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Abstract 

Continuous thermodynamics is used to calculate liquid-liquid equilibria in a 
ternary system containing polydisperse polymer, one good solvent and one poor sol
vent (anti-solvent). The polymer has a semi-infinite molecular-weight distribution 
which can be described by a gamma distribution. From Flory-Huggins theory, the 
logarithm of the distribution ratio of the polymer is a linear function of the molecu
lar weight. Because the distribution of polymer between the two liquid phases is 
very sensitive to binary Flory parameters, the Flory parameters must be fitted to the 
ternary data. Results are given for the system benzene, ethanol and polydisperse 
polystyrene. 

Introduction 

A classical method for fractionating a polydisperse polymer is to dissolve the 
polymer completely in a good sol vent and then, progressively, to add small amounts 
of a poor solvent (anti-solvent). The high-molecular-weight polymer precipitates· 
first. As more anti-solvent is added, progressively lower-molecular-weight polymer 
precipitates. 

To obtain quantitative representation of fractionation, we require a model for 
the thermodynamic properties of the polymer / solvent / anti-solvent system and we 
must specify the original molecular-weight distribution. 

Continuous thermodynamics provides a useful tool for fractionation calcula
tions. When compared to the pseudo-component method, continuous thermodynam
ics has two advantages: computer-time requirements are often reduced and, more 
important, ambiguous results, based on arbitrary definition of pseudo-components, 
are avoided.l.2.3.4.5 

Cotterman and Prausnitz applied continuous thermodynamics and Flory
Huggins theory to calculate the effect of temperature on equilibria in a system con
taining one polymer and one solvent. 6 Continuous thermodynamics has also been 
applied to calculate phase behavior in the high-pressure ethylene-polyethylene sys
tem by Ratzsch and Kehlen,5.7 and by Sako et ai.8 The purpose of this paper is to 
show that continuous thermodynamics provides a useful tool for describing phase 
equilibria in a system containing one polymer and two solvents. 
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Theory 

We consider two equilibrated liquid phases, contaInIng one good solvent(l), 
one poor solvent(2), and one polydisperse polymer(3). For every component, the 

activity in phase' is equal to that in phase ": 

, " a2 = a2 

(1) 

(2) 

(3) 

where ' and " denote the precIpItate and the supernatant phase, respectively. At 
constant temperature, all activities depend on concentration but, in addition, the 

activity of the polymer is a function of molecular weight, J. 

We use the Flory-Huggins theory of polymer solutions. As shown In the 
Appendix, the activities are given by 

(4) 

(5) 

(6) 

where X is the Flory parameter, <l> is the volume fraction, and m is the molar
volume ratio of a given species to that of solvent 1. For the polymer, volume frac
tion and ITlolar-volume ratio are functions of molecular weight, J. Total volume 
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fraction of the polymer is denoted by <1>3 T • We assume that Flory parameters X13 

and X 23 are independent of J. 

The distribution factor Ki is defined as the ratio <1>/ / <1>/' . From Equations 
(4)-(6), we obtain 

In K I = In (:I~' 1 

= -c> + 2 X 13· (<III' -<III") + (<112'-<112"). (Xl3 - Xl2 + ~: 1 (7) 

In K2 = In (:'2:, 1 

= m2· [-<>+ 2 ~:. (<112'-<11/') 

+ (<111 '-<111"). (Xl3 - XI2 + ~: II 

---------- + -----------
-" 
m3 

<1> " <1> " "" " (1 <1>" <1> ") +X121 2 +X13"'Vl· - 1 - 2 

From material balance, feed composition <1>/ is related to <1>/ and <1>/' by 

<1> F = <1> ' (VL
' 1 + <1> " (1 - VL

' 1 
1 1 V

F 
1 V

F 

(8) 

(9) 

(10) 

(11) 

r 
i . 
~. 
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[1 - ;;) (12) 

+ <D/' (1) [1 - ;;j (13) 

