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CONVERGENCE ANALYSIS OF A BALANCING DOMAIN

DECOMPOSITION METHOD FOR SOLVING INTERIOR

HELMHOLTZ EQUATIONS

JING LI∗ AND XUEMIN TU†

Abstract. A variant of balancing domain decomposition method by constraints (BDDC) is pro-
posed for solving a class of indefinite system of linear equations, which arises from the finite element
discretization of the Helmholtz equation of time-harmonic wave propagation in a bounded interior
domain. The proposed BDDC algorithm is closely related to the dual-primal finite element tearing
and interconnecting algorithm for solving Helmholtz equations (FETI-DPH). Under the condition
that the diameters of the subdomains are small enough, the rate of convergence is established which
depends polylogarithmically on the dimension of the individual subdomain problems and which im-
proves with the decrease of the subdomain diameters. These results are supported by numerical
experiments of solving a Helmholtz equation on a two-dimensional square domain.

Key words. domain decomposition, preconditioner, FETI, BDDC, indefinite, non-conforming,
Helmholtz

AMS subject classifications. 65F10, 65N30, 65N55

1. Introduction. Domain decomposition methods have been widely used and
studied for solving large symmetric, positive definite linear systems arising from the
finite element discretization of elliptic partial differential equations; theories on their
convergence rates are well developed for such problems; see [45, 43, 41] and the ref-
erences therein. Domain decomposition methods have also been applied to solving
indefinite and nonsymmetric problems; cf. [1, 3, 4, 7, 8, 9, 23, 28, 29, 30, 34, 35, 39, 40,
44, 46]. A two-level overlapping Schwarz method was studied by Cai and Widlund [8]
for solving indefinite elliptic problems, where they used a perturbation approach in
the analysis to overcome the difficulty introduced by the indefiniteness of the prob-
lem and established that the convergence rate of the algorithm is independent of the
mesh size if the coarse level mesh is fine enough. Such an approach was also used
by Gopalakrishnan and Pasciak [23] and by Gopalakrishnan, Pasciak, and Demkow-
icz [24] in their analysis of overlapping Schwarz methods and multigrid methods for
solving time harmonic Maxwell equations.

The balancing domain decomposition methods by constraints (BDDC) were in-
troduced by Dohrmann [12] for solving symmetric positive definite problems; see also
Fragakis and Papadrakakis [22], and Cros [11]. They represent an interesting redesign
of the Neumann-Neumann algorithms with the coarse, global component expressed
in terms of a set of primal constraints. Spectral equivalence between the BDDC al-
gorithms and the dual-primal finite element tearing and interconnecting algorithms
(FETI-DP) has been proven by Mandel, Dohrmann, and Tezaur [38]; see also Li and
Widlund [36], Brenner and Sung [6]. In these papers, it is established for the sym-
metric positive definite case that the preconditioned operators of a pair of BDDC and
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FETI-DP algorithms, with the same primal constraints, have the same eigenvalues
except possibly those equal to 0 or 1.

In this paper, we propose a type of BDDC algorithm for solving a class of in-
definite system of linear equations, which arises from the finite element discretization
of the Helmholtz equation in a bounded interior domain. The proposed algorithm is
motivated by the dual-primal finite element tearing and interconnecting algorithm for
solving the time-harmonic wave propagation problems (FETI-DPH), which was first
proposed by Farhat and Li [18]; see also [19, 16]. The FETI-DPH method has been
shown by extensive experiments to be parallel scalable and has been applied to the
simulation of elastic waves in structural dynamics problems, and to the simulation
of sound waves in acoustic scattering problems. A key component in the FETI-DPH
algorithm, also used in the proposed BDDC algorithm, is some plane waves incor-
porated in the coarse level problem to enhance the convergence rate. These plane
waves represent exact solutions of the partial differential equation in free space. This
is an idea first introduced by Farhat, Macedo, and Lesoinne [20] with the FETI-H
algorithm for solving the Helmholtz equations.

In our algorithms, the GMRES iteration is used to solve the preconditioned in-
definite system of linear equations. Under the condition that the diameters of the
subdomains are small enough, we prove that the convergence rate of the GMRES
iteration depends polylogarithmically on the dimension of the individual subdomain
problems and it improves with the decrease of the subdomain diameters. As in [8, 23],
a perturbation approach is used in our analysis to handle the indefiniteness of the
problem. An error bound for the approximation of the solution of the Helmholtz
equation by a partially sub-assembled finite element problem is crucial; we view that
finite element problem as a non-conforming approximation of the indefinite problem.
We also establish the spectral equivalence between the proposed BDDC algorithms
and the FETI-DPH algorithms for solving Helmholtz equations.

This paper is organized as follows. In Section 2, the finite element problem is
given for the Helmholtz equation in a bounded polyhedral domain. The decomposition
of the domain and a partially sub-assembled finite element problem are discussed in
Section 3. The BDDC and FETI-DPH algorithms and their connections are discussed
in Section 4. In Section 5, the convergence rate analysis of the BDDC algorithm is
given; the assumptions used in the proof are verified in Section 6. To conclude,
numerical experiments are given in Section 7 to demonstrate the effectiveness of our
method.

2. A finite element discretization of the Helmholtz equation on bounded

interior domains. We consider the solution of the following Helmholtz equation on
a bounded polyhedral domain Ω ∈ Rd, d = 2, 3,

{ −∆u− σ2u = f, in Ω,

u = 0, on ∂Ω,
(2.1)

where the real number σ is often called the wave number; we assume that σ2 is not
one of the eigenvalues of the operator −∆. Weak solution is given by: find u ∈ H1

0(Ω)
such that

a(u, v) = (f, v), ∀ v ∈ H1
0 (Ω),(2.2)

where a(u, v) =
∫
Ω
∇u · ∇v − σ2uv, and (f, v) =

∫
Ω
fv. Under the assumption

that (2.2) has a unique solution, we can prove the following regularity result for the
weak solution; cf. [26, Section 9.1] and [27, Proposition 2.24].
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Lemma 2.1. Let Ω ∈ Rd, d = 2, 3, be a bounded polyhedral domain with Lipschitz
continuous boundary. Given any f ∈ L2(Ω), let u be the unique solution of (2.2).
Then u ∈ H1+γ(Ω)∩H1

0 (Ω), for a certain γ ∈ (1/2, 1], and ‖u‖H1+γ ≤ C(1+σ2)‖f‖L2
,

where C is a constant independent of f . If Ω is convex then the result holds for γ = 1.

Proof. Result for the case σ = 0 can be found in [25, Corollary 2.6.7]; see also [26,
Section 9.1]. Here we give a proof for the case where σ 6= 0. We define an operator
K : H1

0 (Ω) → H−1(Ω) by: given any v ∈ H1
0 (Ω),

〈Kv, w〉 =

∫

Ω

∇v · ∇w, ∀w ∈ H1
0 (Ω).

Here 〈Kv, w〉 is the value of the functional Kv at w; if Kv ∈ L2(Ω) then 〈·, ·〉 is the L2

inner product. Given f ∈ L2(Ω), let u be the unique solution of (2.2), i.e., u ∈ H1
0 (Ω)

satisfies

∫

Ω

∇u · ∇w − σ2uw =

∫

Ω

fw, ∀ w ∈ H1
0 (Ω).

Then we have Ku = f + σ2u. Since K is invertible and its inverse K−1 is a map
from the space H−1(Ω) to H1

0 (Ω), we have u = K−1(f + σ2u). Since f ∈ L2(Ω) and
u ∈ H1

0(Ω), we know from the regularity result for the case σ = 0, cf. [26, Section 9.1],
that u ∈ H1+γ (Ω) for a certain γ ∈ (1/2, 1], and ‖u‖H1+γ ≤ C(‖f‖L2

+ σ2‖u‖L2
),

where C is a constant independent of f . We also know from [15, Chapter 6, Theorem 6]
that ‖u‖L2

≤ C‖f‖L2
. Therefore ‖u‖H1+γ ≤ C(1 + σ2)‖f‖L2

. If Ω is convex then the
result holds for γ = 1.

We consider a conforming finite element approximation of the problem (2.2) and

denote the continuous finite element space by Ŵ . The finite element solution u ∈ Ŵ
satisfies

a(u, v) = (f, v), ∀v ∈ Ŵ .(2.3)

The resulting system of linear equations has the form

Au = (K − σ2M )u = f,(2.4)

where K is the stiffness matrix, and M the mass matrix. In this paper, we will use
the same notation u to denote a finite element function and its vector of coefficients
with respect to the finite element basis functions. We will also use the same notation
to denote the space of the finite element functions and the space of corresponding
vectors, e.g., Ŵ . We have |u|2H1 = uTKu, and ‖u‖2

L2
= uTMu, for all u ∈ Ŵ .

