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Abstract

What is the right statistical theory for scientific practice? What are
the distinctive dynamics of social learning and conformity? And what
can disagreement between theoretical models teach us? This dissertation
consists of essays that engage just these questions.

Chapter 1 examines explanations for a broadly maligned research
practice, HARKing, which has been called one of the ‘four horsemen’
of the replication crisis in the social and biomedical sciences (alongside
publication bias, low statistical power, and p-hacking). In it, I demonstrate
how classical accounts of why HARKing undermines the reliability of
scientific findings must be wrong, and proffer what I take to be the
correct, Bayesian account for when and why HARKing is in fact bad.
Further, I consider the implications of all this for a prominent proposal
for methodological reform in the context of the replication crisis.

Chapter 2 consists of more exploratory work, produced in collaboration
with my colleague Cole Williams. We propose a simple model of social
learning on networks under the influence of conformity bias. In our model,
heterogeneous agents express public opinions where those expressions are
driven by the competing priorities of accuracy and of conformity to one’s
peers. Agents learn, by Bayesian conditionalization, from private evidence
from nature, and from the public declarations of other agents. Our key
findings are that networks that produce configurations of social relation-
ships that sustain a diversity of opinions empower honest communication
and more accurate beliefs and that the networks that do this best turn
out to be those which are both less centralized and less connected.

Finally, chapter 3 consists of elucidating the relationship between
two key models in evolutionary game theory—the replicator dynamics and
Moran process. These models are connected by a mean-field relation-
ship—the former describes the expected behavior of the latter. However,
there are conditions under which their predictions diverge. I demonstrate
that the divergence between their predictions is a function of standard
techniques used in their analysis, and of differences in the idealizations
involved in each. My analysis reveals problems for stochastic stability
analysis in a broad class of games. I demonstrate a novel domain of
agreement between the dynamics and consider a simple moral for scientific
modeling.
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HARKing: from Misdiagnosis to Misprescription 1

Abstract

The practice of HARKing—hypothesizing after results are known—is
commonly maligned as undermining the reliability of scientific findings.
There are several accounts in the literature as to why HARKing undermines
the reliability of findings. We argue that none of these is right and that
the correct account is a Bayesian one. HARKing can indeed decrease
the reliability of scientific findings, but it can also increase it. Which
effect HARKing produces depends on the difference of the prior odds of
hypotheses characteristically selected ex ante and ex post to observing data.
Further, we show how misdiagnosis of HARKing can lead to misprescription
in the context of the replication crisis.

1.1 Introduction

In a 2019 article in Nature, the author, psychologist Dorothy Bishop, describes
HARKing as one of “the four horsemen of the reproducibility apocalypse,” along
with publication bias, low statistical power, and p-hacking (Bishop, 2019, p. 435).
The practice of HARKing—hypothesizing after results are known—is commonly
maligned as undermining the reliability of scientific findings.! There are several
accounts in the literature as to why HARKing undermines the reliability of
findings. Scholars have argued that HARKing undermines frequentist guarantees

!See, for example, Kerr (1998); John et al. (2012); Rubin (2017); and Murphy and Aguinis
(2019).
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of long-run error control, that it violates a broadly Popperian picture of science,
and misrepresents hypotheses formulated ex post to observing the data as those
formulated ex ante. We argue that none of these accounts correctly identify
why HARKing can undermine the reliability of findings, and that the correct
account is a Bayesian one.

We will show that HARKing can indeed decrease the reliability of scientific
findings, but that there are conditions under which HARKing can actually
increase the reliability of findings. In both cases, the effect of HARKing on
the reliability of findings is determined by the difference of the prior odds of
hypotheses characteristically selected ex ante and ex post to observing data. To
make this precise, we employ a standard model of null hypothesis significance
testing in which we provide necessary and sufficient conditions for HARKing to
decrease the reliability of scientific findings.

The aim of this paper is not to defend the practice of HARKing. Insofar
as HARKing involves disclosing less than complete information to those who
wish to learn and act based on scientific findings, it is clearly epistemically
undesirable.? HARKing can also be ethically and pedagogically undesirable,
insofar as it involves intentional deception or presenting an inaccurate model of
science to students. Rather, the aim here is to clarify the relationship between
HARKing and the reliability of scientific findings.

Understanding HARKing is important on at least two counts. Historically,
HARKing is closely tied to questions regarding the relationship between pre-
diction and accommodation. These questions have engaged philosophers at
least as early as Mill (1843), were made central in the philosophy of science by
Popper (1934) and continue to be of concern in contemporary discussions in
scientific epistemology.® As mentioned, HARKing is also imputed to be among
the questionable research practices contributing to the crisis of replication in the
social and biomedical sciences, which has rightly become a subject of interest to
philosophers of science.* A better understanding of HARKing sheds light on
both these issues.

The strategy for demonstrating that standard accounts for why HARKing
leads to unreliable findings are incorrect is as follows. Each account, ¢, claims that

2For precise, decision-theoretic formulations of this observation see the value of knowledge
theorems of Savage (1954), Good (1967), and Skyrms (1990, Ch. 4).

3See Hitchcock and Sober (2004); Douglas and Magnus (2013); Mayo (2014); Barnes
(2014); Worrall (2014) and (Schurz, 2014).

4For excellent philosophical examinations of social and epistemic issues involved in the
replication crisis see Romero (2019, 2020); Romero and Sprenger (2020); Heesen (2018); Bruner
and Holman (2019); Bright (2017); Bird (2020); Devezer et al. (2019); Baumgaertner et al.
(2019); and Machery (2020).



1.2. HARK! Who Goes There?

HARKing undermines the reliability of scientific findings because HARKing
exhibits a particular property, ¢;, distinct to that account. We show that
HARKing can increase the reliability of findings while still satisfying property
; and, hence, ¢; cannot explain why HARKing is in fact bad for the reliability
of findings. Instead, we provide a Bayesian analysis of HARKing that provides
necessary and sufficient conditions for when HARKing worsens or improves the
reliability of findings.

In §1.2, we summarize several accounts of why HARKing is bad for the
reliability of scientific findings. In §1.3, we present clear criteria for the reliability
of scientific findings with which to measure the effect of HARKing relative to
specific alternatives. In §1.4, we present a standard model of hypothesis testing
with which to reason about the statistical consequences of HARKing. In §1.5,
we provide necessary and sufficient conditions for when HARKing improves
and worsens the reliability of findings. In §1.6, we show how misdiagnosis of
HARKing ramifies into misguided proposals for redefining statistical significance
in the context of the replication crisis. In §1.7, we conclude with a discussion.

1.2 HARK! Who Goes There?

First, let us be clear about what we mean here by HARKing. The term ‘HARK-
ing’ was first coined by social psychologist, Norbert Kerr, in his 1998 article
“HARKing: hypothesizing after results are known.” Kerr defines HARKing as
“...presenting a post hoc hypothesis in the ... [study| report as if it were an a
priori hypothesis” (Kerr, 1998, p. 197). HARKing occurs when a researcher
selects her study hypothesis after observing the data and reports this hypothesis
as if it had been formulated prior to observing the data—that is, as if it had
been a prediction. This is typically contrasted with the normative protocol in
which the researcher selects a hypothesis prior to observing the data, and then,
after observing her data, reports whether the hypothesis attained significance
given some conventional threshold for statistical significance.

In his 1998 article, Kerr anticipates many of the now-standard objections to
the practice of HARKing. These include taking unjustified statistical license,
propounding theories that cannot pass Popper’s falsifiability criterion, and
disguising post hoc explanations as a priori explanations (Kerr, 1998, p. 211).
Since then, and especially in light of the replication crisis, philosophers of

5Kerr employs ‘a priori’ and ‘a posteriori’ to mean before and after the event of observing
one’s study data. We use the terms ‘ex ante’ and ‘ex post’ for these to avoid confusion with
the standard philosophical meanings of the former terms.
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science and scholars in the social and biomedical sciences have elaborated and
propounded these accounts.b

Several variants of HARKing exist in the literature and should be distin-
guished. STARKing, or story telling after results are known, is where a finding
is presented along with a narrative produced ex post to observing the data
meant to bolster the plausibility of that finding. THARKing, or transparent
hypothesizing after results are known, is where it is clearly communicated that
the study hypothesis was selected after the data were observed (Hollenbeck and
Wright, 2016). We concern ourselves here only with HARKing. In particular, we
are concerned with accounts of the epistemic effect of HARKing: why, precisely,
it undermines the reliability of scientific findings, as presented in (Kerr, 1998)
and in other influential accounts such as (Rubin, 2017) and (Mayo, 2019).

HARKing as Undermining Error Control

The first account of the epistemic problem of HARKing emerges straightforwardly
from a classical, frequentist philosophy of statistics that concerns itself with
error-control. In the context of hypothesis testing, a central strand of frequentist
thought locates the reliability of tests in terms of their guarantees of controlling
the long run frequencies of Type I and Type II error in hypothetical repetitions
of those tests (Lehmann, 1993).

An example of such a guarantee is as follows. Consider a hypothesis test
with a conventional significance threshold of o € [0,1] (corresponding to its
Type I error rate). A sample of data is collected for which a test statistic, ¢, is
determined.” A decision to reject or fail to reject the null hypothesis is made as
follows. On the assumption that the null hypothesis is true,® one determines
the p-value for the test, or the probability of having observed a test statistic
at least as extreme was actually observed, p = P(T > t|Hy). If this value
meets the significance threshold, p < «, then the null hypothesis is rejected.
If the threshold is not met, one fails to reject the null. In a world where the
null hypothesis is true, such a test produces mistaken rejections of the null
hypothesis 100 X a percent of the time if the test were repeated infinitely many
times.?

5See, in particular, Leung (2011); Rubin (2017, 2019) and Hollenbeck and Wright (2016).

"For example, the test statistic may be the mean of the difference in, or association
between, two variables in a data set.

8And also that the inductive assumptions of the test hold true—e.g., normality, ho-
moscedasticity, probabilistic independence, and so on.

9More precisely, this occurs almost surely with respect to the measure over the infinite
sequence of outcomes.
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HARKing undermines such guarantees. When a researcher engages in HARK-
ing, she waits until after she observes her data and then selects a hypothesis
to report from among those that are statistically significant. To drive our
point home, consider a researcher who has infinitely many probabilistically
independent hypotheses from which she may choose. Further, imagine that
all of her hypotheses are false. For any positive Type I error rate, a > 0, she
will obtain statistically significant results, as mistaken rejections of the null
are now a certainty. If she engages in HARKing then she will only ever report
significant findings, even though all of her candidate hypotheses are false, and
so guarantees of error-control of the sort just described become ill-defined.

Consider the following formulation of the problem by Rubin: “For example,
if a researcher tests 20 hypotheses with an alpha level of .05, then he has a
64.15% chance of making at least one Type I error. However, if his results
confirm only one of these hypotheses, and he decides to suppress the other 19
disconfirmed hypotheses, then he will give the incorrect impression that he only
conducted a single hypothesis test and that, consequently, he only had a 5%
chance of making a Type I error” (2017, p. 14). Bishop echoes a familiar refrain
in describing the consequences of HARKing: “P-values are meaningless when
taken out of context of all the analyses performed to get them” (Bishop, 2019,
p. 435).

This is indeed correct: HARKing undermines frequentist guarantees of long
run error control. However, we are interested in the reliability of scientific
findings, and the types of error that the frequentist promises to control—i.e.,
Type I and Type II error rates—simply do not capture the reliability of findings.
The Type I and II error rates of a test tell us that if the hypothesis is true or
false, then what long run frequency of errors is to be expected.!®© We discuss
this further in §1.3 where we provide a natural and practicable measure of the
reliability of findings.

HARKing as Failing to Provide a Severe Test

The second account maligns HARKing for violating a broadly Popperian picture
of science. The basic idea is that when a hypothesis is selected ex post to
observing data for its compatibility with those data, then it could not be reliably
disconfirmed by those data. This is described by Rubin as the objection that
HARKing is “problematic for scientific progress because it results in hypotheses
that are always confirmed and never falsified by the results.” (Rubin, 2017,

10 And the p-value tells us the probability, conditional on the null being true, of observing
data at least as extreme as was actually observed.



1.

HARKING: FROM MISDIAGNOSIS TO MISPRESCRIPTION

p. 2) Kerr states this plainly: “HARKed hypotheses fail Popper’s criterion of
disconfirmability” (1998, 205).

That said, we need to sharpen this objection, as deductive falsification is
typically not feasible for statistical tests of hypotheses. The most sophisticated
version of this view which has risen to prominence in the philosophy of statistics
is the severe testing account propounded by Deborah Mayo (Mayo, 2019, 2006).
On this account, a statistical test provides us with corroboration of a hypothesis
insofar as it submits that hypothesis to a severe test, where a severe test is one
that would reliably detect an error in that hypothesis if one were present (Mayo
and Spanos, 2006, 2011). This is Popper’s criterion of falsifiability adapted to
the statistical context.

It is clear why a hypothesis reported via HARKing fails to satisfy the
requirements of a severe test. Recall that under HARKing the researcher selects
her hypothesis after observing her data from among the set of hypotheses that
are significant given those data. The reported results of her study are significant
by construction. She could have failed to report the hypothesis that she in fact
did, but she would have not have reported its ‘falsification’ by the data if it
had turned out to be non-significant. Thus, HARKing fails to provide warrant
for belief in hypotheses because it fails to expose them to opportunities for
statistical falsification.

As with frequentist error rates, the relationship between the severity of
tests and the reliability of scientific findings is not a direct one. What we will
see is that HARKing can fail both to provide well-defined frequentist error
rates or meet the requirements of severe testing, and yet produce more reliable
findings, and so, whatever virtues these accounts capture, they fail to explain
the interaction of HARKing with the reliability of scientific findings.

HARKing as Misrepresentation

Our third account, from (Kerr, 1998), posits that HARKing misrepresents
hypotheses formulated ex post to observing the data as those formulated ex
ante. As mentioned, we have no truck with the version of this objection that
locates the ill of HARKing in ethical terms. But this objection rarely goes
beyond observing the fact of misrepresentation to identifying why, precisely,
misrepresentation of this sort should negatively effect the reliability of findings.
That it does so appears to be just assumed.

Our analysis will explain the relationship between HARKing and the relia-
bility of findings. In particular, we will show that the last objection is closest to
the mark: it is misrepresentation of the hypotheses that can be epistemically
detrimental. When HARKing is bad, it is because it can lead us to mistakenly
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infer that a hypothesis reported via HARKing enjoyed greater ex ante evidential
support than it in fact did, and so garners greater ex post confidence than it in
fact deserves. Let us to turn to our Bayesian account.

1.3 The Reliability of Scientific Findings

Our argument requires an adequate specification of the reliability of scientific
findings with which to determine whether a given account of HARKing correctly
diagnoses the effect of HARKing on the reliability of findings. For this, we draw
on existing statistical concepts—specifically false discovery and false omission
rates—to formalize a natural notion of reliability in the context of null hypothesis
significance testing. We argue for why this is a more apt characterization of
reliability than frequentist guarantees of error-control, specifically, Type I and
IT error rates, or data-dependent notions such as the ‘severity’ of a test.

Classically, we want our epistemic methods to produce fewer false beliefs and
more true ones. In the statistical context, we can ask that fewer of the results
we declare significant be false and fewer of the results we declare non-significant
be true. These correspond to the requirement that our methods exhibit lower
rates of false discovery and false omission respectively.!!

The false discovery rate (FDR) of a population of studies is the expected
proportion of its findings (rejections of the null hypothesis) that are false findings
(where the null hypothesis is true). For a given method of reporting findings,
M, and population of studies, the FDR corresponds to:

Pr(Hy, significant; M) |,
Pr(significant; M)

FDR(M) = Pr(H, | significant; M) =

That is, the ratio of false and significant findings over over all significant
findings. Intuitively, the reliability of research increases as the false discovery
rate decreases. Indeed, in the context of the replication crisis, the rate at which
findings in a literature fail to replicate under more stringent tests is an estimator
for the false discovery rate of that literature.

1 The notion of the false discovery rate of studies was first introduced to the statistical
sciences by Bejamin and Hochberg (1995) for explicating the expected frequencies of true and
false hypotheses in the context of multiple testing.

2Note that the probability of individual study outcomes is employed here as it is mathe-
matically equivalent to the corresponding expected fraction of study outcomes. For example,
the probability of a single study hypothesis obtaining significance while the null is true is
equivalent to the expected fraction of many study hypotheses that obtain significance while
their nulls are true.
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The false omission rate (FOR) of a literature is the expected proportion
of its negative findings (failures to reject the null hypothesis) that are false
negative findings (where the alternative hypothesis is true). For a given method
of reporting findings, M, and population of studies, the false omission rate
corresponds to:

Pr(Hj,not significant; M)
Pr(not significant; M)

FOR(M) = Pr(H; | not significant; M) =

That is, the ratio of true and non-significant findings over all non-significant
findings. Intuitively, the reliability of studies increases whenever their false
omission rate decreases. In particular, the false omission rate provides a measure
of how poorly research detects the truth of hypotheses.

Protocols for selecting hypotheses and reporting results can affect both the
false discovery and omission rates of a population of studies. For our analysis,
we consider broadly two sorts of protocols: one which requires the researcher to
commit to a hypothesis prior to observing the data, and another that allows
her to select her hypothesis only after observing the data. Some changes in
methods increase one type of error while decreasing the other.'3

Definition 1 (Reliability of a Method). Let a population of studies be specified
by the significance threshold, o € (0,1), and mean power,'* 1 — 3 € (0,1), of
its tests along with the prevalence of true hypothesis, 7 € (0,1), among the set
of hypotheses selected for testing.

