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ABSTRACT OF THE DISSERTATION

Protection and Security
in a Dataflow System
by
Lubomir Bic
Doctor of Philosophy in Computer Science
University of California, -rvine, 1978

Professor Kim P. Gostelow, Chairman

This thesis presents a study of problems in.protection
and security that arise in a general-purpose computing
facility. We study these problems in the context of a
dataflow system. The protection mechanisms are based on
attaching keys to values exchanged among different subjects
(users) of the system. Subjects are modelled as dataflow
Tesource managers. A key attached to. a value does not
prevent that value from being pro agated to any place
within the system; rather, it guarantees that the value
and any information derived from that value cannot leave
the system (cannot be output) unless the same key 1is
presented. The idea of attaching a key to a value is also
used to allow the origin of that value to be verified.
This facility is employed to provide a basis for
private/secret interprocess communication. The operations
of attaching and detaching keys in the low-level system are
controlled by the user via special primitives incorporated
in the high-level dataflow language 14d.

The capabilities of the protection system are
demonstrated by giving solutions to several well-known

protection problems, e.g. "The Selective Confinement
Problem”, "The Trojan Horse Problem”, "Mutual Suspicion",
"The Prison Mail Systen Problem", and others. Also

discussed 1is the inherently difficult problem of "sneaky
signaling” using time delays, absence of information, and
the error handling facility itself.

vii

INTRODUCTION AND OUTLINE OF THE THESIS

The objectives of this thesis are *o study problems in
protection and security, and to develop a protection sys*tea
suitable especially for a computing facility based on the
principles of dataflow. Dataflow ~ a rather new area in
computer science - has gained considerable a**ention in
recent years ([ArGoPl78], [Den73], [Kos78}, and others).
I+*s major motivation is +*o u*tilize large numzers of
inexpensive processing elements available through +he
advent of LSI technology. A* Irvine, a high-level da*raflow
language 1Id (Irvine dataflow) and a computer archirecture
suitable for its execution have been devalored by the
Dataflow Architecture Group during 1975-1978. Wi*h *he
advance of tnils project - the ultima‘te goal of whicn is to
desiyn a general-purpose sharable computring facility - the
question of protection arose. Various 1ssues in prortection
appearea  1n  both programming }anjuages as well! a3 in
operating systems. whlle considerable effort nas bdeen
expended 1in studying protection problems in opera*ing
systems, little attention has been paid +to protecrion in
programming languages. Only recently have atterprs baen
made to incorporate protection mechanisms 1n*o high-level
languages, e.gq. programmer-defined (abs*rac*) da*a *yues
({Gut77}, [(LsAs77], [WuLoSh76])), scoping rules, and other
facilities to control access to objec*ts ([“or73], [JoLi76],
[JoLo78}). oOur goal is *o extend *he language Id (which in
addition to the usual programming *tools already
incorporates several new concepts, =such as func*tionals,
programmer-defined data types, non-de*ersinis*tic
programming, etc.) ‘o contain facilities whicn would allow
the programmer to control tne flow of information 1in *ne
System. The language Id is intended *o be used for writinjg

Operating systems as well as application programs. In
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accordance with the design principles of the HYDRA
operating system [LCCPW75], we emphasize the development of
protection mechanisms as opposed to protection policies.
These mechanisms then may be employed by the Id‘programmer
to solve a large variety of protection problems from the
area of operating systems. .

Under security we understand "mechanis$§

technigues that control who may use or modify the compater%

or the information stored in it" [SaSc75]. This comprises
tne issues of  secrecy (no unauthorized release of
information) and integrity (no unauthorized modification of
information or the system itself), as well as the iésue of
availapility of information and services, Our major
empnasis is on providing protection mechanisms to ensure
secrecy and integrity of information, however, we also
discuss problems related to sabotage and denial of

informa*tion and services.

In Chapter 1 we first present an intuitive model for
the proposed protection system. Our approach departs to a
great extent from other approaches to protection, We
consider the entire system as a sphere within which
information may be propagated conceptually to any place.
It will bpe stopped at the lates* possible moment, namely
when it attempts to leave the sphere without the necessary
autaorization. .

The purpose of Chapter 2 is to explain the principles
of dataflow and to make the reader familiar with the
language Id, especially witn those concepts necessary for
the ungerstanding of the protection mechanisms.

The fundamental mechanisms which allow the control of
information flow within the system are developed in
Chapter 3. The principle upon which the protection system
is based 1is the attaching of unique keys to the arbitrary
values passed pe*ween the subjects constituting the system.
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A key attached to a value will prevent subjects not
possessing the same key from utilizing tna* value, i.e. 1t
will prevent the value from leaving tne sphere mentioned
above. These mechanisms are extenaed 1in Chapter 4 by
introducing special keys which allow *ne iden*tity of a
subject to be established and verified. Thus secre*
(private) communication be*ween subjects may *take place,
whereby each subject is able to verify *he authenticity of
the communication partner.

In Chapter 5 we will s*tudy problems related *o the
establishment of proprie*ary services in a da*aflow svs*tem.
We will show how mutually suspiciocus subsys*tems may
cooperate without running the risk of mutual *heft or
destruction of information. In par+ticular, well known
protection problems, such as the Selective Confinement
Problem and the Trojan Horse Problem, wi1ll be considered
and solutions will be given. A furtner consideration of
problems related to proprietary services is ‘the ‘topic of
Cnapter 6, where the 1inherently difficulr proo]éms of
“sneaky signaling" are discussed and solutions are
presented, In particular we consider signaling of
information by misusing *ne error-handling &echanismts, by
tne absence of information (negative inference), and by
varying the computation time depending on some sensitive
information.

Chapter 7 is devoted to problems related +o a file
system. It outlines the idea of prograrmmar-defined dat*ta
types which may be used to enforce con*rolled access to
objects such as files.

Finally, Chapter 8 contains formal specifications of
all actors constituting the base language underlyina the
high-level language Id. 1+t describes formally all ac+ions
taken by these actors with respec* *o prorec+ion and 1is
intended as a guildeline for the implert=ntation of t+ne

protection system,



1. AN INTUITIVE MODEL FOR PROTECTION

Every system attempting to solve problems in
protection must first establish some framework and specify
the desired goals, in other words, ask the apparently
simple' question “wWhat should be protected, and against
what?" In order to keep the approach as general as possible

we can introduce the notions of subjects and objects, where

subjects are usually active entities concerned about +the
destiny of objects, and where objects may be various kinds
of software (or in some systems even hardware) entities,
including the subjects themselves. In most systems
subjects are processes whose concern is on the one hand to
maintain priva*te information, which implies making certain
opjects inaccessible to other subjects, and on the other
hand to access objects created or owned by other subjects.
Two major approaches to implement access control (both of
wnich differ considerably from the approach taken in this
tnesis) can be distingulshed in existing systems [SaSc75]:

The first category of systems is usually refered to as
access-list oriented and 1is characterized as having a
"gJuara" associated with each object to be protected. This
guarg nolds a list of users autnorized to access the object
wnicnh he uses to decide whether to honor or to reject a
particular request. The most common objects considered for
protection in access-list oriented systems are files (e.g.
MULTICS [0Org72)); only a few systems allow protection at a
lower level, e.g. records or words [ésisel, [Sto68],
[Hof71].

The second category of systems 1is refered to as
capability oriented. A capability is characterized as an
unforgeable key associated with the object to be protected,
which when presented can be taken as incontestable proof
that the presenter 1s authorized to have access to that
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object. A capability usually consists of the objec*t's naxe
and a set of rights (e.q. read or execute righ*rs)
specifying the operations tha* the holder of +he capabiliry
may legally perform on the object. Capabili*y oriented
systems, e.g. HYDRA [CoJe75], CAP [Newa77], usually perait
access control at an arbitrary level, i.e, an object ray
be any piece of data.

The protection system presented in this *+hesis was
designed with emphasis on its suitability for a da*aflow
machine, wnich differs from conventional systemns in several
fundamental respects. This 1s the major reason for the
departure from both the access-list oriented and capaoility
oriented systems. We will use an intuitive model] presented
in the sequel to demonstrate our point of view with resgect

to protection.

So far nothing has been said about the human user w-o
i1s actually the most important actor in the protection
game. If we classify some information using any of ‘*he
well known (and wusually not well defined) *erms such as
private, confidential, secret, restricted, etc., we alwavs
refer ¢o a human being (or to a group of human beings) who
should be prevented from discovering *+the con*en- of +hat*
information. This means literally storing *ha*t 1nforma*ion
in the ‘(human) memory using any of +he senses (visual,
acoustic, etc.). Information which 1is con*ained 11 a
sealed box that can never be opened may be In *he
possession of a ‘"spy" without compromising the imrosed
restrictions, since that information cannot be “"read®" by
the spy himself or any other person that could have sore
use tor 1its content. Similarly, in a computing facility 1t
1s not really tre process *hat aust oe prevented fron
1llegally accessing sensitive information, out rather *he
user runniny that process. A process possessing i1llegal

information that 1t can never outgut (make availaple to *the
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user) constitutes no danger with respect to protection. By
"user® in the above, we do not mean just the human user
hinself, but any device, e.3. a robot (possibly directly
connected to the machine), that could be employed to access
tne computing facility and tnat the facility cannot trust,
Most existing systems associate the user with his
(user) process, 1in otner words they don't distinguish
between the user located physically outside the machine and
the process witn which he communicates (via some interface
that prbvides the link between the process and some I/0
device, such as a terminal or a li e printer). Thus the
assumption is that every object accessible to the process
can always be made available to the user, i.e. output.
The conseguence is that the secrecy of an object must be
considered already compromised when it reaches the process'
domain, even without the possibility of reaching the
"ourside world”. Our system departs to a grea*t extent from
this point of view. Conceptually we separate the user from
his process and allow him to communicate with the process
only through a special interface capabl& of "filtering out"
illegal 1information. This 1interface will be the last
possible point tnat can prevent sensitive information from
leaving tne system. 1In tne sequel we will refer to it as
the Information Disclosure Interface (IDI). In any given
situation the 1IDI <could be located at any one of many
points along a line of communication between the process
and tne user as shown in Fig. 1.1. The collection of all
IDIs can be viewed as the boundary of the protection system
as will be discussed in the sequel and thus the placement

of IDIs mus*t be carefully considered.

In most systems the scope of the protection mechanisms
is defined only at the logical level, for example in terms
of subjects and their abilities and rights +o access
objec*ts. However, this logical model usually fails to
capture the physical features of the actual installation
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and does not specify which elements of the system would
compromise protection if (physically) replaced or modified.
For example a particular system may enforce all desired
control of user access to files as lony as +*he en*tire
installation, including all +erminals and communica*ion
lines, is physically guarded and protec*ted from
unauthorized modifications., A remote terminal connected *o
the system using public telephone lines would make +he
protection mechanisms wuseless if no safeguards, such as
encription of information, were provided to preven*
wiretapping and other physical intrusions. The above
example shows tha* the owner or main*ainer of such a systen
who wishes to perform any (even apparently trivial)
reconfigurations or modifications of the system 1is faced
with tne waifficult proolem of considering all possiule
consequences that could compromise protection.

In general, 1t is difficul* *o define the extent of a
protection system for tane act.., 1astallation. Consider
for example a sophisticated autonomous device such as a
robot, that has access to +tne system through some 1/0
device. If the robot could always be *rusted by *he sys+enx
not to violate any rules specifying +tnhe protection policies
then it could be considered as part of the svs*tem and
allowed to obtain secret information. If on *he o*her hand
the same robot were supplied oy *he user, and *hus coulsd
not be trusted, then clearly i+ has *o be prevented from
accessing any sensitive informat*ion.

In our system we use *he IDIs *o define the scope of
protection. IDIs are the only places that allow
communication with the systen from the outside. The
creator of the system places one IDI on every commanica*ion
channel that allows any flow of information be*ween the
systeﬁ and tne outside world. The craator has %o guarantee
(through pnysical and logical safeguards) thnat the secrecy
of all information in the systexn will pe preserved as long
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as it does not pass any of the IDIs. This implies that the
placement of each IDI must be carefully considered by the
creator. Consider the above example of a remote. terminal.
Logically the terminal itself could represent the IDI,
Decause no information is being disclosed before it appears
on tne screen visible to the user. This statement,
however, holas only under the assumption that the terminal
hardware ana all pnysical communication lines cannot be
tampered witn. well known techniques of wiretapping,
masquerading, radiation mesurements, etc.. make the above
assumption rather unrealistic and force us in practice to
place the IDI at a point closer to the system, so that it
can be physically guarded and prevented from unauthorized
modifications. (We will return to this problem in more
de*ail in a later chapter.)

The placement of an IDI on each communication channel
separates the user from his (user) process and thus implies
tha* information contained in or accessible to the user
process is not necessarily accessible to the user himself;
that information may be prevented from being output at the
larest possible moment, namely when it attempts to leave
the system via the corresponding 1IDI, The relationship
between the wusers and the system 1is depicted by the
intuitive model in Fig. 1.2. The circle symbolizes our
(pnysical) system, which for tne moment we assume is a
spnere containing pieces of information. Each piece of
information 1s called a letter and is represented by a
sguare. Each letter originates from some user. A user
stands outside the sphere and may communicate with the
contents of the sphere only tnrough one of the windows,
each of wnhich is of a differen* color as indicated by the
(acbreviated) names in parenthesis, e.g. r stands for red,
b for Dblue, etc. Each window represents an information
disclosure interface. A user may drop arbitrary letters
in*to the sphere through +the window he has been assigned to
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use. wWnile doing so he may seal a letter using a seal of
the same color as any of the windows (including his own).
For example user Ul may drop in an unsealed letter (blank
square in the diagram), a letter sealed with his own color
(square with r) or with a color associated with ano*her
window (square with a name o*her *han r). 1In addition *o
dropping letters into the sphere, each user may reach
inside and try to take out any let+er he desires. The rule
of the game is that +his attempt will succeed only if *he
particular letter either is unsealed or is sealed with *he
same color as the window through which the user is *rying
to take out that le*ter. 1In the latter case the seal will
be removed as the letter passes through the window. Only
in case of a match is the letter unsealred and allowed *o

pass.

The model described so far captures our point of view
with respect to input and output of infornation, based on
tne idea of separating the user froam his process.  In
addition it demonstrates how the basic issues in privacy
and (simple) inter-user communication are modeled in our

system as discussed in the following.

a) Every user is able to main*tain private informa*ion
inside the system by simply sealing i* using his own color,
i.e. the color associated with +the window assigned *o hiam.
According to the rules, informa*ion sealed in this way can

be retrieved only through the same window.

b) Every user may drop into *tne sphere a letter sealed
with a color associated with a window other than his own.
The consequence is that only the wuser standing at ‘*he
window with that particular color will be able *0 retrieve
the letter. That user may be considered +ne destinee of
the letter; thus the model includes +tne idea of secre-

(private) inter-user coqmmunication.
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¢} The third option is to drop an unsealed letter into
the sphere which implies that any user may take it out and

utilize it.

In all three cases we do not impose any restrictions
on . the contents of the letters; it could be a text
contaihing simply a message, it could also be some data or
a procedure definition.*

Even though the model presented so far is capable of
expressing several desirable features of a computing
systeam, 1t does not reflect its fundamental essence, namely
tnat information is not merely being stored and retrieved,
out is arbitrarily transformed within the system. If our
model 1is to pe useful it must be capable of expressing the
idea of information flow and its transformation. Thus we
have to state the rules under which the letters inside the
sphere may interact with each other and specify the
possible results of such interactions. We will pursue this
goal in the sequel and discuss the suitability of the
ex+*ended model *o describe and to solve problems that arise
in a general-purpose computing facility when attempting to
satisfy users' requirements for protection.

Fig. 1.3 snows an extension to the model presented
apove. The extensions comprise the following:

Tne inside of the sphere consists of pools (depicted
as circles 1n the diagram) capable of holding lettérs.
Each pool 1s of a different color as indicated by the
(abreviated) names 1in parentheses. Eve;y letter must be
1nside exactly one pool. Each pool is inhabited by a demon
capable of performing some of the following actions:

As will pe discussed later, procedure definitions in
daraflow are single entities carried by tokens that may be
passed between users.
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a) He may duplicate any letter contained in his own
pool, 1i,e. produce copies witn exactly tne same contents

and seals.

b) He may take any letter contained in his pool and
drop 1t into any other pool he knows. (For simplicity we
assume that every demon knows all ©200ls in *+he sphere.)
Pools are not covered with a lid which enables let*ers ‘o
be dropped in freely. Before drooping the lerter the demon
can seal it (in case it was unsealed®) with the color
corresponding to his pool. For «xample demon D2 can drop
the unsealed letter or the let+ter sealed with p contained
in his pool into any other pool. If desired, he may seal

the former with his own color vy.

C¢) He may ask a demon residing in another pool *o give
him -a letter from that pool. If the called demon agrees,
the calling demon may take the lerter 1nto  his pool. In
case the letter is sealed and *:e seal color matchas *na*
of tne pool of the calling demon, it may be wusealed. For
example D4 is able to rerrieve and unseal all letrers
sealed witn p, e.g. those in Dl's and D2's pools, as lony
as the corresponding demons 1in those pools ajree to let D4
retrieve the respective letters. Tnhus a* all times 1t 15
the called demon who has the authority +o decide whether to
give out the desired letter or *o deny the reguest,

* The implementation of *he model described in the nex*+
section will allow the demon *o ou* a sealed le**er in*o a
second envelove and seal i* with his own color in addition
to the first seal. This will enable him *o re*rieve the
same letter. This feature, however, 1s not essential to
the purpose of this section.
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d) He may "rewrap®” letters contained in his pool where
by "rewrap®" we mean take the contents (or parts of the
contents) of arbitrary letters and put them into a new
envelope subject to the following rules;

I. The contents taken from a sealed letter will cause
the new envelope %o be sealed with the same color.

II. Only *he contents of unsealed letters and letters
sealed with the same color may be intermixed by puting them
into one envelope.

F&t example demon D3 may combine the two letters
sealed with rTed 1nto one new let er which will also be
sealed with red; he may also add' any of the unsealed
letters whereoy tne resulting envelope will still be sealed
with red. Each window in the sphere is also implemented as
a pool capable of nolding letters. These letters are
accessible to the user standing outside the sphere. The
major distinction between a pool representing a window and
a pool inside the sphere is that a window pool may never
contain a le*ter sealed with any color. This is guaranteed
by the demon inhabiting a window pool. ’Such a demon will
accept a letter retrieved from another pool or dropped into
the window pool by another demon only if that letter was
either unsealed or sealed with the same color assoclated
with the window pool. 1In the latter case the seal will be
reroved. Thls guarantees that rhg user, able to access the
window pool, can obtain only unsealed letters, and hence no
sealed letter can ever arrive at the "outside world".

In the remainder of this section we will outline the
problem domain contained in the above model. We show that

many protection problems wnich in most conventional systems .

are consicered as belonging to rather independent problem
aomains and tnus are being attacked with different sets of
mechanisms, can be studied in a more abstract form and thus

comprise the same problem domain covered by our model.
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Consider the following situation: Two par*ties, calle
sender and receiver in the sequel, wish *o exchange soze

"~

information. The sender, who in our model can be a user ¢
a deamon, releases the information by eltner dropping i*
into another pool or by allowing another demon (or user) to
take 1t out of his pool. The released information xay
propagate through a number of pools oy ceing dropped 1inta
or taken out of those pools before i* finally reaches *ae
receiver, who is either a demon or a user. The sender does
not wish to restrict or prescribe *he rou*te *he releazesd
letter may travel before it arrives a+ ‘the receiver's cool.
His only concern 1is +to specify the way in which *the
destinee may utilize the letter, i.e. *0 res*rict +tha
operations he is able to perform on it. In addition *:ae
sender needs a quarantee that no other intermediate deron
can misuse any information contained in *the letrer. Wi*n
respect to the sender's and receiver's goals we can

distinguish several situa*tions: )

The sender is a user who wishes to send a simple *ex*
message to another user. This messagje may be private and
50 the sender wants to prevent it from being read by o*zer

users. In terms of conventional systems we are dealing

with problems in (confined) inter-process commdnicatior.
It can easily be seen how *nis situation is modeled by our
system: Suppose user Ul wishes to send a private message
to user U2, wWhile dropping the message in*o *he sphere he
seals it with the color associated wi*h U2's window
(w=white), who is thus the only user able *o unseal i*.
Note that we do not make any assumcrions abou* *the way *he
message will be delivered to U2, since w2 do no* intend ro
model .a particular system for inter-nrocess comrunica*ion.
Rather, the purpose of our model is to crovide a base for

protection, independent of the actions *aken by the dazons
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or users as long as they obey the posted rules. The demons
have complete freedom in routing the message to the
destinee, Of course, the sender has no means to-force the
demons to deliver the message correctly if they refuse to
perform this task or if they try to deliver it %o a wrong
des*inge (deliberately or by mistake). However, he is
always guaranteed tha* the private informa*ion contained in
the message can never be disclosed to any user other t+hen
uz. For example, say D2's function was to accept a letter
from Ul and hold it until U2 reaches for it. But say that
U2 was mischievous and wanted U3 to have a copy. D2 can
take tne letter ana propagate it into any other pool within
tne sphere. However, 1if Ul sealed the letter with the
color olue (b} associated with U2, then no window other
than tnat employed by U2 will accept the letter and allow

it to leave the sphere.

In tne apbove example we assumed that the letter sent
from one demon (or user) to another contained a message
destined for the receiver in the sense that the receiver
could unseal the letter and dispose freely of its contents
(e.g. the message could leave the sphere). Thus the
sender “+*ransferred all responsibility for any further
destiny of the letter *o the receiver by sealing it with
the receiver's color. If we change our poin+t of view and
assume that the sender does not war* to give up this
responsibility, but rather wishes to have control over the
contents of the letter even after he has released it, then
we are entering a new problem domain dealing with the
estaplishment of (proprietary) services. we model this

situation as follows: Assume demon D2 1is capable of
performing a certain operation on a latter dropped into his
pool., For example, he could rewrap the contents of that
letter and add new information to it taken from other

letters tnat were unsealed or sealed with the same color.

o
g
N
o
b
o

Suppose a demon Dl wishes to *take advantage of D2's abiliry
and employ him to perform the above service. However, *ne
letter D1 intends to send to D2 con*ains private
information and Dl needs some guarantee t*ha*t t*als
information will not be disclosed Yo any undesired oparty.
In case D1 does not *trust D2, Dl can seal *ne letter sen+
to Dz using tne color of his own pool window (3=green in
the diagram). After releasing the sealed letrer Dl Jdoes
not care which route it will travel within *he system. For
example, Dl could send it to D2 indirectly via soane other
pool 1inhabited by a demon serving as a “courier®,
Similarly, Dl does not prevent D2 from sending +the letter
to other demons, thus allowing the service *o employ other
services on its own behalf. Similar *o *he inter-process
communication situation discussed earlier, *he senpder has
no means to force D2 (or any other demons par*icipa*ing in
the service) to perform the desired tazk correctly,
However D1 is always sure that no informa*ion enrrusraed ro
the service can ever be misused, i.e. escape from “he
sphere.* For example, assume that the service D2 was
mischievous and wanted to disclose the nforsarion
contained in the entrusted letter to *he user U3. D2 can
drop the letter into any pool within *he spaere, nowever,
since tne letter 1s sealed with the color green (4)
associated witn D1, it can never leave the sphere witinout
returning first to D1, who is the only demon able *o unseal
it. Dl then can decide about the furtner destiny of +*he

The need to protect information sen* to a service is only
a part of the problem of establishing proprievary services,
Some other requirements are, for egancle, *he need +to
prevent the sender from finding ou* how ‘*he service
performs its *task or from interferring in *ne service's
work. We will discuss the probleas in de*ail in a larer
section.
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unsealed letter.

If we assume *that D2 in the above example does not
perform any operations on the letters dropped into his pool
but simply keeps them over a certain period of time and
returns them upon reguest to their owners, then we are
enrerfng a new problem domain dealing with the
establishment of logical (virtual) storage devices, such as
a logical) file system. 1In our system we implement such
devices' as pools governed by demons. Thus conceptually

they are no different from any other service discussed
earlier. Letters (containing "files") may be stored in a
pool and according to the color of their seals accessed
only by t*tne demons using the corresponding colors. From
tne avove 1t follows that in our simple model we can
provide files tha* are totally private, by seéling them
with some color, or totally public, by leaving them
unsealed. This is certainly not sufficient for a
general-purpose computing facility where sharing of
information and differentiated accesk to it is required.
However, we wish to emphasize that the model presented is
not intended ¢to capture all features of the protection
system as it will be developed in the subseguent chap*ers.
Rather ir should serve the reader as a tool for visualizing
the actions performed by the mechanisms introduced later
and rhus explain intuitively our point of view and the

basic approach with respect to protection.

The model can be considered as a core of our
protection mechanism which will incorporate several
additional features some of which we outline in the

following:

a) A demon can put a letter that is already sealed
into another envelope while sending it to another pool and
seal tne outer envelope with his own color. The number of
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envelopes stacked inside each other is (concep*tually)

unlimited.

b) Every demon or user will have a "personal”
unforgeable signature for signing letters. This will Dde
useful for example for safe inter-process communica*ion
where the identification of senders is necessery to preven*

masquerading.

Summary.

The protection system was designed to be particularly
suited for a dataflow machine, which at the logical level
is memoryless. Hence, our .basic approach, as opposed to
most other systems, does no* consider mechanisms *o control
access to objects residing in some fixed locations, rather
it attempts to con*rol *he fl;w of informa+tion between
subjects, thus suppor*ing the fundamental princinles upon
which dataflow systems are based.

We model our system as a collection of pools capable
of holding and exchanging information. It is completely
homogenous 1in tne sense tha*t all pools have *the same rignts
and apilities to perform all legal actions.

Control of information flow 1is distributed; each
request 1s validated dynamically at tne time of 1i*s
execution,

Performing 1/0 operations, employing a service,
storing information in a logical storage device, and
engaging in inter-process communica*rion are all
conceptually equivalent operations accowplished by passing

information (which may be protected) between pools.



