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Data Descriptor: Downscaled and
debiased climate simulations for
North America from 21,000 years
ago to 2100AD
David J. Lorenz1, Diego Nieto-Lugilde2, Jessica L. Blois3, Matthew C. Fitzpatrick2

& John W. Williams1,4

Increasingly, ecological modellers are integrating paleodata with future projections to understand
climate-driven biodiversity dynamics from the past through the current century. Climate simulations from
earth system models are necessary to this effort, but must be debiased and downscaled before they can be
used by ecological models. Downscaling methods and observational baselines vary among researchers,
which produces confounding biases among downscaled climate simulations. We present unified datasets of
debiased and downscaled climate simulations for North America from 21 ka BP to 2100AD, at 0.5° spatial
resolution. Temporal resolution is decadal averages of monthly data until 1950AD, average climates for
1950–2005 AD, and monthly data from 2010 to 2100AD, with decadal averages also provided. This
downscaling includes two transient paleoclimatic simulations and 12 climate models for the IPCC AR5
(CMIP5) historical (1850–2005), RCP4.5, and RCP8.5 21st-century scenarios. Climate variables include
primary variables and derived bioclimatic variables. These datasets provide a common set of climate
simulations suitable for seamlessly modelling the effects of past and future climate change on species
distributions and diversity.
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Background & Summary
A productive new synthesis is being forged among ecologists, conservation biologists, biogeographers,
and paleoecologists1–7, motivated by a common goal of understanding how climate change has affected
and will affect the diversity and distribution of species. Species extinction rates currently are 100 times
background rates8 and climate change is expected to further stress threatened populations9–12.
Metaanalyses suggest that 8% of species will go extinct if global temperatures rise above 3 °C (ref. 11).
Given these projections, there is an urgent need to understand how environmental conditions govern the
distribution and abundance of organisms, and to apply this knowledge to help species adapt to climate
change.

Within this synthesis, the geohistorical record—with many well-documented instances of past climate
changes and biological responses—is essential5,9,10,13,14. Most notably, the glacial-interglacial cycles of the
last million years provide the closest equivalent to the rates and magnitudes of climate change expected
for this century13,15. Ecological research opportunities created by these periods of transition include
understanding (1) the stability of ecological niches during periods of environmental change16–18, (2) rates
of biological response to abrupt climate change19–23, (3) the linkage between no-analogue communities
and no-analogue climates13,24–26; (4) the predictive ability of ecological forecasting models and their
underlying assumptions27,28; (5) the influence of past climate changes and human activity on current
genetic diversity29,30; (6) glacial refugia, areas of climate stability, and other mechanisms by which species
persisted during past adverse climates31–33; and (7) the causes and consequences of the late-Quaternary
extinctions of large-bodied vertebrates34,35.

However, despite calls for the full synthesis of contemporary observations, geohistorical data,
experiments, and 21st-century projections to build an integrated science of climate change and
biodiversity assessment6,36,37, progress has been limited by the scarcity of climate simulations that
seamlessly extend from the past into the future. As a result, future- and paleo-oriented studies of
biodiversity dynamics generally remain divided, with few directly integrating the fossil record with future
projections38.

Because Earth system models (ESMs) are computationally expensive, most simulations are run for
limited time windows (decades to centuries) according to prescribed experimental protocols39,40.
Common modelling targets include the middle Pliocene (3.3 to 3.0 million years ago), last interglacial
(125,000 years ago), last glacial maximum (21,000 years ago), mid-Holocene (6,000 years ago), and last
millennium39. Some ESM’s are run for longer periods to assess the evolving response of the earth system
to transient forcings, e.g., to shifting orbital variations, rising greenhouse gases, and meltwater pulses
during the last 21,000 years41,42, or to variations in solar luminosity, volcanic eruptions, orbital variations,
greenhouse gases, and land cover over the last millennium43,44.

ESM simulations usually have systematic biases compared to observations and their native spatial
resolutions often are too coarse for biological modelling. Simply using their simulations without a
common debiasing and downscaling approach will lead to systematic biases among the past, present, and
future climate simulations, deeply confounding any ecological inferences based on these simulations.
Moreover, ensembles comprising multiple ESMs generally fit better to observations than individual
ESMs45. Hence, an ecologist seeking to model the effects of past, present, and future climate change on
biodiversity is forced to stitch together climate simulations from many models, a labour-intensive process
that often results in unnecessary duplication of efforts among research teams.

Here we present debiased and downscaled climate simulations for North America, from 21,000 years
ago to 2100AD (Data Citation 1), using a common set of observational datasets and methods. The
paleoclimatic datasets are based on transient simulations from two ESMs41,46,47, while the 20th- and
21st-century simulations are based on 12 ESMs using the CMIP5 historical, RCP4.5, and RCP8.5
scenarios40. These downscaled datasets include standard indices of monthly temperature and
precipitation, other climate variables useful to modelling surface energy and moisture budgets, and
derived variables such as growing degree days and actual and potential evapotranspiration. All variables
are available as decadal averages of monthly values for the last 21,000 years, and as monthly values from
1950AD to 2100AD. From the paleoclimatic simulations, we extract century-scale averages and other
statistics, spaced 500 years apart, while from the 21st-century simulations we extract decadal-scale
averages, spaced a decade apart. Note that this debiasing and downscaling does not guarantee that the
ESM simulations are accurate predictors of past and future climates, merely that they have been
standardized to be consistent with each other and with contemporary observational data. As always,
ESMs and their simulations should be used carefully and critically, and paleoclimatic simulations should
be checked for consistency with paleoclimatic proxy data, which, of course, carry their own uncertainties.

Methods
Overview
Statistical downscaling and debiasing followed a multi-step approach (Fig. 1). First, most of the primary
climate variables were debiased and downscaled using the standard change-factor approach48 applied
separately to each month, or to each season if monthly data are unavailable. Climate variables archived
only as seasonal values then were interpolated to monthly values. Primary climate variables are mean
daily maximum temperature, mean daily minimum temperature, total monthly precipitation, water
vapour pressure, downward and upward shortwave radiation at the surface, net longwave radiation at the
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surface, and wind speed (Fig. 1, Table 1 (available online only)). From these primary variables, a
secondary set of climate variables were calculated for each month: potential and actual evapotranspiration
(PET and AET) and growing degree days (base 0° and 5 °C; GDD0 and GDD5). For the paleoclimatic
simulations, some grid cells were land in the past but are under water today due to ice sheet melting and
sea level rise during the last deglaciation. For these grid cells, paleoclimates were inferred by spatial
extrapolation.

