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Gauge/Gravity Duality and the Black Hole Interior
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We present a further argument that typical black holes with field theory duals have firewalls at
the horizon. This argument makes no reference to entanglement between the black hole and any
distant system, and so is not evaded by identifying degrees of freedom inside the black hole with
those outside. We also address the ER=EPR conjecture of Maldacena and Susskind, arguing that
the correlations in generic highly entangled states cannot be geometrized as a smooth wormhole.

I. INTRODUCTION

Gauge/gravity duality in its various forms [1, 2] pro-
vides a construction of quantum gravity in spacetimes
with special boundary conditions. This construction is
algorithmic, following from that [3] of the dual field the-
ory (DFT). It has already provided important insights —
most notably, black holes evolve according to the rules of
ordinary quantum mechanics, at least from the point of
view of an external observer. Here we apply this to ex-
amine recent claims [4] and counterclaims regarding the
nature of the black hole interior.

In §2 we present an argument that, without other sig-
nificant departures from effective field theory (EFT), typ-
ical black holes must have firewalls at their horizons.
Though this rests on assumptions similar to those of
Ref. [4] (see also [5–8]), it differs in structure, sharpen-
ing both an argument of Bousso [9] and one from section
5 of [10]. In particular, these do not assume the black
hole to be highly entangled with another system. As a
result, the firewall cannot be ameliorated by identifying
degrees of freedom inside the black hole with those out-
side as suggested by [11–13]. Similar conclusions, based
on other arguments, have appeared in Refs. [14, 15].

In §3 we expand on commentary from Ref. [10] re-
garding potential limitations on the ability to reconstruct
the interior from the DFT. Sec. 4 then examines the
ER=EPR conjecture of Ref. [13]. We argue that generic
entangled states of two field theories do not have a geo-
metric interpretation in terms of a connecting wormhole.
This result may also be related to the ideas of [16]. In §5
we argue that the usual calculation of the Hawking flux
is valid even with the firewall.
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II. TYPICALITY OF FIREWALLS

In the DFT, we can construct any state from the vac-
uum by coupling to local sources. In the gravitational
description, this corresponds to throwing excitations in
from the boundary and/or allowing them to come out.
We consider an energy E sufficiently high that almost all
states are black holes (though recall that this can be well-
below the Hawking-Page transition in AdS). While our
black holes have been explicitly formed by collapse,1 to
high accuracy they resemble the eternal black holes that
dominate any corresponding microcanonical ensemble.
Let us focus on a mode f of some linearized field in this

eternal black hole spacetime. We take f to be a smooth
wavepacket localized in Killing frequency near some pos-
itive ω. We also require f to strictly vanish inside and in
a neighborhood of the horizon; this implies some small
negative frequency tail with negligible physical effects. In

the DFT this bulk operator has an image b̂ which can be
obtained by expanding φ in Fourier modes and using the
gauge/gravity dictionary to relate such modes to bound-
ary operators2. The free field expansion is valid when
the appropriate parameter N is infinite and can be sys-
tematically improved with 1/N [17, 18], though we will
not need such high precision below.
The DFT state may be expanded in eigenstates of the

number operator Nb = b̂†b̂. EFT across the horizon re-
lates the Hawking modes b to the modes a of an infalling
observer by a Bogoliubov transformation such that, as-
suming Na to also have some image in the DFT, the
a-vacuum has a thermal distribution of Nb. Any Nb

eigenstate thus differs at O(1) from the a vacuum, and

1 It is often stated that black holes formed from collapse occupy
only a subspace of small entropy. This statement applies when
the collapse occurs quickly, on timescales comparable to the AdS
(anti-de Sitter) time in an AdS context. The notion of collapse
used here is broader, encompassing much slower processes that
may require exponentially large times.

2 At high angular momenta, this construction involves large can-
celations.

http://arxiv.org/abs/1307.4706v2
mailto:marolf@physics.ucsb.edu
mailto:joep@kitp.ucsb.edu


2

so the expectation value of Na is at least O(1) in any Nb

eigenstate. In fact, as noted in particular by Bousso [9],
eigenstates of Nb provide a complete basis of unentan-
gled black hole states, all of which have firewalls. In the
gauge/gravity context we can sharpen this to show that
typical states have firewalls. Since these basis states ap-
proximate energy eigenstates, we may use this basis to
compute the average

