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Behavior-based price discrimination
by a patient seller

by

Sushil Bikhchandani† and Kevin McCardle†

July 2011

Abstract

We investigate a model in which one seller and one buyer trade in each of two periods.
The buyer has demand for one unit of a non-durable object per period. The buyer’s
reservation value for the good is private information and is the same in both periods.
The seller commits to prices in each of two periods. Prices in the second period
may depend on the buyer’s first-period behavior. Unlike the equal discount factor
case studied in earlier papers, we show that when the seller is more patient than
the buyer, second-period prices increase after a purchase. In particular, the optimal
dynamic pricing scheme is not a repetition of the optimal static pricing scheme.

——————————
†Anderson School of Management, UCLA, Los Angeles, CA 90095



1 Introduction

With reductions in the price of computing and data storage, it is not difficult for firms
with millions of customers to keep track of past buying behavior of each customer.
Grocery stores offer customers discount coupons that are tailored to their purchasing
history. Netflix and Amazon use purchase history to send product suggestions and
other marketing messages to their clients. It is eminently feasible for these firms to
use historical information to offer customer-specific prices.1

We investigate the pricing problem of a firm when it sells a non-durable product
to a buyer who wishes to purchase one unit of the good in each of two periods. The
buyer’s second-period demand remains one unit whether or not he buys in the first-
period.2 Because of the seller’s ability to recognize past customers and recall their
buying decisions, second-period prices can depend on the first-period decision of the
buyer. The buyer’s reservation value for the product is (i) known only to the buyer
and (ii) remains the same in each period. The seller announces a price in each period
and the buyer decides whether or not to buy. The buyer is strategic: he takes into
account that his first-period purchase decision can affect second-period prices. The
seller commits to second-period prices at the beginning of the first period.

Several authors have investigated models of behavior-based price discrimination,
both with commitment by the seller and without. Hart and Tirole (1988), Villas-Boas
(2004), and Acquisiti and Varian (2005) have shown that in a dynamic-pricing setting
where the buyer’s valuation is fixed and privately known, it is in the seller’s interest
to commit not to use in later periods information revealed by the buyer’s earlier
decisions. An optimal multiperiod pricing strategy for a seller who can commit is to
simply offer the same take-it-or-leave-it price each period.3

Our contribution is to show that the optimality to commit not to use the in-
formation revealed via the buyer’s purchase decision hinges upon the assumption of
equal discount factors. If, instead, the seller is more patient than the buyer, then her
optimal pricing strategy with commitment exploits information learned in the first
period; in particular, the second-period price increases after a sale in the first period.
The second-period price charged by a less patient seller is also history-dependent;
in fact, the seller obtains pre-payment of the second-period unit in the first period.
However, the less patient seller model is similar to the equal discount factors model
in that the subset of types of buyers who trade is the same under both scenarios.

To our knowledge, the only other paper in which a less informed party commits

1Previous customers of an internet-based firm may provide a new shipping address and use
another credit card to evade recognition. Such behavior would constrain the firm’s ability to practice
behavior-based price discrimination. However, there is anecdotal evidence of customer-behavior
based pricing by internet firms (see Streitfeld 2007).

2The buyer either buys the product from the seller or obtains it from another (unmodeled) seller.
3A similar result was obtained in a different context by Baron and Besanko (1984), who showed

that it is in the interest of a regulator to commit not to use in the second period information revealed
in the first period about the marginal cost of a regulated firm.
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to use information revealed in a dynamic game is Sobel and Takahashi (1983). We
discuss this model in section 3.

If the seller and the buyer can borrow money at the same interest rate, then
the assumption of equal discount factors is appropriate. But this assumption is not
tenable when the seller is a large retail establishment and the buyer is an individual
or a household, as in the examples presented above. Often, the seller is more patient
than the buyer.

The optimal pricing strategy of a seller who cannot commit has been investi-
gated in models with equal discount factors in Hart and Tirole (1988), Villas-Boas
(2004), and Acquisiti and Varian (2005). See also Skreta (2006) and surveys by Arm-
strong (2006) and Fudenberg & Villas-Boas (2006). The pricing strategy is history
dependent with the second-period price equal to the optimal take-it-or-leave-it price
for the seller’s updated distribution over buyer valuations. With unequal discount
factors, the optimal pricing strategy is qualitatively similar. Therefore, except in an
example where the no commitment case is introduced for comparison, we restrict our
analysis to a seller who has the ability to commit.