2. ID AS THE BASIS FOR PROTECTION

This chapter is intended to give a brief in;roduction
to the fundamental principles of dataflow and to make the
reader familiar with the high-level dataflow language 1Id
(Irviné dataflow) together with the underlying computer
architecture developed at the University of california,
Irvine [ArGoPl78}. We will concentrate especially on
fearures relevan* to understanding the protection
mechanisms and their incorporation into the language and

machine architecture,

1. Principles of Dataflow.

In recent years LSI technology has made it possible to
manufacture powerful computing elements, e.g. mini and
microprocessors, at an extremely low cost. This has
motivated many attempts to build computing systems
consisting of large numpers of such elements.
Unfortunately, it proved very difficult to divide
computational processes into small subtasks which could be
carried out by independent processing elements cooperating
towards the common goal of completing the overall
computatrion. We believe that *he major reasons for failing
to solve the above problems are rooted in the fundamental
principles upon which most computing systems are based,
namely the von Neumann archi*ecture characterized by the
following *two precepts:

1. Sequential control of the computational

process (instruction and data streams)
2. The memory cell as a device available (in a
direct or 1indirect way) to the programmer.
Under the aoove constraints it is extremely difficult to
efficiently utilize a large number of (cooperating)

processors since sequential control inhibi*s asynchronous
behavior and the existence of memory pntenrially reguires
synchronization of access to each memory cell [ArGoPl77¢),
[ArGo77c}), [ArGoprl78}.

A dataflow language (e.g. Id) 13 based on *ne
principle of dividing every program in*o a larje numnoer of
small subtasks called activities which aay bLe executed
asyncinronously by independent oprocessing elerents (Pis).
To demonstrate how thnis 1is accomplisred coas:der <=he
following example:

Every Id program (which is a list of Id4 expressions)
such as that in Fig. 2.1 is compiled in*o a corresponding
program in the base language (Fig. 2.2) wnich is an ordered
graph consisting of actors (opera*ors) interconnected oy
lines that transport values (partial resul*#z) in +*he forxz
of tokens. A variable in an 14 program (e.g. a, b, ¢, X,
y, in Fig 2.1l) is not the name of a cell] w-aere *ne value of
that variable is stored, rather it ig *he nz-e of a line in
the corresponding compilation graph alon3 wxich *he value
will travel. For example the variacli=z a, b, and ¢ 1in

"
Tig. 2.2

c in

Fig. 2.1 represent the three lines a, b,
that carry the corresponding input values.

Every activity (operation) can po*rentizlly be execured
by an independent processing unit, Tne  axacution 1S

completely data-driven which means that ever, ac*ivity 1s

carried out when and only when all operaris needed by *nat
activity become available and arrive z+ +*ne processing
unit, The resulting output values are -2en cen*t to other
actors which expect those values as operaniz. For exanmple,
the multiply-actor in Fig. 2.2 will »nrocace *ae resul+ of
x*c and send it to the plus-actor af*er rzving received *he
operand x produced by the subtract-actor, zn3 *ne operand ¢
which was an input to the program.

The base language comprises several c.z:z:e3 of acrors,
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three of which we present in this section:

a) A function-actor performs some arithmetic, logical

or string operation on its input values. The actors in
Fig. 2.2 are examples of such actors.

b) A predicate-actor performs some boolean operation,
e.g. Equality, on its input values and it outputs the
corresponding value true or false.

c) A switch-actor is shown in Fig. 2.3, It accepts an
arbitrary value v and a boolean (control) wvalue c as
inputs. It outputs v on one of the arcs designated by T or
F, according to the value of c, i.e. the arc T if ¢ is

true and F if ¢ is false.

Fig. 2.5 shows the compilation of the expression of
Fig. 2.4, which involves both the predicate and switch
actors. It also shows how constant values are treated in
Id. A copy of the value x is sent to three actors: the
predica*te (“"greater then"), the switch, and the constaﬁt
function i, A constant function outputs the
corresponding value in response to any value received as
1nput. In the aoove example the value x will "trigger" the
function "1" to output the constant 1, which is then sent
to tne predicate  and the second switch. The
predicate-actor outputs a boolean value according to the
input values x and 1 and sends i* to both switches. 1In
case this value is true then both values x and 1 are sent
to the minus-actor, otherwise *o the plus-actor. The final
output represents the value of the expression evaluation,

The base Yanguage comprises several other actors
necessary *o operate on structures, streams, procedures,
etc., which will be introduced in later sections when

necessary.
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In addition to the asynchronous style of execu*ion, a
dataflow language (at the logical level) is memoryless.
All values are carried by *okens exchanged between
individual actors, where a value may be elementary (i.e. a
number or a text string), a structure, or a orocedure
definition, etc.. 1In the implementation, of course, Tenory
exists and is used to store values tha* are *oo large rto be
moved between actors efficiently; instead a pointer to the
stored value is carried by *the token. The existence of the

memory is completely transparent to the I3 programaer.

We can summarize the fundamental principles upon which
dataflow is based as follows:
1. Execution of all operations is asyncnronous
unless explicitly specified to be seguential,
i.e. a dataflow operation is carried ou* when and
only when all of its operands become available
2. All calculations are on values ra*her *han on
the locations where those values are kev*, +hus
a dataflow operation is purely func*ional and
produces no side-effec*s as a resul* of i*s
execution,
A language based on +the above principles coffers (among
other things) great advantages in descriping and
implementing the asynchronous behavior regiirai for many
complex systems (e.g. operating systeins). To achieva
asynchronous behavior in conventional languajes with
sequential control, asyncnrony must ol explici*rly
programmed and carefully considered. In da+aflow it 13 the
"default" bpehavior. Also, the apsence of memory cells
ensures that only simple control mecnanisms are nesded to
control access *o data since races to "z ore“ data will

never occur,
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2. Dpataflow Procedures and Monitors,

Consider the expression in Fig. 2.4. If the same
expression were implemented instead as a procedure
application, then the compilation graph in Fig. 2.5 would
be -replaced by tne apply schema at the extreme left in
Fig. 2.6. The apply primitive expects one 1input token
carrying a procedure definition value p and another value

carrying the argument value arg, and i* outputs the value

res which is the result of the procedure application. A

procedure definition is a constant value and it may be
created using the following syntax:

p <= proc (x) (if x>1 *then x-1 else x+l)
where x is the formal parameter, and the expression is the
procedure body. p is the name of the line along which the
+*oken carrying the procedure definition will trével. To
apply the above procedure to some argument arg p must be
supplied together with the value arg to a primitive apply.
The application is denoted as

res <~ apply(p,arg) . i

Tne primitive apply 1s implemented as two actors: A
(activate) and A~l (terminate) as shown in Fig. 2.6. The
A-actor accepts the procedure definition and creates an
instance of 1ts execution, which is the graph corresponding
to tne procedure definition. It then sends the argument
arg to +this instance. The result of the computation is
returned to A~l, and the instance (execution domain) is
automatically destroyed after execution. An important
implication is that procedures in Id are always memoryless.
This is because every apply operation 1in the system
receives its own copy of the procedure definition and the
created instance exists only during that particular
application.

The value supplied *o a procedure application as an
argument may be a single value; it may also be a list of
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values, e.g. <al,a2>. Similarly, *he value returned from
the procedure application and assigned *o a variable, (such
as res above), may be a single value or a lis* of wvalues,
e.g. <rl,r2,r3>, In Id a 1list 1s represented as a
structure consisting of unordered (selector:value) pairs,
as will be described in Chapter 3, section 5. In order to
extract values constituting a structure +he opera‘ion
*select" 1is provided. The statement s{i}, where s is a
structure, will return the value associated with the
selector i. Thus in order to apply a procedure p to a lisr
of arguments <al,a2> and to assign tne returned results
constituting the structure res to different variables, the
following statement must be performed:

res <~ apply(p,<al,a2>)

rl,r2,r3 <- resfl},res{2j,resi{3

A more convenient syntax which has the same meaning as

the above two statements was introduced in [ArGoPl78]:

rl,r2,r3 <~ p(al,a2) D
This shorthand notation will be wused throughou* ‘*his

thesis.

The concept of a dataflow moni*or [ArGoPl77] was
introduced in order to allow non-de*erminis*ic behavior in
dataflow. So far any computation could produce only
determinate results since the single assignmen* rule (which
is one of the basic principles in Id) xmakes i* 1mpossible
to cause race conditions when sending values *0 an actor.

An instance of a monitor is similar *o an instance of
a procedure, however, it is not crea*ed and destroyed for
only one invocation, but may be reused arbitrarily during
its 1life span by sending to it argjuaents, which will be
processed in a first-in first-out order. The 1information
about each request may be recorded. Tnus tne processing of
a particular reguest may depend on tne history of oprevious

inputs sent to that monitor*., This infroduces the effect
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of an internal "memory" of a monitor. A monitor instance
is depicted in Fig. 2.7. ‘ )

Tne entry-actor receives all requests to that monitor
and forms a stream of tokens (according to the FIFO
discipline) which it directs ¢to the monitor's body

constiruted ny the code to be executed.

Tne value named the internal state in Fig. 2.7 is a '

data structure which circulates inside the monitor. It is
supplied to the monitor body with each new request from the
stream, This internal state may be recomputed inside the
monitor's body for each successive input and the new state
is supplied to the next iteration (request), Thus the
effect of an internal "memory" is achieved. The stream of
results is sent to the exit-actor which distributes them to
the corresponding callers.

Every monitor instance is created explicitly according
to a monitor definition which (similar to a procedure
éefinition) is a single value carried by a token. It *is
supplied to a primitive create which creates the
corresgonding monitor instance. The Id syntax for the
apove is the following:

m <- create(mon_def, init_int_state)
where .mon_def is the monitor definition and init_int_state
1s tne 1initial internal state (memory) of the created
monitor instance. Tne value (m) returned from the create
primitive 1is a pointer to the created monitor. Any user
possessing m may use the monitor by calling

res <~ use(m,arg) .
The compilation of this statement is the graph in Fig. 2.8.
The U-actor (similar to the A-actor in a procedure call)
sends the argument (arg) to the monitor's execution domain
indicated by m. The result is returned to the U-l-jzctor

In the sequel we will use the terms "monitor" and
"monitor instance" as synonyms.
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and assigned to the variable res as specified in the above
instance.
As was the case with procedures, the values arg ang

res may be single values or lists of values, We use a
similar syntax for calling a monitor to that+ for applying a
procedure. The following statements

r <- use(m,<al,a2>);

r1,r2,r3 <- r(1},ri2},r(3]
will send the structure consisting of the two values al and
a2 to m as arguments, The structure r returned from the
monitor's “use" consists of the three resul*s rl, r2, and

r3.

Tne following two situations characterize the major

distinction petween a procedure and a monitor call.

Fig. 2.9 is the compilation of the block expression
(resl <- pf(arg)
res2 <- pfarg)
return resl, res2)

where p is a procedure (definition).
Fig. 2.18 is the compilation of the block expression

(resl <- use(m,arg)
res2 <- use{(m,arg)
return resl, res2)

where m 1s a monitor (i.e. a pointer to its execut*tion

domain) .
In the first case two distinct instances of execu%ion

of the procedure p compute the values resl and res?2
respectively. However, botn instances are identical and
thus for the same arguments (arg) the same results

(resl = res2) will pe produced,
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In the case of a monitor, on the other hand, the two
identical argument values (arg) are sent to the same
instance (monitor) which may produce different results for
each invocation. Thus in the second case the values resl

and res2 may be distinct.

.

3. An QOperating System for Dataflow.

The overall objective of the dataflow project 1is to -

develop a sharable general-purpose computing facility.
Eventhough such a facility differs from conventional
systems Decause it 1s based on the.principles of dataflow,
it has to satisfy many of the same requirements imposed on
conventional machines, e.g. it should be both efficient
and convenient to use and it must account for' security
(which 1itself comprises several issues such as privacy,
integrity, and availability of data and services). From
the acove it follows that we are entering the problem
domain of operating systems. There is qo widely accepted
precise definition of the term "operating system", however
i* is usually characterized as "an organized collection of
programs ¢that act as an interface between machine hardware
and users, providing users witn a set of facilities to
si1aplify the design, coding, debugging, and maintenance of
proyrams, and, at the same time, controlling the management
of resources to assure efficient operation" [Sho74]. Thus
an operatiny system 1is an abstract machine which is
"niding* a lower-level basic machine {e.g. the hardware),
providing a collection of high-level primitives. The major
areas 1in which "information hiding" is usually performed
are:

1. Memory management

2. Processor management

3. Device management

4. Data management

The language Id, which we intend to use for writing an
operating system for a dataflow machine, already
incorporates several features necessary for such a project,
as will be discussed in the sequel. An importan® criterion
for a languagelto be suitable for implemen*ing an opera*ing
system is its ability to express and enforce a variety of
protection policies. The solution of +his problem is the
major objective of this thesis.

In the remainder of this section we will study *the
above four areas of abstractions in operating systexs in

more detail and discuss their relation to dataflow.

In our dataflow system memory and processor managjexent

(task 1 ‘and 2 above) are embodied iIn the language
implementation itself and thus are already "“hidden" from

the programuer at the language level:
*tlow language, at the

1. As mentioned earlier a du
logical level, is memoryless, i.e. the progranmer
does not think in terms of storing and retrieving
information. Ratner he +hinks in terms of
evaluating expressions and passing values (carried
by tokens) between operators [ArGoP178].

2., Suitable policies for allocation of PE's are
currently under investigation by the Da%*aflow
Architecture Group. There are several oo*ions,
however, mos* decisions about assigning PE's to
activities will be incorporated 1into low-level
architecture and +thus be invisible to +he

programmer [ArGo77b].

From the above it follows that *he necessary
abstractions 1in the two major areas of processor and memory
management are already availaple, 1i.e. incorporated into

the language and architecture iaplementation, and thus no
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additional scheduling mechanisms (at the operating system
level) have to be provided.

Problems in device management (task 3 above) are

really no different from those in conventional systems.
The reason is that no significant changes were proposed for
the cbnfiguration of 1/0 and storage devices for dataflow,
as opposed to the remaining architecture, i.e. processors,
communication system and memory. ‘Thus the problems in
snaring and scheduling of a fixed number of hardware
devices still persists and have to be solved at the
operating system level, i.e. routines in Id have to be
devised to solve the above problems. A large variety of
proposed solutions and results 1is available in the
literature [Sho74], [MaDo74}, etc..

Previously, one of the major objections against
dataflow was that it cannot handle problems in general
resource management since all results are determinate and
thus no competition for a given resource can occur. We
wish to emphasize tha* this problem has been solved in our
system [ArGoP177] using the monitor concept described
earlier. A monitor can be considered as .the manager of a
particular resource, be it software or hardware, which is
capable of accepting and ordering non-deterministically
arriving requests according to the FIFO discipline. We
shall study tne problems of resource sharing 1in dataflow
and tneir implications for protection using an example, the

readers/writers problem, in a later chapter.

Data manajement (task 4 apove) is an area reguiring
careful consideration due to the fundamental differencies
between conven*ional and dataflow systems:

Data management comprises several different classes of
problems, mos* of which are related to sharing and exchange
of information among distinct users (processes). It

involves the need to maintain private information, to grant*
access to certain collections of data or procedures with
possibly different rights (such as read or execute only),
to revoke or ‘“freeze" such rights, to preven* ‘their
propagation, to send messages and other data packages
between processes, and other classes of related problens in
accounting, authentication of users, etc..

The keyword underlying all of the above problems is
protection, hence our orimary objecrive is ‘o provide
mechanisms which will serve the ovrograamer (or the systems
designer) as a tool for enforcing con*rolled sharing and
exchange of information necessary for the implemantation of
desired protection policies. Following *the design of the
HYDRA Operating System we emphasize *the distinction between
the notions “policy"” and “mechanism” [LCCPW75]. It 1is
almost impossible to predict all possible applications of a
general-purpose computing machine and nence to 1mpleaent
all possible protection policies. Rather mechanisns tha*
are powerful enough to allow the implemenration of a laryge
variety of policies (at a later stage of the design) need
to be provided.

In existing systems protection wmechanisms are oeing
implemented at various levels of the design, For example,
hardware facilities may be provided *+o dJarect 1illeaal

1 .andary registers,

references to memory addresses Ly
or to prevent unauthorized use of pr:.:}-j=d instructions;
at the operating system level various checks may be
performed to validate users' reguests +o objec*ts, e.qg. by
examining access control lists (MULTICS [org 72}, [Sal
74]), or by requiring capabilities for *those objects (HYDRA
[Code?5]), CAP {Newa77], etc.). Additional harcdware
facilities may be necessary or useful *o support the avove
software mechanisms.

Our approach 1instead 1s to 1implement . tne model

described in the previous chapter and to incorporate i%
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into the dataflow system in the following way:

The Id programmer will be provided with
high-level-language primitives to exercise control
over the flow of information, e.g. to impose
restrictions limiting the wutilization of objects by

dther users.

Checks necessary to detect actions attempting to
violate the imposed restrictions are not programmed by
the user of Id, but rather are incorporated into the
language implementation, They are performed
automatically by the base language actors. For
example no programs (in I1d) have to be written to
detect that a user is trying to output data he is not
authorized to wutilize, rather the actor assigned to
retrieve that data will refuse to perform this task.

These are the mechanisms. Any system, e.g. +an
operating- system, written in 1Id, can then use these
mechanisms and implement protection policies desired for

that particular system.

The above goals are the subject of the following
chap*ter which presents the basic protection mechanism.

4. Summary.

In tnis chapter we introduced ;he fundamental
principles of dataflow: data-driven control of execution,
and the absence of memory cells. We also presented several
pasic features of the high-level language Id and outlined
now it is compiled into the base language, which is
suitable for execution on a machine consisting of a large
numoer of processing elements. We presented only a small
subset of 1Id, however we wish to emphasize, that Id is a
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complete programming language incorporating all of tne
usual programmning concepts, as well as some new concepts
usually not found in contemporary languages (for example
streams, functionals, and non-deterministic programming} .
Wwe believe that Id is suitable and powerful enough for
writing an operating system for a da*aflow machine (which
differs from operating systems for conventional machines in
many respects), This thesis shows how mechanisms to allow
the enforcement of protection policies can be incorporated
into Id and the underlying machine architecture.



3. PROTECTION MECHANISMS.

Our goal is to implement protection mechanisms based
on the model presented in the first chapter. That means we
have to specify how components of the model, (the sphere,
demons, letters, etc.), and the operationé performed by the
demons and tne users, (sealing, wunsealing, rewrapping of
letters), will be realized in our system.

First we show how simple processing and passing of
sealed and unsealed letters among pools is implemented.
Later we consider the sphere itself.which incorporates the
windows that are the interfaces to the outside world.
This, we believe, is an important departure from approaches
in conventional systems. In the remaining sections we then
introduce several extensions to the basic mechanism to
allow more flexibili*ty and power in implementing and

enforcing pro*tection policies.

. .. .
1. simple Exchange and Processing of Information.

In the first chapter we gave the description of pools
inpabited oy demons and we stated the rules that all demons
have to obey when manipulating letters. The concept of a
(dataflow) monitor introduced ip the second chapter is
capable of satisfying all of the necessary requirements and
hence we 1mplement each pool together with the
corresponding demon as an instance of a monitor. Letters,
on the otner hand, may be any kind of dataflow values
carried by tokens, (simple values, structures, procedure

definitions, etc.).* The four actions a demon may take with

values, as synonyms.
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respect to a letter as described in chap*ter 1, are
implemented in the following way:

Rule a: A demon may create duplicates of any letrer

in his pool.

Implementation: This property is on~ of +*he general
principles of dataflow. Every value required by more then
one actor as inpu* is automatically duplica*ted and each
copy 1s sent to the corresponding actor. For exanple the
expression in Fig. 3.1 will compile in*o +*he graoh snown in
Fig. 3.2 containing the *two forks which duplicate the
values of x and y required by both the plus and the minus
actor. In the same way arbitrary copies of values may be
produced inside a monitor's body, which 1is a regular 1Id

program representing the demon,

Rule b: A demon may drop a letter contained 1in his
pool into any other pool., Beforg coing so he nay seal 1t
with the color associated with his pool.

Rule c: A demon may retrieve a letter from another
pool and he may unseal it if the color of the seal nat*ches

the color associated with his pool,

Implementation: The above two rules b and ¢ are
closely related 1in the sense that the acrions of sending
and retrieving information to and from 2 mTonitor are bo*h
accomplished by the same mechanism in daraflow, namely by
calling that monitor. Consider Fig. 3.3 wnich depic*s ‘*he
information flow 1in +he <case of a monitor ml calling
another monitor m2, i.e.:
response <- use(m2,request)

This general scheme always implies a flow of information in
both +directions between ml and m2. Wwne+rher we consider a
particular call as sending of informa*ion, receiving of

information, or both, depends on tae conteats of the
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request and response values, In general it is difficult
{and in our system not necessary) to determine whether the
request 1is carrying more information than the raesponse or
vice versa, however some intuitive insight may be provided.
Consider the following example. Assume that m2 in Fig. 3.3
1s functioning as a buffer. It is capable of maintaining a
FIFO gQqueue consisting of arbitrary values and it
“understands" tne two commands "put“ and “get" as follows.
The call

ok <=~ use(m2,<"put", v>)
will sena the two arguments "put" and v to m2, which then
appends v to the tail of the FIFO queue. The value
returned from m2 is simply an acknowledgment and is
assigned to the name ok. -

To obtain the head of the queue, i.e. the element
currently first, ml uses the call:

v <~ use(m2,"get")

In both calls the only "relevant"” information
exchanged between ml and m2 is the value v to be stored or
retrieved, since the values "put" and "get" are merely
conventions for wusing m2 and thus remain unchanged for
every call, " In the first case only  the request arc
transports *the value v which 1is then left inside m2,
whereas in the second case it is only the response arc that
transports the value v retrieved from m2. In general it is
not possiole to aistinguish unambiguously between sending
and retrieving of information since every call involves the
flow of some information in both directions, however, we
will use the two notions with the following intuitive
interpretations:

Tne monitor ml will consider a particular call as
sending of  information to m2 if the value sent to m2
contains "relevant" information that the user may wish to
protec* since it could be stored in m2's internal memory

Paj~ %
and later retrieved. In the above example the call using
"put" transports information contained in the value v to
m2; the response value on the other hand 1is simply an
acknowledgement. Hence, ' the above call is considered as
sending of information.

The monitor ml will consider a particular call as
retrieving of information from m2 if *he value returning
from m2 contains "relevant" and thus possibly protec*ed
information. The call wusing “get" in the above examdle
returns a previously stored value v and is thus considered
as retrieving information. Of course, borh of the above
cases may take place at the same time, i.e. ‘during one

call.

We now consider how sealing and unsealing of sen+ and
retrieved values takes place in its simpliest form., Rule b
above requires that a monitor be able to seal a wvalue
before sending it to another monitor, He does su by
attaching to it an unforgeable key which cannot be detached
by the receiver or any other monitor no*t possessing the
same key. Assume for the moment that for every monitor in
the system there exists a unigue key known only *o tnar
monitor. This key k may be attached to a value v usinj *the
following syntax

v' <- v{+k}
The corresponding primitive to carry out this operation i3
shown in Fig. 3.4. (The meaning of the extension “sufx" in
the name of the actor will be explained in sec*ion 4).

To detach a key k from a value (e.q. v') the
following syntax is used

v" <= v'{-k}

The corresponding primitive shown in Fig. 3.5 will
fail if the key carried by the value v' does no* ma*ch *he
supplied key k; otnerwis=a k will be detached.  The curly
brackets wused in Fig. 3.4 and all subsequent fiqures
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contain the key being carried by the corresponding value.

Remark: Note *hat the curly brackets used as part of
the 1Id syntax have a different meaning from those in
the figures. 1In Id all variables are names of lines
in a graph, The curly bracke*s attached +o the name
of a line indicate that the key enclosed in these
brackets will be carried by *he value traveling along
the named line., On the other hand, the meaning of,
for example, v{+k] as in the above expression, is to
perform tne action of attaching {indicated by the plus
sign) a key to a value.

The above primitives may be used to seal and unseal
values sent to or retrieved from a monitor as follows:

Sending Information: A monitor ml may attach a key k
to a value x when sending it to a monitor m2 using the

following Id syntax:
X' <~ use(m2,x{+k})

This is equivalent to writing
y <= x{+k};
x' <- use(m2,y)

x' 1s the value returned from m2 in response to the
received value x. The éorresponding compilation is shown
in Fig. 3.6. The returned value x'{k}, which for example
could be an acknowledgement, is sea]ed with the same key k.
This is due to the fact that (as will be discussed later),
no unsealed result can ever be produced by a computation
involving a sealed value. Hence the . acknowledgement
produced by m2 in response to the sealed value x{k} will
also be sealed.

The avove situation describes the case where ml is
sending some sensitive information to m2 which ml wishes to
protect. For example the call to "put" a value v into the
FIFO buffer discussed earlier could have the form

ok <- use(m2,<"put",v>{+k})

Note that the wvalue sent to the monitor is nc*t an
elementary value but a structure consisting of *he two
values "put" and v. As will bpe shown 1in section 7, a
structure may be sealed in the same way as an elemen*ary
value, namely by attaching to it a key which *hen protects
all values constituting that structure.

The corresponding information flow is the same as 1in
Fig. 3.6, whereby x represents the structure <"put",v> and
x' stands for the response (the acknowledgmen*) ok. Tne
value v will be stored in m2 with the key k a*tached *o i*.
This will prevent v from being output wi*hou*t au*thoriza*ion

as will be discussed in section 3.

Retrieving Information: 1In case ml is re*rieving a
value from m2, the token sent to m2, which is *he regues* x
in Fig. 3.7, does not carry any sensitive informa*ion and
hence ml may not wish to attach a key *o it. The returninj

value x' on the other hand is sealed witn the key k because
it contains sensitive information returneé from I2's
internal memory. In case m2 is in possession of the key Kk,
it may detach it from the retrieved value x', i.e.

x' <~ use(m2,x){-k}
whicn is equivalent to writing

Yy <- use(m2,x};

x' <= y{-k}
In case the supplied key does not match the key carried by
the» incomming value x', the detach-sufx actor will output
an error token indicating protection violation instead of
the value x'. The correspnding informa*icn flow is shown
in Fig. 3.7. For example in *he case of *he FIFO buffer
only ml possessing the key k 1is able +o perfora
successfully the call

v <- use(m2,"get") {-k}
to retrieve and unseal the value v.
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As mentioned before, sending and retrieving of
information can take place during the same call, thus for
example the expression

%' <~ use(m2,x{+k}) {-k}
will attach k to the value x sent to m2 and it will detach
k from +the returning value x'. Since-this situation is
very common, we introduce a more convenien* syntax:

x' <- use(m2,x)key k
This expression has the same effect as the above.

The analogy of the above mechaniems with our intuitive
model from chapter 1 is tne following:

The demon, which is the actual code of ml, may send
any value contained in ml to any other monitor and it may
seal 1t py attaching to it a key wnich represents the color
associatea with the pool. To retrieve the same ietter, ml
has to request it from m2 and try to detach the key carried
by that letter. The detachment will be successful only if
the key carried by the letter ma*ches the key supplied by
ml. }

Rule d: A demon may "rewrap® letters contained in his

pool.

