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ABSTRACT 

Conservation and management of culturally and 
economically important species rely on monitoring 
programs to provide accurate and robust estimates of 
population size. Rotary screw traps (RSTs) are often 
used to monitor populations of anadromous fish, 
including fall-run Chinook Salmon (Oncorhynchus 
tshawytscha) in California’s Central Valley. 
Abundance estimates from RST data depend on 
estimating a trap's efficiency via mark-recapture 
releases. Because efficiency estimates are highly 
variable and influenced by many factors, abundance 
estimates can be highly uncertain. An additional 
complication is the multiple accepted methods for 
how to apply a limited number of trap efficiency 
estimates, each from discrete time-periods, to a 
population’s downstream migration, which can 
span months. Yet, few studies have evaluated these 
different methods, particularly with long-term 
monitoring programs. We used 21 years of mark-

recapture data and RST catch of juvenile fall-run 
Chinook Salmon on the Stanislaus River, California, 
to investigate factors associated with trap efficiency 
variability across years and mark-recapture releases. 
We compared annual abundance estimates across 
five methods that differed in treatment of trap 
efficiency (stratified versus modeled) and statistical 
approach (frequentist versus Bayesian) to assess 
the variability of estimates across methods, and to 
evaluate whether method affected trends in estimated 
abundance. Consistent with short-term studies, we 
observed negative associations between estimated 
trap efficiency and river discharge as well as fish 
size. Abundance estimates were robust across all 
methods, frequently having overlapping confidence 
intervals. Abundance trends, for the number of 
increases and decreases from year to year, did not 
differ across methods. Estimated juvenile abundances 
were significantly related to adult escapement counts, 
and the relationship did not depend on estimation 
method. Understanding the sources of uncertainty 
related to abundance estimates is necessary to ensure 
that high-quality estimates are used in life cycle and 
stock-recruitment modeling.
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INTRODUCTION 

Conservation and management of anadromous fish 
species is challenged by their complex migratory 
life history (Merz et al. 2013). Specific habitat 
requirements differ between life stages, migrations 
can occur over broad spatial scales, and different 
sampling methods are necessary to accurately 
quantify abundance of different life stages. Rotary 
screw traps are a tool often used to monitor juvenile 
anadromous fish species and assess the effects of 
management strategies. In regulated rivers, estimating 
abundance of downstream migrants is especially 
useful for monitoring the effects of river management 
(e.g., diversion or discharge regulation; Sykes et al. 
2009) and watershed restoration programs (Merz et 
al. 2013). Quantifying population size is fundamental 
to determining whether species management and 
production goals are being reached. Fisheries stock 
abundance estimates of anadromous species can 
be estimated from rotary screw traps (RSTs) using 
straightforward mark-recapture methods. In essence, 
a sample of fish is marked and released upstream of 
the trap (reviewed by Volkhardt et al. 2007), and the 
proportion of marked fish recaptured after the release 
(also called trap efficiency or capture probability) 
is used to expand the number of unmarked fish 
captured in the RST to an abundance of fish that pass 
the trap. 

Mark-recapture techniques are used to estimate 
the abundance of migrants for a period of time 
using catch (n) from the trap and an estimate of 
trap efficiency (e). One of the simplest and most 
frequently used methods is based on the Lincoln-
Petersen estimator. Trap efficiency over a discrete 
time period (i) is the proportion of marked fish (mi) 
recaptured out of the total number of marked fish 
released during a trap efficiency release (Mi),  
ei = mi / Mi. This value is then used to adjust the 
number fish captured in the trap for the same discrete 
period to obtain an abundance estimate, Ni = ni / ei, 
where Ni and ni are the estimated number of 
downstream migrants and the number of unmarked 
fish captured, respectively (Volkhardt et al. 2007). 
However, the Lincoln-Petersen estimate makes some 
simplifying assumptions, including: (1) a closed 
population during the mark-recapture trial period, 
(2) all fish (marked and unmarked) have equal 
capture probabilities, (3) marking does not affect 

catchability, (4) fish do not lose their marks, and 
(5) all recovered marks are reported. Violations of 
these assumptions will result in biased estimates 
(Seber 2002).

Because of the dynamic nature of streams and rivers, 
efficiency for a given trap is rarely constant during 
its entire time of operation, which is typically the 
duration of a migration season (often >100 days), and 
is influenced by exogenous and endogenous factors 
(Roper and Scarnecchia 1996). Discharge is one of the 
primary factors associated with fish migration, and 
can strongly affect trapping efficiency (Volkhardt et 
al. 2007). Visibility and noise of the trap can deter 
fish and reduce trap efficiency as well, particularly 
for species that exhibit avoidance behaviors. Time of 
day (e.g., Tattam et al. 2013), location where marked 
fish are released, and even the trap’s position in the 
channel will influence the number of recaptured 
individuals. Salmonid downstream migrations — and 
presumably trap efficiency — also respond to moon 
phase, as this affects visibility at night (Youngson et 
al 1983). Trap efficiency will also vary by fish size; 
larger fish with better sight and swimming abilities 
are better at avoiding traps than small fish. Thus, it 
is not unusual for efficiency to change seasonally 
with the size of downstream-migrating individuals. 
Trap efficiency can be influenced by individual 
capture history (Tattam et al. 2013) and can differ 
between hatchery- and wild-origin fish (Roper and 
Scarnecchia 1996). Numerous sources of uncertainty 
complicate the ability to detect abundance trends 
as well as investigate the factors that influence trap 
efficiency. Because uncertainty in trap efficiency is 
propagated to abundance estimates, which can also 
exhibit high uncertainty, it is important to minimize 
sources of error when estimating trap efficiency.

Study designs can be modified and statistical 
approaches implemented to account for variation 
in trap efficiency. A frequently used study design 
is to stratify trap efficiency releases by day, week, 
or longer time-periods. Darroch (1961) developed a 
maximum likelihood model for the time-stratified 
Lincoln–Petersen estimator using two traps (one to 
catch and mark individuals and a second to estimate 
abundance). Similar models were developed for 
single-trap study designs, when fish are transported 
and released upstream of the trap in which they 
were initially captured (MacDonald and Smith 1980; 
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Rawson 1984). For a time-stratified Lincoln–Petersen 
model, trap efficiency releases are performed within 
discrete time strata, and the efficiency from the 
release is used to adjust capture data from the same 
time-period (Carlson et al. 1998). These designs 
require that release periods be paired with a single 
capture period. However, logistical constraints might 
prevent a trap efficiency release from occurring, or 
changing environmental conditions within a time-
stratum could result in few to no recaptures and cause 
imprecise recapture rates. Another constraint could 
be that not enough fish are captured in the trap to 
perform a trap efficiency release. In these cases, either 
fish captured during the period are ignored, the most 
recent efficiencies are carried forward until the next 
release is performed (e.g., Bilski et al. 2011), or daily 
catches are grouped into periods of relatively similar 
environmental conditions (e.g., Steinhorst et al. 2004). 