Application to a Real System 

To illustrate the use of these equations, we consider the system benzene( 1), 
ethanol(2), and polydisperse polystyrene(3) at 38.6 0c. Experimental data for this 
system were reported by Breitenbach and Wolf.9 We have preformed a flash calcu
lation for the case where the volume fraction of polystyrene in the feed is 0.0027 
and where the volumetric ratio of benzene to ethanol is 2: 1, From molar-volume 
data for benzene and ethanol,1O and from partial-specific-volume data for polys

tyrene,11 the molar-volume ratios m2 and m3(J) are given by 

m2 = 0.656 

m3(J) = 0.0101·1 

The mass distribution of polymer molecular weight given by Breitenbach and Wolf 

is semi-infinite,9 starting at zero molecular weight, a mean of 2.19x laS, and a vari

ance of 2.46xlO lO• We fit this mass distribution with a gamma distribution F(J) of 
the form 

If[
a-1 

1-y 

F(J)= f3 -exp [- 1-Y ) 
f3 l(a) f3 

where a, f3 and yare adjustable parameters, and l(a) is the gamma function of a . 

For gamma distribution, the mean and variance are given by af3 +y and af3 2, respec
tively, and the starting point is y. From the mass distribution of polymer, we obtain 

a=1.95, f3=1.12x105, and y:=0. 

For the three binary systems, we use the Flory parameters 

X 12 = 1.739 

X13 = 0.2210 

X23 = 1.451 

The flash calculation shows that the volumetric ratio of polymer in the supernatant 
phase to that in the precipitate phase is 1.002. The volumetric ratio of supernatant 
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phase to the feed, is, is 0.967. In comparison, the experimental result shows that 
the volumetric ratio of polymer in the supernatant phase to that in the precipitate 
phase is 1.038; and the volumetric ratio of supernatant phase to the feed, is, is 
0.993. 

From Equation (9), we obtain an expression for the volumetric ratio of polymer 
III the supernatant phase to that in the precipitate phase, Mp(J) , as a function of 
polymer molecular weight J: 

(14) 

In Equation (14), the only dependence on polymer molecular weight, J, is the linear 
dependence of m3(J) on J. Therefore, as shown in Figure 1, there is a linear rela
tionship between In [Mp(J)] and polymer molecular weight J. 

Figure 2 shows the distributions of polystyrene in the feed, precipitate phase, 
and supernatant phase. 

The flash calculations are very sensitive to the values used for Flory parame
ters. Figure 1 shows the effect on distribution of polymer between the two phases 
when each X is set higher by 1 %. Calculated results are particularly sensitive to 

Flory parameter X 23' 

The Flory parameters used in this calculation provide the best fit for the experi
mental fractionation data. From Scatchard-Hildebrand theory, Aory parameter X is 
related to solubility parameter 8 by 

(15) 

where va is molar volume of (solvent) component a. Using Equation (15) and tabu

lated solubility parameters,lO X12' X13 and X23 are 2.13, 0.0015 and 1.47, respec-
tively. . 

" 

( 



p 

- 7 -

For the binary system ethanol and polystyrene, there is good agreement 
between the best-fit parameter and that calculated from Scatchard-Hildebrand theory. 

For the binary system benzene and polystyrene, the reported experimental 

values of X13 range from 0.19 to 0.46.12 This range includes the value that was used 
in the flash calculation (X 13=0.2210). The result from solubility-parameter calcula
tions (0.0015) is clearly too low. 

For the binary system benzene and ethanol, we used experimental vapor-liquid 

data reported by Udovenko at 40 0c. 13 We used a constant X 12 for the entire con-

centration region and found X 12=2.24 to be the best fit. t This X 12 value is much 
higher than the one used to correlate the ternary data. Clearly, for ternary systems, 
Flory parameters must be fitted to the ternary data. 