Implementation: As mentioned before, the body of a
monitor is an Id program which in its compiled form is a
graph consisting of actors interconnected by lines. A
value ﬁent to the monitor propagates through the graph such
that each actor to which the value is sent absorbs the
value  while producing a new output value, and sends this
new od%&up value to the input of other actors, Thus by
“rewrapping” letters we mean performing some computation on
values representing letters and oroducing a result which is
tne new letter. For example two numeric values x and y may
be sent to an actor which performs sonme arithmetic
operation on these values. An actor that performs an

Sagze 39

addition of x and y and outputs the resul*ing value 2z is
shown in Fig. 3.8.

In order to prevent leaking of information we have *o
guarantee that, no matter what computation (1nvolving
possibly many actors) is performed on a se* of values, the
result always satisfies the following conditions:

a) The result is unsealed only :f all wvalces
taking part in that computation are unsealed,

b) In case one value is sealed and all others are
either unsealed or are sealed with the zare key, then
the result will also be sealed with that* key,

¢) In all other cases the result is an error

token indicating protection violation.

The above conditions will be sa*isfied in any graoh if
every individual actor constituting that graph will sarisfy
the same conditions a, b, and ¢. 1In other words an ac*or
may never disregard or "throw away: any of +he keys carriagd
by the incomming values. The oinly exceprions are *he
attach and detach actors described earlier *ha* are subjec*
to different rules, The behavior of all other actors such
as U, U‘l, functions, predicates, and switches .in *ne
simple case studied in this section is the following:

a) If one of the incoming values is sealed, 1i.,e,.
key k 1s attached to it, then tae resulting value z will
carry the same key k (Fig. 3.9).

b} In case botn values x and y are sealed with *he
same key k, then the result will be sealed wi*h tne sanme
key k (Fig. 3.18).

c) In case the keys carried by x and y are different,
then the actor will produce an error *oxen indicating

protection violation (Fig. 3.11).
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These rules guarantee that if a value is produced by a
computation involving sealed values, and thus potentially
contains sensitive information from these values,.then the
resulting value 'wi]l also be sealed, and thus unusable to

anyone not possessing the same key.

2. Keys.

Conceptually any value could be used as a key and
attached to another value which is to be protected.
However, a requirement stated earlier 1is that every key
must DbDe unforgeable. Different approaches could be taken
to attack this problem.

If we allow a key to be any value, e.g. a number or a
string of characters, then any monitor holding a confined
value v may try to guess the value of the key carried by v
and to detach it. The only way to discourage monitors from
such attempts is to make all keys sufficiently large to
make a successful guess not worth the required effort,
This, however, creates a severe conflict between the size
of a key and the efficiency of the protection mechanism.
To test all possible numbers in the order. of millions using
a trial-and-error approach is certainly not an intractable
task for a computing system; on the other hand a value (as
will be shown later) can carry a protection field
consisting of a large number of concatenated keys and hence
their length will influence the overhead in computation,
storage, and communication to a great extent. Another more
realistic approach, which we chose for our system, is to
declare keys as a special datatype called key with the
following restrictions:

a) The creation of every new key is performed only by
a trusted routine, e.3g. a monitor, which may be called by
any other ponitor and requested to supply a new key. No

monitor other than the above key gensra*or nmoni*or is anle
to create a value of type key.

b) The value of a key can never be modified by any
computation.

c) The attach and detach actors perform the attachment
and detachment of a value only 1f it 1s of type xey,

otherwise an error will occur.

Under the above assumptions it 1s 1r}elevant now
aifficult 1t 1is to guess the value of a key, since it can
never be reproduced without having the original xey. Thus
the key generator could simply produce keys with the
integer wvalues 1, 2, ... ,n. The maximum key lenag*th
depends only on the number of keys tha*t need o be provided
for the operation of the system; if the leng+th of the key
value is represented by n bits then 20 possible keys may be

generated.

In order to satisfy the above condi*ion b, we have ¢o
guarantee that no actor will ever nodify *he value of a
key. The only actor that may poten*ially modify the values
of its inputs (without changing their *ype) 1s *he funcrion
actor. Thus we reguire that wevery funcrion actor will
ocutput an error token indicating prorectinon viola*ion in
case any of the input values 1s of type xay.

Except for the above restrictions, key:z are treated
like any other value, for example a key kl inay be sent to
another monitor and it may also be confined oy attaching to

it another key k2, as shown in Fig. 3.12.

(Remark: It would be possible to define a variery of
predicates operating on keys, e.g. the eguali*y. This has
not been done in this thesis since +he <cholce of such
predicates will depend on the intended use of the system.
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3. Implementation of Input/OQutput.

In conventional systems, a process possessing some
information may output it by passing it to the outside
world through some communication channel, e.g. by sending
it to some 1/0 device (terminal), as shown in Fig. 3.13.
Basicaily it is the process which decides whether the
particular information will be output, (i.e. reaches the
outside world), since no further station exists along the

communication line to validate the legality of the output

operation.

In our system we separate the process performing the
I/0 operation from the terminal by creating the sphere
described in Chapter 1 such that all processes are on the
inside and all terminals are on the outside of that sphere.
Thus the only way for processes to input or output any
information 1is by communicating through one of the windows
in the spnere's wall, which is the last possible place 'to
prevent sensitive information from leaving the system
(Fig. 3.14).

The window itself is conceptually a dataflow monitor
which allows the communication between the terminal and the
process performing an I/0 operation, where under an 1/0
operation we understand the transfer of any value from the
process to the terminal. There are two possible ways to
implement such a window as shown in Fig. 3.15 and
Fig. 3.16.

Fig. 3.15 shows a window which retrieves values to be
output by calling the process. For example, the terminal
could be a CRT sending commands and other data to the
process (via the window), The values returned from the
process are the responses sent to the terminal. Every such
value v has to pass through a detach-sufx actor which
attempts to detach the key k associated with the particular
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window. In case the value v is no* sealed i+ may pass and
it is sent to the terminal. In case it is sealed with the
same key k associated with the window, i* becomes unsealed
while passing through the detach-sufx actor and is sen*
also to the terminal as in the previous case. In +the tnird
case, namely when the returning value is sealed wi*h a xey
other than k, the detach-sufx actoar will output a
protection violation token which it sends to *the terminal
instead of the actual value returned.

Fig. 3.16 snows a window to wnich the process
perforaing I/0 sends the values to be output by calling the
monitor representing that window. For example, the
terminal could be a line printer and the da*a sent to the
window could be the data to be printed. The firse
operation performed on every value received by the window
is the same detach-sufx operation as described for the
previous case. The resulting value is *hen sen* to *he
terminal. Thus in case output of a value protected with a
key other than k was attempted, a protec*ion violation will
be sent to the terminal instead of the ac*ual value.

The analogy with +*he model from Chapter 1 is as
follows: A value may be sent *to or re*rieved by the pool
representing a window in the sphere only if *tha+t wvalue 1s
unsealed or if it is sealed with the sate color associa*red
with that window, in which case tne value ocecomes unsealed.
Thus only unsealed values may ever be present inside any of
the windows in the sphere.

We wish to emphasize that every I/0 cpera*ion in tne
system is handled in the way descripced aoove. NO
information to be output is ever sent *c any I/0 davice
directly, rather it must pass through one of the windows.
Only if the check performed by the derach-sufx actor is
successful may the information leave *Le sphere and thus
reach the outside world, e.g. be display=Z on 2 screen,
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printed, or stored on any other media. The sphere
representing tne system does not take any responsibility
for information after it leaves through one of the windows.
Thus each window represents an information disclosure
interface (IDI) discussed in Chapter 2, which is the point
along 3 communication line beyond which the system cannot
guarantee the secrecy of information. Consider the

following example:

A monitor m wishes to output some information on a

line piintet P (Fig. 3.17). It does so by sending it to
the window w to which the actual (harcuare) printer P is
connected, The window 1is the information disclosure
interface, which means that the system will guarantee the
secrecy of all information as long as it does not pass the
detach-sufx actor of that window. Thus the windows mark
the actual boundary of the protection system. This implies
for the physical installation tnat every component of the
system (including communication lines) has to be
(physically) guarded and prevented from unauthorized
modifications if it is inside the sphere, 1.e. connected
(directly or via another component) to the "inside" of any
of the windows. In the above example these components
comprise all lines between m and w, and the monitors m and
w tnemselves. After the information passes the window, the
system does not take any resposibility for its further
destiny; anyone having access to the particular window can
obtain that information. Hence, from this moment on it is
the responsibility of the owner or maintainer of the system
to decide what device may be connected to what window, and
who should have access to it. Controlled access to a
device can be enforced in various ways: through physical
safeguards (locking the device or the room in which the
device is located, personal identification of users, etc.),
or rnrough logical safeguards (user identification through

passwords, etc.).

4. Protection Fields.

So far we have presented a simplified mechanism *o
seal and unseal letters allowing only +wo options: a
letter could pbe either sealed or unsealed. we now orovide
an extension to the above which, descrined in terms of our
intuitive model, will allow a sealed le**er *o be pu* in*o
a second envelope and sealed in addition *o *he firs* seal.
This process of stacking envelopes may be repea+ed
conceptually an unlimited number of tises. We imolemant
this feature by allowing multiple keys to be concatenated
to form a sequence of keys, called the protection field,
which can pe attached to a value to be confined (sealed).
Consider the following situation: A monitor ml is sending
a value v to another monitoer w2 and while doing so 1t
confines v by attaching to it a key kl and it detaches *he
same key kl from the returning result v', as shown in
Fig. 3.18. The syntax for this cahl is

v' <- use(m2,v{+kl}){-k1}

m2 wishes to send the value v to a third monitor m3. while
sending it, m2 may attach to it a new key k2 (associa*ed
with m2) in addition to the first key k1. The Id syn*ax
for this call is the same as for sending 2n unsealed value,

i.e.:
v' <= use(m3,v{+k2}){-k2}

k2 is attached as a suffix to the protection field already
carried by v, which in our example consists of only one key
kl. m3 may perform any operations on ¢ne received value
v{kl.k2}, producing some result v'{kl.k2;, which (as will
be shown later) will carry the same protection field as
vi{kl.k2}. This value v'{kl.k2} 1is then returned to tne
monitor m2, which detaches from it the Key k2. The result
of tnis operation is returned to ml, whicn de®aches the key
kl, yielding the value v' in its unconfined form.
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The basic reason for the above approach is that ml
does not want to prevent m2 from propagating the value v to
other monitors. For example, m2 could be a service
employed by ml. m2 should not be prevented from employing
yet other services (m3) on its own behalf.

" In tne general case, a value v may propagate through
an arbitrary chain of monitor calls acquiring a new key
possibly at each point in the chain. The consequence is
that v and any value v' derived from v can return to the
first monitor only by following the same calling sequence
in reverse order, since the keys must be detached in the
reverse order of their attachment, i.e. the key attached
last mus* be detached first, etc.

Of course, not every monitor along the chain will have
the need to attach i*s own key to the value and thus to
protect it in addition to the protection field already
carried by the value. For example, a value v propagating
through the monitors ml, m2, m3, m4, m5 could have the
protection field {kl.k2.k4} upon arrival at m5. 1In order
to return to ml unprotected, v has to pass at least through
the monitors m4, m2, and ml, which can remove the

corresponding keys k4, k2, and k1.

From the aoove it follows that the attach-sufx and
detach-sufx actors operate on values with arbitrarily long
protection fields. The 1Id syntax for attaching and
detaching keys with the corresponding translations is as
follows:

The statment

v' <= v{+kx}
will attach the key kx as a suffix to the (possibly empty)
protecrion field carried by v. The corresponding primitive
to carry out this operation is shown in Fig. 3.19.
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The statement
v' <= v{-kx}
will detach the last key (suffix) from the pro*tection field
carried by v in case it matches the key kx, otherwise a
protection violation output results, A successful

detachment is shown in Fig. 3.20

In order to provide a more flexible mechanism for the
manipulation of protection fields we provide the following
additional primitives:

The statement

v' <~ {+kx}v
will attach tne key kx as a prefix to the protection field
carried by v (Fig. 3.21). .

Similarly the statement
v' <= {-kx}v
will perform the detachment of the first key (prefix) of
the protection field (Fig. 3.22).

The intuitive meaning of attaching and detaching a key
as a prefix can be explained as follows: As a value
propagates through a sequence of monitors it accumula*es a
number of keys, the first (left-most} of which is the key
associated with the first monitor tha* sent the value. To
this monitor the value must return las*. By at*aching a
key as a prefix to the existing field we “artificially"
extend the sequence of monitors through which the value
lust return. Now the monitor with which the prefixed key
1s associated will be the one to which the value must
return last. The situation is now as if the new (prefixed)
monitor was the original sender of tne value. An impor*tant

use of this feature will be shown in chapters 4 and 5.
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We 'now have to consider the actions taken by
individual actors with respect to a protection field. We
will say a value vl has a stronger protection field than a
value v2, (which 1is equivalent to saying that v2 has a
weaker protection field than vl), if the protection field
kk2 carried by v2 1is a proper suffix of the protection
field kkl carried by vl. Formally: there exists a
protection field xx such that

kkl = xx.kk2
and xx is not empty. 1In case XX is empty the protection
fields are said to be equal. For example vl{kl.k2.k3.k4}
has a stronger protection then v2{k3.k4}. In all other
cases the protection fields are incomparable.

The exact functions used by individual actors to
compute the new protection fields for their output values
are given in detail in Chapter 8. For the purpose of this
Chapter we assume that the actors function, predicate and
switch use the same function denoted by & (ampersand) and
defined as follows:
kkl & kk2 =

(if kkl is stronger than or equal to kk2 then kkl,

1f kkl is weaker than kk2 then kk2,

otherwise error)
where kkl and kk2 are arbitrary protection fields, and the
meaning of ‘“stronger than" and "weaker than® is as
explained above,

In case the calculation of the protection field yields
an error, then the entire output from the actor will be a
value of type error indicating protection violation.

From the above it follows that a computation performed
on a set of values involving only the actors function,
predicate and switch will always satisfy the following

conditions:
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a) In case all protection fields carried by
values involved in the computation are comparable,
then the result will carry the protection field of the
strongest protected value.

b) In case two or more values involved in the
computation are incomparable, *hen *he result will be
an error value indicating protec*tion viola*ion,

The intuitive meaning of the firs* condi*ion is +*hat
the output value of any operation potentially contains
information from all values involved 1in the computation,
and hence its protection must be equal to or stronger than
the protection of all input values. The protection field
from the strongest protected value satisfies ‘this
requirement. )

The second condition b means tnat at least two of the
involved values were at some point protected with distince
keys ky and ky attached to the values by tne monitors my
and my respectively. This iamplies in our model that these
two values may not be intermixed.

Remark: Functions and predicates with only one
input value, e.g. the identity function f(x)=x,
do not require any computation on their
protection fields. We require tha* the
protection field of the outpu* value be simply a
copy of the protection field of the inpu* value.

The U actor accepts two arguments, one of which is the
pointer to a monitor and the other is a value v to be sent
to that monitor., In case the pointer is unprotected, *he U
actor simply forwards the value v (with the corresponding
protection unchanged) to the monitor. The case when the
pointer itself is protected will be discussed in Chapter 5.
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Similarly, the U-1 actor does not modify its input
value but sends it with the same protection field to the
corresponding actors expecting that value as input.

At this point we must introduce an important extension
to -the 1implementation of input/output discussed earlier.
It has to be Juaranteed that only unsealed values may leave
tne system via one of the windows implemented as monitors

retrieving or receiving values. In general, a monitor can

retrievé a value and detach a key from the protection field
carried oy tnat value if it possesses “he matching key. 1In
the case of a monitor which represents a window, we must

require rhat the removal of (at most) one key from the

retrieved value leaves it unprotected. Similarly, a value

sent to a window may have at most one key which then will
be removed by the window. This is essential, sinée a value
passing through a window is considered to be leaving the
system and ‘*hus must be unsealed. We implement the above
requirement by coupling the attach-sufx actor of every
window with a new actor called "no—ke&", that acts as an
identity function in case its input value is unprotected,
(1.e. the protection field is empty), and outputs a
protection violation token otherwise. The two possible
1mplementations of a window corresponding to the figures
3.15 and 3.16 are shown in the figures 3.23 and 3.24. Only
unprotected values, e.g. v{}., and values protected with
only the key k, where k is the key used by the particular
window monitor, may pass through that window. Thus the
actors “no-key" define the actual boundary of the
protection system - the sphere.

The important implications of the mechanisms
introduced in this section can be summarized as follows:

A monitor ml sending a value v confined with a key k
to any other monitor is at all times guaranteed that the
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value v and any information derived from v can never leave
the system without passing through ml, which is the only
monitor able to remove k. The above statement holds for
the following reasons: No actor, except detach-sufx and
detach-prfx, can ever produce a value which does not carry
k, if the computation involves the value v{k}. The ac*tors
detach-sufx and detach-prfx can detach a key only if tha*
key was explicitely sen* +to the ac*or as an input value,
Since in the above example *he key k is known only *o ml,
only a detach actor inside ml can remove k from v or from
some other value derived from v. 098198d .s 1

5. Protection of Structures,

A structured value (or simply structure for short) s

in 14 1is either the empty s*tructure Jambda or a set of
unordered <selector:value> pairs as depicted in Fig. 3.25.
A selector 1is an integer, a string, or boolean value; a
value is any Id value, e.g. ahorher structure.  The
operations (carried out by the corresponding actors)
manipulate the protection of s*ructures.

A select actor accepts a structure and a selector as
inputs and it outputs the value tha* was appended to the
structure at the given selector. For example if s is the
structure in Fig. 3.26 then *the value vl can be selected
from s by writing s{1l] which is performed by the selec*
actor shown in Fig. 3.27. In case the desired selector
does not exist in the structure then the value nil is
returned, For example s{3] yields nil.

(Remark 1: The arrows in this and all subsequent
figures represent pointers to the corresponding s*ructures
carrieq by tokens.

Remark 2: The sets of input and output tokens do not

exist at the same time. For example, in Fig, 3.26 the
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value vl is produced only after the values s and i have
been absorbed by the select.actor.)

The append actor accepts a structure s, a selector i,
and a value v. The output value is a new structure s‘
which is a copy of 8 except that the (possibly new)
selector i now carries the value v. FPor example, if s is
the structure in Fig. 3.26 then a value v3 may be appended
to s at the new selector 3 by writing s+[3]v3 which is
realized as shown in Fig. 3.28.

To "erase" a particular selector i we append to it the
value nil. The result will be a copy of the original
structure with the selector i absent, (Note that this is
different from appending the value lambda to i which does
not remove the selector but actually appends the empty
structure value called lambda to i).

The following syntactic shorthands are available in 1d
for easier manipulation of structured values. The
statement

s{i] <= v
is equivalent to writing

8 <~ 8 + [i}v .
Multiple selectors are allowed to make references to
multilevel structured values (e.g. trees) more convenient,
For instance s[l,2] is equivalent to writing (sfl])[2].

A structure may be confined by attaching to it a key
in the same way as a simple value. Consider the structure
in Fig. 3.26. The statement

s' <~ s{+k}
creates the new confined structure s' shown in Fig. 3.29.

Similarly, to detach k from s' we write
s" <~ s'{-k}
which creates a new unprotected structure g® that is
otherwise equivalent to s in Pig. 3.26.
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The creation of every structure takes place by
appending values to an originally empty structure lambga.
These values may be simple or structured and may also be
protected with different protection fields. For example
the statement

s' <- lambda + [l]vl + [2]s
where vl is some value carrying the protection field kkl,
(i.e. wvl{kkl}), and s is the structure shown in PFig. 3.39,
will produce the new structure s' shown in Fig. 3.31. {We
denote the protection of a substructure by wri*ing the
corresponding protection field just above the horizontal
bar of that substructure}.

Prom the above rules it follows that a structure may
be protected independently at différent levels by
protecting arbitrary substructures. A protection field

. associated with a (sub)structure protects all values

constituting that (sub)structure. Consider the following
examples:

All elements of structure s in Fig. 3.32 are protected
by the field kk attached to s. Thus selecting a value from
s will yiela a value which carries the same protection
field kk. For example the result of the selection s[1])
will be the value vl1{kk}. 1In the structure s' shown 1in
Fig. 3.33 all elements are also protected with the same
field kk, however each element is protected individually.
Selection of an element from s' will also yield a value
protected with kk, e.g. s'[l] returns the value vl{kk} as
in the previous case. However, there 1is an imoortant
conceptual distinchion between the protections of s and s'.
A key attached to the structure at the top-level pro*rects
all elements of that structure, which includes also all
non-existing elements represented by the value nil. Thus
for example the selection s{3], where the selector does no*
exist in s (Fig. 3.32), will return the value nil{kk} whicn
is protected with kk. On the other hand the selection
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s'{3) of the corresponding element from the structure s' in
Fig. 3.33 will yield the wvalue nil{} unprotected.
Similarly, appending an unprotected value v3 to s and then
reselecting it will yield v3{kk}, i.e. protected, whereas
the same operations in the case of s' will yield v3
unprotected,

The intuitive distinction between the two cases is *

that a protection field attached to a structure value
protects not only tne values of the individual elements but
also the “structure" of the structured value, e.g. the
number of selectors at each level, which in the second case
was unprotected. For example in the case of s' it is
possible to detect whether a particular selector i is
present or absent using the following trial-and-error
approach: select the value of s[i]) and output it. If the
result is nil the selector i is absent; if a protection
violation is reported then i is present, This approach
will fail if the structure as a whole is protected. Heréd a
protection violation message will be received for any
select operation reguardless of whether the selected value
was actually present or absent.

Now the question arises, what will be the protection
of a value selected from a structure in case both the value
and the structure were protected, as shown in Fig. 3.34.
We define the protection of each value constituting the
gtructure as the concatenation of all 'protection fields
along the path leading from the value to the root of the
structure. Thus the selection s[i] from the structure in
Fig, 3.34 vyields the value v{kk2.kkl}. The above rule is
followed by every select actor when computing the
protection field for the selected value. The reason for
the above interpretation of protection within a structure
may be explained intuitively by the following example:

Congider first a value v with the protection field

!)l
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{kk}. An additional key k may be attached to kk by tne
statement

v' <= v{+k}
which yields the value v with the protection field {kk.k}.
Consider now a second case when the same value v is part of
a structure s, created for example by appending v to lambda
(i.e. s <- lambda + [i]jv). Attaching k to the entire
structure s, i.e.

8' <= s{+k}
and then reselecting v, i.e.

v' <= g'[i}]
will yield the value v' with the same protection {kk.k} as
in the first case., This example shows tha* the protection
of a value is consistent regardless of whether the value is
protected as an individual value or as part of a structure.

"an append operation should complement the effect of a
select operation which sugyests the rule to be followed oy
the append actor, as explained informally by the following
example:

Assume that a structure s is protected with a field
kkl as shown 1in Fig. 3.35, and the values vl, v2, and v3
are protected with the fields {kkl}, {kk2.kkl}, and
{kk3.kk2.kkl}, respectively. Then the statement

s' <= s+[1}vl +[2]v2 +[3]v3
will result in the structure s' shown in Fig. 3.36. As
defined above, the protection of a value inside a structure
is the concatenation of the protection fields carried by
the value and the structure, Hence the suffix of the
protection fields of all values constituting s* (Fig. 3.36)
is kkl. Therefore, it is not posgsible to append a value *o
s' if the protection field of that value is not comparable
with kkl. For example, the statement

8" <- s' + [4]v4
will fail if v4 carries a protection field which is not



Page 56

comparable with kkl.

So far we have considered only the protection of
structures and the values to be selected or appended,
ignoring the possibility that values used as selectors may
themselves carry a protection field when arriving at the
corteéponding actor. The rules to computé the protection
field for the results of a select and an append operation
are depicted by Fig. 3.37 and Fig. 3.38 respectively.

Thre select actor has to compute the protection field
kk4 for the. value v to be selected. It concatenates the
protection field {kkl} associated with the structure s and
the field [kk3} associated with the value v to be selected.
In addition it takes into consideration the field {kk2}
carried by tne selector i and it computes the protection
fielu for v according to the rule '

kk4 <- (kk3.kkl & kk2)

The append actor has to compute the field kk4 carried
by the appended value v', whereby tpe protection of the
top-level of s' must remain the same as that of s, i.e.
kkl. Intuitively, selecting v' from s8' must yield a value
with the protection {kkl & kk2 & kk3}. Thus in case one of
the fields kk2 or kk3 (or both) is stronger than kkl, then
that portion of kk2 or kk3 that is not contained in kkl
must be kept with the value. The following rule satisfies
the above requirenments:

if kkl is stronger than or equal to (kk2 & kk3)

then kk¢ <- empty :

if Kkl is weaker than (kk2 & kk3)

then kk4 <- (kk2 & kk3)\kkl

else error
where the sign "\" means “"detach the suffix kkl from the
field (kk2 & kk3)™. '
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The reason for considering the protection carried by
the selector is to prevent possible leaking of information
encoded in the choice of the selector whose value could be
computed involving sensitive information, This information
then could be extracted by using the selector i %to select
or append values, as demonstrated by the following example:

The compilation of the statement

s((if C(secret) then 1 else 2)]

is shown in Fig. 3.39. It returns the value vl1 or v2
depending on the result of the predicate C testing a
sensitive value "secret®. Thus the result r obtained from
the select operation must inherit the protection field kkl
carried by the selector, otherwise leaking of information
will take place. Similar techniques could be applied using
the append primitive with- a selector based on secret
information. Such actions are prevented by the above rules
given for the append and select actors.

So far the only way to at;ach a key k to some
substructure v of a structure s was to select v, attach the
key k to v, and append the ptoteéted value v back to the
structure s. In order to provide a more flexible way for
attaching and detaching keys to and from arbitrary
substructures, we generalize the concep* of the
attach/detach primitives as described in the seguel. First
we present the user syntax for attaching and detaching keys
to and from substructures:

The statement

s' <- s{+k@, [ij]+kl, [ip}+k2, ... ,[iyn}+kN}
will attach the key k8 to the top.level of s, i.e. to the
gtructure as a whole, and each of the keys kl, ... ,kN to
the values with the corresponding selectors iy, ... ,iyp,
where' each ij may be a multiple selector, as in (1,2,3].
For example the statement

s' <- s{+k@, {1]+kl, [1,21+k2, {2,3,3}+k1l, [3}{+k3}
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has the effect depicted in Fig. 3.48. similarly the
statement

8 <~ s{-k0, f(i}-kl, (ig)-k2, ... ,[iN}-kN} .
detaches the given keys from the corresponding values.

. (Remark: The statement is evaluated from 1left to
:ight,' thus in case two selectors ij and i refer to the
same value, the order in which they appear in the statement
will cause different protections of that value.

