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Squeeze-out, a component of the collective flow of nuclear matter, is the prefer­
ential emission of particles out of the reaction plane. Using the sphericity method 
the out-of-plane/in-plarie ratio of the kinetic energy flow has been analyzed as a 
function of multiplicity and beam energy for Ca+Ca, Nb+Nb, and Au+Au col­
lisions measured with the Plastic Ball detector at the Bevalac. Also, azimuthal · · 
distribution of the particles around the flow axis are presented together with the 
extracted out-of-plane/in-plane ratios. Finally, the rapidity dependence of the 
out-of-plane/in-plane ratio has been investigated with a new method using the 
transverse momentum components of the particles. 

25.70.Np 
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I. INTRODUCTION 

A. The Equation of State 

The goal of global analysis of 47r data from relativistic nuclear collisions is to learn 

about the properties of highly compressed nuclear matter (e/ f!o 2:: 2) and to extract 
information on its behaviour under extreme conditions of high temperature and high 

baryon density. Ultimately, one would like to understand the nuclear equation of 

state, EOS, i.e. the response of the nuclear medium to these extreme conditions. 
Probing the nuclear matter· EOS in regions of high densities and temperatures 

(e/ l!o ~ 2-5, T = 50-100 MeV) is of fundamental importance not only in nuclear 
physics (nuclear viscosity, heat conductivity, possible phase transitions such as liquid­

vapour, pion condensation, .6.-isomers, etc.) and field theory ( QCD phase transition to 

a quark-gluon plasma), but is also a basic prerequisite for an understanding of many 

astrophysical problems. For example, the dynamics of the early universe during the 

first fractions of a second after the "Big Bang", as well as the dynamics of supernova 

explosions and the structure and stability of neutron stars, depend strongly on the 
compressibility of nuclear matter1 •2 •3 over wide regions of densities, temperatures, 

and Z /A ratios. Relativistic nuclear collisions are the first opportunity to study these 
phenomena under controlled conditions in the laboratory.4 •5 •6 

We shall report on observables which are relevant for an understanding of the bulk 

properties of nuclear matter under extreme conditions. Previously we have reported7 

on two collective emission patterns of particles in the reaction plane: bounce-off, 

which is the sidewards deflection of the spectators, and side-splash, which is the 
transverse momentum transfer between the forward and backward hemispheres of 
the participants. Recently we reported on a new component of the collective flow 
in the direction out of the reaction plane, which we have called squeeze-out.8 In the 

present paper we will concentrate on this direction perpendicular to the reaction plane, 

since that is the only direction where nuclear matter might escape during the whole 

collision time without being rescattered by either the target or projectile spectators. 

This might provide a window into the hot, dense region of the interacting system. This 

scenario has been discussed on the basis of hydrodynamics by Scheid et al.,9 being 

referred to as out-of-plane squeeze-out10•11 •6 and several model calculations have made 
predictions of this effect.9

•
10

•12 •13 Using data from the Plastic Ball detector14 we will 

systematically study the 3-dimensional event shape by global variables. We will also 

study the squeeze-out effect by means of the azimuthal distributions of the particles 
around the flow axis at mid-rapidity, and, finally, show the rapidity dependence of 

the effect. 
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, B. Sphericity analysis 

The kinetic energy15 flow tensor 

(1) 

is calculated from the momenta of all measured particles ·in each event. The tensor 

approximates the event shape by an ellipsoid, whose aspect ratios and whose orienta­

tion in momentum space are calculated by diagonalizing the tensor. The first report 

of finite flow angles by the Plastic Ball group7 revealed the existence of collective 

sideward directed flow (side-splash) in relativistic nuclear collisions. 7
•
16 The presence 

of well defined finite flow angles in the data indicates that in those events a reaction 

plane exists th;;tt is defined by the flow axis and the beam axis. Particle tracks from 

different events can be combined by rotating the events around the beam axis so that 

their individual reaction planes line up. Triple differential cross sections of all the 

events relative to the reaction plane may then be obtained.10 There has been some 

evidence (though with large quoted errors) of squeeze-out from previous sphericity 
analyses.17

•
18 

C. Transverse momentum analysis 

Based on the observation that the reaction plane can be determined from the col­
lective transverse momentum transfer/9

•
20 Danielewicz and Odyniec proposed a more 

differential way to analyze the momentum contained in directed sidewards emission. 20 

They proposed presenting the data in terms of the mean transverse momentum per 

nucleon in the reaction plane, < Px/ A >, as a function of the rapidity. Studying 

the momentum transfer as a function of rapidity permits one to distinguish between 

participant and spectator contributions and to exclude regions with large detector 

bias. 

