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characterization of the woody 
biomass feedstock potential 
resulting from california’s drought
carmen L. tubbesing  1*, José Daniel Lara  2,3, John J. Battles  1, peter W. tittmann4 & 
Daniel M. Kammen2,3,5

Regional tree die-off events generate large quantities of standing dead wood, raising concern over 
catastrophic wildfire and other hazards. Governmental responses to tree die-off have often focused on 
incentivizing biomass energy production that utilizes standing dead trees removed for safety concerns. 
However, the full distribution of potential woody bioenergy feedstock after tree die-off has not been 
evaluated due to the complexities of surveying and precisely measuring large forested areas. In this 
paper, we present a novel method for estimating standing dead biomass at a fine spatial resolution 
that combines aerial survey data with forest structure maps. Using this method, we quantify biomass 
generated by the unprecedented tree die-off that occurred in California following a 4-year drought and 
widespread pest outbreaks. The results are used to estimate feasibly recoverable feedstock for energy 
production. We find that approximately 95.1 million bone-dry tons (BDT) of dead biomass resulted from 
2012–2017 mortality, with a lower bound of 26.2 million BDT. In other words, of the aboveground live 
tree biomass in 2012, ~1.3–4.8% died by 2017. Of the standing dead biomass, 29% meets minimum 
constraints for potential cost-effective bioenergy feedstock. This proportion drops to as low as 15% 
in the most affected areas due to terrain slope, wilderness status, and other factors, highlighting the 
need to complement disposal via biomass energy with other strategies to mitigate the risks of the tree 
mortality crisis, which is likely to only become more severe over time due to climate change.

As global mean temperatures rise and regional droughts become more common and severe, epidemics of tree 
mortality are increasingly threatening the world’s forests1,2. In many forests adapted to frequent fires, the risks 
posed by drought are exacerbated by fire suppression and management legacies. These policies have created more 
crowded forests where trees compete more strongly for water resources3,4. As a result, the forest as a whole is less 
resilient to drought effects5,6. For example, the 2012–2015 drought in California triggered unprecedented tree 
die-off5,7. The United States Forest Services (USFS) estimates that 123 million trees died across California from 
2012 to 2017, over five times the mortality detected in the prior six-year period (see Supplementary Table S1)8. In 
some areas, mortality reached over 50% of live tree biomass9. Tree mortality crises like the one in California raise 
critical questions, such as how to address risks associated with their aftermath. Though mortality events run their 
course over years, the consequences must be managed for decades.

Standing dead (SD) trees created by tree die-off have sparked concern that fire hazard, carbon emissions, and 
air quality may worsen in population centers near the affected areas. Some wildland fire scientists fear that dense 
SD trees will lead to “mass fires” in the coming decades10. Mass fires are phenomena in which long-burning fuels 
(such as dead and downed tree trunks) burn simultaneously over a large area, creating strong fire-induced winds 
with the potential to damage or destroy nearby infrastructure. In light of these risks, local and state policies have 
favored removal of SD biomass, particularly near communities. Debate continues among scientists regarding the 
magnitude and nature of fire risk resulting from tree mortality, the effects of die-off and biomass energy on carbon 
emissions, and the impact of tree removal on the ecology of the forests10–13. Given these uncertainties, we do not 
promote a specific course of action to address SD trees but rather evaluate the feasibility of tree removal in order 
to inform policy objectives.
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After SD trees are harvested, sustainably disposing of them is economically and logistically challenging. In 
California, SD tree harvests for timber are limited by scarce domestic mill infrastructure and policies restrict-
ing the export of unprocessed wood14. Since wood quality degrades rapidly after death, SD trees quickly lose 
value as timber in the initial years after death15. Additionally, landfills and composting are not viable options 
for large-scale disposal of woody biomass14. Though the state has worked to create low-cost applications of dead 
wood such as mulch and sign posts, these solutions are considered “low volume” because of their limited markets 
relative to the quantities of SD biomass that state agencies aim to remove14,16. Therefore, the primary means of 
removal for many SD trees of merchantable size is to burn them in open piles, which release CO2, particulate 
matter, and other criteria pollutants that adversely affect human and environmental health17.

Woody biomass-derived energy represents a viable option for the sustainable disposal of SD trees in California 
and elsewhere, in part because its emissions are cleaner than those of open pile burning17,18. There is a longstand-
ing precedent for coupling biomass energy with forest management in North America19,20. There has even been 
research on electricity generation from areas that have experienced beetle-induced die-off21. However, woody bio-
mass energy has declined in California in recent decades due to low electricity prices and high feedstock costs22. 
In an effort to incentivize bioenergy production, California declared a state of emergency due to tree mortality 
in 2015 that directed state agencies to take steps toward facilitating SD tree removal immediately23. One of the 
state’s central policy objectives is to help make woody biomass energy more economically feasible by a) funding 
technological development, and b) providing incentives to build new bioenergy facilities that use biomass from 
areas designated as tree mortality High Hazard Zones (HHZs), with particular emphasis on 10 “High Priority 
Counties” that contain high densities of dead trees. It is yet unknown whether widespread biomass energy using 
SD wood is attainable given the geographical distribution of SD biomass and its characteristics.

