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Abstract. The aim of this note is to give a simplified proof of the induced version of the
Ramsey theorem for vector spaces first proved by H. J. Prömel in 1986.
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Mathematics Subject Classifications. 05D10, 15A03

1. Introduction

We consider a Ramsey type result for vector and affine spaces. Let q be a prime power and Fq

the finite field of order q. For our exposition, we will call a vector space or an affine space
(translation of a vector space) over Fq by space. A space U of rank k will be called a k-space.
For a space U of rank at least k, we denote by [ Uk ] the set of all k-subspaces of U . By the relation

N → (n)k,spr

we denote the fact that for any coloring of the k-subspaces of an N -space V with r colors, there
exists a n-subspace U ⊆ V such that [ Uk ] is monochromatic, i.e., any k-subspace of U has the
same color.

In [GR70], Rota conjectured that a version of Ramsey’s theorem [Ram30] holds for vec-
tor spaces. Graham and Rothschild proved in [GR71] a Ramsey theorem for n-parameter sets,
which in particular implies the 1-dimensional case of Rota’s conjecture (Corollary 2, [GR71]).
Together with Leeb, they fully settled the conjecture in [GLR72] by proving a more general
Ramsey theorem for a class of categories that includes structures as vector spaces, affine spaces
and projective spaces. A simpler proof was given later by Spencer [Spe79].
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Theorem 1.1 ([GLR72, Spe79]). For integers k, n, r with 0 ⩽ k ⩽ n, there exists
N0 := N0(k, n, r) such that if N ⩾ N0, then N → (n)k,spr holds.

Note that Theorem 1.1 holds for both vector spaces and affine spaces, though the minimum
value of N0 may depend on the case. Our goal in this note is to give a short proof of an induced
version of Theorem 1.1. Such versions were considered for hypergraphs in [NR77, NR82, NR83,
AH78, BR16]. The following theorem is due to Prömel.

Theorem 1.2 ([Prö86]). Let 0 ⩽ k ⩽ n and r be positive integers, let C be an n-space
and F ⊆ [ Ck ] be a family of k-subspaces of C. Then there exists N , an N -space X and a
family H ⊆ [Xk ] of k-subspaces of X such that for any coloring of H with r colors, there exists
an n-space U ∈ [Xn ] with [ Uk ] ∩H monochromatic and isomorphic to F (see Definition 2.1).

The original proof of Theorem 1.2 given in [Prö86] is not simple. The proof was later simpli-
fied in [FGR87] where the authors based their argument in a partite amalgamation construction,
a technique that was used before to obtain similar results for graphs and hypergraphs [NR82].
We further simplify the proof by avoiding the use of a partite amalgamation. In fact, our proof
will be based only on Theorem 1.1 and the Hales–Jewett theorem [HJ63].

2. Preliminaries

The proof of Theorem 1.2 is written in a way that holds both for the vector and affine space
versions. In this section we define some common notation and state some common properties
for both types of spaces.

In a vector space V , a linear combination
∑n

i=1 αivi with
∑n

i=1 αi = 1 is called an affine
combination. A subsetU of V is called an affine space ifU is closed under affine combinations.
All affine subspaces of V are of the form U = v0+W , where v0 ∈ V and W is a linear subspace
of V .

We now list a number of properties which are shared by vector and affine spaces. For the
remainder of this note, we use general language to refer to both vector spaces and affine spaces
simultaneously. For example, space will refer to either a vector space or an affine space, and
combination will refer to a linear combination in a vector space context or an affine combination
in an affine space context.