In the transverse momentum analysis the reaction plane is determined by the vector 

Q calculated for each event from the transverse momentum components P.1.. of all the 

particles observed in the forward and backward hemispheres in the center of mass 

Q_, _ "'"" .... f orw . "'"" ->back 
' - L...J p .l..i - L...J p .l..i • (2) 

i i 

Each event can be rotated around the beam axis so that Q defines the x-axis of a 

new coordinate system. It has been shown21 that the reaction plane determined this 

way is strongly correlated event by ~vent with the one determined by th~ sphericity 
method. 
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D. Azimuthal distributions 

The sphericity and transverse momentum analyses have so far been the most com­
monly applied methods for analyzing data in terms of collective flow variables. How­

ever, both methods, as well as multi-particle correlation functions,22
•
23 do not exhaust 

all the information that is in principle available from 47r spectrometers, and have usu­
ally been used to investigate collective phenomena appearing in the reaction plane. 
One would expect that strong collective phenomena perpendicular to the reaction 
plane take place particularly at mid-ra,pidity as a result of the large compression ef­

fects achieved in the overlap zone. Similar criticisms have been expressed also by 
Welke et a/.,24 who proposed analyzing the azimuthal distributions of particles with 

respect to the reaction plane as a useful probe of the EOS. A first indication of such 
an out-of-plane peak in the azimuthal distribution of particles around the beam axis 
at mid-rapidity was reported by the Diog(me group for Ne-induced reactions. 25

•
26 

In our. previous work8 on squeeze-out we employed an analysis which used the 
transverse momentum method to determine the reaction plane and the sphericity 

method to determine the flow angle in that reaction plane. The symmetry of the 
reaction plane was imposed on the sphericity tensor by forcing certain of its matrix 
elements to be zero, thus combining the two methods. This was done because it was 
thought that the reaction plane was better determined by the transverse momentum 
method. The results demonstrated that azimuthal distributions around the flow axis 
are much better suited to describe the shape of the event than azimuthal distributions 
around the beam axis. The aspect ratios reported in that paper were derived from such 

azimuthal distributions measured at mid-rapidity. In addition, it wa.s shown that the 
azimuthal distribution of the momentum/nucleon of the particles also exhibited the 
effect, indicating that not only the density of particles is enhanced in the out-of-plane 

direction, but that these particles are also emitted with a higher average transverse 
momentum per nucleon. 

E. Multiplicity variable 

In defining the proton multiplicity, NP, we attempt to account for all participant 
protons, .including those bound in light composites ( d, t, 3He, and 4 He). The projectile 
spectators are largely eliminated by excluding a region in PJ.. -rapidity space that is 
identified by use of low multiplicity, peripheral events. Since the particle multiplicity 
is related to the impact parameter, we classify the events according to this proton 
multiplicity.· The average multiplicity depends on the target-projectile mass and on 
the beam energy. To allow meaningful comparisons the multiplicity bins chosen should 

always correspond to approximately the same range in normalized impact parameter. 
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Our approach has been to divide the multiplicity distribution into bins of constant 

fractions of the maximum multiplicity. The multiplicity distribution has roughly 
the same form for all systems and energies: a monotonic decrease with increasing 
multiplicity with a rather pronounced plateau before the final sharp decrease at the 
highest multiplicities. Therefore the maximum multiplicity (N;ax) can be defined at 
the point where the curve drops to one half of the plateau height. The review papers4

•
5 

contain the values of N;ax for all symmetric systems we have measured. The data 

accumulated with a minimum bias trigger are then divided into 5 bins, 4 equal width 
bins between 0 and maximum multiplicity and one bin with multiplicities larger than 
N;ax. These multiplicity bins are labelled MULl, MUL2, MUL3, MUL4, and MUL5 
and range from peripheral collisions with few observed charges to central collisions 

with very high multiplicities. When more detailed information on the multiplicity 
dependence is needed, each MUL bin is further divided into five more bins. Although 

the spectators are not counted in the determination of the NP variable, all particles 
are included in the analysis presented below. All the data to be presented have been 
obtained with a minimum bias trigger. 

