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Rigorous statistical analysis of multimodal imaging datasets is challenging. Mass-univariate methods for
extracting correlations between image voxels and outcome measurements are not ideal for multimodal
datasets, as they do not account for interactions between the different modalities. The extremely high
dimensionality of medical images necessitates dimensionality reduction, such as principal component
analysis (PCA) or independent component analysis (ICA). These dimensionality reduction techniques,
however, consist of contributions from every region in the brain and are therefore difficult to interpret.
Recent advances in sparse dimensionality reduction have enabled construction of a set of image regions
that explain the variance of the images while still maintaining anatomical interpretability. The projec-
tions of the original data on the sparse eigenvectors, however, are highly collinear and therefore difficult
to incorporate into multi-modal image analysis pipelines. We propose here a method for clustering
sparse eigenvectors and selecting a subset of the eigenvectors to make interpretable predictions from
a multi-modal dataset. Evaluation on a publicly available dataset shows that the proposed method out-
performs PCA and ICA-based regressions while still maintaining anatomical meaning. To facilitate repro-
ducibility, the complete dataset used and all source code is publicly available.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Modern imaging datasets are increasingly multimodal. Virtually
all modern large-scale imaging studies, even those that concen-
trate on a given modality, such as resting state fMRI [1], include
a variety of imaging measures [2,3]. Although some groups have
reported improvements in classification accuracy in Alzheimer’s
Disease when using multimodal data [4], others have claimed that
multimodal classification does not tend to outperform a single
sensitive test [5]. This trend towards multimodal data presents
challenges in data processing, visualization, and statistical infer-
ence. In particular, the extremely high dimensionality of medical
imaging data presents challenges to classical linear model-based
statistical analyses, which assume that there are more subjects
than measured variables (n > p). Several approaches exist to deal
with the high-dimensional nature of medical imaging datasets.
1.1. Mass-univariate approaches

One of the most widely used methods to perform statistical
analyses on medical images is to use voxel-based morphometry
(VBM) [6]. VBM performs a statistical test on each voxel in the
image, producing a spatial map that describes how closely the val-
ues at a given voxel are correlated with an outcome measure. The
massive number of multiple comparisons conducted when using
VBM necessitate appropriate corrections [7]. In addition, because
brain function is spread over regions larger than a single voxel
[8], multivariate approaches are more naturally suited to leverag-
ing the spatially distributed information contained in medical
imaging data [9].

When examining multimodal data, univariate approaches are
further restricted because they do not provide insight into the rela-
tionships between the various modalities. One way of using uni-
variate approaches to analyze multimodal data is to perform
separate mass-univariate analyses on each modality and examine
the degree of spatial overlap between the resulting statistical maps
[10–12]. A drawback of this method is that spatial overlap alone
does not give insight into the subject-wise interactions or
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correlations of the various modalities. To take a somewhat extreme
example, if half the experimental population have increased corti-
cal thickness as compared to controls and the other half have
increased BOLD activation, a spatial map may show overlapping
significant areas, even though no individual subject actually has
increased cortical thickness and increased BOLD activation. To pro-
vide greater insight into the biological mechanisms underlying
observed changes, several studies have begun investigating multi-
variate approaches to multimodal data [11,13,14], looking at, for
example, the correlation between cortical thickness and BOLD acti-
vation in a given region.

One challenge of integrating large multimodal datasets is the
difficulty in visualizing and interpreting the results, especially
when performing multivariate analyses of data. Interpretation of
multivariate data is often made easier by sparse methods, which
ensure that only a small part of the data set is used for predicting
an outcome variable. Sparse methods have enjoyed a resurgence in
popularity in recent years, with several groups proposing sparse
methods tuned for neuroimaging data [15–24]. Applying sparse
techniques to multi-modal data enables specific and biologically
interpretable statements to be made about data; for example,
‘‘Decreased cortical thickness in the left parietal lobe is correlated
with decreased perfusion in the left and right parietal lobes, and
this network together predicts a decrease in verbal ability.’’

