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Supporting Statistics and Data Science Education
with learnr

Sara Stoudt
Department of Mathematics, Bucknell University

Anthony D. Scotina
Division of Mathematics, Computing, and Statistics, Simmons University

Karsten Lübke
Institute for Empirical Research and Statistics, FOM University of Applied Sciences

Abstract

A modern statistics or data science course aims to equip students with both conceptual and
computing skills. This is a challenging task as instructors do not want to increase students’
cognitive load with new tools and technical details and have to balance limited teaching time
to help students in achieving the learning outcomes of both content and tool use. Interactive
tutorials, built with the R package learnr, can support student learning with progressive reveal of
content, interactive code exercises, and quizzes with automatic feedback, and an interface with
the potential to reduce technical burdens via deployment as a web application. We describe
different use-cases for learnr tutorials including introductory and upper-level statistics and data
science courses based on our own teaching experiences. We also discuss the common benefits
and lessons learned from implementing and teaching with learnr tutorials.
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1. Introduction

Since the turn of the twenty-first century, there has been an increasing need for educational and

curricula reform in statistics with an added emphasis on computational literacy, programming,

and statistical computing at all levels (Nolan & Lang 2010). Indeed, programming and statistical

skills are highly sought-after on the job market, and “data literacy” is listed as an essential skill in

many graduate programs (Marx 2013; Blickley, Deiner, Garbach, Lacher, Meek, Porensky,

Wilkerson, Winford & Schwartz 2013). However the simultaneous instruction of statistical

concepts and statistical computing can be challenging for two main reasons: (i) statistics

instructors might be left with difficult decisions to make regarding what material to remove from

the course in order to devote adequate time to computing, which is especially challenging in

service courses which have to cover certain topics (e.g., Introductory Statistics or calculus-based

Probability); (ii) students might face an increased cognitive load, particularly those who are

learning both statistics and computing for the first time.

On the surface, statistical computing might seem like an addition to a statistics curriculum with

very little room for additions. However, the undergraduate statistics curriculum has undergone

much change over the past several decades, from the added emphasis on simulation-based

inference and the integration of data science tools in introductory courses (Tintle, Chance, Cobb,

Roy, Swanson & VanderStoep 2015; Kaplan 2018), to fostering conceptual understanding, active

learning, and communication in the upper-level mathematical statistics course (Nolan & Speed

1999; Horton 2013; Green & Blankenship 2015). Much of this reform has focused on the

integration of computing into the undergraduate statistics curriculum. For example, Nolan &

Lang (2010) advocate for teaching statistical computing in the context of solving scientific

problems, which gives students a “deeper, richer appreciation for the practice of statistics.” In

addition, others advocate for project-based learning to give students exposure to statistical



computing in the context of working through a statistical analysis from beginning to end (Nolan

& Lang 2010; Kim & Hardin 2021). However, as with any curriculum design, one must be mindful

of the impact that course materials have on students’ cognitive load.

Cognitive load theory suggests that students have a limit to their mental workload in working

memory and that instructional design should give careful consideration to the roles and limits of

working memory (Sweller, Chandler, Tierney & Cooper 1990; Cooper 1990). Three types of

cognitive load may simultaneously affect learners. Intrinsic load refers to the inherent level of

difficulty of the information presented; intrinsic load cannot be reduced through the instructor or

the design of the material and is related in part to the prior knowledge of the learner (Chandler &

Sweller 1991; Sweller & Chandler 1994). Extraneous load refers to the information that is not

essential to instruction and is related to the manner in which the instructional material is

presented. Due to the limited cognitive resources, materials designed in ways that increase

extraneous load will reduce the number of resources available to process intrinsic load. Germane

load refers to the processing of thought patterns, or schemas. Germane load can be modified by

instructors through the design of course materials in such a way that reduces extraneous load; for

example, by implementing concept mapping and self-reflection exercises.

Examples of pedagogical methods that may be used to reduce learners’ extraneous cognitive load

include worked examples and the completion of partially-solved problems (Heo & Chow 2005;

Guzman, Pennell, Nikelski & Srivastava 2019). In the worked example effect, annotated examples

are used as part of the instruction, reducing initial extraneous and germane cognitive load during

skill acquisition. Generally the worked example effect is optimized when the scaffolding provided

for certain types of problems fades during skill acquisition (Renkl 2005). However, worked

examples are not necessarily guaranteed to reduce cognitive load, for example if learners are

forced to split their attention across different learning materials. Especially relevant to the



discussion of statistical computing, Cooper (1990) provides an example of how ineffective worked

examples might appear in a coding setting, where code is used to explain a concept but the

discussion of the code is left until the end of the example.

In the problem completion effect, students are provided with a partial solution that must be

completed. Partial solutions and worked examples reduce extraneous cognitive load by reducing

the size of the problem space while still encouraging processing of the material through

completion of the remaining elements (Paas & van Merrienboer 1994). Guzman et al. (2019) used

cognitive load theory to introduce R programming in undergraduate biostatistics courses by

presenting partially completed exercises after worked examples, where template code was given

and students had to fill in missing components. Guzman et al. (2019) found that designing course

materials, with cognitive load theory in mind, to teach R was associated with increased student

motivation and lower levels of frustration and stress when using R.