F. Outline 

In this paper we will first compare the sphericity and transverse momentum methods 
for determining the reaction plane and conclude that they are equally accurate. Then, 
based on the sphericity method we will demonstrate the effect of out-of-plane squeeze­
out, and quantify it with the squeeze-out" ratioderived from the two smaller semi-axes 

of the ellipsoid. The dependence of this ratio on multiplicity, target-projectile mass, 
and beam energy will be systematically presented. Next we will present azimuthal 
distributions of the particles around the flow axis at mid-rapidity. Finally we will 

develop another analysis method based on the transverse momentum method. How­
ever, instead of presenting the first moment of Pl. in the reaction plane as a function 

of rapidity, we will calculate the ratio of the second moments of Pl. in the out-of-plane 
and in-plane directions as a function of rapidity. 

II. DETERMINATION OF THE REACTION PLANE 

The determination of the reaction plane is the first step in the global analysis of 
the events. The true reaction plane can only be approximated due to the finite 
multiplicity of charged particles in each event. The two methods which have been 

used for determining the reaction plane are the sphericity15 method and the transverse 
momentum method. 20 We have investigated both methods in order to get an estimate 
of the achievable accuracy. Projections of observables on to the reaction plane need to 
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be corrected upward due to the nonzero dispersion in the determination of the reaction 

plane. The correction factor for the mean of an in-plane projection is 11 < cos </>s >, 
where 4>6 is the angle between the estimated and the true plane. This factor is 
estimated20 by randomly subdividing the full event into two subevents each containing 
one half of the particles. The reaction planes determined for the two subevents will in 
general not coincide due to the nonzero dispersion. The mean of the distribution of 

the cosine of one half the azimuthal angle between the two subevent reaction planes 
is an estimate for< cos 4>6 >. The reduction by the factor of one half has two sources: 

a factor 1 I y'2 comes from the change from the two sampling variables to one, and 
another factor of 1 I v'2 from the increase in multiplicity for the whole event. 

Fig. 1 shows < cos 4>6 > for both the sphericity and the transverse momentum 
methods as a function of the normalized multiplicity. The error bars are derived by 
assuming that the only contribution is the statistical uncertainty in the individual 

data points of the distribution. The factors are in the numerical range of approxi­
mately 0. 7 to 0.9, increasing with the number of particles and then decreasing as the 
event becomes more spherical. A higher value implies a better determination of the 
reaction plane since the factor will have a value of 1.0 in the limiting case of zero 
dispersion. Fig. 1 shows that the two methods generate factors which are within one 

standard deviation at low to medium multiplicity. At high multiplicity, the trans­
verse momentum method gives a slightly better determination of the reaction plane. 
The overall similarity of the factors determined by the two different methods indi­
cates, however, that the two methods generate very similar dispersion for the reaction 
plane and that the results therefore differ from the true reaction plane by about the 

same amount. Thus both the sphericity and the transverse momentum methods are 
equally well suited to determine the reaction plane in this system. Moreover, for our 

data, no conclusive evidence was found for a systematic decrease in the reaction plane 
dispersion by excluding mid-rapidity particles as done previously.8 •20 •

27 The factors 
generated by applying different mid~rapidity cuts are all within two standard devia­

tions of the factors generated by including all the particles. A mid-rapidity cut was 
therefore not used in any of the following analyses. 

Although the < cos </>s > factor is needed to correct < Px > values for the re­
action plane dispersion, this paper will be concerned with ratios of out-of-plane to 
in-plane quantities, where the corrections partially cancel out and are quite compli­
cated. Therefore, we have not made any such corrections to the data to be presented, 
but assume that when acceptance filtered simulations are compared to our data, the 
sphericity method will be used in the same way to determine the reaction plane. 

The mean angle of deviation from the true reaction plane can not be trivially 

derived from < cos </>s >. Therefore, in Fig. 2 we also show < 1</>sl > as a function of 
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normalized multiplicity. It is estimated from the correlation of the reaction planes of 

the two subevents as described above. The angles are astonishingly small, a fact that 
makes the concept of global analysis at these multiplic_ities so successful. 

