
Lawrence Berkeley National Laboratory
Recent Work

Title
MEASUREMENT OF THE SPIN-CORRELATION PARAMETER CNN IN PROTON-PROTON 
SCATTERING AT 689 MeV

Permalink
https://escholarship.org/uc/item/2z2655wm

Author
Dost, Helmut Ernst.

Publication Date
1965-02-05

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2z2655wm
https://escholarship.org
http://www.cdlib.org/


UCRL-11877 

University of California 

Ernest 0. 
Radiation 

Lawrence 
laboratory 

MEASUREMENT OF THE SPIN-CORRELATION PARAMETER CNN 
IN PROTON-PROTON SCATTERING AT 689 MeV 

TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 
Tech. Info. Division, Ext. 5545 

Berkeley, California 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



.. 

Research and Development 

UNIVERSITY OF CALIFORNIA 

Lawrence Radiation Laboratory 
Berkeley: California 

AEC Contract No. W -7405 -eng -48 

UCRL-11877 

MEASUREMENT OF THE SPIN-CORRELATION PARAMETER CNN 
IN PROTON -PROTON SCATTERING AT 680 MeV 

Hel1nut Ernst Dost · 
Thesis 

February 5, 1965 



-ii-

MmABu:REM:ENT . OF THE SPIN -CORRELATION PARAMETER CNN 
IN PROT()N~PRO;.roN SCATrERING Nr 680 MeV· · 

Contents 

Abstract 

Introduction •.• . . . . . . . . . . .. . . . . . . . . . . . 1 

A. Motivation • .. . . . . . . . . . . . . . . . . . . . • • 2 

B. .. Nucleon-Nucleon Scattering Experiments • • • • • • • • • 4 

c. Polarization Experiments without and with a Polarized 

Target ••• . . . . . . . . . . . . . . . . . . . ... 9 

II. The Spin Formalism • • • • . . . . . . . . . . . . . . . . . 14 

A. The Scattering Matrix. • • • • • • • • • • • • • • • • • 14 

B. The Density Matrix •• . . . ~ . . . . . . . . .. . . . .· 18 

c. Application to CNN(e). . . . . . . . . . . . . . . . . . 23 

III. Experimental Apparatus • • . . . . . . . - . . . . •. . tj • • • 

A. Polarized-Proton Beam. • • • • • • • • - • $ - • g • • • 

1. ; 

·~ • 111 • • • Physical Description • • • • w • • • • • 

'2. Composition. . . . . . . . . . . . . . . ~ . . . . . 
Rates. • • • . . . . . . . . . . . . . . . . . . . . . 

4. Beam Polarization. • . . . . . . . ~ . . . . . . . . . 35 

B. Polarized-Proton Target. . ..... •·· . . . . . . . . . 
1. Dynamic Polarization . . . . . . . . •· .• ..... . ,.· 

2. Target-Polarization Measurement. • • • • • • • • • • 39 

3. Scattering, Non-Hydrogen Background. • • • • • • • • 41 

c. Counters and Electronics •. , • • .' • • • • . . 0 • • " • • 



"· 

IV. Data Anazysis • • • 0 • • • • • • • • • • • • • • • • 0 56 

A. Computation o~ the.Target Polarization. • • • • • . 56 

B .. Computation of.the Polarization Parameters. • • .. 58 

1. General Considerations. • • • • • • • • • • • • 58 

2. Straight-Line Fitting • • • • • • • • • . • •· 6o 

3· Dummy~Target Subtractions • • • • • • • • • • 62 

4. Classification of Errors.· • • • • .. . • .. 66 

Sample Calculation. • • • • • • • . . . . . . 
c.· Discussion of R~sults • • • • • • • 0 • • • . . ... :·. '74 . . 

v .. Conclusion • • • • .. • • • • • • ... • ·• • • • • • • • 7!fl 

Acknowledgments·. • • 0 . • • • • • • . . . • 0 0 • .. • • 78 

Appendices 0 • • • • • • • . . • • o· • ·• • • •· • • • . .. • • • 80 

A. Composite;...Spin-Space Components . ~ . • • • • . . . . 80· 

Proof· of Equation (23) •. o •• . . . .. . •· . -. . .. ... 81 

c. Error·Expressions •• • • o' • • ' • • ....... . . . ... 
.. 

References·. • · • • . o • • • • • .• • • .•. •· :• ·o • .- • .. • • 
• . · •.. 91' .. 

-: 
·I 

-· 

. · ... 

'·· 

'. 

·, 

~ ... 

.. ·· 

)' 

,·. 

• . 

. ·: 

. . . 
... 
···' 

. ; 
0 

. ...... 
:>' 

t•:, 

•' 

i-
l ,. 

" 



~ . . , 
l 

MEASUREME:NT OF THE SPIN-CORRELATION PARAMETER CNN 
IN PROTON-PROTON SCATTERING AT 680 MeV 

Helmut Ernst Dost 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

February 5, 1965 

ABSTRACT 

Using a polarized beam and polarized target we have measured 

the spin-correlation parameter CNN in proton-proton scattering 

·for an incident-proton laboratory-system kinetic energy of 6(?0 MeV. 

The polarized beam was made by scattering unpolarized protons from 

the 184-in. cyclotron in an external first target of liquid hydrogen 

resulting in a polarization of 0.44. To reverse the beam polarization, 

the incident-proton scattering anglewas reversed. The target protons 

were polarized by a solid-state technique called 11dynamic polarization11 

to o.4o on the average. The elastic proton-proton interactions 

involving the polarized protons were kinematically separated from 

other interactions by counting both protons in coincidence. The 

angular region covered by the 13 data points extends from 51.2 to 

88.7 deg in the center-of-mass system. The results show that CNN 

rises in this region from about 0.5 to 0.9 with a typicalstandard 

deviation of 0.1. 
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I. INTRODUCTION 

One of the principal aims of work in high-energy physics is a 

-,. coherent description of particle interactions. · According to theory; 

in any of its present-day alternatives, various scattering experiments 

should be related to one another. Qualitative relations have been 

shown to be.valid, but quantitative relations between different 

scattering processes are restricted, as yet, to trivial cases. 

Whi~e high-energy physics deals with a great variety of particles, 

it seems reasonable to expect that scattering processes involving only 

pions and nucleons should constitute a separable problem, almost independ

ent of processes involving particles of non-zero strangeness such as 

K mesons and A particles. The validity of this pqint of view rests in 

part on the fact that in high-energy collisions K-particle production 

is ma.terially lower than one would expect from a statistical model, 

relative to pion production. 

Taking the. point of view that scattering processes involving pions 

and nucleons do constitute a separable domain; it seems reasonable to 

hope that these processes can be quantitatively interrelated. 'If this 

is to occur, the theory should be tested for its ability correctly to 

predict the detailed scattering amplitudes. Conversely, the detailed 

amplitudes may perhaps be used to suggest the form of terms that a 

correct theory must include. It is with this general purpose that we 

seek to make experimental determinations of the scattering amplitudes 

in complete detail, particularly for systems of pions and nucleons. 

The experiment described in this paper constitutes one of many experi

ments that will be required. 
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In this chapter we remind the reader of the need for nucleon-

nucleon elastic-scattering data that will eliminate existing ambiguities 

in nucleon-nucleon phase shifts. We also relate the various experiments 

that can be undertaken and the parameters thus measured. Also we try to 

demonstrate the usefulness of the recently developed polarized proton 

target as a tool to measure these parameters. 

A. Motivation 

Moravcsik has reviewed the three general approaches to the nucleon-

nucleon interaction: phenomenological, meson theories of the static 

potential, and dispersion theoretic.1 In all cases one arrives at a 

formalism based on model-dependent assumptions and supplied generously 

. with parameters for the sake of flexibility. The examples that readily 

come to mind are the parameters involved in phenomenological potential 

models, such as radius of·hard core, well depth and radius, wall thick-

· ness, etc. Ultimately the theoretical parameters must be evaluated 

according to experimental results. These are most conveniently expressed 

in terms of phase shifts. However, unless one discriminates in selecting 

appropriate experiments, one ends up with data yielding several possible 

sets of pr~se shifts, each a candidate that fits the inappropriate 

experimental data more or less well. It is convenient to discuss the 

relation between phase shifts and experiment in terms of the scattering 

matrix of Wolfenstein and Asbkin, 2 or of Stapp in different fbrm. 3 The 

correct phase shifts at one energy can be obtained fromthe complete 

scattering matrix at that energy. An appropriate complete set of experi-

· ments yields suitable parameters in. terms of· which one expresses the 

scattering matrix. 

I 
I 

- I 
I 

'*·'-1 \)I 
i 

t'.< I 
I 

.. , 
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What constitutes such a complete set of experimental parameters 

is discussed by Schumacher and Bethe4 .and others. Here we state only 

that for nucleon~nucleon scattering one must measure eleven carefully 

chosen parameters at one energy and angle in each of the two isotopic-

spin states, to determine the various amplitudes of the scattering 

matrix unambiguouSly. If·measured at all angles the total number··of· 

parameters is reduced from eleven to five in each isotopic-spin state, 

if one is constr~cting the scattering matrix at an energy below the 

inelastic threshold. Unitarity of the scattering matrix then expresses 

the imaginary parts of scattering-matrix amplitudes at one angle in 

terms of integrals over all angles of products of the five measured 

parameters. 

To date there is no energy for which a complete set of proton-

proton data exists, much less proton-neutron data, ~ince some of the 

parameters are quite difficult to measure for various reasons mentioned 

later. (Perhaps unusual circumstances are involved in the case of the 

sizable set of proton-proton parameters at 3l0 MeV. It is incomplete 

because the Berkeley l84~in. cyclotron was modified and came back into 

operation with more than twice the original energy.) Thus the phase-

shift hunter must use data at several diffe~ energies in conjunction 

with sufficient model-dependent assumptions about the behavior of the 

phase ShiftS in the intermediate energy regiOnS tO yield an "unambigUOUS II 

set of phase shifts. 
~ . 

With these he then hopes to test the model. . The 

situation seems to represent a mandate to the experimenter to develop 

new techniques to measure those less accessible parameters. 



-4-

It is a step in the right direction to simply accumulate experimenal 

da.ta. even if' they a.re uncorrela.ted in energy. Any additional da.ta. · 

reduces the degree to which one needs to bridge the energy ga.ps with 

poorly tested assumptions. This represents in pa.rt the motivation 

f'or the present experiment. For quite clearly the bea.m energy Wa.s 

not picked to complement existing da.ta. but rather because it wa.s 

ea.sily a.vaila.ble. Since the experimental a.ccura.cy wa.s limited only 

by counting statistics, it wa.s thought desirable to work with the 

highest f'lux possible. Further motivation wa.s simply to test the 

ea.se with which the recently developed polarized-proton ta.rget measures 

one of' the more difficult pola.riza.tion pa.ra.meters. 

B. Nucleon-Nucleon Scattering Experiments 

A brief' review of' different pola.riza.tion experiments one ca.n 
• f • 

conduct with a. pa.ir of nucleons a.nd of the.a.ssocia.ted experimental 

pa.ra.meters will best help to identify the pa.ra.meter CNN(e),· measured 

in this experiment,in the proper perspective. The discussion is 

sun:n:narized in Ta.ble I. -Whether the incoming particles a.re polarized 

ornot, the outgoing pa.rt~cles a.re considerably polarized a.t a.JJnost· 

a.ll scattering angles. 

(a.) The simplest possible experiment would be a. differential 

cross-section measurement with unpola.rized bea.m a.nd unpola.rized ta.rget. 

The pa.ra.meter measured is simply I 0(e) • 

(b) The first step of sophistication is the cla.ssica.l double-

scattering experiment. Here one a.dds the measurement of the component 

of' pola.riza.tion perpendicular .to the pla.ne of sca.tteringof'·one of the 

\.' 
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Table I. Summary of polarization experiments and associated 

parameters in elastic proton-proton scattering. A few more 
~I 

parameters appear for proton-neutron scattering where one needs 

to subscript the (X) in some cases. 