In the next section, we describe the model and present the main result. The proof
is in the appendix. We conclude with a comparison of the optimal contract in this
model with the optimal contract for the sale of one unit.

2 The model and main result

A buyer wishes to buy one unit of an indivisible, non-durable good in each of two
periods. The seller’s belief about the buyer’s valuation v is represented by c.d.f F (v)
which has positive density f(v) when v ∈ [a, 1], 1 > a ≥ 0. We assume that F is
regular, i.e., v − (1 − F (v))/f(v) is increasing. The buyer’s valuation remains v in
each period, and the seller’s cost is 0. The seller posts prices and the buyer accepts
or rejects. The buyer is strategic: he takes into account the impact of his first-period
decision on second-period prices.

Let the price in the first period be p1 and the price in the second period be p2 [pn2]
if there is [is not] a sale in the first period. The seller commits to prices p1, p2, p

n
2 at

the beginning of the first period. The discount factors of the seller and buyer are δs
and δb, respectively.

A buyer with valuation v chooses among not buying at all, buying in the first
period only, buying in both periods, and buying in the second period only:

Πb(v; p1, p2, p
n
2) = max{0, v − p1, v − p1 + δb(v − p2), δb(v − pn2)}.

We are interested in non-negative prices p1, p2, p
n
2 ≥ 0 that maximize the seller’s

expected profits. The analysis depends on whether the seller is more patient than the
buyer, δs > δb, or not, δs ≤ δb.
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Let vc represent the valuation of a marginal first-period buyer. If vc ∈ (a, 1), then
a buyer with valuation vc is indifferent between buying or not buying in the first
period. Therefore,

vc − p1 + δb max{vc − p2, 0} = δb max{vc − pn2, 0}. (1)

It is easy to see that any buyer with valuation v > vc will buy in the first period, and
any buyer with valuation v < vc will not buy in the first period.

Let

p∗ =
1− F (p∗)

f(p∗)
(2)

if there exists such a p∗ ∈ [a, 1]; otherwise, p > 1−F (p)
f(p)

for all p ∈ [a, 1] and define

p∗ = a.4 The assumption that F is regular guarantees uniqueness of p∗. It is well
known (see references in the Introduction) that when δs = δb it is an optimal strategy
for the seller to commit to prices p1 = p2 = pn2 = p∗. Our main result identifies
optimal prices for all values of δs and δb.

Proposition: The optimal commitment prices p1, p2, p
n
2 are as follows.

(i) If δs > δb, then vc = p2 > p1 > pn2 and vc = p2 > p∗ > pn2.

(ii) If δs = δb = δ, then p1 ≥ p∗ = vc = pn2 and p1 + δp2 = (1 + δ)p∗.

(iii) If δs < δb, then p1 = (1 + δb)p
∗, p2 = 0, and pn2 = vc = p∗.

If δs 6= δb, then the optimal prices are unique.

When the seller and the buyer do not have the same discount factor, the second-
period prices are history dependent. In particular, if the seller is more patient, δs > δb,
equilibrium prices differ markedly from the equal discount factor case that earlier
papers have focused on. If there is a purchase in the first period, then the second-
period price increases and exceeds p∗, the optimal commitment price in the equal
discount factors case. If there is no purchase in the first period, then second-period
price decreases and falls below p∗. The first-period price p1 may or may not exceed
p∗. Because the second-period price is history dependent, the marginal first-period
buyer has a positive surplus (vc > p1).

When the seller and the buyer have equal discount factors, there exists a con-
tinuum of equilibrium prices, all payoff equivalent for the seller and for the buyer.
Earlier papers have identified one of these optimal prices, p1 = p2 = pn2 = p∗, which
is the only history-independent optimal price in this case.

