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Abstract

For atomic and molecular quantum Monte Carlo calculations, most of
the computational effort is spent in the evaluation of the local energy. We
describe a scheme for reducing the computational cost of the evaluation of
the Slater determinants and correlation function for the correlated molecu-
lar orbital (CMO) ansatz. A sparse representation of the Slater determinants
makes possible efficient evaluation of molecular orbitals. A modification
to the scaled distance function facilitates a linear scaling implementation of
the Schmidt-Moskowitz-Boys-Handy (SMBH) correlation function that pre-
serves the efficient matrix multiplication structure of the SMBH function.
For the evaluation of the local energy, these two methods lead to asymptotic
linear scaling with respect to the size of the molecule.

In the quantum Monte Carlo (QMC) method [1–7], the expectation value of
the Hamiltonian〈H〉 is computed as a statistical average of the local energy of a
trial wave-function,ΨT(R), whereR denotes the 3N coordinates of the N-particle
system.

EL(R)≡ ĤΨT(R)
ΨT(R)

, (1)



Averages of this quantity provide an estimator of the energy of the system,

E ≈ 〈EL〉= lim
Ns→∞

1
Ns

Ns

∑
i

EL(Ri). (2)

whereNs is the number of sample pointsRi and the local energy is evaluated
during the random walk. The pointsRi are sampled from a probability func-
tion f (R,τ), such asΨ2

T for variational Monte Carlo [1]. Presently, the more
commonly used QMC version is the diffusion Monte Carlo (DMC) that yields
time-independent solutions of the Schrödinger equation from an imaginary time
stochastic formalism [8].

For most molecular applications, the correlated molecular orbital (CMO) wave
function form is used.

ΨT = D×F =

[
∑
k

ck ·Dα
k Dβ

k

]
×

[
eU(r i j )

]
(3)

HereD is a linear combination of Slater determinants andF is a correlation func-
tion that depends on inter-particle distances. The determinantsDσ

i , whereσ de-
notesα or β spin, are usually constructed with molecular orbitals (MOs) obtained
in a previous ab initio calculation such as Hartree-Fock (HF), multi-configuration
self consistent field theory (MCSCF), or density functional theory (DFT).

Interactions between electrons in a molecule diminish exponentially as the
distance between them increases [9]. In recent years, linear diffusion Monte Carlo
(LDMC) methods [10–12] have been introduced to take advantage of this property
to reduce the computational demands of QMC to linear dependence on system
size. Williamsonet al. [10] developed a linear-scaling method in a plane-wave
basis expansion for periodic systems and applied the approach in several studies
[13–15]. Alfè and Gillan [12] developed a method that employs non-orthogonal
localized orbitals in a plane-wave basis expansion that further improves efficiency.
Manten and Lüchow (ML) [11, 16] have presented a similar method that uses
Gaussian-type orbitals (GTOs).

ML have also shown how parts of the DMC algorithm, including the eval-
uation of the Coulomb potential and inter-particle correlation function, can be
made to scale linearly with system size[11, 16]. In the present work, we address
the two most important contributions to the computational cost of wave function
evaluation, namely, the evaluation of the Slater determinant [17] and that of the
correlation function. We will describe a fast implementation of these two steps
in the following two sections. Progress towards deeper understanding of results
from QMC is described in the last section.



Fast evaluation of the Slater determinant

One purpose of LDMC is to decrease computational time by reducing compu-
tation associated with wave function evalution. The approach of Williamsonet
al. [10] has the potential of near-optimal efficiency because only a single three-
dimensional spline (3DS) evaluation is required for a given molecular orbital
(MO). Maximally-localized Wannier (MLW) functions of systems using effective
core potentials (ECPs) are smooth functions that can be described accurately with
3DS. All-electron MOs expressed in a Slater or Gaussian basis set are rapidly-
varying with distance, and their representation with 3DS is memory intensive due
to the cubic scaling of 3DS memory requirements with MO complexity. On the
other hand, Gaussian or Slater basis sets are more compact than plane waves and
therefore amenable to being evaluated explicitly without substantially increasing
computational cost as proposed by ML [11, 16]. We improve upon the work of
ML by introducing a sparse representation of the Slater matrix and cutoff crite-
ria that derive from the sparse representation. The method proposed here can be
extended to 3DS-based methods to achieve further computational efficiency.