Statistical approaches have been used to estimate 
trap efficiency for catch data during periods when 
fish were not released. The simplest approach groups 
trap efficiency releases by an independent variable 
or condition class (e.g., life stage or time of day). 
The number of fish captured at a given level of the 
condition class is adjusted using the trap efficiency 
estimate for that specific range of the variable or 
condition class (e.g., Steinhorst et al. 2004). Criteria 
for pooling strata can be somewhat subjective, and 
rely on testing for differences in trap efficiency 
between strata (Schwarz and Taylor 1998; Bjorkstedt 
2000). Another limitation is that these approaches 
do not allow trap efficiency to be modeled as a 
function of covariates. To provide daily abundance 
estimates, Schwarz and Dempson (1994) developed a 
maximum likelihood formulation to model efficiency 
as a function of external factors. An alternative 
approach involves modeling trap efficiency as a 
function of a priori chosen environmental variables 
using data from multiple release groups and run over 
a range of conditions for the variables of interest. 
After ensuring that the model adequately represents 
the data, it is used to predict trap efficiency for 
a given day (or other relevant time-period) and 
applied to daily capture data (e.g., Montgomery et 
al. 2007). Because the outcome of a trap efficiency 
release can be considered an independent realization 
of Mi Bernoulli trials with probability ei, it is most 
often modeled as a random variable assumed to 
follow a binomial distribution. Therefore, statistical 

approaches that have been used to model trap 
efficiency include Generalized Linear Models (GLM 
or logistic regression) or Generalized Additive Models 
(GAM; both approaches reviewed by Cheng and 
Gallinat 2004). Finally, Bayesian statistics have been 
coopted into time-stratified Lincoln–Petersen models 
because the Bayesian framework’s flexibility can 
simultaneously model trap efficiency and abundance 
(Mäntyniemi and Romakkeniemi 2002; Bonner 
and Schwarz 2011). Bayesian approaches have the 
added benefit of being able to account for biological 
realism (e.g., migratory schooling behavior or auto-
correlation in time-stratified trap efficiency), but 
at the expense of increased model complexity and 
technical knowledge required to implement.

Although the total abundance estimate is often the 
metric of interest, it is also important to provide a 
level of uncertainty for the estimate. Uncertainty in 
trap efficiency and abundance estimates has been 
quantified using parametric confidence intervals, 
which assume a normal distribution of error (Bilski 
et al. 2011; Steinhorst et al. 2004) and by using non-
parametric bootstrap methodology (Thedinga et al. 
1994; Steinhorst et al. 2004). Bayesian approaches 
use Markov Chain Monte Carlo (MCMC) procedures 
to sample from posterior distributions of parameters. 
Uncertainty about parameter estimates is given by 
95% credible intervals of the posterior distribution. 

In California’s Central Valley, RSTs are used on 
nearly every major tributary to the Sacramento and 
San Joaquin rivers to monitor seaward migration 
of Chinook Salmon (Oncorhynchus tshawytscha) 
and Steelhead (Oncorhynchus mykiss). Data from 
these monitoring programs are used to estimate 
abundance, characterize spatio-temporal aspects 
of juvenile downstream migration, and evaluate 
restoration and water export activities. However, 
using these data to compare abundance estimates 
within and among tributaries is challenging, 
because different resource agencies or consultants 
manage monitoring programs independently of 
one another, and programs use different analysis 
methods (Central Valley Salmon and Steelhead 
Monitoring Programs, 2007 summary report by the 
Interagency Ecological Program, https://nrm.dfg.
ca.gov/FileHandler.ashx?DocumentID=3491&inline). 
For any given monitoring program, extrinsic factors 
and logistical challenges will inevitably change 

https://doi.org/10.15447/sfews.2019v17iss1art4
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monitoring protocols over time. Furthermore, 
advances in statistical approaches and study designs 
may require monitoring protocols to adapt to new 
techniques. How underlying annual methodological 
and environmental variation influence the ability 
to compare abundance estimates across programs 
or detect meaningful trends for a specific program 
remains under-studied — particularly how trap 
efficiency is treated.

On the Stanislaus River, the downstream migration 
of juvenile salmon has been monitored using an RST 
for more than 2 decades. This long-term data set, 
encompassing a range of environmental conditions, 
presented a unique opportunity to investigate how 
different trap efficiency estimation methods affect 
abundance estimates, and estimate uncertainty. 
As part of an internal review of the program’s 
analyses and methods, our first objective was to 
compile trap efficiency release data from 1996 to 
2017 to investigate the exogenous and endogenous 
factors associated with trap efficiency estimates. Our 
second objective was to compare annual abundance 
estimates derived using different methodological 
approaches. The approaches used here differed in how 
strata were pooled (temporally versus homogeneous 
external conditions) and in methodological approach 
(frequentist versus Bayesian). Finally, to assess 
the biological relevance of this program’s juvenile 
abundance estimates for life-cycle and stock-
recruitment models, we evaluated two things: (1) the 
association between abundance estimates and adult 
escapement counts from a Riverwatcher fish-counting 
device (VAKI Aquaculture Systems LTD, Iceland) to 
verify that the number of adult spawners could be 
used to predict juvenile abundance estimates, and (2) 
that the method used to estimate juvenile abundance 
did not influence this relationship.

MATERIALS AND METHODS

Stanislaus Fall-Run Juvenile Monitoring Program

Study Site

The Stanislaus River is one of three principle 
tributaries to the San Joaquin River in California’s 
Central Valley (Figure 1) and it harbors a population 
of fall-run Chinook Salmon among other native and 
introduced fish species. Arising in the central Sierra 

Nevada mountain range, the Stanislaus River has 
a catchment area of approximately 2,700 km2 and 
flows west to its confluence with the San Joaquin 
River. The region has a Mediterranean climate 
and receives 90% of annual precipitation between 
November and April. Before the development of 
the watershed by numerous impoundments, the 
hydrograph was characterized by low-magnitude 
rainfall pulses throughout the fall and winter, 
followed by a large snowmelt-driven pulse in the 
spring and early summer. Watershed development 
has reduced and stabilized river discharge (Kondolf 
and Batalla 2005), resulting in entrenched reaches, 
vegetation encroachment, and coarsening of substrate 
(Brown and Bauer 2009). Habitat modifications 
and an altered hydrological regime have reduced 
available spawning habitat for fall-run Chinook 
by approximately 53% (Yoshiyama et al. 2001). 
Spawning migrations are completely blocked by 
Goodwin Dam, located 94 river kilometers (rkm) 
upstream of the confluence with the San Joaquin 
River. The majority of Chinook spawning occurs in 
the 30-km reach below the impoundment, but some 
spawning has been observed further downstream 
(unpublished spawning survey data). A monitoring 
program, performed on behalf of three irrigation 
districts, was implemented in 1996 to track the 
annual downstream migration of fall-run Chinook 
juveniles.

Sampling Gear

We deployed a 2.4-m-diameter (8-ft) RST (E.G. 
Solutions, Eugene, Oregon) annually in the Stanislaus 
River to monitor downstream migration of juvenile 
fall-run Chinook Salmon. The trap was located at 
rkm 64.3, approximately 5 km west of Oakdale, 
California (Figure 1). This trap location was chosen 
based on optimal water velocities for operation 
(optimal operation was defined as a minimum 
of two revolutions per minute according to the 
Comprehensive Assessment and Monitoring Program 
[USFWS 2008]), and because the site is downstream 
of the majority of Chinook spawning and rearing 
habitat (Demko and Cramer 1996). The trap consists 
of a funnel-shaped core suspended between two 
pontoons. Because the trap relies on water flowing 
through it to rotate, it was positioned in the current 
so that water could enter the funnel mouth. As water 
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enters the trap, it strikes an internal screw core, 
causing the funnel to rotate. Fish inside the rotating 
trap become entrained in pockets of water that are 
forced rearward into a live box, where they are held 
until they are processed by technicians. The trap and 
pontoons were held in position using steel cables 
anchored to the north bank or an overhead cable 
system, depending on river discharge conditions.