When integrating statistical computing in any course, ideally the tool being used will not add to

students’ extraneous load, while also limiting the additional instructional time spent teaching the

computing separate from the course’s core topics. In a coding context, both worked problems and

problem completion approaches risk the split-attention effect where students are forced to split

their attention between multiple sources of information, like between slides and a statistical

computing tool. Instructors can reduce students’ extraneous load through the split-attention

effect by physically integrating multiple delivery modalities into a single information source

(Chandler & Sweller 1992). R Markdown is a tool used to teach statistical computing early in the

curriculum that does just this, integrating code, output (e.g., tables and graphs), and written

analyses (Baumer, Cetinkaya-Rundel, Bray, Loi & Horton 2014). R Markdown enables students

to produce a single reproducible document such that they do not need to divide their attention

between multiple sources while learning through statistical computing. However, learning from an



already-compiled R Markdown document can be challenging due to the inherently static and

text-based nature of the document. The learnr package (Schloerke, Allaire, Borges & Aden-Buie

2021) provides a way to build interactive tutorials with R Markdown.

This article follows a similar format to Beckman, Cetinkaya-Rundel, Horton, Rundel, Sullivan &

Tackett (2021) by describing the experiences of implementing statistical computing in different

statistics courses through the use of learnr. We begin by providing a broad introduction to learnr

as a tool, and then provide descriptions of the courses taught by the three contributing faculty

and summaries of the implementation of learnr in each course. We conclude by summarizing

common benefits and limitations encountered, and offering recommendations to instructors who

might consider using learnr in their course.

1.1. Introduction to the learnr ecosystem

The learnr package, developed by Barret Schloerke, JJ Allaire, Barbara Borges, and Garrick

Aden-Buie (Schloerke et al. 2021), enables one to turn R Markdown (Xie, Dervieux & Riederer

2020) documents into interactive tutorials. learnr tutorials enjoy all of the benefits of R

Markdown, such as the integration of text, equations, figures, code and results, with the added

benefits of Shiny-based interactivity (Chang, Cheng, Allaire, Sievert, Schloerke, Xie, Allen,

McPherson, Dipert & Borges 2021) including a “progressive reveal” feature, that limits the

amount of text that students see at one time, R coding exercises (with optional hints, solutions,

and automatic feedback), and quiz questions with feedback. RStudio provides example tutorials

and guidance about how to create, publish and customize learnr tutorials (Schloerke et al. 2021),

and Aberson (2021) supplements this by giving more details and a how-to guide for instructors.

In learnr tutorials students can edit and run R chunks directly in the tutorial with results

appearing as if they were working in the console, dampening extraneous cognitive load. R chunks



can be pre-populated with worked examples to be run interactively or a code scaffold with blanks

denoted so students know where to fill in (problem completion; see Figures 1 and 2). Creators of

tutorials can also add a series of hints that complete more and more of this scaffold until the final

solution is reached.

Figure 1: An example of a fill-in-the-blank exercise in learnr.

Figure 2: Optional hint feature in learnr.

To give students instantaneous feedback, learnr can be paired with gradethis which automatically

compares a student’s code chunk to a given solution code chunk (Aden-Buie, Chen, Grolemund &

Schloerke 2021) and gives a signal about correctness. Using a problem completion format can help

structure a student’s solution so that it matches the solution an instructor has in mind, however it

is also possible to automatically compare the output of a student’s code chunk to a given solution

or to check conditions after running a student’s code chunk to anticipate different approaches to

the problem (Chen 2020). The returned feedback on these code chunks can provide some

narration, as anticipated by the creator of the tutorial, or random encouragement using the praise

package (Csardi & Sorhus 2015).



To collect proof of progress from these tutorials learnr can be paired with learnrhash which keeps

track of exercises engaged with and solutions given to quiz questions and code exercises in the

form of a hash, a long string of characters, that can be “decoded” by the instructor (Rundel 2021).

learnrhash tracks the student’s progress behind the scenes as they go through the tutorial. At the

end of a tutorial, the student is then prompted to create a hash which can be copied and pasted

into an embedded Google Form and submitted to the instructor. The learnrhash package then

provides a way for instructors to transform that hash back to the context of the tutorial by giving

information about important “clicks” that students made. This information can be used as a form

of “soft” accountability to give instructors a rough sense of a student’s completion of the tutorial

or can be translated into a formal score for the assignment by further learnrhash capabilities.

learnr and its companion packages help to address many of the previously mentioned challenges

in statistics and data science education. As pointed out by Aberson (2021), a learnr tutorial

enables self-regulated study and low-stakes assessments. The tool allows for a seamless integration

of statistical content and statistical computing. learnr tutorials are dynamic and can be designed

to reduce cognitive load of learners by using worked examples, to be run interactively and

progressively revealed, as well as partial solutions, to be completed as exercises. The tutorials can

be deployed like Shiny (Chang et al. 2021) applications, so students may use them without the

hurdle of an R installation or distributed as an R package (Aberson 2021).

Next we describe learnr use in a series of courses that are traditionally part of a statistics or data

science curriculum at increasing levels. The first use-case is in an “Introduction to Statistics and

Probability” course with a calculus prerequisite. No prior experience with R is expected, but it is

not uncommon for students at this institution to come in with some exposure to R through an

Introduction to Data Science course or research experience in another field or to Python through

an Introduction to Computer Science course. In this class, learnr tutorials were distributed via an



R package as pre-lab activities. Students then completed lab activities using R Markdown. The

second use-case is in a “Probability Theory” course which has Introductory Statistics (including

R) and two calculus classes as prerequisites. The learnr tutorials were made available as R

Markdown documents from the course webpage or GitHub. The third use-case is in a “Statistical

Inference Theory” course with a probability theory course as a prerequisite. No prior experience

with R is expected. Interactive learnr tutorials and R Markdown templates were distributed via

an R package pre-installed by the instructor in an RStudio Cloud project. The last use-case is in

a large “Introductory Statistics” course where student backgrounds are heterogeneous and no

prior experience with R is expected. In this class learnr tutorials were hosted on an institutional

Shiny server account.