Say that a given reporting method, M, is more reliable with respect to
false discovery than another, M’, if, for any such population of studies, findings
produced under M yield a lower false discovery rate than those under M’.

FDR(M) < FDR(M'"), for any 7, «, 3 € (0,1).
Similarly, say that M is more reliable with respect to false omission than M’ if,
for any such population of studies, findings produced under M produce a lower

false omission rate than those under M.

FOR(M) < FOR(M'), for any ,«, 3 € (0,1).

13For example, it is well-known that lowering the threshold for statistical significance will
tend to decrease false discovery while increasing false omission.

MStatistical power is the complement of Type II error. That is, the power of a test is the
probability, conditional on the alternative hypothesis being true, of correctly rejecting the
null hypothesis.
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Note that we require that there is some non-zero fraction of true and false
hypotheses to be tested—that is, = € (0,1). If this were not so, improvements
in method could not improve the FDR and FOR of studies.!®

These provide natural, practical measures of reliability. But what of classical
Type I and II error rates? To see why Type I and II error rates cannot capture
the reliability of findings, consider a domain of scientific study in which no
true hypotheses are available—that is, where the null hypothesis is always true.
Regardless of the Type I and II error rates of tests, all significant findings will
be false findings. More generally, one and the same frequentist guarantee—Type
I and II error rates—is compatible with any reliability of scientific findings since
reliability is critically a function of the prevalence of true hypotheses put to
test.

Other measures of reliability might be sought in data-dependent measures,
such as p-values or the severity of a test.!® Yet the same shortcoming applies to
such measures. Insofar as a measure ignores the prevalence of true hypotheses
submitted to testing, it will assign the same measure of reliability to a set of
findings assured to be false as to a set of findings assured to be true.

In the context of classical null hypothesis significance testing, what we may
want from a measure of reliability of scientific findings is that more of those
claimed to be statistically significant are in fact true and more of those claimed
not to be significant are in fact false.!” The false discovery and omission rates
of hypotheses capture just this; and with them in hand, we can proceed to an
analysis of the interaction of HARKing and the reliability of scientific findings.

It might be argued that the prevalence of true hypotheses is not a quantity
generally known to us, especially given the distortions produced by publication
bias, so a measure of reliability that uses this unknown quantity is useless.
There are two problems with this objection. First, reasonable estimates of
the prevalence of true hypotheses in a domain are difficult but not impossible
to produce (Dreber et al., 2015). Second, and more to the point, we can still
entertain the hypothetical: we can ask what the false discovery and omission rates

Y Though changes in method could improve one of them. For example, if all candidate
hypotheses are true, a method could not improve the FDR, (since there could be no false
discoveries), but it could improve the FOR merely by assigning significance to more results.

16The severity of a test can be thought of as data-dependent analogue of statistical power
(Mayo-Wilson and Fletcher, 2019).

17 Alternatively, one may wish to move to leave the NHST paradigm for, for example, a
fully Bayesian approach to analyzing scientific findings in which one applies credences over
the truth of one’s study hypotheses. The authors cautiously endorse proposals of this sort
(see, for example, Etz and Vandekerckhove (2016) and Romero and Sprenger (2020)), but
recognize that it is worthwhile improving existing statistical practices even as we work toward
more substantive, long-term changes in method.



1.

HARKING: FROM MISDIAGNOSIS TO MISPRESCRIPTION

10

of different reporting protocols would be given different underlying prevalences
of true hypotheses submitted for testing. And we can learn if one method
outperforms another regardless of whether truth is a rare disease or as common
as pig tracks.

1.4 When HARKing Cannot be Bad

Consider a world in which all study hypotheses have equal prior odds. We will
show that in such a world HARKing cannot lessen the reliability of findings.
Let us see why this is so and consider the implications of this fact.

First, a note on how to interpret the prior odds of hypotheses. In our
model,'® the prior odds of a hypothesis are to be understood in terms of a
well-defined prevalence of true study hypotheses. A study hypothesis H; belongs
to a set of candidate hypotheses, H = {Hi}?’:l; from which it is selected by the
researcher. A given fraction of the hypotheses in the set, = € (0, 1), are true
and their complements false. If hypotheses are randomly selected from this set
for testing, the prior probability of a study hypothesis is just the probability of
selecting a true hypothesis from this set Pr(H;) = 71920

Now, let us define our research methods. In the endorsed picture of hypothesis
testing, the researcher selects her hypothesis, H;, from the set of possible
hypotheses prior to observing her data. Only then does she observe her data,
and then she reports whether her predicted hypothesis, H;, was statistically
significant given the conventional threshold for significance, .. Call this protocol
prediction and denote it MP.

In contrast, under a protocol of HARKing the researcher first observes her
data, and then selects a hypothesis H; at random from the set of hypotheses
that have turned out to be statistically significant in light of her data {H; €
H|p; < a}, if the set is nonempty. Denote this protocol M".

We summarize the preceding two reporting protocols as follows.

'8 This is an adaption of a famous model of the reliability of findings in science (Ioannidis,
2005; Maniadis et al., 2014).

19Equivalently, the prior odds of the hypothesis will be 1 : (7r71 —1). We use the terms
'prior odds’ and ’prior probabilities’ to denote the same quantity.

20For the Bayesian, the analysis is more straightforward: the prevalence of true hypotheses
is just her prior. The stipulation of a process of random selection of hypotheses is provided
to make the analysis more palatable to an interlocutor skeptical of ostensible subjectivity
of the Bayesian approach; priors here correspond to objective elements of the probability
model—fractions of true hypotheses in a well-defined population of hypotheses—and not
subjective beliefs.
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Prediction HARKing
{H:}iL {Hi}L,

s 1—m T 1—m

Set of possible
hypotheses

Key:
H1 é {Hz }i\il * 0 Hypothesis selected

. Data observed

Hypotheses to

, 0 1-m U 1-—m7
be tested p P D True hypotheses
D False hypotheses
Hilpn, < a [ {Hilpm, < o} ¥
Statistically
significant mp(1—5) (1- 7Tp)a (1= 1 -7
hypotheses

FIGURE 1.1: The filtration of study hypotheses for reporting via prediction and
HARKing protocols.

1. Prediction MP: Prior to observing the data, select a single hypothesis to
test. Report the hypothesis if turns out to be significant.

2. HARKing M": After observing the data, randomly select a hypothesis
from among those that are significant (if there are any) and report the
hypothesis.

Note that we assume that a hypothesis is reported only if it is significant.

This reflects the reality of publication bias and the concomitant file drawer
effect. That said, nothing critical turns on this assumption, and later we will
allow for some fraction of statistically non-significant findings to be reported as
well when we consider the false omission rates of protocols.

Given our specification of these protocols, we can demonstrate the following.

(All proofs are provided in the mathematical appendix.)

Proposition 1. When hypotheses are selected from the same set of candidate
hypotheses with fraction 7 € (0,1) true hypotheses, then prediction yields the
same false discovery rate as HARKing.

FDR(MP) = FDR(M")

That is, in such a case, HARKing is as reliable with respect to false discovery
as prediction. The logic of the result is simple. By stipulating that hypotheses

11
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be selected at random, we have set the fraction of true hypotheses selected via
both prediction and via HARKing to be equal. And, in both cases, selected
hypotheses are reported only if they are significant. Thus, the fraction of
hypotheses that are true as well as significant is identical. See figure 1.1, where
the only effectual difference between the protocols is that prediction checks only
a single hypothesis at a time, whereas HARKing checks all candidate hypotheses;
both methods produce identical statistics in reported hypotheses. The difference
is that a researcher employing HARKing filters a larger set of hypotheses for
statistical significance. In this world, the researcher employing HARKing is
simply more efficient in filtering hypotheses for significance—while the fraction
of her true and false discoveries is the same, her absolute rate of discovery is
strictly greater.

What of false omission rates? Missing out on true hypotheses is not as
often voiced as a concern. The worries around HARKing typically focus on its
contribution to high false discovery rates, which correspond to low replication
rates. However, under the same assumptions—hypotheses submitted to both
protocols exhibit equal prior odds—HARKing performs no worse than prediction
with respect to false omission either. This fact follows the same reasoning
as the equality of false discovery rates (and is proved in the mathematical
appendix). Both prediction and HARKing protocols filter hypotheses with the
same frequencies, only HARKing does so more efficiently.

Let us revisit an assumption. When engaging in HARKing and confronted
with multiple significant hypotheses, we assumed that the researcher selects
one at random. What if, instead, she reports the most impressive, publication-
worthy result—the result of the lowest p-value? This natural description yields
the following reporting protocol.

3. Selective HARKing M*": After observing the data, select the hypothesis
with the lowest p-value from among those that are significant (if there are
any) and report the hypothesis.

Hypotheses that yield lower p-values are, on average, more likely to be
true. Thus, the population of studies reported via selective HARKing will be
composed of more true findings than either of those produced via prediction
or HARKing. And as more hypotheses are considered, the lower the expected
p-value of the hypothesis with the least p-value will be, and thus the fraction of
findings consisting of true discoveries will be greater.

Proposition 2. When hypotheses are selected from the same set of possible
hypotheses with fraction 7 € (0, 1) true hypotheses, and there are more than
two candidate hypotheses, then:



1.5.  When HARKing Must be Bad

1. Prediction yields a false discovery rate exceeding that of selective HARKing,
FDR(M?) > FDR(M*").

2. The false discovery rate for selective HARKing is decreasing in the size of
the set of candidate hypotheses L.

That is, a slightly more sophisticated version of HARKing can produce
strictly and substantially more reliable findings than prediction.

1.5 When HARKing Must be Bad

When is HARKing bad for the reliability of scientific findings? Under the
conditions we described—equal prior odds of hypotheses selected via prediction
and HARKing—selecting hypotheses ex post to observing the data cannot
undermine the reliability of one’s findings. Thus, for HARKing to be bad in the
course of normal scientific practice, one of the assumptions of our model must
not obtain. The natural candidate is that scientists do not in fact choose their
hypotheses at random.

A researcher’s choice of study hypothesis tends to be informed by her domain
knowledge. The hypotheses she chooses prior to observing the data may be
informed by theory, previous findings in the literature, and common sense. We
can imagine that, when a researcher is suitably informed, a hypothesis she
selects is more likely to be true than a hypothesis selected at random from the
set of hypotheses that are merely logically consistent with her data. In such a
case, we can expect the researcher to do better than chance prior to observing
the data. Under prediction, such hypotheses are then filtered by their statistical
significance after the data have been observed.

When a researcher is engaged in HARKing, however, she is no longer filtering
the set of possible hypotheses via her domain knowledge. Rather, the full set
of hypotheses consistent with her data are submitted to the filter of statistical
significance.

Formally, this corresponds to a model in which the researcher chooses from

two sets of hypotheses with different fractions of true and false hypotheses.

When she chooses ex ante to observing her data, via prediction, she tests a
subset of hypothesis with some prior odds; and when she chooses ex post to
observing her data, via HARKing, she chooses from a superset with different
prior odds. For HARKing to be bad in such a world, it must be the case that the
prevalence of true hypotheses is greater in the set of hypotheses that are selected
for prediction than in the set of all candidate hypotheses. This is captured in
the following proposition.

13
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Proposition 3. Let hypotheses selected via prediction and HARKing exhibit
base rates m, and 7, respectively. Then prediction is more reliable than HARKing
with respect to false discovery, FDR(MP) < FDR(M"), just in case m, > 7.

This explains why misrepresentation of hypotheses selected ex post as those
selected ex ante to observing data can be pernicious. If we expect a researcher
to have meaningful domain knowledge, then we should expect her choice of
hypothesis to be informative and so for the hypothesis she selects ex ante to
be more likely to be true. If we are misled on this count, and the hypothesis
reported does not boast such support, then we will (intuitively) assign too great
a credence to her findings.

Proposition 3 also tells us when HARKing will produce more reliable findings
than prediction. Consider an unlucky world in which the scientist’s judgment is
anti-correlated with the truth. That is, when the researcher makes predictions,
she selects false hypotheses at a rate that is worse than chance. In this world, it
is better to HARK than to predict.

Such an unfortunate world is not just a modeling fantasy. It is well-
documented that in the domains of social and political punditry, humans
can perform the impressive feat of doing consistently worse than chance.?!
More generally, prediction may fare unfavorably when we are confronted with
problems where our domain knowledge is limited—as in cases with limited
theory, few or no prior studies, or where common sense is largely unhelpful. One
can think of analyses of any complex system where it is to be expected that
a multitude of factors conspire to produce effects of interest. In such cases, a
small increase in the false discoveries produced by ex post hypothesis selection
may be compensated for by a greater decrease in false omission rates that may
redound to leads for future, confirmatory research.

In sum, prediction can yield greater false discovery rates than HARKing, or
HARKing can produce greater false discovery; what determines which obtains
is the prior odds of hypotheses submitted to each. In the real world, we can
expect that the prior odds of hypotheses submitted for HARKing is determined
by the challenge of the domain, and the difference of prior odds of hypotheses
submitted for prediction is determined by researcher judgment.

21Gee Tetlock (2017) for an excellent presentation of the literature on expert political
judgment.
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1.6 Jumping the HARK: From Misdiagnosis to
Misprescription

Misdiagnosis of HARKing can ramify in the misprescription of solutions to the
replication crisis. One prominent line of thinking in the literature is that if
questionable research practices such as HARKing are bad because they make
studies more likely to yield false positive results, then one natural solution is to
lower the conventional threshold for statistical significance to compensate. A
recent statement signed by over 50 prominent methodologists proposes redefining
statistical significance in just this way (Benjamin et al., 2018). Stated plainly,

“For fields where the threshold for defining statistical significance
for new discoveries is p < 0.05, we propose a change to p < 0.005.
This simple step would immediately improve the reproducibility of
scientific research in many fields.” (p. 6)

This is not a prima facie unreasonable proposal. Fields such as genomics
and high energy physics have profitably set more stringent standards for their
conventional significance threshold in the context of particle detection and gene-
wide association studies.?? But there are differences in methods between fields
that can make a difference here. John loannidis expresses worry regarding the ef-
ficacy of lowering the significance threshold in the social and biomedical sciences,
citing the relatively greater researcher degrees of freedom in those disciplines,
“Adopting lower p-value thresholds may. . . [produce| collateral harms. .. bias may
escalate rather than decrease if researchers. . . try to find ways to make the results
have lower p-values” (Ioannidis, 2018, p. 1430). The model we present can be
seen as demonstrating a precise realization of Ioannidis’ worry.

To see why such an intervention can been seen as a solution to the ills of
questionable research practices such as HARKing, consider the following simple
model where researchers engage in a strategic mixture of both prediction and
HARKing protocols: she follows a protocol of prediction when she can, and a
protocol of HARKing when she must in order to attain statistical significance
for some findings, and so to publish her study. Call this method fallback Harking
M'". This can be thought of as a plausible approximation of what many
researchers in certain domains in fact do (John et al., 2012).

Here, a study consists of procuring data against which a set of N logically
independent hypotheses {H;} , may be tested. In fallback HARKing, prior

22For a recent assessment of significance thresholds in GWAS see Panagiotou et al. (2012).
For the history of the five-o rule see Franklin (2013). Though, for a critical assessment of the
latter see Lyons (2013) and (2015).
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FIGURE 1.2: The false discovery rates for fallback HARKing and prediction
protocols as functions of the significance threshold a when m, = 0.9, 7 = 0.1,
and g =0.2.

to observing the data, a researcher selects the hypothesis for testing, Hi, that
she judges is most likely true. Upon observing the data, if she finds that her
hypothesis, Hi, is statistically significant then she reports it. If, on the other
hand, she finds that her hypothesis is not statistically significant, she casts
a broader net and turns to the N — 1 other possible hypotheses {H;}¥, and
reports one that is significant, if such a one exists.??

Importantly, the researcher’s prediction here is informed by her domain
knowledge. The hypothesis she chooses prior to observing the data, Hy, is
supported by some combination of theory, previous results, common sense, and
so on, and so the hypotheses she chooses are on average more likely to be true
than a random member of the other N — 1 hypotheses, P(H1) = 71 > E[{m},].
These other hypothesis may be true, but they are not, on average, as well
supported by her domain knowledge.

Consider the effects of lowering the conventional threshold for statistical

23 As with HARKing, a hypothesis is chosen at random from among the set of significant
hypotheses. One could instead consider the case where the researcher chooses the hypothesis
with the lowest p-value from among the set of statistically significant hypotheses. The
qualitative outcome of the model—the possibility of an increase of false discovery rate as
the significance threshold is lowered—would not change so long as researcher judgment was
sufficiently informed.
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significance, «, in such a case—where researchers are engaged in a reporting
protocol like fallback HARKing. Figure 1.2 shows the relationship between
the significance threshold, «, and false discovery, FDR, in such a case. If all
researchers adhere to the method of prediction, MP?, then lowering a expectably
reduces the false discovery rate FDR(MP(«)) (see the black line in Figure 1.2).
Similarly, if all researchers adhere to a protocol of HARKing, then false discovery
rate decreases as o decreases.?*

However, if researchers follow a protocol like fallback HARKing, M/*(a),
the false discovery rate can actually increase (see the red line in Figure 1.2).
The reason for this is that, as a decreases—and the evidential standard for sig-
nificance becomes more stringent—researchers are less likely to attain statistical
significance for their primary hypotheses, and so they are more likely to turn
to scouring auxiliary hypotheses. That is, researchers must turn away from
the few hypotheses with greater prior odds and toward the many hypotheses
that exhibit potentially far lower prior odds. And since there are many more
of the latter than the former, they are likely to find some that have attained
significance by chance. These statistically significant ‘fallback hypotheses’, in
turn, are more likely to be false discoveries.?®

In short, when researcher judgment on a problem is well-informed, lowering
the significance threshold can actually push researchers off of their fewer more
promising hypotheses and onto dredging their many unpromising ones, and so
can increase the false discovery rate of a population of studies.