For the paleoclimate simulations, two climate models were downscaled: CCSM3 (refs 41,46) and
ECBilt-CLIO47. For the 21st-century climate simulations, 12 models from the CMIP5 model archive were
downscaled (Table 2), using the historical, RCP4.5, and RCP8.5 scenarios.

The spatial domain is North America (48° to 173°W, 10° to 80°N) and the spatial resolution of the
downscaled climate simulations is 0.5 × 0.5 degrees. The temporal domain for the paleoclimate
simulations is the last glacial maximum to the 20th century (CCSM3: 22,000 years before 1950AD
(ka BP) to 1990AD, ECBilt: 21 ka BP to 1950AD). The temporal domain for the 21st century climate
simulations is 1950AD to 2100AD. The temporal resolution of the downscaled paleoclimate simulations
is decadal means for each calendar month, while the temporal resolution of the 21st-century climate
simulations is monthly data for each year. This temporal resolution is determined by the archived
climatic simulations. The native temporal resolution of atmospheric circulation models typically is
subhourly, but not all time steps are publicly archived, so part of the downscaling of the paleoclimatic
simulations involved inferring monthly values from archived seasonal means.

After initial downscaling, paleoclimate datasets were prepared for biogeographic hindcasting by
extracting century-scale bins of the data spaced 500 years apart (each bin was 200 years thick and
centered on the 500 year time step), from 21 ka BP to the 20th century. For each century-scale bin, annual
and seasonal averages and other statistical summaries of climate variables were calculated from the

Figure 1. Workflow diagram summarizing the major steps used to generate the debiased and downscaled

paleoclimate and 21st-century datasets described here. The primary climate variables are first debiased by

differencing (or similar calculation, see Section 3) each paleoclimate or future climate simulation from a climate

simulation representing present climates. These anomalies (also known as factors) are then downscaled via

bilinear interpolation to a higher-resolution grid corresponding to the resolution of the modern observational

dataset. The anomalies are then added to (or multiplied by, see Section 3) the observational data to produce the

downscaled primary variables. From these downscaled primary variables, secondary bioclimatic variables

(GDD, AET, PET) are calculated. Finally, statistical summaries of all variables are calculated at centennial

(paleoclimatic simulations) and decadal resolution (21st-century projections).
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decadal mean monthly data in the 100 years before and after the time step, and values were averaged
across the 20 decades (Table 3). For the 21st-century climate simulations, 20-year monthly averages and
other statistical summaries were extracted at 10-year time intervals (for 2011–2030, 2021–2040, etc.). All
steps are described in more detail below. The centennial and decadal summaries are saved as geotiffs
(Table 1 (available online only)).

Data sources
Observational climate datasets for the 20th and 21st centuries. The change factor approach
requires contemporary observational datasets against which the ESM simulations are debiased and
downscaled48. Monthly precipitation, maximum and minimum daily temperature, and vapour pressure
(1901–2011) are from the Climate Research Unit (CRU) TS v.3.20 dataset49. Wind speed is from a 12
month climatological CRU dataset for the time period 1961–1990 (ref. 50). The spatial resolution of all
CRU data is 0.5 × 0.5 degrees. The radiation data are from the NASA/GEWEX Surface Radiation Budget
(SRB) Release-3.0 dataset51,52. The GEWEX radiation data are interpolated from a 1 × 1 degree grid to the
CRU grid using bilinear interpolation. For the GEWEX shortwave and longwave radiation, the monthly
anomalies from the climatology are considered significantly less reliable than the average climatology
itself, and therefore only the climatology is used, for 1983–2007. The top-of-atmosphere solar radiation
from 21 ka BP to present is calculated using the algorithm of Berger53. Surface pressure in the present is
estimated from elevation data using guidelines recommended by Allen et al.54. The elevation data are
from the Global Land One-km Base Elevation Project (GLOBE)55. The elevation is averaged spatially over
the CRU grid boxes to create a lower resolution elevation dataset consistent with the other data. We
estimate past surface pressure from the dataset of land and ice elevation of Peltier56.

To maximize uniformity among downscaled variables and models, we sought to use a common time
period for the observational time period. However, perfect uniformity was impossible because of
differences among model simulations in their 20th century start/end dates and differences among
observational datasets in their temporal extent. For temperature, precipitation, and vapour pressure, the
time period used for the baseline climate was 1901 to 2011 for the paleoclimatic simulations and 1950 to

Modeling Center or Group Model Name

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia ACCESS1.3

Canadian Centre for Climate Modelling and Analysis CanESM2

Community Earth System Model Contributors CESM1(CAM5)

Centre National de Recherches Météorologiques / Centre Européen de Recherche et Formation Avancée en Calcul Scientifique CNRM-CM5

Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change Centre of Excellence CSIRO-Mk3.6.0

NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3

NASA Goddard Institute for Space Studies GISS-E2-R

Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais) HadGEM2-ES

Institute for Numerical Mathematics INM-CM4

Institut Pierre-Simon Laplace IPSL-CM5A-MR

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

MIROC5

Meteorological Research Institute MRI-CGCM3

Table 2. CMIP5 climate models used for 21st-century projections (RCP4.5 and RCP8.5).