All three faculty use learnr for formative self-assessment in these courses. This tool provides an

interactive and accessible entry to the course content to support students at different levels. In

addition, all three faculty have students build upon the skills learned in an interactive learnr

format to complete summative assessment activities in R Markdown. Using both of these tools

together ensures that students experience many of the attributes required of modern statistical

computing tools (e.g., “easy entry” and “support narrative, publishing, and reproducibility”)

(McNamara 2019).

2. Introduction to Statistics and Probability

The first author taught an Introduction to Statistics and Probability course remotely at Smith

College in the fall of 2020 and the spring of 2021. This class of about 45 students met three times

a week for an hour and 20 minutes for course content and met an additional hour and 20 minutes

for an R lab period that split the 45 students across two lab sections. No coding experience was



required for this class, and students started from scratch in lab, downloading R and RStudio on

their own devices, with an institutional RStudio server as a backup option. The second time the

first author taught this course, they converted labs that were modified from those initially

provided by OpenIntro (Randomization and Simulation Version) to learnr tutorials, informed by

pain points in the previous semester (OpenIntro Team 2022).

The introductory text and code examples in each OpenIntro lab were translated to learnr

tutorials (with some supplementary material added) with the coding-focused exercises

interspersed (see Figures 3 and 4 for a supplementary example).

To see how the translation process works, consider one of these labs, available as an R Markdown

file. To convert this document into a learnr tutorial, first, the YAML header must be adjusted

(see Figure 5). The YAML controls elements of how the final output is rendered including final

formatting and display options (Xie et al. 2020). To turn a regular code chunk into an interactive

code chunk, the header of the code chunk needs to be adapted (see Figure 6). To turn a

coding-related question into an auto-graded exercise, an instructor can start with the code from

their answer key and “thin” the solution out to create a scaffolded answer. Then the instructor

must provide the correct answer and a code chunk to specify that the code should be “graded”

(see Figure 7). The questions that are more conceptual or require communicating results can be

saved for a lab question (as opposed to a pre-lab question) completed in R Markdown and graded

by hand.

These converted tutorials were combined into an R package that could be installed from GitHub

(De Leon 2020; Stoudt 2021). To avoid the need for students to re-install this package at multiple

points throughout the semester, the tutorials had to be completed before the semester started.

Students were to go through these learnr tutorials individually as a “pre-lab” before coming to

each week’s lab session. Coding questions within the tutorials could be auto-graded using the



gradethis package without penalties for some amount of trial and error as students first learned,

and the learnrhash package was used to keep track of student progress and auto-grade the

pre-labs based on completion only (Aden-Buie et al. 2021; Rundel 2021).



Figure 3: Interactive exercise about the bootstrap with two hints.



Figure 4: Code chunks for interactive exercise about the bootstrap with two hints.



Figure 5: On the left, the header of an OpenIntro lab. On the right, the header of the learnr lab based on

the original.

Figure 6: On the left, a code chunk from an OpenIntro lab. On the right, the code chunk adapted to make

it interactive.



Figure 7: The code chunks necessary to auto-grade a coding question.

Where before students might quickly skim through the worked examples presented in the lab

instructions without running the code and internalizing the content, students now were

incentivized (by the completion check via learnrhash) to interactively run each code chunk as they

worked their way through the progressively revealed tutorial. The coding exercises that were

originally part of the lab questions could now be scaffolded by being translated into a problem

completion format, and the learnr and gradethis partnership allowed students to get immediate

feedback (Cetinkaya-Rundel 2021b). With the learnr tutorials acting as pre-labs, students then

came to lab with the same exposure to the new functions and approaches that would be useful for

solving the lab questions. This helped alleviate some tension experienced in the previous iteration

of the course where students came in with heterogeneous experience of coding and R, leading to

unbalanced lab pairings.



During the lab session, students came together to work in a team of three to answer questions in

an R Markdown document since learning to communicate via this reproducible medium was still a

learning goal for this course. The lab questions were more open ended than the coding-focused

exercises that students had previously worked on and included interpreting and reasoning about

findings in context as well as communication skills more broadly. Students also got a chance to

write code from scratch without the problem completion format. These lab reports were then

graded based on correctness. Since the pre-lab and lab questions were focused on similar material,

students who were stuck on a lab question had a reference with solutions to refer back to for

guidance. In the second half of the course, the lab questions were designed to relate to the

students’ final projects, so the lab reports played a double role as project checkpoints for teams to

get feedback from the instructor ahead of a deadline for the final report (completed in R

Markdown) and discourage procrastination.

Splitting the labs into a learnr pre-lab and R Markdown lab with accompanying lab report that

had more targeted questions was a time-saver for both the students and the instructor. Having

the more coding-focused questions auto-graded gave the instructor more time to devote to

feedback on writing and interpretation. Moving some content outside of the lab session alleviated

the time crunch that students had felt in the previous semester. Since students could work

through the tutorials at their own pace ahead of lab while getting feedback that did not require

waiting for instructor availability, they could come together more efficiently to answer the smaller

subset of questions that were assigned as part of the lab report.

Some challenges remained. The first lab where R, RStudio, the package that contained all of these

tutorials, and all of its dependencies were installed took time and patience. Due to the

development-stage nature of some of the learnr, gradethis, learnrhash, and the tutorial delivery

package functionality, errors did occur and required troubleshooting. However, the first author



had tested the install process with another faculty member on different operating systems and

was able to make a fairly comprehensive list of what could happen and how to fix it ahead of

time. Occasionally a student would report a bug in a tutorial, that would be filed as a GitHub

issue as a reminder to fix at the end of the semester. Some students who had seen R before were

confused by the initial setup. They wanted to know how running chunks in the learnr tutorial

interfaced with the RStudio console. Once it was explained that code did not need to be copied

and pasted back and forth between the tutorial and the console and that students could interact

with the tutorial as if it were the console itself, the confusion abated.

