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Mathematical Geology, Vol. 25, No. 2, 1993 

Stochastic Groundwater Flow Analysis in the 
Presence of Trends in Heterogeneous Hydraulic 

Conductivity Fields ~ 

H. A. Loaiciga,  2 R. B. Leipnik,  3 M.  A. Marifio,  4 and 
P. F. Hudak  2 

Due to changes in lithostatic pressure, differential fracturing across bedding planes and irregular- 
ities in depositional environments, hydraulic conductivity exhibits heterogeneities and trends at 
various spatial scales. Using spectral theory, we have examined the effect of  trends in hydraulic 
conductivity on (1) the solution of the mean equation for hydraulic head, (2) the covariance of  
hydraulic head, (3) the cross-covariances of  hydraulic head and log-hydraulic conductivity pertur- 
bations and their gradients, and (4) the effective hydraulic conductivity. It is shown that the fieM 
of hydraulic head is sensitive to the presence of  trends in ways that cannot be predicted by the 
classical analysis based on stationary hydraulic conductivity fields. The controlling variables for 
the second moments o f  hydraulic head are the mean hydraulic gradient, the correlation scale of 
log-hydraulic conductivity and its variance, and the slope of  the trend in log-hydraulic conductivity. 
The mean hydraulic gradient introduces complications in the analysis since it is, in general, spatially 
variable. In this respect, our results are approximate, yet indicative of the true role of spatially 
variable patterns of  log-hydraulic conductivity on groundwater flow systems. 

KEY WORDS: hydraulic conductivity, spectral theory, groundwater flow. 

I N T R O D U C T I O N  

The spectral analysis of  stochastic groundwater flow has been, by and large, 
based on the assumption of  stationary log-hydraulic conductivity fields. In other 
words, it is assumed that there exist heterogeneities that can be characterized 
statistically at the scale of  the integral or correlation scale of  log-hydraulic 
conductivity, and that there are no systematic patterns, or trends, of  spatial log- 
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hydraulic conductivity variability. The justification for the stationarity assump- 
tion goes beyond pure mathematical convenience: it is critical for establishing 
ergodic properties of aquifer variables, and to reconcile spatial averages, typified 
by empirical measurements, with theoretical averages. Much of the literature 
on the subject of stationary processes in the stochastic analysis of groundwater 
has been summarized in Dagan (1989). Important results on the behavior of 
groundwater processes and contaminant transport under stationary conditions 
have been reported in the pioneering works by Bakr et al. (1978) and Gelhar 
and Axness (1983), and more recent reviews by Gelhar (1986) and Dagan (1985, 
1989). Most recently, Rajaram and McLaughlin (1990) have examined the prob- 
lem of large-scale trend identification in hydrologic data, including trends pres- 
ent in hydraulic conductivity fields. Smith and Freeze (1979) examined the 
influence of a trend in the mean log-hydraulic conductivity in a two-dimensional 
stochastic analysis. 

In view of the practical importance of understanding the role of spatial 
trends on the behavior of hydraulic head, we have attempted to characterize the 
fundamental differences between the stationary and nonstationary stochastic 
analysis of groundwater flow systems. The approach used in this work is to (1) 
approximate the nonstationary behavior using the tools of the classical (station- 
ary) analysis while, at the same time, introducing the effect of trends in log- 
hydraulic conductivity fields, and (2) based on the approximate results, examine 
the conditions under which the approximate method of analysis is justified. It 
is shown in this paper that bounds can be established under which the approx- 
imate method of analysis is valid, and that a fundamental insight is gained about 
the effect of trends in log-hydraulic conductivity on (1) the first and second 
moments of hydraulic head, (2) the order of magnitude of nonlinear terms in 
the equation of groundwater flow, and (3) the effective hydraulic conductivity. 

