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Abstract 

 

Controlling the size and shape of nanopores in two-dimensional materials is a key challenge in 

applications such as DNA sequencing, sieving, and quantum emission in artificial atoms. We here 

investigate experimentally and theoretically triangular vacancies in (unconventional) Bernal-stacked AB-

h-BN formed using a high-energy electron beam. Due to the geometric configuration of AB-h-BN, 

triangular pores in different layers are aligned, and their sizes are controlled by the duration of the 

electron irradiation. Interlayer covalent bonding at the vacancy edge is not favored, as opposed to what 

occurs in the more common AA′-stacked BN. A variety of monolayer and bilayer pores in bilayer AB-h-

BN are observed in high-resolution transmission electron microscopy and characterized using ab initio 

simulations. Bilayer pores in AB-h-BN are commonly formed, and grow without breaking the bilayer 

character.  Nanopores in AB-h-BN exhibit a wide range of electronic properties, ranging from half-

metallic to semiconducting, indicating that, in addition to the pore size, the electronic structure is also 

highly controllable in these systems and can potentially be tuned for particular applications. 

 

 

Introduction 

 

Vacancy defects in two-dimensional materials are zero-dimensional features that can impart to 

the host material optical and electronic properties (e.g. bandgaps, charge state, and electron 

scattering behavior) very different from those of the pristine sheets, and they can change the 

emergent measurable properties of the material (e.g. resistivity and tensile strength).1–5 

Moreover, such vacancies represent a physical structure in which there may be a small hole (i.e. 

nanopore) in an otherwise impermeable membrane. 

 

Simultaneous advances in atomic resolution transmission electron microscopy (TEM) and in the 

isolation and large-scale synthesis of two dimensional materials have resulted in a rapid increase 

in the understanding of vacancy defects in these materials.6–8 These vacancies have been studied 

in both naturally occurring and artificially produced forms, and they have been structurally 

characterized.2,9–13 The fundamental properties of vacancy defects in two-dimensional materials 

have led to their investigation in numerous research directions, including (i) DNA Sequencing, in 

which the DNA is pushed through a pore in a solution while the ionic current across the pore, 
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which is a function of the nucleotide base currently inside the pore, is continuously measured;14–

19 (ii) Quantum Emission, in which pores behave as artificial atoms or quantum dots with stable 

and optically accessible quantum states with long coherence times at room temperature;20 and 

(iii) Molecular Sieving, in which the size distribution of a large number of pores in an 

impermeable membrane is controlled to selectively exclude the passage of certain molecules or 

ions.21–26 

 

For these applications, vacancy size and geometry are critical for determining the utility of 

nanopores. While high energy electron beams and ion beams have been used to create the 

smallest pores observed, the shape and size of nanopores is limited by the beam geometry.11,17,27 

For graphene nanopores, for example, pore size has traditionally been limited to 3 nm or greater 

and their shapes can only be minimally controlled.17 In order to overcome this minimum 

resolution limit, the intrinsic etching properties of the material can be leveraged. It has been 

demonstrated that when conventionally AA’-stacked hexagonal boron nitride (AA’-h-BN) is 

exposed to 80 kV electron irradiation in TEM, vacancies are etched, and atomically precise 

edges are formed along the nitrogen zig-zag direction.6,12,28–32 

 

In single-layer h-BN, single atomic vacancies are preferentially formed as boron monovacancies 

under a 80 kV electron beam, which is generally thought to be caused by the difference in the 

electron knock-on energy thresholds of boron and nitrogen atoms (74 kV for B and 84 kV for 

N).10,12,28,33,34 The computed atomic structure of a boron monovacancy is shown in Figure 1a, 

which results in a half-metallic electronic structure, where one spin channel has a bandgap and 

the other has a non-zero density of states at the Fermi level. After the formation of a B 

monovacancy, under continuing electron irradiation, one of the under-coordinated nitrogen 

atoms adjacent to the vacancy gets ejected, followed by its neighboring boron atoms, which 

results in a triangular tetravacancy with a nitrogen edge. Maintaining the electron irradiation 

further results in progressively larger triangular vacancies.32,35 This mechanism provides a 

method of creating nanopores that are equilateral triangles with the desired sizes by controlling 

the duration of the irradiation. According to previous computational studies, the electronic 

structure of these triangular pores depends on their size, resulting in metallic, half-metallic or 

semiconducting edge regions.36–42 Because single layer h-BN is rarely observed in large-area 

free-standing form, it would be beneficial to have the same level of control on the triangular 

vacancies in multilayer samples. In this Letter, we describe how this is achieved, and 

characterize the electronic properties of these vacancies using first-principles calculations. 