These learnr labs were adapted and used in the same setting by two other instructors, this time

teaching in person, but there is still room for improvement in these tutorials. The first time

around, the hint structure was not used to its full advantage due to time constraints in teaching

preparation. It is possible to scaffold a series of hints before providing the solution, and if the first

author were to use these labs again, they would spend some more time fleshing those out. In

addition, the OpenIntro community has launched its own set of learnr tutorials which span the

whole introductory statistics course (Cetinkaya-Rundel, Hardin, Baumer, Bray, Saibene,

D’Andrea, Villafane & Theobold 2021).

3. Probability Theory

The second author taught a calculus-based Probability course in-person at Simmons University in

the fall of 2021. The course enrolls between 10 and 20 students in a typical semester, with 20

students enrolled during the Fall 2021 semester, and meets three times a week for 50 minutes.

This course is designed for upper-level undergraduate students in Mathematics, Economics,

Statistics, and Data Science programs, and has prerequisites of Introductory Statistics (with R),



and Calculus I and II.

Because R programming is introduced in the Introductory Statistics course at Simmons, all

students in this class have at least some exposure to R. However many of the students enrolled in

this course, particularly Statistics and Data Science majors, have several semesters’ worth of

experience in R, including data visualization and wrangling, building linear and non-linear

models, and simulation-based inference. However, none of the students have been introduced to R

topics in learnr prior to taking this class.

Major topics in Probability Theory include counting techniques, conditional probability and

Bayes’ Rule, discrete and continuous random variables, expected value and variance,

moment-generating functions, multivariate probability distributions, functions of random

variables, and sampling distributions. While two semesters of calculus are required, the use of

calculus is not an integral part of the course. Rather, additional emphasis is placed on

understanding results via Monte Carlo simulations designed in R. Students are taught how to

derive both analytical solutions and empirical, simulation-based solutions to problems.

Even though students have at least some exposure to R prior to the beginning of this class, due to

the prerequisite of Introductory Statistics, this class includes one “live coding” lecture in the first

week that reviews requisite R material within the RStudio IDE to ease the learning curve for the

tools that follow. Probability topics are introduced using a combination of “chalk talk” and

in-class examples before illustration of examples in R.

Approximately every two weeks, one class is devoted entirely to illustrating core course concepts

in R. During these classes, students work through learnr tutorials assigned to them in advance,

while the instructor circulates to provide assistance when needed. Students are encouraged to

work in pairs, and their work during these labs was not graded. These learnr labs covered the

following topics:



1. Designing Simulations in R: This tutorial focuses on using the base R sample() and

replicate() functions to design simulations to estimate probabilities. Examples are

introductory in nature and focus primarily on scenarios involving coin flipping, drawing

cards, and rolling dice.

2. Famous Probability Problems: This tutorial extends the concepts covered in the previous

tutorial, focusing on simulating probabilities from well-known problems, including the

Monty Hall Problem, the Birthday Problem, and the Hatcheck Problem (a variation of De

Montmort’s Matching Problem) (Gill 2011; Borja & Haigh 2007; Scoville 1966).

3. Discrete Random Variables: This tutorial walks students through the built-in d, p, q, and r

functions associated with named discrete probability distributions. Additional topics

include visualizing probability distributions simulated with the r function, and answering

probability questions analytically with the built-in probability density and distribution

functions in R.

4. Iteration and the Law of Large Numbers: This tutorial illustrates the Law of Large

Numbers with explicit (for) loops. We revisit problems computed “by-hand” at the

beginning of class, including the Newton-Pepys Problem, by showing approximately how

many iterations are needed until the estimated probability converges to the analytical

probability (Stigler 2006). Figures 8-10 show what this learnr example looks like along with

the exercise’s scaffolding and solution.

5. Simulating Continuous Random Variables: This tutorial extends topics covered in the

Discrete Random Variables tutorial to the continuous case. Additional time is spent

teaching students how to write functions in R, in order to sample from non-named

continuous probability distributions.

6. Joint Probability Distributions: This tutorial continues on the topic of writing functions in



R, this time with functions of two variables to illustrate simulating bivariate distributions.

Additional topics include visualizing bivariate distributions with contour plots and

estimating marginal and conditional probabilities using simulated draws from a bivariate

distribution.

7. Conditional Distributions and Naive Bayes: This tutorial focuses on Naive Bayes classifiers

as an application of multivariate and conditional distributions. Examples of Naive Bayes

with multiple predictors are used to illustrate the concept of conditional independence

between random variables.

8. The Central Limit Theorem: This tutorial focuses on simulating sampling distributions,

primarily sampling distributions of the sample mean, using a sample of random variables

from a given probability distribution.



Figure 8: Scaffolded instructions for a learnr exercise.

Figure 9: The exercise formatting.



Figure 10: The solution for the exercise.

Students accessed the learnr tutorials via R Markdown files posted to the course webpage. (Note

that tutorials can now be accessed from GitHub (Scotina 2022).) They then opened these files in

the RStudio IDE on their own computers and ran them to view the learnr tutorial in their web

browser. While students were not graded on completion of the tutorial, several exercises in

graded, weekly problem sets required students to utilize topics covered in the most-recent tutorial.

Alternatively, students had the option to access the R tutorials via “static” HTML files knitted

from R Markdown. Students could therefore code along within the R Markdown document as

they read through the HTML file, or download and work through the corresponding source file.

While this was the first iteration of Probability at Simmons that utilized R in any format, initial

informal student feedback was positive. Students appreciated the guided and incremental nature

of the tutorials as an alternative to viewing the complete tutorial all at once in the static HTML

format. Because the learnr tutorial presented topics in small batches, and like the first author’s

experience in an introductory statistics context, students were also more likely to read the text



that accompanied coding examples in the learnr tutorial. As an added bonus, because students

had access to the learnr tutorial source file, students had additional resources at their disposal

should they choose to make learnr tutorials of their own. Several students took advantage of this

for their probability “mini-project”, which asked them to write a blog post on a named discrete

probability distribution of their choice. The instructions for that activity follow.