Daily Trap Monitoring 

From 1996 through 2017, the Oakdale trap was 
typically operated between January and July 
during most monitoring years, but in some years 
operation started as early as October 6 (2011) and 

as late as February 2 (1996). The median start date 
across all years was January 3. No trapping was 
performed in 1997 because of high flows. Within a 
trapping season, the trap was operated continuously 
(24 hr d−1, 7 d wk−1), with exceptions, until the 
permitted termination date of July 15, or until 
average daily water temperature exceeded 21°C. 
Trap operation was also terminated after consecutive 
days of low or zero catch, indicating the end of the 
migration period. The exceptions were that traps 
were not operated on days when elevated discharge 
caused unsafe conditions or excess debris to enter the 
trap. Owing to public safety concerns, the trap was 
also not operated during times of heavy recreational 
river traffic (e.g., Memorial Day weekend). The 

Figure 1  Study area for the Stanislaus River monitoring program that indicates the location of the Oakdale RST. Discharges during RST 
operation were obtained from the CDEC gauge at Orange Blossom Bridge.

https://doi.org/10.15447/sfews.2019v17iss1art4
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trap was monitored daily throughout the sampling 
period. Each morning, technicians would remove 
the contents of the live box, identify and enumerate 
all fish, and note any recaptured marked fish. 
Technicians checked traps more frequently as 
conditions required, especially during periods with 
high catch or high amount of debris. Each day, 
technicians measured (fork length [FL] in millimeters) 
and recorded up to 50 salmon, depending on the 
number of fish in the trap. Technicians anesthetized 
all fish with tricaine methanesulfonate (MS-222) 
or AlkaSeltzer® before handling them. Because the 
sample design used a single trap to catch fish for trap 
efficiency releases and to estimate abundance, we 
defined daily catch (ni) as the number of unmarked 
salmon caught in the trap. After enumeration of 
captured fish, technicians cleaned the traps to prevent 
accumulation of debris that might impair trap 
rotation or cause fish mortality within the live box. 

Trap Efficiency Releases

Each year, multiple mark-recapture releases were 
performed to estimate trap efficiency (e). Naturally 
produced juveniles captured in the trap were the 
primary source used to conduct tests. Chinook 
Salmon obtained from Merced River Hatchery 
(operated by the California Department of Fish 
and Wildlife) were used for the release group to 
supplement release numbers during years of low 
natural production or during periods of low trap 
efficiency that required more individuals in the 
release group. Fish were transported to the release 
location (approximately 400 meters upstream of the 
trap) in either 5-gallon buckets or 20-gallon insulated 
coolers, depending on the number of fish. 

Naturally produced and hatchery juvenile Chinook 
were marked onshore adjacent to the release 
location. All fish were anesthetized before the mark 
was applied. A photonic marking gun (Med-E-Jet, 
model S-3M, Olmsted Falls, Ohio) was used to inject 
an orange or pink photonic dye (DayGlo Color 
Corporation, Cleveland, Ohio) into the caudal fin 
tissue. The color used for each release group was 
alternated to distinguish fish from different release 
groups. Marked fish were held in live boxes kept in 
areas of low water velocity to reduce stress during 
their recovery from anesthesia. During typical release 

conditions, the release location was the river’s north 
bank, but fish were also released in the middle of the 
channel from a boat during high discharge periods. 
Before release, a subsample of marked fish (or the 
entire release group if fewer than 50) was selected to 
measure fork length and to check for mark retention 
and mortalities. All releases of marked fish occurred 
after dark (1 hour after sunset) by releasing subsets 
of individuals about 30 seconds to 3 minutes apart, 
depending on how quickly released fish dispersed 
from the location. Total release time for a given trial 
ranged from about 8 to 30 minutes, depending on the 
number of fish released. Occasionally, two releases 
were performed on the same day. When this occurred, 
data were pooled to avoid pseudo-replication in the 
efficiency analyses.

Environmental Data Collection

We obtained provisional daily discharge (m3 s−1) for 
the Stanislaus River at the Orange Blossom Bridge 
gauge (OBB) from the California Department of 
Water Resources http://cdec.water.ca.gov/cgi-progs/
queryF?obb. We used two methods to measure the 
velocity of water that entered the trap. First, we took 
instantaneous measurements daily with a Global Flow 
Probe (Global Water, Fair Oaks, California). Second, 
we calculated an average daily trap rotation speed 
for each trap by recording the time, in seconds, for 
three full revolutions of the cone, once before and 
once after the morning trap cleaning. We considered 
the average of the two times the average daily trap 
rotation speed. 

We measured instantaneous water temperature daily 
with a thermometer at the trap site. To measure daily 
instantaneous turbidity, we collected a water sample 
each morning and tested it with a LaMotte turbidity 
meter (Model 2020e, LaMotte Company, Chestertown, 
Maryland). Turbidity was reported in nephelometric 
turbidity units (NTU). We measured instantaneous 
dissolved oxygen during trap checks with an ExStik® 
II D600 Dissolved Oxygen Meter (Extech Instruments 
Corporation, Waltham, Massachusetts) at the trapping 
site and recorded in milligrams per liter (mg L−1).

http://cdec.water.ca.gov/cgi-progs/queryF?obb
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Annual Abundance Estimates

At the end of each monitoring season, we estimated 
juvenile production using the Petersen estimator 
applied to daily catch totals of unmarked fish, 
where trap efficiencies were stratified within 
each monitoring year according to size class and 
discharge categories (herein referred to as Within-
Year Stratified Trap Efficiency [WYSTE] method). 
Occasionally, fish older than young-of-year (YOY) 
salmon were present in the trap and were excluded 
from abundance estimates based on fork length. We 
determined cutoff fork lengths for YOY by plotting 
length frequencies for each week during the season, 
and then selecting a value that was greater than or 
equal to 95% of individuals for that week. Length 
cutoff values ranged from 54 mm in week 1 to 
124 mm in week 18. We estimated the daily trap 
efficiencies used in the Petersen equation as the mean 
value after pooling empirically derived efficiency 
estimates within a monitoring season by size class 
(fry < 45 mm, parr 45-80 mm, and smolt 81-124 mm) 
and discharge condition categories (discharge < 21.3 
or > 21.3 m3 s−1). We used the mean efficiency across 
releases of the same size class/discharge category to 
expand daily catches for all days that met the same 
conditions. For example, in 2009, the mean trap 
efficiency for fry at discharge < 21.3 m3 s−1 was 0.423 
(mean of eight releases). We then used this efficiency 
to expand all daily catches that had mean fork 
lengths <45 mm and discharge < 21.3 m3 s−1. However, 
if no empirical efficiency data were available for a 
given size class and discharge category in a given 
year, we used average trap efficiencies from the 
previous year or most recent year with available data. 
We calculated juvenile abundance estimates using 
common spreadsheet software (Microsoft Excel®) but 
did not include estimates of error in trap efficiency or 
abundance. 

Trap Efficiency Modeling

Our first objective was to compile 21 years of trap 
efficiency release data to investigate exogeneous and 
endogenous factors associated with trap efficiency. 
Generalized linear mixed models (GLMM) are an 
extension of GLM that allow both fixed effects and 
random effects to be modeled, as opposed to GLM 
that can only model fixed effects (Venables and 

Dichmont 2004; Bolker et al. 2009). We expected 
discharge and year to have a significant effect on 
trap efficiency based on findings from Zeug et al. 
(2014), who analyzed mark-recapture data from the 
Oakdale trap for a subset of years (1996, 1998–2009) 
using logistic regression (i.e., GLM). Although we 
were not interested in the effect of year per se, its 
effect on trap efficiency was significant and could 
not be ignored. Therefore, we used GLMM to model 
the fixed effects of explanatory variables while 
accounting for the random effects of year in the 
multi-year data set. 