Both the above statements will treat each key as a
suffix of the possibly empty protection field carried by
the value of the corresponding selector, For example the
statement

s' <~ s{[2}+k}
will attacn x as a suffix to the protection field Kkk
;arried by the value v2 at the selector 2, as shown in
Fig. 3.41.

The corresponding syntax to attach and detach keys as
prefixes is as follows:

8' <- {+k@, [i114kl, [i21+k2, ... ,[ig}+kN}s

s' <- {-k@, f(ij]-kl, fiz}-k2, ... ,[iN]-kN}s

The implementation underlying the above concept is the
following: As for any type in 1d, type structure has an
*attach-sufx" operator defined over values of that type.
In case a simple key is to be attached to the value, i.e.
to the top-level of a structure s, then the attach-sufx
actor corresponding to the statement

s' <~ s{+k}
will receive as input the values v and k, and it will
perform the attach operation as was described previously.
{The same holds for the operations attach-prfx,
detach-prfx, and detach-sufx). In case distinct keys are
to oe attacned to certain substructures of s, as for
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example in the statement
' <- s{+k8, [31+kl, [2,1,11+k2, (2,1,2]+k3}

then the attach-sufx actor will receive the value s and
another structure sk (constructed by the compiler), instead
of a simple key. This structure is shown .in Fig. 3.42.
The selectors at the top-level of sk are integers
corresponding to the total number of keys to be attached to
the various substructures of s. Each of these selectors
carries itself a structure consisting of a key (k@, k1, k2,
or k3) and the corresponding multiple selectors (lambda, 3,
(2,1,1), and (2,1,2)}. {(The value lambda is not a°
selector, rather it represents the top-level of the
gstructure s8). According to this structure; the attach-sufx

“actor will perform the attachment of thé desired keys to

the corresponding substructures, The definition of the

. actors attach-prfx, detach-prfx, and detach-sufx is

analogous to that of attach-sufx. We wish to emphasize
that the operations performed by ail of the abuve Juo*ars
are dependent on the type of the received value *o  Le
protected. For example, as will be shown in Chapter S, a
procedure is represented as a structure, however, the
attach/detach primitives for the type procedure are defined
differently than those for structures, These primitives

‘actually control the way 1in which the programmer may

manipulate (e.yg. protect) the representation of a
procedure. In tne case of a programmer-defined data type
(pdt), (introauced also in Chapter 5), the user has the
possibility to devise his own operations for handling the
protection of each pdt. These operations  will be
associated with the particular pdt in the same way as the
operations associated with the type structure or the type
procedure, and they will be executed when any of the
attach/detach actors receives a value of the corresponding

type,
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Besides the actors select and append, a structure s
may be sent to a switch actor, for example when executing
the statement

if C then s else ...
where C is some predicate. In case the value produced by C
and 'sent to the switch as a control value is protected, the
switch has to compute a new protection field for the
structure s. A switch under the above conditions is shown
in Pig. 3.43. Assume first that the fieled kk2 is stronger
than or equal to the field kkl. 1In case the two fields are
comparable, the resulting field kk4 will simply be a copy
of the field kk2, since all keys constituting kkl are
already contained in kk2. A problem arises when kkl is
stronger than kk2. In this case the field kk4 cannot be
computed simply as the stronger of the two fields kkl and
kk2 for the following reasons: Assume that a value vl
which is part of the structure s carries the field kk3.

- Then tne protection of this value (for example after beimg

selected from s) is kk3.kk2. After s passes through the
switch the value v1  must have the protection
(kk3.kk2 & kk1), i.e. the stronger of the fields kk3.kk2
and kkl,. This will not be the case if kk4 is computed as
{kkl & kk2). Here the protection of vl (after vl is
selected from s) is kk3.(kkl & kk2), which is not equal to
(kk3.kk2 & kkl) if kkl is longer than kk2, as demonstrated
by the following example: Assume that kkl=k2.kl, kk2=kl,
and kk3=k3.k2, as shown in Fig. 3.44. The field kk4 then
ig k2.kl (the stronger of the two fields kkl and kk2) and
the protection of vl (after selection) is k3.k2.k2.kl
instead of k3.k2.kl. 1In order to solve the above problem
the switch will leave the protection field carried by the
top-level of s unchanged, and it will distribute that
portion of the field kkl that is not contained in
(overlapped by) the field kk2 among all values constituting
s accoraing (conceptually) to the following computation:
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The field kkl is divided into two subfields kkl' and kkl®
such that kk1'.kkl" = kkl and the length of kk1® is egual
to the length .  of kk2. If kk2 is not equal to kkl*, an
error will occur; otherwise kk4 becomes a copy of kk2 and
the protection field kept with *the value vl (inside s) is
computed as kk1' & kk3. Analogous computation must be
performed for all otner values constituting the structure
s.

For reasons of efficiency we propose the following
implementation of the above conceptual computation: The
fiela kkl is divided into the subfields kkl' and kkl™ as
before, and it is also required that the fields kkl" and
kk2 be equivalent, otherwise an error will occur, The
subfield kkl', however, is not distributed among the
values, but rather kept at the top-level of s, separated
from kkl®" by a special delimiter “;". Thus the field kk4
has the form kkl®';kkl"™ and the fields Kkept with ' the
individual values remain unchanged. For example, 1in
Fig, 3.44 the field carried by s will have the form k2;kl
rather than k2.kl. Only when a wvalue (e.q. vl) is
selected from s, the new protection for that value is
computed. Thus the distribution of the field kkl' is not
performed by the switch at the time the structure is
output, but rather it 1is performed by subsequent select
actors operating on that structure. For example, the
selection of the value vl (Fig. 3.43) will compute the
{correct) protection field (kkl' & kk3).kk2. Similarly, in
Fig. 3.44 the new protection carried oy the selected value
vl will be k3.k2.kl as was required.

A structure may be passed between monitors in the same
way as a simple value. The call
use(m,s{+k})
will send the structure s to the monitor m and while doing
so attach to it the key k. If, for example, s is the
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structure saown in Pig. 3.26 then the structure received by
the monitor's body will pe that shown in Fig. 3.29,

For some problems such as the selective confinement
problem discussed in Chapter 5 it is necessary to confine
only parts of a structure sent to a monitor. Assume for
examplé that in a structure comprising the two selectors 1
and 2 (e.g. the structure s in Fig. 3.26) only the

selector 1 is to be confined when s is sent to a monitor m.

This can be achieved by the following statement:
use(m,s{[1]+k})

The corresponding compilation is shown in Fig. 3.45. Here

the value vl is protected with the key k, while v2 remains

unprotected,

6. Efficiency Considerations.

The mechanisms presented in this chapter are based on
the icea of attaching multiple unforgeable keys to values.
We do not impose any restrictions on thdse values to which
keys may be attached, thus the programmer has the
possibility to chose the "grain" of protection he desires;
he may protect a large file (which in Id is implemented as
a structured value) with a single key, he may also protect
subsets or individual "records" (leaves) of that file using
different keys.

Another feature of the system presented here but
usually not encountered in other protection systems, is the
ability to increase the protection of an object by
attaching to it a stronger protection field. - This implies
that more keys must be presented on order to be able to
utilize the value, The price paid for the achieved
flexibility is an increased overhead in communication and
computation,

Problems in communication are typical for a system

S e e vt
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consisting of . a large number of cooperating computing
elements, such as a dataflow system, where extensive
amounts  of information have to be exchanged among
processors. In our system we use memory to s+tore values
that are too large to be passed between processors
efficiently, and pass a pointer to that value instead. A
value that is too large due to a long protection field can
be handled in the same way, i.e. stored in memory and
referenced by pointing to it,

The problems witn computational overhead are much less
S¢sei#  1n dataflow than in conventional machines. As
2xplained earlier, in our system computation 1is divided
into small subtasks (activities) carried out by independent
processing units. Every such unit is receiving values
(operands), each of which consists of three parts: the
activity name, the actual value, and the protection field,
The unit has to perform certain operations on all three
parts: It computes a new activity,name, a new value, and a
new protection field. Since all these operations are to a
great extent independent of each other, the uni* can be
designed to perform all three tasks in parallel. 1In
addition, most operations performed on protection fields
are simple string comparisons and manipula*ions and *hus
can be implemented to a great extent in hardware. The
possible parallelism and simplicity of operations with
respect to protection fields imply that the degradation of
the actual computational performance caused by the
incorporation of the protection mechanisms into the
language and machine architecture can be kept within

acceptable limits.
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7. Summary.

In this chapter we presented the actual mechanisms to
seal and unseal letters, which may be simple or structured
values. (Sealing and unsealing of procedure and monitor
values will be treated separately in the chapter
'Propraetaty Services") . These mechanisms comprise
attaching and detaching of unique keys to and from values
that are subject to protection. A key attached to a value

guarantees that this value and any information derived from'

it will not leave the system before the key is detached. A
key may be detached only by a monitor possessing the same
key. 1If this monitor is an IDI (window in the sphere) then
the value 1is considered to be leaving the system (sphere)
and thus must no* carry any keys whatsoever. Attach/detach
operations may be performed only by using the corresponding
attach/detach primitives. A new key may be attached either
as a suffix or as a prefix to other keys already carried by
a value. Thus we allow the creation of protection fields
consisting of an arbitrary number of concatenated keys. A
monitor may detacn a key (prefix or suffix) from the
protection field only when possessing the same key,

The basic philosophy of the approach  may be
characterized by the following conditions satisfied by the
above mechanisms,

a) A value v released by a monitor may be propagated
potentially to any other monitor within the system.

b) Any monitor may increase or decrease the protection
of a value if it possesses the corresponding keys.

¢} If v is unsealed it may leave the system via any of
the 1IDIs. If v is sealed with only one key k associated
with an IDI then it may leave the .system only via that
particular IDI.

4. PROTECTED INTERMONITOR COMMUNICATION

In Chapter 3 we presented mechanisms which allow a
monitor to protect information sent to other monitors so
that it cannot be misused if received by any other monitor.
Por a general purpose computing facility the following two
requirements also have to be satisfied:

a) A monitor ml sending information to a monitor m2
needs a guarantee that only m2 and no other monitor will be
able to utilize the released information.

b) The receiver m2 needs to make sure that the
received information really came from the expected sender
ml and not from some other (possibly masquerading and

malicious) monitor.

For example, in the case. of a simple exchange of
messages between users, it must be possible to esféblish
private “station~to-station" communication, possibly via
other monitors, and to prevent these and all other monitors
from misusing the contents of the messages exchanged. In
this chapter we will present mechanisms based on the idea
of "trapdoor one-way functions" to satisfy the above

requirements,

1. Trapdoor one-way functions.

In (DiHe76] and [RiShAd78] a concept for safe
information exchange in a communication system was
introduced using the idea of a trapdoor one-way function f,
which is defined by the following four properties:*

* In [RaShad78] a function satisfying the properties
(a)-(c}) is called a trapdoor one-way function; if 1t also
satisfies (d) it is called a trapdoor one-way permu*ation.
We will use the term function if all properties are
satisfied.
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a) There exists an inverse (complementary) function £C
which reverses the effect of £, i.e. ‘the encoding
(transformation) of a message m. Formally,

fC(f(m)) = m
b) Both f and fC are easy to compute.

¢} The inverse function £fC cannot be easily derived
from £.

d) The functions f and £C may be applied in arbitrary

order. Formally,
£(EC(m)) = m

The system described in [DiHe76] and [RiShAd78] uses
trapdoor one-way functions to enforce safe interprocess
communication in a computing facility in the following way:
Bach user who wishes to participate in the communication,
i.e. to send or receive messages, devises his own trapdoor
function f and its inverse fC, Punction f is made publ?c,
and thus may be used by any user to transform messages.
Function f£C, however, is kept secret and may be used only
by its owner (holder). Suppdse a user ml wishes to send a
message m to another user m2. The trapdoor functions
associated with ml and m2 are £, fC and g, gC respectively.
Before sending m, ml first transforms it using his secret
function fC and then he transforms it a second time using
m2's public function g. m2 receives and encodes the
so-confined message g (fC(m)) by applying his own private
function g€ and then ml's "public function f, i.e.
£(gC(g(£C(m)))) which yields the original unconfined
message m, Note that the above encoding can be performed
only by m2 who is the only user possessing the secret
function gC, Thus ml is sure that the message cannot be
misused by other users. On the other hand the encoding of
the message, i.e. g(fC(m)), could have been performed only
by ml who is the only user possessing the secret Ffunction
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£C, Thus m2 is “almost sure® that the received message a
was sent by ml and not by another user. By "almost sure®
we mean the following: 1In the above system it is possible
to apply a decoding function f to a message encoded by a
function fC even if £C is not the inverse function of f.
The result m' will be some string of characters which by
accident could form a meaningful sentence, *hus making *the
receiver m2 believe that he received a message from ml. wm2
has to rely on his expectation, i.e. *he knowledge about
the message to be received, in judging its authentici*y.
This becomes a serious problem if the message is no* simply
a text but may be some arbitrary string of characters, e.g.
numbers, This weakness does not occur in the mechanisms
proposed in this chapter, where the decoding operation will
fail if it 1is not the actual inverse of the encoding

operation,

In the rest of this cnapter we describe a mechanisn
for dataflow which exploits the same principle, whose
implementation, however, varies from the above: It does
not encode the message itself in a cipher, rather it
restricts the ability to utilize that message by attaching
to it a unique key, similar to +those discussed in
Chapter 3. Thus the functions f, £fC, g, and gC correspond
to the  operations of attaching to and detaching from the
desired message unigue keys associated with *the sender and
the receiver, respectively.

First we have to extend the notion of a key introduced
in Chapter 3, In addition to the regular form of a key,
which was the form of all keys presented so far, a key may
be in one of the forms alpha or delta. A unique pair of
such keys is associated with every newly crea*ed monitor.
“Inside” the monitor itself both alpha and delta are
unrestricted, i.e. they may be attached to or detached
from any value in the same way as a regular key. By
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"inside™ we mean being part of the code constituting the
monitor's body, which includes procedure and monitor
domains created within that monitor. The alpha and delta
keys may also be propagated to other monitors. Once
received by another monitor, however, the alpha-key may not
be attached to any value whatsoever,.and similarly the
delta-key may not be detached from any value. (The names
alpha and delta were chosen with the intention to reflect
the initials of attach and detach). The above restrictions
imply tnat the operations which may be performed on a key
are dependent on the context, i.e. ths -monitor in which
they are to be performed.

In order to implement the above feature, we have to
guarantee that all actors performing attachments or
detachments of Kkeys verify. that the corresponding
operations are being performed in the legal context, To
allow this we will implement the alpha and delta keys in
the following way:

when a monitor is created the pointer to its execution
domain 1is returned from the create act&t. This pointer is
the activity name of the entry actor and has the form
u.P.s.i [ArGoP178]. Every statement executed as part of
the monitor's code will have an activity name with the same
prefix u,P. This holds also in the case of a loop, a
procedure application, or the creation and use of a new
monitor. (In all of the above cases the new activity names
will begin with a new u', where u'={(u.P. ...).) We use this
fact to 1lmplement unique alpha and delta keys for every
monitor: If the pointer to a monitor has the value
u.P.entry.i then the value of the corresponding alpha/delta
keys will be u.P, plus one additional bit to distinguish
between alpha and delta. (Note also that the values are of
different data types - wu.P.entry.i 1is 'of type monitor
object (i.e. pointer), whereas u.P will be of type key.)
The above implementation allows verifying the legality of
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every attacn and detach operation by the corresponding
actor. As mentioned above, the attachment of an alpha key
is ‘legal only within the monitor with which the alpha key
is associated. To guarantee this the attach actor compares
the activity name carried by the supplied alpha key with
the value of that key. Only if this value is a prefix of
the activity name is the operation legal. For exanmple, if
the activity name carried by the alpha key is
(...({u.P.s.1).Q.r.j)...) and its value is u.P, the a%tach
operation is legal.

In the same way every detach actor must compare  the
activity name and the value of the supplied key in case
this key is of type delta. The detach operation is legal
only 1if the value 1is a prefix of the activity name,
otherwise an error will occur.

The checks to be performed by the attach/detach actors
when presented a key k can be summarized as follows:

.

attach: if k is of type alpha and k is not prefix of
activity name
then err
else perform attach operation

detach: if k is of type delta and k is not prefix of
activity name
then err

else perform the detach operation

The above mechanisms may be used to enforce protected
intermonitor communication as follows: 1If a user wishes to
receive secret information from other neeri, he makes his
delta-key public. Similarly, 1f &~ wrsmhes *o send
information to other users, he disclosss  his alpha-key,
Suppose the user ml wishes *o send a message m t0 another
user m2, ml's alpha-key al and m2's delta-key d2 have *o
be public. Before sending the message to m2, ml attaches
to it his own alpha-key al and m2's delta-key d2. He 1is
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now sure that the resulting message m{al.d2} can be
utilized only by m2, who is the only monitor able to detach
d2. m2 on the other hand is sure that the received message
originated from ml, who is the only monitor able to attach
al. The above situation is depicted in Fig. 4.1. The
functigns “obtain ml's alpha-key" and "obtain m2's
delta-key" can be realized as calls to a shared monitor
(e.g. a part of the file system) provided for this

purpose, which stores and discloses the desired keys upon

reguest,

We can now compare the trapdoor mechanism for dataflow
witn that for conventional systems described earlier:
Attachlng al to m corresponds to the transformation fC(m),
Attaching d2 to m{al} corresponds to thé transformation
g(£C(m) .

Detaching a2 from m{al.d2} corresponds to the
transformation gC(q(£fC(m))).

Detaching al from m{al} corresponds to the transformation
£(gC(g(£Cm)) ).

So far we have considered only the actors which may
potentially a*tach or detach keys, and the actions taken by
these actors in case the keys to be attached or detached
were of the form alpha or delta. Since the protection
field of the inpu*t value to an actor may already contain
alpha or delta keys, we have to specify the actions taken
by all actors with respect to these keys. In other words,
we have to extend the function & used by the actors to
compute the protection field for the output value to
distingulsh between regular keys and alpha/delta-keys.

One of the requirements stated earlier was to
guarantee that an alpha-key cannot be attached in the
improper context (monitor). This contradicts the
functioning of & which computes the resulting protection
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field as the stronger of the two input fields, Consider
for example the switch actor shown in Fig. 4.2. Assune
that the input value v is unprotected and that the control
value is protected with an alpha-key al. According %o &
the output value would carry al inherited from c. This
operation thus would attach an alpha-key to v regardless of
the monitor in which the attach was done. 1In this way any
user possessing a value with the key al could cause al to
be attached to any other value, such as the value v 1in
Fig. 4.2. Intuitively, we have to guarantee *hat the
switch actor will "filter out" all alpha-keys that appear
on the control token but not on the input data token.
Assume for example that the field carried by the control
token is (al.kl.a2.k2} and the field carriéd by the da*a is
{kl.a2.k2}, then the resulting protection field will be
{kl.a2.k2}, 1i.e. the key al must not be inherited by *the
result. In a similar way, alpha-keys carried by a
procedure definition or the pointer to a monitor must be
filtered out by the A und U actors respectively, 1if the
arguments to tnese actors do not «carry the same keys.
Finally, function and predicate actors have to filter out
alpha-keys which do not appear on all input values. Tne
exact rules followed by all actors are given in Chapter 8,
for the purpose of this chapter we confine ourselves to the

above intuitive description.

2. The "masquerading problem*,

In the previous discussion we assumed that monitors
wishing to engage in private communication may obtain the
necessary keys associated with the desired communication
partner. As is the case in any communication system, some
kind of name from a common name space is necessary in order
to be able to refer to particular subjects. In



Page 72

conventional systems that name space is a vary large set of

strings organized in a hierarchy. The file system is based.

on that hierarchy. In dataflow the situation will be no
different. 1If users are to be able to communicate with one
another in a non-determinate fashion a system of symbolic
names ,together with a mapping of these names onto actual
pointers to monitors must be provided.

The mechanism described in the previous section works

only under the assumption that the trapdoor functions (or

the alpha/delta keys in tne dataflow system) associated
witn a monitor are publicized under their correct symbolic
names. If a user wishes to send a message to a user “Jonn
Smith", he will obtain the alpha/delta keys associated with
the monitor publicized under the symbolic name "John Smith”
and use 1t to protect the desired message. If, however, a
malicious user “"Jonhn Dillinger" managed to get his own
alpha/delta keys publicized under the name "John Smith",
thus masquerading as "John Smith", he will be able to read
the secret message intended for the addressee "John Smith".

Since the solution to the above mapping problem
depends to a great extent on the purpose of the actual
installation we wish to emphasize that the following
discussion is not intended to presen* an ultimate solution,
but rather to show that the problem can be solved in a
dataflow system.

3. The extended trapdoor mechanism. .

In order to consider a general solution to the above
problem we have to study the needs of all parties involved
in “Jeneralized" intermonitor communication. By
“gyeneralized" we refer to a situation in which potentially
every monitor in the system may wish to send a “message" to
any other monitor (where a message may be any arbitrary
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pliece of data). For example, a moni%or releasing a
protected value which may be decoded (output) only by a
particular printer monitor may be considered as sending a
confined message destined for that monitor.

The requirement common to all parties involved in sucn
generalized communication 1is to guarantee tnat the keys
associated with the “"communication partner®, i.e. the
receiver in the case of a sender, and vice versa, are
publicized under their correct (symbolic) monitor nanmes.
As mentioned before, by publicized we mean accessible to
possibly all monitors in the system, which in dataflow we
implement by providing a shared monitor. In the sequel we
will refer to this monitor as Trapdoor. This monitor could
usefully be incorporated as part of the file system in an
actual implementation. Trapdoor maintains the .s*tructure
shown in Fig. 4.3, which holds the symbolic names of all
monitors that wish to participate in a communica*ion,
together wi*h the corresponding pointers to these monitors,
Since the alpha/delta keys can be derived from the pointer
to the corresponding monitor, we provide two primitives to
allow this operation to be performed. The primitive
"alpha" will derive tne alpha key alp corresponding to *ne
supplied meonitor pointer mon, i.e.

alp <~ alpna(mon).
Similarly, the primitive “delta" will derive the
corresponding delta key, i.e.

del <~ delta(mon).
The above primitives may be used by the monitor Trapdoor to
derive and return the desired keys upon request.

The selectors monl, mon2, etc, are symbolic names of
monitors participating in the communication. The selac*or
"publicized" under each monitor, e.g. monl, «carries +*he
names of monitors which were publicized (en*tered in*o *he
structure) by that monitor, e.g. mon3 and mond4 were
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publicized by monl. Trapdoor allows the following calls to
obtain keys or to enter a new monitor's name with the
corresponding keys into the structure:
The call
use(Trapdoor,requestl)

where requestl is the structure shown in Pig. 4.4, returns
(according to the function f given as part of the
structure) the alpha or the delta key associated with the
monitor_ designated by the sequence of monitors
monl, ... ,monN, that must form a valid path in the
hierarchy of Fig. 4.3. For example the call

use(Trapdoor,“get_alpha_key", <"monl", "mon3">)
will return the alpha key associated with the monitor m3
(Fig. 4.4).

The call
gig(Ttapdoor,request2{+own_alpha})
where request2 is the structure shown in Fig. 4.5, enters
the new monitor's name given by the parameter "name* and
the corresponding pointer nm under the selector named
"publicized” belonging ¢to the monitor designated by the
parameter "path®, .
For reasons discussed later it is essential to require
that every monitor mi entering another monitor's name (and
thus its keys) into the structure pay do so only under the
selector “publicized" belonging to its own name mi. To
assure this, the publicizing monitor has to “sign" its
request by attaching to it its own alpha-key ("own_alpha")
which allows Trapdoor to ‘test its authenticity. For
example, if mon3 wishes to publicize a newly created
monitor mon5 with the pointer m5, it may do so by calling

use (Trapdoor,<“publicize",<"monl",*mon3">,"mon5",m5>{+a3})

Trapdoor first verifies the authenticity of the caller by

Page 7%

trying to detach the key a3 from the request using the
alpha-key associated with the monitor designated by the
given path, which in the above case is m3. In case it
succeeds, which indicates that the keys were identical and
thus the call was performed by the proper monitor, it
enters the new monitor into the structure (as shown in
Fi1g. 4.3 under the dashed line).

Let us now summarize the constraints imposed on the
use of Trapdoor and discuss their consequences: A monitor
having access to Trapdoor can reguest any of the contained
alpha or delta keys. A new monitor mi and its associated
keys ai and di may be entered only by a monitor ma already
listed in Trapdoor, as shown in Fig. 4.6. We will refer *o
such a monitor as the publicizer of mi, In addi*ion, mi
may be entered only by appending i* *to *+he selector
"publicized" belonging to the publicizer's name ma.

From the above it fo]]ows‘fha: a user obtaining mi's
keys for the purpose of engaging in private communica*tion
with mi clearly has to trust mi's publicizer ma in that ir
publicized the proper keys. If we assume. that any
(possibly user-defined) monitor is allowed *o publicize
other monitors and publicize their names and keys on irs
own behalf, then the question arises, can we ¢trust the
adverising monitor to enter the proper keys? The following
discussion is devoted to this guestion.

To provide a concrete bpase for references in the
discussion we [irst present the following example:

Part of the structure maintained by Trapdoor will have
the form shown in Fig. 4.7. JCM_creator is a monitor which
creates a "“Job Control Monitor" (JCM) for every user
entering the system (logging in). This JCM then interprets
the user's commands. Assume that user Ul running under
JCMl created a subsystem (monitor) which he publicized as
subl with the keys a3 and d3. Other users may wish *o send
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or receive sensitive data to or from subl.

Dev_creator is a monitor which publicizes I/0 devices.
By an 1/0 device we mean the IDI to which the actual
physical device is connected. The IDI retrieves the
information to be output as was described in Chapter 3.