X: one particle's polarization measured 

* related by time reversal 

Initial State Final State Parameter Measured 

Io 

X p 

} (*) 
X p 

X X D,R,A,R 1
, or A' 

XX CNN or 

~} (*) 
XX c or CKP NN 
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four particles involved in the main interaction. (Clearly only two 

particles are involved, but referring to them as four particles helps 

to distinguish between incoming and outgoing states connected by time 

reversal, particuJ~rly since the two particles may themselves be 

indistinguishable in either the incoming or outgoing states.) There 

are two ways of conducting these double-scattering experiments related 

by time inversion. One may either polarize an initial-state particle 

by some means such as a first (polarizing) scattering of the beam prior 

to the main interaction and measure the differential cross section 

for each of two different incident-particle polarizations (typically 

equal in magnitude but opposite in sign), or ~ne may obtain the polari-

zation of on.e finaJ.-state particle by following the main scattering :with 

a second (analyzing) scattering at each of two angles opposite to each 

other. Either way, one obtains a pair of differential cross sections 

whose sum is proportional to I 0 (e) and difference to P(e) , the 

. 
11polarizatim1' parameter c Note: that the term "polarization parameter" 

is 11sed intercl1angeably for all of the spin-associated parameters 

described here,as well as more specifically for this P(e) • · If one 

post11J~tes time-reversal invariance of the strong interaction, one 

expects identically the same value for the parameter measured in each 

of these two ways. "With sufficient accuracy these double-scattering 

experiments may therefore furnish infonnation about the magnitude of 

the coefficients of the scattering-matrix amplitudes that violate. , 
3 • ~ • 

time-reversal invariance. 

Next we describe the experiments classically referred to as "triple 

"j 

1 ' 

• 
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scattering", in which one obtains the differential cross section as 

well as information about the polarization of two of the four particles 

involved. They naturally divide into two distinct categories: 

(c) If the polarization is measured for an incoming and an out

going particle, one obtains, depending on the components of polarization 

involved, .the "depolarization" parameter ·n(e) , or the "rotation" para-

meters R(e), R'(e), A(e}/ A'(e) , not all independent. Since the experi-

ment is its own time inverse, these parameters furnish no information about 

time reversal invariance. 

(d) If, on the other hand, the polarization is measured for both ,. 

incoming or both outgoing particles simultaneously, one measures, depending 

again on the components of polarization involved, the "correlation" 

-.parameters CNN(e) , -CKP(e) , etc.: In principle we would again be 

testing time reversal invariance ifwe could compare the correlation 

parameters obtained separatelyfrom initial-and final-state polarizations. 

4 Schumacher and Bethe refer to the parameters of (c) as the components 

of the "depolarization" and the "polarization-transfer" tensors, while those 

in (d) make up the "polarization-correlation" tensor. 

There are more categories than these with progressively less well-

known parameters which are correspondingly more difficult to measure. We 

may, however, stop here, since we have clarified how CNN fit·s ihto the 

scheme of possible experiments and that it may be measured in two differ-

ent ways connected by time reversal. Unfortunately CNN is a parameter 

that is no~ suitab~e for checking time-reversal invariance. In Appendix B 

we show that the time-reversal-invariance-violating amplitudes of. the 
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Table II. Other measurements of CNN in elastic proton-proton scattering 

Beam Energy 

(MeV) 

20 

' : ., : 310 

320 

382 

4oo 

450 

640 

* 

C.M. Angle e 
(Deg) 

90 

90 

90 

90 

60 
90 

90 

54 
72 
90 

·-. 

· Reference 

* -0.91 ± 0.05 5a 

0 84 + 0.10 
+ • - 0.22 5b 

+0.75 ± 0.11 5c 

+0.416± o.o84 5d 

. +0.82 ± 0.47 5e. 
+0.60 ± 0.09 

+0.70 ± 0.15 5e 

+0.57 ± 0.14 . 5f' 
+0.65 ± 0.15 
+0.93 ± 0.21 

This is the only prenous experiment done with a polarized beam and a 

polarized target. 

0 
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scattering matrix appear in identically the same way in the analytic .. · 

expressions of CNN corresponding to the two ways of measuring it. 

Table II lists other measUrements of CNN • 

C. Polarization Ex:per.iments without and with a Polarized Target 

Before polarized targets were available, one
11

Wa.,s· restricted to experi

ments involving the measurement of the polarization of the final-state 

particles (one or both) only, by measuring the "left-right" scattering 

asymmetrye This statement is of course strictly true only for the 

correlation eXperiments listed und~r (d) in the last section.·' although 

· ·. it seems to apply to measurements of the polarization (b) as well, while 

it is patently false for the parameters under (c). 

The limitations under which one must work in this experimental 

arrangement are worthy of enumeration. The chief problems center around 

guarding against false asymmetr:i,es of all kinds and fighting low counting 

rates due to an extra scattering and, at.low energies, low analyzing 

power. The false asymmetries may arise from these sources: asymmetrical 

beam intensity pattern across the second-scattering target, asymmetrical 

background counting rate, asymmetrical counter sensitivity due to presence 

of asymmetrical magnetic fields or to misallignment. None of these serious 

problems remain when a polarized target is used. 

In addition to vanishing at low energy, the analyzing power is trouble-

·some in its often unpredictable energy·dependence at high energies. In 

the laboratory system the particles scattering at the main target come . 

off at various energies, depending on the scattering angle. · One there~ 

fore needs to know the analyzing power of the second-scattering target 

material as a function of energy, which means in most cases that one 
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needs to measure it independently. 

Another consideration is.the second-scattering detector arrangement. 

;It is necessarily bulky and.makes careful scattering-angle reversals diffi-

cult. Far more serious however is the great difficulty with which more 

than one second scattering can be handled at one time. In practice one 

mounts the counter telescopes that serve to count particles scattered by 

the second target on pivots centered on the second target. To jockey 

several of these te~escopes associated with several second targets past 

.each other in a reversal is clearly troublesome. One therefore finds 

oneself restricted to analyzing at one angle or possibly two angles of 

·opposite sign, es~ecially in analyzing the component of polarization 

perpendicular to the plane of scattering as in the case of CNN " More

over, this problem is closely coupled to one mentioned previously, since 

shifting objects such as other counters near the scattering centers most 

certainly affects the (cave) background somewhat. (Recently carbon-

sandwich spark chambers have been used with great success to cover wider 

angular regions in second scatterings.6 However this method suffers from 

analyzing-power ·variations to which we alluded above.) Further not-so-

obvious limitations will be brought out in connection with the advantages 

of the polarized target as used in .this experiment, which we discuss next. 

The target we used was developed several years ago by Chamberlain, 

Jeffries, Schultz, and Shapiro7 based on a much smaller model built by 
. 8 

Jeffriese The polarizing process is called "dynamic polarization". It 

produces high polarizations of the free prbtons in the waters of hydration 

of Nd
142

-doped lanthanum, magnesiUm nitrate· crystals by exciting certa:in 

forbidden magnetic-dipole transitions involving both the paramagnetic 

·'' 
lj 

•. 
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neodymium ions and the water ·protons,; The necessary environment consists 

of an extremely uniform high magnetic field, a temperature of the order 

of 1°K, and a flood of microwave radiation of considerable power. The 

eCJ..uipment which produces this environment is obviously much bulkier than 

a counter telescope, (the magnet alone weighs 9 tons), but it doesn 1t have 

to be shifted durii::lg the asymmetry measurements. 

Tne more obvious advantages of using the polarized target are: 

(a) The number of scatters reCJ,.uired to measure a given polarization 

parameter is reduced by one. For example triple-scattering experiments 

become double-scattering experiments, since the method of polarizing does 

not depend on the strong interaction. Thereby one obviously gains in 

overall flux, although perhaps not as much as might be hoped because of 

the small counters with·· which one must work for reasons to be discussed 

later. 

(b) The polarization is high, limited by·experimental techniCJ..ue and 

money rather than a constant of nature, and completely independent of 

energy. 

(c) The polarization is reversed without.a geometry change. One 

simply tunes the microwave generator to a slightly different freCJ..uency, 

thus exciting a different set of forbidden transitions in the crysta:)..s. 

(d) One may experiment at any number of angles at once, limited only 

by target structure and the momentum of the slow outgoing particles, as 

discussed later. 

(e) One can measure the polarization and correlation parameters 

in two different ways distinguished by time r~versal. 
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Clearly the simplest proton-proton scattering experiment with a 

polarized target is to measure the differential cross section with an 

unpolarized beamfor each of two opposite target polarizations. In this 

case, one measures P(e) •. A pair of such experiments has recently been 

completed using our target.9 

The first step of sophistication consists of enhancing one or the 

other component of beam polarization by some means-. such as a first 

scattering. Thus by polarizing the beam, and without any other changes, 

. one measures the correlation parameters. 

Indeed using the experimental arrangement and associated electronics 

· from. the'last P(e) run and adding only the features that polarize the 

beam in a direction paraJ~el to the target polarization (perpendicular to 

the plane of scattering) we were able to make the measurements which 

·yielded values of the parameter Cl\lN(e) • It will become clear later 

whyone actually obtains three other·quantities at the same time,namely 

P(e) , I 0 (e) .· (a useless quantity,. unless one tal~es considerable pains 

·to normalize it), as well as the average beam' polarization. 

In summary, ; the only safe way to remove all· ambiguities from the 

nucleon-nucleon phase shifts is to determine the complete scattering 

matrix experimentally at. a number of energies. We have reminded the 

reader. of the parameters that are the building blocks of the scattering 

matrix and of the experiments that determine them~ and we. have enum~rated 

the advantages of using the polarized proton target in performing the 

u 
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experiments. In the next chapter we use the popular spin formalism to 

.arrive at the relation between the parameter CNN(e) and the measured 

cross sections. In the third chapter we describe the experimental 

apparatus and in the fourth chapter the analysis of the data and the 

results. 

\ 
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II. THE SPIN FORMALISM 

In this chapter we sketch out the formalism which clearly presents 

the connection between the scattering matrix and experiment. We assume 
I 

a familiarity with the basic concepts of quantum mechanics. It is our 

intention to present only those steps in the development without which 

the continUity to the final results·would be in question. More exhaustive 

treatment should be sought in Reference (1) and elsewhere. Our develop

ment will be nonrelati vistic. · Sta~p3 has shown that the nonrelati vistic 

treatment of spin components normal to the scattering plane is permissible 

since they are unaffected by the Lorentz transformation. 

A. The Scattering Matrix 

First we introduce the scattering matrix. In elastic scatteriJ?.g 

·of spinless particles we write the final ("outgoing") state wave function 

·u0 in terms of.the initial-state wave function J- and the scattered 

part in the familiar asymptotic form 

U
0 ~ J- + f(e) x (r.p.) (1) 

Here f(e) is the scattering amplitude, e is the center-of-mass-system 

scattering angle, and (r.p.) is defined by 

(r.p.) 
i~:C"' 

= (radial part) = _e __ 
r ' 

where k is the center-of.:.mass.momentum divided by J{ 

The wave .functions are normalized so that the differential cross 

section I
0 

is given by 

(2) 

The symbol I
0 

is re1:1erved for "differential. cross section, initial 

state unpolarized". 

\J 
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To introduce spin we transform E~. (1) explicitly into a relation 

between spin-wave-function components by factoring the spin parts out of_ 

the wave functions. 
i 

Let X represent the spin part of the initial state 

0 and X that of the final state •. In the case of nucleon-nucleon scattering 

these spin functions of the combined spin space are 4 component spinors. 

We may then express uo and if as 

uo = uoxo 
. . i 

J tf = u~X e 

The defini tj_ons of 0 and i obvious. E~uation (1) becomes u u are 

u0x0 = ui~(c!>) + J('(e,c~>) x (r.p.) 

where . r if· the scattered- (final- )part spin wave function which one 

expresses in terms of the initial~state spin function through the scattering 

matrix M(e,c~>) 

(3) 

and c!> is the azimuthal angle about the incident-particle momentum. 