III. SPHERICITY METHOD 

A. Method 

The sphericity method reduces the information contained in the 4-momenta of all 

the measured charged particles to a set of six variables, i.e. the three eigenvalues 

describing the shape of an ellipsoid (see Fig. 3) and a set of three Euler angles de­

scribing the absolute orientation of the ellipsoid. The plane spanned by the beam-axis 

and by the eigenvector e3 is identified as the reaction plane. ( ej is the eigenvector 

generated by the eigenvalue Aj with >..1 :::; >.. 2 :::; >.. 3 .) Since any azimuthal dependence 
of parameters is only relevant with respect to the reaction plane, the azimuth of e3 is 

chosen to be 0° for each event. This transformation reduces the three Euler angles to 
a set of two angles which unambiguously characterizes the orientation of the ellipsoid. 

The two angles are chosen to be the polar angle of e3 identified as the flow angle, 

()flow, and the angle 7fJsq referred to as the squeeze angle. The squeeze angle {s used 
to describe the orientation of el and e2 around the flow axis relative to the reaction 

plane. Precisely, 7f;sq is chosen to be the angle by which e2 needs to be rotated around 
the e3 axis in order to be transformed into the reaction plane (see Fig. 3). 

Fig. 4 shows a distribution of the squeeze angle in the Au+Au system at 
400 MeV /nucleon for semi-central collisions (MUL3). The maximum at goo shows 

that there is strmig alignment of e2 in the out-of-plane direction, i.e. the kinetic en­

ergy flow around the flow axis appears predominantly perpendicular to the reaction 

plane. The squeeze angle must be symmetric about either 0° or goo on the average, 

and in the absence of any preferred emission, or in other words, in the case of a. rota.­

tiona1 symmetric spheroid, the angular distribution would be flat. This experimental 

observation of a stJ·ong peaking at goo with respect to the reaction plane confirms the 

first results8 on out-of-plane squeeze-out. 
Global analysis using the sphericity method has the advantage that the event shapes 

are reduced to a. small number of parameters which can easily display trends in 
the data. However, it must be remembered that distortions from the Plastic Ball 

acceptance affect the results and that all the particles (including the spectators) are 
used in the analysis. It has also been pointed out how finite number effects can distort 
the results at low multiplicities.28 

Quantitatively, the in-plane flow is determined for each event by forming the ellipse 

spanned by el and e2 and by 'calculating its intersection point with the reaction 
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plane as shown in Fig. 5. The resulting length between the center of the ellipse 

and the intersection point is a quantity characterizing the in-plane flow. The out­
of-plane flow is determined similarly but using the intersection between the ellipse 
and the perpendicular to the reaction plane through the origin (see Fig. 5). The 
mean of the ratio of the out-of-plane to in-plane values is given the name sphericity 

squeeze-out ratio, and the symbol R;.... The quoted uncertainty in R;... is calculated by 
assuming that only the statistical uncertainty in the number of events contributes to 

the uncertainty of the mean. 

B. Multiplicity dependence 

Figs. 6 and 7 show the multiplicity dependence of the squeeze-out ratio, R>., in 

the Au+Au system at different beam energies. The steep increase of R;... at very low 
multiplicities is due to fluctuations. This is simply because the mean of the ratios 
of two random numbers is usually greater than one. However, peaks at medium 
multiplicities are well defined and the contribution of fluctuations is estimated to 

be small by extrapolating the steeply decreasing left-hand side of the curves to the 
region under the peaks. The highest value of R>. is reached at the beam energy of 
250 MeV /nucleon and the squeeze-out ratios at beam energies above and below this 

energy are plotted in two separate graphs. In the two graphs, the peak shifts from 
central to semi-central collisions as the beam energy increases. 