Evaluation ofD of Eq. 3 requires the construction of Slater matrices,Dσ
i , and

the corresponding determinantsDσ
i ≡ det(Dσ

i ). Note that naive construction of the
Slater matrix leads to cubic scaling with system size.

The main feature of the method is the use of a three-dimensional grid to store
the non-zero contributions to the Slater matrix. The use of the grid does not af-
fect the accuracy of the wave function because the orbitals are evaluated using
accurate one-dimensional representations of Slater basis functions. The memory
requirements for the grid are of the order of a few megabytes for the polyalanine
systems studied [17].

Evaluation of determinantsD involves an additional cubic step associated with
the inversion ofDσ

i [18]. Although ML proposed using a sparse linear algebra
routine for this purpose, an optimized algorithm for dense matrices [19] is used
in the present approach because inversion ofDσ

i is not a computational bottleneck
for the size of systems treated here.

Slater matrices require evaluation of MOs for all electrons of a given spinσ.
An MO φ is expanded in a basis of atom-centered functions, typically GTOs or
Slater-type orbitals (STOs),

φi(r) =
Nbas

∑
µ=1

Cµiχµ(r) (4)

TheCµi elements form the coefficient matrixC. The atom-centered functions
χ are usually expressed as linear combinations of primitive functionsϕ,

χi(r) =
Ncont

∑
k=1

cki ·ϕk(r) (5)



It may seem that construction of a Slater matrix is cubic scaling, because the
evaluation of Eq. 5 requires iteration over basis functions, MOs and positions.
However, MO evaluation can be made linear with system size by the use of local-
ized MOs (LMOs) coupled with a sensible cutoff of LMO spatial extent. These
two steps are essential for achieving linear scaling with system size.

Most ab initio computer programs employ orthogonal LMOs. The orthogo-
nalization restriction has the disadvantage of producing “orthogonalization tails”,
i.e., small contributions to the LMOs at centers that lie far from the main contri-
bution to the LMO [20]. To accelerate the onset of linear scaling, ML removed
the orthogonalization tails [11]. In this study, we chose not to do so in order to
preserve fully the nodal characteristics of the LMOs.

We next present a brief explanation of the steps involved in the calculation of
the Slater matrix. The first step required for the sparse representation of the Slater
matrix is to generate a pre-sorted coefficient matrix. For CMOs of the form of
Eq. 3, Slater matrices are constructed separately forα andβ electrons leading to
sorted coefficient matrices,C̃α

i andC̃β
i , built from Cα

i andCβ
i , respectively.

The rows ofC̃α
i run over the basis functions, while the columns run over the

LMO coefficients sorted by their absolute value,

|C̃1i | ≥ |C̃2i | ≥ . . . |C̃Nmosi | (6)

It is convenient to construct an auxiliary array that maps indexes ofC̃α
i andC̃β

i to
the indexes of the Slater matricesDσ

i . This step facilitates filling the columns of
the Slater matrices in the correct order.

Grid Generation

For an electron located atr , the value of a LMOφi is a sum of productspµi of
basis functions and LMO coefficients for each LMO,

φi(r) =
Nbas

∑
µ=1

pµi =
Nbas

∑
µ=1

Cµiχµ(r). (7)

In the present LDMC approach, we only sum over products that are greater than
a numerical thresholdεc. This threshold is directly connected to the numerical
precision of the truncated trial wave function. This is the single most important
parameter for the onset of linear scaling.

When an electron is evaluated at positionr , the nearest point from a 3D grid is
referenced. Each 3D grid element is associated with a compressed representation
of the Slater matrix that describes the non-zero elements of a column of the Slater
matrix evaluated at the particular volume element. The compression scheme is
depicted in Figure 1.
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Figure 1: The compressed matrix representation used for this work. The non-zero
basis function index is stored along with the index of the smallest LMO coefficient
that multiplies the basis function. These pairs of indexes are designated by an x
and for the example correspond to (2,5)(3,4)(6,6)(7,7)(8,4).

Besides the numerical thresholdεc, a second parameter is introduced. It is the
fraction (f ) of productspµi retained. The parametersf andεc are related. For
small thresholds, a higher fraction of products can be discarded without change in
the value of the wave function. At higher thresholds, a smaller fraction of products
can be removed from the calculation.