For pion-nucleon scattering in a given total-isotopic-spin state 

the M matrix is ·a 2 x2 operator in spin space that has the familiar 

form 

M(e,c~>) = g(e) + h(e)cr·N (4a) 

in terms of the Pauli spin matrices ~ ,~ , and ~ and the unit normal 
X y Z 

J\ 

to the scattering plane N • For nucleon-nucleon scattering in a given 

isotopic-spin state the parity-conserving, time-reversal-invariant M 

matrix has in.Wolfenstein's "single..;particle" representation2 the some-

what more complicated fo1~ 
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Here S and T .are singlet and triplet projection operators respec-

tively, B , C , N , G , and H are the theta-dependent Wolfen

stein amplitudes, and the rest of the objects are 4 X 4 matrices 

composed of the Pauli spin matrices and the configuration-space vectors · . 
...lo. 1\ 

one associates with th~ interaction, e.g. crlN = cr1 ·NI2 , in which I 2 

is the identity operator for the sp~n state of particle 2. 

These vectors are defined in terms of the center-of-mass momentum 
-"' 

of the .beam ; particle before and after the interaction, k]_ 
1\ i . . . 

respectively. One has N as the .direction normal to the scattering 
I 
I 

plane together with three convenient directions in the scattering plane 

as follows 

A A 

- P and K. nonrelativistically point in the directions of the scattered 

and recoil particles, respectively, in~ laboratory system while 
1\ 

s 

is also in the scattering plane, but perpendicular to the beam on the 

side of the scattered beam particle. 

Together with these vectors in configuration space we need to define 

· some··4 ><4 :Spin mat;ices sud?.' as o:1Ncr2N which,are per~ps best introduced 
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by analogy to the equivalent 2 x 2 matrices of the pion-nucleon system. 

Any operator in that system's spin space can be composed of three linearly 

independent, traceless, Hermitian 2 x 2 matrices together with the unit 

matr:L'C :i,.n lj.near superposition. The three matrices are the Pauli spin 

matrices. For example the scattering matrix M is an operator in this 

spin space and is expressed in terms of the basic matrices as shown for 

pion-nucleon scattering in Eq, (4a)e (The symbol for the unit matrix 

should. appear next to g (e).) 

It is in fact possible to associate the same set of four basic matrices 

with each of the two particles of spin 1/2 involved in nucleon-nucleon 

scattering in order to make up the 16 basic matrices needed for the 

·· product spin: space of that system. We subscript them with 1 and 2 

remembering that set 1 operates only on particle 1 spinors and vice 

versa. This explains the notation rather weD_ while one in practice 

often does eomputations with product space algebra to avoid confusion. 

The 16 matrices are signified by 

One obtains the number of matrices of a given type shown in parentheses 

as one lets i and j range over x, y, and z • ,·,Note that the 

symbol I is used for unit matrix as well as cross section with initial 

state polarization. Moreover we have avoided writing as well as subscrip-

ting the unit matrix as is customary, realizing that 

n,... I n t vxl 2 e c.· 

11 CJ 11 really means xl 

As shown in Appendix A the components of the composite state spinor 

X in Wolfenstein 1 s II single particle 11 representation are related to the 
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components of the single particle spinors r and s through the relation 

· The subscripts a and b range over l and 2 while the subscript of X 

runs from 1 to 4. Similarly the prescription for writing down components 

of the product space matrices in terms of the Pauli spin matrices' compb-

nent~s: is 

+ c, 2(b-l) + d • 

As an example we give the expression for the composite state spinor 

of 2 nucleons both spinning parallel to the z axis in the representation 

where. cr is diagonal. z 

Here r = r~J , .s = [;] , and therefore X = f~l 

--l~g] If the spin of particle 2 were reversed, we would find X , 

The matrices listed in (5) are still not quite in the form shown in 

Eq. (4b). To arrive at the latter we have to introduce certain. direction 

cosines designed to relate the arbitrary representation of the Pauli spin 

ma~rices (by which one for instance declares cr diagonal) to the laboraz 

tory. One therefore writes in a manner similar to. 
_..A 
cr•N of Eq. (4a) 

B. The Density Matrix 

So far we have gone from scattering amplitude f(e) to scattering 

matrix M(e,4>) and presented the form M takes for pion-nucleon and 

.... 
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nucleon-nucleon scattering in Wolfenstein's single-particle representation. 

Now it remains to relate the scattering matrix to observables in a manner 

·similar to Eq. (2). ·However in doing this we are faced with considerable 

complications, since the states we are describing, such as beam and target, 

represent an incoherent mixture of pure spin states, although each particle 

by itself may beconsidered to be in a pure spin state. To properly combine 

the various amplitudes of the scattering matrix into expressions for observ-

ables such as polarization, one resorts to the density matrix formalism. 

Quite generally let 
of 

systemAnormalized states 

the set of spin states Y. represent a basis 
'-.. . ~ 

for the n dimensional spin space of interest, 

i .. = 1,2, •• on Each Y. has n components (Y.) ., 'j = 1.,2,. •• n • 
~ ~ J '• 

. Similarly let X represent a pure: spin state. By the principle of 

. superposition we may expand X in' terms of the Yi 

n 

X =I aiYi 
i=l 

·where ai are complex coefficients. Any operator Q has expectation 

value ( Q) in the state ·X given by 

is the appropriate matrix element of "Q in 

terms of the basis representation. 

The most arbitrary· state would be an incoherent mixture of pure 

states like X;, each called Xk_' k = 1,2, ••• n · • Any operator Q has · 

-expectation value < Q) in this arbitrary state given by 
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n 

<Q>= I ~<Q)k (7) 

k=l 

where the ~ are the weight factors of the various pure states and 

... each <Q)k is of the form shown in Eq. (6) with the coefficients 

subscripted with k • · Interchanging summation we finally arrive at 

We now define the density matrix pk for the pure state Xk by 

the component eq·uation 

or equivalently by 
' t 

pk = XJcXk ' (9) 

where Xkt is the row matrix adjoint to the column matrix · Xk e 

Furthermore the density matrix p for the arbitrary incoherent mixture 

of the pure states is 
n 

p =I ~pk • 
k=l 

In terms of p Eq. (8) becomes 

<G3= I I ~lji 
i j 

where Tr is the familiar contraction of "trace". 

(10) 

(11) 
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We are now ready to relate the final-state density matriX to the 

initial-state density matrix through the scattering matrix. As already 

pointed out at the beginning it is convenient to normalize the wave 

functions for the case of spinless particles so that the differential 

cross section is given by Eg_. (2)o In a like manner we normalize the 

spinor . x!, in the case of the incident pure spin 'state so that 

~t ~ = 1' 

for then the differential cross section I(e,ct>). is given by 

where ~ is the final-state spinor. 

The density matrix for the initial state is 

i _ x~ x.·~it 
pk - --K -:-.k ' 

while the final-state spinor ·~ is given according to Eg_. (3) 'by 

and its density matrix is 

p! = ~ ~t = ~(~)t = ~ x!f Mt 

f i t 
pk = M pk M • 

This expression applies to a mixed as well as to a pure spin state. 

We can see that when we use Eg_. (10) and note that the scattering 

matrix is independent of k • For then we have 



-22-

Using the relation 

,. ·.·we find from Eg_s. (12) and (13) that 

. f . i t 
I(e,~) = T.r p = Tr M p M . (14) 

In :i;>ractice one often ignores the normalization of the initial-

state density matrix. But then it is necessary to divide the observ-. · 

i ables by · T.r p • As an example Eg_. (14) becomes 

(l4a) 

We would like to introduce another form of the density matrix 

which is particularly suited for expressing the initial state •. Since 

the density matrix is an operator in the composite spin space it can 

be expanded in terms of the set of basic Hermitian matrices listed in 

(5) which we now collectively call Q~ • The property these matrices 

have in common which has not yet been mentioned is, for two particles 

· of spin l/2, 

The proposed expansion is 

To evaluate the coefficients Av we operate on each side of this 

expression with Q·· , take the trace, and get 
' ' iJ. 

=4A 
~· 

T.r Q Q 
~ v . 
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But using Eq. (10) for arbitrary normalization of p ' . we also ·have 

Tr Q p =<Q)Tr p 
l.l l.l 

.. ·,whence· 

. Tr p 
A = . (Q > 

l.l ~ 1-L 

and therefore, specifically for the initial state, 

i 
= Tr-II <Q!-L>i Q • (15) ·. ·p 

1-L 

1-L 

c. Application to CNN(e) 

We now apply this formalism to calculate a number of average 

values all related to our final expression involving CNN • First of 

all we compute differential cross section I 0 and a few other observ

ables for unpolarized beam and unpolarized target using .Eq •. (15). The 

only nonvanishing ( Q ) i is ( I)i , giving us for 
IJ:· 

. Tr i . 
·l = 4P {I)~ I 

i 
p 

Then Eq. (13) gives the final state density matrix as 

pf = M l M t = Tr 4l <I)i M M t 

IO = Tr Pf = t (I)i- Tr M Mt • 
'Tr p~ 

(16) 

(we keep track of the (I)i to show that they cancel in the final 

expression.) For the same initial state the final-state polarization 

of particle 3 is P1 (e) =·(alN)f while that of particle 4 is 
. f 

P2 (e) = <a2N) , given by 
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(17} 

(18) 

The correlation :parameter C:NN . is def'ined by C:NN(~) = < C5_wr12N>f' .· · 

f'or this case of' the un:polarized :particles in the initial'st~te~ It 

is given by· 

(19) 

Now let us consider another experiment, one in which both initial 

state :particles are :polarized in a direction normal to the scattering 

:planee ·Let the respective :polarizations be PB f'or the beam :particles 

and PT f'or the target :particles. · Then the non-vanishing < Ql-L)i " 

are the f'our quantities (r)i , ( cJw'>i = PB (r)i , (r12N)i ~ "f~(!.'j· 1 

and ( rJ'J.§irJ2N'f = PBPT (r)i , which lead to the d~nsity matrix 

Forthis experimental arrEJ.ngement the dif'f'erential cross section is given 

by , 

· -r(e) 
· .. ,_'·-
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This expression becomes 

~(e) = J:0 (el[ l + Pifl (e) + P~2 (e) + PifT CNN(e~ 
· · provided we can show that the following relations hold 

Tr O'lN M Mt = Tr M alN Mt (21) 

t- .· t 
Tr cr2N M M - Tr M a2N M (22) 

. . t- . . t 
Tr a1Na2N M M - Tr M a1Na2N M • (23) 

If furthermore we recognize that P1 (e) = P2 (e) = P(e). in the case 

of proton-proton scattering, where we are dealing with two identical . 

particles, we ·finally have 

I(e) = r0 (e) [ 1 +(PB+PT)P(e) + PBPTCNN(e)J . (24) 

This is the eg_uation we shall use in the analysis of our data in 

Chapter Dr. Regarding Eg_s. (21-23) we note that Betz9b has verified 

expressions (21) and (22) provided the time-reversal invariance 'violating 

terms of the scattering matrix vanish. He uses only the commutation 

relations of the Pauli spin matrices and the properties of their traces. 

Using the same technig_ues as Betz we show in Appendix B that Eg_. (23) . 

. holds 1-rhether the time-reversal invariance violating amplitudes vanish_ 

or not. 

. ! 
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III. EXPERIMENTAL APPARATUS 

. A. Polarized-Proton Beam 

1. Physical D~scription 

The geometry o~ the polarized target used in this experiment is 

such that the orientation o~ the scattering plane is vertical. The 

target is polarized horizontally and perpendicular to the scattering 

plane. To measure CNN we have polarized the beam horizontally by 

a ~irst scattering in.the vertical plane. Unpolarized protons 
I 

extracted ~rom the 184-in. cyclotron at ~ixed energy (nominally 

740 MeV) are collimated by a set o~ 4-in. brass jaws o~ the pre-magnet 

collimator, bent into the proton cave direction by the steering magnet, 

and passed through an 8-in.-bore qUadrupole doublet ~ocusing magnet 

that ~ocuses the protons at the ~irst scattering target in the proton 

cave. From here on the system is shown in Fig. 1. 

The protons emerge fiom the evacuated beam tube and enter the 

proton cave.· Here the beam is de~lected by a pair· o~ bending magnets 

to cross over its original trajectory at an angle o~ 12 deg at the _ 

position where the ~irst scattering target is located. At this point 

the beam spot measures about 1.5 in. horizontally by 0.5 in. vertically. 