A MODEL FOR NONSTATIONARY HYDRAULIC CONDUCTIVITY 
FIELDS 

Let Y denote the natural logarithm of hydraulic conductivity, K. The log- 
hydraulic conductivity is represented as the sum of a trend, T, constant level, 
F, and a zero-mean, statistically homogeneous perturbation, f. Specifically, 

Y =  T + F + f il) 

The log-hydraulic conductivity is a random field; the trend, T, and the constant 
level, F, are deterministic variables. The trend, however, is variable in space, 
whereas the constant level is independent of the spatial location. Figure 1 illus- 
trates the three-component model suggested by Eq. (1). Figure 2 (adapted from 
Farvolden et al., 1988), shows hydrogeologic logs at a deep well located in the 
Eye-Dashwa Lakes Pluton near Atitokan, Ontario. The logs show the profiles 
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Fig. 1. Model for nonstaffonary log-hydraulic con- 
ductivity field. 
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Fig. 2. Nonstationary hydraulic conductivity at a 
deep well (with corresponding head and temperature 
logs) with gradual trend (adapted from Farvolden et 
al., 1988). 

of hydraulic conductivity, temperature, and hydraulic head in a groundwater 
flow system composed of a shallow (less than 150 m deep), intermediate (150- 
600 m) and deep (deeper than 600 m) flow regimes. It can be seen in Fig. 2 
that the hydraulic conductivity shows a slight declining profile in the shallow 
zone, where hydraulic head also decreases with depth. Below a depth of ap- 
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proximately 150 m, in the intermediate zone, the hydraulic conductivity drops 
rapidly until reaching a depth of about 600 m. Thereafter, within the deep zone, 
the hydraulic conductivity is quasi-stable, with a tenuous decrease with depth, 
correlated with larger lithostatic pressure and smaller porosity at greater depths. 
The larger hydraulic conductivity near the surface is explained by a higher 
fracture density at shallow depths. Below the lower boundary of the shallow 
zone, water temperature increases at a steady rate governed by the geothermal 
gradient. Hydraulic head also shows an increasing trend below the shallow zone, 
albeit with some sharp fluctuations within the deep zone. In deep unconsolidated 
deposits the hydraulic conductivity also tends to decrease as a result of a greater 
lithostatic load. Figure 2 suggests a model of the type proposed in Eq. (1) for 
log-hydraulic conductivity: the sum of a spatially-variable trend, a constant level 
and local-scale, random, variability. The classical, small-perturbation analysis, 
based on stationary or statistically homogeneous log-hydraulic conductivity fields 
(see, e.g., Bakr et al., 1978), neglects the trend, T, and this feature constitutes 
the major difference between our approach and the classical, stationary analysis. 

THE MEAN AND PERTURBATION EQUATIONS FOR 
STEADY-STATE AQUIFER FLOW 

Consider the continuity equation for confined, steady-state, aquifer flow 
(tensorial index notation is used): 

\ = o (2) 

in which K represents hydraulic conductivity and ~ denotes hydraulic head. The 
logarithm of K, or log-hydraulic conductivity, is described by Eq. (1), whereas 
the hydraulic head, ~, is decomposed into a spatially variable but deterministic 
mean, H, and a stochastically homogeneous, zero-mean, perturbation, h: 

~b = H + h (3) 

It will be shown below that in view of the nonstationary behavior of log-hy- 
draulic conductivity, embodied in the trend, T, in Eq. (1), the statistical 
homogeneity of the hydraulic head perturbation, h, is only an approximate as- 
sumption. How strong this assumption is, as will be seen below, depends on 
the nature of the spatial variability of the mean hydraulic-head gradient and on 
the structure of the trend. 

Following Loaiciga and Marifio (1990), the equation governing the mean 
hydraulic head, H, is obtained after substituting Eqs. (1) and (3) into Eq. (2), 
and subsequently taking the expected value in the resulting equation to yield: 

02H 0rai l  ( o i  Oh 
- -  + - - - -  + E (._----~-)dxiaxi = 0 (4) OXiOX i OX i OX i 
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Equation (4) is the differential equation that govems the mean hydraulic head, 
H. The presence of the trend, T, introduces the second term in the left-hand 
side of Eq. (4). In solving Eq. (4), we consider also the expected value of the 
product of random gradients in Eq. (4). 

To develop the differential equation governing the perturbations of hy- 
draulic head, h, the mean Eq. (4) is subtracted from Eq. (2), after using Eqs. 
(1) and (3) into Eq. (2), and simplifying the resulting expression to yield: 

o xioxi + + o + E : o (5) 

Equation (5) is the differential equation for the perturbation of hydraulic head, 
h. Unlike the classical, stationary analysis, the log-hydraulic conductivity trend, 
T, introduces the second term in the left-hand side of Eq. (5). The term in 
brackets in Eq. (5), that involves the product of random gradients, has been 
studied by Loaiciga and Marifio (1990). It has a zero mean and a standard 
deviation (and, hence, an order of magnitude) that depends on the second de- 
rivatives of the covariance and cross-covariance of log-hydraulic conductivity 
and hydraulic head perturbations (see Eq. (35) of Loaiciga and Marifio, t990). 
In solving Eq. (5), the zero-mean term in brackets will be neglected. The con- 
ditions under which the order of magnitude of that term becomes negligible will 
be established below. It is shown below that the conditions for the smallness of 
the nonlinear perturbation term in (5) are compatible with the stability conditions 
needed for the solution of (4), thereby justifying our treatment of nonlinear 
terms. 