Assume that a user wishes to send some data to a
borrowed program. To restrict this data so that it can be

utilized only by that particular program is meaningful only

if the sender is guaranteed that the (symbolic) name which
he uses to address the destinee program is associated with
the actual entity (program) which should receive that data.
He may wish to send a message to a user John, but in doing
so he must trust the creator of the object representing
John (tne corresponding JCM) that this object actually is
and behaves as claimed by its creator. Similarly, if a
‘user Ul wishes to send some data to a program subl created
and publicized by JCMl, Ul has to trust JCM1l in the
followinyg way:

a) If subl is some service to be employed by Ul, then
Ul may protect all data sent to subl so that it cannot be
misused by subl or any other monitor. (Problems related to
the establishment of proprietary services will be studied
in Chapter 5).

b) If however subl is a program intended to “consume"
the data received from Ul, i.e. it m2y unseal and utilize
it, then the sender may trust the publicizer JCMl of subl
in that he entered the correct alpha/delta keys into
Trapdoor. This claim holds for the following reasons:
First, since JCMl created the actual code for subl, it can
always obtain the data sent to subl without having to "play
tricks® such as publicizing wrong keys for subl. (Recall
that the data sent to subl is meant to be "consumed" by
subl and not processed for and returned to the caller, in
which case the advertiser could pe prevented from obtaining
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that data, as will be discussed in Chap*ter 5). Second, the
sender does not know what tasks will really be performed by
subl; he has to rely merely on the description of subl
supplied by the creator JCML. Thus even if we would
guarantee a unique name for every monitor and enforced that
the corresponding keys could be publicized only under ‘“he
correct unique name, the sender still had to trust tne
creator of a monitor as to the functioning and behavior of
that monitor, unless the sender were allowed (and willing)
to audit the monitor's code. The point we wish to
emphasize is that the publicizer of a monitor has no reason
for entering "faked" keys into Trapdoor for the monitor to
be publicized.

In the above example (Fig. 4.8) JCM_creator  and
dev_creator are monitors which should be considered as
"gystem routines™ and must in any case be trusted (the
creation of JCMs and virtual devices must not be entrusted
to the users). In the case of a user-created monitor, such
as subl, the purpose of using the alpha/delta keys is to
allow private communica*tion between subl and other users,
whereby the privacy is being protected against all monitors
other than the sender, the receiver, and the corresponding

publicizers of the sender and the receiver.

4. Application exanple I.

In [AmHO77] several existing languages were examined
for their suitapbility for solving protection pronlems. A
particular problem, called the "Prison Mail System", was
studiead for this purpose. In this chapter we demonstrate
the protection mechanisms of Id by giving a solution to the

above problem.
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Problem desgcription: Prisoners are confined to
individual cells and are able to communicate only via the
prison mail gystem. Every prisoner gives a sealed bundle
of letters to a guard. All bundles are delivered to a

postmaster who opens them, sorts the 1letters contained
inside , (without opening them), rewraps them into new
bundles for each prisoner, and relabels them for the
correct recipient. Then he returns all sorted bundles to a
guard who delivers them to the corresponding prisoners.
The prisoners' goal is to prevent the guards and the
postmaster from reading their letters or deriving any
information from their contents. In addition, each
prisoner is able to sign his letters with an unforgeable
signature in order to prevent the guards and the postmaster
from substituting faked letters or bundles, and to be able
to detect when a letter has been delivered (deliberately or
accidentally) to a wrong destinee.

Solution: In Id all prisoners pj, all guards g3, and
the postmaster m are each represented by a monitor. The
flow of information in the prison mail system is depicted
in Fig. 4.8.

Every prisoner may write a letter to any prisoner
during each delivery cycle, He combines all letters into a
bundle, which is a structure shown in Fig. 4.9. The
selector pj is the name of the prisoner (monitor) to which
the corresponding letter is to be delivered. Each letter
consists of a content, which is the value "text;", and the
name of the sender pg. Every letter must be sealed with
two keys: the first key dj is the delta-key associated
with the destinee and its purpose is to prevent any other
monitor from unsealing the letter as was discussed earlier.
The second key ag is the alpha-key associated with the
sender and it serves as a signature for identification
purposes - after the letter is delivered, the destinee may
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verify the sender's authenticity.

The bundle is forwarded by the guard to *he postmaster
without modification. The postmaster awaits *he arrival of
one bundle from each prisoner and then creates a new bunile
for each prisoner by rewraping the received bundles
according to their destinations. The new bundles, which
have the form shown in Fig. 4.13, are sent to the guard wno
distributes them among the prisoners. 1In Fig. 4.18, p3 1s
the destination monitor for the bundle. The selectors 1
through m carry the letters originating from the
corresponding senders pj tarough pp. The delta-key dj
which 1s the same for all letters in that bundle guarantees
that the letters cannot be unsealed by any monitor otner
than pg. Each of tne alpha-keys aj may be used by pg *o
determine the validity of the corresponding letter. Only
if the alpha-key associated (in Trapdoor) with the given
sender p; is equivalent to aj, is the letter genuine.

The above solution works under the following
assumptions:

1. The name of every prisoner joining the prison mail
system is entered into Trapdoor together with “*he
corresponding alpha/delta keys.

2. The guards and the postmaster do not P"sabotage"
the prison mall system by refusing *o deliver some or all
of the bundles. 1In this case the system would collapse
because the postmaster always awai*s one bundle from each
prisoner before starting the distribution of the sorted
bundles. Similarly, each prisoner awaits the arrival of a
bundle (except of the first initial bundle) pefore

producing reply letters.

Under the above assumptions the prisoners may exchanje
letters 1in arbitrary ways and be guaranteed tnat
a) no information can be derived from the conten*s of
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any letter by the guard or the postmaster,

D) the guards or the postmaster cannot substitute
faked letters or bundles for genuine ones, or create new
(fake) letters or bundles (this can not be prevented but
will be detected),

" ¢) tne postmaster cannot missort letters and cause
them to be delivered to wrong destinees (similar to b, this
will only be detected).

5. Application example II.

In the ADEPT-50 system {Wei69] one of the possible
security clearances 1is “eyes only", which means that the
so-classified information may be displayed on a terminal
screen but not in any other form, e.g. as a "hard copy".
We want to demonstrate how the Trapdoor mechanism may be
used to implement the above policy.

In dataflow all I/0 devices (i.e. . the corresponding
IDIs to which the devices are conecté&) are monitors. We
assume that the alpha/delta keys found in these monitors'
environments eta were supplied by the monitor dev_creator,
that also pupnlicized these monitors by entering them into
the Trapdoor-structure as described in the previous
section. The dev_creator can follow different policies in
deciding which Kkey to supply to each created monitor. It
could, for example, assign distinct keys to each individual
device, it could also group devices according to different
criteria and assign the same pair of keys to all members of
a group, e.g. all line printers or all remote devices
could use the same keys. In this example we assume that
all soft-copy terminals belong to one group using the same
delta-key "io_delta” which may be obtained from Trapdoor
under the path name <"dev_creator","io_screen"> by calling

io_delta <- use(Trapdoor ,req_key)
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where "req key" is the following structure
<"get_delta_key", <"dev_crea*or","io_screen">> .

The key io_delta may be attached +to the value v to be
confined:
v' <= {+io_deltalv

Note that io_délta is being attached as a prefix t*o the
(possibly empty) protection field of v, indicated by mm in
Fig. 4.11., This means that v' will be propagated through a
chain of monitor calls each of which will remove one key
constituting the protection field {io_delta.mm}. In order
for v' to be output, all keys constituting {io_delta.mm}
have to pe removed. By attaching io_delta as a orefix we
extend the cnain mm to the left. Hence the last monitor to
receive the value will not be the one associated with the
left-most key constituting mm, but rather the monitor
associated with io_delta. Following the dataflow
implementation of 1/0, which regu4r-.: that any value to be
output must pass through one of tne IDIs, i* 1is guaran*eed
that the value v' may be output only by an IDI *o which a
soft-copy device is attached, since such an IDI is the only
monitor able to remove the key io_delta.

6. Summary.

In this chapter we presented a mechanism which allows
the identity of a monitor to be established for the purpose
of

a) verifying the genuineness of data originating from

that monitor, and
p) confining data to be usable only py that monitor.

In principle, every monitor is provided with a pair of
unigque keys alpha and delta. All such keys are public,
obtained from a monitor Trapdoor provided for that purpose.
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An alpha-key may be attached only inside the monitor with
which it is associated, thus serving as an unforgeable
signature for that monitor. Any monitor receiving a value
carrying an alpha-key may verify the identity of the
sender, who was the only monitor able to attach that key.
A delta-key, on tne other hand, may be detached only by the
monitor with which it is associated, which gives the sender
of a value the guarantee that this value will not be
unsealed (and thus possibly misused) by any other monitor
but the desired addressee.

5. PROPRIETARY SERVICES

1. Introduction.

Most users of a computer system have the need or
desire to build on the work of others, i.e. wutilize
programs and systems written by other programmers. There
is a 1large variety of such routines, for example services
necessary to run programs (compilers, linkers, assemblers),
or to make the programming task easier and more efficient
(editors, debuggers, libraries of programmer-defined data
types), etc. An even broader category of services offered
by a computer utility are programs for a variety of
scientific and business applications.

All systems having the property that their wusers (in
the following wusually called lessees) are distinct from
their creators or owners (called lessors), whereby both

parties do not trust each other and assume the possibility
of mutual theft, destruction of information, or other
detriments, will be called proprietary services.*
Rothenbergv investigates in his thesis {Rot74} nine
important problems which must be solved in any practical
computer utility in order that it may offer proprietary

services in an environment that protects the interests of
all parties involved, in particular those of the lessees
and the lessors.

The goal of this chapter is to study problems related
to the establishment of such services and to give solutions
applicable to our dataflow systen. In Id there are
basically two ways for users to utilize programs written by

Similar problems describing “mutually suspicious
subsystems" have been studied by Schroeder [Sch72] and by
the designers of the HYDRA Operating System {CoJe75].
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other programmers.

I. A user may obtain the definition of a procedure
written by another programmer and apply it to some
arguments.

II. A user may send a request to a monitor instance
written by another programmer. Here, two situations can be
distinguished: The writer of the monitor definition could
create the corresponding monitor instance and pass a
pointer to it to the potential caller; or he could pass
the monitor definition itself to the caller and thus allow
him to create his own monitor instance.

From the above it follows that a proprietary service
in dataflow may be implemented either as a procedure or as

a monitor.

In previous chapters we have discussed the passing of
values among monitors and their possible confinement. We
did not yet consider the possibility of protecting thke
definition of a monitor or of protecting the pointer to a
particular monitor instance, and the consequences for the
corresponding create and use primitives. Similarly, we did
not discuss the confinement of arguments sent to a
procedure and the possible confinement of the procedure
definition itself, and the corresponding actions taken by
the apply primitive. In the sequel we will extend the
mechanisms for calling procedures [ArGoPl177al and monitors
[ArGoPl77] to include protection and show how the mechanism
proposed here, together with the facilities described in
previous chapters, offer satisfactory solut}ons to all nine
problems presented by Rothenberg and to several other

related problems.
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2. Rothenberg's nine problems and their relation

to dataflow.

In this section we discuss Rothenberg's nine problenms,
and give the solution to each problem for both the case of
a procedure and the case of a monitor acting as the

proprietary service.

The integrity of a proprietary service has to be
protected, i.e. the caller should be allowed to use only
prespecified entry points to the service, and similarly the
service should be allowed to use only prespecified return
points to transfer back to the caller.

Response

This problem is solved automatically through the
principles of dataflow [ArGoPl78].

I. The service is a procedure: In this case there is
only one possible "entry point®, which means that the
procedure definition and the necessary arguments are
supplied to a primitive apply, as described in Chapter Z,
which performs the execution. The results are then
returned to the <caller where they are assigned to
prespecified variables representing the only possible
“return points",

II. The service is a monitor: A monitor instance nay
have multiple "entry points", however, all of them are
prespecified by the monitor definition. The lessor has to
give the name of each entry point to the lessee in order to
allow him the use of that entry. Thus some entries may be
made inaccessible to the lessee. As was the case with
procedures, the results of the monitor's execution are
returned to " the caller where they are assigned to
prespecified variables representing the only possible

“return points"®,
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Problem 2

It must be possible to pass arguments and results
among procedures and monitors without compromising the
secrecy or integrity of any information which the lessor or
the lessee wishes to kee§ secret.,

' a) The lessor providing a service netds a guarantee
that the lessee cannot gain access to any information which
is not part of the service.*

b) The lessee needs a guarantee that the borrowed
service cannot gain access to any information which is not
passed to it by the caller as an argument. This problem is
often refered to as the Trojan Horse Problem.

Response

a) I. The service is a procedure: This problem is
solved automatically through the principles of dataflow.
The definition of the procedure service has to be passed to
the user explicitly in the form of a token which contains
all information necessary to utilize that procedure. In
order to be wutilized, the procedure abfinition has to be
supplied to the apply primitive which carries out the
execution. Thus the possession of a procedure definition
does not enable the lessee to gain access to any
information outside of that contained in the received
token, »

II. The service is a monitor:‘ Similar to the case of
a procedure, the lessee has to be given a token which
contains either the monitor definition or a pointer to a
monitor instance created previously. 1In either case the

* de usually needs a guarantee that even the information
contained within the service (e.g. the implementation of
the service or the knowledge of other objects accessible
from the service) cannot be extracted by the caller. This
extended concern will be considered under Problem 3.

Page 87

lessee has no way of galning access to any information
outside of that contained in the received token, since the
only operations that may be performed on a monitor
definition or a pointer to a monitor instance are create
and use, respectively.

b) I. The service 1is a monitor: The calling
mechanism of a monitor requires that all values needed for
that computation be defined inside the monitor itself or
supplied to it as arguments during the call. This
guarantees that a service implemented as a monitor cannot
gain access to any information which was not explicitly
given to it by the 1lessee. (The protection of the
arguments themselves will be studied under Problem 4).

II. The service is a procedure: For any call to an
Id procedure the caller supplies, in addition to the
required arguments, an implicit parameter eta. This
represents the caller's current eonvironment [ArGoP178}%,
which is a list of values availabl® to that caller. A
value from the eta-list is used by the called procedure in
case that value was neither defined inside the procedure
nor passed to it as an explicit argument. Only this
constitutes a potential danger for protection because a
borrowed procedure could gain access to sensitive
information from the eta-list and make it available to a
"spy". The caller of the procedure would never cone to
know about this undesired information leak. To solve this
problem it is necessary to give every user the power to
control his eta-list by specifying those values which may
or may not be used as implicit parameters for a particular
procedure call, or by entirely inhibiting the use of the
eta-list on any desired call. We will investigate this
problem in section 3.1, after having introduced nechanisnms
for tﬁe protection of ©procedure and monitor definition

* In [ArGoP178] eta was refered to as delta.
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values.

Problem 3 .

All sensitive parts of a proprietary service and the
methods employed have to be protected from being stolen.
This ingludes

a) all intermediate results which could be misused to
deduce information about the principles and methods
employed by the service, and

b) the program code itself,

Resgonse

a) The inherently functional nature of dataflow
prevents access to any intermediate result” produced during
a procedure or monitor execution and not explicitly output
as a final result. As described earlier, the only way to
employ a service implemented as a procedure is to supply
its definition to the primitive apply which performs the
execution and returns the results to the caller. The same
holds 1in the case of a monitor where the pointer to the
monitor instance has to be supplied to the primitive wuse
which carries out the passing of parameters and results
between the caller and the monitor. The results obtained
from the apply and use primitives are the only values
accessible to the caller,

b) By “"program code" in dataflow we mean the
definition of the procedure or the monitor that represents
the service.

I. The service is a monitor: 1In this case we have to
distinguish the following two situations:

1. The creation of the monitor instance is performed
by the lessor, and the lessee is given only a pointer to
that instance. In this case the lessee has no way of
obtaining the dJdefinition (code) of the corresponding

monitor.
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2, The lessor may give the monitor definition itself
to the lessee thus allowing him to create and use his own
instances of that monitor. The only operation allowed on a
monitor definition 1is create which creates a new monitor
instance. Even though the lessee is in possession of the
monitor definition, he is still not able to “read" it,
where "read" means to output the definition itself, or to
derive and output some information from its contents. This
is because outputting a value requires its conversion from
an internal to some external representation. If an attempt
is made to output a monitor definition, the routine
performing such an undefined type conversion will thus
simply fail, preventing the monitor definition from being
output. )

II. The service is a procedure: In this case the
entire definition must be given to the lessee in order to
be applied. However, as was the case with a monitor
definition, the possession of a procedure definition allows
the lessee to wutilize it by sending it to an apply
primitive, but it does not enable him to output it, since
the routine converting values into their external
representation will fail when confronted with a value of
type procedure definition. Thus in terms of conventional
systewms the lessee is able to "execute" the procedure but

not to "read" its code.

(Remark: In case the designer of the system wishes to
allow a procedure or a monitor definition to be output, and
thus provides the necessary conversion routines, a
mechanism must be introduced which will allow the procedure
code to be protected without affecting the protection of
the arguments and results of that procedure. Such a
mechanism, allowing the "execute but not read® policy for a
procedure definition, will be discussed in section 3.4).
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Problem 4

The information contained in the arguments passed to a
proprietary service has to be protected. This problem is
often refered to as the "Confinement Problem” (Lam73].

Response
I. The service is a monitor: In this case the

protection mechanisms described in Chapter 3 allow solution
of the even more general “selective confinement problem”.
This requires that only certain (selected) values passed to
the service as arguments are to be protected such that no
user other than the caller can obtain any information
derived from those values. For example a structure
consisting of two values may be sent to a monitor, whereby
only one of the values is protected by attaching a key to
itc. (A detailed example of the selective confinement
problem is given in section 3.8).

II. The service is a procedure: As opposed sto
monitors, dataflow procedures are memoryless and hence
cannot record any information derived from the processed
arguments, However, a procedure may call a monitor during
its execution and send it sensitive information. If this
monitor were accessible to a "spy", an undesired
information leak could occur. In order to solve this

problem we provide the following extensions:

Procedure application with protected arguments.

In order to solve the confinement problem the lessee
must be able to attach a key to the arguments sent to a
procedure to prevent the service from disclosing any
information derived from those arguments. This is
analogous to the confinement of values sent to a monitor

instance as was discussed in Chapter 3. The expression
rl,r2 <- p(af,aZ)kex k
which is the shorthand notation for the two expressions
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res <- apply(p, <al,a2>{+k}){-k}

rl,r2 <- res{l],res[2]
will attach the key k to the argument structure <al,a2>
before sending it to the instantiation of p. This
structure (arg) and the result structure res are shown in
Fig. 5.1, The key k will be detached from the result
structure res when res is returned from the execution

domain of p.

In the above case the entire argument structure was
protected with one key at the top level. 1In order to solve
the more general selective confinement problem, the 1lessee
must be able to protect only certain arguments, i.e. only
parts of the structure sent to the betin actor. Similarly
he must be able to detach keys selectively from the result
values returned from the procedure application.

‘In the most general case all arguments may be
protected individually with possibly distinct keys, as in

the following statements:

rl',r2' <- p(al{+kl}, a2{+k2})
r1,r2 <- rl'{-k3}, r2'{-k4}

The argument structure (arg) and the result structure (res)

are shown in Fig. 5.2.

Problem 5
A proprietary service must not be able to spy on its
caller by hiding a few bits in an unused portion of its

result.

Resgonse

This problem is a special case of Problem 4 and {s
thus covered by the proposed mechanisms.* That is, any

* This is not the case in Rothenberq's thesls, where
additional mechanisms have to be provided.
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computation involving protected values will produce results
with the same protection. "Hiding" information in an
unused portion of a value can be done only by means of an
Id computation which will produce protected values in case
the information to be hidden was protected.

P}oblem 5

A proprietary service may attempt to leak sensitive
information through a channel whose real purpose is
legitimate. Such a channel might exist for the preparation
of invoices for services rendered. The problem is to
establish the communication necessary for billing without

allowing communication for spying.

Response
This problem is solved as a special casé of the

"selective confinement problem" discussed under Problem 4.

(A detailed exanmple is given in section 3.8).

Problem 7 i

There is a conflict between the lessor (maintainer) of
the proprietary service who wants to modify it either to
remove bugs or to upgrade its level, and the users who
usually don't like to see the service change at all, unless
it is in response to a problem they are having with it.

Response

In dataflow no value (fincluding a procedure or a
monitor definition) can ever be modified. The "changing"
of a service always implies the creation of a new copy of
the original service which incorporates the desired changes
leaving the old copy unchanged and still available to the
users. These principles guarantee that no service once
created can ever .be modified., (Of course,; the user must be
sure that he never temporarily gives up the service and
then requests it again for its next use. If such were the
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case, he would be supplied the 1latest version of the
service rather than the old one.)

Problem 8

An enemy may cause a service to stop working or to
produce wrong answers at a particular time chosen by the
enemy (for example at the time of a demonstration of the

system) .

Resgonse

In the case of a procedure, this danger is completely
eliminated, because every user obtains his own copy of the
procedure definition and the execution domain is
inaccessible to everyone but the caller. 1In the case of a
monitor, the only potential danger is that an enemy could
keep the service busy by sending it a series of (cdumny)
requests and thus delaying the execution of the wuser's
request, However, such a delay nay be caused only by a
user (enemy) who had been explicitfy given a pointer to the
monitor and thus granted permission to use it. This fact
considerably reduces the severity of this danger. Another
factor mitigating strongly against an act of sabotage is
the independence of a dataflow monitor. The enemy has no
possibility to come to know, much less to influence, the
time at which a particular request to a monitor will be
honored, since such scheduling is completely dependent upon
the internal coding and the current environment of the
monitor. Thus the only way to learn about the monitor's
behavior and its environment is by experimentation with it
and gathering statistical and probabilistic data. of
course, if a monitor takes no steps to protect itself
against such circumstances (i.e. being kept busy by
“dummy” requests) an enemy could affect performance. The
point here, though, is that no user can force the monitor

to busy itself in damaging ways. (A problem related to the
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above is the problem of “sneaky signaling” using delays of
the execution time. This will be discussed in detail in
Chapter 6). -

Problem 9

Competitive owners of a proprietary service may have
the desire to withhold the use of their services from their
competitors, i.e. to prevent the lessee from making the
service he is authorized to use available to other users.

Response
In order to solve this problem the 1lessor of the

service must be able to {(selectively) protect all results
returned to the caller by attaching to them a unique key
which may be detached only within the caller's monitor.
This guarantees that no user except the "legal" lessee of
the service can utilize any results output by the service.
Such a key, called delta, which is detachable only by the
particular monitor with which it is associated, was
introduced in Chapter 4. It may be obtained from the
{public) monitor Trapdoor by calling
ggg(Trapdoor,<get_de1ta_key, path>)

where "pach“ is a sequence of monitor names in the
hierarchical étructure maintained by Trapdoor, leading to
the monitor whose delta-key is to be obtained. The creator
of 'a proprietary service (procedure or monitor) p who
wishes to restrict the use of p to only a particular lessee
Ll may use this facility and cause the delta-key associated
with L1 to be attached to all results returned from that
service in one of the following ways:

a) The service may itself perform the above call to
Trapdoor and attach the so-obtained key x to all output
resualts, (The call to Trapdoor is indicated by the dashed
lines in Fig. 5.3 for the case of a procedure).

b} The lessor may perform the call to Trapdoor and
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supply the so-obtained key x to the service as follows:

I. The service is a procedure: 1In this case the key
may be supplied in the form of a "frozen” parameter. As
will be shown later, a procedure definition may be provided
with certain values called "frozen" parameters. Each of
these values is associated with one formal parameter and is
supplied instead of an actual parameter when the procedure
is applied. Thus "freezing" values with. a prccedure
definition actually produces a new procedure definition
which does not require the values previously "frozen" with
the procedure definition to be supplied by the caller as
actual parameters.

II. The service is a monitor: In case the lessor
creates the monitor instance, he supplies the desired key
as an actual parameter to the primitive create. This key
is then retained by the monitor and may be attached by that
monitor to any of its inputs. 1In case the entire monitor
definition was supplied to the lessee, the key.may he
frozen with the monitor definition in the same way as in
the case of a procedure definition. Then upon creation of
the corresponding monitor instance this key will become
part of the monitor's internal state as in the previous

case.

The incorporation of the above facility is shown in
Fig. 5.3 for the case of a procedure. The arjument
structure arg{kkl} consisting of the two values al and a2
is sent to the execution domain of p, which produces the
value res{kkl} as its result. (The value res may also be
elementary or a structure). The key kl, obtained fron
Trapdoor, is attached by the procedure as a prefix to the
protection field of res, which implies that not only all
keys constituting the protection field kkl have to be
removed from res', but also the key kl, in order to utilize

any information derived from res'.
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3. 1d-specific problems related to proprietary services.

3.1 Protection of procedures.

The definition of a procedure is a value carried by a
token 'and thus it may be protected by a protection field
just like any other value. It could acquire this field,
for example, when passing through a switch with a protected
control token. We also allow a key k to be attached to a
procedure p explicitly by the following expression

p' <= p{+k}

In order to apply a procedure, it has to be supplied
together with the necessary- arguments to the primitive
apply (consisting of the two actors A and A-l), which
carries out the execution and returns the results to the
caller. The compilation corresponding to the procedure
application p(arg) 1is shown in Fig. 5.4, whereby the
assumption is made that the values p and arg (where arg may
be a 1list of arguments) are protected with the fields kk@
and kkl, respectively. After passing the A actor, the
argument arg is protected with the expected protection
field {kk8 & kkl}. It 1is necessary for the protection
field kk#, carried originally by the procedure definition
P, to become part of the protection field carried by the
argument in order to prevent leaking of information which
otherwise would be possible as demonstrated by the
following example. ) .

Assume that two procedures pl and p2 require no
arguments and always output the wvalues 1 and 2,
respectively. Then the following expression will return
the values 1 or 2 according to the value (true or false) of
the predicate C:

q <- (if C(secret) then pl{() else p2() )
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In case the value of "secret" tested with C is
protected , the value q must also be protected, since it
encodes information about the value “secret”; otherwize
leaking of information could occur. This requirement is
satisfied as shown by the compilation of the above
expression depicted in Fig. 5.5. The procedure pl or p2
selected on the basis of the protected control value c{kk}
will acquire the protection field kk while passing through
the switch. This field will be inherited by the results (?
or 2) and thus no leaking of information derived from the

value "secret" is possible.

3.2 The procedure environment,

The environment of a procedure is a structure of
valués called eta, where the selectors of that structure
are strings called the name of the associated value. The
environment may hold procedure values only. It is supplied
to every procedure application as an implicit nvparameter,
for example, the application p(a,b) is Jjust as if
p(a,b,eta) had actually been written. 1If a procedure nanme
q is used within the called procedure p and the following
conditions hold,

a) q is not defined inside the procedure p (it does
not appear on the left-hand side of an assignment
statement),

b) g was not passed to p as a parameter, and

c) q is not the name of the procedure itself (i.e. q
is not calling itself),

then g is interpreted as a reference to the environment eta
[ArGoP178]. Consider the following procedure p:

P <- proc(x, sin)
(tan <- proc(y)( ... )
resl <- tan(x);
res2 <- sin(x);
res3 <- cos(x)
return resl,res2,res3)
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The values resl, res2, and res3 returned from p are
the results of applications of the procedures tan, sin, and
cos to the argument x, respectively. The function tan is
defined inside p, sin 1is passed to P as an explicit
parameter, and cos is selected from the environment eta

passed to p as an implicit parameter.