If the seller is less patient, δs < δb, the valuations of buyers who trade is the same
as when δs = δb. The seller either sells one unit in each period (if the buyer’s valuation
exceeds vc = p∗) or none (if v < p∗). However, p1 = p2 = pn2 = p∗ is not optimal.
Instead, in the first period the seller obtains pre-payment for the second-period unit

4If f(v) is bounded away from zero, p < 1−F (p)
f(p) for all p ∈ [a, 1] is not possible.
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from a buyer with valuation v > p∗. Because the buyer’s discount factor is used to
calculate the pre-payment, the seller is strictly better off with p1 = p∗ + δbp

∗ and
p2 = 0 rather than with p1 = p2 = p∗ while the buyer is indifferent between the two
sets of prices.5

We illustrate the Proposition with an example.

Example: v is uniform on [0, 1]

For this distribution p∗ = 0.5.

If δs > δb then equations (6) through (10) in the proof of the Proposition yield
the following solution:

vc = p2 =
2δ2s − δ2b − δsδb + 2δs
3δ2s − 2δsδb − δ2b + 4δs

pn2 =
δb + (δs − δb)vc

2δs

p1 = vc − δb(vc − pn2)

Let δs = 0.75 and δb = 0.5. Inserting these values of δs and δb in the above equations
yields p1 = 0.483, vc = p2 = 0.542, and pn2 = 0.424 and the seller’s expected profit is
0.445. If, instead, all prices are set equal to p∗ = 0.5, then the seller’s expected profit
decreases to (1 + δs)p

∗(1− F (p∗)) = 0.4375.6

If δs < δb, the unique optimal commitment prices are p1 = 0.5(1 + δb), p2 = 0, and
pn2 = vc = 0.5. The seller’s expected profit is p1(1− F (vc)) = 0.5p1. Thus, if δs = 0.5
and δb = 0.75, then p1 = 0.875, and the seller’s expected profit is 0.4375.

It is instructive to compare these prices to optimal prices for a seller who does not
have the ability to commit. In the no-commitment case denote the optimal prices by
p1, p2, and pn2 and the marginal buyer’s valuation by vc. Then7

vc =
2− δb + 2δs
4− 2δb + 3δs

and p1 =
(2− δb)vc

2
.

Further, pn2 = 0.5vc, p2 = vc, and vc > p∗ = 0.5.

The table below summarizes the optimal prices and profits at the discount factors
considered above. Not surprisingly, the seller does better when she is patient and/or
can commit.

5Note that we assumed that prices are non-negative. If instead, one assumes that prices must be
greater than a negative number −k, k > 0, then the equilibrium prices will be p1 = p∗ + δbp

∗ + δbk,
p2 = −k yielding the seller expected profit of [(1 + δb)p

∗ + (δb − δs)k](1 − F (p∗)), which increases
linearly with k. Of course, as k increases it becomes more difficult for the seller to credibly commit
to price p2 = −k.

6With these discount factors, p1 is less than p∗ = 0.5. If instead, δs = 0.75 and δb = 0.25 then
p1 = 0.507 > p∗, and vc = p2 = 0.559, and pn2 = 0.353; the seller’s expected profit increases to 0.463.

7When δs = δb, these formulae match those derived in Armstrong (2006, section 2.2) and Fuden-
berg and Villas-Boas (2006, section 2.1.3).
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Commitment No commitment
(δs, δb) (p1, p2, p

n
2) vc Πs (p1, p2, p

n
2) vc Πs

(0.75, 0.5) (0.483, 0.542, 0.424) 0.542 0.445 (0.429, 0.571, 0.286) 0.571 0.429
(0.5, 0.75) (0.875, 0, 0.5) 0.5 0.438 (0.352, 0.563, 0.281) 0.563 0.317

4

3 Comparison with pricing strategies for selling

one unit

In our model, the buyer demands one unit in each of two periods. The buyer’s value
remains the same in the two periods. We compare our model to two other models in
both of which the buyer’s total demand is one unit. The first comparison point is a
static one-period model (model A) and the second comparison point has two periods
(model B). In both models, the seller makes offers and the buyer accepts or rejects;
the seller commits to prices.

It is well known that when buyer and seller discount factors are equal, an optimal
pricing strategy in our model with one-unit per period demand is a repetition of the
optimal price p∗ charged in model A. The question we ask is whether there is such a
close connection when discount factors are not equal. We find that when the seller
is more patient than the buyer, the optimal pricing policy in our model is neither a
repetition of nor a version of the optimal pricing policy in either model A or model B.