 

 

Monolayer Vacancies in Bilayer h-BN 

 

In multilayer h-BN, the vacancy defects can interact with adjacent layers.3,4 This can affect the 

types and shapes of vacancies in the sheets. For example, in AA′-stacked h-BN, interlayer 

interactions can dominate the properties of its electron irradiation induced defects. Out-of-plane 

covalent bonds form across layers at boron monovacancy sites in bilayers.3 Also, along the edges 

of extended vacancies in these bilayers, covalent bonds form between the layers and the edge 

relaxes to resemble a boron nitride nanotube with an extremely small radius of curvature.4 The 

local atomic structure at these defects and edges determines the electronic properties of the 

material.3,4  
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Each lattice site in AA′-stacked h-BN contains a boron directly under a nitrogen, thus interlayer 

covalent bonds are available at each site in the crystal. When a B monovacancy is formed, some 

or all of the three under-coordinated N atoms neighboring the vacancy may form bonds with the 

B atoms directly underneath (see Figure 1b). We find that in the electron-rich regime (3 extra 

electrons per 5×5 cell), forming these interlayer bonds is energetically favorable, with 2 out of 3 

bonds being the most favorable configuration (see Table 1). Therefore, the vacancy shape is no 

longer determined, and the three-fold rotational symmetry of the lattice may be lost. These 

lower-symmetry defects have been observed in AA′-stacked h-BN.3 When all 3 of the interlayer 

bonds are formed, the vacancy becomes a semiconductor, losing the half-metallic character of 

the B monovacancy edge (compare Figure 1b with Figure 1a). Furthermore, in the AA′-stacked 

BN, the second layer is obtained from the first layer by a 60° rotation, thus the triangular pores 

with N edge in successive layers are not aligned, and multilayer pores do not have a pre-

determined shape (see Figure S1). This is consistent with the observations in References 

6,12,28. 

 

In Reference 35, we described a new synthesis technique for reliably producing Bernal-stacked 

h-BN, i.e. AB-h-BN. For this stacking sequence, the relative shift between the layers leaves only 

half of the lattice sites with a stacked boron and nitrogen. In Figure 1c-d, we present the structure 

of a boron monovacancy in one layer of double layer AB-h-BN. As opposed to the AA′ stacking, 

in AB-h-BN the two layers are inequivalent: in Figure 1c, the B atoms in the top layer are aligned 

with the hollow sites in the bottom layer, whereas the B atoms in the bottom layer are aligned 

with the N atoms in the top layer. Thus, a vacancy in the top layer yields a different 

configuration from a vacancy in the bottom layer. In order to consider vacancies only in the top 

layer, we flip the system over if the vacancy is in the bottom layer, and give it a different name 

(AB1 for Figure 1c and AB2 for Figure 1d). The two stacking sequences are physically 

equivalent, and any vacancy configuration in one can be obtained in the other by rotating the 

system by 180° around an armchair direction. Distinguishing AB1 and AB2 allows us to 

meaningfully distinguish a top layer and a bottom layer in the discussion below. 

 

In AB1 stacking, a B monovacancy in the top layer creates three under-coordinated N atoms that 

are directly on top of B atoms from the bottom layer, which yields interlayer bonding in the 

electron-rich regime, as in the AA′ case (see Figure 1c and Table 1). However, in the AB2 

stacking, the under-coordinated N atoms lack a neighbor directly underneath, and thus the top 

layer stays flat and no new bonds form (see Figure 1d). Decoupling the two layers retains the 

half-metallic nature of the B monovacancy in the top layer (Figure 1d). Furthermore, in the 

Bernal stacking, because there is no relative rotation between layers,35 the triangular pores with 

N edge in successive layers are aligned and multilayer triangular pores are formed (see Figure 

S1). Moreover, the edges of each vacancy are nearly straight, and we do not observe any 

irregular shaped vacancies. 