Variable Annual Quarterly Monthly

Summaries Variability Min Max Min Max

Tmin an-avg-TMIN an-sd-TMIN qt-lwr-TMIN mo-lwr-TMIN

Tmax an-avg-TMAX an-sd-TMAX qt-hgr-TMAX mo-hgr-TMAX

Prec an-sum-PRCP an-cv-PRCP qt-lwr-PRCP qt-hgr-PRCP mo-lwr-PRCP mo-hgr-PRCP

GDD an-sum-GDD an-sd-GDD qt-lwr-GDD qt-hgr-GDD mo-lwr-GDD mo-hgr-GDD

AET an-sum-AET an-cv-AET qt-lwr-AET qt-hgr-AET mo-lwr-AET mo-hgr-AET

PET an-sum-PET an-cv-PET qt-lwr-PET qt-hgr-PET mo-lwr-PET mo-hgr-PET

ETR (AET/PET) an-avg-ETR an-cv-ETR qt-lwr-ETR qt-hgr-ETR mo-lwr-ETR mo-hgr-ETR

WDI (PET—Prec) an-sum-WDI an-cv-WDI qt-lwr-WDI qt-hgr-WDI mo-lwr-WDI mo-hgr-WDI

Table 3. Naming convention for variable names in raster files generated for ecological modeling with
centennial and decadal summaries.
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2005 for the CMIP5 simulations. For wind speed, the baseline time period is 1961–1990 for all
downscaling analyses. For shortwave and longwave radiation, the baseline time period is 1983–2007.

Climate models. The paleoclimate simulations consist of a 22,000 year transient simulation from the
Community Climate System Model (CCSM3)41,46 and a 21,000 year transient simulation using
ECBilt-CLIO47. Decadal means of paleoclimatic simulations were obtained from CCSM3 (Feng He, pers.
comm.) and EC-BILT (http://apdrc.soest.hawaii.edu/datadoc/sim2bl.php). CCSM3 was forced by
prescribed trends in orbital parameters, ice sheet extent and height, sea level, greenhouse gases, and
meltwater pulses to the North Atlantic, while ECBilt-CLIO was forced by prescribed trends in orbital
parameters, ice sheet extent and height, and greenhouse gases. Often, when using output from climate
models, all simulations are given equal weight in derived ensembles. However, the ECBilt-CLIO
simulation carries known simplifications in its model structure relative to the CCSM3 simulation,
including: (1) a quasi-geostrophic atmospheric model that constrains vertical static stability; (2) 3 vertical
levels versus 26 for CCSM3; (3) a radiation code linearized about present day conditions, and
(4) prescribed seasonally and spatially varying cloud cover climatology. Therefore, we recommend
that any use of these simulations place greater weight on the CCSM3 simulations. Note too that the
ECBilt-CLIO archive did not include vapour pressure and wind speed, so these variables are not
downscaled for this model.

Output from twelve climate models were downloaded from the Program for Climate Model Diagnosis
and Intercomparison (PCMDI) website (http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html), for the
historical, RCP4.5, and RCP8.5 scenarios, as reported in the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC AR5). One model was chosen from each modelling
centre and models were selected only if they archived all climate variables used for the analyses here.
Among IPCC models, the quality of the simulations vary and, depending on the variable, some models
are more skilful than others, with no clear signal of some models consistently outperforming others.
Therefore, it is generally understood that the projections of all models should be considered with equal
weight. Note, however, that two of the models (ACCESS1.3 and MIROC5) do not conserve atmospheric
water mass57. Analyses relying on these individual models should be aware of the in-built hydrological
imbalances and the associated biases in modelled radiative forcing. Nevertheless, skill tests show that
mean climates from model ensembles consistently outperform all individual models in nearly every
respect58.

Debiasing and downscaling of primary variables from paleoclimatic simulations
Overview. To debias the variables, we calculated the difference between the modelled paleoclimate and
the modelled present climate (Fig. 1). The resulting anomaly was then downscaled through bilinear
interpolation to the higher resolution of the observational climatology to produce the debiased and
downscaled paleoclimate at higher resolution (Fig. 2). This differencing removes any systematic
difference between modeled and simulated climates as long as that bias is constant through time59. For
example, for temperature and net longwave radiation at the surface, we calculated the difference between
the modelled variable and the modelled present state of the climate variable (defined for this step as the
last 110 years of the paleoclimatic model run) at each grid cell. This anomaly was then bilinearly
interpolated to the 0.5° grid of the CRU TS 3.20 dataset. For climate variables bounded by zero, such as
wind speed and water vapour pressure, we employed the factor approach, i.e., the ratio between the
modelled paleoclimate and the modelled present climate was calculated, interpolated, and then multiplied
by the observed climatology. Some variables required special handling during debiasing and downscaling,
which we describe further below.

Shortwave radiation. A significant portion of the change in surface shortwave radiation over the past
21,000 years is not related to the internal physics of the climate models but is instead externally forced by
changes in the earth’s orbit. Therefore when calculating shortwave anomalies, we normalize both the
upward and downward solar radiation at the surface by the maximum top of atmosphere downward solar
radiation: Ŝ ¼ S=B, where S is either the raw downward or raw upward solar radiation at the surface, B is
the top-of-atmosphere solar radiation which is a function of latitude and the earth’s orbital parameters at
time t53, and Ŝ is the normalized downward or upward solar radiation. Ŝ must fall between 0 and 1. To
automatically preserve this 0 to 1 range, we express the value of Ŝ in an alternate climate ðŜaltÞ as the
present climate Ŝ0

� �
raised to a positive power, γ:

Ŝalt ¼ Ŝ
γ

0 ð1Þ
To use equation 1 for downscaling, we solve for γ:

γ ¼ log Ŝalt
� �

=log Ŝ0
� � ð2Þ

where both Ŝ’s are the low-resolution climate model values. The low-resolution γ is then interpolated
to the 0.5° grid of the observed climate data. Finally the high resolution γ is used to transform the present
climate Ŝ0 using equation 1. This approach is analogous to the traditional change-factor approach. The
only difference is that the transformation is modified in order to rescale modeled solar radiation to the
range of values allowable given past orbital configurations.
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Precipitation. For precipitation, which is bounded by zero, the factor method described above is a
commonly used downscaling approach. Unfortunately, locations that are very dry tend to have very large
fractional changes in precipitation and vice versa. This creates a problem for regions that are very dry in
the climate model but very wet in observations. In a dry region, the climate model might predict a factor-
of-10 increase in precipitation. While this is reasonable in a desert, it almost certainly artificial in a wet
region. Therefore it is unrealistic to assume that the factor to multiply the observed climatological
precipitation can be taken directly from the climate model.