To evaluate the potential for biomass energy as a SD tree disposal solution, detailed information on SD bio-
mass feedstock availability is needed20. SD biomass has not yet been quantified due to limitations in data availabil-
ity. For instance, LiDAR has been used successfully to estimate live biomass, but studies focusing on dead biomass 
are rare and LiDAR is expensive to scale to the entire state24,25. Satellite imagery that uses pixel-scale vegetation 
indexes can only detect the presence of mortality but not quantities of dead trees or biomass24. Methodologies 
relying on long-term monitoring data to model normal growth and death forest cycles have limited ability to 
estimate feedstock potentials26 – even the most extensive field data campaigns measure only ~0.0017% of for-
ested area each year27, which is insufficient to capture episodic events like die-off. We propose a novel method 
to estimate state-wide SD biomass densities and distributions based on Aerial Detection Surveys (ADS). The 
USFS uses ADS to monitor dead tree counts in areas experiencing tree die-off. These areas are delineated from 
aircraft as geospatial polygons. However, other variables critical for estimating potential feedstock quantities and 
costs – such as biomass densities, distances to roads, average volumes per tree, and slope of the terrain28 – are not 
included in ADS data. While previous research has used ADS data to investigate SD biomass in North America, 
these studies have applied simple conversion factors to estimate biomass from tree counts for all trees of a given 
species, ignoring the wide variation in tree sizes that occur within regions29,30.

The objectives of this paper are to analyze the characteristics of the biomass left over by the California die-off 
and to assess how much of the resulting biomass waste could be economically used as energy feedstock. We pres-
ent a new methodology for estimating SD biomass using fine-scale data sources that provides precise estimates 
across large geographic areas. After calculating SD biomass across the state, we filter and classify that database 
using criteria related to harvest feasibility. We focus on SD biomass as it pertains to bioenergy as opposed to 
biofuel or other conversion technologies because biomass energy has been a focus of tree die-off hazard miti-
gation efforts in California and elsewhere20,31,32. Our analysis does not evaluate the economic merits nor eco-
logical trade-offs of tree removal (e.g. wildlife habitat value of SD trees) – we instead focus on evaluating the 
feasibility of governmental removal goals in areas where mitigation has been deemed necessary, such as within 
state-designated High Hazard Zones.

Our research questions are:

 1. Can a methodology be developed to rapidly and reliably assess SD biomass quantities shortly following 
forest die-off using existing data sources?

 2. Can biomass energy feasibly be used to facilitate the removal of a majority of SD trees in state-designated 
high risk areas?

Analytical framework
The method to estimate the potential biomass feedstock from SD trees is a multistep process. The first step was to 
estimate dead biomass within the areas affected by tree mortality and surveyed in the ADS. Subsequent filtering 
of this biomass was based on criteria specific to biomass energy. We estimated SD biomass densities at fine spatial 
resolution by combining ADS data with the Landscape Ecology, Modeling, Mapping, and Analysis (LEMMA) 
Gradient Nearest Neighbor (GNN) Structure (Species-Size) Maps. We used ADS data obtained from USFS Pacific 
Southwest Region (USFS R5)8, and GNN forest structure data from the LEMMA lab, found at https://lemma.
forestry.oregonstate.edu/data/structure-maps33 (See details in Supplementary Information).

The second step was to remove unrecoverable biomass from the totals using the following operational crite-
ria: a) spatial isolation (sparse pockets of mortality can make harvesting expensive); b) wilderness designation 
(mechanical operations prohibited); and c) tree volume limitations (average tree volume can exceed chipping 
machinery capacities).

Finally, we classified the feasibly harvestable biomass into two categories: more- and less-economical. This 
classification was based on (a) whether average tree volume exceeds on-site chipping capacities, which are more 
restrictive than chipping capacities of machinery at biomass facilities; (b) terrain slope; and (c) distance to the 
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nearest road. We also classified the biomass feedstock by location within HHZs Tiers 1 and 2. A more detailed 
breakdown of this analytical process follows below, and additional details on methodology can be found in 
Supplementary Information.

Note that our assumption is that most of the residues from harvesting SD trees will be chipped for bioen-
ergy applications. In other words, the analysis is constrained to biomass-only harvests and excludes integrated 
operations that harvest sawlogs and biomass simultaneously. Though integrated approaches can reduce costs20, 
large-scale removal of dead biomass will most likely necessitate biomass-only harvest methods due to the large 
quantity of SD biomass and the timber infrastructure limitations described above.

calculating total SD biomass. We used GNN forest structure maps based on 2012 satellite imagery as our 
pre-drought baseline reference. The GNN method combines remote sensing data, Forest Inventory and Analysis 
(FIA) plot data, and other data sources to interpolate detailed forest structure variables across all forested land 
in a region at 30-m resolution33. Our methodology uses the Component Ratio Method34 (CRM) for calculating 
aboveground tree biomass for the feedstock estimations, which are included in the forest structure variables 
interpolated by GNN. We estimate uncertainty in the analysis by using an upper and lower bound depending on 
the assumed ADS tree size detection threshold. The results are reported in bone dry tons (BDT) instead of metric 
tons because it is conventional to use BDT in the woody bioenergy field. A BDT is defined as 2,000 lbs of woody 
material at 0% moisture in the form of fuel chips.

The methodology to merge ADS and GNN datasets is as follows:

 1. For each ADS mortality polygon p in year t, we cropped and masked the GNN forest structure raster to the 
size and shape of the polygon. We then distributed the number of SD trees according to ADS in polygon 
p, defined as DTp,t, across the forested pixels in p based on each pixel i’s 2012 live tree density TPHi, relative 
to TPHi in other pixels within p. Discrepancies occasionally occurred in which the number of SD trees in 
the pixel exceeded the GNN estimate of live trees. In such cases, we limited the dead tree count DTi,t to 
the GNN estimate of live trees, as shown in Eq. (1). Each pixel has an area of 900 m2, or 0.09 hectare. As a 
result, this conversion factor is included to convert TPHi into the number of trees per pixel.
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This calculation assumes that all trees in a polygon p have an equal likelihood of mortality regardless of 
size, and that ADS detects all trees with equal likelihood. More details on this assumption follow below 
under Step 4.