The beam's path through 6 in. o~ liquid hydrogen, viewed at an angle 

of 12_deg from the beam, then appears as a particle source about 1.5~in.-

square. Be~ore it. buries itsel~ in a beamstopper o~- 10 fi. o~concrete, 

the.·beam passes through a split ion chamber to provide a signal ~or the 

experimenter-as a check on the course of the beam. 

Particles scattering elastically in the ~irst target in the same 

·~ ; 

·~ 
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lon chamber 

Scale in feet 

0 5 10 

.~ 
·Fig. L Polarized-proton beam system. Protons ·from the 184-in. 

cyclotron enter from the left. 
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direction as the protons entering the cave from the cyclotron make up 

the polarized beam. They are focussed onto the polarized target crystals 

by an 8-in.~bore symmetric ~uadrupole triplet focussing magnet buried in 

the wall of shielding near the center of the cave. The beam stop~ers 

are part of the same shielding wall. The magnification of this focusing 

magnet in both vertical and horizontal planes is about -1, giving a beam 

spot approximately 1.5-in.-square at the polarized target. A 2-in.-thick 

brass collimator vdth 4-in. by 6-in. oval opening, located in the first 

section of the focussing magnet, limits the solid angle of acceptance 

6 -4 to about X 10 sr. The range of scattering angles thus accepted from 

the first target is 12.1 ± o.6·deg. 

There is a 3 MeV energy variation across the second target in the 

plane of scattering arising from a small· wariation in t}+e average angle 

of scattering across the source from ll.9 to 12.3 d~g. The variation 

reverses With the beam polarization and is potentially a cause of a 

small false asymmetry. Its effect i.s to vary the Width of the elastic-

scattering distribution, but only in the plane of scattering. This 

elastic peak of the polarized target Will be discussed in section (B-3) 

of th:i::s chapter •. Here we only mention that there is no cause for 

·alarm as long as the whole peak region is included in the analysis of 

·the data. 

To·r.educe multiple· scattering of the polarized-beam protons an 

8-in.-diameter helium. bag at 1 atm of pressure is used in the section 

of beam between the first-target vacuum jacket and the ionization 

chamber at the second target. 
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· Range cl::a'Ve measuxements of the polarized beam indicate a beam 

energy of 683 MeV • 

. 2. Composition 

Not all of the particles in the pOlarized beam interacting in 

the polarized target originate from ~lastic collisions in the EYdrogen 

(EH) of the first target. There are two other principal souxces of 

particles: elastic and diffraction scattering in ~on-£ydrogen material 

(NH) such as flask domes, and !nelastic scattering in £ydrogen (IH). 

It is necessary to consider the possible souxces of·beam contamina-

tion in some detail since the polarized beam does not contain the usual 

spectrometers to purify the momentum spectrum. Moreover, the range curve 

taken'of the J?.Olarized beam gives the energy of the most abundant compo

nent of the beam, but it is not good enough to give detailed information 

about the spectrum. 

The NH protons are of approximately the same energy as the EH 

protons. They constitute about 6% of all the particles arriving at the 

target as shown in the flask-empty rate and are not easily separated 

from the EH protons even in a beam of greater complexity. That the 

flask domes are the primary souxces of NH protons can be seen as 

follows. The first scattering target is a 6-in.-long, 6-in.-diameter 

·flask of liquid hydrogen (1.08 g/cm2,) with· 0.005-in.-thick domes of 
' 2 

aluminum (0.07 g/cm total). The observed flask-empty- to -flask-

full counting ratio of about 1:16 is rather similar to the ratio of 

the quoted target densities. The one other·potential souxce of NH 

scatters is the hydrogen-target vacuum jacket. J3y keeping the 

0.035-in.-thick aluminum domes (0.5 g/cm2 total) as much as 18 in. 
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upstream and downstream from target center, the sources represented by 

the intersections of the primary beam and the domes are kept 3.5 in. 

above and below the polarized.-beam axis from where they· can not be 

made to irradiate the polarized-target crystals of cross-sectional 

area l-in.-square by a system of lenses of absolute magnification 1. 

The beam line through the first target is illustrated in Fig. 2. 

IH protons are produced copiously at the first target. .A glance 

at the shape of-the proton-proton total cross section shows that between 

... 300 and 700 MeV it doubles in value. 300 MeV is near the threshold for 
~ ... ,, 

pion production. Since the elastic proton-proton cross section remains 

about constant above 300 MeV, the increase is due to inelastic events. 

This means that at an incident-particle kinetic energy of 740 MeV for 

every EH event there is an IH event in the first target. Moreover these 

IH protons in the laborator~ system occur in a narrow cone in the for-

ward direction w:i.th center-of-mass to laboratory solid angle conversion 

· factors several times as .large as for the EH protons. .With the center-

of-mass distributions about constant for both EH and IH events (we ignore 

the coulomb peak) we have several IH protons entering our solid angle 

defining collimator for each EH proton. 

Clearly the focusing properties of the ·quadrupole magnet are such 

that the IH protons rapidly run out of phase spac.e with lower momentum. 

In Table III we show how very dilute this IH component of the beam is 

at the polarized target, if we assume with Mandelstam10 that near 

·.·threshold pion production is dominated by t::,. (1238) format,ion. 

To explain the entries in Table III in some detail we follow through 
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Fig. 2. Beam line through the first target and sources of 
polarized-beam protons. 

beam stopper 
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Table III. Study of polarized-beam contamination due to ~ (1238) production in the first--scattering target. 

Mean kinetic energy j.n polarized beam (MeV) 

Clebsch-Gordan Relative 680 282 230 107 76 
p+p~ I coefficients reaction z rate (A) Number of protons yielded (B) 

-
I p + p 1 1 -+-2 2 1 2 I 

II (p + -;ro) 1 
( ~ + 0) ~}-ff 

1 1 1 1 1 II p+ -+ b 2 

(n + -;r+) 1 1 l III p+ -+ (-- + 1) 12 1 1 III 2 2 

ff 
I 

(p + -;r+) 1 3 3 \>I 
IV n + --+- 4 1 1 IV 1\) 

2 2 I 

Phase-space factor (c) 1 l.2xl0-2 2.9xl0-3 4xlo-6 2xl0-7 

Solid-angle conversion factor (D) 5 17 30 13 4 

Product of A, B, c, and D 

10 - I 

4 -2 3. xlO 1.5xl0 -2 8 -6 .7x10 l.)xl0-7 II 

-2 l.7xl0. 6 -8 .7x10 III 

6 -2 .5x10 3.9xl0-5 IV 

Polarized-beam constituents 1 5.lxl0-3 8~0x10-3 4.8xlo-6 2xl0-8 

'i:.. 



-33-

with the reaction called (II), namely 

From the Clebsch-Gordan coefficients involved we see that this reaction . 

occurs 1/6 of the time an IH reaction occurs. (Note that the sUm. of 

the IH reaction rates by assumption equals the.EH rate.) .If we count 

the total number ~f protons this reaction yields and classify them by 

their energy at 12 deg in the laboratory system we find that the proton · 

. marked p1 has either 282 MeV .or 76 MeV depending on whether it is 

going f0rward or backward in the center-of-mass system while the one 

marked p2 has energies centered near 230 or 107 MeV with variations 

that depend on the de:cay direction of the !:::. • Taking into account the 

rate for the reaction, the correct cemter-of:..mass-to-laboratory solid 

angle conversion·factor for each of the beam components it yields, as 

well as the correct phase space of the polarized-target crystals at 

the source (first target) for the various particle momenta, we find 

the relative amounts of contamination at these various average momenta 

listed in the table. 

The results of·Table III are interpreted to mean that, to first 

order, the energy spectrum of the polarized beam contains a narrow 

line (~ about ± 1.5%, same as the primary cyclotron beam) of protons 
p . 

at 680 MeV of intensity 1, another at 282 MeV of intensity 5.1x 10-3, 

a broad line at 230 MeV of intensity 8. 0 )( 10-3; etc. The total low-: 

energy-proton contamination is therefore less than 1.5%. 

The positive pions of reactions III and IV have a laboratory-

system kinetic energy of about 150 MeV. Even if we allow them a solid 
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angle conversion factor similar to.the protons, their momenta are so 

low in relation that they suffer from considerably less phase space 

than the slowest protons considered. The same argument applies to 

their decay products. Moreover, the kinematic requirements of the 

counter arrangements strongly discriminate against all reactions due 

to beam particles that are not protons. 

). Rates 

Although no absolute flux determinations were made during the 

experiment, we give here the best estimates available. During the 
'· 

experiment the proton flux from the 184-in. was about 1. 5 X lOll 

particles/sec., a factor of two or more below maximum capable. It 

was thought best to clip the beam somewhat in order to keep the spot 

size at the first target and therefore at the polarized-target crystals 

small. The motivation is to minimize scattering off parts of the 

equipment surrounding the crystals. Moreover the intensity pattern of 

the beam spot· at the crystals has to be as uniform as possible since 

only the average target-proton polarization can be measured reliably, 

while the target polarization is in fact not uniform, as shown. by Betz. 

Clearly the polarization parameters cannot be measured well if one is 

dealing with a complicated intensity distribution across a non-?Uiformly 

polarized target. The clipping of the beam is necessary to achieve the 

combination of intensity distribution and spot size desired! 

Using an incident flux of 1.5 X lOllprotons/sec, target.. density of 

1 g/cm2, solid angle of 6Xlo-4 sr., and differential cross section for· 
l 

·elastic scattering in hydrogen of 40 mb/sr(lab) as measured by·Mc:Ma.nigal, 

-· 
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one arrives at a flux of about 3 x 106 EH protons/sec in the polarized 

beam. ~nis number is in excellent agreement with the rate registered 

by the ion chamber in the beam near the polarized target. The ion-chamber 

rate is actually about three times higher, because it is sensitive to 

the protons from the NH sources in the first-target vacuum jacket as 

well as a considerable fraction of the IH protons and pion decay prod:-

ucts that never reach the target crystals. 

4e Beam Polarization 

. One of the numbers resulting from the data ana~sis is the 

average beam polarization. It is found to be 0.44 ± 0.02. This 

number represents the average polarization of the EH and NH 

particles and is not strictly speaking the parameter P(l2 deg (lab)) 

for proton-proton scattering. 

In order to avoid fluctuations of the beam polarization, i.e. 

deviations from the measured average, particularly during reversals, 

considerable care is exercised in reversing the first target scatter-

ing angle •. The reversal is basically simple. One reverses the fields 

in the two bending magnets just upstream of the first target and 

relocates the split ion-chamber in front of the other beam stopper. 

The scattering angle is kept constant in magnitude by, first of all, 

maintaining the location of the polarized-beam source, i.e. the center-

of-gravity of the unpolarized beam path through the first target. 

Since the solid-angle-defining collimator of the polarized beam remains 
. . . 

fixed in the process, this also leaves the polarized beam axis fixed. 

Secondly, one needs to maintain the distance of the ion-chamber split 

from the axis. This is done by mounting it on a pivot centered on the beam 
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axis just upstream from the collimator. The only complications arise 

from the hysteresis in the bending· magnets, which one needs to manipu-

late consistently.· 

We have reported on the features of the polarized beam in some 

detail since it promises further applicability. As has been shown, it 

combines constant high polarization with easy reversibility. Moreover, 

·it has excellent momentum characteristics in spite of its simplicity, 
'· . 

provided non-hydrogen scatterings are avoided at the first target. 

B. Polarized-Proton Target 

The second-scattering target used in this experiment has been 

described by Schultz.7 We only summarize the salient features. 

1. Dynamic Polarization 

of 

La 

The target material consists of a stack of four single crystals 

·La2Mg
3

(No
3

)12 ·24H
2

0 in_which a fraction ofqne percent· of the 

. 142 
ions have been randomly replaced by Nd ions. In this material 

only the Nd ions are strongly paramagnetic and therefore.readily 

polarized in an external magnetic field. Although they have a high 

· spin g_uantum r,1umber, only two of their energy levels are significantly 
. a· 

populated at an operating temperature of about 1 lC. This behavior in 

a fi.eld resembles the electron 1 s magnetic moment g_uantization, whence 

these paramagnetic ions are popularly called "electrons". We call the 

magnitude of their splitting in the external field H. ~ = g~ H , e 
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g being their spectroscopic splitting factor and IJ. - the Bohr e 

magneton.- A proton spin would similarly be quantized with energy 

splitting of o = gPIJ.PH , IJ.p being the nuclear magneton. 