The approach followed is first to solve the perturbations Eq. (5), and, then, 
solve the mean equation, to fully characterize the first two moments of hydraulic 
head. The perturbations Eq. (5) must be solved first in order to develop an 
expression for the expected value of the product of random gradients in Eq. (4). 
Strictly, the solutions of the mean and perturbations equations are coupled in 
the sense that, to solve Eq. (5), one must know the spatial behavior of the mean 
hydraulic head, and, conversely, to discern the behavior of mean hydraulic head, 
further knowledge of the product of random gradients is needed. That knowl- 
edge, however, is locked-up in the structure of Eq. (5). This circular dependence 
can be broken if it is assumed that the mean hydraulic head, H, has some special 
pattern of spatial variability. Upon solution of Eqs. (4) and (5) one can examine 
how strong or weak this critical assumption is. 

SOLUTION OF THE PERTURBATION EQUATION 

In attempting to arrive at a solution of Eq. (5), which means deriving the 
covariance of the hydraulic head perturbations from (5), one must decouple Eq. 
(5) from the mean Eq. (4). In other words, the mean gradient, OH/Oxi, will be 
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assumed known in solving Eq. (5); henceforth, upon solution of Eq. (5), the 
mean Eq. (4) can be approached straightforwardly. As will be seen below, the 
critical conditions needed in the solution of the perturbations Eq. (5) is that the 
mean hydraulic gradient OH/Oxi, and the gradient of the trend, OT/Oxi, must 
be approximately constant; otherwise, the spectral representation of the hy- 
draulic head perturbations is not feasible. 

In order to develop closed-form solutions to the perturbations Eq. (5) and 
the mean Eq. (4), we simplify the analysis to the one-dimensional case. Closed- 
form analytical solutions of both equations do not exist for the general three- 
dimensional case. The one-dimensional results provide a clear insight of the 
role of trends in hydraulic conductivity on the behavior of hydraulic head. 
(Three-dimensional results will be provided also for the variance of hydraulic 
head and effective hydraulic conductivity, although, unlike the one-dimensional 
case, closed-form expressions in terms of elementary functions are not generally 
available in three-dimensions.) Consider the spectral representations for the hy- 
draulic head and log-hydraulic conductivity (Priestley, 1981) 

h =  lco eJk~dZh(k) (6) 
W - -  co 

f =  f~oeJk~dZf(k) (7) 

in which E[dZ(k)] = 0 and E[dZ(k) dZ*(k)] = ,I,(k), for both h and f; the asterisk 
denotes a complex conjugate; cI,(k) represents the spectrum andj  2 = _ 1. Equa- 
tions (6) and (7) are substituted into Eq. (5) to yield 

dZh(k) = J (ffS + ~2) dZf(k) (8) 

in which J is the mean hydraulic gradient, 

dH 
J - (9) 

dx 

and b is the trend gradient, 

b = dT/dx (10) 

From Eq. (8) and taking the expectation, the spectrum of hydraulic head • hh 
follows at once as a function of the spectrum of log-hydraulic conductivity, ~ff: 

j2 

~hh(k) -- (b 2 + k2 ) ,bff ( l l )  

Notice that. by introducing the effect of a trend in log-hydraulic conductivity 



Stochastic Groundwater Flow Analysis 167 

(b = dT/dx) ,  there are no restrictions on the nature of the spectrum of log- 
hydraulic conductivity, {bff. The standard analysis (see, e.g., Bakr et al., 1978) 
requires a spectrum {~ff proportional to k", n > 1. In this work, we use the 
popular exponential covariance model of log-hydraulic conductivity, off, to ob- 
tain the log-hydraulic conductivity spectrum: 

Off(r) = O-~ exp ( - - [ r  I I x )  (12) 

in which o~ is the variance of log-hydraulic conductivity, r is the separation 
distance between any two points, and X is the correlation scale of log-hydraulic 
conductivity. The spectrum of log-hydraulic conductivity, cbff, is derived by 
taking the Fourier transform of the covariance off in Eq. (12) to yield, 