In your first Probability Mini-Project, you will write a blogpost on a named (discrete)

probability distribution of your choice. Your goal is to research this probability

distribution in-depth, and showcase and effectively communicate your understanding

of the probability distribution. If it helps, you could frame this as a tutorial blog post!

While I’m leaving some room in this project for creativity, the blogpost should include

the following, in no particular order:

• Motivating example/Real-world application: In what real-world scenarios might

this probability distribution arise?



• Properties: What phenomena does your distribution typically model? What is

its probability function? Expected value and variance? Any connections to other

named distributions that we’ve seen so far?

• Visualization: What does your distribution look like? How does the distribution’s

shape change based on different values of its parameters?

• Worked-through simulation example: Include an example that utilizes R to

simulate an example involving your distribution.

One student who did their project on the negative binomial distribution first walked the reader

through the technical details, such as the probability mass function, and then used the interactive

code chunk capability to show the reader how they can use dnbinom() and rnbinom() to calculate

negative binomial probabilities and simulate distributions with R. The tutorial ended with a

knowledge check, where the reader was asked to complete a series of multiple-choice exercises on

negative binomial probabilities and expected values.

Several students opted to engage with the tutorials via the static HTML format, where they

would code along in their own R Markdown documents. These students consisted primarily of

Data Science majors who had taken several prior classes that used R beyond Introductory

Statistics, and seemed to prefer the familiarity of the RStudio IDE over the browser-based coding

environment provided by learnr. This provides a potential example of the expertise reversal effect,

which posits that the effectiveness of certain instructional techniques depends on levels of learner

expertise (Kalyuga, Ayres, Chandler & Sweller 2003).

The two-semester calculus-based probability and statistical theory sequence has been a

cornerstone of Mathematics and Statistics programs for many years (Green & Blankenship 2015).

As such, the implementation of R, simulation, and real data into the “rethinking” of the

probability and statistical theory sequence is a novel approach and an area for future research and



course development. After one semester of teaching the course using this approach, several

adjustments are planned, including a more-intentional integration of R into the fabric of the

course by using it more often during lecture, in addition to live-coding demos.

4. Statistical Inference Theory

The first author taught Statistical Inference Theory in person at Bucknell University in the fall of

2021 and again in the spring of 2022. This class of a little under 10 students met three times a

week for 50 minutes for course content and met occasionally during an evening session of one hour

and 50 minutes for supplementary coding instruction, project work time, and exams. No coding

experience was required for this class, and students used RStudio Cloud where an instructor can

pre-install packages and upload templates and data ahead of time for students (Cetinkaya-Rundel

2021c). This structure has the added benefit of allowing the instructor to continue to update the

package containing learnr tutorials throughout the semester instead of having to front-load the

preparation of materials.

Despite this being a theoretical course, the first author wanted to make sure the class had an

applied portion given their own background and expertise. For example, students could check a

gnarly calculation empirically to see if their derivation went astray somewhere (see Figures 11 and

12 for an example), test how confidence intervals and hypothesis tests work, and show what

happens when assumptions are broken via a simulation study. There was not enough class time to

completely teach R on top of the course material, but the goal was to get students comfortable

with a subset of functionality most relevant for statistical inference.



Figure 11: Shiny app within a learnr tutorial.



Figure 12: Associated code chunks for Shiny app.

Tutorials created using learnr were tried in a variety of formats for the first iteration of the class

including supplementary tutorials, lab and project overview tutorials, and short homework

companions to check theoretical calculations. These approaches did not work as smoothly as

when this author used learnr in their introductory statistics class. However, the challenges were

not due to the performance of the tool but more about the level of familiarity with R that the

students came in with and the need for extra scaffolding and explanation of coding fundamentals.

For example, some students in the Introductory Statistics class already had some experience with

R from an Introductory Data Science class and could take a leadership role in initial lab settings.

The Introductory Statistics class also met for longer class periods and had a dedicated lab period

to attend to computational learning goals while the Statistical Inference Theory course faced a

tighter schedule with no regular lab time, making it challenging to balance content with

computational training. In addition, a typical student’s first exposure to R comes later in the

curricular sequence while Statistical Inference Theory comes earlier in the curricular sequence as

it is a prerequisite for many upper-level courses at this institution. However, this experience did

inform a plan for the second iteration of the course that aimed to better utilize learnr. What

follows are some lessons learned and changes made for the second iteration.



The labs and project for this course were not structured in the same way as they were for an

introductory statistics class where students typically learned a set of tools and then applied them

to a dataset of interest. Instead, these labs and project checkpoints required students to build

upon and revise code they had already written as they worked their way through project

checkpoints towards a final product, so there needed to be a static document that they could add

to as the semester went on. Woodard & Lee (2021) provide labels for this distinction: the learnr

tutorials used in an introductory statistics course were more focused on “automation of

computational procedures” while the learnr tutorials used in a statistical inference theory course

were more focused on “computational thinking”. In light of this framework, with the statistical

computing actions focused on in each course being fundamentally different, it seems less

surprising that what worked fairly well in one setting did not translate perfectly to the other.

For example, in the fall, the first author noticed students struggling with going back and forth

between a learnr tutorial and an R Markdown file, an example of the split-attention effect. The

students could also have benefitted from better on-ramps to these coding activities that were not

directly tied to the statistical content such as some more explicit introduction to coding

constructs such as loops for simulation, basic data structures like vectors and matrices for storing

results, how to manipulate data frames, and the basics of R Markdown usage.