 

Studying our AB-h-BN samples using high-resolution transmission electron microscopy (HR-

TEM), we find many monolayer vacancies in two-layer stacks. Figure 2 shows three such 

monolayer vacancies as imaged in HR-TEM and modelled theoretically. Assuming that the pores 

are formed in the top layer, the first one corresponds to AB2 stacking with a boron monovacancy 

(Figure 2a). In the second one, a tetravacancy is formed in the top layer of an AB1 bilayer 
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(Figure 2b). The third one corresponds to a larger nanopore with 10 B and 6 N atoms missing 

from the top layer in a bilayer AB2-stacked BN. The relaxed theoretical structures (which 

contain no interlayer covalent bonds) match the experimental HR-TEM structure almost exactly, 

as shown in the middle row. Spin-resolved density-functional calculations result in three distinct 

characterizations for these vacancies: The first one is a half-metal with a total magnetization of 3 

μB (Figure 2a); the second one is a non-magnetic semiconductor with two sharp in-gap states 1.8 

eV and 2.2 eV above the valence band maximum (Figure 2b); and the third one is a magnetic 

semiconductor with gaps of 0.6 eV and 0.2 eV for the two spin channels and a total 

magnetization of 6 μB (Figure 2c). This result suggests that tuning vacancy size in AB-h-BN is a 

new method for tuning the magnetic and electronic properties of its vacancies. The ability to 

create vacancies with tunable bandgaps in the visible range may be useful for h-BN in 

optoelectronics and photon emission.20,43 We note that for the magnetic nanopores, different 

magnetic configurations involving up and down spins with competitive total energies exist, 

which we will discuss in detail elsewhere. 

 

 

Bilayer Vacancies and Edges in Bilayer h-BN 

 

In a multilayer sample, after a monolayer triangular vacancy is formed, if the electron irradiation 

is maintained, a triangular vacancy tends to form in the exposed region of the other layer, 

resulting in nested triangular vacancies. Figure S2 shows the growth of a vacancy in a monolayer 

of h-BN as it merges with a larger vacancy in the next layer to form a bilayer AB-h-BN 

nanopore. In panel (a) of Figure S2, a small one- or few-atom vacancy has formed within a 

triangular monolayer region that is embedded within a bilayer area (~2 nm triangle). By panel 

(b), the vacancy has grown to ~1.5 nm and two of its edges have aligned with the large vacancy 

to form bilayer edges. In panel (c), the vacancy in the two layers have merged to form a ~4 nm 

triangular bilayer vacancy. In panel (d), the triangular bilayer vacancy has grown to ~6 nm while 

retaining its bilayer edges and triangular geometry. Typically, these bilayer edges keep their 

triangular shape and bilayer edges as they continue to grow, and never revert to two separate 

monolayers. 

 

While the interlayer orientation is sufficient to describe the alignment of vacancies in multiple 

layers, it does not fully explain why the vacancies should merge to preferentially form a bilayer 

edge. We suggest two mechanism by which bilayer edges emerge. The first possible mechanism 

is that bare monolayers of h-BN are less stable under electron irradiation. This could be because 

a second layer provides protection from chemical sputtering from the electron beam or because 

the second layer increases the kinetic scattering threshold for the layers among other reasons. In 

this scenario, whenever a small monolayer region of h-BN is exposed, the layer is etched back to 

form a bilayer edge. The second possible mechanism is that a covalent bond forms between the 

edge atoms. In this scenario, as the triangular vacancies in the top and bottom h-BN layers 

intersect, the edge atoms covalently bond together. This would form a stable edge that maintains 

its structure as it is irradiated and reforms as it is etched. These two mechanisms can be 

distinguished by their structural properties as in Reference 4. 