To avoid the above issue, we use a method based on quantile mapping60. Quantile mapping uses the
fact that the precipitation variability in dry regions is also large compared to wet regions. The historical

Figure 2. Anomaly maps showing examples of the downscaled differences between simulated past and future

climates to the 20th century baselines. Top row: difference maps for mean maximum daily temperature, for

21 ka BP, 11 ka BP, 6 ka BP and 2071–2100AD. The paleosimulations are for the downscaled SynTrace CCSM3

simulation, with locations under the ice sheet masked out. The upper-right plot is the difference between

2071–2100 and 1950–2005, averaged over 12 climate models and for the RCP8.5 scenario. Second row: as top

row, but for the percent change in precipitation compared to present. Third row: as top row, but for growing

degree days (GDD) base 5C. Fourth row: as top row, but for the ratio of mean annual AET to mean

annual PET.
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relationship between the variability in the climate model and the observational dataset is used to map the
simulated change in precipitation to a corresponding change in observations. The details are as follows:
consider a 100-year record of July precipitation in observations and in a climate model, where the
observations are first averaged in space to the low-resolution climate model grid. Both the observations
and the climate model time series are then independently sorted from the smallest July precipitation to
the largest July precipitation. Let the sorted observations and climate model precipitation be denoted as pj
and qj, respectively. The empirical, monotonic function, pj= f(qj), describes a mapping from modelled
precipitation to observations that transforms the modelled probability density function (PDF) to the
observed PDF. To use the function, f, for past or future modelled precipitation (qalt), we use linear
interpolation to estimate f at points between the qj’s and at points beyond the range of ‘observed’ climate
model precipitation (i.e., less than q1 or greater than q100). The resulting (low resolution) observed
precipitation estimate, palt= f(qalt), is then normalized by the low-resolution climatology and, like the
factor approach, the resulting factors are then interpolated to the high-resolution observational grid. The
high-resolution observed climatology is then multiplied by the high-resolution factors to make the final
downscaled precipitation.

The above methodology is essentially the standard quantile mapping approach of Wood et al.60 and is
also used to downscale the precipitation data for the future climate simulations. We modify the method
for the paleoclimatic downscaling because we are limited to decadal data, which means we have only 11
decades of observations over the 20th and early 21st centuries. Because the limited sample can lead to
noise in the function, f, we instead use the 11 observations of pj and qj to fit a linear least-squares line
(p= aq+b) and we use the line as the function giving pj as a function of qj. As in the standard case,
potential issues arise when one has values of qalt that are beyond the range of ‘observed’ climate model
precipitation. In our case, we use the above linear fit when b≥ 0 or when qalt≥ q1. When bo0 and
qaltoq1, on the other hand, p= q (aq1+b)/q1. This solution is continuous with p= aq+b at q= q1 and it
automatically satisfies the constraint that p>0 when q>0.

Interpolating seasonal to monthly variables
At the time of analysis, many of the variables for CCSM3 and all of the variables for ECBilt-CLIO were
available only as seasonal means. We interpolated these variables to monthly values, both for consistency
and for the calculation of potential and actual evapotranspiration, which benefit from having monthly
resolved variables. However, linearly interpolating seasonal data to monthly values strongly dampens the
annual cycle and moreover produces monthly data that is usually not consistent with the seasonal data
from which it is derived (e.g., summer temperature is not equal to the average of the June, July and
August temperature in the derived monthly data, see examples in technical validation section). Here we
develop a method for creating consistent monthly data from seasonal data.

Temperature and other anomaly variables. The simplest case is for (maximum and minimum)
temperature where, for all practical purposes, there is no lower or upper bound on allowable values. Let
S1, S2, S3 and S4 be the seasonal mean temperature for winter, spring, summer and fall, respectively. Let
Tj (j= 1,12) be the monthly mean temperature for the 12 calendar months, which we want to estimate
from Sj. The Tj must satisfy the following constraints:

T1 þ T2 þ T12 ¼ 3S1
T3 þ T4 þ T5 ¼ 3S2
T6 þ T7 þ T8 ¼ 3S3
T9 þ T10 þ T11 ¼ 3S4:

ð3Þ

The specification of Tj is obviously under-constrained. One solution is to let monthly temperature be
equal to the corresponding seasonal temperature (i.e., T1=T2=T12= S1, etc.). This solution is highly
unlikely because it produces an annual cycle that is not very smooth. We hypothesize that the most likely
solution is the ‘smoothest’ solution that also satisfies equation 3. To quantify smoothness we use the
simple second order approximation of the second derivative: Tj− 1− 2Tj+Tj+1. When the second derivative
is small the ‘smoothness’ is high, so we want to minimize:

min
1
2

X12
j¼1

Tj - 1 - 2Tj þ Tjþ1
� �2 !

ð4Þ

where T0 is December temperature and T13 is January temperature. We solve equations 3 and 4 using
Lagrange multipliers, which leads to a linear 16 × 16 matrix equation. For the downscaling, this procedure
is applied to the debiased low-resolution anomalies.

In summary, the steps are: 1) calculate the difference between the modelled seasonal temperature and
the modelled current seasonal temperature, 2) convert the seasonal anomalies to monthly anomalies
using the above procedure, 3) interpolate the monthly anomalies to the high resolution grid, and 4) add
the resulting high resolution monthly anomalies to the observed climatology. The same procedure is used
for the net longwave radiation at the surface. See the Technical Validation section for an assessment of
this method for converting seasonal variables to monthly variables.
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Precipitation and other factor variables. For precipitation the method is more complicated because
one must ensure that all monthly precipitation amounts are at least zero. We solve this problem by
minimizing the second derivative of the logarithm of the precipitation:

min
1
2

X12
j¼1

log Pj - 1
� �

- 2log Pj
� �þ log Pjþ1

� �� �2 !
ð5Þ

where Pj is the estimated monthly precipitation and, as before, P0 is December precipitation and
P13 is January precipitation. The constraints are exactly analogous to equation 3 for temperature.
Using Lagrange multipliers, the solution can be represented by a system of 16 equations, some
of which are nonlinear. We solve the system of equations using MINPACK61, which solves a
system of nonlinear equations using a modification of the Powell hybrid method. See the Technical
Validation section for an assessment of this method for converting seasonal variables to monthly
variables.