 2. Dead biomass per pixel per year DBMi,t was estimated by multiplying DTi,t by the pixel’s 2012 live tree 
biomass, which was calculated by dividing GNN biomass per hectare BPHi by TPHi, as shown in Eq. (2).
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Steps 1–2 were repeated for each year t of ADS data from 2012 to 2017 and then summed across years to 
calculate the cumulative dead biomass TDBMi for each pixel. In some pixels, TDBMi exceeded 2012 GNN 
live tree biomass. In such cases, TDBMi was limited to 2012 GNN live biomass, which was calculated by 
multiplying biomass per hectare BPHi by the area of the pixel in hectares (0.09 hectares per pixel) as shown 
in Eq. (3). This correction was required in fewer than 10% of pixels and represented a reduction of only 4% 
of the overall cumulative sum of feedstock.

∑= ∗ .∈{ }TDBM DBM BPHmin , 0 09 (3)i t T i t i,

 3. The above steps rely on a threshold value for diameter at breast height (DBH) above which ADS can 
detect SD trees. Since trees < 20–25 cm in DBH are rarely visible from aircraft (Jeffrey Moore, personal 
communication, 2019), we selected DBH ≥ 25 cm as our detection size threshold. Thus, we used GNN 
BPHi and TPHi, data that describe the subset of live trees with DBH ≥ 25 cm. However, in areas with low 
tree densities or small average tree size, ADS data may detect trees smaller than 25 cm DBH. To estimate 
uncertainty in ADS detection thresholds, we repeated the analysis using GNN BPHi and TPHi data for all 
trees with DBH ≥ 2.5 cm. This second analysis represents lower bound estimates because trees near 2.5 cm 
DBH are likely to be obstructed from view by larger trees. Moreover, one of the main drivers of the tree 
die-off event was bark beetles, which preferentially target larger trees9,35. Hence, true SD biomass densities 
are likely closer to our upper bound. We did not account for tree decay following mortality, which leads to 
reductions in wood density36, because research on the biomass densities of SD trees is limited37 and we did 
not expect significant biomass declines for mature trees within the 5-year window that we examined.

Analysis of SD biomass for harvest feasibility. 

 1. Small, scattered pockets of tree mortality are economically inefficient to harvest for biomass energy. 
Thus, we identified clustered pixels containing SD biomass and filtered out isolated pixels. The clustering 
algorithm Density Based Scan Clustering (DBSCAN)38 was implemented using 112 pixels as the mini-
mum number of pixels per cluster. Given that a pixel is approximately 0.09 hectares, each cluster represent 
approximately 10 hectares containing SD biomass.

https://doi.org/10.1038/s41598-020-57904-z
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The DBSCAN method requires specification of a parameter termed the ε-neighborhood, which represents 
the local radius for expanding clusters and serves as the upper limit to define a cluster (see details in Sup-
plementary Information). A smaller value of ε generates more compact clusters but reduces the recovera-
ble biomass totals. We performed a sensitivity analysis to identify an optimal ε-neighborhood value. The 
choice of the ε-neighborhood value was determined by considering the inflection point in the trade-off 
curve between biomass removed from the total and average standard distance, which is a measure of the 
compactness of the cluster.

 2. We removed SD biomass located in land designated as wilderness or National Park since harvesting in 
wilderness areas is not allowed by law39. Though harvesting is legal within non-wilderness National Park 
areas, it is less common than in other land ownership designations.

 3. Harvest feasibility is also affected by tree size due to equipment limitations and safety considerations, since 
woody biomass generally must be chipped for use in bioenergy applications. Commercial large drum 
whole tree chippers have a maximum in-feed size of 102–127 cm DBH40, which is associated with a volume 
per tree (VPT) of about 11.32 m3 (400 ft3) for Pinus ponderosa or P. lambertiana41, two of the species most 
affected by recent die-off9. Trees larger than this diameter would require pre-processing before being 
chipped at additional cost.
Using data from the GNN structure maps, mean VPT per pixel VPTi was estimated by dividing the GNN to-
tal volume of live trees per hectare (VPHi) by the number of live trees per hectare (TPHi) as follows in Eq. (1):

=VPT VPH
TPH (4)i

i

i

Pixels with VPTi ≥ 11.32 m3 were removed.
 4. Dead tree density also affects harvest feasibility. Areas with very low tree densities can be costly to harvest, 

and if dead tree density is low but live tree density is high, selective removal of dead trees could be difficult 
due to the need to navigate around live trees. We excluded areas with very low dead tree density (<2.5 dead 
trees per ha).

Classifying SD biomass by factors related to expected harvest cost. After filtering for harvest fea-
sibility, we classified the remaining pixels in the database based on factors that are likely to influence harvest costs, 
including whether mean VPT exceeds on-site chipping capacities (as opposed to chipping capacities of biomass 
facilities) and whether slope exceeds tractor thinning capacities. This process differs from the filtering described 
above in that it differentiates between places where biomass harvest is more or less likely, rather than eliminating 
areas where it is nearly impossible. For example, harvesting in protected wilderness areas violates existing regula-
tions, whereas harvesting on steep slopes is expensive but possible. The classification process used here does not 
include all factors that may contribute to harvest feasibility (e.g. road curve radii). Therefore, the results represent 
an upper estimate of feasibly harvestable biomass for bioenergy.