1.2. Data-driven dimensionality reduction

Many clinical studies using multimodal imaging data average
image values over predefined regions of interest (ROI’s) to reduce
the dimensionality of the data so that it will be more amenable
to standard statistical analyses. Although this approach may be
ideal if the ROI’s are already known and have anatomically mean-
ingful boundaries, this is not ideal for exploratory analyses which
have minimal prior knowledge. Traditionally, linear regression
from a high-dimensional dataset is performed after a dimensional-
ity reduction step, such as principal component analysis (PCA) [25].
However, PCA-derived eigenvectors have global support and there-
fore do not provide anatomical specificity. Sparse techniques can
provide more local specificity. In particular, a recently introduced
sparse dimensionality reduction technique, ‘‘eigenanatomy,’’ has
proven to provide greater power to detect group differences than
either voxel-based morphometry (VBM) [26] or pre-defined ROI’s
[27] while maintaining anatomical interpretability. Here, we
extend the eigenanatomy approach to a multi-modal setting.
Although the sparse eigenvectors are orthogonal in the image
space, orthogonality is not enforced on the low-dimensional coef-
ficients generated by projecting the imaging data onto the sparse
eigenvectors. Therefore, care must be taken to prevent excessive
collinearity among the predictor variables. We demonstrate that
even with collinearity in the predictor variables, our method of
extending eigenanatomy to multi-modal datasets produces a more
accurate prediction of age in a pediatric population than principal
component regression, independent component regression, or
regression on average values within regions defined by the AAL
atlas.

The eigenanatomy objective function is not new to this work.
Here, we focus on the practical challenges, including validation,
interpretation, and visualization of predictive models, involved in
multimodal data analysis, and demonstrate the advantages of the
eigenanatomy framework for multi-modal neuroimaging studies
as compared to either classical dimensionality reduction tech-
niques or predefined regions of interest (ROI’s). The release of all
data and code used to generate the paper will facilitate the use
of this technique as a template for future studies, as well as
encourage reproduction of similar evaluations with different
datasets.
2. Methods

2.1. Reproducibility

To facilitate the use of this study as a template for other multi-
modal population studies, we have attempted to make it as repro-
ducible as possible. All the data is available from an open-access
data repository. The paper itself is written using the R package
knitr [28], which facilitates on-the-fly production of figures from
data, enhancing reproducibility and documenting all data process-
ing steps. The full code for producing the paper, including raw data
and code for producing figures, is available from https://bitbuc-
ket.org/bkandel/multimodaleanat.
2.2. Dimensionality reduction techniques

Dimensionality reduction is a technique to reduce the complex-
ity of input data into a relatively small number of summary mea-
sures. Linear dimensionality techniques can be written as a
matrix factorization problem. We assume the input data is given
in an n� p input matrix X, where n is the number of observations
or subjects and p is the number of variables associated with each
observation. In the context of medical imaging, n typically ranges
from a few tens to a few hundred, and p is on the order of
103—106, depending on the size of images. Dimensionality reduc-
tion seeks to find a factorization of X into an n� k coefficient matrix
U and a p� k loading or eigenvector matrix V so that X � UVT. The
most well-established method for dimensionality reduction is
principal component analysis (PCA), which finds an orthogonal
matrix (i.e. VTV ¼ 1) that projects the input matrix to a lower-
dimensional subspace. More recently, independent component
analysis (ICA, e.g. [29]) has become widely used in the neuroimag-
ing community. ICA seeks a decomposition of X in which the com-
ponents are independent, which is a stronger condition than
orthogonality.

One drawback of standard PCA and ICA is that the eigenvectors
often cover the entire input matrix, meaning that each entry in the
coefficient matrix is a weighted average of all the voxels in the
image. This makes interpretation of the output difficult for two
related reasons. First, the lack of spatial specificity of the eigenvec-
tors makes it difficult to use the coefficients to investigate anatom-
ically-informed biological hypotheses. For example, it is impossible
to use the coefficients from a PCA decomposition to look at the
relation between left precuneal atrophy and age. In addition,
because the eigenvectors have both positive and negative compo-
nents, interpreting the weights in a linear regression model that
relates the coefficients to an outcome measure is not intuitive. This
is for two reasons. First, the PCA eigenvectors can contain negative
weights, even if the input data is strictly positive, as is the case in
cortical thickness, perfusion, and fractional anisotropy (FA) images.
If the weight of a given PCA coefficient in a linear model is positive
but the corresponding entry in the eigenvector is negative, it fol-
lows that an increase in the input matrix corresponds to a decrease
in the outcome variable. Second, this problem is compounded by
the overlapping nature of the eigenvectors: Because a given brain
region can contribute positively or negatively to each eigenvector,
it is very difficult to go back from the coefficient weights to the
biological meaning of the weight. Furthermore, interpreting the
eigenvectors themselves without accounting for the weights is
ill-advised [30], as the eigenvectors can be confounded by biases
in the data in non-obvious ways [31]. Therefore, although PCA
may be used for predicting age in unseen data, it is not as useful
for testing biological hypotheses.