We assume the finite element mesh is the union of shape regular elements with
a typical element diameter h. We will use the following standard approximation
property of the finite element space Ŵ , cf. [45, Lemma B.6].

Lemma 2.2. There exists a constant C which is independent of the mesh size
such that for all u ∈ H1+γ(Ω), γ ∈ (1/2, 1],

inf
w∈Ŵ

|u− w|H1(Ω) ≤ Chγ |u|H1+γ(Ω), and inf
w∈Ŵ

‖u− w‖L2(Ω) ≤ Ch1+γ |u|H1+γ(Ω).
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3. A partially sub-assembled finite element space. A partially sub-
assembled finite element space was introduced by Klawonn, Widlund, and Dryja [33]
in a convergence analysis of the FETI-DP algorithm. It was later used by Li and
Widlund [36, 37] to give an alternative formulation of the BDDC algorithm.

The domain Ω is decomposed into N nonoverlapping polyhedral subdomains Ωi,
i = 1, 2, ...,N . Each subdomain is a union of shape regular elements and the nodes on
the boundaries of neighboring subdomains match across the interface Γ = (∪∂Ωi)\∂Ω.
The interface Γ is composed of subdomain faces and/or edges, which are regarded as
open subsets of Γ, and of the subdomain vertices, which are end points of edges. In
three dimensions, the subdomain faces are shared by two subdomains, and the edges
typically by more than two; in two dimensions, each edge is shared by two subdomains.
The interface of the subdomain Ωi is defined by Γi = ∂Ωi ∩ Γ. We also denote the
set of nodes on Γi by Γi,h. We note that all the algorithms considered here are well
defined for the less regular subdomains that are obtained by mesh partitioners. When
developing theory, we will assume, as is customary in domain decomposition theory,
that each subdomain is the union of a bounded number of shape regular elements with
diameters on the order of H; cf. [45, Section 4.2]. For recent results on the analysis
for irregular subdomains in domain decomposition methods, see [13].

The partially sub-assembled finite element space W̃ is the direct sum of a coarse
level primal subspace ŴΠ, of continuous coarse level finite element functions, and a
dual space Wr , which is the product of local dual subspaces, i.e.,

W̃ = Wr

⊕
ŴΠ =

(
N∏

i=1

W (i)
r

)⊕
ŴΠ.

The space ŴΠ corresponds to a few select subdomain interface degrees of freedom
for each subdomain and is typically spanned by subdomain vertex nodal basis func-
tions, and/or interface edge and/or face basis functions with weights at the nodes of
the edge or face. These basis functions will correspond to the primal interface con-
tinuity constraints enforced in the BDDC and FETI-DP algorithms. For simplicity
of our analysis, we will always assume that the basis has been changed so that we
have explicit primal unknowns corresponding to the primal continuity constraints of
edges or faces; these coarse level primal degrees of freedom are shared by neighboring
subdomains. Another way of enforcing continuity constraints over edges or faces is
to introduce an additional set of Lagrange multipliers in the coarse level problem;

cf. [17]. Each subdomain dual space W
(i)
r corresponds to the subdomain interior and

dual interface degrees of freedom and it is spanned by all the basis functions which
vanish at the primal degrees of freedom. Thus, functions in the space W̃ have a con-
tinuous coarse level, primal part and typically a discontinuous dual part across the
subdomain interface.

Remark 3.1. As in many other papers on FETI-DP and BDDC algorithms,
we talk about dual spaces. The discontinuity of elements of the dual spaces across
the subdomain interface is controlled by using Lagrange multipliers in the FETI-DP
algorithms.

We define the bilinear form on the partially sub-assembled finite element space
W̃ by

ã(u, v) =

N∑

i=1

∫

Ωi

∇u(i) · ∇v(i) − σ2u(i)v(i), ∀ u, v ∈ W̃ ,
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where u(i) and v(i) represent the restriction of u and v to the subdomain Ωi. The
matrix corresponding to the bilinear form ã(·, ·) is denoted by Ã. Ã = K̃ − σ2M̃ ,

where K̃ is the partially sub-assembled stiffness matrix and M̃ is the partially sub-
assembled mass matrix. We always assume that Ã is nonsingular, i.e., the following
problem always has a unique solution: given any g ∈ L2(Ω), find u ∈ W̃ such that

ã(u, v) = (g, v), ∀v ∈ W̃ .(3.1)

We define the broken norms on the space W̃ , by ‖w‖2
L2(Ω) =

∑N
i=1 ‖w(i)‖2

L2(Ωi)
and

|w|2H1(Ω) =
∑N

i=1 |w(i)|2H1(Ωi)
. In this paper ‖w‖L2(Ω) and |w|H1(Ω), for functions

w ∈ W̃ , always represent the corresponding broken norms. We also have, for any
w ∈ W̃ , |w|2H1 = wT K̃w, and ‖w‖2

L2
= wT M̃w.

In our convergence analysis of the BDDC algorithms for solving the indefinite
problems, we will establish an error bound for the approximation of the solution of
the Helmholtz problem by the partially sub-assembled finite element problem. For this
purpose, we assume that in our decomposition of the global domain Ω, each subdomain
Ωi is of triangular or quadrilateral shape in two dimensions, and of tetrahedral or
hexahedral shape in three dimensions. We also assume that the subdomains form a
shape regular coarse mesh of Ω. We denote by ŴH the continuous linear, bilinear, or
trilinear finite element space on the coarse subdomain mesh, and denote by IH the
finite element interpolation from the space H1+γ(Ω), γ ∈ (1/2, 1], to ŴH . We have
the following Bramble-Hilbert lemma; cf. [47, Theorem 2.3].

Lemma 3.2. There exists a constant C which is independent of the mesh size
such that for all u ∈ H1+γ(Ω), γ ∈ (1/2, 1], ‖u − IHu‖H1+γ(Ωi) ≤ C|u|H1+γ(Ωi), for
i = 1, 2, ..., N .

The problem matrix A in (2.4) can be obtained by assembling the partially sub-

assembled problem matrix Ã, i.e.,

A = R̃T ÃR̃,(3.2)

where R̃ : Ŵ → W̃ , is the injection operator from the space of continuous finite
element functions to the space of partially sub-assembled finite element functions.
In order to define a scaled injection operator, we need to introduce a positive scale
factor δ†i (x) for each node x on the interface Γi of the subdomain Ωi. In applications,
these scale factors will depend on the heat conduction coefficient and the first of the
Lamé parameters for scalar elliptic problems and the equations of linear elasticity,
respectively; see [33, 32, 42]. Here, with Nx the set of indices of the subdomains
which have x on their boundaries, we will only need to use inverse counting functions
defined by δ†i (x) = 1/card(Nx), where card(Nx) is the number of the subdomains

in the set Nx. It is easy to see that
∑

j∈Nx
δ†j (x) = 1. Given these scale factors at

the subdomain interface nodes, we can define the scaled injection operator R̃D; each
row of R̃ corresponds to a degree of freedom of the space W̃ , and multiplying each
row which corresponds to a dual interface degree of freedom by the scale factor δ†i (x),

where x ∈ Γi,h is the corresponding interface node, gives us R̃D.

4. A BDDC version of the FETI-DPH method.

4.1. A review of the FETI-DPH method. The finite element tearing and
interconnecting (FETI) methods [21, 17] form a family of domain decomposition meth-
ods using Lagrange multipliers and auxiliary coarse problems. Application of the early
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one-level FETI algorithm to exterior Helmholtz equations was studied by Farhat,
Macedo, and Lesoinne [20] and the algorithm is named the FETI-H algorithm. An
important feature of the FETI-H algorithm is that some plane waves are incorporated
into the coarse level problem. This idea has proven very successful for improving the
convergence rate for solving the Helmholtz equations. A downside of the FETI-H
method is that it transforms real problems, e.g., those arising from the discritization
of (2.1), into complex problems which require more memory and computational work.

FETI-DPH is the dual-primal version of the FETI-H method and was proposed
by Farhat and Li [18] for solving a class of indefinite system of linear equations of the
form (2.4). As in the FETI-H algorithm, plane waves are added to the coarse level
problem to achieve faster convergence. But, instead of using complex regularization
terms as in FETI-H to prevent the subdomain problems from being singular, the coarse
level primal continuity constraints are enforced in FETI-DPH to guarantee that the
subdomain problems are nonsingular. In this way no complex valued computations
are required for real problems.

Before we present a formulation of the FETI-DPH algorithm for solving (2.4),
we first look at some exact solutions of the homogeneous equation (2.1) (with f = 0)
in free space. Denote by x the space coordinate vector, either in 2D or in 3D, and
denote by θ any direction vector of unit length. Then all functions of the form

cos(σθ · x) or sin(σθ · x)(4.1)

are solutions to the homogeneous equation (2.1).