The environment is treated as any other argument ~ it

becomes part of the argument structure arg sent to the
begin actor. In case a protection fi.2d kkl is attached to
the structure arg, this field will protect all arguments
constituting arg, including the environment eta. Thus all
procedures selected from eta and all results obtained from
these procedures will be protected with the field kkl,
which provides a solution to the Trojan Horse problem
caused by eta and discussed under Problem 2b. (The

protection of eta is shown in Fig. 5.8).

A problem arises in the case when fhe lessee does not
wish to attach a key to the arguments passed to the
proprietary procedure p. Here the environment eta is
passed to p unprotected and thus p is granted free access
to all procedures constituting eta and could make them
available to a *“spy" by sending them to a monitor. The
caller of the procedure would never come to know about this
information leak. Since several problems related to
procedures and environments are still under investigation
by the Dataflow Architecture Group, we outline only briefly
the proposed mechanisms to control the environments of
procedures. It is necessary to provide some primitives
which may be used by the caller of a procedure to exercise
control over the environment passed to that procedure. It
is not difficult to provide a primitive which will prevent
eta from being supplied to the application, however, from
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the point of view of security, we believe, it is better to
force the caller to specify the presence rather than the
absence of eta. The default situation should be: do not
supply eta. The calling mechanism for a procedure when eta
is to be supplied then could have the form
p(xl, ... (XN,eta), where xl, ... ,XxN are the actual
parameters for p. The reason for this is the princinle
advocated for the design of protection systems which
Stresses that access to objects bhe based on permission
rather than exclusion {Sal74].

In order to allow more flexible control over eta, the
caller should be able to delete arbitrary procedures from
eta while supplying it to p, e.g. the statement

p{xl, ... , xN, eta-[sell)-(sel2})
will supply eta to p with the values at selectors sell and
sel2 removed. Another convenient extension is to implement
eta as a hierarchical structure, which would allow the
caller to easily delete Brbitrary substructures
representing, for example, libraries or any other

collections of (related) procedures.

3.3 "Frozen" procedure parameters.

Every dataflow procedure is a value of type procedure,
the representation of which we will draw as a structure as
shown in Fig. 5.6. Note that a square bhox heads the value,

which is to emphasize that a procedure is a value of its
own type and is not itself a structure. In Fig. 5.4, ganna
represents the procedure body whose detailed encoding is of
no consequence to this discussion and is left unspecified,
Concerning the other components, the "name® records the
name of the procedure (if any) as a string. The "3"

comporent specifies the number of parameters. The

"formals" specifies for each parameter position ij for 3

from 1 to N) the name of the parameter as a string "parj“.
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The meaning of "actuals” is explained in the sequel.

A dataflow procedure, when applied, must be given as
parameters all values that it may access during its
execution, other than those values it computes internally,
However, a primitive compose is provided which allows the
programmer to “freeze" formal parameters to particular
actual values prior to application. The "freezing" is
implemented by appending the parameters to the procedure
under the selector "actuals" mentioned earlier [ArGoP178}.
This will yield a new procedure definition which, when
applied, requires the caller to supply only those
parameters that were not previously "frozen" with the
procedure definition. Consider the following procedure
which computes the positive root of a quadratic of the form

ax2+bx+c=0
p <~ proc(a,b,c) ((~b+(bT2-4*a*c)19.5)/(2*a))

The following composition

p' <- compose(p, <<a:l1>,<b:1>>)
produces a new procedure p' that requires only the
parameter ¢ to be supplied. The parameters a and b both
have the valve 1, thus p' computes the positive root of a
quadratic of the form x2+x+c=8. The procedure p' has the
same effect as the following procedure:

p* <~ proc{c) ((~1+(172-4*1%c)T@.5)/2*1).

In order to prevent leaking of information we have to
guarantee that composing "frozen" parameters with a
procedure cannot be misused to encode sensitive
information, Potentally, information could be encoded in

a) the choice of the procedure to be composed,

b) the position of the formal parameter to be filled

in with a "frozen" value,
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c) the number of parameters fo be filled in, and
d) the choice of the value used as the "frozen"
parameter,
as demonstrated by the following examples, respectively:

a) compose((if C(x) then pl else p2) ,<<arg:par>>)

b) if C(x) then compose({p,<<argl:par>>)
else compose(p,<<arg2:par>>)

c) if C(x) then compose(p,<<argl:parl>,<arg2:par2>>)
else compose(p,<<argl:parl>>)

d) compose(p,<<(if C(x) then parl else par2»>)

Assume that x in the above cases is some protected
information carrying a protection field kk, and C is sone
predicate to test x.

In the first three cases the procedure definitions pl,
P2, and p have to go through a switch, where the control
token ¢ carries the protection field kk. After passing the
switch the procedures will also carry kk as shown in
Fig. 5.7 for the case a). Hence, the procedure code and
all results obtained by applying that procedure will be
protected with kk and do not cause any leaking of
information.

In case d) the parameters parl and par2 will g»
through the switch, acquiring the protection as shown in
Fig. 5.8. The chosen parameter in its protected form |is
then composed with the procedure p. When the resu " injg
composed procedure is applied, the "frozen" parameters ‘are
sent together with the actual parameters to the execution
domain. The protection of an argument remains the sane
when that argument is "frozen" with the procedure instead
of being supplied das an actual parameter. Thus, with
respect to protection, a "frozen" parameter is no different

from an actual parameter.
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The complete procedure call, incorporating all
features discussed so far, is shown in Fig. 5.9, which is a
generalization of the mechanisms shown in Fig. 5.3. (We
omit showing the call to Trapdoor). The extensions
comprise the following:

1 We assume that the parameter a3 was originally caried

by p as a “"frozen" parameter. a3 is protected with the '

field kk2 which a3 could have acquired when passing through
a switch prior to being composed with p, as described
above. Fig. 5.11 shows p after the composition with a3.
The value res returned from the procedure application
is protected with the field kk3 which, depending on the
computation between the actors begin and end, is some
combination of the fields kkg, kkl, and kk2, carried
originally by the procedure definition, the argument
structure, and the frozen parameter a3, respectively,

3.4 Protection of procedure components.

In the current implementation of 1d, only the
operations apply, compose, and the operations to attach and
detach keys are defined over procedures. Future
development of the system, however, May show that other
operations are also necessary. For example, the ability to
output the definition of a procedure may be useful. 1In
this case the creator of a proprietary procedure will have
the need to protect the code of the procedure, thus
preventing it from being stoléen (output), but to allow the
lessees to apply it and to utilize the results. 1In the
sequel we will describe a concept which allows the
protection of individual components constituting a
procedure definition, e.g. the protection of only the

procedure body (code).
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As described in section 3.3 the representation of a
procedure is a structure as shown in Fig. 5.5. Assume that
our goal is to allow the user to attach a key k to only the
procedure body, i.e. to create a copy p' of the procedure
p with the key k attached to the value "ganmma™ at the
selector "body", as shown in Fig. 5.11. The following
syntax (which corresponds to the syntax for protecting
substructures as was discussed in section 7 of Chapter 3)
may be used to perform this operation:

p' <= p{{"body"]+k} .

An implementation of the above statement is shown in
Fig. 5.12. The attach-sufx actor receives the procedure p
and a structure pk (constructed by the compiler), which
carries the key k to be attached to the value gamma at the
selector "body" of p. (This is analogous to the situation
in the case of structures). As for any type, type
procedure has an “"attach-sufx" operator defined over values
of that type. (In the case of a programner-defined data
type, introduced in Chapter 7, the “attach-sufx" operator
may be a procedure defined by the user for protecting
values of that type). In case the attach-sufx actor
receives a procedure p and a simple key, it will attach
this key to the entire procedure. If on the othar hand it
receives a structure (such as Pk} instead of a simple key,
"attach_sufx" for the type procedure is devised such that
it attaches the key k carried by pk only if the desired
selector (carried also by pk) is the string wvalue "body",
otherwise an error will occur. This mechanism guarantees
that the user may attach a key to the code of p, but daes
not allow him to perform arbitrary operations on

procedures, e.g. to perform a select or an anpend
operation on p. The behavior of the actors attach-prfx,
detach-sufx, and detach-prfx is analogous to that of
attach-sufx, i.e. in case a structure is supplied¢ %o the

actor instead of a simple key, the actor calls the
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corresponding procedure associated with the type
specification and supplies to it the procedure p and the
structure pk. Only 1if the structure pk consists of two
values one of which is a key k and the other is the string
"body", does the procedure perform the desired operation;

otherwise an error will occur.

The above mechanism enables the programmer to protect

the procedure body independent of the protection of the

entire procedure. This implies that the arguments supplied
to p at application will not inheri* the key k carried by
the code of p, as shown in Fig. 5.12. (We use the notation
p{{"body"]k} to indicate that only the procedure code
carries the key k). The A actor 1is defined so that a
protection key on the code has no effect on the protection
fields of the arguments to the procedure, nor on the
results produced by any actors in the procedure. The
consequence is that the results returned from the
application of p will not carry the key k and thus may be
disposed of freely by the lessee, even though the procedure

code was protected.

3.5 Protection of the pointer to a monitor instance.

In case a proprietary service 1is implemented as é
procedure, the entire procedure definition must be given to
the lessee as was discussed in the previous section. In
the case of a monitor, on the other hand, only the pointer
m to the monitor instance need to be given to the lessee.
This pointer is a value carried by a token and it may be
protected with a protection field, inherited, for example,
from the definition used to «create the corresponding
monitor instance. 1In this case we requirée that the value
s' passed from the U actor to the entry of the monitor
instance be protected with the field computed as
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{kkl & kk2}, where kkl and kk2 are the fields carried by
the pointer m and the incoming value s respectively, as
shown in Fig. 5.14. The reason for forcing kkl to becore
part of the protection carried by s' is to prevent leaking
of information encoded in the <choice of a particular
monitor, as demonstrated by the following exanple,
analogous to the example presented under Problem 3, which
demonstrated the use of procedures instead of monitors.

-Consider the two monitors ml and m2 which, when
called, return the values 1 and 2 respectively, regardless
of the input values. Then the following expression will
return the value 1 if the predicate P(secret) is true, and
the value 2 otherwise:

r <- use((if C(secret) then ml else m2), anything)
In case the value "secret" was protected with some field
kkl, we have to require that the protection field carried
by the result r be equal to or stronger than the protection
field kkl carried by "secret", otaerwise undesired leaking
of information will occur. This requirement 1is satisfied
as shown by the compilation of the above expression
depicted in Fig. 5.15. The value "anything®™ sent to one cof
the monitors ml or m2 will have the protection {kkl & kk2},
which implies the same protection {kkl & kk2} for the
results 1 or 2, returned from the corresponding monitor,

There is an important conceptual distinction between a
monitor and a procedure, namely the fact that a use
statement (a monitor call), as opposed to an apply
statement (a procedure call), is not purely functional and
may produce side-effects, This is due to the ability of a
monitor to record information about values received, which
in its turn may influence the processing of subsequent
calls to that monitor. Consider again the statement

use((if C(secret) then ml else m2), anything)

The value "anything" is sent to only one of the monitors ml
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or m2, This fact may under certain clrcumstances be
detected by a "spy”, for example by calling both monitors
ml and m2. Only the call to that monitor which contains
the protected value "anything”, will yield an error, the
other, on the other hand, may return some unprotected
value.. We will return to this problem in the chapter on

"Sneaky Signaling".

3.6 Protection of a monitor definition.

_ An instance of a monitor is created by supplying the
monitor definition m_def and a value int_state as the
initial internal state of the monitor to the primitive
create: )
m <~ create(m_def, int_state)

both values m_def and int_state may be protected with
possibly distinct protection fields kkl and kk2
respectively. The value m, which is a pointer to the
created monitor instance, will inherit the field kk1
carried originally by m_def, as shown {n Fig. 5.16. The
value int_state will retain its protection field kk2 after
being sent to the created monitor instance as its initial
internal state. The reason for forcing m to inherit
n_def's protection field kkl is again to prevent leaking of
information, which this time could be encoded in the choice
of a particular monitor definition supplied to the create
primitive, as demonstrated by the following example: The
expression

m<~create((if C(secret) then m_defl else m_def2),int_state)
creates a monitor instance using one of the definitions
m_defl or m_def2 depending on the value "secret" tested
with the predicate C. If the chosen monitor definition is
protected with a field kkl inherited from C, then so will
the pointer to the monitor instance m, which in 1its turn
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implies that all results obtained from that monitor will be

. protected with kkl. The compilation of the above

expression is shown in Fig. 5.17.

3.7 Testing for the existence of a protection field.

In this section we introduce a primitive which allows
a value to be tested for its protection. This is
particularly useful for a monitor that must be able to
reject requests which do not meet the protection
conventions required by that monitor. The need for such a
facility is demonstrated by the following example. .

The reader/writer problenm.
In [ArGoPl77] a monitor called resource_manager was

presented which implements various versions of the
reader/writer problem presented in [CoHePa7l} and [Hoa74)}.
Two entries to the monitor are provided that accept read
and write requests, respectively. Assume that the
corresponding calls have the form
use(resource_manager.read,requestl) and
use(resource_manager.write,request2)
where requestl and request2 are structures as shown in
Fig. 5.18 and Fig. 5.19, respectively. The write-request
stores (writes) the value val under the name n. This value
may be retrieved (read) at some later time by using the
read-request and supplying the name n.

The monitor is equiped with a scheduler which keeps
track of all active and waiting readers ané writers, and,
according to its current state, it produces trigjers to
allow the next reader or writer to proceed. Assume that
requests are arriving from different users and each |is
protected with a different protection field. We have to
guarantee that the monitor is abhle to wupdate {ts current

state (counters specifying the number of active and waiting
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requests) according to the incoming requests without
causing the counters to inherit the protection of the
requests. Otherwise the monitor could collapse, since two
requestes could carry incomparable protection fields that
"pollute” the monitor's scheduler eventually leading to a

protection wviolation. One way to do this is to let the

monitor mark all requests coming from the read and write
entries with different tags, for example r and w, as shown
in Fig. 5.26 and Fig. 5.21 for the corresponding requests
from Fig. 5.18 and Fig. 5.19. If we assume that requestl
and request2 were originally protected with the protection
fields kkl and kk2 respectively, then these fields are now
protecting the corresponding "request" substructures in the
new structures requestl' and request2'. The scheduler may
perform the selection request{"tag"] on any incoming
request and obtain the unprotected value r or w, which may
be used for internal scheduling without "contaminating®
(protecting) any of the counters used by the monitor. Thus
in the above implementation the monitor is able to count
any of the incoming (protected) requests for scheduling
purposes, but it is not able to derive any information from
the contents of the requests, e.g. the name (n) or the
value (val). 1In other words, the only information the
monitor may record about a request is the fact that the
request arrived and whether it was a read or a write

request, but nothing more.

A monitor with the same purpose as the above
resource_manager could be implemented in'a different way:
only one entry is provided for both read and write
requests, in which case the caller must specify the desired
operation (read or write) as part of the request. The
corresponding calls then have the form:

use(resource_manager,requestl)

use(resource_manager,request2)

where requestl and request2 are the structures shown in
Fig. 5.22 and Fig. 5.23, respectively. 1In this case the
monitor, in order to be able to distinguish between reald
and write requests, has to perform the selection
request{"operation"). Since the result of this selection
is wused by the scheduler to update its internal counters,
it must not carry any protection. This implies that no
protection may be carried by the request as a whole, yet
the values n and val may be protected. If this is not
guaranteed, then the updating of the counters will produce
protection errors since the internal state will he
contaminated as a result of updating, and the monitor will
collapse. Hence, it is imperative for the monitor to be
able to test for the absence or the presence of protection
fields on certain values. For this purpose we provide a
primitive protected, which accepts any Id value v as input
and outputs the value true if v carries any orotection
field, and the value false otherwise. In both cases the
output value is unprotected, regardless of the protection
of the input value, as shown in Fig. 5.24 and Fig. 5.25.
This facility allows the monitor to test whether the value
at the selector ‘"operation" (Fig. 5.22 and Fig. 5.23) is
unprotected:
r <- protected(request{"operation"])

If r is false the monitor will schedule the request for
processing according to the desired policy, otherwise it
may return an error message to the caller or take sone
other action without affecting the state of the internal

counters.

We wish to emphasize that the protected primitive does
not compromise the protection mechanisms by introducing a
way of leaking information even though it is an actor which
actually decreases the protection of its input value by

producing an unprotected result. This is due to the fact
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that no computation is able to produce a value which only
under certain conditions may be unprotected, and where
these conditions are based on some protected information.
In other words, the expression

(if C(x) then f(a) else g(b))
which .outputs some value depending on the (protected) value

X, tested with a predicate C, will never output an’

unprotected value, regardless of the values of £, 9, a, b,

c, or x.

4. An application example.

The purpose of this section is to present a concrete
example which incorporates several of the features
discussed so far. In particular we show the solution to
the selective confinement problenm pointed out by Lampson

{Lam73]. Assume that a user called *lessor" provides. a

proprietary service implemented as a monitor which
calculates the income tax for any lessee (represented by
some other monitor) who supplies to it the necessary
information, such as the salary, the deductions, etc. In
addition the nmonitor calculates a bill for the services
rendered, which it reports to the lessor. Since a lessee
of the service does not trust the service, he wishes to
prevent certain sensitive information (e.qg. the salary)
from being disclosed to any other wusers including the
lessor of the service. Assuming that the monitor is
mischievous, we will demonstrate how attempts to disclose
sensitive information will be prevented. Another problem
shown in this example is the identification of lessees,
necessary for accounting purposes: it must be guaranteed
that no lessee can employ the monitor under some other
lessee's name, who then would be billed for services he

never received.
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Assume that in order to employ the service the
following command must be issued. (The program for the
monitor is given in the Appendix).

use(tax,s)key al

tax is the monitor's name and s is the data supplied to
tax. The value s consists of three parts as shown in
Fig. 5.26. The value "who" is the name of the lessee
performing the above call. “fd" and "sd" are the data
necessary to calculate the tax and the bill, whereby "sd"
is the sensitive data which the lessee wishes to keep
secret, and "fd" is any other (free) data, which may be
used, for example, to calculate the bill for services
rendered. The lessee performing the above call is required
to attach his own alpha-key al to s while sending s to the
service. Recall that this key can be attached only by the
corresponding lessee and may thus be used by the service
for identification purposes as follows:

The service first obtains the alpha-key associated
with the name "who" by calling the monitor Trapdoor (given
in Chapter 4):

al'<-g§g(Trapdoor,"get_alpha_key”,(JCM_creator,s[l]))
The service then tries to detach from s the key al’',
associated with the monitor given by the path
<JCM_creator, s[1]>:
s' <~ s{-al'}

In case s' is an error value, which 1implies that the
alpha-key (al') associated with the name "who" was not
identical with the key {al) attached to s, (i.e. the
caller entered the name of some other moniter under "who"),
then the error message "wrong identificatien®™ is returned
to the <caller instead of the desired value (the tax).
Otherwise the service computes the values for the tax and
the bill using the structure s' and possibly some internal
data given to the monitor upon creation. The following
statements represent the calculation taking place inside
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the monitor tax:
tax <- f1(s*[1l}), s'I[2}], s'[3], internal_data)
bill <~ f£2(s'[1}, s'[2], internal_data)
The value "tax" is returned to the lessee (by the exit
actor), and "bill* is sent to the lessor by the statement
. use(lessor,bill) .
Since "bill" was computed using only unprotected values, it
may be disposed of freely by the lessor. The "tax", on the
other hand, is protected with the key dl inherited from the
value s'[3]). In the sequel we will show that any
information derived from the protected value s'{3] can
never be disclosed to a user other than the legal lessee:

A value produced by a computation which involves s'[31
will be protected with the key dl. The service may attempt
to disclose such a value, called "stolen_data"; to the
lessor or some other (unauthorized) user. According to our
design philosophy, "stolen_data" may propagate potentially
to any monitor in the systen. The point 1is that
"stolen_data” is protected with a key ki, which 1is known
only to the lessee. This key guarantees that any IDI in
the system will refuse to output a value protected with k1,
and hence the lessor (and all other  users except the
lessee) will not be able to output the value "stolen_data"
or any other value derived from "stolen_data®"., The lessee
is the only wuser able to detach k1l and thus he may
determine the further destiny of the value from which he
detached the key k1.

Several other approaches may be taken by the service
when attempting to disclose sensitive information. The
service could display certain patterns of behavior
observable by some other monitor which could be misused to
encode secret information. This category . of problems 1is
usually refered to as "sneaky signaling” and is the topic
of the next chapter.

e e o e e .
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We summarize the above example, which incorporates the
solution to the selective confinement problem:

A lessee is able to employ a service provided by a
lessor and, while doing so, selectively protect certain
sensitive values sent to the service. This guarantees that
these values can never be utilized by any other user bet
the lessee himself. The service, on the other hand, is
capable of verifying the identity of a lessee and to
calculate a bill using the unprotected information which it

sends to its lessor for accounting purposes.

5. Summary.

The goal of this chapter was to study requirements
which must be satisfied 1in order to provide proprietary
services in a dataflow system. We oriented our research
towards the solution of nine particular problems pointed
out by Rothenberg. Essentially, t;e problem comprises the
need to provide mechanisms which will allow two distinct
mutually suspicious parties, called the lessor and the

lessee, to coopoperate in the following way. From the
lessee's point of view the problem is to prevent the
service from disclosing sensitive information received from
the lessee, to other users. This is usually refered to as
the (selective) confinement problem. The service must also

be prevented from accessing any objects belonging to the
lessee, unless they were passed to the service as
parameters. This concern is usually refered to as the
Trojan Horse problem. In addition, the service must be
able to identify legal lessees and to compute bills for
services rendered which it may communicate to the lessor.

From the lessor's point of view the problem is to prevent
the lessee from stealing the service (including the ideas

and methods on which the service is based) , from
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deliberately or accidentally damaging the service (which is
often called the modification problem), and possibly from
authorizing other users to employ the service (this problem
is - in capability based systems - usually referred to as
propagation of capabilities). All of the above problems
were studied in this chapter and solutions were offered by
extending the mechanisms used to control the flow of

information among monitors developed in Chapters 3 and 4.

6. SNEAKY SIGNALING

One of the major issues 1in protection is the
establishment of (proprietary) services as was discussed in
the previous chapter. A user employing a “"borrowed"
service should always be guaranteed that no sensitive
information entrusted to the service by the user can ever
be obtained by any other user, hereafter called a spy. The
leaking of information can take place in the following two
(sneaky) ways:

a) The spy may observe the service and draw some
conclusions from its behavior about the information being
processed by the service. This is possivle even if the
service does not intend to disclose any information.

b) The service may be malicious and try intentionally
to disclose information to the spy , for example by
displaying certain patterns of behavior observable by the
spy.

We will refer to the above two cases as passive and
active signaling of information. In this chapter we will
study the more general case of active signaling which
includes passive signaling implicitly, since any observable
pattern of bhehavior a service is capable of presenting may
be introduced artificially for the purvose of signaliny
information and thus considered active.

There are various ways for a program to signal
information. Virtually any action caused by the progranm
that may be detected by a spy can be used to signal
information. Some ‘examples are: the time necessary to
complete some computation, soundwaves produced by a
printer, heat radiation of computer components, patterns of
tape movements, availability of certain programs, etc.

We adopt the observability postulate raised by Jones

and Lipton [JoLi75] that states:
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"All observable attributes of a program are actual

outputs."”
In the sequel we will investigate what are the

possible observable attributes of a dataflow program and
present solutions to several classes of sneaky signaling

problems. Due to the diversity of possible observable

attributes in an actual system, as indicated by the

examples listed above, we first have to establish some
framework for our approach. We assume that every user of
our dataflow system may gain access through one of the IDIs
discussed earlier. All programs created and executed in
the system are written in the high-level language Id, which
makes all low-level concepts such as processor or memory
management invisible to the wusers. Secondly, we assume
that the system is physically guarded and protected from
unauthorized access. In other words, we do not study
observable attributes such as soundwaves, heat radiation,
blinking of control 1lights, or the exvression on'the
operator's face; rather we are concerned about attributes
observable by a user accessing the system in a legal
manner, e.g. via a terminal. The observable attributes to
be studied in this chapter are

a) the actual values output by ‘the system, which
include error messages caused accidentally or deliberately
by the service,

b} the absence of any such value, (this will be

referred to as the negative inference problem [JoLi75]),

and
c} the time necessary to complete some computational

task.

To provide a more concrete environment for studying
the above three problem categories, we assume the following
general situation:

A service monitor “"ser" has been given a protected

ne
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value x{kk} by a caller who expects the service to perforn
some operation on x and to return the results (possibly at
some later point in time) to that caller. Assuming that
"ser" is mischievous, its ultimate goal will be to reveal
some information about x to another enemy user £. In the
general case the information x may travel through an
arbitrary chain of monitor calls, however, in order to he
received by E, the information must be output through the
INDI employed by E. We will call this IDI the “spy".
Another monitor refered to in the following discussion is a
monitor called "com", which could he virtually any monitor
along the chain bhetween ‘"ser" and “spy". This monitor
receives information originating from "ser“" (either by
calling "ser" or by being called by "ser"), and it may
reveal information to “spy" (by either calling “spy" or by
being called by "spy") as shown in Fig. 6.1. In Fig. 6.1,
x{kk} is the sensititve information entrusted to "ser".
For example "ser" could be the tax-evaluation monitor
presented in the previous chapter, and x{kk} could be the
salary of a customer.

As outlined above, the following three attempts may be
taken by "ser" to disclose information about x to the
"spy", where the information to be disclosed could, for
example, be the result of the predicate C(x) which tests

whether x is greater than $10,008.

1. Using the error-reporting facilities.

The protection mechanisms introduced so far <cuarantee
that any computation which involves x will yiel? results
protected with {at least) the same cprotection field kk.
Assume that ‘"computationl” and T“computation2" in the
following expression vyield the results rl and r2

respectively:
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use(com, (if C(x) then computationl else computation2))
Since x is protected, both rl and r2 will carry the same
field kk. Hence the value sent to "com™ carries kk, and
any attempt by the "spy" to retrieve that value will result
in a protection error, denoted as errp. In dataflow an
errors.is a value carried by a token, and this token is also
being sent among actors just like any other value. (We
denote an error other than a protection error as err.) For
example a division by zero will produce a token with the
value err as shown in Fig. 6.2,

The question arises, is it possible for a monitor to
misuse the error handling mechanism and signal information
by causing two different errors to occure depending on the
predicate C testing some secret information, or by causing
an error only for one possible result of C (i.e.. true or
false) and a non-error value for the other?