When should we expect that lowering the significance threshold will increase
false discovery? This is an empirical question with deep implications; and the
answer will depend on several key factors. In particular, it will depend on
the prevalence of behaviors approximating fallback HARKing,?® the current
value of the significance threshold and the extent to which it is lowered, the
average power of the population of studies under question,?” the prevalence of
true hypotheses in the domain in question,?® and, as our analysis reveals, the
strength of researcher judgment.?® Exploration of optimal values for statistical

24Though, of course, by the same token, lowering o must increase the false omission rate—a
greater fraction of cases where the alternative hypothesis is true must fail to attain significance.

25See the Computational Appendix for links to the GUI and source code of a model of the
statistical properties of prediction, HARKing, and fallback HARKing.

26For studies of the prevalence of questionable research practices, including HARKing, see
John et al. (2012) and Head et al. (2015).

2"See Szucs and Toannidis (2017) and Lamberink et al. (2018) for estimates of the average
power of studies in psychology and cognitive neuroscience, and clinical trials.

28For recent work on this count in replication markets, see Pawel and Held (2020).

29There is little work isolating the reliability of researcher judgment in hypothesis selection.
However, recent work on replication markets shows that researchers predict the replication of
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significance for a given domain given the distinctive methods and challenges of
that domain must remain for future work.

Note, however, that correctly identifying the mechanism by which the
HARKing affects the reliability of studies—differences in expected prior odds
of hypotheses selected ex ante and ex post observing data—was crucial for
identifying the very possibility of the undesirable consequences of redefining
statistical significance just discussed. The effect could not be characterized by
merely looking at either the Type I or II error rates of protocols, or by examining
their p-values or test severity. One must attend to the reporting protocols with
the prior odds of hypotheses each characteristically submits to tests.

1.7 HARKening Back to the Good Old Bayes’

We have seen that the standard accounts in the literature fail to explain why,
precisely, HARKing undermines the reliability of scientific findings. The proper-
ties they claim account for why HARKing is bad obtain even when HARKing
improves the reliability of findings. A Bayesian analysis elucidates the relation-
ship between HARKing and the reliability of scientific findings: HARKing can
increase or decrease the reliability of findings relative to prediction as a function
of the differences in the prior odds of hypotheses characteristically selected ex
ante and ex post to observing data.

Further, we have conjectured that the natural mechanism for producing
the difference in prior odds of hypotheses selected in prediction is researcher
judgment. When a scientist is meaningfully informed in her ex ante choice of
hypothesis then her prediction is formally equivalent to restricting the set of
reported study hypotheses to a subset which will, on average, be more likely
to be true. HARKing, on the other hand, is formally equivalent to failing
to make such a restriction. Thus, when scientists are uninformed, or worse,
systematically biased, prediction can correspond to restriction to a subset of
hypotheses with lower expected prior odds, and so HARKing, or a plausible
variant of HARKing, can outperform prediction in terms of the false discovery
and omission rates of the findings produced.3°

the studies of their colleagues with remarkable accuracy (Dreber et al., 2015). Though, of
course, it is possible that this good judgment extends to the hypotheses of others, and not
to one’s own. Further, such findings may produce adequate estimates for the replicability
of studies, if not the pre-test prevalence of true hypotheses; though this suggests natural
methods to estimate the latter using the former.

39This provides a recommendation for when selecting hypotheses ex post is unequivocally
likely to be better: in inference tasks where the set of plausible hypotheses tends to be very
large, highly complicated, or where researchers are known to be biased.
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Moreover, it is important to bear in mind that the decrease in the false
discovery rate produced by prediction comes at the cost of increase in false
omission rates. Any non-trivial restriction of the set of candidate hypotheses
must lower the absolute rate of discovery. This suggests that a more ethical
version of HARKing, such as transparent HARKing, may be preferable in
contexts where lowering the false omission rate matters more to researchers or
policymakers than lowering false discovery rates.!

We have also argued that the misunderstanding of HARKing has conse-
quences for proposed solutions to the replication crisis. In particular, we
considered a recent proposal to redefine the conventional threshold for statistical
significance and how such a proposal can lead to undesirable consequences in
light of an accurate understanding of how HARKing affects the reliability of
findings.

Our moral is that current accounts of HARKing that stem from a frequentist
philosophy of statistics fail to explain the actual logic of its interaction with the
reliability of scientific findings, that their misdiagnosis ramifies into misprescrip-
tion for solutions in the context of the replication crisis, and that a Bayesian
analysis of the problem makes this all clear.

1.8 Mathematical Appendix

For the following proofs it is assumed that we have non-extremal values for each
the significance threshold, a € (0, 1), and mean power, 1 — 5 € (0, 1), of tests as
well as for the prevalence of true hypothesis, 7 € (0,1), in the set of possible
hypotheses.

Proof of Proposition 1. Consider the false discovery rate for the prediction pro-
tocol MP. Recall that, in prediction, a hypothesis is selected for testing prior to
observing the data, and that after observing the data the selected hypothesis is
reported only if it attains statistical significance.

Let m = Pr(H;) be the fraction of true hypotheses in the set of possible
hypotheses; 7, = Pr(H;) the fraction of true hypotheses in the subset of
hypotheses selected via prediction (first we consider the case where a hypothesis

310One can think of the characteristic differences in such preferences in the concrete examples
of preliminary, exploratory analyses aimed at identifying promising future cancer treatments
in contrast to confirmatory analyses of phase III clinical trials aimed at vetting whether a
pharmaceutical should hit the shelves and be made available to the public.
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is selected at random for prediction; and so m, = 7); let p = Pr(T > t|Hy)
denote the p-value of the test; a = Pr(p < a|Hj) the significance threshold of
the test; and 1 — 5 = Pr(p < a|H;) the power of the test. The false discovery
rate for prediction is then obtained via Bayes rule.

Pr(p < o, Ho)
Pr(p < )
Pr(p < a|Ho)Pr(Ho)
~ Pr(p < a|Hy)Pr(Ho) + Pr(p < a|Hy)Pr(H))

FDR(M") =

_ a(l —mp)
a(l—m) + (1= p)mp
() ®)

Next, consider the false discovery rate for the HARKing protocol M". Recall
that, in HARKing, a hypothesis is selected for reporting at random after
observing the data from the set of hypotheses that are significant (if the set is
nonempty).

Let m,a and 8 be as before, let py denote the p-value of hypothesis with
index ¢, and let z; be a random variable such that z;, = 1 if hypothesis /¢ is
selected to be reported and zy = 0 otherwise. We obtain the false discovery rate
for a hypothesis H? selected via HARKing as follows. Note that, by stipulation,
if H® was selected for reporting, then it was in the set of significant hypotheses.
We have

Pr(p; < O[,Hg,Zg =1)

FDR(M") =
R(MY) Pr(ps<a,z =1)

The likelihood-prior products can be expanded to Pr(z, = 1|p; < a, Hf)Pr(pg <
a|Hf)Pr(H£) for j = 0,1. Note that the probability that H* is significant is
independent of its truth conditional on its p-value. Hence, we have Pr(z, =
1pe < oz,Hf) = Pr(z; = 1|p¢ < «), which cancels out in the numerator and
(expanded) denominator. This leaves

B Pr(py < o|HS) Pr(HY)
N Pr(p; < a\Hg)Pr(Hg) + Pr(p; < a|Hf)Pr(Hf)

_ a(l—m)
al—-m)+ (1 —=p)r
T _ B\—1
:<1+1—7r1a5) ' (B)
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Now, compare equations (A) and (B), capturing the false discovery rates of
prediction and HARKing protocols, respectively. When the fraction of true
hypotheses selected for testing under prediction is the same as the fraction of
true possible hypotheses, m, = 7, equations (A) and (B) are equal, and hence
FDR(MP) = FDR(M"), as desired. O

Proof of Proposition 2. To consider the false discovery rate of selective HARK-
ing M*", let £ denote the the statistically significant hypothesis with the lowest
p-value selected from the set of L hypotheses. That is, £ is the index of the hy-
pothesis reported by selective HARKing. Let —¢ be the index of the hypothesis
with the next-lowest p-value p* , = infyp pp.

The false discovery rate of selective HARKing then is just equal to the
expectation of the false discovery rate of the hypothesis reported by selective
HARKing, FDR(M*") = E,JFDR(M;")]. Further, the false discovery rate
of the selected hypothesis is equal to its expectation under the distribution
of the p-values of the hypothesis with the next-lowest p-value FDR(M, ;h) =
E,+ [FDR(Mg"(p* ,))]. Deriving the false discovery rate of M;"(p*,) just as

—L
before we get

1— . * —1
FDR(M;"(p*,)) = (1 T j - ﬁ:}lz{;;fg})>
(1 pergt) = roRon

Thus FDR(M*") < FDR(M") = FDR(MP) as desired.

To prove the false discovery rate for selective HARKing is decreasing in the
number of hypotheses, first note that P} h(P*_g) is increasing in p* , for p* , < «
and constant otherwise. The CDF of p* , given the number of hypotheses L
is Pr(p*, < t|L) = Pr(p*, < t)L=! and thus Pr(p*, < t|L) is first-order
stochastically dominated by Pr(p*, < t|L') for L' < L. It follows that P*" is
decreasing in L. O

Proof of Proposition 3. Finally, we show that prediction is more reliable than
HARKing, FDR(MP) > FDR(M") just in case m, > . Consider a population
of studies and let m be the fraction of true hypotheses in the set of possible
hypotheses; let 7, be the fraction of true hypotheses in the subset of hypotheses
selected via prediction; « the significance threshold of tests; and 1 — 3 their
power.
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From the preceding proofs, we have the following false discovery rates for
the prediction and HARKing protocols:

Tp 1—5 -1 h T 1_ﬁ -1
d FDR(M"™) = (1 .
l1-m « > » af R(M?) ( +]_—7T o )

FDR(MP) = (1 +

So FDR(MP) and FDR(M"), as established in proposition 1.2, are equal when
the fraction of true hypotheses selected under either protocol are equal, 7, = 7.
Thus, all that remains to be shown is that the false discovery rate of prediction
is decreasing in m,. For this, we simply take the derivative of FDR(MP) with
respect to m, and show that it is negative.

O [FDROMP) = Ap— 1)

oy (a(mp = 1) + (B = V)mp)

5 < 0.

And the expression is negative since the numerator is negative for the assumed
values of type I and II error rates («, § € (0,1)) and since the denominator must
be positive. ]

Proposition 4. When hypotheses are selected from the same set of candidate
hypotheses with fraction m, =7 € (0,1) true hypotheses, then prediction yields
the same false omission rate as HARKing.

Proof. Let m,, 7, p, a, and 8 be as before. Consider the false omission rate of
prediction, MP.

Pr(p > a, Hy)
Pr(p > «)
_ Pr(p > a|Hy)Pr(H;)
"~ Pr(p> alHy)Pr(Hy) + Pr(p > a|Hg)Pr(Hy)
_ By
B Brp+ (1 —a)(1 —mp)

= <1+ 177rp1—7a)*1'
T 15}

FOR(MP) =

Next, consider the false omission rate of the HARKing protocol, M".

Pr(pe < a,Hf, 2zp = 1)
Pr(ps<a,z=1)
B Pr(py < o|HS)Pr(HY)
 Pr(pe < oHS)Pr(HS) + Pr(pe < o/ HY)Pr(HY)

FDR(M") =
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B a(l—m)
S a(l-m)+(1-B)r
l—-7ml—-a\-!
- (1 ) B
( + 7'(' B (B)
Clearly, whenever m, = =, the false omission rates given in (A) and (B) are
equal, as desired. O

Proposition 5. Prediction is more reliable than HARKing with respect to false
omission, just in case mp < .

Proof. Let m,, 7, p, a,, and 3 be as before. Consider the false omission rate of
prediction, MP. From the preceding proofs, we have the following false omission
rates for the prediction and HARKing protocols:

l-ml—-a

177r17a)—1
T B '

Now, observe that false omission rate of prediction is increasing in m,. For this,
take the derivative of FOR(MP) with respect to m, and show that it is positive.

B) Bl —a)

Y Fo Py —
o P e § N B A 1

FOR(MP) = (1+ )_1, and FOR(M") = (1+

Tp

Since the numerator is positive (given 0 < «, 8 < 1) as is the denominator. [

1.9 Computational Appendix

A GUI for exploring the performance of reporting protocols for prediction,
HARKing, and fallback HARKing is available at: https://amohseni.
shinyapps.io/Reporting-Protocols-and-the-Reliability-of-Science/.

The R code for the computational model can be found at: https://github.
com/amohseni/Reporting-Protocols-and-the-Reliability-of-Science/
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Truth and Conformity on Networks 2

Abstract

Typically, public discussions of questions of social import exhibit
two important properties: (1) they are influenced by conformity bias,
and (2) the influence of conformity is expressed via social networks. We
examine how social learning on networks proceeds under the influence
of conformity bias. In our model, heterogeneous agents express public
opinions where those expressions are driven by the competing priorities
of accuracy and of conformity to one’s peers. Agents learn, by Bayesian
conditionalization, from private evidence from nature, and from the public
declarations of other agents. Our key findings are that networks that
produce configurations of social relationships that sustain a diversity of
opinions empower honest communication and reliable acquisition of true
beliefs, and that the networks that do this best turn out to be those which
are both less centralized and less connected.

2.1 Introduction

Epistemology is the study of true, justified, or reliable beliefs. Social episte-
mology is the study of the effect of social structures and interactions on the
emergence and maintenance of such beliefs. Much of the recent work in social
epistemology has been in the application of game-theoretic techniques to mod-
eling communities of rational inquirers—epistemic communities—to see what
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incentive and interaction structures are conducive to the outcomes of accuracy,!
efficiency,? and equity.3

One of the most important domains of social inquiry is that of broad
public discourse. Which social policy will lead to better outcomes? Which
political candidate is more qualified for office? Typically, public discussion on
such questions of import is influenced by the human tendency of conformity.
Individual decisions are informed and influenced by peers; the presence of
conformist bias in social discourse is well-studied, and well-supported.?

We present a model of social inquiry where it exhibits two properties endemic
to matters of public discussion: (1) individuals are subject to varying degrees to
conformity bias, and (2) the influence of the pressure to conformity is expressed
via social networks. We examine how the structure of social ties in tandem with
conformity bias can influence the flow and reliability of information in matters
of public opinion.

In our model, heterogeneous agents express public opinions where those
expressions are driven by the competing priorities of accuracy and of conformity.
Agents learn, by Bayesian conditionalization, from private evidence from nature,
and from the public declarations of other agents.

Several key findings emerge. We see that the most influential public declara-
tions are made by agents when they go against the consensus of their neighbors,
but that the most informative declarations, on average, are made by agents
when their social influences are balanced. This provides a unifying explanation
for our results: networks that produce configurations of social relationships
that sustain a diversity of opinions empower honest communication and hence
reliable acquisition of the truth.

In related literature on network epistemology (Zollman, 2007, 2010, 2013),
less connected networks are shown, under the right conditions, to increase the
reliability of inquiry. In those cases, greater connectivity can cause premature
“lock-in” to consensus in epistemic communities dealing with an exploration-
exploitation trade-off.> We arrive at a similar moral by different means.

We show that networks are differentially conducive to informative communi-
cation depending on the degree to which a community is divided in its publicly
stated opinions. When communities are most divided, more connected networks,
such as complete networks, do best. Whereas, when communities are near

!See Zollman (2007, 2009, 2013), Mayo-Wilson et al. (2013), and Grim et al. (2013).

2See Heesen (2017), Kitcher (1990, 1993), and Strevens (2003, 2013).

3See O’Connor et al., and Bruner and O’Connor (2016)

“See Asch (1955), Bond and Smith (1996), and Morganand and Laland (2012).

®See (Rosenstock et al., 2017) for an analysis of the specific conditions under which the
effect described in (Zollman, 2007) obtains.



2.2. The Model

consensus, less connected networks exhibiting low degree-centrality, such as
circle networks, are optimal.

Across the networks literature, star networks have been shown to possess
certain optimality properties: they emerge as the product of various processes
of strategic network formation (Goeree et al., 2009; Barrett et al., 2017), can
lead to efficient division of cognitive labor (Goyal, 2007; Zollman, 2013), and
can provide optimal conditions for information dissemination (Goeree et al.,
2009). In contrast, we find that, in the presence of a modicum of conformity

bias, star networks produce to the worst possible conditions for social learning.

Our analysis has implications for broad concerns in social epistemology. For
example, arguments for the merits of deliberative democracy turn on the relative
success of epistemic communities in engaging collective inquiry, discourse, and
decision (Landemore, 2012; Mercier and Landemore, 2012). Our results provide

a distinct justification for the import of a diversity of opinions in such contexts.