A similar behaviour of R;... is found for the Nb+Nb system shown in Figs. 8 and 
9. The maximum in R;... is now shifted towards a higher beam energy approaching 
400 MeV /nucleon. The lowest beam energy of 150 MeV /nucleon shows that R;... does 
not decrease even for the most central collisions at this energy, which is similar to the 
Au+Au system. One wonders if the flattening of the curves at low beam energies is 
due to a transition to an oblate shape. However, the sphericity vs coplanarity plot29

•
30 

shows more dispersion in the event shapes at the lower beam energies, but no clear 

transition to oblate shapes. The multiplicity dependence of R;... in the Ca+Ca system 
is shown in Fig. 10. R;... shows a very broad plateau from semi-central collisions to the 
most central collisions at both energies measured. Here, the fluctuations as indicated 

by the left-hand side of the curves, are apparently not negligible. In comparing with 
the previously reported side splash effect, it should be noted that, although in most 

cases for all three systems R;... peaks at mid-multiplicity, as does the flow effect,31 •
27 the 

behaviour is quite different from that for the flow angles,21 which increase continuously 
with increasing multiplicity. 

C. Mass and Energy dependence 
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Fig. 11 shows R;.. for the systems Ca+Ca, Nb+Nb, and Au+Au at 400 MeV /nucleon 

as a function of multiplicity. The plateau in the distribution of the Ca+Ca system 
is found at a value of about 1.07. The Nb+Nb system, however, has a distinctive 

peak at a value of approximately 1.20, whereas the peak in the Au+Au is found at 

approximately 1.33. Fig. 11 shows a clear increase of R;.. ·with increasing mass at 

comparable normalized impact parameter. 
The energy dependence of R;.. shown in Fig. 12 was obtained by taking the peak 

values of R;.. and their error bars above the fluctuation region, and plotting them as a 

function of beam energy for the three systems measured. The two heavier mass' sys­

tems clearly show a steep increase in R;.. from the lowest energy of 150 MeV /nucleon 
to the maximum R;.. at around 250 MeV /nucleon with a subsequent smooth de­

crease with increasing energy. The lighter system Ca+Ca does not show any signif­
icant energy dependence at the two energies measured. For the heavier systems this 

beam energy dependence of R;.. is quite different from the side-splash effect reported 

earlier,31 •27 where the flow rises gradually up to about 600 MeV /nucleon and then 

levels off. 

IV. AZIMUTHAL DISTRIBUTIONS 

Now that the flow axis has been determined by the sphericity method, we may look 

at the azimuthal distributions of various particles around the flow axis8 as another 
way to investigate the preferred emission direction with respect to the reaction plane. 
Autocorrelations for each particle have been removed by diagonalizing the sphericity 

matrix of all the other particles. Figure 13 shows the yield of particles as a function of 

the azimuthal angle around the flow axis, called 1/J, and the momentum along the flow 
axis. The mountain peak is due to projectile spectators in the reaction plane and the 

two ridges at ±90° are a. very graphic representation of the squeeze-out process which 
we are studying. To avoid the spectator effects we set a window, as previously,8 on 

the momentum component along the flow axis centered at mid-rapidity and equal to 
±10% of the momentum of the beam. We will extend our previous investigations of 

these azimuthal distributions,8
•
32 by studying further the dependence on projectile­

target mass and beam energy, as well as on the emitted particle species. 

Figure 14 shows the azimuthal distributions for the multiplicity bin MUL3 for the 

Au+Au system at all the energies measured. These distributions must be symmetric 
above and below the reaction plane, and therefore they must have a. two-fold symme­

try. Around the beam axis azimuthal distributions would also have left-right symme­
try, and therefore, a four-fold symmetry. Acceptance effects, however, partly destroy 
this symmetry around the flow axis. This is true even though the chosen narrow win­

dow minimizes spectator contributions. The rotation by the flow angle converts the 
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detector acceptance asymmetry between the backward and forward hemispheres into 

an asymmetry between 0° and 180° in the azimuthal distributions. This is because 
the window used for plotting the data is perpendicular to the flow axis, not the beam 
axis, and therefore, for finite flow angles the particles near 0° are backwards of mid­

rapidity, and the particles near 180° are forwards of mid-rapidity. Target absorption 
leads to depletion at an azimuth of 0° whereas punch-through particles are lost in the 

forward direction which is at an azimuth of 180° in the rotated system. In Fig. 14 the 
shift of the depletion from 0° at low energies to 180° at high energies reflects the rela­
tive contributions of these distortions. These acceptance effects, however, apparently 
result in a contribution to the distributions closely proportional to cos( '1/J ), whereas 
the true azimuthal correlations must result in a contribution to the distributions pro­

portional to cos(2'1j;). The smooth curves shown in Fig. 14 which are superimposed 
on the experimentally measured azimuthal distributions are an expansion of the form 

(3) 

As can be seen, this two parameter expansion gives an excellent approximation to 

all the measured azimuthal distributions. It appears that the cos( 'ljJ) term nicely 
accounts for the acceptance and allows us to extract the coefficient of the cos(2'1j;) 
term in order to quantify the squeeze-out effect. 