In the FETI-DPH algorithm [18], some coarse level primal continuity constraints
corresponding to plane waves are enforced across the subdomain interface, i.e., the
solution at each iteration step always has the same components corresponding to
the chosen plane waves across the subdomain interface. Here we discuss how to
enforce a plane wave continuity constraint for two-dimensional problems; the same
approach can equally well be used for three-dimensional problems; cf. [18]. Let E ij be
a subdomain interface edge, which is shared by two neighboring subdomains Ωi and
Ωj. To define the coarse level finite element basis function corresponding to a plane
wave, we denote by q the vector determined by the chosen plane wave restricted to
E ij. We then choose the finite element function, which is determined by q at the nodes
on E ij and which vanishes elsewhere on the mesh, as a coarse level finite element basis
function, i.e., we choose q as an element in the coarse level primal subspace ŴΠ. By
sharing this common coarse level primal degree of freedom between subdomains Ωi

and Ωj, elements in the partially sub-assembled finite element space W̃ always have
a common component corresponding to q across E ij. In this paper, we always assume
that the basis of the finite element space has been changed and that therefore there
are explicit degrees of freedom corresponding to all the coarse level primal continuity
constraints. For more details on the change of basis, see [36, 32, 31].

Remark 4.1. We note that by choosing different directions θ in (4.1), differ-
ent plane wave vectors can be obtained. Also both the cosine and sine modes of the
plane waves can be used. By controlling the number of directions θ used, we control
the number of the coarse level primal degrees of freedom related to the plane wave
continuity constraints. As shown in [18], the larger the shift σ2 in (2.4), the more
directions need to be used to prevent a deterioration of the convergence rate.

To derive a formulation of the FETI-DPH algorithm, the partially sub-assembled
problem matrix Ã is written with blocks corresponding to the subdomain interior
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variables and to the subdomain interface variables as

Ã =

[
AII ÃIΓ

ÃΓI ÃΓΓ

]
,

where AII is block diagonal with one block for each subdomain, and ÃΓΓ is assembled
across the subdomain interface Γ only with respect to the coarse level primal degrees
of freedom.

The solution of the original system of linear equations (2.4) can be obtained as
the solution to the following system of linear equations



AII ÃIΓ 0

ÃΓI ÃΓΓ BTΓ
0 BΓ 0





uI
ũΓ

λ


 =



fI
f̃Γ
0


 ,(4.2)

where f̃Γ on the right hand side is assembled only with respect to the coarse level pri-
mal degrees of freedom across the subdomain interface. The matrix BΓ has elements
from the set {0, 1,−1} and is used to enforce the continuity of the solution across the
subdomain interface. Eliminating the variables uI and ũΓ from (4.2), the following
equation for the Lagrange multipliers λ is obtained,

BΓS̃
−1
Γ BTΓ λ = BΓS̃

−1
Γ (f̃Γ − ÃΓIA

−1
II fI),(4.3)

where S̃Γ = ÃΓΓ − ÃΓIA
−1
II ÃIΓ.

In the FETI-DPH algorithm, a preconditioned GMRES iteration is used to solve
the equation (4.3); after obtaining the Lagrange multipliers λ, we find uI and ũΓ by
back solving. Two types of preconditioners have been used: the Dirichlet precondi-
tioner BD,ΓS̃ΓB

T
D,Γ, and the lumped preconditioner BD,ΓÃΓΓB

T
D,Γ; cf. [21, 17]. Here

BD,Γ is obtained from BΓ by an appropriate scaling across the subdomain interface.

In each GMRES iteration of the FETI-DPH algorithm, to multiply S̃−1
Γ by a vector,

a coarse level problem and subdomain problems with Neumann boundary conditions
and with fixed primal values need be solved; to multiply S̃Γ by a vector, subdomain
problems with Dirichlet boundary conditions need be solved; cf. [17, 33].

When S̃Γ is applied to a vector in the Dirichlet preconditioner, we need to mul-
tiply ÃΓΓ − ÃΓIA

−1
II ÃIΓ by the vector. An alternative used in [18] is to multiply by

ÃΓΓ − K̃ΓIK
−1
II K̃IΓ in the Dirichlet preconditioner. This corresponds to the use of

discrete harmonic extensions to the interior of subdomains. We denote this alternative
Dirichlet preconditioner in the FETI-DPH algorithm by BD,ΓS̃

H
Γ B

T
D,Γ. The numeri-

cal experiments in Section 7 will show that using either BD,ΓS̃ΓB
T
D,Γ or BD,ΓS̃

H
Γ B

T
D,Γ

gives almost the same convergence rate.

4.2. A BDDC version of the FETI-DPH method. We now present a BDDC
version of the FETI-DPH method. The BDDC algorithms and the closely related
primal versions of the FETI algorithms were proposed by Dohrmann [12], Fragakis
and Papadrakakis [22], and Cros [11], for solving symmetric positive definite problems.
Here we follow an alternative presentation of the BDDC algorithm given by Li and
Widlund [37]. The formulation of BDDC preconditioners for the indefinite problems
are in fact the same as for the symmetric positive definite case, except that the
corresponding blocks are now indefinite matrices determined by K − σ2M in (2.4).
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A BDDC preconditioner for solving the indefinite problem (2.4) can be written
as

B−1
1 = R̃TDÃ

−1R̃D,(4.4)

where R̃D : Ŵ → W̃ , is the scaled restriction introduced in the end of Section 3. To
multiply Ã−1 by a vector g̃, the following partially sub-assembled problem needs be
solved,

Ãũ =




A
(1)
rr Ã

(1)
rΠ

. . .
...

A
(N)
rr Ã

(N)
rΠ

Ã
(1)
Πr . . . Ã

(N)
Πr ÃΠΠ







u
(1)
r

...

u
(N)
r

uΠ




=




g
(1)
r

...

g
(N)
r

gΠ




= g̃.(4.5)

The leading diagonal blocks correspond to subdomain Neumann problems with given
coarse level primal values. ÃΠΠ corresponds to the coarse level primal degrees of
freedom and is assembled across the subdomain interface. The inverse of Ã can be
written as

Ã−1 =

[
A−1
rr 0
0 0

]
+

[
−A−1

rr ÃrΠ
I

]
S̃−1

Π

[
−ÃΠrA

−1
rr I

]
,(4.6)

where Arr , ÃrΠ, and ÃΠr represent the corresponding blocks of Ã in (4.5), and S̃Π =

ÃΠΠ −∑N
i=1 Ã

(i)
ΠrA

(i)−1

rr Ã
(i)
rΠ.

From (4.6), we see that the BDDC preconditioner (4.4) can be regarded as the
summation of subdomain corrections and a coarse level correction. Let us denote

Ψ =

[
−A−1

rr ÃrΠ

I

]
.

Then we can see that S̃Π = ΨT ÃΨ. Therefore the first term in the right hand
of (4.6) corresponds to subdomain corrections for which all the coarse level primal
variables vanish, and the second term corresponds to a projection onto the coarse
space determined by Ψ; cf. [38, 36]. Ψ represents extensions of the chosen coarse level
finite element basis functions to the interior of the subdomains, and these extensions
are waves for the Helmholtz problems. In Figure 4.1, we plot the extensions of a
subdomain corner basis function and a subdomain edge average basis function to the
interior of the subdomain.

Another BDDC preconditioner for solving (2.4) is of the form

B−1
2 = (R̃TD −HJD)Ã−1(R̃D − JTDHT ).(4.7)

Here JD : W̃ → W̃ . For any w ∈ W̃ , the component of JDw, for the subdomain Ωi,
is defined by

(JDw(x))(i) =
∑

j∈Nx

δ†j (x)(w
(i)(x) − w(j)(x)), ∀x ∈ Γi,h,

where JDw vanishes in the interior of the subdomain and for the coarse level primal
component. For a matrix form of the operator JD, see Toselli and Widlund [45,
Section 6.3]. The component of JTDw for the subdomain Ωi is then given by

(JTDw(x))(i) =
∑

j∈Nx

(δ†j (x)w
(i)(x) − δ†i (x)w

(j)(x)), ∀x ∈ Γi,h.
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Fig. 4.1. Extension of the coarse level primal finite element basis functions to the interior of a
subdomain: extension of a corner basis function (left); extension of an edge average basis function
(right).

The subdomain interior and the coarse level primal components of JTDw also vanish.
The operator H in (4.7) is direct sum of the subdomain discrete harmonic extensions

H(i), where H(i) = −K(i)−1
II K

(i)
IΓ , i = 1, 2, ...,N.HJD represents the discrete harmonic

extension of the jump of the dual interface variables to the interior of the subdomains.
An alternative to the discrete harmonic extension H used in the preconditioner

B−1
2 is an extension based on solving the indefinite subdomain Dirichlet problems.