 1. We classified feasibly harvestable pixels into two mean VPT classes, ≥2.26 m3 (∼80 ft3) and ≤2.26 m3. We 
based this cutoff value on the maximum volume that can be processed on-site with commercial mechanical 
equipment19,42. Trees with volumes ≥2.26 m3 must be cut into logs and chipped at sawmills or chipping 
facilities, which may increase costs. Note that earlier we excluded pixels where VPT ≥ 11.32 m3 – the maxi-
mum volume that sawmills and chipping facilities can process.

 2. Each pixel was then classified based on local terrain slope. Terrain slope strongly affects the cost of harvest, 
primarily because it determines whether ground-based, cable-yarding, or helicopter-yarding harvest sys-
tems may be used42. Ground-based systems are used where conditions allow because they are typically less 
expensive and cause less incidental damage than cable- or helicopter-yarding43. For safety and environ-
mental reasons, however, ground-based systems are generally used only when the slope is ≤40%44. Trees 
located in areas with slopes in the 30–40% range can employ either ground-based systems or cable-yard-
ing, depending on other factors such as tree size42. We calculated slope values using the National Elevation 
Dataset (NED) as described in Supplementary Information.

 3. We classified pixels based on linear distance to the nearest road. We combined road data from Open-
StreetMap (https://www.openstreetmap.org) and the US Forest Service (https://data.fs.usda.gov/geodata/
edw/datasets.php), and generated 2,000 m buffers around each road (described in Supplementary Informa-
tion). We overlaid the resulting buffers with the pixels to classify the pixels by proximity to a road. We se-
lected the distance cut-off based on upper estimates of maximum yarding distances for cable harvesting45.

 4. Finally, we classified each feasibly harvestable SD biomass pixel based on whether it falls within HHZ Tier 
1 or 2. State agencies delineate these priority areas for tree removal and provide certain economic incen-
tives for biomass energy production. For instance, the Bioenergy Market Adjusting Tariff (BioMAT) feed-
in tariff applies only to biomass removed from High Hazard Zones46.

Calculating energy conversions. To calculate energy conversions, we made the following assumptions: 
bone-dry biomass has a calorific value between 18 and 22 GJ/1000 kg; chips have a 30% relative moisture content; 
and commercial boiler technology used for electricity generation operates at 120 °C and a thermal efficiency of 
90%47. Based on these assumptions, we calculated a conversion rate of approximately one bone-dry ton (BDT) 
biomass per MWh (1 BDT/MWh), which is consistent with industry values48,49.

https://doi.org/10.1038/s41598-020-57904-z
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In addition to conventional boiler technology, the state has favored small and medium scale biomass gasifi-
cation because it enables facility siting closer to forest biomass supplies50,51. For small-scale gasification technol-
ogy, conversion efficiencies from woody biomass to electricity are lower than for boilers and are highly variable, 
ranging between 12% and 40%52. In this study, we assume a gasifier- electricity generator system of 150 kW with 
a conversion factor of approximately 4.7 BDT/MWh53.

Validation. In order to validate our methodology of SD biomass estimation, we compared our estimates of 
SD tree biomass to a separate data set generated using field and remote sensing data sources rather than ADS. 
This data set, called LT-GNN, combines Landtrendr with gradient nearest neighbor interpolation of raw FIA 
data across all forested pixels in California54. LT-GNN was applied to California forests annually through 2016. 
By subtracting the 2016 LT-GNN biomass raster from that of 2012, we generated alternative estimates of bio-
mass loss against which to compare our ADS-based methodology. We constrained our biomass loss estimates to 
2012–2016 for the comparison rather than 2012–2017 because LT-GNN results are not available for 2017. We also 
constrained the comparison to areas where ADS detected mortality.

For each ADS polygon, we summed 2012–2016 biomass loss according to the LT-GNN results, excluding 
pixels where LT-GNN predicted net biomass gain (from growth) rather than loss, and compared this sum to 
our 2012–2016 cumulative SD biomass estimate. We compared polygons that met minimum harvest feasibility 
requirements according to this study, namely mean VPT < 11.3 m3, dead tree density >2.5 trees per ha, and 
not spatially isolated according to our DBSCAN clustering method. Finally, we excluded polygons smaller than 
2700 m3, or three LT-GNN pixels, because of inaccuracies in aligning polygons with raster pixels at such small 
polygon sizes.

We calculated root mean square error (RMSE) between the two methodologies, including both upper bound 
and lower bound estimates generated in this study. Because of high heteroscedasticity of the results, with higher 
variation at higher values, we applied the RMSE calculation to log-transformed biomass estimates.

Results
Statewide SD tree biomass resulting from forest die-off. Between 2012 and 2017, approximately 
95.1 million BDT of SD biomass resulted from tree mortality, with a lower bound of 26.2 million BDT. The most 
significant increase in SD biomass occurred in 2016 (Fig. 1). We found that 1.3–4.8% of the aboveground tree 
biomass across all forested land in California that was alive in 2012 died by 2017.