The four energy levels of an electron-proton pair in an external 

field H are shown in Fig. 3. There we see the various transitions 

-·corresponding to simultaneous spin flips labeled rallowed." or ~'forbidden" 

depending on their relaxation times. When the crystals are in equilib-

rium with the heat reservoir of the helium bath, whose boiling point 

is reduced from 4°K to l.3°K by means of a mechanical pump, the relative 

populations of the four levels are given by Boltzman 1 s statistics, as 

shown in the' figure, resulting i.n a ;proton polarization PT given by 

Here 

p = 
T 

is the relative population of the ith level, the proton's 

spin projection, s its spin quantum number, k is Boltzman's constant, 

and T is the absolute temperature. In Fig. 3 M is the electron's 

spin projection on the field. direction. When the crystals are flooded 

with microwaves whose photons have exactly the energy of one or the 

other forbidden transition, stimulated emission and absorption occurs 

tending to equalize the levels separated by the forbidden-transition 

energy. The new populations for one of these transitions are given in 

Fig. 3 under the heading II ••• when saturating !:::. - o11
, ;:and the resulting 

polarization is 
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Relative Relative 
population population 
at thermal when saturating 
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Fig. 3. Energy levels of an electron-proton system due to their 
magnetic moments in'a magnetic field. 
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If one instead saturates the transition ~ + o, PT .becomes 

6. 
PT == - tanh 2hT 

This of course is an ideal maximum, since the power absorbed from the 

microwaves in the polarizing process tends to keep the temperature of 

·the crystals above that of the helium bath by an unknown amount. More-

over1 there is a multitude of reasons why it is practicallyimpossible 

to saturate one of the forbidden transitions without at the same time 

pumping some small amount of power into .the allowed transition thereby 

immediately depolarizing the sample to some extent. 

2. Target Polarization Measurement 

If this expression for the polarization were the only way to 

determine the target polarization one would be faced with tremendous 

uncertainty. Instead one resorts to "nuclear magnetic resonance!!. (NMR) 

techniques to measure the target polarization directly. Figure 4 shows 

the associated circuitry. We describe it as follows. The crystals are 

placed entirely into the sensitive volume of a small sensing coil which 

is the inductive part of a parallel resonant circuit driven by a 

constant-current variable-freg_uency rf·oscillator at the freg_uency 

(or rather: through the spectrum of freg_uencies) of the a-type 

transitions. Due to the imaginary part of their susceptibility the 

crystals add a resistive component (positive or negative) to the 

sensing coil's part of the parallel resonant circuit, absorbing or 
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Fig~ 4. Schematic diagram of the Q-meter detector. The 400 cps 
e9_uipment shown at the bottom causes the differentiation of 
the J:ilMR signal. 
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e~tting more or less power as a fraction of fre~uency depending on the 

relative populations of the proton spin levels. In effect the crystals 

are changing the Q of the resonant circuit depending on the proton 

polarization,,giving this type of circuit the name "Q-meter". 

The procedure to determine the polarization· is ·'<::lear. One calcu-, 

lates the polarization assuming the crystals in thermal e~uilibrium (TE) 

with the temperature bath of known temperature (microwaves off) and 

calibrates the NMR detection system by ascertaining the resonance absorp-

tion curve corresponding to this reliable theoretical calculation. Then · 

one polarizes by flooding the crystals with microwave power of suitable 

·fre~uency to saturat~ one of the forbidden transitions. If one repeats 

the NMR curve, one measures a new area under the absorption curve 

(either positive. or negative). The ratio of the new area to the TE area 

represents the enhancement·rfactorwhich multiplies the calculated TE 

polarization to give the enhanced target polarization. 

This basically simple procedure is in practice complicated by a · 

variety of more or less tangible factors. The TE polarization depends 

critically on the temperature of the helium bath which it is difficult 

to measure. The detection system contains non-linearities which need 

to be considered in the area computations of the absorption curves. 

Moreover, although the target polarizations are proportional to these. 

areas under certain ideal conditions, the limitations imposed by real 

conditions need to be properly understood. 

). Scattering, Non-Hydrogen Background 

We have shown how it is possible to orient dynamically proton 
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spins by exciting certain forbidden transitions involVing simultaneous 

spin flips with paramagnetic impurities •. The protons one polarizes in 

this way are the hydrogen nuclei of the waters of hydration. In the 

La2Mg
3

(No
3

)l2•24H2o crystals these polarized protons comprise only 3% 
of the total crystal weight, or about 6% of the total crystal protons, 

bound or unbound. But they are the only unbound protons, and as a 

. conseq_uence one can identify kinematically the events due to the 

polarized protons. 

The typical scattering situation is shown in Fig. 5. At the 

t0p of the figure we consider a series of scattering events in a crystal 

of the type we have described, but of infinitesimal size. We place a 

small proto~ counter at a fixed position and ask in whichdirection_the 

conjugate protons are going. Those conjugate particles associated with 

reactions off the unbound (polarized) protons will come off in a uniq_ue 

direction,- while those off the bound protons of the heavy nuclei will 

appear in a large·three-dimensional bell-shaped distribution due to 

the Fermi motion of the target particles. If we increase the target 

size, the delta-function distribution of the free~proton events spreads 

out due to a multitude of effects coupled to the target size, while the 

other is essenti~~y unchanged, as shown in the middle of the figure. 

The normalization of the distributions reflects the free-to-bound-

prot_on ratio •. 

In order to arrive at pure free-proton counting rates one needs 

to determine the bound-proton background accUrately. One does this in 

two steps •. First one replaces the real crystals by a dummy target 

.. 
I 
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MUB-4824 

Fig. 5. Conuugate particle distributions due to scattering 
from hydrogen and non-hydrogen target material. 
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Table II. Composition of the crystal and dUmmy target. 

Crystal target Dummy target 

(26.1·g of La~_g3 (No3 )12 •24H~p) (3.36 g of MgF2, 6.70 g of Baco3, 

and 15.65 g of CF2:cF2 (Teflon)) 

Atomic Atomic Total Atomic Atomic Total 
Element -No. weight weight Element No. weight weight 

(g) (g) 

La 57 138.9 4.7 ]a 56 137.4 4.7 

Mg . 12 24.3 1.3 Mg 12 24.3 1.3 

N 7 14.0 2.9 -C 6 12.0 4.2 I 
+ 

0 8 16.0 16.4 0 8 16.0 1.6 
+ 
I 

F 9 19.0 14.0 

H 1 ·.1.0 0.8 

... 
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containing nearly the same mate~ials as the· crystals.but no hydrogen. 

Certain substitutions are inevitable, e.g. nitrates are notoriously 

hygroscopic and must be avoided. In Table IV the composition of the 

dummy target used in this experiment is compared to that of the crystals. 

B,y scattering off the dummy target one gets the shape of the backgroupd 

distribution in the region'of the free-proton distribution. Finally 

one normalizes this background distribution to compensate for differences 

in target densities by catching a good portion of the real cry~tal back-

ground distribution near the free-proton events. 

The necessary conjugate-particle counter·arrangement is shown in 

the middle of Fig• 5 with three possible distributions of relative 

counts shown at the bottom, for three different scattering situations: 

.(a) dummy target only, (b) crystals, protons polarized one way, and 

finally (c) 
,· 

crystals, polarization reversed. With this type of detector 

arrangement one may impose. strict re~uirements of coplanarity whereby 

one is sensitive to only a thin slice of the broad background distribu-

tion containing however all or most of the polarized-·hydrogen events. 

!t has been possible to achieve hydrogen-to-background ratios of 10 to 1, 

e.g. by optimizing the beam spot and counter sizes, in spite of the over-

all 15 to 1 preponderance of the background events. 

C. CoUnters and Electronics 

The experiment is actually done with a pair of ten-counter arrays 

as shown in Fig. 6. 'The particles scattering left are the faster ones, 

going into the forward hemisphere in the center-of-mass system. They 

· register in the up or a array, while the slower conjugate particles 



( FL and FR ore to 
each side of 
beam line) 

-46-

o' 2 3' 

ag 

Uo 

MU.)UIT 

Fig. 6. Arrangement of the scintillation counters. The counter 
dimensions were: 

Oj_ (2.xlxl/2 in.) (ten counters) U0 (22x3/2xl.2 in.) 
t?>j (3/2x3/2xl/2 in.) (ten counters)DD (4-i/4x3/2xl/8 in.) 
E1, E2 (2.xlxi/2 in.) D0 (16x2xl/2 in.) 
FL' FR .(l/8xi/8xl/8 in.) DA (22x4-i/2xl/2 in.) 

The direction of the normal to the scattering plane ~ and 
the direction of the external field Be are indicated near 
the crystals. Since the proton has a positive magnetic 
moment, positive target polarization is parallel to ~ • 
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find their way into the down or ~ array. Each one of the ten counters 

in the up array coupled with all ten counters of the down array 

represents a system of counters as described in the last section. For 

each up counter the hydrogen peak falls into a different combination 

of down counters. 

The sizes of the individual counters and the distances of the · 

counters from the target are governed by considerations of the hydrogen-

to-background counting ratio, as well as expected counting rates. The 

width of the counters in the <li direction is fixed by requirements of 

coplanarity to include most of the hydrogen-peak distribution under 

good peak-to-background conditions.· In practice this means that the 

width of the fast-particle array is about the width of the target, 

. while that of the slow-particle array may be somewhat greater. The 

length of the counters in the theta direction allows some freedom. 

Again peak-to-background considerations enter in. If we consider what 

happens when we double the length of a fast-particle·counter we find 

that both background and peak distributions of the conjugate particles 

double in normalization, but they both increase in width by one and 

the same amount corresponding to the theta increase of the fast-

particle counter. Clearly this width change is insignificant for the 

background distribution while it doubles the width of the hydrogen peak • 

Essentially therefore the peak-to-background ratio has been cut in half 

by doubling the fast-particle counter length. . In practice one keeps. 
. ' . 

the fast-particle counter length~near target size within a factor of 2, 

and fixes. the ·length of .the sil.ow-'particle counters to allow good resolu

tion of the hydrogen peak, i.e. two or three counters to cover the peak 
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regiono The total n1mber of counters in .each array is primarily 

dependent on the capabilities of the data storing logic. 

One may sum up the counter size ideas by building the individual 

counters about the size of the target and adjusting their distances 

from the target so that they · sU:btend an angle equal to the rms '· 

multiple-scattering angle. Moreover the sizes may be. slightly 

· adjusted so that the up and down counters subtend about the same 

solid angle in the center-of-mass system. The counters are sequen-

tially numbered as shown in Fig. 6. Events corresponding to single 
'·· . 

coincidences between one up and one dow.o. counter ( 0:. , f3 .·) · are counted 
1 J . 

in the appropriate .element (i,j) of a 100-channel matrix of scalers. 

Each of the arrays~is also covered by overlay counters and D 
0 

}1nthermore, to increase the hydrogen-to-background ratio a small 

counter DD is placed near the target crystals thus eliminating 

backgro1h~d due to scattering off the heavy vacuum-jacket·flanges 

and magnet pole pieces. 

• 

Fig'ixre 7 shows the schematic diagram of the event-processing logic. 

All 0:-cm.mter signals are added to make SUM:X , all f3 counters SUI11,8' • 

A coincidence of DD , S~ , and D
0 

is called DOWN. A possible 

event is then signified -by a coincidence of ·DOWN, SUMo:, and U
0 

, 

which generates a storage trigger, STOT •. If only one a: and one 

f3 co1.mter have fired, the appropriate memory address is generated and 

checked and, if correct, one count is stored.in the corresponding matrix 

element. Otherwise·the event is rejected.' 

DA is a counter of the size of D
0 

,.located behind it but separated 

.. 
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~ • Bl·stoblt flip-flop 

fi:rnJ • Mono•tfoble tllp·flop 

Memory•.not-busy alljlnOI 

Reset ~add ron tiQnol 

Multi ·channel 
scorer 

Fig. 7• Event-identifying and storing logic. 
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by a l-in. slab of copper designed to keep the protons from events 

involving the free target protons from reaching DA • 

A number of monitors are incorporated to normalize the many data 

runs following numerous polarization reversals. The schematic diagrams 

of these and of a variety of data· quality control devices are shown in 

Figs. 8 and 9. Of all the monitors the ionization chamber proves by 

far the most useful. 