Na
′
= Tr′Na/Tr

′1 , (1)

where the primes indicate that we restrict to some chosen
energy range.3, 4 A similar calculation in bulk EFT would
be meaningless due to near-horizon divergences, but the
finite density of DFT states makes (1) well-defined.
The manifest positivity of Na forbids cancelations, so

our average must be at least O(1). We exclude the possi-
bility that (1) is dominated by a small number of highly
excited states, with the rest unexcited, by considering
(1 − P0) in place of Na, where P0 projects onto Na = 0.
Since the operators for orthogonal modes approximately
commute, this argument applies independently to each
mode. Thus we conclude that at a significant fraction of
the infalling modes are excited in a typical state: that is,
most black hole states have firewalls.
Although quite different in structure from the entan-

glement argument of [4] (it instead resembles an argu-
ment from section 5 of [10]), we can identify common
assumptions. Our use of the finite density of states is
closely related to the unitarity assumption (postulate 1)

of [4], and both rely on bulk EFT in relating b to both b̂
and a (postulates 2 and 4). To invalidate this argument
by modifying EFT outside, one would need the probabil-
ity distribution for Nb evolve by an O(1) amount while
propagating outward from the near-horizon region (as in
[8]). This is a large violation of effective field theory for
which it is difficult to find a consistent model [4, 10].

III. OBSERVING THE INTERIOR

If gauge/gravity duality were as complete as one might
hope, a simple way to resolve the firewall question would
be as follows: identify the field theory operator T̂µν dual
to the matter energy momentum tensor Tµν behind the
horizon, and calculate its expectation value in any state.
However, two severe problems present themselves. First,

3 For Nb-eigenstates to be a good basis, the width of this range

should not be parametrically smaller than T

√

N̄b
′, where N̄b

′ is
the corresponding average of Nb and T is the black hole temper-
ature. But since large N̄b

′ would in any case indicate a firewall,
we may in fact choose any width not paramerically smaller than
T .

4 If the dual theory has multiple noninteracting sectors we restrict
the energy in each sector. Thus the argument applies to the
setting of Ref. [13].

there is no simple dictionary for bulk operators, and at-
tempts to construct these seem to require that one have
a complete understanding of bulk dynamics already. Sec-
ond, it is argued in Ref. [10] that there can be no perfect
map between bulk and field theory dynamics. In partic-
ular, Tµν involves the Hawking partner modes b̃, and a
simple counting argument showed that there is no field
theory operator with the properties

[
ˆ̃
b,
ˆ̃
b†] = 1 , [H,

ˆ̃
b†] = −ω

ˆ̃
b† . (2)

The second of these reflects the fact that the Hawking
partner modes have negative ADM energy. The inter-
pretation of this result is not clear, and we offer here
four possibilities:

1. Typical states have no interior.

2. Typical interior states are highly excited. In this
case there could be large corrections to the commuta-
tors (2), but again there is a firewall.5

3. Strong complementarity. The strong complemen-
tarity proposal [20, 21] states that the theory describing
an infalling observer is well approximated by effective
field theory, but differs from that describing asymptotic
observers (see also earlier ideas in [22] and [16]). Thus,
in our context, it also differs from the DFT. This might
at first seem to fit well with the conventional picture of
black holes, where the adiabatic principle implies that
the infalling observer sees vacuum, and not one of the
many excited states. But the argument of §2 still applies.
For any DFT state |i〉, measurements by the infalling ob-

server of the modes b and b̃ should be described by some
density matrix ρ(i). The mode b is also visible to the
asymptotic observer, so complementarity requires that
the reduced density matrix for b be the same whether
obtained directly from |i〉 or from ρ(i).6

4. State-dependence. Typical field theory states have
a thermal spectrum for the mode b.7 Any such typical
state can then be used to construct a representation of

5 Options 1 and 2 are both consistent with the viewpoint of [19].
6 The same is in fact true for any operator that can be mapped
to the DFT since any state may be studied by the infaller in the
far past, long before she enters the black hole. This allows an
accurate analysis of its action on DFT operators, as well as ac-
curate comparison with asymptotic observers. The Hilbert space
HSC used by strong complementarity to describe the infaller’s
physics must thus be rather large, and in particular takes the
form HDFT ⊗Hsup. Here Hsup describes the action of the state
on any additional observables available to the infaller. Strong
complementarity then reduces to something resembling the su-
perselection sectors of [24]. Furthermore, choosing a preferred
vacuum |0〉SC ∈ HSC which agrees with the DFT vacuum on
DFT observables identifies HDFT with the subspace of HSC

states that form by collapse from |0〉SC . In this sense, HDFT is
precisely the subspace of HSC singled out by the extreme cosmic
censorship of [25].