And, if collective intelligence is to justify democratic institutions and practices,
then it behooves us to identify and promote (or resist) the social structures
which conduce to (or derange) the reliability of public discourse and so the
prospects of a flourishing deliberative democracy.

In §2.2, we explain our model. In §2.3, we present the long run success of
learning in the presence of conformist bias. In §2.4, we present simulations
illustrating our central results. In §2.5, we provide an analysis of the deeper
patterns that unify and explain our results. In §2.6, we conclude.

2.2 The Model

A Vignette: Caesar or Pompeia?

To animate our model, let us consider an anachronistic allegorical vignette. A
community of Roman citizens has come together to discuss which candidate is
better qualified for office. The candidates are Caesar and Pompeia. In discussing
their beliefs, the citizens are influenced, to varying degrees, by two competing
motivations: the motivation to say, honestly, who they believe is the better
qualified candidate, and the motivation to agree with their neighbors, or, more
particularly, those with whom they share social or economic ties.

Each citizen varies with respect to the weight she places on each honesty and
conformity. On one extreme, we may find Titus the Truth-Teller, who speaks
his mind, come what may. Titus has come to believe—both from what is public
knowledge, and from his own private information and experiences—that it is
Pompeia who is more likely to be a better candidate. And so he declares as
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much, and he does so without any thought or worry concerning the impact of
his declaration on the social regard of his peers.

On the other extreme, we find Cassius the Conformist, for whom harmony
with peers is his sole concern. Making his true beliefs known does not enter the
picture. Whichever candidate his peers favor, Cassius favors. Now, it happens
to be Caesar.

Most of the remaining citizens, however, are not so extreme in their dis-
positions, but rather fall somewhere between Titus and Cassius. They care
about making their true beliefs known, to some degree, and also about harmony
with their peers, to some degree. Most make their declarations in a way that is
contingent both on the strength of their beliefs, and on the weight of the social
pressures around them.

In such a community, individuals come to private beliefs about which can-
didate is more qualified using their private evidence as well as what they can
glean from the public declarations of others. Each individual makes her public
declaration in turn—one that reflects her best interests and so is informed by her
current beliefs, by the particular social pressures she experiences, and by the
degree to which she is motivated by each. This process is repeated, and so the
private beliefs and public declarations of the community evolve over time. Our
model provides a general formulation of how such learning and discourse may
unfold and how it is influenced by the structure of social and economic ties that
underpin the community.

Formal Description of the Model

Imagine that there are two states of the world: 8 and —6. We can think of these
as corresponding to where one social policy will lead to better outcomes, or one
political candidate will be better suited to office.

Agents are interested in learning the true state of the world. This proceeds
in two ways: (1) They get private evidence o ~ fy(o) from Nature; we can
think of these as hearing some piece of news, or reasoning about an argument.
And (2), they observe the public declarations x_; € {6, =0} ~1 of other agents
across the network. Declarations indicate to others the state a declaring agent
ostensibly believes to be true.

For each agent ¢, her payoffs are a convex combination of her truth-seeking
orientation «; and desire for conformity to her neighbors (1 — «;). Her payoff
for a declaration x € {6, =6} then is given by

UZ({L') = azPZ(m) + (1 - al)NZ(x)
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FIGURE 2.1: Social networks with 10 agents.

where P;(z) is agent i’s expectation of the truth of x given her current infor-
mation, and N;(z) is the proportion of her neighbors that have also declared
x5

We can think of an agent ¢ as engaged in two games simultaneously which
determine her payoffs in proportion to her type: a Bayesian learning game that
contributes «a; of her payoff, where the data are the agent’s private evidence o
and others’ public declarations x_;, and an n;-player pure coordination game
that constitutes the remaining (1 — ;) of her payoff, where n; is the count of
agent ¢’s neighbors.

Our epistemic community of IV agents inhabits a society where their patterns
of shared social influence are described by a network.” Here, nodes represent
agents, and neighbors are connected by edges. Standard networks include

5Note that an agent’s truth-seeking payoff for a declaration is based on her expectation
that it corresponds to the true state of the world—agents do not know, and do not find out,
whether their assessments are accurate.

"In past work on social networks, the network has been used to represent each patterns of
transmission of social influence and patterns of transmission of information. Here, we focus on
the effect of patterns of social influence, and so the network structure captures the former but
not the latter, and we follow (Banerjee, 1992; Bikhchandani et al., 1992; Smith and Sgrensen,
2000) in assuming that individual actions are observable to all individuals in the community.
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complete, circle, star, and random networks (see FIGURE 2.1).

Networks vary with respect to the patterns of social influence they capture.
The complete network describes a social structure in which each agent has social
ties with every other. The circle describes a social structure in which each
agent shares social ties with exactly two other individuals. Note that complete
and circle networks are special cases of regular networks,® where the regular
network is of degree N — 1 and degree 2, respectively. In contrast, the star
network describes a centralized social structure, where one individual (a central
agent) has far more connections than the rest (the peripheral agents), who are
otherwise socially isolated.

Before the game, agent types (truth-seeking/conformity orientations) are
drawn from a continuous distribution:

a1y, QN & with supp(G) = [0, 1]

And Nature randomly chooses the state of the world to be 8 or —6. Each state
of the world induces a distinct distribution from which evidence o ~ fy(o) may
be drawn.

The distributions fy(o) = 20 and f-g(0) = 2 — 20, depicted in FIGURE 2.2,
are used in our simulations due to their convenient functional form. More gener-
ally, however, the distributions need only satisfy: mutual absolute continuity and
unbounded evidence. Mutual absolute continuity requires that both distributions
agree on what subsets of possible evidence have positive probability, meaning
that no single piece of evidence can falsify one or the other. And unbounded
evidence give us that evidence has the potential, in principle, to make one
arbitrarily (though not completely) confident of either state. We take this to
be a reasonable assumption, as we want to allow that, for any degree of belief
shy of absolute certainty, there can—in principle—exist some evidence, however
unlikely, which is sufficiently compelling to produce that belief.

In each round, an agent is chosen at random to receive private evidence
from Nature, and to make a public declaration to be observed by the network.
Upon receiving her evidence, an agent updates her beliefs, via conditionalization,
about the true state of the world. This is done in the normal way, using Bayes’
rule

P(o]0)P(6]h")
(o0)P(0]ht) + P(a|=0) P(-6|h!)

P(0|o,ht) = Iz

where P(c|f) is the likelihood of her new evidence o given the state 6, and
P(0)ht) is her prior on 6 given the history of declarations at that time h’.

8Regular networks are those in which all nodes are of the same degree, or number of edges.
Here, this will correspond to all agents having the same number of neighbors.
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foolo)=2—20 fo(o) = 20

o

FIGURE 2.2: Distributions fp(o), f-¢(0), of evidence o, for each state of the
world 6 and —6.

Note that P(f|h!) is also the public belief at that time—the shared portion of
individual beliefs about the true state of the world constituted by the history of
learning from public declarations. To simplify exposition, assume the population
begins with ignorance priors.?

Next, the agent calculates her utilities, given her truth-seeking orientation,
chooses her best response as a function of her private evidence and public prior
(which, together, form her posterior probability P(f|o, ht) over 6), and the
composition of her neighbors:'°

BR;(o, Ni(x)) = arg max{U;(0), U;(—0)}.

Following this, the other agents in the network observe her declaration, and
update their beliefs.!* To do so, they must consider the likelihood of her having
made her declaration given the composition of her neighbors, her likely evidence,

9An ignorance prior is a probability distribution assigning equal probability to all possi-
bilities. Our proofs will require only non-degenerate priors, and our simulations will employ a
range of priors.

1071 the case of payoff ties, the agent chooses among her best responses at random.

"Note that individuals can observe the proportions of a declaring agent’s neighbors making
each declaration. We take this assumption to be plausible under some, but not all, conditions.
In the context of public discourse, one can often observe—at least qualitatively—the social
influences acting on other individuals. That is, when someone makes a declaration in favor of
Caesar, we typically have a fair idea of whether her social network is predominantly pro-Caesar
or pro-Pomepeia, some mixture of the two, and so on, and we use this information in assessing
whether we think her assertion is more or less likely to be more or less socially or epistemically
motivated. That said, future research exploring the effects of limiting observability of the
network will be valuable.
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FI1GURE 2.3: What is inferred from agent i’s declaration of 6, as captured by
condition (f), about her posterior belief P;(f) and truth-seeking orientation «;,
when different proportions of her neighbors N;(0) = 1,1/2,0 are making the
same declaration.

her possible truth-seeking orientations, and their own prior beliefs about the
state of the world.

So, what precisely do agents learn from one another’s declarations? Well,
when agent 7 declares x = 0, others know that it was her best response to do so.
It follows that

OQR(Q) + (1 — Oz)NZ(Q) > Oéi(l — PZ(Q)) + (1 — Oéi)(l — NZ(Q))
a;(2F;(0) — 1) + (1 — a;)(2N;(0) — 1) > 0. (t)

We can get an intuitive grasp of this inequality (f) by considering fixed
values of the proportion of the declaring agent’s neighbors who are also declaring
0 (depicted in FIGURE 2.3.). The shaded area captures the values of agent i’s
truth-seeking orientation c; (on the horizontal axis), and posterior belief P; (on
the vertical axis), that are compatible with her having declared #. That is, the
region in which (1) is satisfied.

Consider the N;(0) =1 case (FIGURE 2.3A). This is where all of the focal
agent’s neighbors are also declaring 6. Here, we see that a broad range of beliefs
and truth-seeking orientations are compatible with her having declared 6. What
can be ruled out (the area in white) is that it was not the case that she was
both highly truth-seeking and strongly believed in the truth of 6. Here, others
do not learn much from observing the focal agent’s declaration.

Consider the N;(0) = 1/2 case (FIGURE 2.3B). This is where the focal
agent’s neighbors are evenly split; half declaring # and half —6. Here, the



2.3. Truth in the Long Run

other agents infer that the focal agent’s social influences are balanced, and so
her truth-seeking orientation «; is no longer relevant. Her declaration is now
determined purely by her posterior belief. If P;(6) > 1/2, then she would make
the declaration she did, if not, she would not. Here, others learn the direction
of the focal agent’s belief, but not much about its strength.

Next, consider the N;(f) = 0 case (FIGURE 2.3¢). This is where none of the
focal agent’s neighbors are declaring 6. Here, we see that only a narrow range
of beliefs and truth-seeking orientations are compatible with her declaration
of 6. It must have been the case that she was both highly truth-seeking, and
possess a strong belief in the truth of §. Now, others learn both the direction
and strength of the focal agent’s belief, and through it about the strength of
her evidence.

From such inferences, the agents in the population update their beliefs
about the state of the world using Bayes’ rule.!? And so, in the ways described,
rational agents learn from their own private evidence, the declarations of other
agents in the network, and public belief about the true state evolves through
discussion and across the network.

2.3 Truth in the Long Run

Our primary interest lies in dynamical analysis of the short-to-medium-run
behavior of social inquiry under conformist bias. Before we proceed to this
analysis, however, it may help us in this to understand the long-run trajectory
of social learning under conformity. What we find is that, in the long run,
irrespective of social structure or conformist bias, epistemic communities like
the ones we have described will converge to believing in, and publicly declaring,
the true state of the world.

More precisely, given any social network, unbounded evidence, and the
possibility of sufficiently truth-seeking agents 1 € supp(«), a community of
Bayesian learners will, with probability one, converge to knowing and declaring
the truth in the long run. This is captured by the following proposition and its
corollary.

Proposition 6. An epistemic community learning about the state of the world
will, in the long run, converge in belief to the true state.'

Corollary 7. For such an epistemic community, converging in belief to the true
state implies converging to consensus in declaring the true state.

12G6e APPENDIX A for the mathematical details.
13 All proofs can be found in Appendix A.
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Convergence in beliefs follows from the fact that our agents learn via Bayesian
conditioning, that the true state is contained in each agent’s hypothesis set, and
that agent declarations are always to some degree informative as to the state
of the world. Given this, classical convergence results for Bayesian learning!
guarantee long run acquisition of the truth.

Convergence in declarations follows from the fact that, given convergence
in beliefs, the community’s beliefs will inevitably pass a threshold such that
a consensus on declaring the true state cannot be escaped. Moreover, with
enough time following the passing of this threshold of belief, the population will
almost surely traverse a positive probability path to consensus on the true state,
whereupon it will never leave this consensus.

It may well be that “in the long run we are all dead,” [Keynes, 1923, p. 80|
but it can be helpful to confirm where we are headed. We have seen that our
epistemic communities will arrive at the truth in the limit of time, so we turn to
short and medium run analysis of social learning for a richer and more pressing
picture of inquiry.

2.4 Truth and Conformity in the Short and Medium
Run

What can be said about the short and medium run behavior of learning under
conformity? What role does social structure play in the reliable acquisition of
true beliefs? To answer these questions, we ran simulations of our model of
epistemic communities engaged in social learning and discourse. We recorded
and analyzed the resulting behavior over a parameter sweep of network types,
population sizes, initial declarations, prior beliefs, and distributions of the
individuals’ truth-seeking and conformity orientations.

For the simulations, we varied the structure of social influences by placing our
agents on each complete, regular (of degree N/2), circle, star, and random (of
mean degree N/2) networks. We varied the number of agents N in the network
from 2 agents (at which all networks are essentially identical) to 20 agents. We
considered when the initial declarations of the society were at a consensus on
the true state, a consensus on the false state, and an even split. We varied
the shared prior beliefs of the population between relative confidence in the
true state (P(6) = 0.75), skepticism toward the true state (P(#) = 0.25), and
ambivalence about the true state (P(f) = 0.5). Each combination of network
structure, population size, initial declarations, and prior beliefs composed one
parameter setting.

“For an excellent exposition of the classic results, see Smith and Sgrensen (2000).
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FIGURE 2.4: Plots of the mean belief in the true state P(0) (A), and declaration
of the true state 6 (B), for each network type, and for network sizes from 2
agents to 20. Note that the networks only become fully distinct at N = 6. The
dashed line represents performance in total absence of any conformity:.

For each parameter setting we ran 10,000 simulations where each simulation
was composed of 100 turns, and where each turn consisted of the following
phases: (1) a randomly selected agent receives her private evidence from Nature;
(2) the agent updates her private belief in light of this evidence; (3) the agent
chooses her best response given her beliefs, her neighbors’ declarations, and her
truth-seeking/conformity orientation; (4) the agent makes her declaration to
the network; (5) the other agents in the network update their beliefs in light of
her declaration.

Three regularities readily emerged from the data (see FIGURES 2.4A, 2.4B):
(1) In all simulations, the star network performed worse than all other standard
networks in terms of generating reliable belief in, and declaration of, the true
state. (2) The circle network, on the other hand, performed better than
other standard networks on all counts. (3) The other networks—complete,
regular (of degree N/2), and random (of mean degree N/2)—yielded middling
performances, neither as good as the circle, nor as poor as the star, with the
regular network typically outperforming the random network, and the random
network outperforming the complete network.!?

5In our simulation plots (FIGURE 2.4), we mark the performance of learning in the absence
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To make sense of these regularities in our simulation results, analytic treat-
ment of the model and its dynamics is needed. What should be obvious is that
conformity bias muddies the waters with respect to the information content of
individuals’ declarations. In the absence of conformity, our epistemic communi-
ties would rapidly and reliably acquire the truth, and the underlying network
structure would make no difference to this learning.

What we will find is that different networks induce social configurations more
or less conducive to honest communication, and that this will also depend on the
degree to which the population is divided or unified in their public declarations.

2.5 Influence, Information, and Social Structure

To understand why different social networks are more or less conducive to the
reliable acquisition of true beliefs, we first need a measure of informativeness. For
this, we introduce the concepts of influence and informativeness of declarations,
and show how they are related.

We define the influence of a declaration = € {0,-6} as the difference
between the public belief in x before and after its declaration to the network,
q(z|z) — q(x), where q is the public belief. Next, we define the informativeness
of a declaration = € {0, -0}, as the reduction in uncertainty it produces with
respect to its corresponding state when starting from a maximal entropy prior,
H(q|q(z) = 1/2) — H(g|x), where H is the Shannon entropy function.

We now derive the fact that the informativeness of a declaration is monoton-
ically increasing in its influence on the public belief (see Lemma 14 in Appendix
A). This gives us that a declaration will be (minimally) maximally influential just
in case it is (minimally) maximally informative. We will use this fact repeatedly
to infer the relative informativeness of declarations from their influence.

Optimal Information From Going Against the Grain

Given our measures of influence and informativeness, our first insight follows
straightforwardly from our model of agents learning via Bayesian conditioning
under uncertainty about one another’s evidence and truth-seeking orientations.
It is that the most informative declarations—those that have the most significant
effect on the public belief—are those that “go against the grain.” That is, those
made by agents exactly when they deviate from the consensus of their neighbors.

of any conformity bias—that is, of unimpeded Bayesian learning—with a dashed line. We
will continue to compare our results to this control case, denoting the case of learning in the
absence of conformity bias in further plots (FIGURE 2.5, 2.6, 2.7) each time with a dashed
line.
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Information of an Individual Declaration
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Proportion of Neighbors Declaring the Same State

FIGURE 2.5: The influence and informativeness of an agent’s declaration, as a
function of the proportion of her neighbor’s who are declaring the same state.