There are three quality control devices of significance. One is 

the beam-spill visual display of theintegrated U singles rate. . 0 

Another is a coincidence of DD , D
0 

, .and DA with one of the signals.· 

purposely delayed by 53 ns, the time between cyclotron rf pulses, which 

· registers the accidental rate in the undelayed coincidence of these 

_signals. Both of-these devices allow a continuous check on the crew's 

tuning· of the cyclotron. The third is the split ion chamber. It is 

an ordinary ionization chamber with a split signal foil. In the way 

it is used it gives a very sensitive indication of shifts of the center 

of intensity of the primary proton beam by driving the pen of a zero-

reading chart recorder. The pen motion may magnify beam motion several 

times. As a consequence one has a continuous indication of the current 

regulation in the two bending magnets just upstream from the first 

target which, if poor, wo~ald shift the location of the polarized-beam 

source. Moreover the split ion chamber is very useful in beam-polari-

zation reversals. Instead of having to set two magnet currents with 

··great care to reproduce the deflected beam line, one has 'to set one 

current carefully while the other is set to center the beam on the 

• 
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I. C. Integrating Millivolt 

i amplifier 
r----» chart 

recorder 

Et 

E 2-------+1 

MU-343A2 

• 
Fig. 8. Monitoring circuits. 
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Fig. 9. Monitoring circuits. 
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s~lit ion chamber. 

The data are accumulated as ~ollows. For each o~ the ~our ~ossible 

combinations o~ beam and target ~olarizations (+ +, + -, - +, - -) data 

is taken in two or more 20-min ~eriods gauged by 20-V swee~s o~ the 

ionization-chamber integrating-electrometer recorder using a 0.11 ~~ 

capacitor. These ~~s are inters~ersed with occasional shorter ~irst

target-~lask-em~ty runs to maintain a check on the purity o~ the beam, as 

well as runs with dummy target used in ~lace o~ the crystals. During 

each.20-min run the digitized NMR. signal o~ the ~olarized-target crystals 

is recorded on ~unched pa~er ta~e ~or ~uture ~recessing by com~uter. At 

the end o~ each ~ta run the in~ormation stored in the 100-channel 

matrix o~ scalers is recorded on the same ~unched ~a~er ta~e along with 

the contents o~ the various monitors. The ~recessing o~ the data is 

described in the next cha~ter. 

The corres~ondence between the counter ~ositions and center-o~

mass angles o~ .the interactions is com~uted by a kinematics ~rogram 

which takes into account the bending o~ the particle trajectories in 

the magnetic ~ield o~ the ~olarized-target magnet, as well as the 

average energy loss in the target crystals o~ each o~ the ~articles 

involved in the.interaction. Given a~~ropriate kinematic ~arameters 

the ~rogram names the counter· into which the ~article conjugate to 

a s~ecified ray would go. In this way one can ~redict the location.o~ 

the hydrogen events in the 100-channel matrix o~ r~y combinations. I~ 

the reconstructed events do not coincide exactly with the observed 

~eaks one may want to remeasure some in~ut parameter such as beam 
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. ,· 

energy, counterposition, etc. Ultimately when agreement is reached 

between the computed and observed particle trajectories, the program 

furnishes all the center-of-mass parameters of the specified inter-· 

action off the polarized protons in the crystals.· 

Figure 10 is· a diagram of a few trajectories computed by this. 

ray-tracing kinematics program. They demonstrate the angular limita-

tions of the experimental arrangement with,whichwe are working. We 

see that the 100 deg c.m. ray passes through the trapezoidal section 

of the magnet yoke. In the case of the 40 deg c.m. interactions, the 

slow particles have such a range of energy loss in the target crystals 

that due to this effect alone the hydrogen peak broadens by the amount 

indicated with dotted rays. Broadening for other reasons is also 

enhanced, causing an unknovm fraction of hydrogen peak to miss the 

down array or spread over what might be considered flat region. 

The fraction counted in the down array is then a sensitive function of 

such geometry changes as slight shifts in the target illumination. .M 

a result the hydrogen-to-background ratio becomes susceptible to false 

asymmetries. The usefvl angular interval for this experiment is there-

fore 50 deg to 90 deg c.m. and could be increased below 50 deg by the 

use of thinner crystals. Alternatively one may identify the events 

involving the polarized protons by some means other than conjugate 

particle coincidences, namely fast-particle range or momentum. 

! 
I 

l 
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G.M. 
angle 

(de g) 
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Fig. 10. Limitations in scattering angle for the apparatus 
used in this experiment. 

MUB-4823 
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IV. DATA ANALYSIS 

A. Computation of the Target Polarization . 

Schultz7 has shown that for moqerately large enhancements the 

expression for the target polarization is proportional to the area 

under the NMR. absorption curve. Since the NMR. detection system actually 

furnishes a signal proportional to the derivative of the absorption 

curve, the target polarization is a number proportional to the double 

integral of the recorded signal, suitably corrected. Each differential 

curve is digitized at about 150 points, 100 of· which fall into the 

region of integration. The computation of the double integral takes 

place by computer. In Fig. ll we see some plotted computer output 

corresponding to a TE (thermal-equilibriUm) signal and a signal of 

each positive and negative enhancement. On the ~eft are the differen-

tial NMR curves as obtained during the experiment shown only in the 

· region of integration. On the right are the corresponding first 

integrals for which the computer obtains the areas. 

The areas thus obtained for each run furnish an enhancement 

factor for that run when compared to currently appropriate TE 

signal areas. For these TE signals one computes the polarization 

directly from knowledge of the magnetic field intensity and the 

·temperature of the helium bath. This temperature is measured indirect-

ly by measuring the vapor pressure of the helium atmosphere with an oil 

manometer. Tne overall accuracy of the manometer is believed to 

account for about 5% systematic uncertainty in the target polarization, 

while the inaccuracies in the readings account for most of the estimated 

5% target-polarization random error. Betz9b describes improvements in 

(', 
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a 

b 

c 

MU-35184 

Fig. 11. Nuclear magnetic resonance signals, shown at (a) thermal 
equilibrium, (b) positive enhancement, and (c) negative enhance
ment. On the feft are the recorded differential signals, on,,the 
right the corresponding computer integrations. 
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target-polarization analysis since Schu~tz's work. 

B. Computation of the Polarization Parameters 

1. General,Considerations 

The analysis of the data will proceed as follows. Data exist·· 

for two counter positions, labeled 1 and 3, where the arrays are 

covering different angular regions. Position 3 includes the points 

more forward in the center-of-mass system. The crystal-target data · 

for a given counter position are divided into subgroups of rUns. These 

subgroups are likely to be mutually inconsistent because of such unavoid

able geometry changes as shifts in the target location following dummy

target substitutions. The data within the subgroups are believed· to 

be free .from false asymmetries. The dummy-target data are subtracted 

with different normalization for each subgroup. Then the hydrogen-

peak asymmetries are com;puted one row at a time (one :·r.ow corresponding 

to one angle-defining counter) to give the polarization parameters for 

that center-of-mass angle for each subgro~p of data. Finally the results 

from the various subgroups of one counter position are combined, suitably 

·weighted. 

Although one obtains values of P(e) , PB :, and ONN(e) for each 

a counter, one may further combine the results of PB for all a · 

counters into a grand average since PB . is not a fUnction of second

scattering angle. The value of PB thus obtained may then be used in 

a subse~uent computation of CNN from the same data. This procedure 

of feeding back the computed beam polarization is particularly useful 

for the counter·position near 90 degree center-of-mass. There the 

·. 

,, 

·~· 
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analyzing power of the second target gets small. This results in 

large statistical errors of the internally computed beam polarization, 

correspondingly the errors in . C:NN derived from this internally 

computed PB may be large. Here one therefore profits from using 

PB derived from data from counter position 3 in the form of external 

input. 

The polarization parameters are computed from the data using 

E~. (24) for the differential cross section I(e) when beam and 

target are polarized: 

I(e) = I 0 (e) [ 1 + ( PB+PT) P(e) + PBPTCNN(e)] (24) 

We henceforth regard the symbol PB to represent the absolute 

value of the beam polarization and assume that only the target polari-

zation is fluctuating from run to run while PB is constant~ .More

over we adopt the symbol ~i for the target polarization of the ith 

run (to avoid double subscripts). Then E~. (24) may be rewritten, 

depending on the direction of the beam polarization, 

Ii = I 0 [ (1 ± PBP) + ~i (P ± PBCNN) J 
using the upper or lower sign consistently. 

(25) 

We now find it convenient to introduce four new ~uantities A , 

B , C , D defined by 

(26) 

C = I (1 - P P) 0 B 

In terms of these ~uantities the polarization parameters are given by 
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Io 
A+C 

PB 
A-C 

=- =--2 B+D 

B+D 1 B-D 
(27) 

p = A+C c:NN =-
PB A+C 

E~uations (25) then get to loGk like parametric e~uations for straight 

lines, e.g. 

(28) 

In reality they are e~uations for straight lines only if we al.low i to . 

·have two values and no more, for otherwise we would be overdetermining 

the parameters A , B , etc~ To avoid confusion we refer to the data· 

as·ri(1:1) and to the line, parametrized by A and -B, for instance, 

as 

Li(1:i) =A+ 'LiB 

We shall therefore compute C:NN and the other parameters by finding 

the straight line for each of the two beam polarizations that best fits 

the data by the well-known techni~ue of minimizing· the sum of the s~uares. 

of the deviations of the actual data points from the line.ll 

2. Straight- Line Fitting 

We define the deviation of the ith data point from the line 

parametrized by A and B by 

Minimiz~ng the sum of the s~uares of these deviations means solving a 

pair of e~uations for each pair of parameters (we treat only one pair, 

A and B ) , namely 

.,,. 

1'' 
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d I [ Ii - Li (A,B)] 2 dA = 0 

d I [ Ii - Li (A,B)J 
2 

0 • dE = 

If the various runs are not for the same number of monitors m. , we 
J.I. 

account for the different lengths by normalizing the data I. ~ ~ 
. . J. mi 

and furthermore weighting the squared deviations by the monitors. 

This latter procedure is equivalent to considering a run of twice 

ordinary length equivalent to two runs of ordinary length, yielding 

two data points, each contributing one term to the sUm of squared 

deviations. We finally write · 

(30) 

It is easy to solve these equations. One obtains 

-
·A =I;_ B:f" I-r I-r 

B = -:-2 -2 
'1" - '1" 

(31) 

where we have defined 

(32)·. 

h I 2 2 m.-r. 
I-r J. . ' J. J. 

'1" = 

Imi Im. ' . J. 
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3. ~-Target Subtractions 

E~uations .(31) would lead to the elastic proton-proton polari-

zation parameters only if Ii were events involving pure second-target 

polarized protons. For the purpose of. data handling it is convenient. 

to think of the Ii as the hydrogen-peak-region crystal-target data of 

a given row of the 10 X 10 data matrix including events involving the 

unpolarized background. We must then describe how to subtract the back-

ground by means of the dummy-target data. 

For a given counter position we define those elements of the 

100-channel crystal-target data matrix that contain any portion of the 

hydrogen peak as peak region, and all the rest as flat region. This 

designation is maintained for the dummy-target data. The sum of all 

the elements in the flat region of the ith crystal-data run we call 

FCi' while the corresponding dummy-target ~uantity·summed over all runs 

is FD • For the row under analysis we call the sum of the crystal-data 

peak-region elements I. and the corresponding dummy-target ~uantity 
J. 