Exogenous environmental variables whose fixed 
effects were of interest included mean daily 
discharge, turbidity, and moon illumination (from 
U.S. Naval Observatory, http://aa.usno.navy.mil/
data/docs/MoonFraction.php). Endogenous variables 
related to sampling effects — including number of 
fish in the release group and mean FL (mm) of the 
release group — were also incorporated in models. 
We assigned salmon to a life-stage size category 
based on fork length size classes (fry ≤ 45 mm, 
parr = 45–80 mm, smolt = 81–124 mm) to investigate 
if trap efficiency varied by size class, but did not 
include size class in the same models as mean fork 
length. We transformed discharge, turbidity, and 
number of released fish to a natural logarithm scale 
to ensure a linear response to trap efficiency. We 
standardized fork length across years and sites with 
a z-transformation. We assessed the multicollinearity 
of explanatory variables by examining variance 
inflation factors (Legendre and Legendre 2012) for 
each combination of variables. 

Both GLM and GLMM modeled trap efficiency as 
a binomial probability, bounded by 0 and 1 with 
a logit link function. Occasionally, release trials 
resulted in few or no recaptures, causing extremely 
low estimates of trap efficiency; therefore, we 
excluded trials that had less than 1% of recaptures. 
Additionally, years when fewer than 10 release 
trials were performed were not included in the 
model data, as recommended by Bolker et al. (2009). 
Because we were primarily interested in fixed effects 
on trap efficiency, and because a poorly chosen 
random component can influence the coefficients 
and standard errors of the fixed effects, we chose a 
top-down approach to select the optimal model(s) 
(Diggle et al. 2002; Zuur et al. 2009). Starting with 

https://doi.org/10.15447/sfews.2019v17iss1art4
http://aa.usno.navy.mil/data/docs/MoonFraction.php


SAN FRANCISCO ESTUARY & WATERSHED SCIENCE

8

VOLUME 17, ISSUE 1, ARTICLE 4

a beyond-optimal model for the fixed effects (i.e., 
containing all explanatory variables, excluding life-
stage category, and all possible interactions), we 
evaluated four possible random effect structures 
that included a random year intercept, a random 
year intercept and random discharge slope, and 
the previous two random structures with a random 
observation intercept to account for over-dispersion. 
We used Akaike Information Criterion corrected for 
small sample size (AICC) based on the number of 
releases to assess the relative importance of each 
random structure to the beyond-optimal model. We 
ranked models according to AICC, then selected the 
best models according to ∆AICC (∆AICC < 2.0) and 
model weights (W > 0.2; Burnham and Anderson 
2002). After we identified the optimal random 
structure, we compared nested fixed effects models of 
the explanatory variables. To reduce the number of 
fixed effects models to compare, we did not include 
interaction terms. We again used model selection 
to assess the relative importance of explanatory 
variables based on ∆AICC and model weights. We 
assessed overall model fit by calculating marginal 
R2 for the fixed effects and conditional R2, which 
incorporates the random effects (Nakagawa and 
Schielzeth 2013). We performed trap efficiency 
modeling and abundance calculations using R 
(version 3.4.0, R Core Team 2017) with packages 
lme4 (Bates et al. 2015) for GLMM, fmsb (Nakazawa 
2015) for variance inflation factor, and MuMIn 
(Bartoń 2016) for model ranking and R2 values.

Comparative Evaluation of Methods

Our second objective was to investigate how 
abundance estimates and estimate uncertainty varied 
across different estimation methods. Because estimate 
uncertainty is not quantified using the monitoring 
program’s current method, WYSTE, this comparative 
study also served to qualitatively evaluate confidence 
in the program’s abundance estimates. 

We compared abundance estimates from four 
additional methods, each with different approaches 
for applying trap efficiency estimates to catch 
data (stratified versus modeled) and statistical 
methods (frequentist versus Bayesian). The four 
additional methods, described in detail below, 
were: (1) among-year stratified trap efficiency, (2) 
simple time-stratified mark-recapture, (3) modeled 

trap efficiency, and (4) Bayesian analysis of time-
stratified Petersen diagonal recaptures experiments. 
We characterized annual trends for each method by 
counting the number of times an increase or decrease 
in abundance occurred from year t to t + 1. We 
used a Chi-square test to evaluate if the proportion 
of increasing and decreasing years varied among 
methods. For each year, we calculated the coefficient 
of variation (CV) across the five methods to quantify 
discrepancies among them. To evaluate potential 
factors associated with abundance discrepancies, we 
used correlation between annual abundance CV and 
environmental (i.e., mean discharge during trapping 
season) and release-related factors. The release-
related factors comprised number of release trials per 
year, total number of fish released, minimum and 
mean numbers of recaptures, mean fork length of 
the release group, average number of days between 
release trials, and the percentage of hatchery-origin 
fish in the release group. 

Finally, because we expected the number of adult 
salmon spawning to influence juvenile abundance, 
we assessed the biological relevance of the different 
abundance estimates by analyzing the relationship 
between adult escapement and estimated juvenile 
abundance, and whether or not the abundance 
estimation method influenced this relationship. We 
performed an analysis of covariance (ANCOVA) 
with the natural log of abundance estimates as the 
response variable, adult escapement counts as a 
continuous explanatory variable, and estimation 
method as a categorical explanatory variable. We 
obtained adult escapement counts from a fish weir 
outfitted with a Riverwatcher fish-counting device 
(VAKI Aquaculture Systems LTD, Iceland) that was 
operated annually during the adult fall-run spawning 
season (September to December) starting in 2003 
(Peterson et al. 2017). Therefore, this analysis was 
performed using juvenile abundance estimates from 
2004 through 2017, as they corresponded to adult 
escapement during 2003 through 2016. 

Among-Year Stratified Trap Efficiency

In the first two approaches, we applied Bailey’s 
modification to the Petersen formula (Bailey 1951) 
that forces a finite expectation of trap efficiency. The 
modification allows for the inclusion of trials with 
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0 recaptures by adding 1 to the number of marked 
fish and to the number of recaptures. The among-
year stratified trap efficiency approach is similar 
to the annually calculated method described above 
(WYSTE) in that empirically derived trap efficiency 
values are stratified into the same size class/
discharge categories. However, instead of pooling 
trap efficiency within each year, we pooled trap 
efficiency across all years for which trap efficiency 
releases were performed. This method also differed 
from WYSTE because daily catch was proportioned 
into size classes for different trap efficiencies. In 
other words, the within-year method used one trap 
efficiency to expand daily catch to abundance 
based on mean fork length, whereas the among-
year method could use up to three trap efficiencies 
for a single day if all three size categories were 
represented in the trap that day. We calculated 95% 
confidence intervals by a bootstrap procedure. We 
resampled daily abundance estimates (after efficiency 
was applied to catch for each size category) 1,000 
times with replacement, then summed for an annual 
estimate. We took confidence intervals from the 
values that occurred at 2.5% and 97.5% of the 
bootstrapped distribution of annual estimates. 
Bootstrapped confidence intervals have been shown 
to closely approximate the target 95% range when 
used with stratified methods (Steinhorst et al. 2004). 

Simple Time-Stratified Mark–Recapture

For the next method, stratified mark-recapture, 
we applied the trap efficiency derived from the 
first efficiency release each year to daily catches 
from the beginning of trap operation until the next 
release that year was performed. After the next 
release was performed, the new efficiency was used 
until subsequent releases were performed and new 
efficiencies could be estimated. We evaluated the 
degree of uncertainty in annual migration estimates 
using this method by calculating the 95% confidence 
intervals by bootstrapping on daily abundance 
estimates. 