The sensitivity analysis used to determine the most effective filtering of sparse pockets of biomass found 
an inflection point in the trade-off curve between filtered biomass and cluster compactness at ε = 220 (Fig. 2). 
Filtering out spatially isolated pixels using an ε-neighborhood parameter of 220 reduced the statewide SD bio-
mass totals by 1.0–2.7 million BDT, to a range of 25.3–92.3 million BDT (Table 1).

Filtering the remaining areas by wilderness/National Park status, tree sizes, and low dead tree densities 
(Table 1) caused a further reduction of the total feasible biomass to a range of 18.4–68.9 million BDT (Fig. 3).

The results of classification by cost-effectiveness criteria are summarized in Table 2. Over 60% of the SD tree 
biomass can be chipped on site (Fig. 4). Areas with slopes <30% contain 9.9–35.9 million BDT biomass, while 
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Figure 1. Dead biomass in California by year of detection. The upper bound estimates, represented by the 
upper bars, were calculated using the assumption that ADS detects all dead trees ≥25 cm DBH with equal 
likelihood. The lower bound estimates, represented by the lower bars, were calculated using the assumption 
that ADS detect all trees ≥2.5 cm DBH with equal likelihood. Biomass is reported in million (MM) BDT. Yearly 
biomass estimates displayed have not been corrected in instances where 2012–2017 dead biomass estimates 
exceed 2012 GNN live biomass because it is impossible to parse that correction across individual years.
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areas with 30–40% slopes contained 3.3–12.5 million BDT (Fig. 5). We defined a subset of feasibly harvestable 
biomass as “cost effective” based on the following criteria: tree volumes small enough to chip onsite, SD trees 
located in areas with slope < 40%, and SD trees ≤2,000 m from roads.

The resulting subset amounts to 7.5–27.8 million BDT. Given that recent policies specifically target SD tree 
removal within HHZs, we also classified both feasible and cost-effective biomass by HHZ (Table 3, Fig. 3). The 
HHZ Tier 2 areas encompass most of the feasible and cost-effective biomass. Dead tree biomass is concentrated 
in only 12 of California’s 58 counties, most of which are in the southern Sierra Nevada (Fig. 6 and Table 4). 
County-level estimates of SD biomass by HHZ tier are listed in Table 5 for the counties with highest SD biomass 
and in Table S2 for all counties.

Validation. On average, biomass loss estimated by the LT-GNN method fell between our upper and lower 
bound biomass estimates (Fig. 7). As expected, our upper bound estimates performed better on average than our 
lower bound estimates. For the upper bound estimates, RMSE on a log scale was 0.53, while RMSE for the lower 
bound was 0.74. Our method predicts higher biomass loss than LT-GNN in low-mortality areas, likely because 
we limited the comparison to locations with positive mortality according to ADS.

Energy potential and example use cases. Assuming conventional boiler technology, feasibly harvest-
able biomass has the potential to produce 18.4–68.9 TWh of electricity. On the other hand, using small-scale 
gasification technology, the potential electricity production would be 4.3–13.8 TWh. If electricity production 
is assessed only considering cost-effective SD biomass, the energy potential is 7.5–27.8 TWh with conventional 
boilers and 1.7–6.4 TWh using small scale gasification. For context, California generated a total of 198 TWh 
in-state energy of all types in 2016 (Supplementary Table S7).

California’s BioMAT program incentivizes energy using byproducts of sustainable forest management and 
requires that most of the feedstock be sourced from HHZs. The program has a deployment target of 50 MW 
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Figure 2. The trade-off curve between reduction in total SD biomass and cluster compactness measured by 
average standard distance after performing DBSCAN clustering using a range of ε-values and eliminating 
isolated pixels. The upper curve represents biomass estimates using the assumption that ADS detects all dead 
trees ≥25 cm DBH with equal likelihood, while the lower curve represent the lower bound estimate made 
using the assumption that ADS detects all trees ≥2.5 cm DBH with equal likelihood. The final ε-value used 
in DBSCAN clustering was chosen by locating inflection points along these curves, with a result of ε = 220. 
The DBSCAN algorithm does not generate clusters using ε-values < 180 because the minimum pixel count of 
112 cannot be reached within a radius < 180 m. On the other hand, DBSCAN clustering using ε-values > 400 
does not achieve the goal of filtering out scattered SD biomass that would be inefficient to harvest. Biomass is 
reported in million (MM) BDT.

Filter
Lower bound biomass 
reduction (million BDT)

New lower bound 
total (million BDT)

Upper bound biomass 
reduction (million BDT)

New upper bound 
total (million BDT)

Spatial isolation 1.0 25.3 2.7 92.3

Wilderness/National Parks 5.8 19.5 19.9 72.4

VPTi ≥ 11.32 m3 or <2.5 dead tree per ha 1.1 18.4 3.4 68.9

Table 1. Biomass reduction from sequential filtering. Bold values show the final “feasible biomass” quantities 
used for subsequent analyses.
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(http://www.cpuc.ca.gov/sb_1122/). If the state meets that target, there is enough feasible biomass to supply con-
ventional power plants in HHZ for 39–145 years at an 80% capacity factor (0.4 TWh/year), and enough cost 
effective biomass to supply plants for 16–60 years.

These results can be applied to facility siting as well as feedstock analysis for existing biomass energy plants. 
For example, the Pacific Ultrapower Chinese Station (PUCS) is a biomass power plant located in Central 
California. The facility, which has a 25 MW production capacity, was built to utilize woody biomass from forest 
management operations and could potentially be used to process SD trees.