· summed over all runs J • 

In terms of these ~uantities, pure hydrogen (polarized target 

proton) events are then given by 

. We may retain the definitions stated in expression (32) and modify 

. only the e~uation for A in E~s. (31) 

" i 
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Table v~ Results for P(e) and CNN(e) of proton-proton elastic 

scattering at 680. MeV.; t is. the invariant· four-mome~ttnn transfer sq_uared;. 
· in addition to the random errors q_uoted, there are systematic fractional 

errors of 5% on P and 10% on CNN. 

e -t em 
l05(MeV/c)2 P(e) CNN(e) (deg) 

51.2 2.)8 0.472 ± .053 0.449 ± .122 

54.) 2.66 0.564 ± .041 0.570 ± .097 

57.4 2.94 0.528 ± .0)9 0.543 ± .092 

60.5 ).24 0~494 ± .041 0.545 ± .097 

6).7 ).54 0.)86 ± .042 0.708 ± .100 

66.7 ).86 0.)75 ± .04) '0.665 ± .104 

70.8 4.27 0.)84 ± .0)2 0.574 ± .079 

73.7 '4.58 0.)17 ±' .027 0.60) ± .069 

76.7 4.90 0.252 ± .028 0.752 ± .075 ' 

79.6 5'~22 . 0.189 ± .029 0.806 ± .078 

82.6 5~55 0.175 ± .0)0 0.7)1 ± .079 

85~6 5.88' 0.129 ± .0)9 0.909 ± .101 

88.7 6.22 o.oo4 ± .053 0.8)5 ± .128 
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Fig. 12. Resu;:Lts of this experiment: CNN(e) in elastic proton
proton scattering at 680 MeV. (The open.circles.are the 
results of Ref. (5f) at 640 MeV.) A 10% fractional error 
due to a systematic uncertainty in the target polarization 
should.oe added in quadrature t~ the errors shown. 
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13. Results of this experiment: P(e) in elastic proton
proton scattering at 680 MeV •. A 5% fractional error due 
to a systematic uncertainty in the target polarization 
should be added in q_uadrature to the errors shown. The 
solid straight line represents a good fit to the data 
of Betz9b at this energy while the dashed line corresponds 
to data of Ref. (:J..?) at 660 MeV. · 
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-J 
A = I - F -- - B~ 

C FD 

B = I-r - I-T.·· 
. ..-2 _ 'T 2 

Fe = 

(33) 

(34) 

It is easy to verify that the background does not appearexplicitly in 

the expression for B • 

If Eg_s. (33) and the corresponding eg_uations for C .and D are 

used to compute the re.sults one obtains the values published in Table V 

and Figs. 12 and 13. Among the results is also the g_uantity PB which 

has the value 

PB = 0.44 ± 0.02 • 

1{. Classification of Errors 

The 'independent g_uantities that lead to the polarization parameters 

are .readily identified to be Ii , Fe , FD' Jn -ri , and-: if external, PB~ 

They all contribute to errors in·the results. We consider the monitors 

mi known with negligible error. The expressions for the errors are 

developed in Appendix c. 

When it comes to combiriingresults, as for instance averaging 
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P(e) for one a counter over a number of subgroups, we need to use 

weight factors composed of errors that are uncorrelated within each 

subgroup. That requirement would include errors due to only Ii , Fe , 
and ~- (random) in the weighting of the individual P(e) above. It 

l. 

is therefore important to classify the sources of error according to 

the extent of their correlation in a given result, as shown in Table VI. 

The errors that are uncorrelated for all the quantities to be averaged 

and therefore suitable for weighting, get diminished in the combining 

process, while those correlated get averaged. 

We explain the procedure in some detail with an example. Let 

us assume we have computed P(e) , PB , and CNN(e) (internal PB) 

using the peak-region data {I.) 
l. 

of counter a1 ·· of a certain subgroup 

of mutually compatible crystal-target runs, their target poiarization 

(~i) ,·the flat region count (Fe) for all the runs in the subgroup, 

the peak-region data of this counter summed over all the dummy~target 

runs available at this counter position (J) , and the total dummy

target-flat-region count of the same runs (FD) • All of the qu,antities 

computed have errors due to t'he various sources enumerated. We compute 

these errors and combine those belonging to the same class of errors 

in quadrature. If we go through a similar computation for the same 

counter using a different sub~roup of crystal-target data runs, we 

arrive at different results of P(e) , PB. and CNN(e) and their 

errors in the four different classes. 

To average the results of these two computations from different 
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Table VI. Classification of the errors according to correlation .,) 
Class ·Source Error correlated for I 

of error of error each a counter each data ·.··'·\ i 
subgroup 

1 Ii no no 

2· Fe, -r. (random) yes no 
~ . 

3 J no yes 

4 FD' -r. ( syst.), · PB(if ext.) yes yes 
~ . 

1, 

,. 
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subgroups of runs we need to consult Table VI for the correct weight 

factors. We see that the errors in classes 1 and 2 are uncorrelated 

for each subgroup. We therefore proceed to combine the errors in 

classes 1 and 2 in quadrature for each quantity to be averaged and · 

use as weight factor the inverse squares of the combined error, thus 

Here 

P(e) 

P is the result of averaging the 

(35) 

P. , the computed value of 
~ 

for the ith subgroup. The weight factors w. are defined in 
~ 

terms of the errors in classes 1 and 2, .51 and 52 , by 

The errors in P of these two classes reduce according to the rule 

while those of classes 3 and 4 average in the manner of Eq. (35). 

u~timately we may combine the errors thus obtained in classes 1 and 

3 in quadrature into the final errors in class 3 and those of classes 

2 and 4 into final class 4 errors. 
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5. - Sample Calculation 

This calculation using the data of a small number of runs is in-

tended to convey a feeling for the rate of data accumulation when one 

uses a polarized target. We have chosen a set of runs at random. To 

simplify the computation we shall substitute uniform values for the 

target polarization and the monitors. Otherwise the calculation is 

. standard. We shall compute the asymmetries for only one angle-defining 

a counter} although at this counter position we have analyzable hydro-

· gen peaks for six a counters. We use the full flat region to normalize · 

the dummy-target .data. 

The crystal-target data were accumulated i~ a single period of 16 

hours) including one hour at the beginning and at the end for thermal-

equilibrium NMR signals. The data runs cycle· through the four combina-

tions of the beam and target polarizations twice) with two runs taken .at 

each combination separated by a first-target-flask-empty run of half 

normal duration. We do not use the flask-empty runs in the analysis. 

The data therefore consist of a total of 16 runs (actually 17) since 

they include two runs of half normal duration) labeled intermittently 

between Nos. 500 and 526. 

The dummy~target data used in this sample calculation consist of 

three runs at each beam polarization. They are labeled Nos. 629 to 634 

and w~re taken during a· period of about three hours. 

We assume uniform target polarization of ±0.50, beam polarization 

of ±O. 50, and monitors mi of 1. 00 (or 0. 50 for the two short runs)~

Typical STOT count was 3000, of'which about 1 percent -was .rejected 

, .. 
~; 

! 
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due to multiple coincidences in one of the counter arrays. The monitor 

circuits had about 5 percent accidental rate. Typical I. is 100 to 300, · 
. ~ 

depending on the initial-state polarization. 

The quantities composing A, B, c, and D are shown in Table VII. 

They give 

A = 186.4 B · = 76.0 

c = 120.0 D = 18.5. 

Using Eqs. (27) we finally have ' 

A - c 
PB = = 0.703 

B+D 
B + D 

P(e) = = 0.308 A+ c 

c:NN(e) 
1 B - D PP D2 

0.267. = = = PB A + C A2 - c2 

If we assume PB = 0.50, externally given, we get 

We calculate.the errors for this external~FB C:NN using the expressions 

of Appendix C. If we assum~ 5 percent random error in (!::::r./r) 2 and an error 
I • 

in the beam polarization of (6PnlPB) 4 = 0.025, we find the errors listed 

in Table VIII. In the table they are compared to the errors obtained with 

all the correct experimental quantities, i.e. the real monitors and 

target polarizations, for both externa~ and internal beam polarizations. 
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·~.· 

Table VII. Intermediate steps in the sample calculation. 

t 
p:B . Positive· Positive Negative Negative ' 

" --··:.·.- - - - ·- - ·- - .;.. - -· - - - -
Target Crystal Dummy Crystal Dummy 

.Em. 8.0 3.0 8.0 3.0 
~ 

. .E F Ci' .E FDi 7286 2740 . 7ll9 2500 

rc, :Fn . 910.75 913.33 889·9 833.33 

.E Ii, .E Ji 2148 .. 247 1564 212 

. I, J 268.5 82~33 195.5 70.67 

.E Ii-ri "152.0 37.0 

I-r 19.0 4.625 
2 0.25 0.25 't" -

• 
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Table VIII. Comparison of the errors in CNN for sample-calculation 

and real-data values.of the target polarization. 

Error Sample Real data Real data 
class calculation internal P B · external PB 

l ± .099 ± el53 ± .135 

2 ± .010 ± .. 019 ± .014 

3 .· ± .. 005 ± .ooo ± eOOl 

4 ± .• 019 ± .002 ± .027 
- .. -

a 
CNN -375 .440 .504 

a These are the values of the parameters in the respective columns 

and.not corresponding errors. 
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The differences in the errors arise primarily from finite ~ of the 

real data, that is, from the fact that the average positive polari-

. ··, zation was slightly different in magnitude than the average negative 

· polarization. We note that the main contribution to the random error 

·is the statistical fluctuation of the hydrogen-peak data. 

C. Discussion of Results 

The results for P(e) and CNN(e). are listed in Table V 

. together with their random errors. They are also sho-wn p~otted in 

Figse 12 and 13. We ascribe a systematic fractional error of 5% to 

the values of the enhanced target polarization obtained from the 

NMR signals and the computed TE polarization. · Accordingly there is 

fractional systematic uncertainty of 5% in all·the values of P(e) 

and of 10% in CNN(e) • 

It should be noted how remarkable the agreement is between our · 

results for CNN and those of Refe (5f). On the other hand while our 

results for P agree well with E~tz9b they deviate considerably from 

those of Ref. (12). The results of Refs. (5f) and (12) were recently 
. 13 

used in searches for proton-proton phase shifts at 660 MeV. 

Stapp has pointed out that at 90 deg center-of-mass the value 

of ·c contains information about the singlet-triplet content of NN 
the interaction.3 A value of +1 represents pure triplet scattering 

·. while -1 would be pU:re singlet. · Evidently at this energy the triplet 

amplitudes predominate. 

. It is clear that the polarized target offers· an advantageous 

scheme for measuring the polarization correlation, CNN • · Good 

• 

,. 
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accuracy of measurement can be combined with the feature of counting 

at several scattering angles at the same timee A comparison of 

Tables II and V brings out the value of using a polarized target. 

Given results for a great variety of experiments at one energy, 

one would expect to determine fully all the scattering amplitudes at 

that energy. At present this is not practicable because many of the 

necessary experiments have not yet been performed at our energy. 

It is possible to estimate how much information is needed to 

determine fully the scattering amplitude at one energy. At lower 

energy (310 MeV), where the proton-proton scattering could be assumed 

to be purely elastic, Stapp, Ypsilantis, and Metropolis were able to· 

reduce the ambiguities to the point that only a few possible sets of 

phase shifts were consistent with the experimental data.14 They had 

available to them measurements of the differential cross section I
0 

, 

the polarization · P , the depolarization D , and the rotation para- · 

meters A and R (D, A, and R over about half the full range of 

scattering angles). We therefore estimate that at our higher energy, 

at which much inelastic scattering occurs, one would probably need 

I
0 

, P , D , R , A ·, CNN , and perhaps CKP measured over the full 

range of scattering angles to reach the point of a completely 

unambiguous set of phase shifts (and hence scattering amplitudes). 

This set happens to constitute one of the complete sets suggested by 

4 Schumacher and Eethe. Consequently it seems premature to attempt 

the proposed phase shift analysis at the present, when less than half 

the necessary experiments have been performed. 
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It is sometimes possible to carry out a complete analysis with 

fewer kinds of experiments performed at one energy if results at many 

energies are combined with the requirement that the phase shifts vary 

slowly as functions of energy. Such a procedure has been used by 

15 16 Breit et al. and Stapp et al. • 
• 

· It is in any case beyond the scope of the present .work to attempt 

this analysis. Perhaps as more data are available, some of them from 

further experiments using the polarized target, we may be encouraged · 

to attempt the search for the unique scattering amplitudes at this 

· .. energy. 