Let H(i)
A = −A(i)−1

II A
(i)
IΓ and denote the direct sum of the H(i)

A by HA. Then the
corresponding preconditioner is defined by

B−1
3 = (R̃TD −HAJD)Ã−1(R̃D − JTDHT

A).(4.8)

4.3. Spectral equivalence between FETI-DPH method and its BDDC

counterpart. Spectral equivalence results for FETI-DP and BDDC methods for
symmetric positive definite problems were first proven by Mandel, Dohrmann, and
Tezaur [38]; see also Fragakis and Papadrakakis [22], Li and Widlund [36, 37], and
Brenner and Sung [6]. These arguments do not depend on the positive definiteness of
the problem, and are also valid for indefinite problems; cf. [37, 36]. We have

Theorem 4.2. 1. The preconditioned operator B−1
1 A has the same eigenvalues as

the preconditioned FETI-DPH operator with the lumped preconditioner BD,ΓÃΓΓB
T
D,Γ,

except for possible eigenvalues equal to 0 and 1.
2. The preconditioned operator B−1

3 A has the same eigenvalues as the precondi-

tioned FETI-DPH operator with the Dirichlet preconditioner BD,ΓS̃ΓB
T
D,Γ, except for

possible eigenvalues equal to 0 and 1.
We will demonstrate the spectral connection between the BDDC algorithms and

the FETI-DPH algorithms in Section 7. The spectral equivalence between the pre-
conditioned BDDC operator B−1

2 A and the preconditioned FETI-DPH operator with

preconditioner BD,ΓS̃
H
Γ BD,Γ is not clear, even though their convergence rates are also

quite similar in our numerical experiments.

5. Convergence rate analysis. The GMRES iteration is used in our BDDC
algorithm to solve the preconditioned system of linear equations. For the convenience
of our analysis, we use the inner product defined by the matrix K + σ2M in the
GMRES iteration. We define Λ = K + σ2M and Λ̃ = K̃ + σ2M̃ , respectively. To
estimate the convergence rate of the GMRES iteration, we use the following result
due to Eisenstat, Elman, and Schultz [14].

Theorem 5.1. Let c1 and C2 be two parameters such that, for all u ∈ Ŵ ,

c1 〈u, u〉Λ ≤ 〈u, Tu〉Λ ,(5.1)

〈Tu, Tu〉Λ ≤ C2
2 〈u, u〉Λ .(5.2)
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If c1 > 0, then

‖rm‖Λ

‖r0‖Λ
≤
(

1 − c21
C2

2

)m/2
,

where rm is the residual at step m of the GMRES iteration applied to the operator
T .

Remark 5.2. The convergence rate of the GMRES iteration using the standard
L2 inner product will not be estimated in this paper. In our numerical experiments,
we have found that using the K+σ2M inner product or the standard L2 inner product
gives the same convergence rate.

In Theorem 5.11, we will estimate c1 and C2 in (5.1) and (5.2), for the precon-
ditioned BDDC operators B−1

1 A and B−1
2 A. The analysis for B−1

3 A is not available
yet.

We first make an assumption on the coarse level primal subspace ŴΠ in our
analysis. We denote the subdomain interface edges by Ek and, for three dimensions,
the subdomain faces by F l. For each edge Ek, we denote the set of all subdomains
that share Ek by NEk ; for each face F l, the set of all subdomains that share F l is

denoted by by NF l . We assume the coarse level primal subspace ŴΠ is chosen such
that it satisfies the following assumption.

Assumption 5.3. The coarse level primal subspace ŴΠ contains all subdomain
corner degrees of freedom, one degree of freedom for each edge E k, and one for each
face F l (for three-dimensional problems), such that for any w ∈ W̃ , the values

∫
Ek w

(i)

are the same for all i ∈ NEk , and, for three dimensions, the values
∫
F l w

(i) are the
same for all i ∈ NF l .

Assumption 5.3 requires one coarse level primal degree of freedom for each edge
and one for each face, respectively. Those constant edge or face average constraints
correspond to the restriction of a cosine plane wave in (4.1) with the chosen angle θ
perpendicular to the edge or to the face. From Figure 4.1, we see that the extension of
the edge constant basis function to the interior of the subdomains represents a plane
wave. When more than one plane wave continuity constraints are enforced on the
same edge or face, it can easily happen that the coarse level primal basis vectors are
linearly dependent on that edge or face. In order to make sure that the primal basis
functions maintain linear independence, we can use a singular value decomposition
on each edge and face, in a preprocessing step of the algorithm, to single out those
that are numerically linearly independent and should be retained in the coarse level
primal subspace. This device for eliminating linearly dependent coarse level primal
constraints has previously been applied for FETI-DPH algorithms; see [18].

Using Assumption 5.3, we have the following lemma, which is essentially a Poincaré-
Friedrichs inequality proven by Brenner in [5, (1.3)].

Lemma 5.4. Let Assumption 5.3 hold. There exists a constant C, which is
independent of H and h, such that 〈u, u〉

M̃
≤ C 〈u, u〉

K̃
, ∀u ∈ W̃ .

¿From Assumption 5.3, we also obtain a result on the stability of certain average
operators, which are defined by ED,1 = R̃R̃TD and ED,2 = R̃(R̃TD − HJD), corre-
sponding to the preconditioned BDDC operators B−1

1 A and B−1
2 A, respectively. The

following lemma can be found in [33, 32, 37].

Lemma 5.5. There exist functions Φi(H,h), i = 1, 2, such that

|ED,iw|2H1(Ω) ≤ Φi(H,h)|w|2H1(Ω), ∀ w ∈ W̃ .
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If Assumption 5.3 holds, then for two-dimensional problems, Φ1(H,h) = CH/h and

Φ2(H,h) = C (1 + log(H/h))
2
; for three-dimensional problems, Φ1(H,h) = C(H/h)(1+

log (H/h)) and Φ2(H,h) = C (1 + log(H/h))
2
. Here C is a positive constant indepen-

dent of H and h.
Using Lemma 5.5, we can prove the following lemma.
Lemma 5.6. Let Assumption 5.3 hold. Then,

‖ED,iw‖2

Λ̃
≤ (1 + Cσ2H2)Φi(H,h)‖w‖2

Λ̃
, ∀ w ∈ W̃ , i = 1, 2,

where Φi(H,h) are determined as in Lemma 5.5, and C is a positive constant inde-
pendent of H and h.

Proof. We know that

‖ED,iw‖2

Λ̃
= ‖ED,iw‖2

K̃
+ σ2‖ED,iw‖2

M̃
= |ED,iw|2H1 + σ2‖ED,iw‖2

L2
.

Using Lemma 5.5 for the first term on the right side, and writing the second term as
ED,iw = w−PD,iw, where PD,i represents a jump operator, cf. [37, 45, Lemma 6.10],
we have

‖ED,iw‖2

Λ̃
≤ Φi(H,h)|w|2H1 + σ2(‖w‖2

L2
+ ‖PD,iw‖2

L2
).

¿From Assumption 5.3, we know that PD,iw has zero averages on the subdomain inter-
faces. Using a Poincaré-Friedrichs inequality and then a result similar to Lemma 5.5
on the stability of the jump operator PD,i, cf. [33, Lemma 9], we have

‖PD,iw‖2
L2

≤ CH2|PD,iw|2H1 ≤ CH2Φi(H,h)|w|2H1.

Therefore, we have

‖ED,iw‖2

Λ̃
≤ Φi(H,h)|w|2H1 + σ2‖w‖2

L2
+ Cσ2H2Φi(H,h)|w|2H1

≤ (1 + Cσ2H2)Φi(H,h)(|w|2H1 + σ2‖w‖2
L2

).

The next assumption will be verified in Section 6.
Assumption 5.7. There exists a positive constant C, which is independent of H

and h, such that if σ(1 + σ3)Hγ is sufficiently small, then for all u ∈ Ŵ , i = 1, 2,
∣∣∣
〈
wi − R̃u, R̃u

〉
M̃

∣∣∣ ≤ C(1 + σ3)Hγ (1 +
√

Φi(H,h)) 〈u, u〉Λ ,
∣∣∣
〈
wi − R̃u, wi

〉
M̃

∣∣∣ ≤ C(1 + σ3)Hγ (1 + Φi(H,h)) 〈u, u〉Λ ,
∣∣∣
〈
zi − R̃u, wi

〉
M̃

∣∣∣ ≤ CH (1 + Φi(H,h)) 〈u, u〉Λ ,

‖wi‖K̃ ≤ C(1 +
√

Φi(H,h))‖u‖Λ.