Modeled Trap Efficiency

For the modeled trap efficiency method, we used 
the highest ranked GLMM model that explained 
variation in trap efficiency to develop a predictive 

model to estimate daily trap efficiency based on the 
environmental covariates (refer to “Trap Efficiency 
Modeling” section above). We then used predicted 
trap efficiencies to estimate daily juvenile abundance 
from the Petersen estimator described above. We 
derived confidence intervals for annual abundance 
estimates from bootstrapping on daily abundance 
estimates.

Bayesian Time-Stratified Mark–Recapture 
Experiments

Bonner and Schwarz (2011) introduced a Bayesian 
semiparametric method for estimating abundance 
from time-stratified Petersen mark-recapture 
experiments (i.e., releases). Unlike the previous 
methods, the Bayesian framework takes advantage 
of the temporal relationship between mark-recapture 
experiments to model trap efficiencies for time strata 
when releases were not performed. Their approach 
explicitly models catch in the trap over time using 
Bayesian P-splines as the smoothing function. 
Briefly, the nonlinear P-spline algorithm allows 
for flexibility in the shape of the spline regression 
while minimizing overfitting (Lange and Brezger 
2004). For this approach, catch and trap efficiency 
releases were stratified by week. Because recaptures 
of marked fish occurred within the same strata 
(i.e., week) as the release (the majority of fish were 
recaptured the following day), the recapture data 
resembled a Time-Stratified Petersen with Diagonal 
recaptures Experiments case. Similar to the Modeled 
Trap Efficiency method, this method can incorporate 
information on covariates, such as discharge, when 
modeling trap efficiency. Therefore, we estimated 
abundance with this method for each year with 
and without discharge as a covariate using the R 
package BTSPAS (Bonner and Schwarz 2011) and 
the program JAGS (version 4.3.0) to sample posterior 
distributions. Each run consisted of three Markov 
chains sampled for 200,000 iterations, with the 
first 100,000 being discarded during the ‘burnin’ 
period. The thinning parameter was set to 50 to 
reduce auto-correlation in the posterior distributions, 
resulting in 6,000 simulated samples. Uncertainty in 
estimates is provided by the 95% credible interval, 
which contains 95% of the estimate’s posterior 
distribution. Although we performed this analysis 
with a covariate, abundance estimates were not 
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substantially different when discharge was included, 
and the deviance information criterion (DIC) we used 
to compare between covariate and non-covariate 
models did not support that discharge was useful for 
predicting trap efficiency with this method. The only 
years that exhibited a non-zero coefficient for the 
effect of intra-annual discharge on trap efficiency 
were 1999 (b = 0.10, 95% CI = 0.1–0.17) and 2008 
(b = −0.27, 95% CI = −0.54–-0.01). Therefore, we only 
report estimates from this method based on the non-
covariate model.

RESULTS

Stanislaus Fall-Run Juvenile Monitoring Program

The average number of trapping days per year was 
159 (Table 1). During the 6 years when the trap was 
deployed before 1 January (1999, 2000, 2001, 2002, 
2010, 2011), 706 juvenile salmon were captured 
between the months of October to December. Thus, 
juveniles passing before 1 January were unlikely 
to contribute substantially to annual abundance 

estimates. Annual total catch from January until the 
end of the Stanislaus trap monitoring ranged from 
21,450 juvenile salmon in 2008 to 401,903 in 2004 
(mean catch = 89,152). In 21 years of monitoring, 
131,028 unmarked fish were measured (mean = 6,239 
salmon per year), with mean fork length in a year 
ranging from 38 mm (2017) to 79 mm (1996). 
Although the magnitude of migration varied from 
year to year, the peak timing appeared to occur 
consistently between January and March each year 
because of high catches of fry during this period. The 
earliest date of 50% catch occurred in 2000 (January 
27) and the latest date was in 2012 (March 19). 

Trap Efficiency Modeling

From 1996 to 2017, 387 release trials were performed 
with a mean of 18 releases per year (range 8–31; 
Table 2). The mean number of fish released per trial 
was 419 (range 44–2,931). Naturally produced fish 
were used in release trials in all years. However, 
hatchery-reared fish were also released in 11 years, 
and made up half or more of the released fish in 

Table 1  Summary of annual rotary screw trap operation to monitor downstream migration of juvenile fall-run Chinook Salmon on the 
Stanislaus River from 1996 to 2017. Note that no trapping was performed in 1997.

Monitoring year Trap start date Trap end date # Trap days Juvenile catch # Measured fish
Mean fork length 

(mm) 50% catch date

1996 Feb 2 Jun 8 115 30,366 2,401 79 Feb 19

1998 Jan 27 Jul 15 146 23,476 6,000 65 Feb 28

1999 Jan 18 Jun 30 153 27,905 7,358 56 Feb 21

2000 Dec 16 1999 Jun 30 182 119,265 6,989 48 Jan 27

2001 Dec 12 2000 Jun 29 186 173,575 10,344 52 Feb 13

2002 Dec 12 2001 Jun 7 131 118,143 8,703 54 Feb 15

2003 Dec 20 2002 Jun 5 138 90,778 7,475 49 Feb 7

2004 Jan 3 Jun 4 133 401,903 7,063 52 Feb 19

2005 Jan 4 Jun 17 141 188,234 5,415 45 Jan 30

2006 Jan 17 Jul 14 152 54,961 6,218 54 Feb 15

2007 Jan 3 Jun 29 161 54,448 6,990 54 Feb 26

2008 Jan 9 Jun 2 154 21,450 4,700 50 Feb 7

2009 Jan 7 Jul 2 163 59,729 5,200 50 Feb 2

2010 Jan 7 Jun 25 155 35,891 5,415 53 Feb 3

2011 Oct 12 2010 Jun 30 182 42,892 4,536 42 Feb 11

2012 Oct 6 2011 Jul 03 254 25,057 6,959 54 Mar 19

2013 Jan 2 Jun 28 162 148,366 7,770 50 Feb 8

2014 Jan 3 Jun 27 160 80,306 6,797 50 Feb 17

2015 Jan 3 Jun 9 148 39,185 4,711 46 Feb 10

2016 Jan 6 Jun 30 164 43,324 4,587 44 Mar 8

2017 Jan 3 Jun 30 157 92,934 5,397 38 Feb 10
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1996, 2000, 2001, 2004, and 2015 (Table 2). Across 
all years, fry, parr, and smolts accounted for 61%, 
30%, and 9% of releases, respectively. Mean number 
of recaptures was 45 (0–275), and mean estimated 
trap efficiency per year ranged from 0.02 in 1999 to 
0.32 in 2009. Six release trials (1.6% of all releases) 
resulted in zero recaptures.

Across all years, discharge was the primary factor 
associated with trap efficiency estimates (Figure 2). 
Efficiency estimates could be high (e > 0.50) under 
low-discharge conditions (discharge < 5.7 m3 s−1) 
but were extremely variable. Estimated efficiency 
declined precipitously as discharge increased to about 
22.7 m3 s−1 for all size classes (Figure 2A). We used 
GLMM to address the specific question: does the 
relationship between discharge and trap efficiency 
estimates vary across salmon size classes? The model 
with size class and discharge without an interaction 

had the majority of support (W = 0.74, Table 3), 
suggesting a common slope between life stages but 
with different intercepts (Figure 2B). The difference 
between intercepts across size classes was small, yet 
statistically distinguishable at a  = 0.05. Across the 
observed levels of discharge, efficiency estimates 
were greatest for fry, then parr, then smolts. 