Sparse dimensionality reduction techniques [32,33] deal with
the problems of global support of PCA eigenvectors by enforcing
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a sparsity constraint on the matrix decomposition. The sparseness
forces the eigenvectors to have only a few non-zero entries, thus
making the eigenvectors more amenable to anatomically-specific
hypothesis testing. Eigenanatomy [26,34] augments these con-
straints with smoothness and cluster thresholds, which ameliorate
the inherent instability of sparse solutions [35]. In addition, eige-
nanatomy requires the eigenvectors to be unsigned, thereby elim-
inating the difficulty of interpreting linear model weights: A
positive weight in a linear model means that an increase in the pre-
dictor variable corresponds to an increase in the outcome variable
and vice versa.

Mathematically, the eigenanatomy objective function is

argmin
U;V

kX� UV>k2
2 þ smoothðG�ðVÞÞ þ clusterðVÞ

subject to kVk0 < c;
V � 0

ð1Þ

where c is the desired level of sparseness, the ‘0 ‘‘norm’’ operator
k � k0 is the number of non-zero entries in the argument, and G� is
the manifold in image space representing a geometric object [36].
Although optimizing over an ‘0 penalty is an NP-hard problem,
thresholded gradient techniques have been proposed for sparsity-
constrained optimization problems [37], and we adopt the
conjugate gradient version used in [26]. We use the open-source
eigenanatomy decomposition function sparseDecom as imple-
mented in the ANTsR package (github.com/stnava/antsr).

One challenge with sparse dimensionality reduction techniques
is that the projections on the sparse eigenvectors are not orthogo-
nal [38], which can lead to collinearity in the regressors. To deal
with this problem, we first perform an eigendecomposition using
very sparse eigenvectors (50 eigenvectors, each covering 2% of
the image), and then use hierarchical graph clustering to cluster
eigenvectors into fewer, but larger, eigenvectors. This strategy of
oversegmenting into ‘‘supervoxels’’ and then clustering has proven
fruitful in image segmentation [39]. Eigenvectors which, when the
population of images is projected onto them, have correlated val-
ues are clustered together into communities. This clustering
reduces the degree of collinearity between the eigenvectors. The
clustering stops when the graph density of the original eigenvec-
tors reaches a pre-set threshold. We have found that a graph den-
sity of 0.10 is a good value for maintaining anatomical specificity
and predictive accuracy. We used the igraph package for
graph-based community construction [40]. For PCA, we used the
princomp function in R, and we used the fastICA package [29]
for ICA computations.
2.3. Multi-modal data visualization and integration

One key advantage of sparse dimensionality reduction tech-
niques is that they facilitate incorporation of multiple modalities
into a single interpretable multivariate model. In our experiments,
we limit ourselves to linear and generalized linear models, as the
coefficients and p-values of these models are well-established
and can be interpreted using mature, standard statistical tech-
niques. The predictor variables for the linear models are the coef-
ficient scores for the various decomposition techniques, obtained
by projecting the original image space data onto the eigenvectors
to obtain an n by k matrix, where n is the number of subjects
and k is the number of eigenvectors.

To choose which of the projections we include in the final linear
model relating imaging data to an outcome, we use a model selec-
tion. The sparsity induced by model selection complements the
sparsity of the individual eigenvectors, allowing multiple eigenvec-
tors to enter the model if they each contribute to the outcome but
still maintaining the anatomical interpretability afforded by the
spatial sparsity of the eigenvectors. Because imaging data is gener-
ally highly correlated between regions, we use the VIF regression
[41] model selection technique, which explicitly accounts for cor-
relation among predictors. Because the focus of the study is on fea-
ture generation and not feature selection, we fix the model
selection method and apply it to all decomposition techniques.

Visualization of multivariate regressions is challenging, espe-
cially when considering multiple input and multiple output vari-
ables. We use the Sankey diagrams from the d3 library for
visualizing correlations between input and output variables. These
diagrams permit quick and intuitive visual exploration of the cor-
relation between each input and output variable.