A subset W of U which is closed under combinations is called a subspace of U . A
map φ : U → V between spaces U and V which preserves combinations is called a homo-
morphism. A bijective homomorphism is called an isomorphism. A subset B of a space U
generates a subspace ⟨B⟩ of U via combinations. If every element of ⟨B⟩ has a unique rep-
resentation as a combination of elements of B, we say B is independent. We call B a basis
for U if B is independent and ⟨B⟩ = U . The size of a basis for U is an invariant of U , called its
rank, which we denote rank(U). Two spaces are isomorphic iff they have the same rank. We
call a space of rank k a k-space. We denote the set of all k-subspaces of U by [ Uk ]. Perhaps less
standard is the following definition, pertinent to Theorem 1.2.
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Definition 2.1. Given two spaces V and Ṽ , we say that a family F ⊆ [ Vk ] of k-subspaces of V
is isomorphic to a family F̃ ⊆

[
Ṽ
k

]
of k-subspaces of Ṽ if there exist subspaces U ⊆ V

and Ũ ⊆ Ṽ and an isomorphism φ : U → Ũ such that F ⊆ [ Uk ] and F̃ ⊆
[
Ũ
k

]
, and φ induces a

bijection between F and F̃ .

An important property for us is the following: If a space U has basis B, then for every
space V , every map φ : B → V extends to a unique homomorphism φ̃ : U → V . Similarly,
for a collection {Ui}ℓi=1 of spaces with respective finite disjoint bases {Bi}ℓi=1 with

⋃ℓ
i=1Bi

independent, we define the direct sum
⊕ℓ

i=1 Ui of {Ui}ℓi=1 to be the space
〈⋃ℓ

i=1Bi

〉
. The

direct sum has the property that for every space V , every collection {φi : Ui → V }ℓi=1 of
homomorphisms extends to a unique homomorphism φ :

⊕ℓ
i=1 Ui → V satisfying φ|Ui

= φi

for each i = 1, . . . , ℓ.
The last property that we mention is that any independent set B0 in U can be extended to a

basis B = B0 ⊔B1 for U , and in that case, U = ⟨B0⟩⊕ ⟨B1⟩. Consequently, every subspace W
of U has a complementary subspace W c of U such that U = W ⊕W c.

3. Proof of Theorem 1.2

Let N0 := N0(k, n, r) be the integer given by Theorem 1.1 such that N → (n)k,spr for N ⩾ N0,
and let E be an N0-space. For each n-space U ∈ [ En ], consider an isomorphism φU : C → U .
The isomorphism φU induces a copy FU of F in U given by

FU := {φU(F ) : F ∈ F}.

For each k-space F ∈ FU , there exists an (N0 − k)-subspace F c ⊆ E such that E = F ⊕ F c.
We now consider a space V of rank |[ En ]| (n+(N0−k)|F|) with basis BV , and we partition BV

as

BV =
⋃

U∈[En ]

(
BU ∪

⋃
F∈FU

BF c

)
,

where each BU is of size n, and each BF c is of size N0 − k. Now for each U ∈ [ En ] and for
each F ∈ FU , we have copies WU := ⟨BU⟩ of U and WF c := ⟨BF c⟩ of F c such that

V =
⊕

U∈[En ]

(
WU ⊕

⊕
F∈FU

WF c

)
.

Note that by construction there exists an isomorphism πU : WU → U for each n-subspace U
of E. The isomorphism πU creates a copy FWU

of FU in WU consisting of those k-sub-
spaces WF := π−1

U (F ) which are mapped to some F ∈ FU . Let G be the collection of
k-subspaces of V given by

G :=
⋃

U∈[En ]

⋃
F∈FU

[
WF⊕WFc

k

]
,
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i.e. G consists of all of the copies FWU
of F , with each WF ∈ FWU

completed to its own private
copy

[
WF⊕WFc

k

]
of [ Ek ].

Consider the homomorphism π : V → E defined in the following way. For each U ∈ [ En ],
we have the isomorphism πU : WU → U ⊆ E. Similarly, for each F ∈ FU , we have an
isomorphism πF c : WF c → F c ⊆ E. We define π : V → E to be the unique homomorphic
extension of the maps πU and πF c to V ; that is, π|WU

= πU for each U ∈ [ En ], and π|WFc = πF c

for each F ∈ FU .
Let

Y = {WF ⊕WF c : U ∈ [ En ], F ∈ FU}

be the set of N0-spaces covering G. Note that by construction π induces an isomorphism from
each Y ∈ Y to E. In particular, it identifies each k-space in G with a k-subspace of E. Thus
one can view π as a projection of the collection Y onto the N0-space E.