We used our second set of GLMMs to evaluate the 
influence of environmental and sampling-related 
factors on trap efficiency estimates. Explanatory 
variables used in these models did not show evidence 
of extreme multicollinearity, because variance 
inflation factors for the variables ranged from 1.0 
to 2.0. Model selection found overwhelming support 
(W = 1.0) for the random structure that contained the 
random intercept and random slope for discharge 
across year, as well as a random intercept for 

Table 2  Summary of rotary screw trap efficiency mark–recapture trials performed on the Stanislaus River from 1996 to 2017. Note that no 
trapping was performed in 1997.

Monitoring year
Number of 
releases

Total # fish 
released % Hatchery

Min # fish 
released

Max # fish 
released Min # recaptures Max # recaptures

Mean efficiency
estimate

1996 9 5,089 48 198 999 0 275 0.14

1998 8 3,318 13 165 929 10 42 0.06

1999 16 6,165 12 193 579 1 15 0.02

2000 12 8,931 56 118 1,856 0 133 0.08

2001 16 16,589 46 197 2,390 8 421 0.14

2002 13 6,987 0 192 761 9 109 0.11

2003 31 9,400 21 44 2,042 2 136 0.07

2004 26 17,208 70 78 1,936 0 232 0.17

2005 14 4,899 0 111 565 11 231 0.23

2006 12 7,243 7 98 1,031 4 214 0.06

2007 22 6,910 0 81 607 1 60 0.09

2008 13 2,274 0 86 275 0 121 0.30

2009 13 2,603 0 57 346 3 141 0.32

2010 8 1,520 0 46 376 2 56 0.17

2011 18 4,350 0 70 303 6 115 0.22

2012 31 4,476 0 53 332 3 39 0.12

2013 30 15,618 31 98 2,931 0 75 0.07

2014 28 6,336 0 89 334 5 101 0.17

2015 21 7,181 52 92 543 4 86 0.16

2016 20 7,401 19 184 904 8 88 0.11

2017 26 17,667 0 105 2,338 0 138 0.07
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each observation/release. Using model selection to 
evaluate fixed effects candidate models, there were 
two competing optimal models (DAICC < 2.0, W > 0.2). 
Both models indicated a negative relationship 
between discharge and trap efficiency, as well as a 
negative relationship between fork length and trap 
efficiency (Table 4). The number of individuals in 

a release group was present in one optimal model 
but had weaker associations with estimated trap 
efficiency than discharge or length. Marginal (R2

m) 
and conditional (R2

c) R2 values were similar for both 
optimal models (R2

m = 0.31, R2
c = 0.42), suggesting 

that the addition of release group size did not 
improve the model’s explanatory power. 

Comparative Evaluation of Methods

Annual abundance estimates were variable across 
all five methods but were generally within an order 
of magnitude (Table 5, Figure 3). The modeled trap 
efficiency method produced the highest estimates in 
7 years, and the stratified mark-recapture method 
produced the highest estimates in 6 years, followed 
by the within-year stratified trap efficiency method, 
which produced the highest estimates in 4 years. 
The among-year stratified trap efficiency method 
produced the smallest estimates in 7 years, whereas 
no other method produced consistently low estimates. 
Uncertainty in annual abundance estimates, 
measured as 95% confidence intervals, was generally 
greater for the non-Bayesian methods that used 
bootstrapping (Figure 3). With the exception of 1999 
and 2000, the 95% credible intervals for the Bayesian 
time-stratified Petersen diagonal recaptures method 

Figure 2  The relationship between efficiency estimates of the Oakdale RST and mean daily discharge measured at Orange Blossom Bridge 
for all efficiency trials performed over the entire monitoring period (1996, 1998–2017). Panel (A) shows the untransformed relationship. Panel 
(B) shows the transformed relationship for different salmon life stages, based on size categories; fry (<45 mm FL), parr (≥ 45 and < 80 mm FL), 
and smolt (≥ 80 and < 124 mm FL).

Table 3  Model selection table comparing fixed effects 
associated with trap efficiency from the Oakdale RST on the 
Stanislaus River from 1996 to 2017. Reported are the estimated 
coefficients and standard errors for models that evaluate the 
relationship between standardized discharge at Orange Blossom 
Bridge (QOBB) and trap efficiency by salmon size categories 
(SizeCat). Size categories are fry, parr, and smolt. The random 
component for this model series included a random intercept 
and slope for standardized discharge across years and a random 
intercept for each release. 

Models

# of 
para

meters ∆AICC W R  2m R  2c

QOBB + SizeCat 8 0 0.771 0.310 0.425

QOBB + SizeCat + 
QOBB x SizeCat

10 2.5 0.223 0.306 0.425

QOBB 6 9.6 0.006 0.335 0.475

SizeCat 7 21.4 0 0.003 0.440
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were narrower than the bootstrapped confidence 
intervals from the other methods. 

The proportion of years that showed an increase 
in estimated abundance ranged from 0.4 to 0.5 
(Figure 4) and was not different across methods 
(c2 = 0.568, df = 4, P = 0.967). The years with the 
greatest discrepancy between estimates were 1996 
(CV = 0.52), 2003 (CV = 0.62), and 2017 (CV = 0.48; 
Table 5). Abundance CV showed a positive trend 
with total number of fish released and mean fork 
length, and a negative trend over time (years) and 
with minimum number of recaptures. However, no 
correlations were significant. Using ANCOVA, we 
found adult escapement counts to be a significant 
predictor of estimated juvenile abundance 
(F5,64 = 9.82, P < 0.001). There was no significant 
interaction term between method and escapement 
counts, nor was method a significant factor in 
explaining abundance estimates.

DISCUSSION

In this study, we reviewed 21 years of mark-
recapture release and RST catch data from the 
Stanislaus River fall-run Chinook Salmon monitoring 

program to identify factors associated with trap 
efficiency estimates and to evaluate the program’s 
current analysis methods for estimating juvenile 
abundance. Trap efficiency estimates varied highly 
among trap efficiency releases, but river discharge 
was the strongest factor associated with efficiency 
estimates. We also found that abundance estimates 
were robust across different analysis methods. 
In most years, the majority of methods produced 
estimates with overlapping confidence intervals. 
Trends in juvenile abundance estimates—in terms of 
increasing or decreasing between years—were not 
affected by estimation method, and neither was the 
relationship between adult escapement and estimated 
juvenile abundance. In spite of the widespread use 
of RSTs to monitor fish populations, few published 
studies evaluate screw trap abundance estimates for 
long-term monitoring programs.

In fitting the GLMMs to explore trap efficiency 
estimates, we found that the random components 
of the efficiency models were best explained by 
a random intercept and slope for river discharge 
across years, as well as a random intercept for each 
release. The random slope and intercept for discharge 
captured what appeared to be a variable relationship 

Table 4  Results of model selection procedure that compared fixed effects associated with efficiency from the Oakdale RST on the 
Stanislaus River from 1996 to 2017. Reported are the estimated model coefficients and standard errors for environmental and sampling 
variables that affect trap efficiency of marked fish. The random component for this model series included a random intercept and slope for 
standardized discharge across years, and a random intercept for each release. We compared 18 models but present only the top six models.