'I'ft(k) - 7r(1 + k2;', 2) (13) 

from which, based on Eq. (11), the spectrum of hydraulic-head perturbations 
is: 

J 2o'~k 
~hh(k) = 7 r ( b  2 + k2)( 1 + k2~k2) (14) 

The covariance of hydraulic head, Ohh, is the Fourier transform of the spectrum 
of hydraulic head 

o,,,,(r) = I °~ e'k~h,,(k) dk (15) 
J - -  cx} 

that, based on Eq. (14), yields (the integration was carried out by the method 
of residues (Churchill and Ward, 1990)) 

J2o~ 
Ohh(7") - -  ( b 2 ~ ,  2 - 1)b [bX exp ( - I r l / X )  - exp ( -b lr]]  (16) 

For r = 0, Eq. (16) becomes the variance of hydraulic head, 0 2, 

2 J2°~X 
(17) oh - b(bX + 1) 

Equation (16), giving the covariance of hydraulic head, provides the so- 
lution to the perturbations Eq. (5), along with the fact that the mean of the head 
perturbations is zero, E(h) = 0. Notice that for the variance in Eq. (17) to be 
constant, the mean hydraulic gradient, J, and the gradient of the trend, b, must 
be constant, or approximately so, to validate the spectral representation of hy- 
draulic head perturbations in Eq. (6). The variance of hydraulic head, as seen 
from Eq. (17), is proportional to the squared mean hydraulic gradient and to 
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the variance of log-hydraulic conductivity, while inversely proportional to the 
square of the gradient of the log-hydraulic conductivity trend. The role of the 
correlation scale is somewhat obscured by the gradient of the trend; however, 
the larger the trend gradient, the less significant the correlation scale is in influ- 
encing the magnitude of the variance of the hydraulic head. Equation (17) also 
shows that the variance of hydraulic head becomes arbitrarily large when there 
is no trend (i.e., when b = d T / d x  ~ 0). This is a well-documented anomaly 
of the one-dimensional spectral analysis of groundwater flow (see, e.g., Bakr 
et al., 1978), where, in the absence of a trend, the covariance of hydraulic head 
becomes undefined unless the spectrum of log-conductivity is proportional to 
k ~, with n > 1. It is seen, then, that when a trend exists, such restriction on 
the admissible spectra of hydraulic head (a function of the log-conductivity 
spectrum) is no longer binding. Notice also that the variance of hydraulic head 
becomes undefined when bX --* - 1, according to Eq. (17). Since the correlation 
scale is positive, the condition bX --* - 1 could only arise when the trend gradient 
is negative (i.e., when b = d T / d x  < 0) and equal to 1/X in magnitude. There 
is a physical analogy in deterministic, heterogeneous, groundwater flow that 
sheds some light on the instability condition associated with bX = - 1. Consider 
the case of confined, steady-state, one-dimensional flow in an aquifer of constant 
thickness d and variable hydraulic conductivity K = a + bx, with a, x > 0. 
For a fixed coordinate location x, the (deterministic) hydraulic head as a function 
of the slope of hydraulic conductivity is h(b) = ho - ( Q ' / d  " b) In [(a + 
bx)/a] ,  where Q' is the groundwater flow in the positive x direction per unit 
thickness of aquifer and h 0 is the hydraulic head at x = 0. When b ~ 0 the 
hydraulic head becomes ho - ( Q ' x / d  • a); for b - ,  ~ ,  the head tends to ho; 
for b ~ - a / x ,  the head becomes undefined. In this latter case the negative 
slope of hydraulic conductivity, as it approaches its critical value, "chokes off" 
the flow. The role of correlation scale is played by the coordinate-dependent 
factor - a / x  in the deterministic case. 