In the spring, the first author switched to an independent tutorial system for coding skill building

outside of the classroom, graded for completion. R Markdown templates were also used to scaffold

inference related exercises and activities for project checkpoints (used primarily for instructor

feedback and to mitigate procrastination), and graded in-class labs (Xie, Allaire & Grolemund

2021). These materials were pre-installed on the RStudio Cloud and are also hosted on GitHub

(Stoudt 2022).



learnr tutorials cover the following topics:

1. Guess the Color Activity: This tutorial steps through simulations that accompany the

“Guess the Color” activity described in Green and Blankenship (Green & Blankenship 2015).

This is used in class on the first day to get students thinking about creating and evaluating

estimators.

2. Introduction to Interactive Tutorials: This tutorial explains the structure of a learnr

tutorial and how to submit progress using a hash and the embedded Google Form.

3. Estimation in Capture-Recapture: This tutorial contains Shiny applets to explore likelihood

profiles in a capture-recapture context.

4. Data Structures and Subsetting: This tutorial introduces vectors, matrices, and logicals

including how to subset data of various forms.

5. Loops: This tutorial introduces the concept of loops and creating blank objects of

appropriate type and size to fill in with results.

6. Plots and Probability Distributions: This tutorial introduces students to ggplot2 and

drawing random values from built-in distributions (Wickham 2016).

7. Plot Expectation Sketching: This tutorial primes students to interpret plots about power

from their own simulation study (related to the the final project for this class).

R Markdown templates cover the following topics:

1. Reproducibility and Documentation: This vignette (as students have not yet been

introduced to the concept of a template) shows students RMarkdown’s capabilities, the

importance of setting the seed, and how to use R’s documentation to learn about functions



that are new to them. This is paired with the “Introduction to Interactive Tutorials”

tutorial.

2. Estimation in Capture-Recapture: This template is a companion to the capture-recapture

learnr tutorial and guides students through the exploration of Shiny applets to learn about

the performance of various estimators.

3. Optimization for Bivariate MLE: This template provides a starting point for students to

learn optimization in R, motivated by a bivariate MLE problem that would be pretty gnarly

to do by hand.

4. Sampling Distributions: This template walks students through building sampling

distributions of various statistics. This template builds on the “Data Structures and

Subsetting” and “Loops” tutorials.

5. Introduction to Nonparametrics: This template introduces students to nonparametric

inference and provides a code structure for the bootstrap and permutation tests to be built

upon and customized by students in later assignments. This is designed as a code-along for

a live-coding session.

6. Bootstrap: This template walks students through crafting various bootstrap intervals. This

template builds on the “Loops” tutorials.

7. Confidence Intervals: This template introduces students to parametric confidence intervals

and the functions that calculate these in R.

8. Hypothesis Testing: This template introduces students to parametric hypothesis testing and

the functions that compute these in R.

9. Introduction to Final Project: This template introduces students to the final project. Each

student gets a parametric two-sample test and a related nonparametric two-sample test and



is tasked with designing, performing, and interpreting a simulation study to assess the

strengths and weaknesses of the two tests as measured by statistical power.

10. Functions and Simulating Data: This template introduces students to creating their own

functions to simulate data. This template builds on the “Plots and Probability

Distributions” tutorial which primes students to think about which distributions might be

particularly interesting to investigate in the context of their assigned hypothesis tests.

11. Functions and Simulating Power: This template introduces students to translating a

calculation to be done once into a reusable function and operationalizes an empirical

estimate of statistical power via simulation.

12. Simulation Scenarios and Preliminary Plots: This template helps students structure a set of

simulation scenarios to use their previously defined simulating data and power functions on.

This template also introduces students to more complex ggplot2 functionalities.

13. Tidy Data and Better Plots: Because students are comparing results of two different tests,

it can be helpful to reshape their data to better facilitate comparisons in ggplot2. This

tutorial guides them through that process.

The goal was to start tutorials with worked examples in the form of interactive code chunks that

students could investigate and annotate with comments as they discovered what the code is doing.

Then the tutorials transitioned to problem completion, showing students the structure of a coding

solution in a learnr exercise chunk, or even as part of an R Markdown template, while leaving

explicit blank spaces for pieces that students need to fill in, as a way to ease students into coding

when buy-in for learning R on top of the theoretical material is weak. As students got more

comfortable with the basic building blocks of code related to statistical inference, the templates

got more and more sparse, in the spirit of faded worked examples (Renkl, Atkinson & Maier



2000). The hope was that this would prevent students from copying and pasting code chunks

from a prior tutorial without knowing what each component did and help them recognize which

pieces may need to be adapted in the new context. learnrhash capabilities as accountability

checks were also used to nudge students towards prioritizing this form of skill building as they

juggled more traditional problem sets and readings.

Overall, slowly removing the scaffolding of problems assessing coding concepts that were repeated

in almost every lab like loops, sampling, and plotting worked well. Students were able to

recognize situations where these computational tools would be useful and knew the basic

structure of them. Other concepts, like writing and calling custom functions, although used a few

times throughout the semester, did not seem to click in the same way. Part of this might be the

timing of the learnr training and the follow-up assignment where the skills were used. Because of

the irregularity of the computational assignments amongst more classical problem sets, there were

often gaps between training and application. Contrast this with the “pre-lab before lab every

week” structure of Introductory Statistics where students immediately get a sense whether their

conceptual understanding is enough to complete lab questions successfully. Another aspect may

be that the computational learning objectives need to be further streamlined to the even more

essential. We might just be trying to do too much under too many time constraints. Going more

in depth into the foundational topics of sampling distributions, confidence intervals, and

hypothesis testing rather than aiming for a breadth of labs may be the way to go. Alternatively, a

strategic “flip” of this class may free up more time for explicit coding instruction (Horton 2013).