7 This implies that the basis states used in §2 are not typical states,
but we have used them only to evaluate the basis-independent
average (1).
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the commutators (2) [11, 12]. The counting argument im-
plies that this cannot generate the full Hilbert space of
the DFT. Moreover, it depends on the choice of the ini-
tial state: in order to have an interior interpretation of a
given dual state, one must first ‘pin the tail on the quan-
tum donkey’ [26], choosing the state on which to build the
construction. Interior observables would then be maps
H × H → H, outside the normal rules of quantum me-
chanics [9, 10, 20]. This is a rather radical modification:
“God not only plays dice, She also plays pin the tail on
the quantum donkey.” It remains to be seen whether
a sensible theory can be constructed on this basis. As
one challenge, any external interaction of the black hole
will change the microstate, moving the system out of the
original representation; thus, the base state must evolve
dynamically, in addition to the usual evolution of the
state of the system. How is this to be described?

IV. ENTANGLEMENT AND GEOMETRY

We now turn to dual theories highly entangled with
external systems. Ref. [13] has made the remarkable
suggestion that such entanglement is geometrized as a
connecting wormhole. This was summarized by the slo-
gan ER=EPR, where ER refers to the wormhole as
an Einstein-Rosen bridge and EPR refers to the fa-
mous Einstein-Podolsky-Rosen discussion of entangle-
ment. The suggestion was based largely on intuition
[27] from the thermofield state. But, as acknowledged
in [13], the entanglements in this state are very special
[28–30]. Indeed, [31] has shown that even small pertur-
bations greatly change their nature. Here we consider
generic highly entangled states, and argue that there can
be no geometric interpretation of correlations between
the two field theories.
We first review features of the thermofield state. The

thermal two-point function is

Tr(e−βHA(t)B(t′)) =
∑

α,β

e−βEα+i(t−t′)EαβAαβBβα (3)

where α, β label energy eigenstates, Eαβ = Eα−Eβ, and
Aαβ , Bβα are corresponding matrix elements of A(t =
0), B(t′ = 0). Continuing in t gives the opposite-side
correlator

Tr(e−βHA(t− iβ/2)B(t′))

=
∑

α,β

e−β(Eα+Eβ)/2+i(t−t′)EαβAαβBβα (4)

=
∑

α,β,γ,δ

e−itEδγ−it′Eαβψ∗
δβψγαAγδBβα (5)

≡ 〈ψ|AL(−t)BR(t
′)|ψ〉 , (6)

where ψ is the thermofield state

ψαγ = Z−1/2δαγe
−βEα/2 . (7)

For small t− t′ this expectation value is O(1) in terms
of the density of states eS, and can be calculated geomet-
rically in terms of the two-sided black hole [27, 30]. How-
ever, at times greater than the Page time O(S), its ex-
ponentially falling geometrical value is less than its long-
time average magnitude e−S . The latter, estimated from
e2S terms of magnitude e−2S with random phases, domi-
nates past the Page time. Refs. [27, 32] have suggested a
geometric interpretation for the long term average. There
are problems with this [33], but at any rate it involves no
geometric connection between the two boundaries. Fur-
ther, it is difficult to see how a geometric construction
could be sensitive to the fine structure of the field theory
spectrum.
We therefore identify correlators that are dominated

by random phase behavior and suppressed by some power
of the density of states eS as indications of EPR without
ER, entanglement that cannot be interpreted in terms
of a smooth geometric wormhole. For contrast, while
nearly extreme Reissner-Nordstrom black holes lead to
small correlators between uncharged fields, an analysis
like that above shows that this is due not to erratic
phases but instead to small matrix elements between the
relevant energy eigenstates. The latter is natural since
such eigenstates minimize the possible energy given the
charge, while the operators tend to increase this energy.
Suppose that we consider non-thermofield states that

are equally entangled. Is there again a geometric inter-
pretation over some range of times, or is the correlator
always nongeometric in the sense just described? For ex-
ample, suppose we have two copies of the dual theory,
each beginning in some high energy pure state. We al-
low them to interact for some period of time so that the
pair comes to a state of thermal equilibrium. We then
turn the interaction off. Of course, if the coupling were
changed sufficiently slowly, the adiabatic principle would
imply that the final state is the same as the initial up
to symmetry (assuming, as appropriate for a chaotic sys-
tem, that there is no degeneracy of states aside from that
implied by symmetry). But we will switch the interaction
on and off on some time scale τ that is long compared to
typical relaxation time scales but short compared to the
inverse splitting O(eS), so that the final state involves a
superposition with some energy width 1/τ that is narrow
but contains many states.
To address this question we need to understand generic

properties of the matrix elements of A and B. For chaotic
systems we take this to be given by the eigenstate ther-
malization hypothesis (ETH) [34]

Aαβ = A(Ēαβ)δαβ + e−S(Ēαβ)/2fA(Eα, Eβ)R
A
αβ ,

Bαβ = B(Ēαβ)δαβ + e−S(Ēαβ)/2fB(Eα, Eβ)R
B
αβ . (8)