For downscaling past precipitation, we represent past precipitation as a fraction (f) of the present
precipitation (i.e., Ppast= f(Ppresent)). Therefore, the above method for the mean precipitation needs to be
modified. Let Pj be the observed 12 month climatology of precipitation in the present, fj be the monthly
fraction of present precipitation that we want to calculate, and Fj be the seasonal fraction of present
precipitation from the climate model (where j= 1,4 corresponds to winter, spring, summer and fall,
respectively). The four constraints are:

f 1P1 þ f 2P2 þ f 12P12 ¼ F1ðP1 þ P2 þ P12Þ
f 3P3 þ f 4P4 þ f 5P5 ¼ F2ðP3 þ P4 þ P5Þ
f 6P6 þ f 7P7 þ f 8P8 ¼ F3ðP6 þ P7 þ P8Þ
f 9P9 þ f 10P10 þ f 11P11 ¼ F4ðP9 þ P10 þ P11Þ:

ð6Þ

The function we want to minimize subject to the above constraints is:

min
1
2

X12
j¼1

log f j - 1

� �
- 2log f j

� �
þ log f jþ1

� �� �2 !
ð7Þ

The same method is used for water vapour pressure and wind speed.

Shortwave radiation. For shortwave radiation, we simply apply the temperature equations (3 and 4)
to the power (γ) except that we first take the logarithm of the seasonal power, to help satisfy the
constraint of a positive power. Once the monthly log(γ) is found we then transform back to the raw
powers, γ.

Secondary variables
After all primary variables are debiased, downscaled, and transformed to monthly resolution, they are
used to derive the secondary variables as described below.

Potential evapotranspiration. We estimate the potential (reference) evapotranspiration using the
Penman-Monteith method of Dobrowski et al.62 Their method is very similar to the standard defined in
Allen et al.54, but they incorporated several modifications to create a reference that behaves more
realistically under cold and snowy conditions. Our only modifications from Dobrowski et al.62 are (1) the
use of downscaled albedo (specifically, upward shortwave radiation at the surface) instead of one or two
predetermined values depending on the presence of snow cover, and (2) we did not estimate the effect of
fine-scale local topography on surface radiation.

Actual evapotranspiration. Estimating actual evapotranspiration requires an estimate of soil moisture.
We used the ‘single-bucket’ methodology of Lutz et al.63 to model actual evapotranspiration (AET) but
with modifications to the snowmelt model, as described elsewhere62. We use a constant soil water holding
capacity of 150 mm. Estimates of actual evapotranspiration are not particularly sensitive to reasonable
alternative water holding capacities. For example, re-running the model using observed soil water holding
capacity, Dunne and Willmott64 demonstrated that constant water capacity leads to a domain-averaged
error in the annual average AET of only 3.8%. Furthermore, given that soil water holding capacity is not
constant over millennia, we thought it was best to simply assume a constant capacity rather than assume
the present water-holding capacity applies to the past.

Growing degree days. With daily temperature data, the calculation of Growing Degree Days (GDD) is
straightforward. Unfortunately, we only have monthly temperature (T̄). If we make some assumptions
about the shape of the probability density function (PDF) for daily temperature variability,
however, we can calculate GDD given daily temperature variance. For each day, the GDD base T0 is
defined as:

GDD ¼ max T -T0; 0ð Þ ð8Þ
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where T is the ‘average’ daily temperature (T= (Tmax −Tmin) /2). If we know the form of the daily
temperature PDF (here referred to as f (T )), then the climatological GDD is:

GDD ¼
Z 1

-1
f Tð Þ max T -T0; 0ð Þ dT ¼

Z 1

T0

f Tð Þ T -T0ð ÞdT ð9Þ

If f(T) is a normal distribution with mean T̄ and standard deviation σ, then equation 9 can be solved to
give a relationship between GDD, T̄ and σ, given T0:

GDD ¼ σffiffiffiffiffi
2π

p exp -
1
2

T -T0

σ

� �2
 !

þ T -T0

2
erfc

T0 -T
2σ

� �
ð10Þ

where erfc is the complementary error function. We test the assumptions used to derive equation 10 by
analyzing all daily NOAA COOP weather stations with fewer than 20 missing days from 1950 to 2009
(= 108 stations). For each station we calculate the actual average monthly GDD (for base 0 °C and 5 °C)
as well as the monthly mean temperature and the monthly mean of daily temperature standard deviation.
From the monthly mean and the monthly mean daily standard deviation, we estimate GDD using
equation 10. We also apply equation (8) directly to the monthly mean temperature, which is the usual
way GDD is calculated from monthly data. See the Technical Validation section for an assessment of the
GDD estimator.

To use equation 10, we need the daily standard deviation σ2daily . For this project we estimate the daily
standard deviation from the monthly standard deviation using the same daily COOP stations. If the daily
temperature is uncorrelated in time (i.e., white noise) then the relationship between the daily and
monthly precipitation is:

σ2 ¼ nσ2
monthly ð11Þ

where n is the number of days in the month. In reality, temperature autocorrelation is >0 so that the
actual monthly σ is greater than that given by equation 11. Some of the extra auto-correlation or
‘memory’ comes from internal ‘weather’ variability and some comes from the annual cycle (e.g., after
removing the monthly mean in April, there is still an upward trend in temperature (on average) that
manifests itself as a positive auto-correlation). The memory due to the annual cycle is calculated by
assuming the daily annual cycle is a piecewise linear function based on the climatological monthly-mean
annual cycle, where the daily-mean cycle is precisely equal to the monthly mean at the center of each
month. Next, after removing the monthly mean, we calculate the standard deviation of the daily annual
cycle over each individual month. The formula for the daily standard deviation due to the annual cycle at
month j (= 1, 12) is:

σannual ¼ nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2þ þ 6aþa - þ 5a2m

192

r
ð12Þ

where nj is the number of days in month j, a+= 2(Tj+1 − Tj)/(nj+1+nj) and a− = 2(Tj−Tj− 1)/(nj+nj− 1).
Here we assume that the extra memory from internal variability is the same for all stations, so that its
effect can be estimated empirically by:

σ2
daily ¼ anσ2monthly þ σ2

annual ð13Þ
where a is the empirical constant. Equation 13 is fit using least squares (with no intercept), and the value
of the constant a is 0.178.