This insight is captured by the following proposition:

Proposition 8. The informativeness of an agent’s declaration is monotonically
increasing in proportion of her neighbors who are declaring the opposing state.

And since the minimum proportion of an agent’s neighbors who may declare
in favor of any state is zero, we have the following as an immediate corollary:

Corollary 9. The most informative declaration in favor of a state is one made
by an agent when she goes against the consensus of her neighbors.

This corresponds to the case in FIGURE 2.3, where N;(0) = 0, and is
visualized by the plot of information of declarations in FIGURE 2.5 where we
see the change in belief by the population in response to an agent’s declaration
as a function of the proportion of that agent’s neighbors who are declaring the
same state.

When an agent deviates from the consensus of her immediate peers, it is
inferred by the broader network that she is both likely to be more truth-seeking
and that she has received sufficiently strong evidence to justify the loss in social
payoffs she incurred. No other declaration is more influential on the public

belief.
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Expected Information of an Individual Declaration

Expected Information of Declaration
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Proportion of Neighbors Declaring the True State

FIGURE 2.6: The ezpected influence and informativeness of an agent’s decla-
ration, as a function of the proportion of her neighbor’s who are declaring the
same state.

Optimal Expected Information From Conflicted Neighbors

We have seen that the most informative declarations occur when an agent goes
against the consensus of her peers. But such declarations are rare, as it takes
highly truth-seeking agents with good evidence to be willing to make them. We
should ask then: under what conditions, on average, do we expect to find the
most informative declarations?

These turns out to be the obverse of where we find the most influential
declaration. The most informative declarations, on average, must come from
individuals whose neighbors are perfectly divided in terms of their declarations.

This is captured by the following observations:

Observation 1. The most influential and informative declaration, in expecta-
tion, is that made by an agent when her neighbors are evenly divided in their
declarations.®

Our observations are computationally verified for the following distributions of types and
evidence: the distribution of truth-seeking orientations in the population was varied from
Beta(1,5) (corresponding to high conformism), to uniform, and Beta(5,1) (corresponding to
high truth-seeking). And the distributions of evidence induced by each state of the world were
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Observation 2. The expected information of declarations is convexr and in-
creasing for N;(0) € (0,1/2) and convex and decreasing for N;(0) € (1/2,1).

This corresponds to the case in FIGURE 2.3, where N;(f) = 1/2, and
is visualized by the plot of expected information of declarations in FIGURE
2.6. In FIGURE 2.6, we see the expected change in belief of the population
in response to an agent’s declaration, as a function of the proportion of that
agent’s neighbors who are declaring the true state. Our propositions make use
of these observations.

It is when an agent’s social influences equally represent each viable position
that she is most free to declare her honest belief, and in such a case others infer
that she is most likely doing so.

Informativeness of Networks

Which networks then are most conducive to the social configurations that yield
honest communication? Using the insights developed so far, we extend the
concept of expected informativeness to the level of social networks.

Assume that 6 is the true state of the world, then expected influence of
declarations X = {6, -6} for an N-agent network G is given by

N (¥) ~

Ex[q(01) —a(0)] o< Y>> Exla(8l:) — q(6)]

k=0 j=1 i=1

where the first sum is over the number of the agents in the network declaring
the true state, the second sum is over the possible configurations of declarations
in the network given the number of agents declaring the true state, and the
third sum is over the individuals in the network.!'” In this way, we infer the
informativeness of a network in aggregate as well as for fixed proportions of the
community declaring the true state.

With a generalized measure of expected informativeness, we compute the
expected informativeness of 10-agent networks for different proportions of the
population declaring the true state (see FIGURE 2.7).

From this, several observations emerge. Denote the proportion of the
community declaring 8 by Ny. For all networks, then, the least informative
state is that of consensus, Ny = 0 or 1, and the most informative state is when

varied between the linear case described before, and Gaussian distributions with means of 1
and -1, and variances of 1, 10, and 100.

"Note that we have omitted the normalizing term from the definition of the influence of a
declaration.
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Expected Information of Declarations by Network
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FIGURE 2.7: The expected informativeness of the next declaration for 10-agent
networks as a function of the proportion of the population which is declaring of
the true state. The dashed line denotes the expected information in the absence
of any conformity.

there is an even split in declarations Ny = 1/2. Given Observation 1, it should
be clear why this is so. Declarations are expected to be informative in measure
to the presence of balanced dissent.

Next, we observe that, when the population is nearly split, the complete
network produces the most informative declarations among the networks consid-
ered, while the circle network produces the most informative declarations when
the population is near consensus. Finally, the star network provides the least
informative social configuration no matter the proportion of the population
making either declaration.

We may understand these results in terms of our previous insights, and
sharpen them by considering large networks. On a star network, when the
population is large, practically every individual has merely one neighbor. Hence,
for any proportion of declarations in the population, the star network will be in
the minimally informative state. That is, I(Gstar|Ng) = NoI(1)+(1—Np)I(0) =
1(0).18

8Given the assumption of symmetry of expected informativeness across Ny = 1/2, we have
that I(0) = I(1), and, more generally, that I(1/2 —c¢) = 1I(1/2+ ¢) for c € [0,1/2].
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Proposition 10. For large networks, the star network is minimally informative
m any state.

On a complete network, when the population is evenly divided, Ng = 1/2,
each individual is in the optimal position to make informative declarations.
When all individuals are neighbors and the population is sufficiently large,
the expected informativeness of the network as a whole recapitulates the ex-
pected informativeness of individual declarations given in FIGURE 2.6. That is,
I(Geompiete|Ng) = I(Np). Given Observation 1, we show that no network can
be more informative in such a state.

Proposition 11. For large networks, when the population is evenly split in
declarations, the complete network is mazimally informative.

On a circle network, when the population is near consensus, a single dissenting
individual can make it possible for both her neighbors to declare their honest
beliefs. That is, given that each individual has two neighbors, their neighbors’
declarations are binomially distributed with the success parameter given by
the population proportion of declarations, I(Geiree|Ng) = N92I(O) + 2Np(1 —
Ng)I(1/2) + (1 — Ny)2I(1). Contrast this with the complete network where,
near consensus, every individual faces strong incentives to conform.

Proposition 12. For large connected networks, for a range of states near con-
sensus in declarations, the circle network is the maximally informative network.

More generally, we can express the expected informativeness of the declara-
tion of any individual with d connections and proportion Ny of her neighbors
declaring the true state as

PRI (§)ata - maer (). ()

k=0

From this, we may derive the informativeness of any network, when we conceive
of networks as admixtures of proportions of individuals with different numbers
of neighbors.

Given any large network, it can be represented as a distribution p = (ug)
over the degree d of individuals within the network. Thus, the expected infor-
mativeness of the network will be I(G,|Ng) = >, pa - En,[14]. Using this, we
provide bounds for the informativeness of epistemic networks near consensus.

Proposition 13. For large networks, near consensus, any network (includ-
ing any regular or random network) of minimum degree at least two will be
intermediate in informativeness between the circle and complete network.
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2.6 Conclusion

The prospects for a flourishing democracy depend crucially on our ability to
engage in successful collective inquiry, discussion, and decision. We have seen
that when social learning proceeds under the influence of conformity bias, the
social structure of the community becomes a critical determinant of the success of
public discourse. And so it behooves us to begin to identify the social structures
that promote or derange the reliability of public discourse in arriving at true
beliefs.

That disagreement and diversity in publicly held opinions can be optimal for
honest communication gives us our key insight into understanding the effects of
different social networks. This also provides a distinctive epistemic justification
for the diversity of opinions: as a way to bolster informative communication
when faced with the pervasive influence of conformity bias. The question as
to which social networks lead to reliable beliefs then becomes a question as to
which social networks produce and sustain optimal patterns of disagreement
throughout the process of inquiry.

We demonstrated that, in the presence of even a modicum of conformity
bias, the star network always provides the worst conditions for informative
communication, the complete network provides optimal conditions exactly when
the population is evenly divided, the circle network provides optimal conditions
near consensus, and that, near consensus, all sufficiently connected networks will
be intermediate in informativeness between the circle and complete networks.

This has implications for real-world social networks, which tend to exhibit
low average degree and high degree-centrality (Watts and Strogatz, 1998). We
may conjecture that, when we suspect conformity bias at play in social discourse
and decision-making, interventions which reduce the density of connections of a
social network while still keeping it connected, and interventions which decrease
its centralization by reducing the relative influence of central individuals, may
lead to more informative communication—and so to more reliable beliefs—for
the epistemic community as a whole.
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2.7 Mathematical Appendix

Learning from others’ declarations

When agent i declares x = 6, we know that it was her best response. As
previously mentioned, this implies that the following condition holds:

a;j(2P;(0) — 1) + (1 — a;)(2N;(0) — 1) > 0. ()

We plug agent i’s (publicly unknown) posterior belief P(6|o) into (T) to get the
elaborated condition

" 1f2p1fa‘1 + (1 - ) (2Ni(8) — 1) > 0 1)
R

where P denotes the (publicly known) prior P(|h!). We then compute the
likelihood of agent ¢’s declaration 0, given our public prior, as follows.

Let ¢ denote the left-hand term of our elaborated condition (f), under which
our agent would have declared 6, so that I[¢ > 0] is its indicator function. We
then get the likelihood of the declaration given each possible state of the world,

Pz = 0)6, P) :/A/Ew > 0dFy(0)dG(a),
Pz = 0|-0, P) — /A /E I[6 > 0]dF-g(0)dG(a).

From these we obtain the posterior belief of the other agents in the network in
light of agent i’s declaration of 8 using Bayes’ rule

[4 [s 1o > 0]dF4(0)dG(a) 1 — P> —1

P(flz=0,P) = <1 t [a Js1l¢ > 0]dFp(0)dG(a) P

which yields the new public belief.

Proof of Proposition 6. There are two states of the world 8 and —0. Without loss
of generality, suppose 6 to be the true state of the world. Let g(h!) = P(6|h?)
be the public belief and h' the history of declarations up to time t. As is
well-known, the likelihood ratio

_ 1—q(h)

(R) q(ht)
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is a martingale conditional on 8. Let X be the finite set of declarations. For
any given declaration z € X,

P(z|ht, -6)

U(ht,z) = L(hY) DT )

and thus the martingale property follows:

E[e(h™H1)]0] = Y #(h!,z)P(x|hf,0) = Y L(h")P(x|h',=0) = £(h").
zeX zeX

By Theorem 3(b) of Smith and Sgrensen (2000), when evidence is unbounded,
individuals almost surely converge in belief to the true state. O

We show that convergence in beliefs implies a convergence in declarations.
In particular, we show that convergence in beliefs implies that the community’s
belief in the true state will be bounded from bellow over time. We then observe,
using simple probabilistic arguments, that given sufficient time the community
will almost surely arrive at a consensus state where all individuals are declaring
the true state. Finally, we show that, having arrived at such a consensus with
individual beliefs in the true state appropriately bounded from bellow, the
community must remain at this consensus forever.

Proof of Corollary. 7 Let q and ¢’ denote the public belief before and after
hearing a declaration, respectively. Consider a focal agent ¢ having received
her evidence from Nature on a given turn. Let P; denote the focal agent’s
posterior belief P(f|c, h!), and suppose that this agent declared z = —0. It is
straightforward to show that if the population could observe the focal agent’s
posterior, the public belief would be precisely equal to her posterior

q'(—0,q, Ny(0), P;) = P;. (*)

Let II(-|—0, g, Ny) be the distribution over the focal agent’s posterior belief given
her declaration of =6, ¢ the public belief when she selected her action, and N;(6)
the proportion of her neighbors declaring 6. By (*) we can write

1
¢ (=0,q, N:(0)) = /0 P, dIL(F;|~0, ¢, Ni(6)).

We can thus interpret the public belief as the public’s expectations of the focal
agent’s posterior. As the public belief almost surely converges to certainty on
the truth, for almost all trajectories of the public belief {g},-5, for all € > 0
there exists a time T, such that, if ¢ > T, then ¢; > 1 — e. That is, there is a
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time after which the public belief in 8 will always be at least 1 — e. Then choose
e=1/2.

With probability 1 at some point along the trajectory after T, all agents
will be declaring 6. To see this, let A be the probability all N agents choose
declarations in sequence, each has an « sufficiently high such that they declare
the state they believe to be more likely regardless of their neighbors’ declarations,
and they receive evidence such that their posterior assigns higher probability
on 6. However small the probability A might be, it exceeds 0. Hence, the
probability that this event does not occur goes to zero as t — +oo.

Assume, for the sake of contradiction, that at some point after 7T, an agent
goes against the consensus and declares =6, then her posterior must satisfy

1—047; + 1
20[1‘ 2.

P<-

But then we get that E[P;|—0, ] < 1/2. That is, her belief in 6 was less than
1/2, which contradicts the fact that her belief was bounded from bellow. Hence,
no agent can deviate from the consensus after time T, and convergence in belief
implies convergence in declaration. O

Lemma 14 (Monotonicity of Informativeness in Influence). The informativeness
of a declaration about a state is monotonically increasing in its influence on the
public belief.

Proof. Without loss of generality, let the focal agent declare x = . We show
that the informativeness of her declaration, H(q|q(6) = 1/2) — H(q|x = 6)), is
monotonically increasing in its influence, ¢(f|z = 0) — q(0).

First, we unpack the definition of informativeness, temporarily omitting the
assumption of the maximal entropy prior ¢(f) = 1/2, to get

H(q) — H(q(0lz = 0) = E[-In(q(0|z = 0))] — E[-In(¢(0))]
= E[ln(q(0)) — In(q(0|z = 0))]
E

(et

Now, let A = ¢(0) and B = q(0|x = ), so that C = B — A denotes the influence
of the declaration x = 6. Then we can re-write the preceding expression as

A.1n<1&>+(1—14)‘1n<1—1(;1£c)>
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Taking the partial derivative with respect to influence C, and solving for when
it is positive—i.e., for when informativeness is increasing—yields

A+C—-1>0 or B>1/2

And when ¢(0) = 1/2, we have that B = q(f|x = ) > 1/2, and so informative-
ness is monotonically increasing in influence, as desired. ]

We will show that ¢'(6, N;(0)) < ¢'(0,N;(0)) whenever N;(0) > N;(0).
From this it follows straightforwardly that, given N;(#) € [0,1], the most
influential declaration occurs just when N;(6) = 0.

To do so, consider a given focal agent i having received evidence o ~ fy(o)
from Nature. Let r = r(0) = P;(—6|o) be one minus her private belief, G_g(r)
and Gp(r) the conditional cdf’s for r, and g(r) = dd%:f (r) the Radon-Nikodym
derivative of G_g with respect to Gy.

Lemma 15. g(r) = 1= almost surely.

Proof. If an agent updates her belief after observing r, it will remain unchanged.

Thus from Bayes’ theorem r = P;(—f|r) = ggr(Ql. O

Lemma 16. The ratio GCT;@(T) 1s strictly increasing for r in the common support
of Gy and G_y.

Proof. Let ' > r. From Lemma 15 we have that g(r) is strictly increasing,
hence,

Go(r) = /0 " g(2)dGa(x) < g(r)Go(r)

And thus
Goo(r') — Goo(r) = /TTI 9(x)dGy(x).
> [Go(r') = G-o(r)]g(r)
> (Golr) ~ o) G2
It follows that G2 > Celr). O

Proof of Proposition 8. Now, we proceed to show that ¢'(6,N;(0)) <
q' (0, N;(0)) whenever N;(0)" > N;(0). Define ¢’ to be the posterior public
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belief, ¢ the prior public belief, NV;(8) the proportion of the focal agent’s neigh-
bors declaring 6, and II(-|x;, ¢, N;(0)) the posterior belief over the declaring
agent’s truth-seeking orientation «; € [0,1]. Then

1
¢ (0, N,(0)) = /0 ¢/(0, N;(0), as)dI1(a4]0, Ni(0), ).

For a given «; in the support of II(:|0, N;(0), q), there exists a threshold
7 = 7(a4, q, N;(0)) such that the agent only selects z; = 0 if » < 7. From Bayes’
theorem,

/ 1—-qG-(T)
q(0,N;(0), ;) (1 + 7 GolP) )
If (v, N;i(0), q) > 7(cv, Ni(6), q) holds, and further holds strictly for a sub-

set of ; with positive posterior probability, then, by Lemma 16, ¢'(6, N;(0)) <
It can be shown that the threshold 7(a;, N;(0), q) is strictly increasing in
N;(0). This gives us that ¢'(0, N;(0)', ;) < ¢’ (0, N;(0), ;). Furthermore, having
assumed that «; and r take full support in [0, 1], we can find a neighborhood of
a; = 1 with positive probability such that 7(a;, N;(6),q) > 0 for all ; in this
neighborhood. Hence, in this neighborhood ¢'(6, N;(0)', ;) < ¢'(6, N;(0), ;).
L]

Proof of Corollary 9. We have, from proposition 8, that ¢'(6, N;(0)") >
q' (0, N;(0)) whenever N;(0)" < N;(0). It follows directly that

arg max ¢’ (6, N;(6)) = 0.
N;(0)€[0,1]

Thus, the most influential declaration is made just when N;(6) = 0. And we
have, from Lemma 14, that this is also the most informative declaration. ]

Proof of Proposition 10. On a large star network, proportion one of individuals
have a single neighbor. So, for any proportion of the population declaring 6,
every individual is in the minimally informative state where either Ny = 0 or
1. Hence, for all Ny € [0, 1], and symmetric I, I(Gsqr) = I(0) < I(G) for any
connected network G. O

Proof of Proposition 11. On a complete network, every individual is neighbors
with every other. Hence, the proportions of an individuals neighbors declaring
is the same as the proportion of the population declaring 6. That is N;(0) = Ny
for each i. The expected informativeness is maximized when an individual’s
neighbors are equally split NV;(6) = 1/2. Thus, when exactly half the population
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is declaring 6, the declaration of every individual in the population is at maximal
expected informativeness. Hence, no other network can be more informative
in this state. That is, when Ny = 1/2, I(Geompiete) = 1(1/2) > I(G) for any
connected network G. O

To show that the circle is maximally informative near consensus, first we
show that for regular networks of degree at least 2 informativeness is decreasing
in degree near consensus. This implies that any regular network of degree
greater than two is less informative than the circle network. We combine this
with Proposition 10, which implies that networks of degree 1 are also less
informative than the circle network, to show that the circle network is the
maximally informative regular network. Next, using the fact that any network
can be formulated as an admixture of individuals of various degrees we derive
that the circle network is maximally informative near consensus.