Determinant Evaluation Algorithm

In DMC electrons can be moved one at a time [8], or all at the same time [21].
For this discussion, we assume that the electrons are moved one at a time. On this
basis we present a procedure for the construction of a column of a Slater matrix
corresponding to an electron located at a positionr .

With CMO wave functions, electrons have a given spinσ throughout the sim-
ulation. As soon as one specifies the electron index, and therefore spin, one can
use the grid and sorted coefficient matrix associated with the particular spin. With
the electron spin specified, the grid element corresponding to the spatial location is
identified, and then a sequence of doublets(µ1, i1),(µ2, i2) . . .(µn, in) is read. Here,
µ1,µ2, . . . ,µn are the indexes of then non-zero basis functions, andi1, i2, . . . , im are
the maximum LMO coefficient indexes needed to evaluate the productspµi. The
Slater matrix columns are updated in iterations over electrons. A pseudo-code
representation of the algorithm is illustrated in Figure 2.

Rapid Evaluation of Primitive Basis Functions

STOs have been shown to be advantageous for QMC owing to their correct asymp-
totic behavior at short and long electron-nucleus distances. To employ wave func-



Require: x,y,z⊂Grid {ensure that the point is inside the grid}
DoubletList= Gridσ(x,y,z)
SortedCoe f f icients= PresortedCoe f f icientsσ

SortKey= SortKeyσ

SlaterMatrix= SlaterMatrixσ

while Doublet from DoubletList: do
(µ, imax) = Doublet
Evaluateχµ(x,y,z)
for i = 0 to i = imax do

c = SortedCoe f f icients(µ, i)
j = SortKey(µ, i)
SlaterMatrix( j,k) = φ j(x,y,z) = φ j(x,y,z)+c∗χµ(x,y,z)

end for
end while

Figure 2: Algorithm for the evaluation of a columnk of the Slater matrix for an
electron of spinσ at a pointr = [x,y,z].

tions expanded in an STO basis, we use the Amsterdam Density Functional (ADF)
package [22].

For rapid evaluation, the radial components of the contractionsχ j are interpo-
lated using cubic splines, and cut-off at an appropriate distance from their center.
Cut-off values are determined so that the local energy of a fixed sample of walkers
changes by less than a prescribed percentage. Splines make possible the represen-
tation of a linear combination of all STOs belonging to a given contraction by a
single spline function, with the result of reducing the computational cost. For the
remainder of this discussion, we will refer to such representations of contracted
STOs as basis functions.

Linear-Scaling Evalation of the Correlation Function

Rapid evaluation of the correlation function is equally important to obtain a lin-
ear scaling QMC algorithm. The correlation function of Schmidt and Moskowitz
(SM) [23], which stems from the form suggested by Boys and Handy (BH) [24]
is displayed in Equation 8.



U = ∑
µ

atoms

∑
A

cµA

electrons

∑
i< j

Uµ
Ai j (8)

where,
Uµ

Ai j = (r̄ lµ
Air̄

mµ
A j + r̄

lµ
A j r̄

mµ
Ai )r̄

nµ
i j ; r̄(r) =

r
1+br

An important step in accelerating evaluation of the SMBH correlation function
was taken by ML. These authors changed the scaled distance function to ¯r =
1−exp[−αr] leading to a shorter cutoff distance in their linear scaling algorithm.

A further change to ¯r is required for the present approach. This change is
motivated by examining the asymptotic behavior of the three-body terms in the
SMBH expansion. Consider the (lmn)=(011) term:
Ui jA = (1−exp[−αr i j ])(1−exp[−αr jA]).

Because ML’s ¯r approaches unity at large distances,Ui jA reduces to the two-
body (lmn)=(010) term when electroni is separated from thejA pair, leaving
many nonzero terms in the SMBH functions. To reduce the number of nonzero
terms, we simply shift ¯r so that its asymptotic value is zero: ¯r =−exp[−αr].

The consequences of this change are simple to interpret. Although physical
arguments would seem to favor an ansatz where three-body terms reduce to two-
body terms, these extra terms are merely redundant descriptions of the two-body
correlations included in the (lmn)=(010) term. For two-body terms, this merely
changes the normalization of the wavefunction. Linear dependence among all the
terms is also reduced. Our modification to ¯r may also be alternatively viewed as
a generalization of the Sun-Lester correlation function[25], which is included as
the (lmn)=(001) term of the SMBH expansion.