· The number squeeze-out ratio is defined as the number of particles at mid-rapidity 
emitted perpendicular to the reaction plane divided by the number of particles emitted 
in the reaction plane, and is given by 

R _ N(90°) + N( -90°) 
N - N(0°) + N(180°) 

(4) 

The values of RN are shown in Fig. 15 for the Au+Au, Nb+Nb and Ca+Ca systems 
for the MUL3 bin at all the energies measured. RN is significantly greater than one 
for all the data except the lowest energy Nb point. The Au point at 200 MeV /nucleon 
is high because intermediate mass fragments were measured in this experiment33 and 
included in the analysis. It is shown below in Fig. 19 that Z=2 fragments exhibit 
more squeeze-out than protons. It is ironic that just in this case, 200 MeV /nucleon 
Au+Au, where the squeeze-out effect is largest, our originally published33 azimuthal 
distributions did not show the effect. That is because the distributions were around 
the beam axis, not the flow axis, and although there was a window near mid-rapidity, 
it was too wide. 

In general, the energy and target-projectile mass dependence from the azimuthal 
distributions of particles which is shown in Fig. 15 substantiates the behavior ob­

tained from the global parameters shown in Fig. 12. It should be noted that while 
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the data in Fig. 12 are from the peak values as a function of multiplicity, the data 

in Fig. 15 are for MUL3. The mass dependence is similar to that in our preliminary 
work,32 but the values of RN are smaller. There are several differences between the 
method described in this section and the one we have used before. 8 •

32 In our previ­
ous work the reaction plane was determined by the transverse momentum method 
and the flow angle from the sphericity method. Here, both are determined by the 
sphericity method. Previously, the particles were weighted by the momentum8

• t or 
the transverse energy32 to increase the effect. Finally, in this analysis we have fit the 

complete azimuthal distributions with a functional form which accounts to first order 
for the lack of symmetry between forward and backward hemispheres. 

Fig. 16 shows the azimuthal distribution for the three systems Au+Au, Nb+Nb and 
Ca+Ca at 400 MeV /nucleon for the five standard multiplicity bins. Fig. 17 displays 
the corresponding values of RN for these three systems. Note that for the Nb+Nb 

and Ca+Ca systems for the most peripheral collisions the particles tend to be emitted 
in the reaction plane. At this energy the RN values in the MUL3 bins are at, or near, 
the peak values. 

We have shown that composite particles show more pronounced flow effects than 
protons alone.33 Therefore it is interesting to investigate the dependence of the az­
imuthal distributions on particle species. This is shown in Fig. 18 for protons, Z=2 
particles, and all the particles in the Au+ Au system at 400 MeV /nucleon for the five 
standard multiplicity bins. The corresponding RN values are displayed in Fig. 19. 
Again the Z=2 particles show a much stronger effect than the protons. In addition 
the effect for Z=2 particles continues to rise to high multiplicities. 

V. TRANSVERSE MOMENTUM METHOD 

A. Method 

Another completely independent method was used to investigate the rapidity de­

pendence of the squeeze-out effect. First, each event is rotated so that the reaction 
plane determined by the transverse momentum method determines the zero of the 
azimuthal angle around the beam axis. In this new method, the flow in-plane and 
out-of-plane are determined from the 2nd moments of the transverse momentum com­

ponents in plane, < (Px- < Px > )2 >, and out of plane, < (py- < Py > )2 >. 'i\Te 
define the P.1. squeeze-out mtio, Rp(y), as the ratio of the moments out-of-plane to 
in-plane. By expanding and dropping the cross terms, it can be written as 

2 2 
R (.y) = < Py > - < Py > 

p < p;, > - < Px >2 
(5) 

The term < Py > is zero on the average by symmetry with respect to the reaction 
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plane but is kept because of its contribution to the dispersion of the ratio. In effect, the 
numerator is the width of the transverse momentum distribution in the out-of-plane 
direction, and the denominator is the width of the in-plane distribution corrected for 

the mean Px values caused by the side-splash. 