Lemma 17. For reqular networks of degree at least 2, informativeness is de-
creasing in degree near consensus.

Proof. Take the derivative of the informativeness of any regular network G, of
degree d > 2 with respect to the proportion of the population declaring the true
state.

dng [1(9a)] = dng [Zd: <Z> N1 — Ng)¥ "1 (’;)] _

k=0

Let Ny go to 0. This makes it so only the constant terms of the derivative
remain, and the expression simplifies to

i 1(00)) = I /d) - T(O).

This term corresponds to the slope of the secant line connecting I(0) and I(1/d).
Since I is an increasing function, this term must be decreasing in d. Thus, for
networks of degree two and greater, informativeness is decreasing in degree near
consensus. O

Lemma 18. The circle is the mazimally informative reqular network near
CONSENSUS.

Proof. This follows from Lemma 17 and Proposition 10, which state that a
regular network of degree 2 (the circle) is more informative than any network of
greater degree near consensus, and that a regular network of degree 1 is less
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informative than any other at any state. Taken together, they imply that, near
consensus, regular networks of degree two are maximally informative among
regular networks. O

Proof of Proposition 12. Now, recall that any large connected network G,, can
be formulated as an admixture p = (ug) of proportions of individuals of degree
d > 1, where >, p1g = 1 and pg > 0. The expected informativeness of any
network then is a proportion-weighted sum of the expected informativeness of
the individuals of each degree contained in the network. That is, I(G,|Ng) =
Y atd-En,[14]. It follows from Lemma 18 that, near consensus, any network not
entirely composed of individuals of degree two is strictly less informative than
one which is in fact composed entirely of individuals of degree two. Thus, when
Nog =0or 1, I(Geireie) > I1(G,,) for any G, such that puy = 0 and pp # 1. O

Proof of Proposition 13. It follows directly from Lemma 17 that, near consensus,
the maximally and minimally informative regular networks of degree at least
two are the circle and complete network, respectively. We combine this with the
fact that any large network G, can be formulated as an admixture p = (uq) of
regular networks of degree d, and with the linearity of expected informativeness,
to adduce that the informativeness of any network is bounded above by that
of the circle network and bounded bellow by the complete network. That is,
when Ny = 0 or 1, I(Geircie) > 1(Gu) = I(Geompiete) for any G, such that
min{d : uq > 0} > 2. O

2.8 Computational Appendix

A GUI for exploring the model is available at: https://amohseni.shinyapps.

io/Truth-and-Conformity-on-Networks/.

The full R source code for the computational model can be found at:

https://github.com/amohseni/Truth-and-Conformity-on-Networks
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Stochastic Stability and Disagreement Between
Dynamics 3

Abstract

The replicator dynamics and Moran process are the main deterministic
and stochastic models of evolutionary game theory. These models are
connected by a mean-field relationship—the former describes the expected
behavior of the latter. However, there are conditions under which their
predictions diverge. I demonstrate that the divergence between their
predictions is a function of standard techniques used in their analysis, and
of differences in the idealizations involved in each. My analysis reveals
problems for stochastic stability analysis in a broad class of games. T also
demonstrate a novel domain of agreement between the dynamics, and
draw a broader methodological moral for evolutionary modeling.

3.1 Introduction

The replicator dynamics (Taylor and Jonker, 1978) and frequency-dependent
Moran process (Moran, 1962) are the main deterministic and stochastic dynamics
of evolutionary game theory (Cressman and Tao, 2014; Garcia and Traulsen,
2012). Both dynamics capture the basic idea that phenotypes that are more
fit than the population average tend to grow in proportion, while phenotypes
less fit than average tend to shrink in proportion. The replicator dynamics
gives us a deterministic description of the behavior of evolution, assumes infinite
populations, and isolates the influence of selection. The Moran process gives us

o1
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Table 3.1: A 2 x 2 symmetric anti-coordination game.

a stochastic description of evolution, assumes finite populations, and introduces
the effects of drift.

Importantly, the two dynamics are connected by a mean-field relationship
(Benaim and Weibull, 2003, 2009). Intuitively, the replicator dynamics describes
the expected behavior of the Moran process for large populations over finite
stretches of time.!

Yet, there exists a striking puzzle: employing standard methods of analysis,
the two dynamics can make contradictory predictions (Sandholm, 2009, Ch.12).
When the interactions within a population are modeled by an anti-coordination
game, or game containing an anti-coordination subgame, the replicator dynamics
may predict that selection will favor polymorphism,? but it is said that the
Moran process shows that such polymorphisms cannot persist in the long run
(Taylor et al., 2004; Novak, 2007). I examine this puzzle, and show that its
standard explanation is not quite right. I demonstrate that, even in the long
run, there are a range of conditions under which the Moran process sustains
polymorphism. Under conditions I characterize the long run behavior of the
Moran process will realign with the predictions of the replicator dynamics.

The misunderstanding of the behavior of the Moran process stems from a
shortcoming in a standard technique of analysis: stochastic stability analysis.
And the shortcoming of stochastic stability results from its assumption of
vanishing mutation rates. My results indicate problems for stochastic stability
in a broad class of games, reveal a novel domain of agreement between the two
dynamics, and suggest a methodological moral for evolutionary modeling.

To understand our motivating puzzle, we can consider the simple anti-
coordination game given in TABLE 3.1, and examine the predictions as to
the evolutionary outcomes of its corresponding population game under each

!The replicator dynamics also provides a mean field for other dynamics, such as rein-
forcement learning (Benaim and Weibull, 2003), and emerges from distinct revision protocols,
including pairwise proportional imitation, imitation driven by dissatisfaction, and imitation of
success (Sandholm, 2009, Ch.5.4).

2 Polymorphisms, here, are population states in which multiple phenotypes are present.
They are contrasted with monomorphisms, in which only a single type is present.
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dynamics. For both dynamics let us assume: large populations, random pair-
wise interactions, true breeding, the absence of mutation, and infinite-horizon
play. Under the replicator dynamics, the prediction is that, from most all
initial conditions, evolution will deliver the population to the polymorphic
state x = 1/2,> where A-types and B-types coexist in equal proportions. In
contrast, for the same anti-coordination game, the Moran process predicts that
evolution will deliver the population, with equal probability, to one of the two
monomorphic states © = 0 or x = 1,* where the population is composed entirely
of either A-types or B-types. The evolutionary outcome that is a moral certainty
in one model is an impossibility in the other.

Such a divergence in the predictions of the two dynamics leads naturally to
the following questions: How are we deriving the predictions of each dynamics?
And what is the cause of their divergence??

The standard explanation for divergence in such cases is that the dynamics
differ in the time-horizons of their predictions: the replicator dynamics approx-
imates the short-to-medium run behavior of evolution, while the the Moran
process can capture its long run behavior (Taylor et al., 2004; Novak, 2007).
The prediction of the replicator dynamics is polymorphism, and this correct for
the short-to-medium run. The prediction of the Moran process is monorphism,
and this is correct for the long run. Young (1998, 47) states this clearly: “While
[the replicator dynamics| may be a reasonable approximation of the short run
(or even medium run) behavior of the process, however, it may be a very poor
indicator of the long run behavior of the process.”

The dynamics differ with respect to the time-horizons of their predictions.
This is true, but in the case of interest, this is not the cause of the divergence
in their predictions, and it is not the answer to our puzzle. The cause of the
divergence lies in the standard technique employed to derive predictions from
the Moran process, stochastic stability analysis, introduced to game theory by
Foster & Young (1993). Under conditions I will characterize, stochastic stability
leads to the mis-prediction of homogeneity where long run diversity is to be
expected.

Why does this matter? In brief, because the technique of stochastic stability
analysis is ubiquitous. Among those having deployed stochastic stability in

3For the replicator dynamics, these will be asymptotically stable states. These will be
explained in §2.1.

4For the Moran process, these will be either absorbing states or stochastically stable states,
depending on the presence of mutation. These will be explained in §2.2 and §2.3.

5 Another important—and open—question is: how, generally, should we meaningfully
compare the predictions of stochastic and deterministic dynamics?
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the analysis of the Moran process, and related processes,® include: Binmore &
Samuelson (1995; 1997), Fudenberg & Imhof (2004; 2006), Fudenberg et al (2006),
Imhof et al (2006), Nowak et al (2004; 2007), Ohtsuki et al (2007), Sandholm
(2007; 2009; 2010; 2012), Taylor et al (2004), Trauelsen & Hauert (2010), and
Young (1993; 1998; 2005; 2015). Evolutionary game theorists use stochastic
stability analysis to explore and explain various phenomena in the domains
of cultural and biological evolution, ranging from the diffusion of innovations
to the emergence of conventions. Stochastic stability is a standard tool in
both theoretical and applied work. Given this, understanding its limitations is
important.

The structure of this paper is as follows. In §2, I will introduce the replicator
dynamics and Moran process models along with the concepts of asymptotic sta-
bility, replacement probabilities, and stochastic stability needed to understand
our results. In §3, I will demonstrate the conditions under which stochastic
stability will mis-predict the long run behavior of the Moran process, polymor-
phisms will persist, and the behavior of the replicator dynamics and Moran
process will realign. In §4, I will discuss real-world applications where one
can expect my results will matter, and suggest a methodological moral for
evolutionary modeling. In §6, I conclude.

3.2 The Dynamics

The Replicator Dynamics

The replicator dynamics is the “first and most important model of evolutionary
game theory” (Cressman and Tao, 2014, 1081). This is due to the fact that it
allows us to isolate the qualitative influence of selection on evolution, unper-
turbed by the complicating factors of mutation, drift, recombination, and so on.
The leading idea behind the replicator dynamics is that types that are more
fit than the population average fitness grow in relative proportion, and types

5These include the closely related Markov processes of Fermi and Wright-Fisher.
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that are less fit than average shrink in proportion. This can be described by a
system of differential equations”

& = zi[u(i,z) —u(z,z)] forie S

where S is the set of possible types, &; denotes the rate of change of the
population proportion of type ¢, x; denotes the population proportion of type
i, u(i,z) denotes the expected fitness for type i from interacting with the
population, and u(x,z) denotes the population average fitness.

We derive predictions from the replicator dynamics by finding the asymp-
totically stable states of the dynamics for a given game, and equating these
with the plausible outcomes of evolution for that game.® A population state is
asymptotically stable just in case it is both stable and attracting. Intuitively,
a state is stable if states near it remain near it, and attracting if states near
it tend toward it. This gives us our prediction of the behavior of a process
described by the replicator dynamics.

For the simple class of 2 x 2 symmetric games under the replicator dynamics,
five qualitatively distinct outcomes are possible. These can bee seen in TABLE
3.3. Our puzzle concerns the class of anti-coordination games, shown in the
third row of the table, and labeled the ‘polymorphic case’. This is where we find
polymorphisms that are asymptotically stable under the replicator dynamics.
Anti-coordination games constitute and important class of interaction structures,
and have been used in explanations of ritualized animal conflict (Maynard Smith,
1974), sex ratios (Hamilton, 1967), and bargaining norms (Skyrms, 1996).

We derive the prediction of the replicator dynamics for anti-coordination
games (TABLE 3.3, third row) as follows. We solve for the fixed points of the
dynamics, where the rate of change in population proportions of each type
is zero, i.e., ©1 = 3 = 0. This yields three states: the two monomorphic
states composed entirely of one type or the other, and a polymorphic state, i.e.,

"The Replicator dynamics can also be formulated for discrete time—the Maynard-Smith
formulation (1982)—by a system of difference equations, which, under some conditions, yield
subtly different results from their continuous time counterpart (Cressman, 2003). However, for
2 x 2 games, the qualitative predictions of the two formulations coincide. Thus, here, without
loss of generality, I will work with the continuous time formulation exclusively.

8 Asymptotic stability does not exhaust the plausible outcomes of the replicator dynamics.
In more complex games, disequilibrium behavior such as cycles and strange attractors, along
with sets of collectively but not individually stable states, will not be asymptotically stable
but may still constitute plausible outcomes of the dynamics. For a survey and analysis of
this issue, see (Mohseni, 2017). However, for the class of 2 x 2 symmetric games considered
here, there is a one-to-one correspondence between evolutionarily significant outcomes and
asymptotically stable states. So, we can proceed comfortably with asymptotic stability as our
stability concept for the replicator dynamics.
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Game Type Payofts Phase Portrait Asymptotically Stable States
A dominates B Z; :l A@€«<————ORB All-A state
. a>c All-A and All-B states, with basins
- o<—0—o !
Bi-stable case b<d 4 B of attraction divided at ﬁ A-types
Polymorphic case Z;; AO—>@<—0O B A mixed state, with Hg:ﬁ A-types
B dominates A ¢ <¢ A O0O——>@B All-B state
b<d
a=c
Neutral case b—d A B None

Table 3.3: 2 x 2 symmetric games under the replicator dynamics. Opaque
circles denote asymptotically stable states, empty circles denote unstable fixed
points, dotted lines denote sets of unstable fixed points, and arrows indicate the
direction of selection.

{0, Hi’:ﬁ, 1}. We assess the stability of these states by examination of the
eigenvalues of Jacobian matrix for the dynamics, which reveals that only the
mixed state is asymptotically stable. Given this, we know that a population
starting at the polymorphism with proportion Hi’:ﬁ A-types will remain
there, and that, from most all initial conditions,” the dynamics will converge to

the polymorphism.

The Frequency-Dependent Moran Process

The Moran process is a birth-death process in which, for each time step, two
individuals are chosen: one for reproduction and the other for elimination.
The individual chosen for birth is determined, probabilistically, by the relative
fitness of the types within the population, and the individual chosen for death
is selected at random. So, if we consider a population of N individuals whose
payoff from interaction are described by TABLE 3.2, then the fitnesses f;, g; of
the types A, B can be described as functions of the number 7 of A-types,

a(i—1) +b(N — 1)
N -1

ci+dN—i—1)
N -1 ’

fi=l-—w+w and ¢ =1-w+w

where w denotes the intensity of selection, or the game’s contribution to the net
fitness of the organism. Observe that w = 1 implies that an individual’s fitness

9Initial conditions in which some proportion of each type is present in the population.
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is entirely determined by her interactions in this game, and w = 0 implies that
the game makes no contribution to her fitness.

Individuals reproduce at a rate proportional to their fitness. The rate of
reproduction then for A -types is if; and for B-types is (N —i)g;. Each period,
one offspring is chosen at random to enter the population. So, the probability
of adding an A-type offspring is ' and the probability of adding a

(N—i)gs
ifi+(N—i)g; ' ,
at random to be removed from the population, so that with probability 1 an
A-type is removed, and with probability N]; t a B-type is removed. This makes

it so that the population size remains constant.

ifi
ifi+(N—1)g;’

B-type offspring is After reproduction, one individual is chosen

Formally, we define the Moran process with population size N as a Markov
process {X;V} over the finite state space x = {1,..., N} of possible population
states, with transition probabilities between states given by

N —1 if; T
- - y 1 =1
N ifit(N—ig 7
7 N —1i)g;
- ( )9i i1

Nif; + (N — i)gi7
1 =P iv1—PFii-1, ifj=i

0, otherwise,

which composes a tri-diagonal matrix. Note that Pyo = Py,n = 1, so that the
process has two absorbing states, ¢ = 0 and ¢ = N, and that all other states
are transient. An absorbing state is a state that, once visited by the process, is
never escaped. A transient state then is one which will only be visited a finite
number of times before the process arrives at some absorbing state. Note that,
in the limit of time, with probability one, the process will reach one or the other
absorbing state.

For the simple class of 2 x 2 symmetric games under the Moran process, as
with the replicator dynamics, we can examine five distinct cases (TABLE 3.4)
when the population size is large.!? For each case, the outcomes are described in
terms of the relative probability of arrival of the process at each of the absorbing
states. In particular, we compare the probability of a single mutant coming
to replace the incumbent type, and take over the population. This yields the
replacement probabilities' pap and ppa, where pap denotes the probability

10We take the large population limit for the Moran process to allow for meaningful
comparison with the replicator dynamics. For analysis of the changes in the behavior of the
Moran process as a function of population size see (Taylor et al., 2004).