Model # of parameters ∆AICC W R  2m R  2c

QOBB + ForkLength 7 0.00 0.368 0.307 0.418

QOBB + ForkLength + ReleasedN 8 0.80 0.246 0.312 0.424

QOBB + ForkLength + Turbidity 8 2.08 0.130 0.306 0.418

QOBB + ForkLength + ReleasedN + MoonIll 9 2.31 0.116 0.311 0.424

QOBB + ForkLength + ReleasedN + Turbidity 9 2.88 0.087 0.311 0.424

QOBB + ForkLength + ReleasedN + Turbidity + MoonIll 10 4.38 0.041 0.311 0.424

Model-averaged coefficients (standardized) Estimate Lower 95% CI Upper 95% CI

Intercept −2.411 −2.576 −2.247

QOBB (discharge at Orange Blossom Bridge m3 s-1) −1.338 −1.755 −0.920

ForkLength (fork length mm) −0.147 −0.224 −0.070

ReleasedN (number of marked and released fish) 0.023 −0.033 0.127

Turbidity (turbidity NTU) −0.002 −0.074 0.061

MoonIll (fraction of moon illuminated) 0.004 −0.040 0.093
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Table 5  Juvenile salmon annual migration abundance estimates (by 100,000) from the Oakdale RST on the Stanislaus River from 1996 to 2017. 
Abundance was estimated using five methods: (1) the currently used method of within-year stratified trap efficiency (WYSTE), (2) among-
year stratified trap efficiency (AYSTE), (3) stratified mark–recapture (SMR), (4) modeled trap efficiency (MTE), and (5) Bayesian time-stratified 
Petersen diagonal recaptures experiments (TSPDE). Confidence intervals (95% CI) were calculated by bootstrap for AYSTE, SMR, and MTE 
methods, and 95% credible intervals for TSPDE. No confidence intervals were calculated for the WYSTE method. Note that trapping was not 
performed in 1997.

Year WYSTE SMR AYSTE MTE TSPDE CV

1996 2.88 7.77
(5.65 – 10.34)

3.8
(2.88 – 4.86)

8.51
(6.73 – 10.29)

3.04
(1.98 – 5.5)

0.523

1998 9.17 7.04
(5.13 – 9.16)

5.49
(4.08 – 7.19)

12.81
(9.98 – 16.01)

6.77
(4.86 – 9.41)

0.347

1999 14.7 15.46
(13.36 – 17.83)

6.75
(5.49 – 8.06)

13.45
(11.14 – 16.12)

14.26
(10.94 – 18.39)

0.273

2000 19.5 13.35
(9.5 – 18.27)

18.21
(7.25 – 34.68)

18.38
(8.37 – 30.62)

20.72
(12.19 – 39.42)

0.155

2001 11.31 10.92
(7.45 – 16.23)

11.05
(6.24 – 17.82)

19.52
(10.88 – 31.84)

8.52
(6.17 – 12.79)

0.343

2002 15.1 12.98
(9.63 – 17.1)

7.87
(6.22 – 9.67)

12.17
(9.55 – 15.33)

14.7
(12.79 – 17.14)

0.230

2003 16.78 32.45
(19.33 – 48.06)

5.43
(3.85 – 7.28)

9.22
(5.9 – 13.35)

22.84
(19.06 – 28.19)

0.623

2004 15.48 35.11
(9.42 – 71.17)

23.09
(12.25 – 36.69)

30.87
(14.71 – 52.08)

17.71
(13.76 – 27.03)

0.344

2005 9.94 10.26
(5.29 – 16.07)

11.11
(6.02 – 17.55)

13.13
(6.75 – 21)

9.92
(8.65 – 12.05)

0.124

2006 12.38 13.36
(9.53 – 18.62)

12.84
(9.84 – 16.32)

24.15
(20.06 – 28.16)

17.31
(13.53 – 22.67)

0.310

2007 13.43 11.86
(8.44 – 15.95)

7.96
(5.56 – 11.21)

9.76
(7.24 – 13.47)

11.01
(9.19 – 13.55)

0.192

2008 0.88 0.93 
(0.72 – 1.17)

1.62
(1.26 – 2.06)

1.67
(1.33 – 2.07)

0.89
(0.71 – 1.17)

0.342

2009 1.82 1.83
(1.21 – 2.54)

3.67
(2.45 – 5.33)

3.33
(2.14 – 4.9)

1.82
(1.45 – 2.46)

0.371

2010 3.94 3.05
(2.13 – 4.06)

4.18
(2.93 – 5.66)

4.12
(2.83 – 5.73)

3.21
(2.48 – 4.3)

0.143

2011 3.74 2.32
(1.44 – 3.34)

4.09
(2.1 – 7.66)

3.43
(1.86 – 5.75)

2.17
(1.91 – 2.54)

0.273

2012 3.35 3.55
(2.5 – 4.87)

2.73
(1.99 – 3.81)

3.43
(2.38 – 5.13)

2.64
(2.38 – 2.96)

0.134

2013 35.16 48.44
(29.44 – 72.2)

23.86
(16.16 – 33.67)

25.27
(17.87 – 34.54)

27.66
(23.48 – 33.4)

0.316

2014 7.69 4.65
(3.62 – 5.76)

5.15
(4.1 – 6.26)

7.33
(5.69 – 8.97)

4.67
(4.31 – 5.09)

0.253

2015 2.32 2.62
(1.23 – 4.68)

2.35
(1.05 – 4.54)

2.81
(1.2 – 5.13)

2.68
(2.35 – 3.15)

0.084

2016 4.53 4.71
(3.15 – 6.71)

2.81
(1.95 – 3.87)

3.17
(1.96 – 4.78)

4.08
(3.72 – 4.51)

0.217

2017 45.1 26.75
(13.55 – 43.64)

17.68
(10.56 – 26.42)

23.59
(12.42 – 38.29)

13.81
(11.27 – 18.54)

0.477
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Figure 3  Comparison of 
RST abundances estimated 
using five methods for the 
Oakdale RST from 1996 to 
2017. Each method used a 
different approach to apply 
efficiency estimates to daily 
catches. Error bars represent 
95% bootstrapped confidence 
intervals for the among-year 
stratified trap efficiency 
(AYSTE), stratified mark–
recapture (SMR), and modeled 
trap efficiency (MTE) methods. 
Error bars are 95% credible 
limits for the Bayesian time-
stratified Petersen diagonal 
recaptures experiments 
(TSPDE), and no error bars 
were calculated for the within-
year stratified trap efficiency 
(WYSTE) method. Note that 
trapping was not performed in 
1997 and that the y-axis ranges 
vary across years.
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between discharge and estimated efficiency among 
years. Whereas some of this variation could result 
from varying flow regime characteristics across years 
(i.e., wet versus dry years, or years with managed 
pulse flows versus years without), it could also result 
from inter-annual differences in trap efficiency 
release strategies. For example, the number of 
fish released and the number of releases differed 
across years, as did the timing when the releases 
took place. Provided that release strategies were 
frequently dictated by the number of fish available 
for marking and daily discharge, both release strategy 
and annual flow characteristics contributed to this 
random variation. This was the year effect observed 
previously by Zeug et al. (2014) at this trap, and 
possibly the cause for year effects observed at a 
second trap operated 51 river kilometers downstream 
on the Stanislaus River (Zeug et al. 2014) and a 
multi-year data set from the Tucannon River analyzed 
by Cheng and Gallinat (2004).