An error value may also be protected by a protection
field, which is treated in the same way as the fields
carried by non-error values. 1In order lto prevent leaking
of information it i{s essential to require that a protection
error errp is the "strongest” of all possible errors, where
by "strongest” we mean the following:

a) If two distinct errors are caused by an actor, one
of which is a protection violation &rrp, then only errp is
propajated. For example, in case.the operand @ in Fig. 6,2
were protected with a key k' distinct from k then the
output would be errp instead of err.

b) If one of the inputs to an actor is an error err
protected with a key k and the second input is some value x
protected with a key k' distinct from k then a protection
violation errp is output, thus overruling the incomming
error err (Fig. 6.3).
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With the above rules we can return to our original
question asking whether it is possible to signal
information by generating two distinct errors, or one error
and one non-error value, whereby the decision is based on
some secret information. Assuming ajain that the results
of “"computationl"” and “computation2* in the following
expression are the values rl and r2 respactively, then one
of the values rl or r2 will be sent to "com", depending on
the value of C(x):

use(com, (if C(x) then computationl else computation2))
It can easily be the case that rl, r2, or both yield some
error values. Thus, for example, it could be arranged that
"com" receives the value rl only if C(x) is true, and an
error value otherwise. In general, the following cases are
possible for the two computations:

For computationl: rl{kk}, err{kk}, errp

For computation2: r2{kk}, err{kk}, errp
Any combination of the possible visiues for computationl and
computation2 may be achieved, e.jy. two distinct errors,
one error and one non-error value, etc. However, for any
possible combination the value ultimately retrieved by the
"spy" will always be errp: in case he is retrieving one of
the wvalues vl{kk}, r2{kk}, or err{kk}, the retrieval will
yield errp, since the “spy" does not possess the necessary
protection field kk; in case the value to be retrieved is
errp itself, then the result of the retrieval will also be
LIrp. From the above discussion it follcws that no leakina
of information using the error handling mechanisms is

possible.
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2. Using the Absence of a Value.

The discussion in the previous section showed that
whenever a value produced by a computation involving the
protected value x was sent to "com", it always resulted in
a protection violation when a retrieval was attempted by
the "spy". The question arises, is it possible for “ser"
to send a value to “"com" only under certain conditions and
not to send any value whatsoever otherwise? TIf this were
possible, the "spy" would receieve an error message only in
the first case and some other (possibly unprotected) value
in the second case. The two distinct answers then would
signal some information, e.g. the fact that the salary x
was greater than $19,000. The above approach could be
attempted by executing the statement

use({if C(x) then com else ?),anything)
which causes the value "anything” to be sent to “com" only
if the result of the test C(x) is true; otherwise no value
is sent to "com". (The question mark stands for a value
which could be another monitor, or it could be some other
value in which case the use statement would simply fail).
The decision whether the value "anything” will be sent to
“com" is hased on the result of C(x), which implies that in
the base language "com"” will pass through a switch, as
shown in Fig. 6.4, '

Despite the fact that the value "anything" is
protected with the proper key, the "spy" can still obtain
information about x by calling "com". This information is
encoded in the two possible responses: a protection error
errp versus some unprotected value, which thus indicates
the absence of a protected value.

The problem is rooted in the fact that a use statement
is not purely functional, but rather causes a side-effect
which may be detected by the "spy". 1In order to solve this
problem we have to guarantee that all values retrieved from
“com" (e.g. by the "spy") carry the same protection field,
regardless of whether the protected value "anything" has
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been sent to “com" or not. This implies that the "spy”"
calling “com" will in either case receive the value errp,

and thus no information will be signaled.

In order to achieve this goal we first extend the
rules followed by a switch actor for the case when the
input value to the switch is the pointer to a monitor
instance m, as shown in Fig. 6.5. The field gk3 is the new
protection field computed from kkl and kk2 according to the
expression:

if kkl is suffix of kk2
then kk2
else errp

The intuitive meaning of the above rule is the
following: A monitor may be chosen by an if-then-else
statement, where the predicate is based on some protected
information, only if all responses obtained from that
monitor carry a protection field equal to or stronger than
that on which the choice was based. Consider aqain the
statement

use((if C(x) then com else ?),anything)
and the corresponding compilation (Fig. 6.4). The switch
with the 1input "com" requires that the protection field
carried by ¢ be a suffix of that carried by "com",
otherwise an error errp is output. This error is then sent
to the U actor instead of "“com" and hance the value
"anything” is not sent to the monitor. 1In other words, the
above use statement will be successful only {if the
monitor's protection 1is equal to or stronger than the
protection of x. Assume, for example, that x and ‘“con"
carry the same protection field {kk}. 1In this case the
statement may be executed, and the value "anything® will be
sent to “"com™ if C(x) 1is true (salary is greater than
$10,006). The point is that "com” is carrying {kk} which
implies that any call to "com" will return a result
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carrying the same field {kk} and hence the “spy" (not
possessing the Kkeys constituting kk) will obtain an error
message errp for any call to "com", reguardless of whether
the value "anything™ was sent to "com" or not.

This above mechanism could still be circumvented by

"hiding™ the monitor inside a structure, then passing the:

structure through a switch with a protected control value,
and then reselecting the monitor. Assume, for example,
that the value m in Fig. 6.5 is a structure and a monitor
mi{kk4} is appended to the selector i of m. The structure
m is shown in Fig. 6.6. The complete protection of mi (if
selected) is kk4.kk2. 1In order to solve the above problem,
we have to guarantee that the monitor mi cannot be used in
case it passes (as part of the structure m) through a
switch whose control value has a stronger protection field

(kkl) than the field kk4.kk2. As was described in’

Chapter 3, Section 5, the protection field carried by «he
top-level of m will (after passing the switch) be
kk1'; (kk1" & kk2), where kkl1'.kkl" = kkl and the length of
kkl"™ is equal to that of kk2. In case a value (e.g. mi)
is selected from m, the selector computs the new protection
field as (kkl' & kk4).(kkl" & kk2). In case kkl' is longer
than kk4, which means that mi inherited new keys when
passing through the switch (as part of the structure m),
then the select actor must produce an error value instead

of the desired value mi.

The above mechanisms guarantee that a monior can never
inherit new keys from the control value of a switch actor,
regardless of whether it was sent to the switch directly or

as part of a structure,

We now summarize the ideas of this section: The
monitor “ser" may send any value with arbitrary protection
to any other monitor, e.g. "com", However, it cannot
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first choose the monitor “"com" (by passing it through a
switch) and then send a value to it, unless the pointer to
“"com” already carries a protection equal to or stronjer
than the protection of the information on which the choice
was based. This guarantees that if the two options are to
send a value ("anything") to "com" versus not to send any
value whatsoever, then the value to be sent must always
have a protection equal to or weaker than the protection of
"com". This implies that all responses from "com™ will
carry the same protection, namely that of "com", and hence

no leaking of information can take place.

3. Using the time necessary to complete some computation.

The monitor "ser" «could attempt to vary the time
necessary to process a particular request. If the
deviations were dependent on the secret value x, the "spy”
could obtain information about x by measuring the response
time of "com". Note that leaking of information takes
place even if all values received by the ‘"spy" are
protection violation notices. The monitor "ser" could take
the above approach by executing, for example, the statement

com(if C(x) then delay{anything) else anything)
which sends the value "anything" to "com”, however, if C(x)
is true the sending is delayed by the function "delay”
which performs some time-consuming computation. The delay
function could, for example, be the invocation of some
recursive procedure or the execution of an involved loop.

The above signaling problem has been studied formally
by Fenton [Fen74]. He shows that the problem is unsolvable
if the machine is to have universal computing power (Turing
Machine). The arqgument 1is based on the unsolvability of
the halting problem for Turing Machines. If we assume that
users may submit arbitrarily difficult programs, it could

be arranged that a proqram does not halt (e.g. by entering
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an infinite loop) under some critical conditions. For
example, in the above statement the delay function could
require an infinite amount of execution time, in which case
the value "anything™ would never arrive at ‘“com" in the
case when C{(x) 1is true. Since in practice the user can
always estimate a maximum bound on a program's computation
time, the non-halting of that program may be observed.
According to the halting theorem for universal machines it
is not possible to determine whether a particular program
will halt, which implies that no total solution for the
sneaky signaling problem using computation time is
possible. Fenton suggests imposing a bound on the
computation time of a program and to force a halt in case
this bound is exceeded. Note that this solution 1is not
very practical in an actual computing system; since the
user should be notified in case a halting of his program
was forced. (He could usually conclude this fact from the

results returned, even if no notice were explicitly given

to him). Such a notice is equivalent to the information

obtained by observing the non-halting of that program, In
the sequel we will present several ideas approéching a
solution to the above signaling problem. However, we wish
to point out that the very nature of a dataflow system, as
opposad to conventional systems, alleviates the problem to
a great extent,

First, execution in dataflow is completely
asynchronous and thus the time for a particular task to
complete is dependent on the current state of the machine,
e.g. the number of currently available processing elements
(PEs). In addition, a monitor such as the "spy" has no
possibility of coming to know, much less to influence, the
time at which a particular request to a monitor (or any
other operation) will be honored. The only way is an
eapirical approach based on statistical results, which
considerably decreases the possible "bandwidth" and
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trustworthiness of the information leaked.

Second, the scheme for processor allocation [ArGo78},
[Tho78}, (currently under investigation by the Dataflow
Architecture Group) permits the number of PEs to be varied
during computation according to current needs. For
exanple, when invoking a new procedure or enteriny a new
loop, the physical domain consisting of the PZs so far
allocated may be enlarged, thus providing more resources
for the increased computation. Of course, even an ideal
resource allocation policy cannot totaly compensate for an
increase in computation, and hence, the execution time for
a program (response time of a monitor) will not remain
constant. However, the general tendency of the systen is
to balance the execution time, implying that much effort is
necessary to significantly and reliably vary a monitor's
response time, which is the only way to signal information

using time delays.
L]

The above features of a dataflow system, namely the
difficulty of influencing and of measuring execution tine,
mitigate strongly against the possibility of siqnaling
information using execution time. Several additional
facilities could be provided in order to nake such
signaling arbitrarily difficult. The first approach ig to
artificially increase the variance of the responze times of
a wmonitor, This could easily be achieved by causing the
exit actor, which returns the results computed by the
monitor to the corresponding callers, to delay the
responses according to some prespecified policy, thus
adding "noise" to the response time of the monitor. One
possible policy is to cause "random” delays based on sone
random number generator used by the exit actcr. A more
sophi'sticated solution is to equip the exit actor with a
mechanism to record certain facts about the history of

previous calls and to base the creation of the delays nn a
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function which utilizes this information. For example, the
average time between two consecutive calls contains
information about the current utilization of that monitor.
Yet a third way of varying the response time is to measure
and to record the time necessary for each request to be
processed, and to use this information for computing the
delays for future requests. This can be achieved by
causing the entry actor of a monitor to record the
. arrival-time (actual clock time) of each request and to
"'send this information to the exit actor which then is able
" to determine the time that was necessary to process that
i&particular request. This information is very significant,
since signaling of information can take place only by
varying the processing time. Thus by monitoring the
variance of the processing time possible attempts to signal
information may be detected, and efficient countermeasures
may be taken by providing delay mechanisms to
(statistically) destroy the information encoded in the
response time.

A second approach to prevent signaling of information
using the response time {s by trying to guarantee a
constant response time for each monitor. Obviously, this
time had to be the longest possible response time for a
given monitor, which unfortunately may be unbounded and, in
addition, cannot be determined a priory {unsolvability of
the halting problem for universal macnines). One possible
solution (similar to that proposed by Fenton) is to set a
time 1limit for the processing of any request, which
preferably should cover the *"most" requests to that
particular monitor. 1In case this time is exceeded, this
incident could be reported to a "higher authority" which
then would take the necessary steps. Similar to the
previous solution, the processing time for a request is
determined by sending the arrival-time from entry to exit,
where the necessary delay is calculated by subtracting the
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processing time from the given time limit. This guarantees
a constant response time for all requests that do not
exceed the time limit imposed on that monitor.

Note that the above countermeasures need be enforced
only if the value sent to a monitor was nprotected,
otherwise no signaling of information is possible.

Various other mechanisms can be devised to prevent
signaling of information using the response. time, however
we confine ourselves to the above brief outline since all
possible solutions are strongly dependent on the actual
machine architecture, 1in particular the policies for
resource {PEs) allocation which are currently under

investigation.

4. Summary.

This chapter dealt with a domain of protection
problems usually referred to as “sneaky signaling". 1In
particular we dicussed three problem domains of signaling
that involve

a) the error handling mechanisms,

b) the absence of information (negative inference),

¢) the time necessary to complete some task.

Satisfactory solutions preventing any signaling of
information were proposed for the cases a) and b). Problem
¢}, which in most contemporary systems is left entirely
open ([Den75)}, ([Rot74], {Lip75}), is to a great extent
alleviated by the principles on which our dataflow system
is based, namely the difficulty for the user to treat
execution time as a measurable and modifiable resource. In
addition, several mechanisms to decrease the possible
bandwidth of signaling to an arbitrary degree, and thus to
further mitigate against the inherently difficult problem

of signaling information using time, were outlined.
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7. FILE SYSTEM PROBLEMS

By a file system, we mean a software mechanism which
serves some or all of the following purposes:

a) It extends the capacity of primary sStorage by
handling and coordinating transfers of information to and
from the secondary storage devices. Thus it allows the
storage of large (practially unlimited) amounts of data.

b} It allows a user to maintain information over an
arbitrary period of time. The user may keep information
stored in the system without being present (logged on), and
retrieve this information at some later point in time.

c) It allows different users to share and exchange
information. For example, a user may access a file created

~and stored by some other user, whereby the creator doess.not

have to be present at the time the access operation takes

place.

d) In many contemporary systems sharing and exchange
of information 1is done via the file system even if both
users are present at the time the operétion takes place,
since facilities for direct interprocess communication are
limited to the exchange of simple messages and are usually

not well suited for the transfer of large amounts of data.

The following discussion is intended. to establish the
relationship between the above four points of view and our
dataflow system, and to outline solutions to problems
related to the file system. In [Mad78] Madnick
investigates the design of file systems utilizing a
hierarchical approach, which, based on the information
hiding principle, establishes several levels within the
system. Each 1level represents an'abstract machine using
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the primitive operations provided by the next lower level
(basic) machine. Each request to the file systen
propagates through a sequence of transformations according
to the hierarchy that are necessary to convert the (user's)
request into its final form which physically operates on
secondary storage devices. In this chapter we are
concerned with only the top-level of the hierarchy, refered
to as the 1logical file system (LFS). 1Its purpose is to
provide facilities for users which would satisfy the four

file system requirements stated above, and by the sane
token to make all mechanisms underlying those facilities,
such as allocation policies, physical addresses, dJdata
representations, etc., invisible to the users. Due to the
principles of dataflow, several major conceptual
distinctions arise between the requirement on a dataflow

file system and those for conventional file systems.

a) The first requirement above was to extend the
capacity of primary storage. As discussed in Chapter 2, in
our system there is no memory visible to the user; all
information is carried by tokens traveling between actors.
The only way to "store" information is to send it to a
monitor where it can be kept for an arbitrary period of
time and later retrieved. In order to be consistent with
these principles, we implement the LFS as a rejular
dataflow monitor, capable of maintaining information
originating from different users. This monitor may he
employed only by wusing certain prespecified comnands
("put", ‘"get", etc.) which make the underlying mechanisnms
invisible to the caller. The users may treat the LF3 as
any other monitor in the system without being aware of the
fact that each request undergoes a series of
transformations necessary for tasks such as choosing
suitable allocation policies and device stratevies,

optimization, physical address transformations, etc.
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b) The second requirement above was to allow the users
to have information retained over a period of time. Every
user must be able to retrieve information stored at some
earlier point in time, for example before leaving the
system (logging off). This requirement is satisfied if we
assume. that the LFS monitor is ever-present, i.e. it will
not be destroyed during the life span of the system. Thus,
logically, information stored in the LFS is always active
(circulating inside the monitor) even after the wuser has
left the system; physically, of course, it is stored on
some secondary storage devices.

c) The LFS must provide facilities to enforce
pfotection. In particular, it must be able to identify
users and to implement access policies desired by those
users. This is necessary in order to satisfy, the third
requirement above which is concerned with sharing and
exchange of information. Assuming that potentially all
users have access to the LFS, it must be guaranteed that
each user can maintain private information, or that access
to information may be granted selectively to different
users.

d) In previous chapters we presented mechanisms that
allow the sharing and exchange of information among users
by directly calling the corresponding (user) monitor. Thus
different users may communicate directly with each other
without involving the file system. This is impractical or
even impossible in many existing systems, as was pointed

out under the fourth requirement above.

l. A simple file system.

Usually a file system maintains a collection of
objects (files, directories) arranged in the form of a
hierarchy. The file system itself {is implemented as a
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collection of programs which carry out the necessary tasks.
Thus from the user's point of view the file system is a
menolithic entity performing some services for the users.
For dataflow we chose a different approach. We will show
how a large system, such as the (logical) file system, may
be built up from a number of independent entities called
Pprotection units. Every protection unit is a monitor which

holds and provides access to some collection of objects,
arranged in the form of a dataflow structure, The reason
for introducing the notion of a protection unit 1is to
indicate that the corresponding monitor performs a rather
specialized but standardized function. Using the above
concept we can implement the LFS itself as a protection
unit which maintains a collection of objects called (for
reasons of convention) giggg£9£ig§. Each directory is
itself a protection unit which maintains a collection of
objects such as subdirectories, libraries, files, etc..

A protection unit is a wemitor which maintains a
structure s {shown in Fig. 7.1) as its internal state. The
selectors obl,ob2,... are names of objects, access to
which is controlled by the protection unit. Each object
consists of a value (vk) appended under the selector "val"®,
and a control-list appended under the selector "ca". The
value vk may be any Id value, e.g. elementary, structured,
& procedure, a monitor, etc.. The control-list under "“ca"
consists of a list of user names ul, U2, ... where each Ui
holds a list of rights the user Ui has with respect to the
corresponding object. For example, if Ul has the right to
obtain the value of the object obl then the selector rl is
the string "get val"™ and x1 is the string "yes" .,
Similarly, "cb" holds a control-list consisting of names of
users and the associated rights, these, however, apply to
all Sbjects listed wunder the selector “obj" in s. For
example, a user Ul may have the rights to delete objects or

to create new objects.
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The protection unit maintaining the structure s is
programmed to accept and interpret commands corresponding
to the possible rights. For example, the., request
<"get val", obl>, with the interpretation "get the value of
obl® will be successful only if "yes" is entered under the
selector "get_val" associated with the user Ui performing
the above call.

Using the concept of a protection unit, a simple file
system could be implemented as follows:

The root of the file system is a monitor f£s which
maintains a structure according to Fig. 7.1, where objects
are names of directories dl, d2, ..., and the possible
rights for the 1list under "ca" are “get_val", "put_val"®,
and “put_right". (A particular structure with such a
collection of information is shown in Fig. 7.2). These
rights allow users to perform the following operations: to
get the value of the corresponding object, to replace the
value of the object by some other value, and to change the
rights of wusers on the "ca"-list, e.g. to authorize
another user to get the value v. The possible rights for
the "cb"-list are “"create", which allows the user to create
new objects, and “destroy”, which allows the user to
destroy existing objects.

The value v of each object di is a pointer to another
protection unit which represents the directory. Each such
directory di maintains a structure -imilar to Fig. 7.1,
where this time the objects are files f1, f2 ,... . For
simplicity we assume that each directory supports the same
rights as the file system fs itself.

The separation of the root of the file system from the
directories by providing distinct monitors is an important
departure from approaches in conventional systems. The
root of the file system fs is a monitor known and
accessible to {potentially) all  users. It is a device
capable of storing and retrieving objects which may or may
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not be directories. This fact is of no concern to the file
system, since a directory is an object created by the user,
who has the freedom to choose any representation and
control mechanisms he desires to implement his directory.
It is the function of the directory itself to <control
access to objects within that directory (e.g. files), and
hence the user need not trust the file system to perform
the desired control functions correctly. To illustrate the
cooperation of the file system fs and the directories,
consider the following situation. Assume that the current
state of the root of the file system is as depicted in
Fig. 7.2. The structure maintained by the directory dl mon
is depicted in Fig. 7.3.

From Fig. 7.2 it follows that wuser’ Ul 1is able to
create and destroy objects (directories) in the file syten.
With respect to dl, Ul may get the wvalue dl_mon or put
another value in place of dl_mon. Ul may also authorize
other users (e.g. U3) to perform some operation, e.q. to
get the value dl_mon. Ul does so by appending the right
"get_val" under U3, as depicted by the dashed 1line in
Fig. 7.2. All of the above rights apr'y only to the
pointer to the directory dl_mon, and do not affect the
access control to files contained within dl_mon. For
example, the user U2, who does not have any rights for the
pointer to the directory dl_mon, is still able to get the
value of the file F1 by calling the file system:

use(fs, <who{+al}, "get_val", path>)
where "who" is the name of the user (U2) performing the
call, "get val” is the desired operation, and "path" is'a
structure consisting of names forming the path to the
desired object. In the above example, “path" (is the
structure <dl,£1>. The key al is the alpha-key associated
with the caller and is used for authentication purposes.
The file system receiving the request recognises that the
caller is not asking for any object maintained by fs, but
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rather an object which is located deeper in the hierarchy

(path length 1is greater that one). The file system

propagates the request to the next lower level in the

hierarchy by performing the following call to dl_mon:
use(dl_mon, <who, "get_val", path'>)

where:"who" is the same value (user name) as before and

path' is the path consisting of only the name fl. dl_mon

recognizes that the caller is requesting an object from
dl_mon and it takes the following actions: First it
authenticates the caller using the key attached to the
value "who" and the key associated with the name *"who" in
the monitor Trapdoor. If this 1is successful, it checks
whether a “"get val" right is set to "yes" for the caller,
and if this is the case it selects the wvalue of fl1 and
returns it to the caller.

The important implication from the above discussion is
that the user does not have to trust the file system and is
'still guaranteed that no object contained in his directory
may ever be accessed by unauthorized users, since the
directory monitor was created by himself (possibly using
some standardized monitor definition supplied by the system
as a service). The file system is used only to store the
pointer to a directory in order to keep it during the time
pericd when the user is absent, or to make it accessible to
other users. Thus the file system may be considered as a
proprietary service; in case it is malicious, it cannot be
forced by the wuser to perform the advertised functions,
e.g., it could refuse to return the entrusted values,
however, it can never gain access to or damage any
information contained in the directories.
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2. Extensions to the simpnle file systen.

In the above discussion we assumed that the objects
maintained by the directory are files and that a file is a
structured value (e.g. that value under selector "“val™ in
Fig. 7.3). A protection unit allows the value of an object
to be any legal 14 value, e.qg. another protection wunit,
Thus the objects maintained by a directory could be other
directories, libraries, or other collections of objects
implemented as protection units. In this way an
arbitrarily deep hierarchy of protection units may be built
by the wusers. Finally, a file itself may be any le3al Id
value. We discussed previously the case when the file was
a structure, The user had the option to "get" this
structure or to replace ("put"™) it by some other value when
possessing the corresponding rights. In order to inplement
a larger variety of access options we could provide the
desired rights 1in addition to “get_val™ and "
Another possibility is to implement the file as an entity

put_valr®,

capable of controlling access to itself. Such an encity
could be either a monitor or a programmer-defined dJata
type. In the first case the monitor maintains the data
structure to be accessed as its internal state and it
interprets and carries out requests sent to it by users who
wish to access that structure. For example, we could
choose to implement the file as a protection unit
(monitor), and thus make it conceptually equivalent ¢to
directories, libraries, the root of the file systea itself,
etc.. The structure maintained by the file (Fig. 7.1)
would then be a collection of "records"”, each with a value
and a control-list. Thus access to each record could be
controlled individually for each user.

The second option to implement & file as a
self-controlling entity is the programmer-defined data type
(pdt), as mentioned above. The idea of a pdt is to allow
the user to create his own data types, each of which
consists of some data structure and a set of operations
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which allow access to and manipulation of that structure.
The provided operations are the only way to access that
structure. In Id, a pdt is represented by a procedure.
Assume, for example, a pdt "stack®, as described in
{ArGoP178]. To generate a new stack initialized to empty,
the programmer writes .
st <- stack( )

where the value of st will be a pdt value of type stack.
The body of the pdt defines the operations that can be

performed on that pdt. For example:

stl <~ stack( );

st2 <~ stllpush|17;

x <~ |poplst2;
says that stl is the.empty stack, st2 is a stack with the
single item 17, and x is the "top of stack” value fo st2,
i.e. 17.

The concept of programmer-defined data types provides

a powerful tool for the solution of certain protection
problems. As mentioned before, a filefcould be implemented
as a pdt, which would allow the user to specify his own
access policies for the data constituting that file. For
example, he could implement a file with only sequential
access by providing operations to access the "next" record
in the file upon each request. He could also program the
pdt such that it required some password or even carried on
a lengthy dialogue with the user before allowing (or
denying) the access requested. (A system with similar
characteristics - the Formulary Model - was proposed by
Hoffman [Hof71])). A variety of access policies could be
devised. Two particular problems known as the statistical
and the sample access are worth mentioning in this context,
due to their importance in data management systenms,
Statistical access is a policy that allon a user to obtain
statistical information derived from some data that would
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be confidential or secret if accessed on an individual
basis. For example, a user may be permited to ask the
avarage age of all employees of a company, whereas the age
of each individual may be confidential. The converse
problem arises with sample access, where a user's access is
limited to only a cerain number of individual items
(samples) . For example, the financial status of the
computer science department of a large university may be
innocuous, while the same information for many departments
can reveal the financial status of that university. The
pdt concept allows the implementation of both policies. A
pdt guards the collection of data to be accessed and at the
same time provides controlled ways to access that data.
(Note that our goal 1is to provide mechanisms for
implementing various protection policies and not to give
solutions to particular dJdata base problems, such as the
following: Asking the avarage salary of all employees of a
company who satisfy some condition C will reveal the salary
of an individual in case the condition C is satisfied by

only one employee.)

3. User defined "file systems”,

In the preceding sections we proposed a way to
implement a logical file system consisting of one common
protection unit ~ the root of the file system - which
maintains objects, e.g. pointers to directories created
and owned by individual users. In this way the file system
is not a unique monolithic package, but rather a collection
of monitors created by different users and conceptually no
different from other monitors. Thus users have the
opportunity to build their own file systems or other
systems with similar properties, In the sequel we will

present an example of such a systenm, studied in
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[WCCILPP74]) . A user Ul wishes to devise a system to
maintain his bibliographies, which should satisfy the
following requirements: -

1. No one, except himself, should be able to erase
his bibliographies.

‘ 2. No one, except himself, should be able to modify
the system. '

3. Some of the references in the bibliographies are
provided with annotations, and he would like to choose
selectively who may read the annotations.