Here w1 = Ã−1R̃DAu, w2 = Ã−1(R̃D−JTDHT )Au, z1 = M̃−1R̃DMu, z2 = M̃−1(R̃D−
JTDHT )Mu, and Φi(H,h) are determined as in Lemma 5.5.

The following lemma can be found in [45, Lemma B.31].

Lemma 5.8. The mass matrix M̃ is spectrally equivalent to a diagonal matrix
with diagonal entries on the order of hd, where h is the mesh size and d = 2, 3, i.e.,
there exist positive constants c and C which are independent of the mesh size such
that chd ≤ λmin(M̃ ) ≤ λmax(M̃ ) ≤ Chd.
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Lemma 5.9. There exists a positive constant C, which is independent of H and h,
such that for all u, v ∈ W̃ , |uT Ãv| ≤ C|u|

Λ̃
|v|

Λ̃
, and |u|

Λ̃
≤ |u|

K̃
+ σ|u|

M̃
≤

√
2|u|

Λ̃
.

Proof. To prove the first inequality, we have, for all u, v ∈ W̃ ,

|uT Ãv| = |uT K̃v − σ2uT M̃v| ≤ (uT K̃u)1/2(vT K̃v)1/2 + σ2(uT M̃u)1/2(vT M̃v)1/2

≤ C(uT Λ̃u)1/2(vT Λ̃v)1/2.

The second inequality can be derived by using
√
a+ b ≤ √

a +
√
b and

√
a +

√
b ≤√

2(a+ b), for any positive a and b.
Lemma 5.10. Let Assumption 5.7 hold. Then there exists a constant C, which

is independent of H and h, such that if σ(1 + σ3)Hγ is sufficiently small, then

〈wi, wi〉Λ̃ ≤
〈
u,B−1

i Au
〉
Λ

+C σ2(1+σ3)Hγ (1 + Φi(H,h)) 〈u, u〉Λ , ∀ u ∈ Ŵ , i = 1, 2,

where w1 = Ã−1R̃DAu and w2 = Ã−1(R̃D − JTDHT )Au.

Proof. For w1 = Ã−1R̃DAu, we have,

〈w1, w1〉Λ̃ = 〈w1, w1〉Ã + 2σ2 〈w1, w1〉M̃
= uTAR̃TDÃ

−1ÃÃ−1R̃DAu + 2σ2 〈w1, w1〉M̃ =
〈
u,B−1

1 Au
〉
A

+ 2σ2 〈w1, w1〉M̃
=
〈
u,B−1

1 Au
〉
Λ
− 2σ2

〈
u,B−1

1 Au
〉
M

+ 2σ2 〈w1, w1〉M̃
=
〈
u,B−1

1 Au
〉
Λ
− 2σ2(uTMR̃TDÃ

−1R̃DAu− uTAR̃TDÃ
−1M̃Ã−1R̃DAu)

=
〈
u,B−1

1 Au
〉
Λ
− 2σ2(uTMR̃TDM̃

−1M̃Ã−1R̃DAu− uTAR̃TDÃ
−1M̃Ã−1R̃DAu)

=
〈
u,B−1

1 Au
〉
Λ
− 2σ2 〈z1 − w1, w1〉M̃

=
〈
u,B−1

1 Au
〉
Λ
− 2σ2

〈
z1 − R̃u, w1

〉
M̃

+ 2σ2
〈
w1 − R̃u, w1

〉
M̃
,

where z1 = M̃−1R̃DMu.
For w2 = Ã−1(R̃D − JTDHT )Au, we have, cf. [37, Theorem 3],

〈w2, w2〉Λ̃ =
〈
u,B−1

2 Au
〉
Λ
− 2σ2

〈
z2 − R̃u, w2

〉
M̃

+ 2σ2
〈
w2 − R̃u, w2

〉
M̃
.

Then, using Assumption 5.7 for both cases, the lemma is proven.
Theorem 5.11. Let Assumptions 5.3 and 5.7 hold. If σ2(1+σ3) (1 + Φi(H,h))H

γ

is sufficiently small, then, for i = 1, 2,

c 〈u, u〉Λ ≤ 〈u, Tiu〉Λ(5.3)

〈Tiu, Tiu〉Λ ≤ C1(1 + σ2)(1 + C2σ
2H2)(1 + Φi(H,h)

2) 〈u, u〉Λ .(5.4)

Here Ti = B−1
i A, Φi(H,h) are determined as in Lemma 5.5, c, C1 and C2 are positive

constants independent of H and h.
Proof. We only prove the result for the preconditioned operator T1 = B−1

1 A. The
few modifications in the proof for B−1

2 A can be found in [37, Theorem 3].

We first prove the upper bound (5.4). Given any u ∈ Ŵ , let w1 = Ã−1R̃DAu.
We have,

〈
B−1

1 Au,B−1
1 Au

〉
Λ

=
〈
R̃TDÃ

−1R̃DAu, R̃
T
DÃ

−1R̃DAu
〉

Λ

=
〈
R̃R̃TDÃ

−1R̃DAu, R̃R̃
T
DÃ

−1R̃DAu
〉

Λ̃
=
〈
R̃R̃TDw1, R̃R̃

T
Dw1

〉
Λ̃

= ‖ED,1w1‖2

Λ̃

≤ (1 + Cσ2H2)Φ1(H,h)‖w1‖2

Λ̃
≤ (1 + Cσ2H2)Φ1(H,h)(1 + σ2)‖w1‖2

K̃

≤ C1(1 + σ2)(1 + C2σ
2H2)(1 + Φ1(H,h)

2) 〈u, u〉Λ ,
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where we have used Lemmas 5.6, 5.4, and the last inequality of Assumption 5.7.
To prove the lower bound (5.3), we have, from R̃T R̃D = I and by using the

Cauchy-Schwarz inequality, that

〈u, u〉Λ = 〈u, u〉A + 2σ2 〈u, u〉M = uTAu+ 2σ2 〈u, u〉M
= uT R̃T ÃÃ−1R̃DAu+ 2σ2 〈u, u〉M =

〈
w1, R̃u

〉
Ã

+ 2σ2 〈u, u〉M

=
〈
w1, R̃u

〉
Λ̃
− 2σ2

〈
w1, R̃u

〉
M̃

+ 2σ2 〈u, u〉M

=
〈
w1, R̃u

〉
Λ̃
− 2σ2

〈
w1 − R̃u, R̃u

〉
M̃

≤ 〈w1, w1〉1/2
Λ̃

〈
R̃u, R̃u

〉1/2

Λ̃
− 2σ2

〈
w1 − R̃u, R̃u

〉
M̃

= 〈w1, w1〉1/2
Λ̃

〈u, u〉1/2Λ − 2σ2
〈
w1 − R̃u, R̃u

〉
M̃
.

Then, from Assumption 5.7, we have

〈u, u〉Λ ≤ 〈w1, w1〉1/2
Λ̃

〈u, u〉1/2Λ + C σ2(1 + σ3)Hγ (1 +
√

Φ1(H,h)) 〈u, u〉Λ .

If σ2(1 + σ3)Hγ(1 +
√

Φi(H,h)) is sufficiently small, then 〈u, u〉Λ ≤ C 〈w1, w1〉Λ̃,
where C is independent of H and h. Therefore, using Lemma 5.10, we have

〈u, u〉Λ ≤ C
(〈
u,B−1

1 Au
〉
Λ

+ σ2(1 + σ3)Hγ(1 + Φ1(H,h)) 〈u, u〉Λ
)
.

If σ2(1 + σ3)Hγ (1 + Φ1(H,h)) is sufficiently small, then (5.3) is proven with c inde-
pendent of H and h.

Theorem 5.11 provides an estimate of the convergence rate of the BDDC algorithm
for solving indefinite problems of the form (2.4). We see that the convergence rate
depends on Φi(H,h) in Assumption 5.5, the shift σ2, and the product σH. For a
fixed σ, the upper bound in (5.4) improves with the decrease of H.

6. Verifying Assumption 5.7. In this section, we give a proof of Assump-
tion 5.7. We first prove an error bound in Lemmas 6.1-6.4 for the solution of the
partially sub-assembled finite element problem.

Given g ∈ L2(Ω), we define ϕg ∈ H1
0 (Ω) and ϕ̃g ∈ W̃ as the solutions of the

following problems,

a(u, ϕg) = (u, g), ∀u ∈ H1
0(Ω),(6.1)

ã(w, ϕ̃g) = (w, g), ∀w ∈ W̃ ,(6.2)

respectively. From Lemma 2.1, we know that ϕg ∈ H1
0(Ω) ∩ H1+γ(Ω), for some

γ ∈ (1/2, 1].
Lemma 6.1. Let Assumption 5.3 hold. Given g ∈ L2(Ω), let ϕg be the so-

lution of the problem (6.1). Let Lh(ϕg, q) = (g, q) − ã(ϕg, q) for any q ∈ W̃ ∪(
H1

0 (Ω) ∩H1+γ (Ω)
)
, γ ∈ (1/2, 1]. Then |Lh(ϕg , q)| ≤ CH(1+γ)/2|ϕg|H1+γ |q|H1(Ω).