Because multivariate models are more prone to overfitting than
univariate models, a rigorous training–testing split of data is nec-
essary to assess generalizability of results. Two steps are necessary
to interpret an optimized multivariate linear model. First, the
regression weights can be interpreted. A cautionary note is in order
here: Interpretation of regression coefficients in multivariate linear
regression is not trivial and is subject to confounding factors and
multicollinearity artifacts, even when using a model selection
technique like VIF that attempts to minimize collinearity between
predictors. Specifically, the regression coefficients from a multivar-
iate linear model correspond to the effect of a given regressor keep-
ing all other regressors constant. Second, statistical assessment of
the significance of the model can be performed by applying the
model to unseen testing data and evaluating the performance of
the model. Note that because model selection is performed in the
training data, naïvely looking at the p-value of the model in the
training data is inappropriate and would constitute statistical
‘‘double-dipping’’ unless special care is taken [42]. The ability to
evaluate a model in unseen testing data is a key advantage to pre-
dictive models as opposed to correlation-based approaches and is
valuable even if predicting the outcome from neuroimaging data
is not clinically useful.

2.4. Clinical data

We use the Pediatric Template of Brain Perfusion dataset, which
contains multimodal data for normally developing pediatric sub-
jects. The full pediatric dataset is available at http://figshare.com/
articles/The_Pediatric_Template_of_Brain_Perfusion_PTBP_/923555.
Briefly, the dataset consists of 133 subjects, 82 females and 83
males, ages 7.07–17.99, mean 12.48 years. Cohort selection aimed
to match the demographic distribution of children in the United
States, based on US census data, for race, ethnicity, gender, and
family income. Distributions of age and income with respect to
sex are shown in Fig. 1.

2.5. Image acquisition

All MRI experiments were performed on a Siemens 3T TIM Trio
scanner. For the T1-weighted acquisition, Magnetization-Prepared
Rapid Acquisition Gradient Echo (MPRAGE) images were acquired
using a 3D inversion recovery sequence with TR/TE/TI = 2170/
4.33/1100 ms. The resolution is 1x1x1mm3 with a matrix size of
256 � 256 � 192. The flip angle = 7� and total scan time was
8 min and 8 s. For perfusion imaging, pseudo continuous arterial
spin labeled (pCASL) images were acquired using gradient-echo
echo-planar imaging (EPI) with TR/TE = 4000/12 ms. The resolu-
tion was 3.125 � 3.125 � 6 mm (5 mm thickness with a 1 mm
gap) over a 64 � 64 � 24 matrix. 40 label/control pairs were
acquired. Generalized autocalibrating partially parallel acquisition
(GRAPPA) was used with an acceleration factor of 2. Labeling dura-
tion was 1.5 s and the post-labeling delay was 1.2 s. Total imaging
time was 5 min and 30 s. Diffusion weighted images were acquired
with single-shot spin-echo EPI with TR/TE = 9500/87 ms. A single
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b = 0 volume was acquired along diffusion weighted images for 30
directions with b-value = 1000. The resolution was 2 � 2 � 2 mm
with a matrix size of 128 � 128 � 75 voxels, with a flip angle of
90�. Total acquisition time was 11 min with two acquisitions.
2.6. Image preprocessing

Our image processing pipeline is based on Advanced Normaliza-
tion Tools (ANTs) and the ANTsR package, which provides an inter-
face from the R computing environment to the ANTs image
processing utilities. We used the ANTs template-building scripts
to construct an unbiased template from the subject population
[43]. Although template-building methods have traditionally been
used for single-modality data, we leverage recent advances in tem-
plate-building techniques to construct a multi-modal atlas [44,45].
AAL [46] and JHU [47] labels and priors for brain extraction and tis-
sue segmentation are warped from pre-existing template space to
the custom template using a multi-atlas label fusion (MALF)
approach [48]. We generated a six-tissue segmentation: Cerebro-
spinal fluid (CSF), cortical gray matter (GM), white matter (WM),
deep GM, brainstem, and cerebellum. Full details and code for con-
structing multi-modal templates, along with sample data, can be
obtained from github.com/ntustison/TemplateBuildingExample.