4. Any access to the bibliographies should be allowed
through a predefined set of procedures.

5. Other users should be able to build their own
bibliographies under the same requirements.

The above bibliography may be implemented as a
protection unit containing a structure according to
Fig. 7.1. The selectors obl, ob2, ... are the names of
different bibliography objects (e.g. subbibliographies)
constituting the bibliography. The possible rights (given
in  [WCCJLPP74]) for the “ca“-list and the corresponding
access procedures are "upd" (update), "prnt" (print),
"pwoa" (print without annotations), and "era" (erase). The
"cb"-list, on the other hand, allows the rights "create"
and "destroy" as was the case with the file system.

For a better understanding of thr: functioning of the
system consider the structure in Fig. 7.4 which could be
the state of the system at some point in time during its
operation, Assume that the bibliography consists of only
one object bl. Only the user‘ Ul (the creator of the
system) has the rights to destroy (erase) bl or to Create
new objects (e.g. b2, b3,...), which was the requirement 1
above. Since the bibliography is a monitor, no one is able
to copy or to modify the code once the monitor instance is
created (requirement 2), Every user employing the system

Page 139

may perform only those operations for which he has thre
rights, e.g. U3 may only print the bibliography without
annotations (requirement 3). Access to the biblinsgraphy
objects is possible only through the monitor which proviZes
the legal access procedure and enforces the protection
(requirement 4). The definition of the nmenitor
implementing the above bibliography system may be used to
Create new instances of the same system, which then nay be
employed by other users under the same conditions as the

original system (requirement 5),.

4. Summary,

In this chapter we studied how problems related to a
file system can be solved in dataflow. Our approach is
different from those in most conventional systems. We
consider the logical file system as a monitor which is
present at all times for the life span of the system and
which 1is capable of storing and retrieving objects far the
users. The users may treat the file system as any other
monitor without being aware of the underlying mechanisnms,
e.g. of the fact that data must be stored on external
devices, etc.. The objects stored in the file system could
be pointers to directories, implemented also as monitors.
Every wuser <can - if desired ~ create his own directories,
files, etc. and implement his own access policies to those
objects. Thus from the user's point of view the logical
file system is just a service capable of managing data in
much the same way as any user-written system, such as the
bibliography example, presented in this chapter.
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8. SPECIFICATION OF ACTORS

In all previous chapters we described the behavior of
agtors with respect to protection in a rather informal way,
stressing the intuitive understanding of the mechanisms.

We began with operations on simple keys and theiéz'

attachment/detachment to/from values, later we added
facilities to handle multiple keys (protection fields),
alpha/delta keys (Chapter 4), and other features. The goal
of this chapter is to formally specify the actions taken by
actors when computing the protection fields for their
corresponding output values. These protection fields are
computed depending on the values of the inputs to the
actors and the protection fields carried by these values.
In general, every input value may carry a protection field

_kk consisting of some number N of concatenated keys. We

express this fact by writing
kk = ky.ky-1...K]
which will allow us to refer to individual keys kj and the
length N of the field kk.
We now introduce several predicates and functions used
in the subsequent specifications of actors.

alpha(x) returns the value true if x is an alpha key,
and the value false otherwise /

delta(x) returns true if x is a delta key, and false

otherwise

max({x,y) returns the maximum of the two (integer) values
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x and y
mon (x) returns true if the value x is a pointer to a
monitor instance, and false otherwise
str(x) returns true if the value x structure, and

false otherwise

legalkey(k) returns true if the value k is a prefix
of the activity name carried by k, which means
that k is being attached or detached in the,

legal context, and it returns false otherwise.

Each of the functions &1 and &2 given below accepts
two keys kl and k2 as input values and computes a new key
as follows: In case both keys are not nil then they have
to be identical, otherwise an error will occur. In case
one of the keys is nil then the function must check whether
the other key is of type alpha. If this is the case, the
key must be "filtered out" as was discussed in Chapter 4.
This 1is indicated by the wvalue nil which means that
actually no key will be produced. The two functions &l and
&2 are identical except for the case when kl is egual to
hil and k2 is an alpha-key (last column in the following
table). In this «case &1 outputs x3, whereas &2 outputs
nil. Intuitively, &2 1is symetric in that it renoves
(substitutes by nil) an alpha-key on either input k1l or k2
if no key is present on the other input; &l on the other
hand, removes an alpha-key only if it is on the input k1l
and no key is present on the input k2, but not vice versa.

We describe the functions &1 and &2 formally by the

following table, where x and y are distinct arbitrary keys
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(regular, alpha, or delta), x2 is an arbitrary key of the
form alpha, and x~@ is an arbitraray key of some form other
than alpha (i.e. regular or delta).

kI ox x Inil | xa | xa | nil | ail
--------- i S B St S .
k2 (Ix Ly 1nil | nil | ntl | x"a | xa
===szs=s=ff=s=assjsssssspasssssposszcsizss=ssjmsszasfmaces
k1 81 k2 11 x | errp | nil | x*@ | nil | x=2 | xa
————————— LA e e Ty S p—
k1 62 k2 Il x ) errp | nil | x338 | nil | x=@ | nil

In order to specify the behavior of actors we use reqular
Id syntax, including the predicates and function introduced
above. To express operations on protection fields which
may be considered as strings of characters, we use "." to
denote concatenation, and subscripts (introduced above) to
refer to individal keys within a protection field (e.g.
kkj is the i~th key in the field kk) .

Function and predicate actors

inputs: x1{kkl}, x2{kk2}
where x1 and x2 are the argument values,
kkl = klp...kly, m2 9
kk2 = k2p...k27, nx#@a

output: r{kk3}

Intuitively: The resulting protection field kk3 is
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computed as the stronger of the two protection fields kkl
and kk2. It is formed as the concatenation of keys
obtained by applying the function &2 to the corresponding
individual keys klj and k2j, where i ranges from 1 to the
maximum of m and n. All alpha-keys are filtered out {(by
the function &2) from the non-overlapping prefix portion of
the longer of the protection fields. (The rcasons for this

were discussed in Chapter 4).

Formally:
kk3 <~ (klpax (m,n) &2 K2max (m,n)) ---(kl] &2 k2j)

Switch actor

inputs: c{kkl}, x{kk2} .
where ¢ is the control value,
x is the argument value,
kkl klp...kly, nf
kk2 = k25,..k17, n > ¢

output: x{kk3}

Intuitively: 1In case the value x is a pointer to a monitor
and the field kkl 1is longer than the field kk2, then an
error will occur. This is necessary in order to guarantee
that a monitor cannot inherit new keys from the control
token of a switch in order to prevent sneaky signaling
using the absence of a value (negative inference problen)
as was discussed in Chapter 6.

In case x is a structure and kkl is longer than kx2,
then that portion (prefix) of kkl that is not overlapped by
kk2 (i.e. the subfield klp...k1lp4y) must be distributed
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among all values constituting «x. As was described in
Chapter 3, Section 7, this distribution is not actually
performed by the switch; the switch only marks the portion

to be distributed by inserting the special delimiter H
between the n-th and the (n+l)-st key of the new field kk3.
It is then the task of any subsequent select operation to
take this subfield klp...klp;) into account when computing
a new field for a value selected from x.

In all other cases kk3 is computed as the
concatenation of keys obtained by applying the function &l
to the corresponding keys klj and k2j. In case the field
kkl is longer than kk2, all alpha-keys are filtered out (by
&1) from that portion of kkl that is not overlapped by kk2.
(The reasons for this were discussed in Chapter 4}.

Formally:
kk3 <-

(if mon(x) AND m>n
Lhen errp
else if str(x) AND m>n
then (klp &1 K2p)...(klps) &1 k25417 (klp &1 K2p) ...
<.« (kly &1 k2;) '
else (klmay(m,n) & k2pax(m,n))--- (k1] &1 k21))

A and U actors

inputs: p{kkl}, x{kk2}
’ where p is the procedure definition or the pointer
to a monitor,
x 1s the argument value,
kkl = klp...kl}, m 2 @
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kk2 = k2p...k1, nx@

output: x{kk3}

Intuitively: The protection field kk3 is computed as the
concatenation of keys obtained as the concatenation of keys
obtained by applying the function &1 to the <corresponding
keys klj and k2j. As was the case with the switch actor,
the function &l filters out all alpha-keys from the field
kkl if these keys do not appear in the corresponding
positions in the field kk2. Also the delimiter *;" |is
inserted before the n-th key in case x is a structure and

kkl is longer than kk2.

Formally:
kk3 <=

(if str(x) AND md>n

then (kKlp &1 k2p)...(klps1 &1 k2n41)5 (k1 &1 k2p) ...
see(kly &1 k27)

else (Klpax(m,n) &1 k2pax (m,n)) ... (k11 &1 k21))

Select actor

inputs: i{kkl}, s{kxk2}

where s is a structure carrying a value v{kk3} at
the selector i

Kkl = klpeeoos.... ceee..kly, m20
kk2 = K2p...k27r41;Kk2p...k2), 0 2 8
kk3 = k3p...k3p, p 28
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We assume the general case where kk2 contains the delimiter
";" between the two keys k2y4) and k2y. In case r=m, i.e.
k2, is the leftmost key, this delimiter has no effect and
may be omitted by any computation. (Note that k3; is
positioned under k2,4}, instead of under k2j, which .is to
indicate the correspondence of the keys k3; and k2,47 for

the computation).

.

output: v{kkd}

Intuitively: The protection pv of the value v within the
structure s may be expressed as follows:
Pv=(k2pnax (n,p+r) &1 k3max(n,p+r)) ...

eeo{k2p4y &1 k37).k2p...k2)
The above protection field 1is the concatenation of the
following two fields:

1. The field obtained by application of the function
&1 to the keys constituting the fields kk3 (carried by the
value v) and the portion of the field kk2 (carried by s)
preceding the delimiter w., i.e. the subfield
k2n...k2p47.

2. The portion of the field kk2 following the
delimiter ";", i.e. the subfield k2,,,,k2;.

In case the selected value v is a monitor, the
following case must be considered: The condition n>m+r
implies that v inherited additional keys (kzn---k2p+r+1)
when passing through a switch whose control value was
protected with the field k2,...k2). As was discussed in
Chapter 6, a monitor must not inherit any keys when passing
through a switch, in order to prevent sneaky signaling.
Thus an error value must be returned instead of the actual
protection field.

In all other cases the resulting protection field kk4
is obtained by applying the function &1 to the keys
constituting the field kkl (carried by the selector) and
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the keys constituting the protection pv of the value v

given above.

Formally:
kk4 <-

(if mon(v) AND n>p+r

then errp

else

(Klmax (m,n,p+r) &1 K2max (m,n,p+r) & X3max(m-r,n-r,0)}---
ceo(Klps) &1 k2ps1 &1 K31).(k1p &1 k2p) ... (k1] &1 k21))

append actor

inputs: i{kkl}, s{kk2}, v{kk3}
where v 1s the value to be appended to the
structure s at the selector i

kkl = klp...kly, m 2
kk2 = k2j...k2), n 2 o
kk3 = k3p...k3}, p 2 7

output: s{kkl}

where s is a copy of the input structure except
of the selector i which now carries the
value v{kk4}

Intuitively: As explained in Chapter 3, Section 7, the
protection field kept with the value v inside a structure
is only a part of the protection of v; the conplete

protection is the concatenation of the field kept with the
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value v and the field attached to the top-level of the
Structure s. In the following, kk4 is the field kept with
the value v, whereas pv referes to the entire protection of
v. This protection pv is the concatenation of keys
obtained by applying the function &1 to the individual keys

from all three fields kkl, kk2, and kk3. The protéctjqq
field kk4 kept with v 1is only that portion of ‘the -

protection pv, that is not overlapped by the field kk2.
The computation yields an error if the protection fields

kkl, kk2, and kk3 are not comparable.

Formally:
kkd <=

(if (klp 81 k2, &1 k3p) ... (k1) &1 k2 &1 k3))=ergp
then errp

else (klmay(m,n,p) &1 K2pax(m,n,p) &1 k3max (m,n,p)) ---
«-o(klppy &1 k2p4) &1 k3p41))

attach-sufx actor

inputs: x{kkl}, k{kk2}
where k is a key (or a structure consisting of
keys) to be attached to x

output: x{kk3}

Intuitively:
a) In case k is a simple key (as opposed to a structure):
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The attachment is illegal if k is an alpha-key and <the
operation is not performed in the corresponding monitor, or
if the value k 1is itself protected. Otherwise k is
attached as a suffix to the field kkl.

Formally:

kk3 <- (if (alpha(k) AND legalkey(k)) OR kk2#nil
then errp
else kkl.k)

b) In case k is a structure, as described in Chapter 3

(Section 5), then the attach actor attaches the keys
constituting k to the desired substructures. The creation
of the output structure by the attach actor is described by

the following expression:

X <~ (init i <- 1
while k[i] # nil do
X <= x + [k([i,"seI™1)(x[k{i,"sel")]{+k[i,"key"]})
i<-i+1
return x)

attach-prfx actor

inputs: x{kkl}, k{kk2}
: where k is a key (or a structure consisting of
keys) to be attached to x

output: x{kk3}
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Intuitively:

a) In case k is a simple key:

The actor attach-prfx performs the same actions as the
actor attach-sufx discussed above, except that the key k is
to be atached as a prefix instead of as a suffix to the
field.kkl.

Formally:
kk3 <- (if (alpha(k) AND legalkey(k)) OR kk2#nil

then errp
else k.kkl)

b} In case k is a structure, the creation of the output
structure x may be described by the following expression,
analogous to that for the attach-prfx actor.

x <~ (init i <=1
while k[i] # nil do
X <= x + [k[1,75eI7]) ({+k(1,"key") }x(k(i,"sel"]])
i<-1i+1
return x)

detach-sufx actor

inputs: x{kkl}, k{kk2}
where k is a key (or a structure consisting of
keys) to be detached from x, .
kkl = klp...kl}, m2 @
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output: x{kk3}

Intuitively:

a) In case k is a simple key:

The detachment will fail if k is a delta-key and the
operation is not performed in the proper monitor, or if the
key k is itself protected, or if the last key (kly) of kki!
does not match k. Otherwise the last key of kkl is
detached.

Formally:
kk3 <- (if (delta(k) AND legalkey(k)) OR kk2#nil

then errp
else if klj=k
then klp,...kl5

else errp)

b) In case k is a structure, the creation of the output
structure x may be described by the following expression:

X <~ (init i <-1
while k[i] # nil do
X <= x + [k(i,"sel"}](x(k[i,"sel"]){-k[i,"key"]})
i<-1i+1
return x)
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detach~prfx actor

inputs: x{kkl}, kx{kk2}
where k is a key (or a structure consisting of
keys) to be detached from x,
kkl = kKlpe..kly, m22 7

output: x{kk3}

Intuitively:

a) In case k is a simple key:

The actions are analogous to those performed by the
detach-sufx actor, except that instead of the last key of
kkl the first key is detached in case of a match.

Formally: .
kk3 <~ (if (delta(k) AND legalkey(k)) OR kk2#nil

then errp

else if klp=k
then klp_j...k1
else errp)

b) In case k is a structure, the creation of the output
Structure x may be described by the following expression:

X <- (init i ¢~ 1
while k(i] # nil do
x <= x + f{k{i,"sel™]]({-k[i,"key"]}x[k[i, "sel"]])
i <=1+ 1
return x)

i s s,

All actors with only one input

input: x{kkl}
outputs: rl{kkl}, r2{kkl}

Examples of such actors are functions and predicates with
one argument, or the "fork" operator (in a graph), which
Creates two identical copies of the input value.

The protection field attached to any output value is
always a copy of the field kkl carried by the input value.

Summary

This chapter was intended to give formal specifications for
actions taken by individual actors with respect to
protection fields. The notation for the specifications was
chosen with the emphasis on expressing the value of the new
protection field, rather than how this value 1is to be
computed; in particular we did not specify the order in
which individual keys constituting the ingut protection
fields should be considered. Such decision are stronily
dependent on the architecture of the individual processors
executing the specified functions. The preceding
specifications allow these functions to be implemented in
accordance with the chosen processor hardware and adapted

to the rest of the system.



9. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

The motivation for this thesis was to design a
protection system for a dataflow machine currently being
developed at the University of California at Irvine.  The
major  characteristic of the system relétive to protection
is that it allows the control of information among monitors
that are the subjects of the system, as opposed to
controlling access to objects, as is the case with most
existing systens. This is in accordance with the
principles of dataflow, where execution is driven by the
flow of data (operands) and not by a stream of consecutive
instructions. The hasic philosophy of our approach is to
allow data to propagate through arbitrary monitors and to
allow each monitor to protect that data by attacﬁinq to it
a protection key. This data and also all information
derived from that data then cannot leave the system (be
output) wunless all keys attached to the corresponding
values are removed. The mechanisms thdt enforce protection
are distributed throughout the entire system. Each actor
obeying certain prespecified rules is an integral part of
the protection system, the specification of which is given
by the rules for individual actors. This implies that the
protection system is completely described in terms of
functions performed by actors, and is independent of the
underlying implementation. This abstract model allows us
to specify the scope of the Protection system by giving a
boundary within which the protection of information may be
guaranteed by the system., This boundary distinguishes and
surrounds clearly all parts of the system that must bhe
physically guarded and protected from unauthorized access

and modification.

The language Id incorporates the concept of a strean
variable, which is an ordered sequence of tokens, each
token carrying a value [ArGoPl178)}. An essential property
of streams is that elements are not required to exist
simultaneously, thus an activity may operate on a streanm
while another activity is still in the act of producing
that stream. 1In order to extend protection mechanisms to
comprise the protection of streams, we can nmodel the
behavior and the properties of a stream as an incomplete
structure, The idea of such a structure proposed in
[Bic78] is the following:

In the current implementation of 1Id the primitive
append must wait for the arrival of the structure s, the
selector i, and the value v to be appended, before it can
produce the new structure s', Under the proposed
interpretation append does not await the arrival of the
value v, but rather «creates the new structure s' with a
+olue  and releases s',

“hole" in place of the 5
This allows any subsequent append or select operation to
proceed unless a select operation is reguesting a value not
yet produced, in which case the solect will be delayed.
After the value v arrives at the original append actor it
will be filled in and any select operatinn delayed by the
late arrival of v may now procead. Since a streanm is

Conceptually equivalent to an incomplete structure, the

mechanisms developed in Chapter 3, Section 5, for the
protection of structures nay be used to define operators
for the protection of streams. Streams, in fact, could he

implemented as incomplete structures, which is currently
under investigation by the Dataflow Architecture Group,

A second area to be investigated is the efficiency of
the protection system, which was treated rather informally
in this thesis. We observed that each actor has to perforn

three, to a great extent independent, actions. These were
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the computation of a new output value, a new destination
for that value, and a new protection field, for each set of
input values. The desire to make the system efficient by
allowing as much parallelism as possible in performing the
above three tasks versus the cost of the necessary
harwa;e/softwate is an area requiring further research.

A third area worthy of consideration is that of

certification. Certification means guaranteeing that the
protection mechanisms actually satisfy the posted
requirements, In the case of the system proposed in this
thesis it must be shown that no computation involving
protected values may ever produce results that contain any
information about the protected values, but are
nevertheless less protected that those leues. We believe
that, due to the relative simplicity of the protection
system, a mathematical model can be developed to

a) define the protection of a set of values

b) define the relation “stronger/weaker protected
than" for arbitrary sets of values

c) show that none of the actors can ever produce
results that are less protected that the input values

d) show that the entire system consisting of such

actors will satisfy the above requirements.

Such a model then may be used to show that no leaking
of information can ever take place if all actors follow the

specified rules.
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APPENDIX

trapdoor (Chapter 4},

1. Definition of the monitor

(monxtor (1n1t _str,ape)
(ent_x REQ do

RES<~

(init str<-init str

fog each r in REQ do

depth<=
(1n1t count<~1
whllg r[paLh[count]]flambda do
count<~count+1
return count-1);

path_end<-
(1n1t s<-str[path{depth]] ,depthc¢- -depth-1
while depth#6 do
s<~s["publicized” ,path{depthl];
depth<-depth-1

return s);
res,str<-
(if r{"f"]}="get alpha_key"
then delta(path end[Tpointer”]),str

else if rf"f"]— get_delta_ key"
n a‘pra(path endf"po nter*}),str

If r("f")="publicize"
(key( alpha({path endl"pointer")!
if ri-kKeyl= =err
then return "{1legal nath nane",str
else return "ok",ape(s*r, r[" atﬁ"},
"name”},
‘pointer©1)))

exit RES))

An instance of trapdoor is created by supplying
parameter "init str" (e.g. the empty Structure lanbda)

the procedure "ape" (append at path end) zivsn below to

the

and

the
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primitive create. The procedure ape appends the value

2, Definition of the monitor p
pointer to the structure (given by the

parameter “"s") at

("prisoner” in the prison mail system studied in Chapter 4)

(monitor (myself,G)
(entry BNDLS do
of the

the end of the path (given by “"path") under a new name

("name"™) . The parameter “"depth" gives the depth

s e e

first_bndl'<-
path. (init first bndl<- lambda; ideas<-??
hile mood strikes do
, text<-scribble(ideas);
address<-whoever (ideas);
proc ape (s,path,depth,name,pointer) d<-use(trapdoor,"get delta_ key",<...,address>);
(if depth=0 first bndl<-
then s+{name) (lambda+("pointer®}pointer) first_bndl+[addres s] (lamnbda+
else s+[path(depth],"publicize"]

- cont ] text+
ape(s[path{depth],"publicize"], {"sender"]myself) {+d}{+alpha}l
path+[depth] lambda,depth-1,name,pointer)) return first bndl);
okl<-use(g.pris, flrsL bndl');
OK<-(for each bndl in BNDLS do
unseal bndl',v1olat1on <=

(init i<-1; unseal bndl<- lanhda
while bndl{i]#nil do

a<- use(trapdoor, get_alpha key",
<o bndl[l,“spnﬁer"]>)
letter'<-bndl[i]{-a} .
letter<-letter' t‘dul'x
unseal bndl,viciation<-
! (1f letter =err

then unseal bndl,"wrong sencder”
else if letfer=err

then unseal _bndl,"wrong destinee”

else unseal bnd1+[1lletter,ig:§g§)
return unseal _bndl,violation);

’

reply bndl'<-

Tinit reply bndl<- lambda; ideas<-2?
while mood striked do
text<~ scrlbble(ldeas unseal hndl');
address<~ whoever(ldeas unseal bndl')
d<-use(trapdoor,“get_delta_key",
<....address>);
reply bndl<-
reply bndl+[address](1a@uda*
["cont"}text+
["sender™lmyself)
{+d}{+alpnal

;

return reply bndl);

ok2<~use(qg.pris,reply bndl');
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The functions “"scribble" and “whoever" represent
functions to produce the text and the address for each
letter, and the predicate "mood_strikes" specifie; how many
letters are to be written during one delivery cycle.

An instance of P is Created by supplying the parameter

"myself", which is the name (=address) of the prisoner to

be created.

3. Definition of the monitor g

("guard” in the prison mail system from Chapter 4)

{monitor (m)

(ggggz pPris:PBNDLS; postm:MBNDLS do

CKl<-(for each pris_bndl in PBNDLS do
oki<= usq(n,pt:s bndl)
return all okl)

OR2<-(for each sort bndl in MBNDLS do

ok2<~ u:e(sort bndl["dest"],sort bndl)
return all ok2)

xit pris:OKl; postm:0K2))

he parameter M is the pointer to the postmaster monitor,

- ae

Paze Z01

4. Definition of the monitor m
("postmaster” in the prison mail system fron Chapter 4)

(monitor(nr_of pris,g)
(Eﬁth BNDLS do

SORTED _COLL,0K1<~-
(1n1t bndl coll<-lambda; c<-0

for each bndl in BNDLS do
bndl coll,c<-

(1f c=nr_of pris

then lambda,@

else Sox*(hnﬁl coll,bndl), c+l)

return all(if c=nr of pris
then bndl Coll
else lambﬁa)but lamhda,

11 Vok"):

0K2' <~
(for each sorted_coll in SORTED COLL do
OR2<-(for i from 1 to nr_of pris do
ok2<-use(g.postm,selecti(sorted _coll})
return all ok2)

return 0K2)

exit OKl))

The parameter "nr_of pris" specifies the nunber o
p _of & L

prisorers participating in the prison mail system, an! the

parameter g is the pointer to the guard monitor. The

function "sort" represents a function which continuous’y
P

sorts the incoming bundles according to their destination:.
The value “bndl_coll" 1is the result of "sort” after ez->h
delivery cycle and it represents the collection of all
sorted bundles from that delivery cycle. The functiqn
ooy 1Y

“selecti" represents a function which selects one bundle

from "sorted coll” at a time. These burdles are ther son

to the guard monitor.
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S. Definition of the monitor tax (Chapter 5)

(moniggg(lessor,internaladata)
(entry REQ do

RES<~-
(tor each s in REQ do
a<- use(trapdoor,"get _alpha_key", <JCM_creator,s1l]);
s'<=s{-a};
tax,bill<~-
(if s'=err
then "wrong identlfxcation" lambda
else fi(s'{1),s'[2),s'(3], internal _data),
£2(s'{1}1,s [2],1nternal data)),
okl<-use(lessor, b1ll),
| stolen data<-f3(...,s'[3],...}; |
| ok2<-lessor(stolen _data) |

exit RES))

The statements enclosed by the dashed 1lines indicate
an  attempt by the monitor to disclose information computed
‘using the sensitive data s'{3] to the lessor. The
parameter "lessor" speclifies the monitor to which the bill

for services rendered is to be delivered.

7. Definition of a protection unit (Chapter 7)

(monitog(procedureé)
(entry REQ do

RES<~-
(for each ¢ in REQ do
depth(—
(init count<-1
Eﬁllﬁ r{3,count]#nil do

count<-count+l
return count-1)

res<~
(if depth>1

then r{3,depth] (r[1]1,r(2],cl3)+(depthlnil)

else(lf authentlcate(r[l}
then err
else (p<-proceduresir
77T return p(r)))
return all res)))

exit RES))

Each request r sent to the protection

shown in Fig. Al, where

identification and the alpha-key of the caller,

desired operation (e.qg. “get_val")

the path in the hierarchy of the protection

protection unit first computes the depth of

case the depth is greater than 1,

forwards the request to the next

hierarchy.

indicated by the function

trapdoor is implied), and if this is successful

=7e 2rr

r21y

who"

, and

the

Otherwise it authenticates the

"authenticate™

unit

lower

specif
, S
its. The
sath, In