The next step in the development of our linear scaling algorithm requires
recognition that the SMBH function can be rewritten as a trace over a matrix
product,

U = ∑
µ

∑
A

∑
i 6= j

cµAr̄
lµ
Air̄

nµ
i j r̄

mµ
jA (9)

Simpler terms where l, m, or n are zero can be handled by deleting the appropriate
matrix from Equation 9. The term wheremµ andlµ are swapped in Equation 8 is
unneccessary in the matrix form because the sum overi and j is no longer lower
triangular. It is easy to exclude terms wherei = j by setting diagonal elements of
the r̄ i j matrix to zero.

Because BLAS [26] libraries make matrix operations particulary efficient, we
observed speedups of at least a factor of ten relative to our initial implementation
after switching to a matrix-based implementation. Matrix multiplication, however,
scales cubically with system size. To achieve linear scaling, we take advantage of
the sparsity in the ¯r matrices that was created by our modification to the scaled
distance function.



for each atom, Ado
Make a list of electrons near A.
Build the vectors of e-n distances ¯rm[A]

i and ¯r l [A]
j .

Build the matrix of distances ¯r [A]
i j for electrons near A.

Perform the matrix operations:Uµ
A = ∑i j r̄m[A]

i r̄n[A]
i j r̄ l [A]

j .
IncrementU : U = U +cµAU

µ
A.

end for

Figure 3: Algorithm for computing one term in the SMBH expansion using sparse
matrices.

Figure 3 sketches our sparse matrix multiplication routine. A distance-based
cutoff is used to determine which ¯r elements need to be computed. By limiting
operations to electrons near each atom, we implicitly compress the nonzero ele-

ments of ¯r iA and ¯r i j into a set of threeO(1) blocks (¯r [A]m
i , r̄ [A]n

i j and ¯r [A]l
j ) for each

atom. The cost of the matrix operations for each atom is thereforeO(1), yielding
an overall linear scaling algorithm.

Application to Biological Systems

As an example of the capability of treating large systems, we show some results
for calculations on two biomolecules present in Photosystem II, bacteriochoro-
phyll (Bchl) and spheroidene (Spo), containing 304 and 314 electrons respec-
tively. Under high light conditions, the generation of chlorophyll triplet states and
singlet oxygen,1O∗

2, can increase dramatically due to the fact that the light flux
exceeds the amount of light that the reaction center is able to process (turn-over
capacity). Carotenoids help protect the organism by non-photochemical quench-
ing (NPQ), which dissipates the excess excitation energy of singlet oxygen. If
carotenes are absent, chlorophyll is readily oxidized, leading to the organism’s
death. Several scientific questions about the photoprotection mechanism remain
unanswered. The ground-state to lowest-triplet-state excitation energies of both
molecules as well as the energy transfer rate between the systems have not been
determined. At present, DFT is not sufficiently accurate to answer these questions.
A rigorous electronic structure method that accurately treats electron correlation
is needed, but, as noted, basis-set correlated methods scale too steeply with sys-
tem size to be applicable. DMC presently offers the only feasible option for the
accurate calculation of these quantities.



To understand chemical processes, it is useful to have information besides to-
tal energies. Electron localization methods provide a insight on the behavior of
electrons in molecules. Properties such as electron density, spin density and the
electron pair localization function (EPLF) [27] can routinely be computed by post-
processing. The EPLF provides a quantitative description of electron pairing in
molecular systems and has similarities to the electron localization function (ELF)
of Becke and Edgcombe [28]. The QMC method is a particularly well suited ap-
proach for obtaining such information because the simple and general definition
of EPLF is easily evaluated in QMC.

In the next section, some details on the speedup in calculating the local en-
ergy obtained by the application of the techiques mentioned above are presented.
Results for spheroidene as well as other molecules of biological importance are
given.

Results and Discussion

Local energies for the spheroidene molecule were computed with a series of dif-
ferent grid sizes. Our tests show a factor of 10 speedup with respect to a standard
calculation for a grid of 2660 elements. The basis-function cut offs were in the
11.0-15.0 a.u range, following the criteria for STOs given above. The grid mem-
ory requirements are modest; for spheroidene, a 20520 element grid requires 3.4
MB of RAM.