Proof. Given any q ∈ W̃ ∪
(
H1

0 (Ω) ∩H1+γ (Ω)
)
, we have

Lh(ϕg, q) = (g, q) − ã(ϕg , q) = −
N∑

i=1

∫

Ωi

(
∇ϕg∇q − σ2ϕg q

)
dx+

∫

Ω

g qdx
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= −
N∑

i=1

(∫

∂Ωi

∂νϕgqds+

∫

Ωi

(−∆ϕg − σ2ϕg)qdx

)
+

∫

Ω

gqdx

= −
N∑

i=1

∫

∂Ωi

∂νϕgqds,(6.3)

where we use the fact that −∆φg − σ2φg = g holds in the weak sense, cf. (6.1).
Let Γij = ∂Ωi ∩ ∂Ωj, which can be either a face or an edge. For any function

q ∈ W̃ ∪
(
H1

0(Ω) ∩H1+γ(Ω)
)
, we denote its common edge or face average over Γij by

qΓij
; cf. Assumption 5.3. We have, from (6.3), that

Lh(ϕg, q) = −
N∑

i=1

∫

∂Ωi

∂νϕg qds = −
N∑

i=1

∑

Γij⊂∂Ωi

∫

Γij

∂νϕg(q − qij)ds(6.4)

= −
N∑

i=1

∑

Γij⊂∂Ωi

∫

Γij

∂ν(ϕg − IHϕg)(q − qij)ds,

where IHϕg is the linear interpolant of ϕg using its values at the subdomain corners.
It then follows from the Cauchy-Schwarz inequality that

|Lh(ϕg, q)| ≤
N∑

i=1

∑

Γij⊂∂Ωi

(∫

Γij

|∇(ϕg − IHϕg)|2ds
∫

Γij

|q − qi|2ds
)1/2

.(6.5)

By using a trace theorem and Lemma 3.2, the first factor on the right hand side can
be estimated as follows,

∫

Γij

|∇(ϕg − IHϕg)|2ds ≤ CHγ‖∇(ϕg − IHϕg)‖2
Hγ(Ωi)

≤ CHγ‖ϕg − IHϕg‖2
H1+γ(Ωi)

≤ CHγ|ϕg|2H1+γ (Ωi)
.(6.6)

By using a trace theorem and a Poincaré-Friedrichs inequality, we have an estimate
for the second factor,

∫

Γij

|q− qij|2ds ≤ CH‖q− qij‖2
H1(Ωi)

≤ CH|q|2H1(Ωi)
.(6.7)

Combining (6.5), (6.6), and (6.7), we have

|Lh(ϕg, q)| ≤ C

N∑

i=1

H(1+γ)/2|ϕg|H1+γ(Ωi)|q|H1(Ωi)

≤ CH(1+γ)/2

(
N∑

i=1

|ϕg|2H1+γ(Ωi)

)1/2( N∑

i=1

|q|2H1(Ωi)

)1/2

= CH(1+γ)/2|ϕg|H1+γ(Ω)|q|H1(Ω).

The following lemma is established by using Lemma 6.1.
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Lemma 6.2. Let Assumption 5.3 hold. Given g ∈ L2(Ω), let ϕg and ϕ̃g be the
solutions of the problems (6.1) and (6.2), respectively. If σ(1 + σ2)hγ is sufficiently
small, then

‖ϕg − ϕ̃g‖L2
≤ C(1 + σ2)Hγ

(
|ϕg − ϕ̃g |H1(Ω) +H(1+γ)/2|ϕg|H1+γ (Ω)

)
,

where C is a positive constant independent of H and h.
Proof. Given any q ∈ L2(Ω), let zq ∈ H1

0 (Ω) be the solution of

a(zq, v) = (q, v), ∀v ∈ H1
0(Ω).(6.8)

We know, from Lemma 2.1, that zq ∈ H1+γ(Ω) for some γ ∈ (1/2, 1], and ‖zq‖H1+γ ≤
C(1 + σ2)‖q‖L2

. From a Strang lemma, cf. [10, Remark 31.1], we have

‖ϕg − ϕ̃g‖L2
≤ sup

q∈L2(Ω)

1

‖q‖L2

{
inf
z̃∈W̃

(
|ah(ϕg − ϕ̃g , zq − z̃)|

+|Lh(ϕg , zq − z̃)| + |Lh(zq , ϕg − ϕ̃g)|
)}
.

Then, using Lemmas 5.9 and 6.1, we have

‖ϕg − ϕ̃g‖L2
≤ C sup

q∈L2(Ω)

1

‖q‖L2

inf
z̃∈W̃

{(|ϕg − ϕ̃g|H1 + σ‖ϕg − ϕ̃g‖L2
)(|zq − z̃|H1

+σ‖zq − z̃‖L2
) +H(1+γ)/2|ϕg|H1+γ |zq − z̃|H1 +H(1+γ)/2|zq|H1+γ |ϕg − ϕ̃g |H1}.

¿From Lemma 2.2, we know that inf
z̃∈W̃

|zq−z̃|H1(Ω) ≤ Chγ‖zq‖H1+γ , and inf
z̃∈W̃

‖zq−
z̃‖L2(Ω) ≤ Ch1+γ‖zq‖H1+γ . Then from ‖zq‖H1+γ ≤ C(1 + σ2)‖q‖L2

, we have

‖ϕg − ϕ̃g‖L2
≤ C(1 + σ2)Hγ

(
(1 +H(1−γ)/2 + σh)|ϕg − ϕ̃g |H1 +H(1+γ)/2|ϕg|H1+γ

)

+Cσ(1 + σ2)hγ(1 + σh)‖ϕg − ϕ̃g‖L2
.

If σ(1 + σ2)hγ is sufficiently small and therefore σh is less than a certain constant,
then we have ‖ϕg − ϕ̃g‖L2

≤ C(1 + σ2)Hγ (|ϕg − ϕ̃g|H1 +H(1+γ)/2|ϕg|H1+γ ).
The proof of the following lemma is essentially an extension of the proof in [2,

Chapter III, Lemma 1.2] to the indefinite case.
Lemma 6.3. Let Assumption 5.3 hold. Given g ∈ L2(Ω), let ϕg and ϕ̃g be the

solutions of the problems (6.1) and (6.2), respectively. If σh is less than a certain
constant, then

|ϕg − ϕ̃g|H1 ≤ σ‖ϕg − ϕ̃g‖L2
+ CHγ |ϕg|H1+γ ,

where C is a positive constant independent of H and h.
Proof. For any given ψ̃ ∈ W̃ , we have

|ϕ̃g − ψ̃|2H1 − σ2‖ϕ̃g − ψ̃‖2
L2

= ã(ϕ̃g − ψ̃, ϕ̃g − ψ̃)

= ã(ϕg − ψ̃, ϕ̃g − ψ̃) + ((g, ϕ̃g − ψ̃) − ã(ϕg , ϕ̃g − ψ̃)).

Dividing by |ϕ̃g − ψ̃|H1 + σ‖ϕ̃g − ψ̃‖L2
on both sides and denoting ϕ̃g − ψ̃ by qh, we

have, from Lemmas 5.9 and 6.1, that

|ϕ̃g − ψ̃|H1 − σ‖ϕ̃g − ψ̃‖L2
≤ (|ϕg − ψ̃|H1 + σ‖ϕg − ψ̃‖L2

) +

∣∣(g, qh) − ã(ϕg, qh)
∣∣

|qh|H1

≤ |ϕg − ψ̃|H1 + σ‖ϕg − ψ̃‖L2
+ CH(1+γ)/2|ϕg|H1+γ .
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Using the triangle inequality, we have

|ϕg − ϕ̃g|H1 ≤ |ϕ̃g − ψ̃|H1 + |ϕg − ψ̃|H1

≤ σ‖ϕ̃g − ψ̃‖L2
+ 2|ϕg − ψ̃|H1 + σ‖ϕg − ψ̃‖L2

+ CH(1+γ)/2|ϕg|H1+γ

≤ σ‖ϕg − ϕ̃g‖L2
+ 2|ϕg − ψ̃|H1 + 2σ‖ϕg − ψ̃‖L2

+ CH(1+γ)/2|ϕg|H1+γ .

