on the MAP inference problem, but our method

should be applicable to other inference and learning tasks where we use the same structure

but a different objective function. Future work should look into other inference problems

and objectives such as, decoding the MAP solution to produce a MAP configuration, per-

forming approximate sum-inference using the generalized dual decomposition (or weighted

mini-bucket elimination), and performing approximate maximum likelihood learning.
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Chapter 7

Conclusions and Future Directions

The central goal of this thesis was to develop more intelligent ways to represent and reason

using (approximate) symmetries in PGMs for two distinct classes of problems. The first half

our of novel work (in Chapter 4 and Chapter 5) operates on models with symmetric factors

perturbed by asymmetric evidence. The second half of our novel work (in Chapter 6) operates

on classic PGMs (with no symmetry) and tightens the inference relaxation by adding factors

with state space symmetry using a sophisticated grouping of states. Although these two

problem classes are very different, the methods we develop for exploiting and representing

symmetry share deep similarities. The following section discusses our contributions in more

detail.

7.1 Our Contributions

In Chapter 4 and Chapter 5, we addressed the problem of performing approximate inference

in large symmetric models perturbed by evidence (asymmetries). While a large body of

literature had previously existed for lifted inference in the presence of perfect symmetry, few

works address the significant practical problem posed by asymmetric perturbations.

In our Lifted GDD Algorithm in Chapter 4, we introduced coarse-to-fine lifted inference
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procedures which maintained both (i) strong control over the computational cost of the

approximation (in contrast to approaches which exploit exact symmetry), and (ii) a concrete

connection to the ground problem (in contrast to approaches which form a heuristic over-

symmetric model approximation with unquantifiable bias). Empirically, we demonstrated

a superiority to ground inference approaches which grows larger with model size. We also

demonstrated the utility of adaptively selecting the coarse-to-fine refinement using inference

information.

Our Lifted WMB Algorithm in Chapter 5 extended our Lifted GDD Algorithm in Chapter

4 by introducing large scope factors into the inference relaxation for MLN models. This

provided two axes of approximation: small to large scope factor templates and coarse-to-fine

symmetry groups. To our knowledge, this was the first algorithm with this flexibility.

In Chapter 6, we addressed the problem of incorporating state space symmetry into infer-

ence relaxations for classic PGM models with asymmetric factors. The centerpiece of our

algorithm was a novel hierarchical state space partition which recursively built complex state

space symmetry over large groups of RVs from state space symmetry over small groups of

RVs. A collection of factors using these state space partitions were constructed; these fac-

tors had aligned symmetry by construction and could thus pass messages among each other

without breaking symmetry. We demonstrated that this complex inference structure could

be constructed dynamically, where the state space symmetry is constructed in a coarse-to-

fine manner. We showed that our framework encompasses properties of several previously

proposed frameworks as special cases, including the standard method that joins dense fac-

tor tables, aggregating symmetric groups of factors to a counting factor, and performing

inference with a nested hierarchy of counting factors. We demonstrated promising empirical

results on a number of UAI benchmark problems, and discussed how the flexibility of our

method invites many avenues of future work.
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7.2 Future Directions

Our work in this thesis opens up many new research directions. Below are a few suggestions.

Fusing state space and factor symmetry: We developed algorithms for state space sym-

metry and factor symmetry separately. However, throughout the thesis we highlighted

the deep similarities between algorithms for each class of symmetry. These similarities

suggest a hybrid approach that operates on models with state space symmetry and

factor symmetry should be possible within the frameworks that we developed.

Fusing top-down and bottom-up information: Our work on Adaptive Hierarchical State

Space Partitions in Chapter 6 builds large-scope factors from small-scope factors in a

bottom-up fashion. In contrast, our work on Lifted GDD Algorithm in Chapter 4 and

Lifted WMB Algorithm in Chapter 5 work in a top-down fashion: a large symmetry

group (over many RVs) is split into finer groups, each over a smaller number of RVs.

Ideally, we would like to be able to introduce incremental complexity into the ap-

proximate inference structure using a hybid of bottom-up and top-down approaches:

bottom-up approach would correspond to grouping evidence terms, while top-down

splits coarse symmetry grouping in model factors.

Symmetry group selection: Each framework in this thesis relies on adaptively selecting

the symmetry partition. This choice has a huge impact on the quality of the inference

approximation, but in this thesis we presented very simple selection metrics. Future

work should look at more principled methods of selecting the symmetry and conduct

a rigorous empirical comparison of competing methods.

Inference Objective: The primary contributions in this thesis dealt with organizing the

structure of inference computations to control shattering (symmetry breaking). Con-

sequently, the central ideas regarding the inference structure should be applicable to

201



problems with different choices of the inference objective. In particular, we should be

able to extend these methods to maximum-likelihood based learning (which requires

evaluation of the partition function), which is a fundamental problem in PGMs.
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