For each subject’s T1 image, we performed bias correction [49],
brain extraction, normalization to the template [43], prior-based
segmentation [50], and cortical thickness calculation [51]. The
T1-based cortical thickness measurement pipeline is based on
the antsCorticalThickness.sh script [52]. Diffusion process-
ing, including fractional anisotropy (FA) calculation, is performed
using Camino [53] as incorporated into ANTs [54]. pCASL images
were processed using a robust regression approach [55,56] that
regressed tag from untagged images. The M0 image was obtained
by averaging the non-tag images, and was used as a reference for
motion correction. Motion correction was performed using the
antsMotionCorr function in ANTs, and motion parameters (three
for rotation and three for translation) were regressed out as nui-
sance variables. Physiological nuisance parameters were estimated
using the CompCor approach, which estimates physiological noise
by computing an eigendecomposition of the high-variance regions
in an image [57]. Full details are available in the open-source script
at https://raw.github.com/stnava/ANTs/master/Scripts/antsASL-
Processing.sh. The blood T1 value was adjusted for age and gender
as T1 = (2115.6 � 21.5 ⁄ age � 73.3 ⁄ sex) ms, where female sex
was set to 0 and male was set to 1, as suggested in [58].

3. Results

3.1. Template and average images

The population-specific template and the average of all images
warped to the template are shown in Fig. 2. As expected, cortical
thickness in the medial temporal and medial frontal is relatively
high, and cortical thickness in the occipital lobe and motor cortex
is relatively low [59]. Perfusion in the cortex is higher than in white
matter or CSF, and the higher perfusion in the deep gray matter
structures is clearly visible, consistent with existing literature
[60]. The average FA image shows higher FA in the corpus callo-
sum, with lower FA in the gray matter.

3.2. Eigenanatomy decompositions

We obtained eigenanatomy-derived eigenvectors for the popu-
lations of cortical thickness, CBF, and FA images. The correlation
matrix of all the eigenvectors is shown in Fig. 4. Cortical thickness
tended to be more correlated with CBF than with FA, and each
modality showed strong intra-modality correlations. To help alle-
viate the collinearity of the predictors, we clustered the eigenvec-
tors to create fewer, but larger, eigenvectors. The correlations
between these clustered eigenvectors are shown in Fig. 4. Cluster-
ing significantly reduced the collinearity between the eigenvectors,
especially for cortical thickness and FA. Because of the reduced col-
linearity, we used the clustered eigenvectors in our regressions.

A sample clustered eigenanatomy-derived eigenvector is shown
in Fig. 5. The eigenanatomy eigenvector covers primarily the pre-
cuneus. On the other hand, the PCA and ICA vectors have global
support. The eigenanatomy vector also has only positive values,
whereas the PCA and ICA vectors each have positive and negative
components.

3.3. Univariate data exploration

Before looking at the multivariate regression, it is helpful to
look at univariate correlations between the eigenanatomy regions
and the outcome variable. We use a Sankey diagram to show the
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Fig. 2. From top to bottom: Population-specific template; average cortical thickness image for all subjects; average perfusion image; average fractional anisotropy (FA) image
for all subjects.
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Fig. 5. Sample eigenanatomy, PCA, and ICA eigenvectors. Positive components are in blue, with negative components in red. Eigenanatomy returns unsigned components,
facilitating interpretation of regression coefficients. The spatial localization of eigenanatomy enables testing spatially specific neuroanatomical hypotheses.
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links between age and the various eigenanatomy regions (Fig. 3).
Although many regions are correlated with age, not all survive
FDR correction.

3.4. Regression analysis in training data

We ran a VIF regression-based model selection strategy to
select projections for prediction of age from neuroimage data.
The model selection, when performed on the decomposition-based
methods (Eigenanatomy, PCA, and ICA), retained only thickness
and FA projections, but did not retain CBF projections; for the
pre-defined ROI’s, thickness, CBF, and FA values were all retained.
With all other regressors held constant, increases in thickness in
bilateral anterior precuneus were weakly correlated with increased
age, and decreases in thickness in bilateral posterior precuneus and
cingulate were more strongly correlated with increases in age.
Increases in FA in corpus callosum were correlated with increasing
age, whereas with all other regressors held constant, decreases in
FA in the inferior longitudinal fasciculus were correlated with
increases in age. The eigenanatomy eigenvectors are rendered in
Fig. 7. Anatomically specific descriptions and coefficient interpre-
tation are not possible with PCA and ICA eigenvectors.