B. Rapidity dependence 

The rapidity dependence of Rv(Y) in the system Au+ Au at 400 MeV /nucleon is 
shown in Fig. 20 for the standard five multiplicity bins. The figure shows the qualita­
tive behaviour of an approximately constant squeeze-out at all rapidities, confirming 
our previous observations based on the azimuthal distributions of particles.8 The mul­
tiplicity dependence of the plateau values, when compared to the values derived by 
the sphericity method and shown already in Fig. 11, are approximately the same, 
but fall off faster at high multiplicities. This can be understood since at finite flow 
angles a spheroid would have Rv(Y) values less than one in this method because the 
dispersion in the out-of-plane direction is measured perpendicular to the symmetry 
plane, while the dispersion in-plane is bigger because it is measured perpendicular 
to the beam axis, not the flow axis. Also, where there are spectator fragments, they 
decrease the ratio both by increasing the dispersion in the in-plane direction and by 

decreasing the mean Px value. It should be noted that in this transverse momentum 
method the projection of the squeeze-out effect on to the beam axis causes some 
smearing of the squeeze-out effect. However, the advantage is that it is the natural 
extension of the method of plotting <Pl. > vs y, and is independent of the sphericity 
method. 

In Fig. 21 the data for all the multiplicity bins have been combined and shown for 
the three target-projectile combinations. The dependence of the plateau values on 
target-projectile mass is slightly less than found by the sphericity method and shown 

already in Fig. 11. This is because for the heavier targets the flow angles are larger 
and this lowers the ratio as described above with the example of a spheroid. 

VI. CONCLUSIONS 

The sphericity and transverse momentum methods have about equal accuracy in 
determining the reaction plane. Most importantly, the sphericity method shows a 

strong alignment of the medium length eigenvector in the out-of-plane direction. The 
sphericity squeeze-out ratio, which quantifies this effect, shows a maximum for semi­
central collisions and increases with target-projectile mass. The effect peaks at sur­
prisingly low beam energy, in contrast to the previously reported side-splash effect. 
The number squeeze-out ratio from the azimuthal distribution of the particles at 
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mid-rapidity confirms the result from the global sphericity parameters. From the Pl.. 

squeeze-out ratio it is clear that the effect is not jet-like, but appears at all rapidities. 
Thus, a very important piece of information has become available from the observa­

tion of the out-of-plane squeeze-out of particles. The fact that the squeeze-out drops 

at high beam energy may be because the thermal energy is increasing faster than 
the compressional energy. Theoretically, for large values of the nuclear viscosity the 

squeeze-out effect is expected to be damped out, and a peak should not be visible 
in the azimuthal distributions. Thus, such data will be essential in determining this 

unknown property of hot nuclear matter. The same sensitivity is also found in mi­
croscopic calculations (vuu /BUU, QMD ), where the azirimthal distribution depends 
strongly on the EOS and the effective in-medium cross section, O'eff, i.e. parameters 
which enter directly into the coefficients of the viscosity.34 

Because, in a geometrical picture, squeeze-out particles escape from the hot and 
dense reaction zone unhindered by surrounding cold target or projectile matter, they 
provide a clean probe through which one can look directly at the compressed and 
hot fireball. It will be most interesting in the near future to see whether the success­

ful microscopic models can consistently (using the same EOS and O'eff) describe the 

< Px >/A, dNfdy, djp, and squeeze-out ratios. Simultaneous description of all the 
exclusive experimental observables would be a large step forward in the ultimate goal 
of relativistic heavy-ion collisions, namely the determination of the bulk properties of 
nuclear matter. 
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FIG. 1. The mean cosine of the azimuthal difference between the estimated and the 
true reaction planes calculated .from the correlation of the reaction planes of two subevents. 
Both the sphericity method and the transverse momentum method are shown for the system 
Au+Au at 400 MeV /nucleon as a function of normalized multiplicity. 

FIG. 2. The mean value of the absolute azimuthal difference between the estimated 
and the true reaction planes for the system Au+Au at 400 MeV /nucleon for the sphericity 
method and the transverse momentum method as a function of normalized multiplicity. 