Another source of random variation was from 
the individual releases themselves. The number of 
recaptured individuals varied highly across releases, 
even among releases at similar discharges, and 
contributed to over-dispersion of the efficiency 
estimates. We excluded estimates when the percent 
of recaptures was less than 1%. Whereas increasing 
our cut-off value would reduce the efficiency over-
dispersion, it would also limit the number of years 
that could be analyzed using GLMM, unless we 
also decreased our cutoff value for the number of 
release trials per year. Our cutoff of a minimum of 
10 releases per year (as recommended by Bolker et al. 

2009) resulted in the exclusion of 4 years. Increasing 
the recaptures cutoff to 10% would exclude 8 years 
from our analyses.

In addition to river discharge being related to 
random variation, it was also the best predictor of 
trap efficiency. The negative association between 
discharge and trap efficiency was also observed 
at both traps on the Stanislaus River as reported 
by Zeug et al. (2014). On the Tucannon River, 
Washington, Cheng and Gallinat (2004) used GAM 
and found a significant nonlinear relationship 
between trap efficiency and discharge, but was 
not significant using GLM. Roper and Scarnecchia 
(1996) observed no relationship between discharge 
and trap efficiency with wild salmon on the South 
Umpqua River, Oregon, but reported lower capture 
rates of hatchery salmon at lower water velocities. 
Clearly, the effect of discharge on the efficiency of a 
specific trap will be idiosyncratic and will need to be 
evaluated using multiple statistical methods. 

We also found evidence that efficiency estimates 
were size dependent. When efficiency estimates were 
modeled as a function of discharge and categorical 
size-classes, efficiency was greatest for fry and 
lowest for smolts, across all observed discharges. 
When fork length was included as a continuous 
variable, it had a negative coefficient, indicating that 
estimated efficiency decreased as the fork length of 
the release group increased. This finding is consistent 
with larger fish having an increased ability to avoid 
the trap (Tattam et al. 2013). Interestingly, Zeug et 
al. (2014) did not find a significant effect of fork 
length at this trap but did find a significant effect at 

Figure 4  Point estimates of annual juvenile salmon 
abundance at the Oakdale RST from 1996 to 2017. 
Colors represent the different estimation methods; 
within-year stratified trap efficiency (WYSTE), among-
year stratified trap efficiency (AYSTE), stratified 
mark-recapture (SMR), modeled trap efficiency (MTE), 
and the Bayesian tim++e-stratified Petersen diagonal 
recaptures experiments (TSPDE). Error bars are not 
shown, for ease of visualization, but are provided in 
Figure 3. Note that no trapping was performed in 1997.



17

MARCH 2019

https://doi.org/10.15447/sfews.2019v17iss1art4

the lower Stanislaus River trap. One explanation for 
this difference could be that fork length has a weaker 
effect at the upper Stanislaus River trap than at the 
downstream trap, which the GLMM was able to detect 
after accounting for random effects.

Although we identified some factors associated with 
variation among trap efficiency estimates, there was 
still unexplained variation that we were concerned 
could be propagating into abundance estimates. 
Because the monitoring program’s method for 
estimating abundance did not include uncertainty 
estimates, we compared its estimates with abundance 
estimates from four additional methods that varied 
in how trap efficiency estimates were applied. The 
confidence intervals provided by the additional 
methods allowed us to characterize uncertainty in 
the program’s annual abundance estimates, as well 
as assess systematic bias across different estimation 
methods. Although confidence intervals could be 
wide, depending on method and year, different 
methods generally produced similar abundance 
estimates with overlapping confidence intervals. 
Using the Darroch (1961) model and varying 
the length of stratification intervals, Dempson 
and Stansbury (1991) estimated abundance of 
Atlantic Salmon (Salmo salar) in the Conne River, 
Newfoundland, and found abundance estimates 
to be similar, regardless of whether stratifications 
were set at 5 or 14 days. Schwarz and Dempson 
(1994) developed a likelihood model that could 
account for daily variation in capture probability 
and used it to estimate abundance from the same 
Atlantic Salmon population. Whereas Schwarz and 
Dempson (1994) concluded that the stratifications 
used by Dempson and Stansbury (1991) were too 
long, the estimated abundance and standard error 
from the Schwarz and Dempson (1994) model 
were not substantially different from Dempson and 
Stansbury’s (1991) estimates or standard errors. 
Bonner and Schwarz (2011) also found similar 
abundance estimates for a subset of the Conne 
River Atlantic Salmon population, after comparing 
Bayesian implementations of the pooled Petersen 
model, the Schwarz and Dempson (1994) model, 
and the Mäntyniemi and Romakkaniemi (2002) 
model with their Bayesian P-spline approach. These 
few comparative studies suggest that abundances 
estimated using mark-recapture procedures are 

generally robust, regardless of the method used. 
Obviously, the best results from a chosen estimator 
should come from a monitoring program designed 
specifically for that estimator. In the case of 
long-term data, where monitoring protocols can 
change annually depending on environmental or 
institutional conditions, abundance estimates may 
still be unbiased but will have increased uncertainty.

Evaluating abundance trends based on a single 
estimation approach without knowing its level of 
uncertainty is difficult at best, and at worst can 
provide misleading results about a species’ critical 
life stage. Estimating juvenile abundance using five 
different methods did not reveal any different trends 
in abundance over time. Furthermore, abundance 
estimates were significantly associated with direct 
counts of adult escapement, and estimation method 
did not affect this relationship. Results from this 
comparative study suggest that abundance estimates 
based on any one of these methods could provide 
accurate estimates of abundance (assuming the 
true abundance is contained within the range 
of confidence intervals across methods), but the 
estimates’ precision will be affected by uncertainty 
about trap efficiency estimates as well as by the 
different assumptions each method makes. The 
primary objective of the Stanislaus River monitoring 
program has been to estimate abundance, and 
characterize migration patterns of fall-run Chinook 
Salmon to ensure that the managed flows meet the 
conservation requirements of this sensitive species. 
As such, these data are necessary to evaluate the 
effectiveness of prescribed flows, and to inform life-
cycle models and stock-recruitment forecasts. 

CONCLUSION

The decline of culturally and economically important 
species, such as salmonids, has been an impetus for 
long-term monitoring of populations (Nichols and 
Williams 2006). Rotary screw traps are frequently 
used to monitor salmonids around the world, 
including juvenile fall-run Chinook Salmon in the 
California Central Valley. Estimating abundance 
from an RST requires mark-recapture techniques 
to provide trap efficiency. However, because trap 
efficiency is influenced by myriad exogenous 
and endogenous factors that vary through time, 
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the design of mark-recapture experiments and 
trapping stratification become the cornerstone 
for acquiring accurate and precise abundance 
estimates. When designing an RST monitoring 
program, adhering to the standardized procedures 
discussed by Volkhardt et al. (2007) and others will 
help the trapping design meet the assumptions of 
the statistical analyses, and in doing so, will help 
reduce uncertainty. For long-standing monitoring 
programs, such as the Stanislaus River program, 
inter-annual variability in mark-recapture releases 
(whether intentional or inadvertent) decreases the 
certainty of annual abundance estimates. Although 
advances in statistical techniques have been useful 
for handling heterogeneity in trap efficiency, few 
studies have evaluated how these methods influence 
temporal abundance trends or how recently derived 
approaches handle historical mark-recapture data. 
Here, we showed that abundance estimates based 
on mark-recapture data are generally robust, in 
that different numerical procedures will provide 
similar results. Understanding the robustness of 
abundance estimates is particularly important in the 
Central Valley where there are 17 existing screw 
trap monitoring programs for Chinook Salmon and 
Steelhead (Central Valley Salmon and Steelhead 
Monitoring Programs, 2007). This study was a first 
step in evaluating how comparable abundance 
estimates are across different monitoring programs. 
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