We will apply the Hales–Jewett theorem [HJ63] to the alphabet Y . For that, we first establish
some notation. Given an alphabet A = {a1, . . . , at}, we say that an element S = (s1, . . . , sN)
of AN is a word of length N . A collection {S1, S2, . . . , St} of t words of length N with
Si = (si,1, . . . , si,N) is a combinatorial line if there exists a partition [N ] = IM ∪ IF , IM ̸= ∅,
and a sequence {bj}j∈IF of elements of A such that

si,j =

{
ai, for j ∈ IM

bj, for j ∈ IF

for 1 ⩽ i ⩽ t and 1 ⩽ j ⩽ N . We will refer to IM as the moving part and IF as the fixed part.
The Hales–Jewett theorem asserts that given integers t, ℓ ⩾ 1, there exists integer N := N(t, ℓ)
such that the following holds. For any alphabet A of size t and any ℓ-coloring of the set of
words AN , there exists a monochromatic combinatorial line L ⊆ AN . Let N1 be the integer
obtained by the Hales–Jewett theorem for t = |Y| and ℓ = rm, where m = |[ Ek ]|.

We will now construct our collection of k-spaces H. Let X ⊆ V N1 be the set defined by

X =
{
(x1, . . . , xN1) ∈ V N1 : π(x1) = π(x2) = . . . = π(xN1)

}
,

i.e., X is the set of points in V N1 with same π-projection over E. It is not difficult to check
that since π is a homomorphism, the set X is a space of rank N ⩽ rank(V N1). We extend the
map π : V → E to a map π̃ : X → E by taking as image the common value of π through all
coordinates, i.e.,

π̃(x1, . . . , xn) = π(x1).

For any p ⩽ N0, given p-subspaces A1, . . . , AN1 ⊆ V with π(A1) = · · · = π(AN1) and π
injective on each Ai, we denote

(A1, . . . , AN1) := {(x1, . . . , xN1) ∈ X : xi ∈ Ai, π(x1) = · · · = π(xN1)}

as the p-subspace of X with elements in A1× . . .×AN1 . Let H be the collection of k-subspaces
of X given as follows:

H = {(G1, . . . , GN1) : Gi ∈ G, π(G1) = π(G2) = . . . = π(GN1)} .
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We claim that for any r-coloring of H, there exists a n-space U such that [ Uk ]∩H is monochro-
matic and isomorphic to F .

To check that, we need some preparation. Note that every N1-tuple (Y1, . . . , YN1) ∈ YN1 is
an N0-subspace of X since π(Y1) = . . . = π(YN1) = E. Hence, a combinatorial line of YN1

is a collection of |Y| distinct N0-subspaces of X . In fact, the next proposition shows that this
collection is isomorphic to Y as a collection of N0-spaces.

Proposition 3.1. LetZ ⊆ YN1 be a combinatorial line ofYN1 . Then there exists a space Ṽ ⊆ X
and an isomorphism φ : Ṽ → V such that Z is a collection of N0-spaces of Ṽ and φ induces
a bijection between elements of Z and Y . Moreover, the map φ also satisfies π ◦ φ = π̃|Ṽ and
induces a bijection between the k-spaces of

[
Ṽ
k

]
∩H and the k-spaces of G, i.e.,

[
Ṽ
k

]
∩H ∼= G.