ERROR ANALYSIS IN THE SOLUTION OF THE PERTURBATION 
EQUATION 

In solving the perturbations Eq. (5), the zero-mean term involving products 
of random gradients of hydraulic head and log-hydraulic conductivity pertur- 
bations was neglected. Loaiciga and Marifio (1990) established that the standard 
deviation and, hence, the order of magnitude a z, of the term in brackets in Eq. 
(5) is given by: 

(~z -- {o)~(0) 2 + O~)(O)a~'h(O)} ~/2 (18) 

in which (~)~(0) denotes the second derivative of the cross-covariance of the 
perturbation of log-hydraulic conductivity, f,  and hydraulic head, h, evaluated 
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at r = 0; analogous definitions hold for the second derivatives of the covariances 
of log-hydraulic conductivity (aff, see Eq. 12) and hydraulic head (ahh, see Eq. 
16). The cross-covariance of perturbations, afh, is obtained by the Fourier 
method: 

afh(r) = cbfh(k)e jx~ dk (19) 

The cross-spectrum Ofh is defined by 

~h(k) = NdZ~(k) dZ~(k)] (20) 

that, from Eq. (8), is found to equal 

J 
~fh(k) ----- " (b 2 4r k 2) (b + kj) ,bf f (k)  (21) 

where the spectrum Off  is given by Eq. (13). Substitution of Eq. (21) into Eq. 
(19), and carrying out the integration, yields the cross-covariance of perturba- 
tions: 

Ja~X e_lrl/X, r > 0 (22) 
aYh = bk  + 1 

Differentiating the covariances of Eqs. (12), (16), and (22) twice with respect 
to r, evaluating the second derivatives at r = 0, and substituting the resulting 
expressions into Eq. (18) yields the standard deviation of the product of random 
gradients of perturbations, a z (this standard deviation is the order of magnitude 
of the term in brackets in Eq. 5): 

J4 
[-bX] ~/2, b < 0 (23) az - (bX + 1)X 

Equation (23) shows that the standard deviation of the term in brackets (involv- 
ing the product of random gradients) in Eq. (5) vanishes when either a} -~ 0, 
or when b = 0. Notice again how the stability condition bX :~ - 1  holds for 
the perturbations term also. 

MEAN SPECIFIC DISCHARGE AND EQUIVALENT HYDRAULIC 
CONDUCTIVITY IN THE PRESENCE OF TRENDS 

Consider the specific discharge, qi, as given by Darcy's law: 

qi = - K 0_~ (24) 
Oxi 
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Substitution of Eqs. (1) and (3) into Eq. (24), and taking the expected value 
of the resulting expression, leads to 

I OH E ( e f  Oh "~'~ (25) E(qi) = - e  T+F E(e f ) ~  + \ Oxi/] 

The function e f is expanded as a Taylor series in Eq. (25) to yield 

E(qi) = - e  r+F E 1 + f + - ~  + . . .  Ox-~i 

+ E 1 + f +  ~- + . . .  (26) 

The Taylor series in Eq. (26) are approximated by keeping those terms of at 
most order one, i.e., terms with exponents of two or larger are neglected (such 
as f2~2, .['3/6, etc.). Carrying on the expectation operation in Eq. (26) leads to 
the following approximate expression for the mean specific discharge: 

e(qi) = - e   0xZ + o x , / )  

where T and F have been previously defined as being the trend and constant 
level, respectively, of log-hydraulic conductivity (shown in Fig. 1). It is em- 
phasized that Eq. (27) represents a first-order approximation, since the function 
efwas truncated after the first-order term, f. Gutjahr et al. (1978) have truncated 
the Taylor series after the second-order term, f2 /2 ,  when multiplying by the 
gradient, OH/Oxi, in Eq. (26), and after the first-order term, f,  when multiplying 
by the random gradient, Oh/Oxi, in that same equation. The product of pertur- 
bations in Eq. (27) is evaluated as follows (using now a one-dimensional do- 
main) 

f E Oh_ = 'bfh,(k ) dk (28) 
\ Ox/ -~  

where 

in which 

'~ fh,(k) = E[dZf(k) dZ~,, (k)] (29) 

dZ*,(k) = - j k  dZ~(k) (30) 

From Eq. (8), the cross-spectrum of Eq. (29) becomes 

Jjk(b + kj ) 
~bfh,(k ) - (b 2 + k2 ) ,bff(k) (31) 
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in which the spectrum ,~ff(k) is given by Eq. (13). Substitution of Eq. (31) into 
Eq. (28) and integrating yields: 

E = b X +  1 

Based upon the result of Eq. (32), the mean specific discharge in Eq. (27) 
becomes: 

E(qi) --~ - e  r+F 1 bX + ~  

From Eq. (33), it is seen that the equivalent hydraulic conductivity, K e, is then 

I : l  Ke = e r+p 1 bX + 1 (34) 