Using equation 13, we calculate the daily standard deviation for each grid point in the CRU
temperature data. We chose not to estimate the standard deviation for the past simulated temperatures,
because we only have decadal means for temperature and the time-scales are very different from the daily
observations available today. Instead, we apply the daily standard deviation from the modern data to the
paleosimulations and assume that the daily standard deviation is constant across time. The mean
temperatures for equation 10 are taken directly from the downscaled temperatures.

Treatment of former land grid cells and ice-covered surfaces
Sea level rise has submerged portions of coastal North America that were above sea level during the last
glacial period. To identify grid cells that were land in the past but are marine now, we used the
paleoshoreline maps for North America developed by Patrick Bartlein at the University of Oregon, which
are based on digitizing the topographic anomalies from Peltier56 and interpolating them onto a
contemporary digital elevation model65. These paleoshoreline reconstructions are available at 1,000 year
intervals. The digitized shapefiles were clipped and rasterized to the same spatial domain and resolution
as the climatic data. Each decade was assigned to the temporally closest paleoshoreline (e.g., 1 ka BP
paleoshorelines were assigned to decadal data from 0.5 ka BP to 1.5 ka BP). To estimate the past climates
for these now-submerged grid cells, we extrapolate from nearby grid points that are land in the current
climate. One approach would be to use the closest land grid point but this is more subject to local noise.
Alternatively, one could average all land grid points within a certain radius of the target grid point.
However, the optimal averaging radius depends on the distance to the closest land grid point. Instead we
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incrementally increase the ‘search radius’ and use the smallest radius that includes land grid points. In
addition, because we expect climates to vary less in longitude than in latitude we consider the grid points
in an ellipse (rather than a circle) with a major axis trending east-west. This modified ellipse-based
distance is

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 -wð Þd2 þ w R Δϕj jð Þ2

q
ð14Þ

where d is the distance, R is the radius of the earth, Δϕ is the latitudinal difference between the grid
points and w is a weighting that determines the deviation from circular (w= 0.75). Let ε be the grid
spacing in latitude. We incrementally increase the ‘search a’ (= amax) by ε starting from 1.5ε. When there
are land grid points within amax, we average these grid points together with an inverse-distance weighting
1/a to get the extrapolated terrestrial paleoclimates for the now-submerged target grid cell. Note that
these extrapolated estimates of paleoclimates for now-submerged grid cells are likely to be more prone to
systematic bias and higher uncertainty, so caution is warranted when making ecological or other
inferences for now-submerged grid cells.

No special consideration was given to ice-covered surfaces. However, the Lutz et al.63 scheme has
evaporation (AET) only when there is liquid water (rain or snow melt), so AET is zero over most
ice-covered grid cells.

Extracting century-scale averages from the decadal data
These downscaled datasets were originally developed for use with late-Quaternary fossil pollen records.
Because of uncertainties in radiocarbon dates and other age controls, and because dating quality varies
widely over paleoecological records that have been collected over the last 50 years, mapped syntheses of
late-Quaternary paleoecological data typically have a maximum temporal resolution of ca. 500 years66,
although the dating for individual records can be much more precise (101 to 102 years). Hence, for use
with the synthesized fossil data, we extracted century-scale climatic averages from the paleoclimatic
simulations.

Century-scale averages were calculated at 500 year intervals by averaging climate variables for all
decades within 100 years of the target date. For example, for 0.5 ka BP, we averaged climatic values for 0.4
to 0.6 ka BP). The one exception is the 0 ka BP time window (0 ka BP is set to 1950 AD) where this
interval is truncated depending on when the paleoclimatic simulation ended, producing an average
spanning 1850 to 1990 AD for CCSM3 and 1850 to 1950 AD for ECBilt.

For each century-scale time window, we calculated several summary annual statistics. Statistics were
first computed for individual decades, then averaged across all decades in the 200-year window. The
statistics computed were annual sum for GDD, AET, PET, and precipitation and annual average for
minimum and maximum daily temperature. We also computed estimates of variability, using the
coefficient of variation for AET, PET, and precipitation. Because the coefficient of variation can be
meaningless for data in an interval scale, we used the standard deviation for temperature related variables
(GDD, minimum daily temperature, and maximum daily temperature). We also derived two indices of
water availability: Evapotranspiration Ratio (ETR; AET/PET) and Water Deficit Index (WDI;
PET—precipitation)67,68. Finally, we computed the highest and lowest monthly and seasonal (quarterly)
values of each variable.

Downscaling the IPCC AR5 simulations
The downscaling method for the IPCC AR5 simulations for the late 20th and 21st century closely
followed the paleoclimatic simulations. However, several of the customized methods developed to work
with the paleoclimatic simulations were unnecessary, because all IPCC AR5 variables were available as
monthly values for each year, rather than decadal averages of monthly or seasonal values. Data were
obtained from the Program for Climate Model Diagnosis and Intercomparison (PCMDI) website
(http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html).

Simulations for 12 models (Table 2) were downscaled with three simulations per model: Historical,
RCP4.5, RCP8.5. The historical scenario covers 1950–2005 AD. The two future scenarios (RCP4.5 and
RCP8.5) are from 2006 to 2100. All downscaled climate variables are available as monthly values for every
year. Summary statistics were calculated as for the century-scale averages, but were calculated for
1950–2005 average in the historical dataset and for 20-year averages at 10-year intervals (2011–2030,
2021–2040, …, 2081–2100 AD) in the two climate scenarios (i.e., RCP4.5 and RCP8.5), instead of
200-year windows centred on 500-year intervals. This use of 20-year averages spaced 10 years apart
creates interdependencies in the decadal averages (to avoid this, use decadal averages from every other
decade), but enables calculation of climate means and other statistics that were not overly influenced by
low sample size and interannual climate variability. Users wishing to construct alternate averages
and summary statistics can make use of the monthly data available in the NetCDF files (Table 1 (available
online only)).

Code availability
All scripts used to develop the raster files with the centennial-scale and decadal-scale summaries are
available on GitHub at the following repository: https://github.com/fitzLab-AL/climateSims21kto2100.
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Data Records
All datasets have been deposited with the Dryad Digital Repository (Data Citation 1). See Table 1
(available online only) for a full list of all datasets, associated metadata, and DOIs.