3.5. Evaluation on testing data

To verify the generalizability of the regression to unseen data,
we predicted the age of half the data and evaluated the fit. The
eigenanatomy predictors outperformed the PCA and ICA predic-
tors, as well as the AAL/JHU regions (Fig. 6). Although all three
methods produced a highly significant fit, the eigenanatomy pro-
jections gave greater correlation between true and predicted age,
lower root mean squared error, a lower p-value for the correlation
(Table 2) slope relating predicted to true age closer to unity.

3.6. Comparison to non-linear models

To examine the influence of regression method on prediction
accuracy, we constructed a random forest predictor to relate eige-
nanatomy, PCA, and ICA projections, as well as AAL and JHU regions,
to age. We compared the prediction using both the VIF regression-
based model selection technique and using all of the projections.
Random forests decreased the mean absolute error (MAE) and
increased correlation for all methods, but eigenanatomy projections
still outperformed PCA and ICA projections and predefined ROI’s.
Giving all the data to the random forest resulted in more accurate
predictions than giving only the regions selected using the VIF
model selection technique. Predicted vs. true age is plotted in
Fig. 8, with quantitative values in Table 3.
4. Discussion

We have presented here extensions to a sparse dimensionality
reduction method that enable biologically interpretable predic-
tions from high-dimensional multi-modal data that requires mini-
mal prior knowledge. We demonstrated how incorporating a
variety of techniques, including over-segmentation and then clus-
tering of eigenvectors and variance inflation factor regression, min-
imize the impact of collinearity of regressors on prediction
accuracy, making these methods suited for multi-modal image
analysis problems.

4.1. Interpretation of regression

One major advantage of sparse matrix decompositions for
multi-modal image analysis is that the individual regressors in a
linear model can be anatomically interpreted. Our results here
for cortical thickness agree with standard results in developmental
neuroscience that cortex generally thins throughout development
[61]. The observation that increased FA in the corpus callosum is
strongly correlated with increasing age is also in consonant with
previous research [62]. Similarly, although the FA in the inferior
longitudinal fasciculus (ILF) increases with age, it increases at a
lower rate than the corpus callosum [62], and so when corrected
for the corpus callosum, the regression coefficient becomes
negative.

4.2. Collinearity of sparse eigenvectors

One confounding issue in sparse matrix decompositions is that
projections onto eigenvectors are not generally constrained to be
orthogonal [38]. This lack of orthogonality can complicate regres-
sion from sparse eigenvectors, as the collinearity of the regressors
makes the design matrix ill-conditioned and can confound the
regression coefficients. Variance inflation factor (VIF) regression
[41] ameliorates this problem somewhat by explicitly choosing a
regressor set that minimizes covariance, but cannot change the
pre-existing collinearity among the regressors. Clustering the
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Fig. 6. Age prediction on testing data using eigenanatomy, PCA, and ICA projections, and using AAL regions. Quantitative statistics can be found in Table 2.

Fig. 7. Eigenanatomy regions retained for prediction of age. Thickness predictors
are blue; FA predictors are green.
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sparse eigenvectors based on their correlation further helps to
minimize this issue, but does not completely resolve it. In particu-
lar, the CBF values appeared to be highly collinear, even after clus-
tering the eigenvectors. This collinearity is a result of the greater
degree of collinearity in the data, and resolving this issue for CBF
specifically is an important issue. Because CBF is generally so
correlated across the brain, several groups have divided each
subject’s CBF values by the mean of the whole brain CBF to create
a relative CBF measure [63]. Although relative CBF may not be as
predictive of age as raw CBF is, it may give better spatial discrim-
ination of developmental trends and so may generate more
meaningful spatial information.

4.3. Sparsity in multi-modal image analysis

Although sparsity can be a useful penalty in medical image
analysis, it can also be overused and misinterpreted. For example,
if a signal is not sparse and is instead distributed throughout the
brain, enforcing sparsity on a solution can be misleading by imply-
ing that only certain parts of the brain contain signal. This is due to
the fundamental nature of sparse solutions: By discarding redun-
dant information, they generate a minimal set of information that
can be used to predict the outcome – even if other parts of the



Table 1
Regression analysis for prediction of age in training data using eigenanatomy, PCA, and ICA projections.