"For an exposition of the details of this approach, see (Nowak et al., 2004).
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Game Type Payoffs Replacement Probabilities Description
. a>c 1 .
A dominates B b>d pBA < 5 < pAB Selection opposes B and favors A.
. a>c 1 Selection may favor A or B,
Bi-stable case b<d Not (37 < pBa,pAaB) but not both.
. a<c 1 Selection may oppose A or B,
h 1
Polymorphic case b d Not (pBa, pas < 7) but 1ot both.
B dominates A Zi; paB < % < PBA Selection opposes A and favors B.

Selection favors A or B depending on
the sign of (a +b) — (¢ + d),
or is neutral if a + c = b+ d.

a=c Not (% < pBA,PAB),

Neutral case
b=d OF PBA = pAB = =

Table 3.4: 2x2 symmetric games under the Moran process with large populations.

of a single A-type individual leading to the takeover of an otherwise B-type
population, and ppa denotes the probabilities of the inverse process. The
replacement probabilities of types are compared to those of a neutral mutant
(where a = b = ¢ = d), which will come to fixation with probability 1/N. We
say that selection favors a type if its replacement probability is greater than
that of a neutral mutant, and that selection opposes a type if its replacements
probability is less than that of a neutral mutant.

We derive the predictions of the Moran process for anti-coordination games
(TABLE 3.4, third row) by calculating th replacement probabilities for each
type. This yields three possibilities: ppa < % < paAB, paB < % < pBA,
or % < paB,pap- That is, either selection favors one type replacing the
other, or it favors both replacing one another.'> What we see is that, for anti-
coordination games, selection must favor at least one type in coming to dominate
the population. In the absence of mutation, polymorphism is temporary, and
evolution inevitably attains homogeneity.

The Frequency-Dependent Moran Process with Mutation

With the introduction of mutation the behavior of the Moran process changes
qualitatively. Absorbing states disappear, and there is positive probability that
the process will transit within finite time from any given state to any other.
Thus, in the limit of time, the process visits each state infinitely often. Since
absorption will not occur, replacement probabilities are no longer appropriate,

211 such cases, one can examine the sign of pap — ppa to determine which type is more
or less favored by selection.
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and a different method of analyzing the behavior of the process is needed. This
method is to find the long run distribution of time spent by the process over
the possible population states.

Formally, we define the Moran process with population size N and mutation

rate 7 as an ergodic process'? {XtN’n} over the finite state space x = {1,..., N},
with transition probabilities given by
( N —1 lfz N —1i (N—i)gi
1— : — : =i+ 1
L=n—x (zfz- T <)N g "N ifi+(N—ig
N 1 N —i gi ] ZfZ
Pi=<(1- . — + . —, ifj=i-1
i = 17) Nifi+ (N —i)g; "Nifi+ N =g ’
1—Pit1— P, ifj=1
0, otherwise

\

where ]5070 = PN,N =1 —1n. Note the mutation terms. What they capture is
that, most of the time (1 — ), selection behaves as normal, but in a minority of
instances 7, an offspring that was to be an A-type will become a B-type, and
vice versa.l

Now, to understand the long term behavior of the Moran process we can
compute its stationary distribution which captures proportion of time spent
at each population state. Formally, a probability distribution pu € RX is a

stationary distribution of the ergodic process { X"} if

ZMiPiJ = W, for all 5 € x.

1€
That is, a stationary distribution is a probability vector such that taking its
product with the matrix of transition probabilities simply returns itself.

We know that such a distribution exists, since every ergodic process has a
unique stationary distribution, and that it is history independent. That is, from
any initial distribution over states, the distribution of time spent by the process
over population states converges to that given by stationary distribution.

Typically, however, we do not derive predictions from the Moran process by
finding its stationary distribution. This is due to the fact that general analytic

13 An ergodic process is a Markov process that is both irreducible (every state is reachable
from any other), and aperiodic (the greatest common divisor for the number of steps to return
to each state is one). It is easily verified that the Moran process with mutation is indeed
ergodic.

14Here, we have assumed that mutation is symmetric, but it need not be so. Asymmetric
mutation can be accounted for by formulating the rate of mutation for one type as a ratio
of the other 7, where r is a positive constant. For an analysis of the affects of asymmetric
mutation rates see (Traulsen and Hauert, 2010).
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Game Type Payoffs Stochastically Stable States Description
. a>c The stationary distribution is a point-mass
A dominates B b>d pa =1 at the all-A state.
. a>c The stationary distribution is a point-mass
Bi-stable case b<d pa = L xor pp =1 at either the all-A or all-B state.
Polvmorphic case <c o1 xor 1 The stationary distribution is a point-mass
YIHOTP b>d ra i at either the all-A or all-B state.
. a<c The stationary distribution is a point-mass
B dominates A b<d pe =1 at the all-B state.
The stationary distribution is a point-mass
Neutral case a=c pna — 1 xor up %1 1 at all-A or all-B depending on the sign of
b=d XOr [A, 4B — 3 (a+b) — (c+ d), or evenly split

between the states if a +c¢ = b+ d.

Table 3.5: 2 x 2 symmetric games under the Moran process with mutation and
large populations.

forms of the stationary distribution for the Moran process for complex games are
not known,'® and because the stationary distribution applies positive probability
to every state, as opposed to yielding unique predictions (Harper and Fryer,
2016).

Instead, the drive for analytic tractability and unique equilibrium prediction
motivates the use an alternative: stochastically stability analysis. Stochastically
stable states are just those that retain mass in the stationary distribution when
we take the limit as mutation approaches zero.' Formally, a state i € y is
stochastically stable if

lim " > 0.

We saw that, for the Moran process, in the absence of mutation, all and only
monomorphic states were absorbing states. Now, with vanishing mutation, the
stationary distribution collapses (typically) to a point-mass on just one of these
absorbing states. As mutation vanishes, the behavior of the ergodic process
approaches that of the absorbing chain, and so spends most of its time near one
or another monomorphic state.

15The exceptions to this are for 2 x 2 games under arbitrary revision protocols, and for
potential games under exponential revision protocols (Sandholm, 2009).

16Stochastic stability is often solved for using particular well-chosen graphs that capture
the difficulty of transitioning from each absorbing state (of the original absorbing chain) to
any other. For a presentation of the relevant techniques, see Ch. 3.2 of Young (1998). I
present a more general formulation better suited to my project.
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We derive the predictions of the Moran process with mutation for anti-
coordination games (TABLE 3.5, third row) by finding which states retain
positive mass in stationary distribution as mutation vanishes.!'” This yields two
possibilities: g — 1, or up — 1.18 That is, either the all-A or all-B state, but
not both, can be stochastically stable. Once again, polymorphism cannot be
selected.

3.3 The Long Run Persistence of Diversity

Why can’t stochastically stable states be polymorphisms? This is by construction:
a stochastically stable state of an ergodic process will be an absorbing state of
its corresponding absorbing chain. Stochastic stability is defined for an ergodic
process, and is determined by identifying the states that retain mass in the
stationary distribution of the process as mutation vanishes. As mutation vanishes,
the behavior of the ergodic process approaches that of the absorbing chain.
Polymorphisms cannot be absorbing states, and thus cannot be stochastically
stable.

In most game types, the qualitative predictions of asymptotic stability
for the replicator dynamics and the predictions of stochastic stability for the
Moran process are in basic agreement (see TABLES 3.3, 3.4, 3.5). In the case
of coordination games and dominating strategy games (rows 1, 2, 4), for large
populations, the asymptotically stable state with the largest basin of attraction
has the greatest replacement probability and is uniquely stochastically stable.
Predictions differ in the in the polymorphic case (compare row 3 of TABLES
3.3, 3.4, 3.5), and the neutral case (compare row 5 of TABLES 3.3, 3.4, 3.5).
The latter is to be expected, as the replicator dynamics explicitly abstracts
away from the effects of drift. Disagreement about the polymorphic case
is more puzzling. For an anti-coordination game, polymorphism is uniquely
asymptotically stable under the replicator dynamics, but only monomorphic
states can be stochastically stable under the Moran process.

The standard explanation we have seen accounts for this divergence in
predictions by positing that the replicator dynamics fails to capture the long
run behavior of the Moran process. The Moran process will, due to stochasticity,
eventually arrive at an absorbing state of the process, where it will spend most of
its time, trapped by low mutation rates. The following excerpt from Sandholm
(2009, 208) tells this story:

7See (Fudenberg and Imhof, 2004) for the relevant technique.
8Tn the knife-edge case where a = d and b = ¢ we get pa, up — 1/2.
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B

Table 3.6: A 2 x 2 anti-coordination game.

“The stochastic process typically moves in the direction indicated by
the mean dynamic. If the process begins in the basin of attraction of a
rest point or other attractor of this dynamic, then the initial period of
evolution generally results in convergence to and lingering near this locally
stable set. ...However, [since the process is irreducible] this cannot be
the end of the story. Indeed, the process eventually reaches all states, and
in fact visits all states infinitely often. This means that the process must
leave the basin of the stable set visited first; it then enters the basin of a
new stable set, at which point it is extremely likely to head directly to the
set itself. The evolution of the process continues in this fashion, with long
periods near each attractor punctuated by sudden jumps between them."

Young (1998, 20) calls this the “punctuated equilibrium effect,” echoing that,
“When the stochastic shocks are small, the mode of this frequency distribution
[the stationary distribution| will tend to be close to the stochastically stable
[states| predicted by the theory.”

But this characterization turns out to be insufficient for the polymorphic
case. How small must the mutation rate be? And what role do population size
and intensity of selection play? In anti-coordination games under the Moran
process, the population may indeed spend the majority of its time at or near a
polymorphic equilbrium, even in the long run. This occurs when there is small
but non-vanishing mutation, and sufficiently large population size and intensity
of selection.

To illustrate the potential divergence of the actual and predicted behaviors
of the Moran process, consider the anti-coordination game given by TABLE 3.6.
We fix the following parameter settings: population size N = 100, mutation rate
n = 0.01, and intensity of selection w = 0.2. Now, consider the predictions of
each of our stability concepts: The replacement probabilities are pap ~ 0.1644
and ppa =~ 0, so selection favors A and opposes B; absorption into the all-A
state is the most probable outcome of the process. Stochastic stability analysis
yields that pua = 1, so all-A is the unique stochastically stable state; in the
long run, the process will spend almost all of its time near the all-A state.
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Stationary Distribution
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Probability 1
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FIGURE 3.1: The stationary distribution for the Moran process with: population
size N = 100, mutation rate n = 0.01, and intensity of selection w = 0.2. The
vertical line marks the mode of the distribution.

Finally, asymptotic stability analysis yields the unique asymptotically stable
state £* = 2/3; from all mixed initial conditions the population will converge to
a polymorphism where 2/3 of the population are A-types and 1/3 are B-types.

To see whether these predictions hold up, I analytically derive the actual long
run behavior of the Moran process by calculating its stationary distribution,
without vanishing mutation, but rather with fixed parameter values of mutation
rate.

This stationary distribution is plotted in FIGURE 3.1. Notice that the mode
of the stationary distribution is at the state where there are 67 A-types in
the 100-individual population. The process spends the most time precisely at
the polymorphic state predicted by asymptotic stability under the replicator
dynamics, and not at the all-A state that is stochastically stable.

To get a feel for the medium run behavior of the Moran process, we can
simulate several dozen individual population trajectories, starting from random
initial conditions, and evolving over a thousand birth-death events. This is

T the simple case of 2 x 2 games, we can obtain an explicit formula for the stationary

distribution: ux = po [15, % for k€ {1,...,N}, and po = (Zszl I, IIZ::) , where
the empty product equals one. This can also be verified, computationally, using the Chapman-
Kolmogorov equation, P* = (P)¢, which says that the nth-step transition matrix for a Markov
process is equal to the first-step transition matrix raised to the nth power. For very large ¢,
this can be used to approximate the stationary distribution of a given Markov process (Karlin

and Taylor, 2012).
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Single Population Simulation
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FIGURE 3.2: Plot of 35 population trajectories for the Moran process over 1000
birth-death events. The horizontal bar corresponds to the peak of the stationary
distribution.

plotted in FIGURE 3.2. Again, it is clear that asymptotic stability under the
replicator dynamics gives us a more accurate prediction of the behavior of the
Moran process.

What we see is stochastic stability mis-predicting the actual behavior of
the Moran process under particular conditions. But we want a more general
characterization of when this will occur. To obtain this, we turn first to the case
where there is no selection w = 0. Here, I use the detailed balance conditions
of ergodic processes (Karlin and Taylor, 2012) to deduce when the mass of the
stationary distribution will be increasing toward the center of the state space.
That is, the conditions under which the peak of the stationary distribution will
be at a polymorphic state. This is captured by the following lemma.

Lemma 1. For any 2 X 2 game under the Moran process, in the absence of
selection w = 0, the strong mutation condition n(N + 2) > 1 is necessary and
sufficient for the mode of the stationary distribution to be a polymorphic state,
and any polymorphic mode will be at the midpoint of the state space.

What I am calling the ‘strong mutation condition’ corresponds to when
the expected number of mutants entering a population in N + 2 birth-death
events is greater than 1. Intuitively, here strong mutation gives us when
either the population is sufficiently large such that the process rarely arrives at
monomorphic states, or the mutation rate is sufficiently high such that, when
the population does arrive at monomorphic states, it does not spend too much
time there.
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(a)n(N+2)>1 b)n(N+2)=1 (c)n(N+2)<1

Stationary Distribution Stationary Distribution Stationary Distribution
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FIGURE 3.3: In the absence of selection pressures w = 0, satisfaction of the
strong mutation condition n(N + 1) > 1 determines the shape of the stationary
distribution.

Note that strong mutation is both necessary and sufficient for the stationary
distribution to exhibit a polymorphic peak (Figure 3.3). That is, just when
n(IN+2) > 1, the stationary distribution is concave, and climbs gradually toward
its peak near the middle point % from either side of the state space (Figure
3.3a). When n(N + 2) = 1, the stationary distribution is uniform (Figure 3.3b).
When n(N + 2) < 1, the stationary distribution is convex, and climbs outward
from its nadir near the middle point toward its peaks at the monomorphic states
0 and N (Figure 3.3c).

We can use this insight as we turn to consider the case of nonzero intensity
of selection w > 0. Consider the dynamics of an anti-coordination game
characterized by the payoffs a < ¢ and b > d. It may be intuitive that, when the
stationary distribution is already increasing in mass toward a polymorphic state,
the addition of selection pressure toward an interior equilibrium will continue to
produce an interior mode. This is the essential insight from which I will derive
my main result.

Before doing so, however, there are two stipulations that need to be made.
First, I follow Taylor et al. (2004) in requiring that a coordination game,
characterized by a < ¢ and b > d, further satisfy the condition that b — d >
“ﬁd > a — c for finite populations. This is because, for finite populations, the
qualitative dynamics of a game can be affected by the anti-correlation produced
by individuals not interacting with themselves. Anti-correlation can alter the
qualitative dynamics of the game. Indeed, in sufficiently small populations, each
of our four game types can, in principle, be transformed into a different game.
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To see why this is so, consider the case with a population composed of
two individuals N = 2. Here, the process has three possible population states:
two A-types, two B-types, and one of each type. Since transition out of each
monomorphic state occurs solely via mutation, only the state where there is
one of each type involves selection. In this state, only the difference of the
values in the off-diagonal of the payoff matrix, b — ¢, matters. If b — ¢ > 0, then
A dominates B. If b — ¢ < 0, then B dominates A. The game is no longer,
qualitatively, an anti-coordination game.

To correct for this, we require that payoffs further satisfy b—d > %l > a—oc,
ensuring that the game retains the qualitative dynamics of anti-coordination.?’
When N grows large, this condition is easily satisfied, and the qualitative
dynamics are once again determined by the signs of the differences of the values
of the column vectors, a — ¢ and b — d, just as with the replicator dynamics.

Second, I must also stipulate that mutation rates be reasonable: n < 1/2.
It should be clear why this is so. If it is more probable that birth events are
produced by mutation than by selection, then the fitnesses of the types will be
reversed, and we will once again be playing a different game; a coordination
game, in fact.

With these two stipulations in hand, we can turn to a sufficient condition
for the persistence of diversity of types under the Moran process.

Theorem 1. For any 2 X 2 symmetric anti-coordination game under the Moran
process a < c¢,b > d, and b—d > %d > a — ¢, for any intensity of selection
w > 0 and mutation n < 1/2, when the strong mutation condition n(N +2) > 1
is satisfied, the mode of the stationary distribution will be at a polymorphic state

located between the critical point i* = % and the midpoint of the state
space %

What we have is that, when the strong mutation condition is satisfied, the
peak of the stationary distribution is guaranteed to be between the midpoint

of the state space and a critical point ¢* = % that rapidly approaches

the asymptotically stable state of the same game under the replicator dynamics

x __ b—d - 21
= jr=a=g as N grows large.

What remains is for us to confirm that, as intensity of selection increases,
the peak of the stationary distribution will move toward the critical point. We
can answer this in the affirmative.

20Gee (Taylor et al., 2004) for a characterization of qualitative dynamics of finite games.
21This is clear when we state the critical point in terms of a population proportion
(d—a)
i* b—d+

N — “btc—a—d °
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Corollary 1. For any 2 X 2 symmetric anti-coordination game under the Moran
process a < ¢,b > d, and b—d > %d > a — ¢, for any mutation n < 1/2, when
the strong mutation condition n(N + 2) > 1 is satisfied, for any intensities of
selection w,w’ such that 0 < w < w' < 1, the stationary distribution under w'’
puts greater mass on the states nearest the critical point i* = % than
does the stationary distribution under w.