 

In order to understand the structure of its edges, we performed HR-TEM on vacancies in bilayer 

AB-h-BN using the TEAM 0.5 microscope at Lawrence Berkeley National Laboratory. Figure 3 
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shows the exit wave reconstruction (by Mac Tempas, see Methods) of a focal-series stack 

(defocus values of -10 nm to 70 nm with a step of 1 nm) of 80 monochromated TEM images 

acquired at 80 kV. The image is presented using a high-contrast filter to distinguish between 

vacuum (black and dim red), single atoms (bright red dots), and stacks of B and N atoms (yellow 

dots). 

 

Figure 3a shows an overview of two 3 nm bilayer vacancies in the AB stacked h-BN as 

highlighted by the green triangles. Multiple smaller monolayer vacancies are also present. The 

edge highlighted by the blue dashed box is presented in Figure 3b. In order to investigate any 

potential lattice relaxation in the structures, we overlay a grid that has spacings 𝑎0/2 in the x-

direction and √3𝑎0/4 in the y-direction, where 𝑎0 is the lattice constant. All of the atomic 

positions for the undisturbed lattice fall on this grid, as shown in Figure 3c. We observe that each 

double atom stack of boron and nitrogen falls exactly on the grid of the undisturbed lattice, 

independent of how close they fall to the edge (Figure 3b). This indicates that interlayer 

relaxation and covalent bond formation is unlikely in these bilayer edges.  

 

To further understand the properties of the edges of the Bernal-stacked bilayer vacancies, we 

computed possible edge structures. The best candidate for the bilayer edge in Figure 3 is 

presented in Figure 4. In this “open edge” case, two monolayer edges sit on top of one another 

without interlayer bonding. Other candidates for bilayer edges, including some “closed edge” 

cases will be presented elsewhere. The unrelaxed grid of positions is overlaid on the open edge 

structure as in Figure 3. The in-plane distortions are negligible, making it a very strong candidate 

for the experimentally observed bilayer edge. In previous computational studies, the nitrogen-

terminated zigzag edge of the BN monolayer was found to be half-metallic.38,44 Looking at the 

projected density of states (PDOS) plots in Figure 4, we see that the open bilayer edge preserves 

the half-metallic character of the monolayer edge, with a magnetization of 2 μB per cell along the 

edge direction, localized on the edge N atoms.  

 

Therefore, bilayer edges in AB-h-BN greatly differ from the bilayer edges in AA′-stacked BN, 

which are insulating and have large in-plane and out-of-plane relaxations.4 This is an important 

difference as it suggests that AB-h-BN could potentially be used for its 1D conducting edges. 

Also, the formation of bilayer edges in AA′-stacked h-BN occurs because of stabilizing 

interlayer bonds, but the formation of bilayer edges in AB-h-BN (where the edges in the 

consecutive layers are not bonded but are nevertheless aligned) appears to be a kinetic effect. 

This highlights that both the chemistry in the TEM column and knock-on effects have major 

roles in determining defect geometry in materials. 

 

 

Conclusions 

 

We have achieved the controlled formation of triangular vacancies in multilayer h-BN, using a 

new growth technique which results in Bernal stacking (AB-h-BN). Due to the favorability of 

nitrogen terminated vacancy edges in BN and the lack of relative rotation between the layers in 

Bernal stacking, triangular pores in different layers are aligned in AB-h-BN. We have shown that 

interlayer covalent bonding following vacancy formation in a layer is not favored for this 

stacking sequence, increasing the level of controllability and symmetry in these pores. 
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Furthermore, we observe that pores with bilayer edges are preferentially formed, which is 

probably not due to interlayer covalent bonds but kinetic effects. We observe a variety of 

monolayer and bilayer pores in bilayer AB-h-BN in our HR-TEM images and find excellent 

matches from theoretical simulations. These pores have a variety of electronic properties, 

ranging from half-metallic to semiconducting, which is encouraging for future research toward 

many applications such as DNA sequencing and quantum emitters. 