Technical Validation
Seasonal to monthly interpolation
Temperature. We assess the performance of the method used to predict the monthly annual cycle from
the seasonal annual cycle by comparing the observed seasonally averaged cycle, the monthly annual cycle
estimated from the linearly interpolated seasonal cycle, and the results from the new method described
above. Both the maximum and minimum temperature are shown for a point near Madison, WI ((a) and
(b)) and a point with a very different maximum temperature annual cycle ((c) and (d), northwest of
Oaxaca, Mexico) (Fig. 3). For Madison the method works very well. For the Mexico location, the method
also works reasonably well although the method does not pick out the higher-frequency variations in the
annual cycle (in this case, some of the high-frequency variations may be sampling noise).

Precipitation. We also assess the performance of these methods for deriving the monthly precipitation
from the seasonal precipitation data (Fig. 4). The new method is certainly better than standard methods
but sometimes there is simply not enough information in the seasonal averages to reproduce the high
frequency components of the monthly annual cycle. In some cases, the new method does surprisingly well
despite the fact there are strong changes in adjacent months. For example, the method captures much of
the sudden onset of the North American monsoon in July (Fig. 4c). For a very similar situation a bit
further north where winter precipitation is more pronounced, however, the method does not reproduce

Figure 3. Assessment of the process used to predict the monthly annual cycle from the seasonal annual cycle

for temperature. This plot shows maximum or minimum temperature annual cycle for Madison, WI ((a) and

(b)) and a point northwest of Oaxaca, Mexico ((c) and (d)). The observed monthly annual cycle is in black. The

observed monthly annual cycle averaged together into seasonal means is in blue. The monthly annual cycle

estimated from the seasonal means by simple linear interpolation is in green. The monthly annual cycle

estimated from the seasonal means by the new method described in the text is in red.

www.nature.com/sdata/
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the abrupt onset of the monsoon. Hence, we recommend some caution and critical judgment when using
the monthly precipitation data; these data are not well suited for capturing precipitation extremes and
abrupt intra-annual shifts in rainfall. To avoid these limitations, we recommend that public archives of
climate simulations store data at daily or monthly resolution, rather than seasonal resolution.

Growing degree days: effect of using estimators of daily data
We assess the effectiveness of using estimators of daily standard deviations in temperature to calculate
GDD (Fig. 5). During the warm months both the standard approach (simply subtracting monthly
temperatures from a base temperature (T0), equation 8) and the inclusion of estimates of daily standard
deviations with the monthly data (equation 10) closely approximate the actual GDD. In the cool parts of
the year, however, equation 10 does a much better job of estimating actual GDD.

Cross-correlation structure in downscaled variables
Downscaling will debias each individual variable, but it does not necessarily preserve realistic correlations
among climate variables. A biased correlation structure among downscaled climate variables can bias the
calculation of derived variables such as PET and AET, or bias ecological simulations based on these
climate datasets. Here, we compare the correlation structure in observations from the observed CRU
dataset versus the correlation structure in monthly anomalies in the downscaled CMIP5 historical
simulations. Because some variables, such as wind speed, are only available as climatologies, this
correlation analysis is restricted to precipitation, mean maximum and minimum daily temperature, and
vapour pressure.

Figure 4. Estimating the monthly annual cycle from the seasonal annual cycle for precipitation. Shown is the

precipitation annual cycle for (a) Madison, WI, (b) a point northwest of Oaxaca, Mexico, (c) a point in

northwest Mexico, and (d) a point 4° north in Arizona. The observed monthly annual cycle is in black. The

observed monthly annual cycle averaged together into seasonal means is in blue. The monthly annual cycle

estimated from the seasonal means by linear interpolation is in green. The monthly annual cycle estimated

from the seasonal means by the new method described in the text is in red.

www.nature.com/sdata/
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The correlation between precipitation and temperature variables tends to match well between
observations and the downscaled historical simulations. For example, the downscaling generally captures
the correlation between maximum temperature and precipitation (Fig. 6a,b). The other correlations
among precipitation and minimum and maximum temperature are similarly well captured. Correlation
structure, however, is not well preserved between maximum temperature and vapour pressure (Fig. 6c,d)
and precipitation and vapour pressure (Fig. 6e,f). The main discrepancies are in Mexico and the
southwestern U.S and these discrepancies are also present in the raw climate model data. Diagnosing the
reasons for these biases is beyond the scope of this research, but for maximum temperature and vapour
pressure, we hypothesize that air temperature in the CMIP5 models is coupled too tightly to the land
model, such that dry soil anomalies (which are correlated with vapour pressure) have too strong an effect
on maximum temperature, via changes in sensible and latent heating. In actuality, temperature and
vapour pressure likely are more controlled by atmospheric advection from remote locations. For
precipitation and vapour pressure, perhaps the convection schemes in the CMIP5 models are too
sensitive to boundary layer humidity as opposed to humidity in the atmosphere above the boundary
layer, e.g. ref. 69.

We also checked to see whether correlation biases involving vapour pressure affect derived variables
such as PET and AET (Figs 7 and 8). Both mean PET and AET agree well between observations and the
downscaled simulations (Figs 7 and 8) and do not appear to be affected by these correlation biases. The
good fit likely emerges because the total variation in AET and PET is a combination of the mean annual
cycle and the monthly anomalies from the mean annual cycle. Apparently the mean annual cycle
dominates and therefore the mean PET is well simulated. However, the correlation biases do impact the
standard deviation of the PET anomalies from the mean annual cycle (Fig. 7c,d). The variance in
downscaled PET is too large because the correlation between maximum temperature (Tmax) and vapour
pressure (es) is too small or even negative. Therefore the difference between the saturation vapour
pressure (esat) at temperature Tmax (i.e., esat(Tmax)) and es varies more than if esat (Tmax) and es were highly
correlated. Because one of the two terms in PET is proportional to esat (Tmax)− es, PET also has too much
variance.

Like PET, mean AET is also very well reproduced in the downscaling (Fig. 8). Unlike PET, however,
the standard deviation for AET is also quite good in the downscaling and, moreover, the bias tends to
have the opposite sign. This behaviour is due to the competing effects of the maximum temperature/
vapour pressure bias and the precipitation/vapour pressure bias. For example, in the southwest U.S.,
increased vapour pressure leads to decreased PET (and likewise AET) via the former bias, but leads to
increased precipitation, wetter soil and increased AET via the latter bias. Because the main biases are all
related to vapour pressure, for future downscaling efforts, we recommend parameterizing vapour
pressure (or dew point temperature) in terms of temperature and/or precipitation instead of downscaling
it directly.