Method Projection Estimate Std. error t value Pr(>—t—) Main positions

Eigenanatomy (Intercept) 10.508 4.288E+00 2.45 1.657E�02
ThickEanatProj01 0.547 6.618E�01 0.827 4.110E�01 Bilateral anterior precuneus
ThickEanatProj03 �2.729 6.399E�01 �4.26 5.711E�05 Bilateral posterior precuneus
ThickEanatProj05 �1.890 8.070E�01 �2.34 2.180E�02 Cingulate
FAEanatProj01 48.323 6.869E+00 7.03 7.559E�10 Corpus callosum
FAEanatProj05 �14.994 4.105E+00 �3.65 4.742E�04 Inferior longitudinal fasciculus

PCA (Intercept) 12.659 2.439E�01 51.9 1.126E�61
ThickPCAProj03 �0.023 5.759E�03 �3.93 1.838E�04
ThickPCAProj04 �0.022 5.962E�03 �3.74 3.495E�04
FAPCAProj02 0.286 6.414E�02 4.46 2.799E�05
FAPCAProj05 �0.275 7.749E�02 �3.55 6.690E�04

ICA (Intercept) 1.753 1.531E+00 1.14 2.557E�01
ThickICAProj10 �0.036 8.731E�03 �4.11 9.447E�05
FAICAProj08 �0.290 7.515E�02 �3.86 2.286E�04

AAL/JHU (Intercept) 11.715 4.685E+00 2.5 1.452E�02
ThickAALLabel11 �2.295 8.341E�01 �2.75 7.398E�03 Left lateral frontal
CBF.AALLabel10 0.005 1.549E�02 0.354 7.242E�01 Right orbitofrontal
CBF.AALLabel28 �0.083 2.298E�02 �3.63 5.118E�04 Right gyrus rectus
FA.JHULabel17 31.026 6.622E+00 4.69 1.181E�05 Internal capsule

Table 2
Prediction performance (correlation, mean absolute error, and p-value for correlation)
in testing data for predicting age from eigenanatomy, PCA, and ICA projections, and
AAL/JHU regions. Predictions using multimodal data outperformed predictions using
one modality in every instance, and eigenanatomy projections performed the best
overall.

Method Correlation MAE p-Value

1 Eigenanatomy 0.772 1.59 1.40e�17
2 PCA 0.650 1.89 2.98e�11
3 ICA 0.496 2.16 1.84e�06
4 AAL/JHU Labels 0.691 1.74 5.07e�13
5 Eigenanatomy, Thickness 0.598 1.88 2.29e�09
6 PCA, Thickness 0.585 1.96 6.17e�09
7 ICA, Thickness 0.406 2.29 1.40e�04
8 AAL Labels, Thickness 0.221 2.50 4.50e�02
9 Eigenanatomy, CBF 0.529 2.08 2.66e�07
10 PCA, CBF 0.585 1.96 6.17e�09
11 ICA, CBF 0.178 2.52 1.08e�01
12 AAL Labels, CBF 0.494 2.04 2.09e�06
13 Eigenanatomy, FA 0.611 2.03 8.32e�10
14 PCA, FA 0.669 1.97 4.84e�12
15 ICA, FA 0.565 2.04 2.60e�08
16 JHU Labels, FA 0.617 1.84 5.16e�10
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brain also contain similar information. Put another way, there is
currently no standard method for setting the sparsity parameter
in a sparse decomposition. The dependence of the solution on
the sparsity penalty has long been known [64]. Although we do
not solve this issue here, clustering the sparse eigenvectors allows
the eigenvectors to adapt naturally to a grouping that allows differ-
ent levels of sparsity for different regions, thereby making the
sparsity penalty less arbitrary.

With this caveat, though, sparsity is a useful tool for multi-
modal image analysis problems. Because information is virtually
always shared between different modalities, the reason to incorpo-
rate more than one modality into an analysis problem is to high-
light the unique information given by one modality that is not
given by another modality, ignoring the shared information
between the modalities. This emphasis on extricating the unique
information from the various modalities while ignoring shared
information between the modalities naturally leads to sparse
methods as a way to produce predictive models. In particular,
while cortical thickness may measure the number of cells in the
cortex, CBF measures cortical perfusion, while FA is a measure of
white matter tract integrity. Understanding the unique compo-
nents of these measures may give greater insight into how differ-
ent neurobiological mechanisms develop and relate to each other.
4.4. Linear vs. non-linear models