Therefore, we have

|ϕg − ϕ̃g|H1 ≤ σ‖ϕg − ϕ̃g‖L2
+ 2 inf

ψ̃∈W̃

(|ϕg − ψ̃|H1 + σ‖ϕg − ψ̃‖L2
) + CH(1+γ)/2|ϕg|H1+γ

≤ σ‖ϕg − ϕ̃g‖L2
+ CHγ |ϕg|H1+γ ,

where in the last step, we have used the approximation property in Lemma 2.2 and
that σh is less than a certain constant.

The following lemma follows from Lemmas 6.2 and 6.3.
Lemma 6.4. Let Assumption 5.3 hold. Given g ∈ L2(Ω), let ϕg and ϕ̃g be the

solutions of problems (6.1) and (6.2), respectively. If σ(1+σ2)Hγ is sufficiently small,
then

|ϕg − ϕ̃g|H1 + σ‖ϕg − ϕ̃g‖L2
≤ CHγ |ϕg|H1+γ ≤ C(1 + σ2)Hγ‖g‖L2

,

where C is a positive constant independent of H and h.

Proof. ¿From Lemmas 6.3 and 6.2, we have

|ϕg − ϕ̃g |H1 + σ‖ϕg − ϕ̃g‖L2
≤ 2σ‖ϕg − ϕ̃g‖L2

+ CHγ|ϕg|H1+γ

≤ C1σ(1 + σ2)Hγ(|ϕg − ϕ̃g|H1 +H(1+γ)/2|ϕg|H1+γ ) + CHγ |ϕg|H1+γ .

Therefore, if σ(1 + σ2)Hγ is sufficiently small, then we have

|ϕg − ϕ̃g|H1 + σ‖ϕg − ϕ̃g‖L2
≤ CHγ |ϕg|H1+γ ≤ C(1 + σ2)Hγ‖g‖L2

.

Lemma 6.5. Let Assumption 5.3 hold. Given u ∈ Ŵ , let w1 = Ã−1R̃DAu, and
w2 = Ã−1(R̃D − JTDHT )Au. If σ(1 + σ2)Hγ is sufficiently small, then

‖wi − u‖L2
≤ C(1 + σ2)Hγ (‖wi − R̃u‖

Λ̃
+ ‖u‖Λ), i = 1, 2,

where C is a positive constant which is independent of H and h.
Proof. Given u ∈ Ŵ , let w1 = Ã−1R̃DAu. We have, for any v ∈ W̃ ,

vT Ãw1 = vT ÃÃ−1R̃DAu = vT ÃÃ−1R̃DR̃
T ÃR̃u =

〈
R̃u, R̃R̃TDv

〉
Ã
.

Let w2 = Ã−1(R̃D − JTDHT )Au. We have, for any v ∈ W̃ ,

vT Ãw2 = vT ÃÃ−1(R̃D − JTDHT )Au =
〈
R̃u, R̃(R̃TD −HJD)v

〉
Ã
.

This shows that for any u ∈ Ŵ ,

ã(wi, v) = ã(R̃u,ED,iv), ∀v ∈ W̃ , i = 1, 2,(6.9)
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where ED,1 = R̃R̃TD and ED,2 = R̃(R̃TD −HJD). Therefore,

ã(wi − R̃u, v) = 0, ∀v ∈ R̃(Ŵ ), i = 1, 2.(6.10)

For any g ∈ L2(Ω), let ϕg and ϕ̃g be the solutions of problems (6.1) and (6.2),
respectively. We denote by Ihϕg the finite element interpolation of ϕg onto the space

Ŵ . From (6.1) and (6.2), we have,

(wi − u, g) = (wi, g) − (u, g) = ã(wi, ϕ̃g) − a(u, ϕg)

= ã(wi, ϕ̃g) − a(u, Ihϕg) − a(u, ϕg − Ihϕg)

= ã(wi, ϕ̃g) − ã(R̃u, R̃Ihϕg) − a(u, ϕg − Ihϕg)

= ã(wi − R̃u, ϕ̃g) − ã(R̃u, R̃Ihϕg − ϕ̃g) − a(u, ϕg − Ihϕg).

¿From (6.10), we know that ã(wi − R̃u, R̃Ihϕg) = 0. Therefore,

|(wi − u, g)| = |ã(wi − R̃u, ϕ̃g − R̃Ihϕg) − ã(R̃u, R̃Ihϕg − ϕ̃g) − a(u, ϕg − Ihϕg)|
≤ C(‖wi − R̃u‖

Λ̃
+ ‖R̃u‖

Λ̃
)(‖ϕ̃g − R̃Ihϕg‖Λ̃

+ ‖ϕg − Ihϕg‖Λ)

≤ C(‖wi − R̃u‖
Λ̃

+ ‖R̃u‖
Λ̃
)(|ϕ̃g − Ihϕg|H1 + σ‖ϕ̃g − Ihϕg‖L2

+

|ϕg − Ihϕg|H1 + σ‖ϕg − Ihϕg‖L2
)

≤ C(‖wi − R̃u‖
Λ̃

+ ‖R̃u‖
Λ̃
)(|ϕ̃g − ϕg |H1 + σ‖ϕ̃g − ϕg‖L2

+

2|ϕg − Ihϕg|H1 + 2σ‖ϕg − Ihϕg‖L2
)

where we have used Lemma 5.9 in the middle. Then, using Lemmas 6.4 and 2.2, we
have that if σ(1 + σ2)Hγ is sufficiently small, then

∣∣(wi − u, g)
∣∣ ≤ C(1 + σ2)Hγ(‖wi − R̃u‖

Λ̃
+ ‖u‖Λ)‖g‖L2

.

Therefore,

‖wi − u‖L2
= sup

g∈L2(Ω)

∣∣(wi − u, g)
∣∣

‖g‖L2

≤ C(1 + σ2)Hγ (‖wi − R̃u‖
Λ̃

+ ‖u‖Λ).

Lemma 6.6. Let Assumption 5.3 hold. Given u ∈ Ŵ , let w1 = Ã−1R̃DAu, and
w2 = Ã−1(R̃D − JTDHT )Au. If σ(1 + σ3)Hγ is sufficiently small, then

‖wi‖K̃ ≤ C(1 +
√

Φi(H,h))‖u‖Λ, i = 1, 2,

where Φi(H,h) are determined as in Lemma 5.5, and C is a positive constant inde-
pendent of H and h.

Proof. We have, for any w ∈ W̃ , ‖w‖2

K̃
− σ2‖w‖2

M̃
= ã(w,w). Then, from (6.9)

and Lemma 5.9, we have, for i = 1, 2,

‖wi‖2

K̃
− σ2‖wi‖2

M̃
= ã(wi, wi) = ã(R̃u,ED,iwi) ≤ ‖u‖Λ‖ED,iwi‖Λ̃

.

Using Lemma 5.6, we have that if σH is less than a certain constant, then

‖wi‖2

K̃
− σ2‖wi‖2

M̃
≤ C

√
Φi(H,h)‖u‖Λ‖wi‖Λ̃

, i = 1, 2.
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Dividing by ‖wi‖K̃ + σ‖wi‖M̃ on both sides and using Lemma 5.9, we have,

‖wi‖K̃ − σ‖wi‖M̃ ≤ C
√

Φi(H,h)‖u‖Λ.

Using this inequality and the triangle inequality, in particular that −‖wi − R̃u‖
M̃

≤
−‖wi‖M̃ + ‖R̃u‖

M̃
, we have

‖wi − R̃u‖
K̃
− σ‖wi − R̃u‖

M̃
≤ ‖wi‖K̃ + ‖R̃u‖

K̃
− σ‖wi‖M̃ + σ‖R̃u‖

M̃

≤ C
√

Φi(H,h)‖u‖Λ,

where we have also used Lemma 5.9 in the last step. From Lemmas 6.5 and 5.4, we
know that if σ(1 + σ2)Hγ is sufficiently small, then

‖wi − R̃u‖
M̃

≤ C(1 + σ2)Hγ(‖wi − R̃u‖
Λ̃

+ ‖u‖Λ)

≤ C(1 + σ2)Hγ
(
(1 + σ)‖wi − R̃u‖

K̃
+ ‖u‖Λ

)
.

Therefore,

‖wi − R̃u‖
K̃

≤ Cσ(1 + σ2)Hγ
(
(1 + σ)‖wi − R̃u‖

K̃
+ ‖u‖Λ

)
+ C

√
Φi(H,h)‖u‖Λ.

If σ(1 + σ3)Hγ is small enough, then we have

‖wi − R̃u‖
K̃

≤ C(1 +
√

Φi(H,h))‖u‖Λ.

In order to confirm Assumption 5.7, we also need the following lemma.
Lemma 6.7. Given u ∈ Ŵ , let z1 = M̃−1R̃DMu and z2 = M̃−1(R̃D−JTDHT )Mu.