5. Introductory Statistics at Scale

Most of the over 30 different study programs offered at the FOM University of Applied Sciences



in Germany (57,000 students), where the third author teaches, include (applied) data-centric

statistic courses (Gehrke, Kistler, Lübke, Markgraf, Krol & Sauer 2021). The different courses are

offered by six departments in 35 study centers throughout Germany and in Vienna, Austria. In

this heterogeneous setting the class sizes vary between 15 and 150 students. There is also no

consistent class schedule across the courses. Some courses meet for 180 minutes almost every week

in a semester while some courses with less workload meet less regularly.

Although there are course-specific differences in the syllabi, most statistics courses cover the

basics of quantitative data analysis, an introduction to R (including elementary data

preprocessing with dplyr) (Wickham, Francois, Henry & Muller 2018), exploratory data analysis,

linear regression, and inference.

Due to the different study programs the scientific background and interest of students is very

heterogeneous. Before attending the course most (Bachelor) students are not familiar with R.

Since 2019, learnr is used in a variety of settings in these courses taught by the third author.

Fourteen short formative self-assessments are offered as short, “recap” learnr tutorials. The focus

is not on learning new concepts or coding but rather on 1-3 multiple choice quiz questions, most

often integrated in a short case study in R, which aim to help students’ understanding of the

topics covered in class together with (informal) self-assessment by the provided feedback on their

answers. Six different short tutorials cover topics such as exploratory data analysis, linear

regression, or simulation based inference. They usually include 3-5 multiple-choice quiz questions

as well as 3-5 coding exercises, mainly as problem completion, again integrated in small case

studies. It is estimated that it takes 10-20 minutes to complete one of these short tutorials. They

are designed so that they can be used synchronously or asynchronously. The long tutorials also

cover the main topics and concepts of the course, but compared to the short tutorials they are

longer (30-45 minutes each), including more quiz questions and coding exercises. While most



tutorials are in German (the native language of students), an English example is available

(Cummiskey, Adams, Pleuss, Turner, Clark & Watts 2020; Lübke, Gehrke, Horst & Szepannek

2020, 2022).

Many courses require a reproducible data-analysis by means of R Markdown as part of the

assessment. At the beginning of a course some students are missing an R installation or have yet

to set up their RStudio Cloud account. For these students we offer on day one a learnr tutorial to

expedite their first steps in R – without the hurdle of installation or account management.

Overall the learnr tutorials are used to offer flexibility for students and instructors and ease the

integration of computing into the content of the class. They also aim to reduce the extraneous

cognitive load by (interesting) worked examples with partial solutions. The integrated quiz

questions provide additional feedback for self-assessment.

All of the previously mentioned learnr tutorials are open educational resources, available via

GitHub (Lübke, Gehrke, Kistler, Krol, Markgraf & Griesenbeck 2022). Development and version

control of the R Markdown source files of the tutorial enables easy collaboration across different

instructors. Deployment to the students is done via the professional Shiny account of the

institution (RStudio 2022). For the specific settings of the apps within the account, such as how

many users to allow per instance of the app and how many instances of the app to launch as

demand increases, the learnr vignette by Angela Li provides valuable tips for a good user

experience and with monetary costs in mind (Li 2020). Links to the different tutorials are

provided by so called course books for asynchronous learning settings. These course books guide

and support students self-learning by providing additional resources for a specific topic. The

tutorials are also linked in the lecture slides available to the students or shared within the learning

management system of the institution. Although students have constant access to the tutorials,

they are encouraged to use the “recaps” before or after every lecture starting on day one of the



course. The other styles of tutorials are also integrated throughout the whole semester.

The informal feedback of the students as well as the corresponding comments in the student

evaluations are very positive. Students especially appreciate the feedback within the tutorials on

quizzes and exercises as well as the progressive reveal. The same is true for feedback from the

many teachers who use the recaps and tutorials in their courses. For them, the simple

accessibility of the delivery as well as the flexibility of integration in class offer an additional

benefit. Once developed and deployed, the tutorials can be used by many students in many

courses in very different settings with appropriate server capacity.

In addition to the pre-existing materials, a learnr based course, Introduction to causal inference,

is currently under development. This course is designed as a self-paced online course and will be

hosted by the learning platform, AI Campus, a project funded by the German Federal Ministry of

Education and Research (BMBF) focused on developing the prototype for a digital learning

platform specifically geared towards AI (AI Campus 2022; Lübke & Rohrer 2022). Figures 13 and

14 give an example of a quiz question with feedback within this setting.

Figure 13: Quiz question with feedback.



Figure 14: Associated code chunks for quiz question with feedback.

6. Summary and Discussion

Whether teaching coding is a core learning objective of a class or supplementary to statistical or

data-related content, learnr tutorials can help support instructors and students alike in statistics

and data science classes. Throughout all of our use-cases, some common benefits of using learnr

tutorials to deliver content and provide students with opportunities to practice their skills emerge.

If deploying via a server or using in conjunction with RStudio Cloud services, much of the R,

RStudio, and package installation steps are avoided, allowing students to jump directly into the

content of the tutorials without extra logistical overhead or extraneous cognitive load. This may

also be a good path forward, although not a free one, for shorter term trainings such as coding

bootcamps, workshops, or guest lectures.

Tutorials built using learnr also help mitigate many problems for instructors that occur due to

scale. For example, the ability to anticipate questions by adding hints and solutions and to give

instantaneous feedback (via tools like the gradethis package) can ensure students get real time

guidance even if an instructor is busy helping another student during class or learning is being

done after hours when access to an instructor is not available. Combined with tools like the



learnrhash package these tutorials can have a built in sense of “soft” accountability, and

completion-grading based on auto-grading of code chunks can free up instructors to evaluate

students’ conceptual reasoning and communication of results. These benefits will be especially

useful since demand for statistics and data science classes seems likely to continue to rise.