Usage Notes
General considerations
In both paleoclimatic simulations, the timescale is expressed as time before present, where ‘present’
follows radiocarbon dating conventions and is defined as 0 ka BP (1950). Decade 0 is defined as from 1st

Figure 5. Estimating the monthly annual cycle of GDD base 51 using the monthly mean temperature only

(blue) and the monthly mean temperature and the daily standard deviation (red). The actual GDD is in black.

(a) International Falls, MN, (b) Lexington, KY.
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January 1951 to 31st December 1960. CCSM3 data extends from decade −2200 to +3, which means it
ends on December 31st, 1990, whereas ECBilt-CLIO goes from −2100 to −1, which means this simulation
ends on December 31st, 1950.

Because debiasing and downscaling is imperfect, whenever possible, comparative analyses among
climatic simulations should rely upon simulations from the same model or rely upon ensembles based on
the same sets of models (e.g.,, the ACCESS3-1 simulations for the historical and the RCP4.5 scenarios).
Similarly, future and paleoclimatic simulations should be compared to the downscaled climate
simulations from the historical IPCC AR5 simulation or the available decades for the last centennial from
the paleoclimatic simulations (1850–1990 for CCSM3 and 1850–1950 for ECBilt-CLIO), rather than to
observational datasets for the 20th and 21st century, including to the original CRU dataset. Some model
switching is unavoidable when going from the paleoclimatic to future climate simulations. However, by
using standard observational baselines and methods we have minimized the effect of this switching.

Note that these paleoclimatic simulations contain no estimates of uncertainty, nor do they assess
whether there is systematic bias between the paleoclimatic simulations and inferences based on

Figure 6. Maps of the temporal correlation between monthly anomalies for selected climate variables, to check

whether the downscaled dataset has preserved the correlational structure in observational data. (a) Observed

correlation between maximum temperature and precipitation (1950–2005). (b) As in (a) but for the

downscaled CMIP5 data. This is the mean correlation averaged over 12 climate models. (c,d) As (a,b) but for

maximum temperature and vapour pressure. The cross-correlation structure between temperature and

precipitation is generally well-preserved, while the cross-correlation structure is less well preserved for

vapour pressure.
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paleoclimatic proxies. Paleoclimatic model simulations carry inherent uncertainty both in model
structure (how processes are represented in models) and parameterization (the values of parameters used
within the model). There is a rich literature in paleoclimatic data-model comparisons and syntheses,
particularly for the Paleoclimatic Intercomparison Modeling Project, e.g. (refs 39,70–72) and for the
SynTrace simulations that are downscaled here41,42,46,73,74. Users are encouraged to refer to this literature
to check for known data-model discrepancies before beginning work with the paleoclimatic simulations.
A critical and on-going need is to understand how uncertainties in model choice, structure, and
parameterization propagate to uncertainties in paleoclimatic simulations.

Primary and secondary variables (NetCDF)
All primary and secondary variables are stored as NetCDF files (see Table 1 (available online only) for file
names and contents). For the paleoclimatic simulations (CCSM3 and EC-BILT), the individual netCDFs
for each variable are archived separately (Table 1 (available online only)). For the 21st-century
simulations, the individual netCDFs are organized into a directory structure as follows: cmip5\[emissions
scenario]\[ESM model name]\[variable name.nc]. For example, cmip5\rcp45\ACCESS1-3\ET.nc holds
the evapotranspiration simulations produced by the ACCESS1-3 ESM (Table 2) for emissions scenario
RCP4.5.

Figure 7. Comparison of observed and downscaled simulated potential evapotranspiration (PET), represented

as annual averages of monthly data. (a) PET derived from observed variables such as temperature and vapour

pressure. (b) As in (a) but for an average of 12 downscaled CMIP5 models. (c) Standard deviation of PET

anomalies calculated from observational data. (d) As in (c) but for the downscaled CMIP5 models.

www.nature.com/sdata/
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In the NetCDF files, the data have been packed into short integers (each requiring 2 bytes) instead of
real numbers (requiring 4 bytes) to save space. One must unpack that data to get the correct floating
point representation of the data. Each netCDF variable that has been packed has an add_offset and
scale_factor attribute associated with it. The formula to unpack the data is:

unpacked value= add_offset+( (packed value) * scale_factor )
For more information see: http://www.unidata.ucar.edu/software/netcdf/docs/attribute_conventions.html.
The ‘missing_value’ attribute in the NetCDF data is set to −32768. Only grid points outside the

downscaling domain are given the missing data value. The ncdf4 package in R (https://cran.r-project.org/
web/packages/ncdf4/index.html) allows unpacking of these files with automatic correction for the offset,
scale factor or the missing values.

Centennial and decadal variables (geotiffs)
The centennial- and decadal-scale summaries produced for input into ecological models are stored as
geotiffs (TIFF format, .tif). Each raster holds a unique combination of climate variable, ESM, and time
period, producing a large number of individual rasters. The rasters are zipped into compressed files
organized by paleoclimatic simulation and CMIP5 emissions scenario (Table 1 (available online only)).
Rasters are organized into a directory structure that differs slightly for the paleoclimatic and CMIP5

Figure 8. As Fig. 7, but for actual evapotranspiration (AET). (a) AET derived from observed variables such

as temperature and vapour pressure. (b) As in (a) but for an average of 12 downscaled CMIP5 models.

(c) Standard deviation of AET anomalies calculated from observational data. (d) As in (c) but for the

downscaled CMIP5 models.
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simulations. For the paleoclimatic rasters, the directory structure is [model name]\[time period]\[variable
name].tif. For the 21st-century rasters, the directory structure is [CMIP5 scenario name]\[ESM model
name]\[time period]\[variable name].tif. For example, RCP4.5\ACCESS1-3\2100\mo-lwr-TMIN.tif stores
the lower monthly value of minimum daily temperatures, expected for year 2100 for the ACCESS1-3
ESM simulation under the CMIP5 RCP4.5 emissions scenario (Table 3). The naming conventions for
variables and raster files are described in Table 3.
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