Then,

‖zi − u‖L2
≤ CH

√
Φi(H,h) |u|H1, i = 1, 2,

where Φi(H,h) are determined as in Lemma 5.5, and C is a positive constant inde-
pendent of H and h.

Proof. We only give the proof for z2 in the following. Essentially the same
arguments applies to z1. We have

‖z2 − u‖L2
= ‖M̃−1(R̃D − JTDHT )R̃T M̃R̃u− R̃u‖L2

= ‖M̃−1
(
ETD,2 − I

)
M̃R̃u‖L2

= ‖M̃−1P TD,2M̃R̃u‖L2

≤ Ch−d‖P TD,2M̃R̃u‖L2
,

where we have used Lemma 5.8 in the last step, and that P TD,2 = I−ETD,2 = I−(R̃D−
JTDHT )R̃T . Since P TD,2M̃R̃u has a zero average over each subdomain interface edge,
then by using the Poincaré-Friedrichs inequality, and a result similar to Lemma 5.5,
cf. [33, 37, 45, Lemma 4.26], we have

‖z2 − u‖L2
≤ C

H

hd
|P TD,2M̃R̃u|H1 ≤ C

H

hd

√
Φ2(H,h) |M̃R̃u|H1 .

Then using Lemma 5.8 again, we have ‖z2 − u‖L2
≤ CH

√
Φ2(H,h) |R̃u|H1.
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Using Lemmas 6.5, 6.6, and 6.7, we can establish Assumption 5.7.
Lemma 6.8. Let Assumption 5.3 hold. Then Assumption 5.7 also holds.
Proof. Lemma 6.6 proves the last inequality in Assumption 5.7.
To prove the first inequality in Assumption 5.7, we have, by using Lemmas 6.5

and 6.6, that if σ(1 + σ3)Hγ is sufficiently small, then

∣∣∣
〈
wi − R̃u, R̃u

〉
M̃

∣∣∣ ≤ ‖wi − R̃u‖
M̃
‖u‖M ≤ C(1 + σ2)Hγ(‖wi − R̃u‖

Λ̃
+ ‖u‖Λ)‖u‖M

≤ C(1 + σ3)Hγ (1 +
√

Φi(H,h))‖u‖2
Λ,

which proves the first inequality in Assumption 5.7. Similarly, to prove the second
inequality in Assumption 5.7, we have, from Lemmas 6.5 and 6.6, that

∣∣∣
〈
wi − R̃u, wi

〉
M̃

∣∣∣ ≤ C(1 + σ2)Hγ(‖wi − R̃u‖
Λ̃

+ ‖u‖Λ)‖wi‖M̃
≤ C(1 + σ3)Hγ (1 + Φi(H,h))‖u‖2

Λ.

To prove the third inequality, we have, from Lemmas 6.7, 6.6, and 5.4, that

∣∣∣
〈
zi − R̃u, wi

〉
M̃

∣∣∣ ≤ C‖zi − R̃u‖
M̃
‖wi‖M̃ ≤ CH (1 + Φi(H,h))‖u‖2

Λ.

7. Numerical experiments. FETI-DPH methods have been proven successful
and parallel scalable for solving a large class of indefinite problems of the form (2.4).
Applications of FETI-DPH methods include structural dynamics problems, acoustic
problems, etc.; cf. [18, 16, 19].

Here we use the solution of the problem (2.1) to demonstrate the algorithmic scal-
ability of the BDDC algorithms discussed in this paper, and also demonstrate their
spectral equivalence with the FETI-DPH methods. The problem (2.1) is solved on a
2π by 2π square domain with Dirichlet boundary conditions u = 1 on the four sides
of the square. Q1 finite elements are used and the original square domain is decom-
posed uniformly into square subdomains. In the GMRES iteration, the 〈·, ·〉K+σ2M

inner product is used; using L2 inner product gives the same convergence rates. The
iteration is stopped when the residual is reduced by 10−6. To have an idea how the
shift σ2 in (2.4) affects the eigenvalues of the matrix K−σ2M , we give the number of
negative eigenvalues of K − σ2M in Table 7.1, for different meshes with 1089, 10201,
and 20449 degrees of freedom, respectively, and for different shifts σ2 = 100, σ2 = 200,
and σ2 = 400.

Table 7.1

Number of negative eigenvalues of K − σ2M for different meshes and different σ2.

# of degrees of freedom σ2 = 100 σ2 = 200 σ2 = 400

1089 243 445 843

10201 290 575 1109

20449 290 585 1161

In our experiments, we test three different choices of the coarse level primal space
in our BDDC algorithm. In our first test, the coarse level primal variables are only
those at the subdomain corners. No plane wave continuity constraints are enforced
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Table 7.2

Iteration counts for B−1

2
A for H/h = 8 and changing number of subdomains.

Iteration Count
σ2 # subdomains 0-pwa 1-pwa 2-pwa

16 × 16 183 37 14

100 24 × 24 205 20 7

32 × 32 > 300 13 6

16 × 16 > 300 143 112

200 24 × 24 > 300 85 39

32 × 32 > 300 47 28

16 × 16 > 300 > 300 236

400 24 × 24 > 300 > 300 75

32 × 32 > 300 192 49

Table 7.3

Iteration counts for B−1

2
A for 24× 24 subdomains and changing H/h.

Iteration Count
σ2 H/h 0-pwa 1-pwa 2-pwa

8 205 20 7

100 12 188 25 8

16 182 27 8

8 > 300 85 39

200 12 > 300 108 60

16 > 300 114 68

8 > 300 > 300 75

400 12 > 300 > 300 108

16 > 300 > 300 111

across the subdomain edges; this choice of the coarse level primal space does not satisfy
Assumption 5.3. In our second test, in addition to the subdomain corner variables, we
also include one edge average degree of freedom for each subdomain edge, as required
in Assumption 5.3, in the coarse level primal variable space. This edge average degree
of freedom corresponds to the vector determined by the cosine plane wave in (4.1)
with the angle θ chosen perpendicular to the edge. In our last test, we further add to
the coarse level primal space another plane wave continuity constraint on each edge
corresponding to the cosine plane wave in (4.1) with the angle θ chosen tangential
to the edge. In the following tables, we represent these three different choices of the
coarse level primal space by 0-pwa, 1-pwa, and 2-pwa, respectively.

Tables 7.2 and 7.3 show the GMRES iteration counts for the preconditioned op-
erator B−1

2 A, corresponding to different number of subdomains, different subdomain
problem sizes, and the three different choices of the coarse level primal space. With
only subdomain corner variables in the coarse level primal space, the convergence can-
not be achieved within 300 iterations in most cases. With the inclusion of the edge
plane wave augmentations in the coarse level primal space, we see from Table 7.2 that
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Table 7.4

Iteration counts for BDDC operators B−1

1
A, B−1

2
A, and B−1

3
A, and for FETI-DPH with

lumped preconditioner BD,ΓÃΓΓBT
D,Γ

, with Dirichlet preconditioner BD,ΓS̃H
Γ

BT
D,Γ

, and with Dirich-

let preconditioner BD,ΓS̃ΓBT
D,Γ

, for the case σ2 = 200 and 2-pwa.

DPH DPH DPH

# Subs H/h B−1
1 A (ÃΓΓ) B−1

2 A (S̃H
Γ ) B−1

3 A (S̃Γ)

16 × 16 114 97 112 108 115 106

24 × 24 8 40 40 39 39 39 39

32 × 32 29 30 28 28 28 28

8 40 40 39 39 39 39

24 × 24 12 55 54 60 57 58 56

16 70 70 68 68 67 66

the iteration counts decrease with the increase of the number of subdomains for a fixed
subdomain problem size. We see from Table 7.3 that when the number of subdomains
is fixed and H/h increases, the iteration counts increase slowly, seemingly in a loga-
rithmic pattern of H/h. Tables 7.2 and 7.3 also show that the convergence becomes
slower with the increase of the shift σ2 and that the convergence rate is improved by
including more plane wave continuity constraints in the coarse level primal subspace.

In Table 7.4, we compare the GMRES iteration counts of the BDDC operators
B−1

1 A, B−1
2 A, and B−1

3 A with those of the FETI-DPH operators with the lumped

preconditioner BD,ΓÃΓΓB
T
D,Γ, with the Dirichlet preconditioner BD,ΓS̃

H
Γ B

T
D,Γ, and

with the Dirichlet preconditioner BD,ΓS̃ΓB
T
D,Γ, respectively. We see that the corre-

sponding BDDC and FETI-DPH algorithms have similar convergence rates. We also
see that using either subdomain discrete harmonic extension or the extension based
on the shifted operator in the BDDC and FETI-DPH algorithms gives almost the
same convergence rates.
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