Notice that the effective hydraulic conductivity in Eq. (34) is nonconstant, since 
the trend, T, by definition depends on the space variable. Notice that to make 
the equivalent hydraulic conductivity in Eq. (34) physically meaningful (i.e., 
non-negative), the condition ~ < bX + 1 must hold. When Eq. (34) is sim- 
plified to the case of no trend (T = 0), it becomes 

Ke = eF[1 -- Cr}], T = 0 (35) 

in contrast with the result of Gutjahr et al. (1978) (denoting their effective 
hydraulic conductivity by K'): 

K' = e P l l - ~ 1  (36) 

The discrepancy between the effective conductivities in Eqs. (35) and (36) arises, 
as explained before, from the fact Ke in Eq. (35) is based on a first-order 
approximation of the function e f whereas, K'  in Eq. (36) is based on first- and 
second-order approximations to el., The effective conductivity is a macroscopic 
parameter of interest, since it represents the average conductivity under which 
mean specific discharge takes place. Our results pointing out to the plausibility 
of a space-dependent effective hydraulic conductivity seem to be novel. They 
are appealing for the purpose of distributed groundwater model calibration, 
where average zonal values of hydraulic conductivity are required. Equation 
(34) shows that the effective hydraulic conductivity is expressed in terms of 
measurable or estimable macroscopic parameters (b,)x, ~ )  and conductivity 
trend (T, F). 
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S O L U T I O N  OF THE M E A N  E Q U A T I O N  

The analyses of the previous sections hinge on the nature of the mean 
hydraulic head, H. It has been already stated that the mean hydraulic gradient, 
J, may be only weakly space-dependent to validate the spectral representation 
of hydraulic-head perturbations. In one dimension, the mean hydraulic-head 
equation becomes 

dZH dH ~ df dh ] 
~ -  + b ~ -  + t~  L d ~ j  = 0  (37) 

The expected value of the product of random gradients in Eq. (37) can be shown 
to be given by (Loaiciga and Marifio, 1990): 

: , ,  

Ldx dxJ -oih (0) (38) 

where the second derivative of the cross-covariance oih is readily obtained by 
differentiating twice in Eq. (22) and evaluating the resulting expression at r = 
0; therefore, 

[ df  dh ] dH a} (39) 
E Ldx dxj = ~ X(bX + 1) 

In view of Eq. (39), Eq. (37) can be rewritten as 

d2H I a~ J dH 
--dx 2 -I- b + k(bX + 1) -~- = 0 (40) 

It is straightforward to verify that a solution to Eq. (40) is 

H(x) -= C1 + C2 f e xp I - t ' p ( x )  dxldx (41) 

in which Ci and (72 are constants of integration (that depend on the geometry 
of the flow domain and boundary conditions, that, theoretically, must be defined 
in an infinite domain), and 

4 p(x) : b + (42) 
X(bX + 1) 

If the trend gradient, b, is constant, as when the trend is linear (i .e. ,  T = a + 
bx), the mean hydraulic head in Eq. (41) becomes 

C2 H(x) = C1 - - -  e -px (43) 
P 

This solution can be approximated around any point, Xo, in the flow domain by 
a Taylor series: 
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e --pxo oo 
H(x) = Cl - C 2 -  ~ ( - - P ) r ( x  - -  xO)r (44) 

p r=0 r! 

If o~ << bX + 1 and the slope of the trend is also small (these are conditions 
approximating those imposed in classical spectral analysis of groundwater flow), 
then the mean hydraulic head can be approximated by a first-order expansion 
in Eq. (44): 

H(x) . . ~  Cl + C~ x (45) 

where 

and 

C ~ - = C  l --C2@p-kXo) e -px° (46) 

C~ = C2 e-pxo (47) 

From Eq. (45), the mean hydraulic gradient, J, is constant (and equal to C~); 
the trend gradient, b, is assumed constant and mild (i.e., the slope of the trend 
is small). Under these conditions our analysis of stochastic groundwater flow 
with trends in hydraulic conductivity is fully justified, and it provides an accurate 
insight of the role of spatial conductivity trends on hydraulic head, already 
exposed in previous sections. Figure 3 shows a qualitative description of the 

--- 1.0- 

(~Z = j ~ f 4  

% = j2 7-?  " (~'2 f 
\ j  h , , K e 

K~ ~ _  
~f-12 0 b -1 

Fig. 3. Qualitative behavior of (scaled) variance of hydraulic head, variance of the product of 
perturbation gradients, and effective hydraulic conductivity. 
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dependence of (1) the head variance, (2) effective hydraulic conductivity, and 
(3) order of magnitude of the product of perturbation gradients on the trend 
slope b. 