Tutorials built using learnr can also benefit the student experience. Making mistakes while being

provided with “corrective feedback” can benefit learning (Metcalfe 2017). The interactivity, built

with less of a learning curve than directly using tools such as Shiny (Chang et al. 2021), hints,

solutions, and auto-grading capabilities promotes exploration and supports trial-and-error.

Progressive reveal can encourage students to take their time stepping through new content and

reduce the overall cognitive load at any given point in the tutorial.

There are many resources to help instructors get familiar with the technical points of learnr

including overviews of learnr in various educational contexts (Grolemund 2017; Cetinkaya-Rundel

2018; Karaesmen 2020; Correa & Milz 2021; Grosjean & Engels 2021), a behind the scenes look at

the architecture underlying the package (Shrestha 2020), and example implementations of

educational materials using learnr (Horst 2020; Silge 2021; Concord Consortium 2022; Pratt 2021;

Cetinkaya-Rundel 2021a). From a technical standpoint, instructors familiar with R Markdown can

straightforwardly develop interactive learnr tutorials thanks to the many resources created by the

R user community. For example, code chunks can be quickly changed to exercises as seen in the

Introduction to Statistics and Probability section. However, the potentially time consuming work

comes in designing coding and quiz questions that are amenable to the format of the gradethis

tools. For instructors wanting to try learnr in their own classroom, we recommend starting by

using a code template or tutorial that is already being used statically in their classroom and

converting it into an interactive learnr tutorial. This way they can focus on learning about the

new tool rather than simultaneously creating content. Once they have some familiarity with the



mechanics, a further conversion to learnr tutorials becomes a great opportunity to get students

involved in the process. Students with an introductory knowledge of R can help transfer

pre-existing materials to learnr, using the instructor’s case study as a model and thereby learn

more about the inner workings of R in the process. Students who have completed a particular

course can also contribute suggestions for how to improve the content and delivery of the material.

A potentially challenging aspect faced by instructors contemplating using learnr in their

classroom is deployment. There are several options, each with their own pros and cons. Perhaps

the most straightforward deployment option is to publish each learnr tutorial to shinyapps.io, the

self-service platform for securely hosting Shiny applications. While straightforward to use, the

free shinyapps.io plan allows for only five active applications at a single time. Additionally, the

maximum of 25 active hours per month would make this option untenable for a typical class size

(RStudio 2022). Institutions can either invest in a paid account or in an own Shiny server to

accommodate the use of learnr across multiple, large classes. A second deployment option is to

build the learnr tutorials into an R package, which students can then access in their own R

session via learnr::run_tutorial(). While this solves the problem of potential cost associated

with deploying more than several learnr tutorials in a medium-to-large class to shinyapps.io,

instructors need to be well-versed in R package design. However, the usethis package streamlines

a lot of the overhead (De Leon 2020; Wickham, Bryan & Barrett 2022). Another potential pain

point is that these tutorials would optimally need to be ready at the start of the semester in order

to avoid complications from students having to continuously update the R package. When the

first author used the RStudio Cloud, they could update the package for each student when

necessary. Alternatively, when the first author did not use the RStudio Cloud, they asked

students to update the package in the middle of the course and it was more straightforward than

the initial setup with all the dependencies. A third deployment option is to host each learnr

tutorial as a .Rmd file on GitHub for students to download and run as needed. While this is the



least technically challenging option for instructors, students have direct access to the source files

and any solutions that the instructor might wish to keep hidden until students attempt an

exercise within the learnr tutorial. The second author used this approach, but since learnr was

used as a summative assessment, having the solutions available was not a problem.

We have felt the challenges associated with teaching both statistical content and the statistical

computing skills required for the modern statistician or data scientist in training, especially in

introductory courses where both of these things may be new to students. learnr ’s interactive user

interface and the ability to build in automatic feedback make these tutorials amenable to

self-study, allowing instructors to move some of the statistical computing content out of the

classroom instruction time. Students may then use this training when completing more

complicated computational tasks in an R Markdown document. learnr tutorials also help lighten

the extrinsic cognitive load that comes with juggling content and tools across multiple modalities

by building upon the split-attention effect mitigation of R Markdown documents. This is

especially helpful for courses where R in itself is not a learning outcome. If learning to program is

not a main goal but only a “side-effect” of building conceptual understanding, then learnr has the

potential to reduce the cognitive overload compared to R Markdown. In the extreme, if tutorials

are deployed via a server, students do not have to interact with RStudio at all.

The argument of Wild, Pfannkuch, Regan & Parsonage (2017) for teaching the bootstrap method,

another computational tool making an appearance in modern statistics courses, applies to learnr :

“With the rapid, ongoing expansions in the world of data, we need to devise ways of getting more

students much further, much faster.” We believe that learnr is a technology innovation that can

be used in statistics education to achieve this goal. We hope that this paper provides a jumping

off point for other instructors facing the challenges therein.



Overview of Supplementary Materials

A variety of learnr materials were described in this manuscript. These are all publicly available

for reference and adaptation by the reader. In order of appearance in the manuscript these are:

• Stoudt (2021): materials for an Introductory Statistics course

• Scotina (2022): materials for a Probability course

• Stoudt (2022): materials for a Mathematical Statistics course

• Lübke, Gehrke, Horst & Szepannek (2022): English example of Introductory Statistics at

scale

• Lübke, Gehrke, Kistler, Krol, Markgraf & Griesenbeck (2022): materials for Introductory

Statistics at scale

• Lübke & Rohrer (2022): materials for Introduction to Causal Inference (under development)
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