 

 
Methods 

 

The growth and structural characterization procedures are described in details in Reference 35 and its 

Supplementary Material. In short, we grow Bernal-stacked (AB-)h-BN on Cu and Fe substrates by low-

pressure chemical vapor deposition (LP-CVD). We employ a two-zone heating approach, in which the 

gaseous thermal decomposition products of solid ammonia borane precursors (kept at 70-90 °C) react to 

form h-BN on a transition metal catalyst (heated at 1025 °C). We verify the Bernal-stacking of the 

resulting multilayer flakes using high-resolution transmission electron microscopy (HR-TEM) and 

selected area electron diffraction (SAED). HR-TEM was carried out at 80 kV using the TEAM 0.5 

microscope equipped with image aberration correctors. Exit wave reconstructions of the HR-TEM focal 

series (Figure 2 and Figure 3) are produced using Mac Tempas software as described in the text. 

 

We employ density functional theory (DFT) in the Perdew–Burke–Ernzerhof generalized gradient 

approximation (PBE GGA) to conduct the first-principles calculations.45 We implement DFT using the 

QUANTUM ESPRESSO software package with norm-conserving pseudopotentials.46,47 We set 160 Ry as 

the plane-wave energy cutoff for the pseudo Kohn-Sham wavefunctions. For single- and double-layer 

simulations, we use a 12×12×1 Monkhorst-Pack k-point mesh to sample the Brillouin zone. For edge 

simulations, we use a 12×1×1 k-point mesh. All atomic coordinates are relaxed until the forces on all the 

atoms are less than 10-3 Ry/𝑎0 in all three Cartesian directions (𝑎0: Bohr radius). A ~14 Å thick vacuum 

is used between the periodic copies of the slab in the out-of-plane direction. For edge simulations, a 1×10 

cell is constructed, and ~12 Å of vacuum is placed between the copies of the 1D system along the 

direction perpendicular to the edge. We passivate the dangling bonds at the other edge, which is not of 

interest to us, using hydrogen atoms, and keep the first 4 unit cells (8 atoms) unrelaxed. In order to 

include the interlayer van der Waals (vdW) interactions, we include a Grimme-type dispersion 

correction.48 
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Table 1. Energies of the interlayer-bonded structures for boron monovacancies. Energies of the 

interlayer-bonded (IL-bonded) structures, relative to the configuration in which out-of-plane relaxations 

are not allowed, for the boron monovacancy in one layer of a bilayer AA′-stacked and AB1-stacked h-

BN. The calculations are carried out in electron-rich conditions (3 extra electrons per 5×5 cell) to 

compare with  Reference 3. For each stacking sequence, formation of 1, 2 or 3 interlayer bonds is possible 

between the pairs of N atoms at the edge of the vacancy in the top layer and the B atoms directly 

underneath; so, each case corresponds to a (meta)stable configuration. 

 ∆𝑬 (eV) 

1 IL bond 2 IL bonds 3 IL bonds 

 𝐀𝐀′ -1.09 -1.49 -1.08 

𝐀𝐁𝟏  -1.03 -1.36 -1.07 

 
 

 

 
Figure 1. Simulated boron monovacancies in monolayer and bilayer h-BN. Relaxed atomic structure 

and density of states (DOS) of a boron monovacancy in (a) monolayer, (b) AA′-stacked bilayer, (c) AB1-

stacked bilayer and (d) AB2-stacked bilayer h-BN. For each structure, top and side views of the atomic 

configuration are presented at the top. The calculations are carried out in electron-rich conditions (3 extra 

electrons per 5×5 cell). Boron is shown in gold and nitrogen is shown in blue. Computed spin-resolved 

density of states (DOS) plots for each structure are presented at the bottom. The total DOS is plotted as 

gray areas, and the colored curves are obtained by adding up the DOS projected onto the 2s and 2p 

orbitals (PDOS) of the atoms marked on the figure: (a) 3 edge N atoms (blue); (b) 3 edge N atoms in the 

top layer (blue), 3 B atoms directly underneath (gold), 1 N atom in the bottom layer directly under the 

vacancy (green); (c) 3 edge N atoms in the top layer (blue), 3 B atoms directly underneath (gold); (d) 3 

edge N atoms in the top layer (blue). 
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Figure 2. Vacancies in one layer of a bilayer Bernal-stacked h-BN. Top row: HR-TEM focal series 

reconstructions of vacancies produced in a single layer of a bilayer AB-stacked h-BN, comprised of (a) 1 

missing boron atom (monovacancy), (b) 3 missing boron atoms and 1 missing nitrogen atom 