THREE-DIMENSIONAL RESULTS 

The methods of the previous sections can be extended to two and three 
dimensions straightforwardly by using multidimensional spectral representation 
of conductivity and head perturbations (Priestley, 1981). For example, the 
variance of hydraulic head becomes in three dimensions (where R represents the 
complete three-dimensional space, and tensorial index notation is used again): 

0~ X 3 ~ (~ij;)2 
02 

'It 2 ~R [(kiki) 2 -I- (kiai) 2] [1 + (kiki)~k2] 2 dk  (48) l 

in which Ji is the mean hydraulic gradient in the ith-direction, ai is the ith 
component of the trend gradient (ai = aT/cgxi), and ki is the ith component of 
the wave number vector k. The above expression cannot be integrated in terms 
of elementary functions as in the one-dimensional case. It is possible to show 
that the right-hand side of Eq. (48) is integrable for all a/. The stability conditions 
encountered in the one-dimensional case are removed in three dimensions. (The 
only possibility to quantify the integral in (48) is numerically or, with signifi- 
cantly more effort, in terms of a class of infinite series called polylogarithms 
(Lewin, 1981)). 

The three-dimensional effective hydraulic conductivity can be shown to be: 

I °-2)k3fj i  i de 1 a t- u f  I,, [(kiai ) + j (kiki) ] [kiJi] 
__  e T -~- F Ke 7r 2 g Jki [(kiki) 2 + (kiai)2][1 + (kiki) ~k2] 2 (49) 

for i = 1, 2, 3. One immediate conclusion to be drawn from Eq. (49) is that 
the effective hydraulic conductivity in three dimensions is isotropic only if the 
mean hydraulic gradient is the same in all directions. (Some authors consider 
only one non-zero gradient direction, that of mean specific discharge.) Other- 
wise, the conductivity is anisotropic. The right-hand side of (49) is integrable 
for all a i. No attempt has been made in this paper to integrate the expressions 
in Eqs. (48)-(49), although this is feasible for specified values of the intervening 
parameters. 

SUMMARY AND CONCLUSIONS 

The analysis of steady-state stochastic groundwater flow in the presence of 
trends in log-hydraulic conductivity has resulted in the following findings: 
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(1) The perturbations and mean equations of hydraulic head are coupled, 
and, in general, their separate solution can be derived only if the mean 
hydraulic gradient is weakly space dependent. 

(2) By introducing trends in log-hydraulic conductivity, there are no re- 
strictions on the structure of the log-hydraulic conductivity covariance 
function. 

(3) The stability of the variance of hydraulic head depends on the mag- 
nitude of the gradient of the trend and on the product of the trend 
gradient times the correlation scale of log-conductivity (b ~); poles exist 
at b = 0 and b X -- - 1  in the one-dimensional case. 

(4) The error analysis of the perturbations equation established the order 
of magnitude of the nonlinear term involving products of random gra- 
dients: that analysis showed that such nonlinear term is negligible for 
small values of the variance of log-conductivity. 

(5) The equivalent hydraulic conductivity is nonconstant, and it depends 
on the trend, trend slope, constant level of the trend, and the variance 
and correlation scale of log-hydraulic conductivity; in the one-dimen- 
sional case a pole exists at b X = - 1 .  

(6) The solution of the one-dimensional equation for mean hydraulic head 
in the presence of log-conductivity trends results in an exponential 
function, that can be approximated by a linear function when the trend 
gradient and the variance of log-hydraulic conductivity are small. 

(7) In the one-dimensional case, the necessary and sufficient conditions for 
the validity of the analysis of hydraulic head in the presence of trends 
in log-conductivity are that a~ < b X + 1, b be small, and b ~ :/: - 1 .  

(8) Three-dimensional expressions for the variance of hydraulic head and 
for effective hydraulic conductivity were derived. It was shown that in 
three dimensions the effective hydraulic conductivity is anisotropic ex- 
cept when the mean hydraulic gradient is the same in all directions. 

(9) The condition bk :g - 1  in the one-dimensional flow problem can be 
related to the deterministic case where flow is choked off when the 
slope of hydraulic conductivity reaches a critical negative value. 
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