Using the database and analytical framework created from this study, we estimated that the feasibly harvesta-
ble biomass feedstock available to PUCS is 0.4–1.6 million BDT within a 30 km radius and 1.3–6.1 million BDT 
within a 50 km radius (Fig. 8). Approximately 1.1 million BDT within 30 km (lower bound 0.3 million BDT) and 
4.3 million BDT within 50 km (lower bound 1.0 million BDT) of potential feedstock near PUCS are located in 
terrain with slope <40%, enabling the likely use of ground-based harvesting systems for tree removal. In terms of 
cost-effective supply, there are 0.2–0.7 million BDT and 0.6–2.5 million BDT of feedstock within 30 and 50 km, 
respectively, of PUCS.

PUCS can produce approximately 0.2 TWh of energy per year, assuming an 80% capacity factor with a conven-
tional boiler. Therefore, there is sufficient cost-effective feedstock for electricity generation potential of 200–700 
GWh within a 30 km radius of the facility, equivalent to 1–4 years of operation if the plant relied only on SD biomass. 
Within the 50 km radius, the potential increases to 600–2500 GWh, which translates to 3–14 years of operation.

Discussion
Evaluation of analytical framework. This study’s geographically explicit assessment of SD biomass ena-
bles detailed estimations of woody feedstock availability resulting from tree die-off. While the results are spe-
cific to California, the analytical framework provides a general approach applicable to forests worldwide that 
have experienced tree die-off. By combining aerial detection surveys with forest structure maps, we found that 
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Figure 3. Total SD biomass that has resulted from 2012–2017 tree mortality in California. “Gross” values show 
total SD biomass. “Feasible” bars show the subset of SD biomass lacking characteristics likely to impede harvest 
feasibility, including geographic isolation, wilderness or National Park designation, and tree volumes exceeding 
standard chipping capacities for either on-site or facility-based chipping. “Cost-effective” bars show the subset 
of “Feasible” biomass that is in areas with slopes < 40% and mean tree volumes < 2.26 m3, where chipping can 
occur on-site. “HHZ T2” and “HHZ T1” columns show the subsets of cost-effective biomass located within 
Tier 2 and Tier 1 High Hazard Zones, respectively. The upper bars represent biomass estimates using the 
assumption that ADS detects all dead trees ≥25 cm DBH with equal likelihood, while the lower bars represent 
estimates made using the assumption that ADS detects all trees ≥2.5 cm DBH with equal likelihood. Filtering 
for harvest feasibility (upper bound) resulted in a 30% reduction in the available feedstock and filtering for cost-
effectiveness resulted in a 70% reduction from Gross. Biomass is reported in million (MM) BDT.

Factor
Lower bound not cost-
effective (million BDT)

Lower bound cost-
effective (million BDT)

Upper bound not cost-
effective (million BDT)

Upper bound cost-
effective (million BDT)

On-site chipping (VPT ≤ 2.26 m3) 7.8 10.8 29.0 40.4

Ground-based harvesting (slope < 40%) 5.8 12.6 21.6 47.3

Accessibility (<2000 m from road) 0.4 18.0 1.4 67.5

Table 2. Classification of feasible biomass based on each cost-effectiveness criterion.
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18.4–68.9 million BDT of SD tree biomass could feasibly be used as energy feedstock in California, with the true 
value likely closer to the upper bound of that range.

Our validation procedure demonstrated that an independent, more time-intensive methodology for estimat-
ing the biomass of recent tree mortality within ADS survey areas found similar magnitudes of mortality to our 
upper bound estimates. Because of the better alignment of upper-bound results with LT-GNN than lower-bound 
results, we refer only to upper bound results in the remainder of the discussion. Although our comparison with 
LT-GNN allows us to validate the methodology used in this paper and highlight the value of ADS data, the 
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Figure 4. Running cumulative sums of statewide SD biomass with respect to mean VPT per pixel. The upper 
curve represents biomass estimated using the assumption that ADS detects all dead trees ≥25 cm DBH with 
equal likelihood, while the lower curve represent the lower bound estimate made using the assumption that 
ADS detects all trees ≥2.5 cm DBH with equal likelihood. Below 2.26 m3 VPT, biomass can be chipped on-site 
(blue), whereas above 2.26 m3 trees must be chipped at facilities before further processing (red). There are a 
total of 40.4 million BDT SD biomass, with a lower bound of 10.8 million BDT, in areas where the average VPT 
is <2.26 m3. This represents less than 60% of the total feedstock available. Biomass is reported in million (MM) 
BDT.
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Figure 5. Running cumulative sums of statewide SD biomass with respect to slope. The upper curve represents 
biomass estimates using the assumption that ADS detects all dead trees ≥25 cm DBH with equal likelihood 
(Upper bound), while the lower curve represent the lower bound estimate made using the assumption that ADS 
detects all trees ≥2.5 cm DBH with equal likelihood (Lower Bound). Below 30% slope, ground-based harvesting 
can be used (blue), whereas in terrain with slopes 30%-40%, either ground-based or cable-yarding systems may 
be used depending on other factors (yellow). Above 40% slope, cable- or helicopter-yarding systems must be 
used (red).
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LT-GNN data do not represent metrics identical to those produced in our study: they represent forest biomass 
stocks (incorporating both growth and mortality) whereas our method estimates the flux in standing dead bio-
mass (representing only mortality); they do not include 2017 mortality; and they capture both background mor-
tality and insect- and drought-mediated die-off, whereas our method, through its use of ADS data, captures the 
effect of die-off in particular. Nevertheless, validation of our results against LT-GNN helped to show that the 
methodology introduced in this paper provides a reliable means of rapidly assessing SD biomass densities after 
die-off. We used readily available data sources that were either available prior to die-off (GNN maps) or gathered 
yearly and made publicly available only months after data collection (ADS). Going forward, real time monitoring 
of tree die-off can improve by combining insights from aircraft surveys (i.e. ADS) with more timely information 
on forest structure obtained from satellite sensors (e.g., GNN).