Conclusion 

Continuous thermodynamics provides a convenient method for calculating 
liquid-liquid equilibria in a ternary system containing polydisperse polymer, one 
good solvent and one poor solvent (anti-solvent). When Flory-Huggins theory is 
used to describe the Gibbs energy of mixing, it follows that the logarithm of the dis
tribution ratio of the polymer is a linear function of the molecular weight, in agree
ment with experiment. Since the calculations are very sensitive to binary Flory 
parameters, calculated ternary results must unfortunately be fitted to a few ternary 
data; quantitative predictions from binary data alone are not accurate. 
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t For the molar-volume ratio in this binary system (m2=0.656), the two components are 
completely miscible when X 12:::;2.50 . 
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Appendix: Derivations of Equations (4) - (6) 

We consider a system containing one good solvent (1), one poor solvent (1), 

and a poly disperse polymer (i = 3, 4, 5, ... ) where i denotes polymer molecules of 
the same chemical composition but different molecular weights. 

From Flory-Huggins theory, the Gibbs energy of mixing is given by l4, 15 

d Gmix = kT [ n, In <1>, + n2 In <1>2 + ~ni In <l>i 

+ Xl2 nl <1>2 + LXii nl <1>i + LX2i n2 <1>i 
i=3 i=3 

+ i~ j~Xij ni <1> j 1 
J~I 

(A-I) 

where n is the number of molecules, k is Boltzmann's constant, and T is tempera
ture. Because components (3), (4), (5), ... are chemically the same, we have 

Xij = 0 

Xli = Xlj 

X2i = X2j 

where i, j = 3, 4, ... 

Equation (A-I) becomes 

d Gmix = kT [ n, In <1>, + n2 In <1>2 + i~n3i In <l>3i 

+ X '2 n, <1>2 + X 13 n, (i~ <l>3i J + X23 n2 (i~ <l>3i J 1 (A-2) 

In Equation (A-2), 3i (i = /, 2, 3, ... ) denotes polymer molecules of different 
molecular weights. 

Acti vities a and chemical potentials ).L are related to ~ G mix by 

(A-3) 

( 

\/ 
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(A-4) 

(A-5) 

where NAV is Avogadro's number. 

Volume fraction <l> and number of molecules n are related by 

nl 

(n, + n2m 2 + I n3imJi ] 
i=l 

(A-6) 

n2m 2 

(n, + n2m 2 + I nJimJi] 
i=l 

(A-7) 

n3i m 3i 

(n, + n2m 2 + I n3imJi ] 
i=l 

(A-8) 

where m is the molar-volume ratio of a gIven species to that of solvent 1. The 

number average of m3i is given by 

I m3i n 3i 
i=l (A-9) 

Combining Equations (A-2) - (A-9), we obtain expressions for the activities 

(A-lO) 
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(A-ll) 

(A-12) 

where total volume fraction of the polymer is given by 

(A-13) 

'"" 

v 
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NOTATION 

Upper case 

J 

K-, 

K 3(J) 

Mp(J) 

R 

T 

molecular weight of a polymer molecule 
distribution factor (ratio of volume fraction in the supernatant phase 
to that in the precipitate phase for species L) 

distribution factor of polymer with molecular weight J 

distribution ratio (volumetric ratio of polymer in the supernatant phase 
to that in the precipitate phase as a function of J) 

gas constant 
absolute temperature 

Lower case 

a 

is 
k 

activity 
volumetric ratio of supernatant phase to the feed 
Boltzmann's constant (used in the Appendix) 
molar-volume ratio of solvent 2 to solvent 1 

molar-volume ratio of the polymer with molecular weight J 
to solvent 1 

number average of m3(f) 

molar volume 

Greek symbols 

a,{3,y 

8 
¢. , 
¢3(J) 

T 
¢3 

f1 

Xi} 

parameters for gamma distribution 
solubility parameter 
volume fraction of species i 
volume fraction of polymer with molecular weight J 

total volume fraction of the polydisperse polymer 
chemical potential 
Flory parameter for ij binary 



Subscripts and superscripts 

subscripts 

1 
2 
3 

good solvent for the polymer 
poor solvent for the polymer 
polymer 
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a ,b integer numbers refer to component a,b 

superscripts 

F 

" 

feed 
supernatant phase 
precipitate phase 
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Figure 1. Distribution of polystyrene between 
the supernatant phase and the 
precipitate phase 
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Figure 2. Volume distributions of polydisperse 
polystyrene 
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