FIG. 3. A perspective view of a tri-axial ellipsoid. The major flow axis and the beam 
axis define the polar flow angle, 0 flow, and the reaction plane. The squeeze angle, 1/Jsq, is 
defined as the azimuthal angle around the flow axis of the medium axis of the ellipsoid 
relative to the reaction plane. 

FIG. 4. The distribution of the squeeze angle for the system Au+Au at 400 MeV /nucleon 
for the multiplicity bin MUL3 as determined by the sphericity method. 

FIG. 5. The plane perpendicular to the flow axis through the origin, showing how R>. is 
calculated from the two smaller eigenvalues and the reaction plane. 

FIG. 6. The sphericity squeeze-out ratio for the Au+Au system at 250 MeV/nucleon 
and lower energies shown as a function of the normalized multiplicity. 

FIG. 7. The sphericity squeeze-out ratio for the Au+Au system at 250 MeV /nucleon 
and higher energies shown as a function of the normalized multiplicity. 

FIG. 8. The sphericity squeeze-out ratio for the Nb+Nb system at 400 MeV /nucleon 
and lower energies shown as a function of the normalized multiplicity. 

FIG. 9. The sphericity squeeze-out ratio for the Nb+Nb system at 400 MeV /nucleon and 
higher energies shown as a function of the normaHzed multiplicity. The 650 MeV /nucleon 
data, which are not plotted, lie just above the 800 MeV /nucleon points. 
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FIG. 10. The sphericity squeeze-out ratio for the Ca+Ca system at the two energies 
measured shown as a function of the normalized multiplicity. 

FIG. 11. The sphericity squeeze-out ratio for the three systems Au+Au, Nb+Nb and 
Ca+Ca at the beam energy of 400 MeV /nucleon shown as a function of the normalized 
multiplicity. 

FIG. 12. The peak values of the sphericity squeeze-out ratio in the three systems Au+ Au, 
Nb+ Nb and Ca+Ca. The values are shown for all the beam energies at which the systems 
were measured. The curves are just to guide the eye. 

FIG. 13. Isometric projection of the yield of particles for 400 MeV /nucleon Au+Au as 
a function of the momentum along the flow axis and the azimuthal angle around the flow 
axis. 

FIG. 14. Azimuthal distributions around the flow axis in the window near mid-rapidity 
for multiplicity bin MUL3 for Au+ Au at the indicated beam energies in MeV /nucleon. The 
ordinate is linear starting at zero. The smooth curves are fits with cos(27j;) and cos( 7/J) 
terms. 

FIG. 15. The number squeeze-out ratio for data in the multiplicity bin MUL3 for the 
three systems Au+Au, Nb+Nb and Ca+Ca. The values are shown for all the beam energies 
at which the systems were measured. The Au point at 200 MeV /nucleon, which is in 
parenthesis, includes intermediate mass fragments. The curves are just to guide the eye. 

FIG. 16. Azimuthal distributions around the flow axis in the window near mid­
rapidity for the five multiplicity bins and the three target-projectile combinations at 
400 MeV /nucleon beam energy. The ordinate is linear starting at zero. The smooth curves 
are fits with cos(27j;) and cos('lj;) terms. 

FIG. 17. The number squeeze-out ratio for the three systems Au+Au, Nb+Nb and 
Ca+Ca at the beam energy of 400 MeV /nucleon shown as a function of the normalized 
multiplicity. The curves are just to guide the eye. 
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FIG. 18. Azimuthal distributions around the flow axis in the window near mid-rapidity 
for the five multiplicity bins for 400 MeV /nucleon Au+Au. The data are shown separately 
for protons, Z=2 particles, and all the particles together. The ordinate is linear starting at 
zero. The smooth curves are fits with cos(21/;) and cos( 1/J) terms. 

FIG. 19. The number squeeze-out ratio for protons, Z=2 particles, and all the particles, 
.for 400 MeV /nucleon Au+Au shown as a function of the normalized multiplicity. The 
curves are just to guide the eye. 

FIG. 20. The Pl.. squeeze-out ratio as a function of rapidity for 400 Mev /nucleon Au+Au 
for the five multiplicity bins. . 

FIG. 21. The Pl.. squeeze-out ratio as a function of rapidity for 400 MeV /nucleon 
Au+Au, Nb+Nb, and Ca+Ca . 
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