Here, A, B, and fA,B are smooth functions of their argu-

ments, and Ēαβ = (Eα+Eβ)/2. The complex RA,B
αβ vary

erratically, with zero mean and unit average magnitude.
They have phase correlations,

RA
αβR

B
γδ = δαδδβγσ

AB(Eα, Eβ) + erratic , (9)
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where σAB(Eα, Eβ) is again smooth. This form is nec-
essary for the success of statistical mechanics. As one
check, it is stable under multiplication of operators.
We now apply this to the correlator (5) for a general

state. Since we are only interested in the connected cor-
relator, we consider operators with vanishing one-point
functions, A = B = 0. Then

〈ψ|AL(−t)BR(t
′)|ψ〉

=
∑

α,β,γ,δ

{

e−itEδγ−it′Eαβψ∗
δβψγαe

−S(Ēαβ)/2−S(Ēγδ)/2

×fA(Eγ , Eδ)f
B(Eβ , Eα)R

A
γδR

B
βα

}

. (10)

The contribution of the smooth term in the product (9)
is

∑

α,β

{

ei(t−t′)Eαβψ∗
ββψααe

−S(Eαβ)

×fA(Eα, Eβ)f
B(Eβ , Eα)σ

AB(Eα, Eβ)
}

. (11)

In the thermofield state, the wavefunction components
are each of order e−S/2, so there are order e2S terms each
of magnitude e−2S. For small enough times the phases
are not large and the result is order one, confirming the
expected result. But this is special to the diagonal form
of the thermofield wavefunction. For general states, the
wavefunction components are each of order e−S and the
sum can be no larger than e−S , even choosing the times
to cancel the phases in the wavefunction.
Considering now the erratic term in the product (9),

the sum (10) has e4S terms each of magnitude e−3S.
With random phases the result is of order e−S, but we can
ask whether it is larger for special choices of the O(eS)

phases eitEα , eit
′Eα . For simplicity consider the case that

all terms are real. With random signs, the total corre-
lator C is governed by a gaussian distribution of width
e−S ,

P (C) ∼ exp(−C2e2S) . (12)

With 2e
S

trials associated with eS choices of sign, we
can go out on the tail to C2e2S ∼ eS or C ∼ e−S/2.
This is an improvement, but still small. Here we have
used the Gaussian approximation to the binomial distri-
bution, but the result also follows from Hoeffding’s in-
equality for the latter. Another special case arises from
the phase correlation when α = β, γ = δ, but here there
are e2S terms of magnitude e−3S. We conclude that for
generic entangled states, even those produced by ordi-
nary thermal equilibration, the opposite-side correlators
do not have the magnitude that would be expected from
a geometric wormhole connection, and are dominated by
erratic behavior from the fine structure of the spectrum.
This is reminiscent of observations in Refs. [16, 23].
Our result applies to opposite-side correlators of ordi-

nary linear operators. A final possibility is that the choice
of the operators A,B depends on the state ψ, in a way

that cancels phases. These would then be rather compli-
cated and special nonlocal operators, not the simple local
operators that normally have geometric interpretations.
This again a nonlinear modification of the usual rules for
observables, similar to that discussed in §3, item 4. But
if state-dependence is deemed acceptable one might hope
to choose the relevant observables via an action principle,
such that those with large correlators are singled out.

V. SHOULD THE CALCULATION OF THE

HAWKING FLUX STILL HOLD?

We have argued that generic states of black holes con-
tain firewalls, contradicting the expectation from effec-
tive field theory and the adiabatic principle that the in-
falling observer sees vacuum. However, the most robust
derivation of the Hawking flux uses precisely the latter
argument: in the a vacuum, the b-modes have a thermal
density matrix. Thus the question has been raised a num-
ber of times: does the usual result for the Hawking flux
hold? In fact, there is a simple argument to this effect.
To begin, the argument seems strong that the thermofield
state is described by the extended AdS Schwarzschild ge-
ometry with bulk quantum fields in the Hartle-Hawking
vacuum [27], so that this state gives a thermal density

matrix for b and for its DFT image b̂. The eigenstate
thermalization hypothesis then implies that the same is
true to high accuracy in a generic energy eigenstate, with-
out reference to any geometry at or behind the horizon.
Note that this gives a derivation of the coarse-grained
results of the Hawking calculation for b that also implies
corrections for the fine-grained part. This comment is
similar to a crucial ingredient of fuzzball complementar-
ity [35], though we limit its scope to observations outside
the horizon.

VI. CONCLUSION

It is notable that many of the arguments in this pa-
per, and in other works on the same subject, are based
on logical deduction from general principles rather than
a concrete realization of quantum gravity in the bulk.
Thus, while gauge/gravity duality is a powerful tool, we
believe that there is a gap in the current understanding
of quantum gravity, one that must be filled in order to
move on to quantum cosmology.
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