. . 
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V. CONCLUSION 

We have presented results of a proton-proton scattering experi

ment in which both initial state particles were polarized. Inquality 

and amount the results demonstrate that the polarized target is an 

important tool in the measurement of the parameter ·cNN • Ultimately 

the results will be valuable in the construction of the scattering 

matrix. 
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APPENDICES 

A. Composite-Spin-Space Components 

We show here how one relates the components of individual particle 

spinors to the components of the combined spin space spinors for the 

special case of two particles of spin 1/2. 

Let the individual particle spinors be r and s each of two 

components. · Let the comb.ined spinor be the four component object X • 

If A is an operator in the space of r , B in the space of s , 

the we define C as the corresponding operator in the composite spin 

space operating on X such that 

ex = ArBs 

The corresponding relation between the component is 

C . .X . = A nr nB s = A nB . r n s • l.J J --:k.r- ·AI mn n -"k.r- mn x- n (A-1) 

For the special case where A , B , and C are the identity operators, 

this relation reduces to 

X. = r nS • 
J AI n 

There j ranges from l to 4 while £ and n are 1 , or 2. The only 

two ways in which the indices t and n can be cpmbined to give the 

·four different j uni~uely are 

j = 2(£-1) + n and j = 2(n-~) + £ • 

Any other combination fails to define one or more of the subscripts 

j in terms of .£ and n , i.e. one or more of the components of X 

in terms of the components,of r· and s • The two different rela.tions 

are e~uivalent in the sense that they each give a uni~ue set of well 

defined components different only by an interchange of second and third 
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components. However, one has to agree to use only one of them consis-

.tently. We shall use the former. Equation (A-1) then becomes 

'-. .. ~£Bmnr£sn = C2(k-l) + m, 2(£-1) + n X2(£-l) + n : 

B. Proof of Equation (23) 

We want to verify Eq. (23) of Chapter II 

. t . t 
Tr(cr1Ncr2N)M M = Tr M(cr1Ncr2N)M • 

We use the commutation relations of the Pauli spin matrices 

as well as the identities 

() .t = (). 
J J 

Trcr. = 0 
J 

where j , k , and £ run over x, y, and z and 

8 jk ={ : ::: ~ ; : 

/ 

(B-1) 

(B-2) 

I 1 for jk£ = xyz or cyclic permutation thereof 

Ejk£ =rl for 
jk£ = xzy or cyclic permutation theredf 

0 for any two indices the same. 

We also note that operators belonging to different spin spaces commute 

(i.e., crjlcrk2 =-crk2crjl) • 

· Using (B-2) we can also show that 

() () - OrYA + J.. E () ' a f3 - ""'~-' Of3y Y 

A /\ /\ 

where this time a , f3 , and y are N , K and p 
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To see this illustrated vle evaluate 

·,, 

= N K o 1cr l + N K o 1o l + 
XXX X XYX y 

= N K + N K (i o 1 ) + ••• 
X X X y Z 

./\1'\ ~ o:t>~i\ 

= N •K + i cr • (NxK) 
. 1 

.,_;,:,. /' = i (J • p = i 0 • 
1 lP 

A 1\ A 

since N ,_K, and P make up a right-handed coordir~te system in 

that order. 

For M(e) we use Wol:fenstein 1 s form · · 

There:fore we have :for Mt 

We now compute the reg_ui:r.·ec. product mat:ci~ss. 

- * 1.., r: ·1ft · 6 ·)· · 
{VI M t ·= ~B"5* + '3 c *( t>,,~ 1- 6 z.i\j) ·'f 'EN 'o, N°2N '1-it)''-1 tU,pO:p +O,k 2k 

-l13i{*(o,?c;;?~o-;k~k) i- (g·*(6-,N'+(r2i-l) + 2CC*(Ito,N(~N) 

+ C N ·i (~ rJ -1- 6'21~ )+t (i-f* ( cr-·i f.> 021< + ~~<~ P) -+ J\l B * 0 JN cs; N 

+ NC:.*(o11"-~ + u2JJ) +[\iN~·--~ N<S*(ojp6-;_'Pt-o1ko;k) 

l Nq I ¥/ !("' .-· 5: 6:., ) . i G E !)( "( ,<" . - ..:· ) 
- 2 r fi \_Vif"0 '2P·-· II< lk T -i: -. <J;pUzp -tu iK IJ2k 

I /_7'1*/- /- ·rr- ,-:-).I GG-~(·1 r.- 6'..) - y-u ~ \. 0 iP(>1.P +_v1Ki)2i-: --+ 2: - ~ ulf.J- J2N-
7 

- -~ 1413 'K($,pG:zp ._ o;k 0zK: )~ [ H c;;,t(~IP~k + o~k o;.-p) 
- fI-ll\(* ( owo;_?- ()B, crzK) ·+- 1 H H ¥-(I +- 0~N 6i"') 

._. 
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. s cJ 1'-'11--rt-== 1373x-o. , o:
2 

; -r BC *( o,N +<>;~) + EN*- \ . · .. : 
IN 2N . . ltv N . 

I Q I' ->F!'t .r.:- 6: ) i ~, H*(··~ () -(}. 0 ) . - z b~ l ~?02-p +vlk z;, - 2 lj 0 /P. ZP I~( -z.k · 

t CB * ( o;~ +-o2N) + 2 (L * (I+- c>,No;_N) 

+ C N*(o-tN +o2 tJ) + ~ C H *( s,p<>-z~.< +O,k 0-2?) + N'B * 
· + NC"(o,"';- cr-2"') + N N" o,No,."' + liJG*(o.rDzp +o,"o*) 
-1 N~*{o,P 0zr-o,k~k)- {G13~(o;p0zr+D;K6ik) · 
- I *I r. . ) I , *(. · ) 
i- ·2 G1\J (t5;p•Jzp tOJKUZK -~2 ~Cz 1--o-;N~N 

• ~ 7-H f3*(o,Psr -o-~" u-2k) ..;_ L H c*(<r,p6zk + 6,k62P) 

~-~ ~N'~{o-,P62P-OIK<f2l{)t i 1-ll-1~( I +-tJ;NG"~~) 

rs:N(~N f1t ~ 13~wu2t-J +C~(6jN+<S_N) +N·>*-Ct±(cr;p~p-+ 0jt< u;~) 
+ ~ H*( o1 ~._ o2 k - 6 1p•:;p) 

; ' 

f\11 . t 'Bn~ *I . ) -72N>t: 1 ·s *I. - \ 
. ·1 tS1NuJ.W M -: 1J 6jt-J6"zN + 'BC. l cf,w +e>;N + u - z. (.7 ~:r,Pc;;P·-t-o~~y 

. -i El-l*(o~P<>;r --~Kozv,) + cH* {o,N +·~N) + zcc*(t +OJt\t~~) 
. +(N*(o;N+62 N) + ZCH*(~'f'~k. + VJK~P) + NB* 

+ N c*(OI~-."+o;~.J + N f\!Jt~"'o;M + ~ NG1((o-;pu;p+6/k<'zl<) 
' ~..rl !'¥/ r. o- ;. ~ ). . ' /' ·j2::f.·c·,- .... + v: a: ) 

-:z:r'JH luiF 2-P-(5H~\)2.k - 2 QU, 0 tP 0 2P lk 2k 

+ i G i'J7(o,Pszf ·-t-olkoz~,)- ~ GG * (i- o,NvZN) 

~ 1 H 13*( 6',PszP-c-;k02k) ~a. HC*(6iro;~< +6J~"6zp) 
- -i H N*(sw 6 2t> -ojl<~~.) + ~ HH*(l + OINOZt\1) 
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As a result we find that indeed 

as was to be shown. 

We briefly mention how the time-reversal-invariance violating 
~ 

amplitudes enter into CNN • In terms of the time-reversal-invariant 

scattering matrix M the time-reversal-invariance violating scatter-

ing. matrix M' ;.is given by 

We find by means demonstrated above that 

Tr M' cr1Ncr2N(M') t = Tr M cr1Ncr2N M t + 2Re(JL*) , 

and 

whence because of E~. (B-3) 

Tr 'C ')·r , c ')t . cr1Ncr2N M M = Tr M cr1Ncr2N M · • 

This means that the value CNN(e) is the same whether initial or 

final state polarizations are determined, however large the time-

reversal-invariance violating amplitudes may be. 

Therefore the time reversal content of our experiment is limited· 

to the time reversal content of our measurement of P(e) • · 
.. 
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C. Error Expressions 

We use the well known formula applicable in the case of uncorrelated 

errors. Let x. : be i independent numbers, with errors tsx.. , that combine 
~ ~ 

into a resule X. Then &., the error in X due to the errors tsx.i, _is 

given by 

(C-1) 

We derive only the errors of CNN for the case of external beam 

polarization and quote all the other errors without derivation. We use 

the quantities given in expressions (27), (32), (33), and (34) of 

Chapter IV and evaluate the necessary partial derivatives. 

-a c N'IJ d CNtJ c~i-J c· 
- K ·'::::· ~ 

dA de · .4+C 
(C-2) 

<> c~M d c ww 
.... 

- -df) dD ·pB A-+-C 

·a ctv·IJ C1-nJ 
d;P 

'B 71 
dA [ d13 

·-==- 0 -- - -- d~ d Fe Fe. 

oA ' aB [; -- + - -. :::-0 
() FD i'-"-D dh D 

o4- ; dn ,__ b ·-=- 0 J-- .,..- --
'";)J ... dJ .} 
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·~A- ~ 31S .. I -- r - -· ·- - -
-ar~ M ~lr . · trvt 

¢. 

"dB &; . ..... ----- -
di~ 0 JVt 

. ' 

'013 ~A B »1~ 
.,._,.. 

·- - ,_r - -- -
d 7: ~ M . 'd·r: I' 

. "' 
" 

~13 r . I-I ~ '::::' -
. dt'.t .. 011 . .. , . 

.... 

where we have used the following definitions . 

_·2 
'- ·rz - y; · .. 

( ;r-·z:Q~) . 

c, ' 

v 

I G -
tr1 
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G ~ - B 0A..Wt~ -r H -

~ --... I~ -M~(Y+'2&~B) ~ 
(.. 

I 

The error in class l is the statistical error in Ii' given by 

AI[ >< Y ri 
We find 

where we have defined 

and the superscripts (±) on the parentheses indicate the beam polarization 

for the g_uantities within. The symbol @ signifies that the sign is 

to be that of the beam polarization. 

The errors in class 2 are due to two sources, the random error 

in the target polarization for each run ~-ri and the error due to .Fe. 

These are· 



and we ·have used 
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(~) Q_ .. 
"C . L z. 

since -r is small. Clearly the factor B is replaced by D for the 

the terms 8~-bf negative beam polarization. The error due to Fe is 

~ Lw;;)" ~ (kc)"'[ (ft +(ffJ (C-5) 

The error in class 3 is due to J and is given by the expr'ession 

(c-6) 

In class 4 there are three distinct sources of error, namely FD, 

the systematic error in -ri, and the error in PB: The FD error is given 

by 

(C-7) 

that due to systematic error in -ri by 

lc-)7,_ 
\.. ~ lv (IJ . ::: (c-8) 

a.nd similarly 

-, 
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{ If' we redef'ine the quantities Kc, s?, and R:\ Eqs. (C-3) through 
. . 1 1 . 

.. 
0 

11 

· (c-8) apply directly to tbe other computed parameters', namely P(e), 

P:S' and CNN(e) (internal P:S), 'collectively called X-~ We theref'ore have, 

. most generally, f'or . 

· class 1: 

· class 2: 

·as well as 
.. ~ .. · .. · 

( k ~ rc( f Y + ( £ r 1) · 0--Af -

class 3: 

{_Axt - ( k ~) ~ [ c ~ r + ( ~ ~)~J) -

class 4: 

(k~l[(€t+ (£)], (!XY --
as well as 

)(z_ ( L!L) 2-' . '1... 

(f)() -- .- ~ 

L l.f 

Here we need to def'ine the f'ollowing quantities: 
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For X = P(e): 

K-r =· ·-
4-t-C 

R; - ,~~[%- (F + ;)-1]
2 

. ~: ~ (% TfH(r + ;J +B omt]'-. 

·'& K -

'DB 
t"\. .. 

L . 

. F.or X = CNN(~) ~internal P :S) : 
-- ·• ' \ 
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