(tetravacancy), and (c) 10 missing boron atoms and 6 missing nitrogen atoms. The frames are each 2 nm 

wide. Middle row: Same images with the computed atomic structures overlaid. Boron is shown in gold 

and nitrogen is shown in blue. The relaxed theoretical structures (which contain no interlayer covalent 

bonds) match the experimental HR-TEM structure almost exactly. Bottom row: Computed spin-resolved 

density of states (DOS) plots for each structure. The total DOS is plotted as gray areas, and the blue 

curves are obtained by adding up the DOS projected onto the 2s and 2p orbitals (PDOS) of the under-

coordinated N atoms at the vacancy edges. The structure in (a) is a half-metal, the structure in (b) is a 

non-magnetic semiconductor, and the structure in (c) is a magnetic semiconductor. 
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Figure 3. HR-TEM of triangular vacancies in Bernal-stacked h-BN. (a) Triangular vacancies 

produced in h-BN under 80 kV electron irradiation using TEM mode on the National Center for Electron 

Microscopy’s TEAM 0.5. Two 3-nm bilayer pores (highlighted in green) are present with several smaller 

monolayer vacancies. The image is presented using a high-contrast filter to distinguish between vacuum 

(black and dim red), single boron and atoms (bright red dots), and stacks of boron and nitrogen (yellow 

dots). (b) A zoomed-in section of the edge highlighted by blue dashed box in (a). An overlaid grid denotes 

the atomic positions for the undisturbed bilayer h-BN lattice. (c) The same zoomed-in section of the edge 

from (a) with the atomic species in an undisturbed lattice overlaid. Boron is shown in gold and nitrogen is 

shown in blue. 
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Figure 4. Simulated edge structure and electronic structure in Bernal-stacked bilayer h-BN. The 

nitrogen-terminated open zigzag edge, which exhibits no in-plane compression and its projected density 

of states (PDOS) for the edge atoms. The top view (left) and the side view (center) of the edge are shown, 

along with the PDOS of the atoms at the very edge (right). For the atomic models, an overlaid grid 

denotes the atomic positions for the undisturbed bilayer h-BN lattice, highlighting where the atoms would 

be if no relaxations due to the edge were allowed. Boron is shown in gold and nitrogen is shown in blue. 
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Figure S1. Vacancies in AA′- and AB-stacked h-BN. (a) and (b) show conventional TEM images of 

vacancies formed under 80 kV electron irradiation in AA′- and AB-stacked h-BN respectively. (a) In the 

AA′-stacked h-BN, we observe anti-parallel triangular vacancies in separate layers, highlighted by red 

and blue triangles. We also observe bilayer vacancies with no preferred shape or edge termination (purple 

circle). (b) In the AB-stacked h-BN, we observe only parallel triangles in every layer as highlighted by 

red and blue triangles. (c) A schematic of bilayer AA′-stacked h-BN. The nitrogen zig-zag edges are 

highlighted in the top (blue) and bottom (red) layers. (d) A schematic of bilayer AB-stacked h-BN. The 

nitrogen zig-zag edges are highlighted in the top (blue) and bottom (red) layers. Boron is shown in gold 

and nitrogen is shown in blue. 
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Figure S2. Growth of a bilayer nanopore in AB-stacked h-BN. (a)-(d) shows the growth of a bilayer 

nanopore from a few-atom monolayer vacancy to a 6 nm bilayer pore. (a) Initially, the vacancy starts as a 

one-edge bilayer few-atom defect. (b) Then, the pore grows to ~1.5 nm with two bilayer edges. (c) The 

vacancy grows to 4 nm with three bilayer edges. (d) The pore grows to 6 nm retaining its bilayer edges. 

No edge ever reverts to monolayer. All scale bars are 5 nm. 

 

 

 