This is good. I note, however, that strong mutation provides sufficient, and
not necessary, conditions for a polymorphic mode of the stationary distribution.
An anti-coordination games can fail to satisfy the strong mutation condition,
but have it so that a peak of its stationary distribution is at a polymorphic state.
Strong mutation ensures that the stationary distribution increases monotonically
toward some interior equilibrium, and thus ensures that there are no other peaks
at the monomorphic states. For anti-coordination games where n(N + 2) is
slightly less than one, but where selection pressure is great a < c or b > d, the
highest peak of the stationary distribution may still be a polymorphic state,
with other smaller peaks at the monomorphic states.

In sum, when strong mutation obtains for an anti-coordination game, we
know—with certainty—that stochastic stability analysis will mis-predict a
monomorphic outcome when polymorphism is to be expected. But, when
strong mutation does not obtain, there is still the possibility of mis-prediction.

To get an idea of the conditions under which games will exhibit polymorphic
modes near the replicator dynamics prediction, we can examine the peak of the
stationary distribution of a representative anti-coordination game (Table 3.6)
for different values of N, n, and w.

In Figure 3.4, the darkness of each point in a plot encodes the distance, in
terms of population proportions, between the peak of the stationary distribution,
and the replicator dynamics prediction. In the plots, population sizes N €
{2,3,...,100} vary along the z-axes, mutation rates n € {0,0.01,...,0.5} vary
along the y-axes, and intensities of selection w € {1072,107!,1} vary between
plots.

This accords with what we have learned so far, and illustrates our results.

Where strong mutation obtains (in the space above the black curves), the peak

of the stationary distribution is near the replicator dynamics prediction z*.
When the intensity of selection is low w = 1072, the demarcation is quite precise.

As intensity of selection increases w = 107!, a growing range of population
sizes and mutation rates (just beneath the black curves) will be compatible
with an interior mode near x*. When intensity of selection is at its maximum
w = 1, strong mutation will continue to provide a sufficient, but not necessary,
condition for polymorphism.
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(a) w=10"2 (b) w=10""1 (c)w=1

04 Distance 04 Distance 04 Distance
05 05 05

04 04 0.4

03 03 03

02 02 02

Mutation Rate n
Mutation Rate n
Mutation Rate n

01 01 01

00 01 00 0.0

0 50 75 100 4 25 50 75 100 0 25 50 75 100
Population Size N Population Size N Population Size N

FiGURE 3.4: Distances of the mode of the stationary distribution from the
replicator dynamics prediction for different values of N, 7, w. The curve in black
corresponds to n(/N + 1) = 1, above which the strong mutation condition is
satisfied.

3.4 Discussion

I have characterized conditions under which we can anticipate the behavior of
the Moran process will be mis-characterized by stochastic stability, and where
long term diversity will persist. But should we expect these conditions to obtain
in nature? If, indeed, the strong mutation condition were never to be satisfied,
then we might comfortably rely on stochastic stability analysis without fear of
it leading us astray. To see if this is so, we can survey representative population
sizes, mutation rates, and intensities of selection from relevant real-world evolving
populations.

Considering the canonical case of E. coli bacteria, we have that the per-
site mutation rates are typically of the order of 10~* mutations per allele per
replication (Tenaillon et al., 2016). That is, an expected 1 out of 5,000 bacteria
produced carry at least one mutation at a locus of interest. Typical bacterial
populations, however, are of the order of 106 — 10%. This yields a mutation
strength of n(IN + 2) ~ 20,000. That is, there will be an average of twenty
thousand mutations per population per generation. This is deep into the territory
of strong mutation. Moreover, the population sizes and mutations rates of many
bacteria are comparable (Drake et al., 1998). Bacterial populations, it seems,
will exhibit population sizes and mutation rates that suggest their long run
evolutionary behavior will typically be at odds with the predictions of stochastic
stability.

Humans, on other hand, exhibit per-allele mutation rates ranging from 10>
to 10719 (Drake et al., 1998). Throughout much of our evolutionary history,
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H. sapiens subsisted in hunter-gatherer groups averaging 50 to 150 individuals
(Bowles and Gintis, 2011). Hence, human biological evolution will typically not
satisfy strong mutation. The same will be true of many complex organisms,
such as mammals (Kumar and Subramanian, 2002).

However, in the case of cultural evolution, we expect mutation rates—or
noise in the transmission of behavior via social learning and imitation—to be
potentially much higher (Boyd and Richerson, 1985). Taking the example of
humans, for a group of 100 individuals, an innovation or error rate in behavior
transmission of just over 10% would satisfy strong mutation. Given that the
Moran process is often used to model processes of cultural evolution, it will be
important to know when an evolutionary process satisfies the strong mutation
condition.

We should note that the relationship between strong mutation and persistent
polymorphism is not guaranteed to hold in other game structures. We can
expect the analysis will vary for extensive-form games, with more players and
strategies, and with the introduction of social or spatial structure, an so on.
But it is reasonable to imagine that qualitatively similar conditions may hold
for other classes of games. The question as to the limits of the agreement of
the dynamics for the case of strong mutation provides an interesting topic for
further study.

3.5 Conclusion

The puzzle of the divergence between the predictions of the replicator dynamics
and the Moran process finds its resolution in identifying a shortcoming of
stochastic stability analysis. The cause of mis-prediction by stochastic stability
is the assumption of vanishing mutation. Polymorphism, which cannot be
stochastically stable, can be the most probable long run outcome of the Moran
process.

I have shown that, under a range of values of population size, mutation
rate, and intensity of selection, the Moran process leads to polymorphisms
which dominate the long run behavior of the process. My results show that
anti-coordination games, and games containing anti-coordination subgames,
can exhibit this behavior for a broad range of conditions. For the 2 x 2 anti-
coordination games considered here, ‘strong mutation’ provides a sufficient
condition for mis-prediction by stochastic stability analysis of the long run
behavior of the Moran process. Moreover, in the presence of strong mutation, the
Moran process will typically spend most of its time near the specific polymorphic
state that is asymptotically stable under replicator dynamics.
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We have also seen that strong mutation will be satisfied by a range of real-
world evolutionary processes. This is particularly true when population sizes
are large, such as with bacterial colonies, and when mutation or noise rates are
high, as is typical in the transmission of behavior in models of cultural evolution.
In such cases, we can anticipate that the behavior of the Moran process will be
mis-characterized by stochastic stability, and will realign with the predictions of
the replicator dynamics.

The upshots of our analysis are that we can characterize the conditions under
which an evolutionary process described by the Moran process (1) will sustain
long run diversity, (2) realign with the predictions of the replicator dynamics, and
(3) should not be analyzed using stochastic stability. Our moral is that, when
we anticipate attracting polymorphic equilibria—that is, when a population
interaction structure is characterized by anti-coordination—stochastic stability
may be an unreliable predictor of even the long term behavior of evolution. In
such cases, analysis should proceed by computing the stationary distribution
explicitly using representative values of population size, mutation rate, and
intensity of selection. When such an approach is not feasible, simulation methods
must suffice. In mathematical modeling, we must attend to idealizations not
only in the models themselves but also within the techniques with which those
models are analyzed.

3.6 Mathematical Appendix

For the following proofs, we consider a game under the Moran process with
population size N € N, mutation rate n € (0,1/2), and intensity of selection
w € [0, 1], characterized by any 2 x 2 payoff matrix A = [‘; Z] where a, b, c,d >
0,22 payoff functions f; and g;, and transition matrix P; ; over the finite state
space x = {0,1,..., N}. This yields the ergodic process {XtN’n’w}.

Let the fitness of each type at a particular intensity of selection be denoted
fY = flw, 9° = glw. Similarly, for transition probabilities, P* = P|,,, and
stationary distributions p* = pul,. We will omit the state subscript i, when
there is no risk of confusion.

Proof of Lemma 1. We want to show that, in the absence of selection, the peak
of the stationary distribution is a polymorphic state if, and only if, strong

2ZNote that the stipulation of positive payoffs is required as positive fitness values are
needed for the Moran process to be well-defined.
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mutation n(N + 2) > 1 holds.

Since {XZV 1 is an ergodic process when n > 0, we are guaranteed that
it has a unique stationary distribution p = (uo, ..., un). Further, since we are
considering a 2-strategy game, we know that p satisfies the detailed balance
condition p; P; ;—1 = p;—1P;—1,; (Sandholm, 2009, Ch.12). From this, it follows
that p; > p;—1 just in case P;;—1 < P;,_1;. That is, a state ¢ has greater mass
in the stationary distribution than its preceding state ¢ — 1 just in case the
transition probability from ¢ to 7 — 1 is less than the transition probability from
i—1 to i.

Set intensity of selection to zero w = 0, giving f© = ¢ = 1. From these
fitnesses we determine the relevant transition probabilities.

i (N —i+n(2 — N))

Pi1= N
b (N = 0) (i (N = 20)
i+l = e
(N—i—1)(i—1+n(N —2i—2))
P y;=

N2

Now, we find the conditions under which P;; 1 < P,_1; and P;;_1 > P,_1; in
terms of 4, N, and 7. This will tell us when the mass of states in the stationary
distribution is increasing, and when it is decreasing. Unpacking the inequality
Pi,ifl < Pifl,iy we get

i(N —i+n2i-N) _(N—i-1)(i-1+n(N -2i-2)
N2 N2

which, with some algebra, yields
(I1—-n(N+2)(N—-2i+1)<0. ()

We make the necessary restrictions, 2 < N and 1 <+¢ < N, and denote the term
on the left hand side of the inequality (*) by h. We see that, when n(N +2) > 1,
1< N2+1 implies . < 0 and i > ¥+ implies A > 0. Whereas, when n(N +2) < 1,
1< N‘H implies h > 0 and i > ]\%‘H implies h < 0.

That is, when strong mutatlon obtains, the mass u; of a state ¢ in the
stationary distribution is greater than that of its preceding state i — 1 over
the first half of the state space i < & “, and less than that of its preceding
state over the second half of the state space i > & +1. Thus, the stationary
distribution g must exhibit a unique mode exactly at (or, when N is even, at
the states directly adjacent to) the center of the state space i = N +1 . And when
strong mutation does not obtain, the relation between the mass of adjacent
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states are precisely reversed, and the stationary distribution must exhibit two
modes, one at each of the monomorphic states ¢ = 0 and i = .

Thus, in the absence of selection, strong mutation is necessary and sufficient
for the mode of the stationary distribution to be a polymorphic state, and any
polymorphic mode will be at the midpoint of the state space. ]

To tackle our theorem, first we prove some helpful lemmas.

Lemma 2. All else being equal, increasing intensity of selection eraggerates
selection in favor of the fitter type. That is, if w < w', then f¥ > g“ just in
case

if® if (N —i)g® (N —i)g”
(N g S (N —ig? M e (N g T i - (N - i)g?

. : N N’
Proof. Consider two versions of the same process, {X; 7"} and {X, """ },

differing only in that the latter has greater intensity of selection, w < w'.
Suppose f{’ > g’ for some 7 € x. Then f* — ¢ = wk and Y —gv = w'k
where k = (a(i — 1) + (b(N —4))) — (ci + d(N — ¢ —1))/(N — 1). Hence
f{”':zgzw’ = 115/]2 = % < 1. We now have that 0 < f* — g% < v — g and so

% < £%.. We turn to the selection terms of our transition probabilities, and

w’ *

observe that the following inequalities are equivalent.
o

gv g
i ST i ST

N_igh “N—ig”

PFON = i)g” < if (N —i)g®
ifP(N —i)g" + (ifC - if*) <ifv (N —i)g®” + (if” -if*)
if (N —i)g” +if") <if" (N —d)g" +if®)
ifv - ifv
ifv + (N —i)g® " if + (N —i)gv"

By similar reasoning, the following are equivalent

/

!

o
9w gv
(N—i)g”  _  (N—i)g"
if " + (N —i)g " ifv 4+ (N —i)g?’
as required. O
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Lemma 3. All else being equal, increasing intensity of selection exaggerates
transition probabilities in favor of the fitter type. That is, if w < w', then
fY > g% just in case

w/
Pl <Py and P> Py

Y AV L _ (N—i)g®
Proof. Denote A = P gy A = N B = T E(N-1)g® and
B = (N-ug® Suppose w < w’, and f* > g for some i € x. From

if v H(N=i)g®
Lemma 2, we have that f¥ > g% just in case A < A’ and B > B’. We will
make use of the fact that B=1— A and B'=1— A’. Let n < 1/2. Then the

following inequalities are equivalent.

A< A
Al =2n)+n < A'(1—2n)+n
(I-mMA+n1-A) <(1-nmA+n1-A4)
(— )A~|—77B<(1— A +nB'
N — N — N—i N —i
1— N=ip_ - B’
(1—-mn) N <(1-n) N Aty

w
Pi,i+1 < Pz z+1

By similar reasoning, the following inequalities are equivalent.
B>B
1—-n)—=B+n—A>(1—-n)—=B —A
A=m)yB+nyA>( n) ~B Ty
P X -1> zz 1
as required. O

Proof of Theorem 1. Let all else be as before, except our 2 X 2 symmetric game
is now characterized by anti-coordination payoffs a < ¢, b>d, with the extra
condition required for finite games that b — d > N >a—c.

From Lemma 1, we have that, in the absence of selection w = 0, strong
mutation (N + 2) > 1 is necessary and sufficient for p;—1 < p; for i < L%J
and p;—1 > p; for i > [N,

For nonzero intensity of selection w > 0, we will show that f* > f° and
g% < g¢" for some range of states before a polymorphic critical point i*. As
we will show, it follows that P, ; > P . sand P 4 < P _; Which in turn
implies that z L > IP;ZE Lt > 1. From the detailed balance conditions, this

1 -1 i,di—1
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. . P
yields p;—1 < p; when i < |7*]. Similarly, we will find that ‘ L s < 1,
11—1 i,0—1
and hence p;—1 < p; after the critical point, when i > [¢*]. This will conclude
the proof.
Let w > 0. First, we find our critical point i*. Recall the fitness functions

for each type

a(i—1) +b(N —1)

ci+d(N —i—1)
N -1 '

ff=1l—-w+w N1

and g¢g'=1—-w+w

To find the critical point, we solve for when each type is fitter than the other.

fY=9gv>0
a(i —1)+b(N —i) —ci—d(N —i—1) >0
ila—b—c+d)+Nb—-d)+(d—a) >0
Nb—-d)+ (d—a)
b+c—a—d

1<

N(bfd)+(dfa)
b+c—a—d
that our interior critical point 7* is indeed well-defined as b — d > < N >a—c

implies that 0 < % < N.

From Lemma 1, we know that, whenever the strong mutation condition is
satisfied, the mass of stationary distribution of the process in the absence of
selection ,u is increasing over the first half of the state space i < & H, and
decreasing over the second half i > & +1

From Lemma 3, it follows from w > 0 that f* > g“ implies P, Z i1 < Pl
and PZOl 1 < P}%_y, which obtains for ¢ <, and f* < g" implies P, m+1 > Pl

and PO o> P“ 1, which obtains for ¢ > ¢*. Hence, when f* > g¢" and

Hence, f% > g% just in case ¢ < i* = Note that we can confirm

PO
19 > pud |, we have that lell > 5=+ > 1. And, when f* < g% and pf < pf |,

i,5—1 i,0—1

we have that lelll < mt < 1
1,2 — 1,2—1

From this, and the detailed balance conditions, we know that p* must be

increasing for ¢ < min{|i*], LNJIJ}, and decreasing for 7 > max{[i*], [Ng'l]}

Thus, we have that the stationary distribution ¢ must find it maximum value at

b—d+ (%5 N+1
pre—a—q and o

a polymorphic state somewhere in a state between * =

Proof of Corollary 1. Consider an anti-coordination game under the Moran
process, as before. Suppose the strong mutation condition n(N + 2) > 1 is

satisfied, and consider two intensities of selection w,w’ where 0 < w < w’ < 1.
d—b+(%5%)
d—c—b+a

Then, for every population state prior to the critical point i* =
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we know that f* > ¢¥ and f* > ¢*'. By lemma 3, w < w’ implies that

, / P . P.“’_ . .
PY > P yand PY,; < P, So pi— > —=~ which gives us, from the

bt Py P
. . e '
detailed balance conditions, that u“? < =
i—1 Hi—1

This means that the increase in mass (p; — pi—1) in every state states prior
to the critical point i* is greater (though, of course, it may be still be negative
for some states between i* and %) for " than for p®. It is easy to see that
the inverse inequalities obtain for states after the critical point ¢*, and so the
rate of decrease in mass is greater for ' than for u* for i > i*.

By the conservation of mass of the stationary distribution, ), u; = 1, if the
rate of increase (of mass) for every state of a distribution p" is greater than
another u» to the left of a critical point ¢ < ¢* and the rate of decrease for every
state of %" is greater than for u® to the right of that critical point i* > 4, then

uw/ must place greater mass than p" on the state(s) nearest the critical point.

Nb-d)+(d—a) ;¢

Hence, the mass of the state(s) nearest the critical point i* = m——

increasing in intensity of selection.

3.7 Computational Appendix

A GUI for exploring the dynamics of the frequency-dependent
Moran process under 2 X 2 strategic games is available at: https:
//amohseni .shinyapps.io/Moran-Process/.

The full R source code for all simulations can be found at:
https://github.com/amohseni/Frequency-Dependent-Moran-Process
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