feasibility of widespread biomass energy using SD trees. Based on these findings, harvesting SD 
trees for energy feedstock is not a comprehensive solution for disposing of a majority of recently dead trees in 
California deemed for removal, nor for disposing of a majority of SD trees in areas of highest priority to the state 
of California. Of the 95.1 million BDT of SD biomass evaluated, only 29% may be cost-effective to recover. In 
HHZ Tiers 1 and 2, ~42% and ~30% of SD biomass, respectively, are cost-effective.

The major factors contributing to high costs of SD tree removal were tree volume and slope. Filtering for feasi-
bility did not strongly affect SD biomass quantities where mitigation is targeted. Although filtering out wilderness 
and National Park areas reduced feasible biomass by over 25%, these areas do not contain at-risk communities 
nor infrastructure, making them low priorities for mitigation. Filtering for spatial isolation and volumes larger 
than off-site chipping capacities reduced feasible biomass by only 2.8% and 4.7%, respectively. Slope and tree vol-
ume played the largest roles in classification by cost-effectiveness. Only 58% of feasibly harvestable biomass met 
VPT criteria for on-site chipping and only 69% of feasibly harvestable biomass met slope criteria for lower-cost 
ground-based harvesting systems. Accessibility had relatively little impact on cost-effective biomass – 98% of 
feasibly harvestable biomass was located within 2000 m of a road.

The accessibility analysis performed here does not include road distances to existing biomass facilities because 
this study is designed to inform, in part, the construction of new facilities. An analysis of hauling distances 
and transportation costs would further reduce the quantity of economically viability biomass in California, as 
transportation is a major contributor to woody biomass feedstock costs55. Future research in this area, perhaps 
applying a techno-economic analysis that incorporates our database, would provide useful information on the 
cost-effectiveness of biomass energy relying on existing facilities.

Dead tree biomass is concentrated in only 12 of California’s 58 counties, most of which are in the southern 
Sierra Nevada (Fig. 8 and Table 4). There is incomplete overlap between these 12 counties and the ten counties 
designated as High Priority according to the California state government (Table 4), likely because the state con-
sidered dead tree density, rather than dead tree biomass, as the criterion for “severe mortality” (see https://fmtf.
fire.ca.gov/working-groups/tree-mortality). The ten High Priority counties receive greater state resources for tree 
mortality response and mitigation than other counties. In some counties with large amounts of SD biomass, 
the proportion of SD biomass that may be cost-effective for biomass energy is much lower than the statewide 
average. This finding highlights the financial challenges of using energy conversion to handle residues from tree 
removal. For example, in Tulare County, which has the highest gross SD biomass and is a High Priority County, 
cost-effective SD biomass accounts for only ~14.8% of the total (Table 4).

Nevertheless, harvestable biomass could produce a substantial quantity of electricity. Our estimate of 
state-wide “cost-effective” SD biomass is equivalent to 4–14% of California’s annual in-state electricity generation 
(see Supplementary Table S7). In our example case study, the PUCS power plant could run for several years if it 
used only biomass from cost-effectively harvestable SD trees.

implications for carbon accounting. Our results will also aid in the statewide carbon accounting needed 
for California to reach its climate change mitigation goals. Specifically, this study provides the first estimate of live 
tree carbon loss resulting from the 2012–2015 California drought. Our estimates of total SD biomass are equiva-
lent to 11.2–40.6 Tg C across all areas surveyed by ADS, or roughly 1.1–3.8% of total aboveground forest carbon 
in California56. As SD trees decay or burn over time, their carbon will transition to the atmospheric pool. Though 
carbon release via decay or wildfire may take decades, carbon release from trees that are removed for safety concerns 
and pile burned is more likely to occur in the short term. The SD trees most prioritized for removal, namely those 
in Tier 1 HHZs that meet feasibility constraints, contain 0.9–3.5 Tg C, while feasibly harvestable SD trees in Tier 2 

HHZ Tier
Lower bound feasible 
(million BDT)

Upper bound feasible 
(million BDT)

Lower bound cost-
effective (million BDT)

Upper bound cost-
effective (million BDT)

Tier 1 2.0 8.3 1.0 4.1

Tier 2 15.4 57.2 6.4 23.3

Total in HHZ 15.6 58.0 6.5 23.8

No HHZ 2.8 10.9 1.1 4.0

Table 3. Classification of feasible and cost-effective SD biomass by High Hazard Zone (HHZ). Note that there is 
overlap between tier designations of HHZ such that Tier 1 and Tier 2 biomass quantities sum to more than the 
total across both tiers.
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Figure 6. Dead aboveground tree biomass resulting from tree die-off in 2012–2017. (a) Dead aboveground 
tree biomass (upper bound estimates assuming ADS detection of trees >25 cm DBH) resulting from tree 
die-off in 2012–2017 in 1000s of bone-dry tons (BDTs). (b) Comparison of cost-effective areas of SD biomass 
and economically infeasible areas. Black lines represent county boundaries. Map was produced from results 
generated in this study using QGIS 3.8.3 (https://qgis.org/en/site/forusers/download.html). Supporting data are 
described in Supplementary Information.