One important tradeoff when constructing predictive models is
the expressive power of the model vs. the interpretability of the
output of the model. In particular, non-linear predictive models
such as random forests [65], while achieving state-of-the-art clas-
sification accuracy, do not produce directly interpretable models.
Although some attempts have been made at interpreting the pre-
diction model, including a variable importance score [65], the
model still does not have the direct interpretation and statistical
significance theory attached to linear regression coefficients. The
method proposed for selecting a subset of eigenanatomy regions
and then feeding those projections into a random forest attains a
compromise solution: The predictors used by the random forest
correspond to discrete anatomical regions, but the way those
regions are combined does not have a simple interpretation. Still,
this level of interpretability may be sufficient for some research
questions, and gives more insight into the prediction mechanism
than feeding all brain regions into a random forest.

4.5. Comparison to state-of-the-art results

Prediction of age from medical imaging data has drawn a signif-
icant amount of attention in recent years [66–70]. Most of these
methods use smooth, non-linear models to predict age from imag-
ing data, so the results from the random forest predictor are most
relevant to comparing against this work. Comparing directly
against previous work is complicated by a variety of factors. The
age range of the subjects can influence the accuracy of the predic-
tion, as the prediction is generally more accurate for younger sub-
jects. In addition, different methods use different combinations of
modalities. Furthermore, the studies that produced the highest
accuracy used training datasets of several hundred to nearly a
thousand subjects [67,68], whereas our database included a train-
ing set of only 82 subjects. Even with these caveats, though, the
random forest achieved a mean absolute error (MAE) of 1.27,
which is comparable to the MAE of 1.1 reported in other studies.

4.6. Drawbacks of the framework

Although the framework for multi-modal image analysis shows
promise as compared to standard dimensionality reduction tech-
niques, it still has some drawbacks. Even with well-behaved data,
interpreting coefficients of multivariate linear regressions is not
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Fig. 8. Age prediction on testing data using eigenanatomy, PCA, and ICA projections,
and AAL regions as input to random forests. Random forests achieved lower error
than linear models at the expense of model interpretability. Quantitative descrip-
tions of the predictions are found in Table 3.

Table 3
Prediction performance (correlation, mean absolute error, and p-value for correlation)
in testing data, using random forests, for eigenanatomy, PCA, and ICA projections, and
AAL regions. Predictions using all data were compared to predictions using the
variance inflation factor (VIF) regression-selected predictors.

Method Correlation MAE p-Value

1 Eigenanatomy, VIF-selected predictors 0.849 1.36 <1e�16
2 Eigenanatomy, all data 0.867 1.27 <1e�16
3 PCA, VIF-selected predictors 0.693 1.62 4.1e�13
4 PCA, all data 0.784 1.44 <1e�16
5 ICA, VIF-selected predictors 0.654 1.82 2e�11
6 ICA, all data 0.832 1.36 <1e�16
7 AAL/JHU regions, VIF-selected predictors 0.724 1.56 1.1e�14
8 AAL/JHU regions, all data 0.849 1.29 <1e�16
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as straightforward as interpreting coefficients of univariate regres-
sions. In particular, because the coefficients of a multivariate
regression are corrected for the effects of all the other covariates,
careful attention must be paid to the whole model, and each indi-
vidual regressor cannot be viewed in isolation.

Another drawback of sparse decomposition techniques is the
instability of the solutions, as demonstrated by the different
regions selected by the AAL/JHU regions and the eigenanatomy
decomposition (Table 1). Instability of sparse learning techniques
is a fundamental characteristic of sparsity in general [35]. Although
bootstrapping-based techniques have been used to estimate the
stability of sparse regression methods [20], extending this tech-
nique to achieve stable multi-component sparse dimensionality
reduction is a significant open problem in the field.
5. Conclusion

We have proposed a method for incorporating eigenanatomy
decompositions into a multi-modal data analysis pipeline. We have
proposed methods for dealing with collinearity of sparse predic-
tors. In addition, we have demonstrated that the sparse eigende-
composition method outperforms traditional PCA and ICA-based
dimensionality reduction methods for predicting age from imaging
data, while maintaining anatomical interpretability of the regres-
sion. This method is suited to extracting the relevant and unique
information from multi-modal imaging datasets.
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