CPU timings for a sample of eight molecules of biological interest have been
obtained. We chose the series of 2-,4-,6- and 8-polyalanine in an alpha helix
conformation. We also selected four other molecules with different conforma-
tions to show dependence on geometrical factors. For the calculation of the eight
molecules, we used a grid element length of 2 a.u. and a cutoff threshold of
εc = 1x10−12. The whole fraction (f = 1.0) of products was preserved for all
calculations.

Geometrical effects can be compared as well. With fewer basis functions per
volume element, linear molecules require less computer time than 2D or 3D ar-
rangements. For example, the spheroidene molecule required 75% of the CPU
time of 8-alanine, which has the same number of electrons. A model bacteri-
ochlorophyll with ten fewer electrons required 124% of the time 8-alanine.

The CPU timings for the evalution of the Slater determinant for 8 molecules
are given in Figure 4. After around 80 electrons, the CPU time for filling the Slater
matrices scales linearly with the number of electrons.

A series of linear alkanes have been used to determine CPU scaling for evalu-
ating the SMBH correlation function. Figure 5 presents timing data using a matrix
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Figure 4: Computer time for filling the Slater matrices,Dα
i andDβ

i , as a function
of the number of non-hydrogen atoms for different biological molecules. Data
for a series of poly-alanine molecules (2-,4-,6- and 8-polyalanine) is plotted as
circles. (1) hexatriene, (2) capsaicin, (3) bacteriochlorophyll and (4) spheroidene
are designated by squares. The CPU time for polyalanine chains scales linearly
with system size. Data are from reference [17].

based algorithm with dense ¯r matrices and the linear scaling algorithm with the
present ¯r. For these tests, we setα = 4.0 and determined empirically that a cutoff
of 4.0 a.u. affected local energies by less than 10−7 Hartrees. The sparse algorithm
is linear scaling for all molecules studied and is faster than the dense algorithm
for molecules with more than three carbon atoms.

Figure 6 presents slices of the EPLF function for spheroidene in the ground
state singlet and the first excited triplet state in thez = 0 plane. The different
values represent the different levels of electron pair localization for that particular
region, larger values indicate higher degree of localization. Most of the EPLF
values obtained for this system are less than 0.1, which indicates a high level of
delocalization in this system due to its conjugated polyene structure. Important
differences can be seen between the singlet and the triplet state. While the singlet
appears to have no spin-polarized (gray) regions, the triplet does possess such
regions near the outer boundary of the molecule. Grey regions show where excess
alpha electron density is paired.



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2  3  4  5  6  7  8  9  10

Co
m

pu
te

r T
im

e 
(A

rb
itr

ar
y 

Un
its

)

Alkane Length (Number of Carbon)

Figure 5: Computer time for evaluating the SMBH correlation function versus
alkane length. The dense matrix-based algorithm (solid line) scales roughly cu-
bically with system size. The sparse matrix based algorithm (dashed line) scales
linearly.

Conclusions

In this study, we have presented and demonstrated a novel approach in quantum
Monte Carlo for the evaluation of the local energy of molecular systems described
by atom-centered basis functions. Our approach exploits the structure of the wave
function representation and evaluates the wavefunction using sparse linear-algebra
methodologies.

The product of basis functions and molecular orbital coefficientspµi, truncated
atεc = 10−12 seems to be a good choice for retaining the high accuracy of the wave
function while obtaining a significant speedup in the computation for the systems
studied.

For increasingly large molecules, the number of operations needed to evaluate
the wave function and the local energy at each point of the simulation increases.
In the past few years, major advances have been achieved in this laboratory that
have made possible the treatment of systems considerably larger than those that
could be addressed few years earlier. Development of more efficient codes and, in
particular, codes that scale linearly with system size, will have significant impact
on the kind of systems that will become feasible to study with QMC.

The ability to complement the information given by the energy with elec-
tron distribution and electron localization functions obtained from a high accuracy
method such as QMC should prove useful in providing further insight on chemical
properties and processes.



Figure 6: Plot of thez= 0 plane of the EPLF function values for Spo in the ground
state singlet (top), and triplet (bottom). The triplet state shows spin-polarized
regions (dark grey) that are absent in the singlet state. The EPLF domain for both
plots is [-0.1:0.1]

.
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