County

Gross [1000 BDT] Feasible [1000 BDT] Cost-effective [1000 BDT] Cost-effective proportion of Gross [%]

DBH > 25 cm (UB) DBH > 2.5 cm (LB) DBH > 25 cm (UB) DBH > 2.5 cm (LB) DBH > 25 cm (UB) DBH > 2.5 cm (LB) DBH > 25 cm (UB) DBH > 2.5 cm (LB)

Tulare† 22,866 6,739 12,619 3,634 3,379 1,004 14.78 14.89

Fresno† 15,137 4,701 11,410 557.8 3,924 1,287 25.92 27.37

Madera† 10,134 3,192 8,595 2,714 3,452 1,079 34.06 33.79

Tuolumne† 7,734 1,879 6,339 1,492 2,581 635 33.37 33.80

Mariposa† 7,401 1,883 4,480 1,010 1,847 422 24.95 22.43

Kern† 3,673 1,072 3,220 912 1,189 345 32.38 32.15

Siskiyou 3,483 895 2,579 639 1,215 312 34.87 34.89

Calaveras† 2,468 535 2,365 509 1,027 231 41.60 43.27

El Dorado† 2,392 601 2,230 552 1,066 273 44.58 45.40

Modoc 2,355 706 2,191 641 1,744 502 74.05 71.12

Plumas 2,089 485 1,809 409 880 209 42.11 43.17

Lassen 1,414 341 1,258 293 1,093 255 77.30 74.88

Total 81,146 23,028 59,094 16,362 23,396 6,555

Table 4. SD biomass in the counties most affected by 2012–2017 tree die-off*. *See Supplementary Tables S2 
and S3 for SD biomass results for all counties. †These counties have been identified as High Priority Counties by 
the state of California. The column “Gross Total” lists SD biomass before filtering. The column “Feasible” lists 
SD biomass after filtering for scattered pixels, wilderness/National Parks, mean VPT > 11.32 m3, and dead trees 
per ha < 2.5. The column “Cost Effective Total” lists feasibly harvestable SD biomass available at slopes < 40%, 
average tree volumes < 2.26 m3 and within 2000 meters from the roads.
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HHZs contain 6.6–24.4 Tg C. In order to understand how tree mortality may affect climate change, more research is 
needed on how SD tree carbon is released over time as greenhouse gases with and without tree removal.

conclusion. This study’s findings highlight the potential for rapid, reliable biomass assessments following 
forest die-off. While ADS data are often made available within months after mortality, more computationally 
intensive assessments such as LT-GNN can take years to process and can be difficult to acquire in detail due to 
confidentiality limitations on the raw data they use (namely, the Forest Inventory and Analysis Phase 2 plot inven-
tories). The methodology outlined here could help inform mortality mitigation strategies within a time frame that 
allows for tree removal before treefall and decay make mitigation more difficult.

Our findings highlight the challenges in managing and responding to large-scale tree die-off and the complex-
ities of disposing of biomass residues through energy conversion. Even under the most optimistic assumptions, 
woody biomass energy is unlikely to provide a widespread means of SD disposal in California. State policies to 

County

Feasible [1000 BDT] Cost-effective [1000 BDT]

HHZ Tier 1 HHZ Tier 2 HHZ Tier 1 HHZ Tier 2

Tulare 1,072.4 9,640.2 459.2 2,449.2

Fresno 496.8 9,777.1 200.5 3,519.6

Madera 683.1 8,121.0 385.7 3,255.5

Tuolumne 1,219.7 6,012.3 563.1 2,451.9

Mariposa 842.5 3,706.7 432.1 1,589.4

Kern 327.1 2,013.3 144.9 701.7

Siskiyou 154.8 1,988.6 92.8 1,000.7

Calaveras 1,017.1 2,308.1 482.6 1,002.4

El Dorado 318.8 1,853.7 158.6 898.1

Modoc 175.9 1,882.9 152.4 1,487.9

Plumas 291.5 1,568.8 164.3 756.6

Lassen 86.1 1,136.0 72.9 983.7

Table 5. SD biomass in the counties most affected by 2012–2017 tree die-off, by HHZ tier, after filtering for 
harvest feasibility and cost-effectiveness. The column “Feasible” lists SD biomass after filtering for scattered 
pixels, wilderness/National Parks, VPT > 11.32 m3, and dead trees per ha < 2.5. The column “Cost Effective 
Total” lists feasibly harvestable SD biomass available at slopes < 40%, average tree volumes < 2.26 m3 and within 
2,000 meters of roads.

Figure 7. Comparison of this study’s results with biomass loss estimates generated from 2012–2016 LT-GNN 
data. Each point represents one ADS polygon. The black line represents a 1:1 fit, while the blue and red lines 
represent generalized additive model fits for the upper and lower bounds, respectively, which were modeled 
using cubic splines according to the function “geom_smooth” in the R package “ggplot2.” Gray shading 
represents 95% confidence intervals.
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address risk in high-mortality counties may need a more comprehensive approach that includes other SD disposal 
methods or direct feedstock subsidies in addition to electricity generation.

Data availability
The data that support the findings of this study and the resulting SQL file to restore the database are available 
in figshare at https://doi.org/10.6084/m9.figshare.c.4117328.v2. Statewide SD biomass results can also be 
downloaded from an interactive web map at http://geodata.ucanr.edu/biomass/.
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