Proof. Suppose without loss of generality that the fixed part of Z consists of the first f indices
and the moving part consists of the remaining N1 − f indices, i.e.,

Z = {(Z1, . . . , Zf , Y, . . . , Y ) : Y ∈ Y}

for fixed elements Z1, . . . , Zf of Y . Define Ṽ ⊆ X by

Ṽ = {(z1, . . . , zf , y, . . . , y) ∈ X : zi ∈ Zi, y ∈ V, π(zi) = π(y)} ,

and the map φ : Ṽ → V by

φ(z1, . . . , zf , y, . . . , y) = y.

Clearly Ṽ is a space and φ is a homomorphism. Note that since π is an isomorphism between
each Zi and E, given y ∈ V , there exists a unique zi ∈ Zi such that π(zi) = y. Hence, φ
is an isomorphism. Also, by construction, φ sends the N0-space (Z1, . . . , Zf , Y, . . . , Y ) ∈ Z
to Y ∈ Y , giving our desired bijection.

Next, note that

π(φ(z1, . . . , zf , y, . . . , y)) = π(y) = π̃(z1, . . . , zf , y, . . . , y)

for every (z1, . . . , zf , y, . . . , y) ∈ Ṽ .
Now for every (G1, . . . , GN1) ∈

[
Ṽ
k

]
∩ H, we have that φ(G1, . . . , GN1) = GN1 ∈ G from

the definition of φ. Conversely, we can write G =
⋃

Y ∈Y [
Y
k ], so each G ∈ G is contained in

some Y ∈ Y . Since π maps each of Y, Z1, . . . , Zf ∈ Y isomorphically to E, there exists a
unique Gi in each

[
Zi
k

]
such that π(Gi) = π(G). Now (G1, . . . , Gf , G, . . . , G) is the unique

element of
[
Ṽ
k

]
∩H with φ(G1, . . . , Gf , G, . . . , G) = G. This establishes

[
Ṽ
k

]
∩H ∼= G.

Now consider an r-coloring c : H → [r]. Note that since every G ∈ G is a k-subspace of
someY ∈ Y , and the k-subspaces of each (Y1, . . . , YN1) ∈ YN1 are all of the form (G1, . . . , GN1)
with each Gi ∈

[
Yi
k

]
⊆ G, we have

H =
⋃

(Y1,...,YN1
)∈YN1

[
(Y1,...,YN1

)

k

]
.
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Therefore, for each (Y1, . . . , YN1) ∈ YN1 , c induces a color pattern on
[
(Y1,...,YN1

)

k

]
, and thus, in

view of the isomorphism π̃|(Y1,...,YN1
) : (Y1, . . . , YN) → E, also on [ Ek ]. Let cP : YN1 → [r][

E
k ]

be the coloring function from the elements of YN1 to the color patterns of [ Ek ] they induce.
By our choice of N1 and the Hales–Jewett theorem, there exists a monochromatic

combinatorial line Z ⊆ YN1 with respect to cP . Let d : [ Ek ] → [r] be the color
pattern of each (Z1, . . . , ZN1) ∈ Z . Then for every (Z1, . . . , ZN1) ∈ Z and every
(G1, . . . , GN1) ∈

[
(Z1,...,ZN1

)

k

]
, we have

c(G1, . . . , GN1) = d(π̃(G1, . . . , GN1));

i.e. the coloring of H within Z is determined by its π̃-projection over E. Let Ṽ and φ : Ṽ → V
be as in Proposition 3.1. Then G̃ := φ−1(G) =

[
Ṽ
k

]
∩ H is an induced copy of G in H

with c(G̃) = d(π̃(G̃)) for every G̃ ∈ G̃.
Since d is an r-coloring of [ Ek ], by our choice of N0, there exists a n-space U ∈ [ En ] such

that [ Uk ] is monochromatic, say in colorα. In particular, this implies thatFU ⊆ [ Uk ] is monochro-
matic in α. Now for G̃ ∈ φ−1(FWU

) ⊆ G̃, we have

π̃(G̃) = π(φ(G̃)) ∈ FU ,

and therefore c(G̃) = d(π̃(G̃)) = α. Thus φ−1(FWU
) is a monochromatic induced copy of F

in H.
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