Model A: One-unit total demand, one period

Because there is only one period, there is no discounting. The seller posts a
price, the buyer takes his purchase decision, and there are no further moves by either
player. The optimal pricing strategy in this model is the take-it-or-leave price offer
of p∗ defined in equation (2) (see Myerson 1981 and Riley & Zeckhauser 1983).

In our model, offering p∗ in each period is an optimal strategy when δs = δb. When
δs < δb, the optimal strategy in our model is to sell both units as a bundle at a price
of (1+δb)p

∗. As the buyer’s valuation for the bundle is (1+δb)v, the optimal strategy
in our model duplicates the optimal strategy in model A applied to the bundle. In
either case -- δs = δb or δs < δb -- the seller in our model commits not to use any
information that is revealed in the first period.

A patient seller in our model, however, will commit to use information revealed
in the first-period transaction. When δs > δb we have p1 6= p∗ and p2 > p∗ > pn2: it
is not optimal for the seller to commit to charge p∗ each period. Nor is it optimal
to bundle the two units together. The buyers separate into three intervals based on
their valuations: high, intermediate and low. High valuation buyers (v > vc) buy one
unit in each period, and low valuation buyers (v < pn2) do not buy in any period.
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A buyer with intermediate valuation v ∈ (pn2, vc) buys in the second period but not
in the first. Thus, bundling the two units together cannot replicate the effect of
optimal prices p1, p2, p

n
2. The seller maximizes her profit by committing to use the

information revealed by the buyer’s first-period decision.

Model B: One-unit total demand, two periods

Because our model has two periods, we also compare it with model B in which the
buyer’s total demand is one unit and the seller makes offers in each of two periods.
Of course, the seller makes an offer in the second period only if there is no sale in the
first period.

Theorem 1 of Sobel and Takahashi (1983) provides the optimal pricing strategy for
model B. They show that if δs ≤ δb, then offering p∗ in each period remains optimal.
Thus, when δs ≤ δb, our model’s close connection with model A is maintained with
model B.

When δs > δb, Sobel and Takahashi show that the seller does not offer p∗ in each
period: model B optimal prices (pST1 , pST2 ) satisfy pST1 > pST2 . Buyers separate into
three intervals with high valuation buyers purchasing in the first period at price pST1
and intermediate valuation buyers purchasing in the second period at price pST2 . Low
valuation buyers do not buy. We argue next that the optimal prices (pST1 , pST2 ) are
not in any way related to the optimal prices p1, p2, p

n
2 in our model.

If the two units in our model are bundled and offered at prices ((1 + δb)p
ST
1 , (1 +

δb)p
ST
2 ) then intermediate-value buyers do not have the option of buying only one

unit in the second period. Thus, bundling the two units in both periods and offering
suitably re-scaled Sobel-Takahashi prices does not replicate the equilibrium in part
(i) of the Proposition.

An alternative bundling strategy for the seller is to attempt to sell a bundle of
two units in the first period, and if she is unsuccessful, then offer only one unit in
the second period. This allows (intermediate-value) buyers to purchase nothing in
the first period and one unit in the second period. The re-scaled Sobel-Takahashi
prices, translated into our model, that support this alternate bundling strategy are
p̂1 = (1 + δb)p

ST
1 , p̂2 = 0, and p̂n2 = pST2 . Does this version of model B pricing strategy

yield the same expected profits as the prices in part (i) of the Proposition? The
answer is no. Recall that optimal prices in our model are unique. Therefore, as
p∗ > 0 and optimal prices satisfy p2 > p∗ > 0, prices p̂1, p̂2 = 0, p̂n2 are not optimal in
our model.

When a patient seller can commit to second-period prices, the optimal pricing
policy in the one-unit per period demand model is neither a repetition of nor a
version of the optimal pricing policy in the one-unit total demand model. Contrast
this with the following observation made by Armstrong (2006) after surveying prior
work (which assumes equal discount factors) on behavior-based price discrimination
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with commitment: “...it is a standard result in principal-agent theory that when the
agent’s private information does not change over time, the optimal dynamic incentive
scheme repeats the optimal static incentive scheme.” This theme is also expressed in
chapter 8 of Laffont and Martimort (2002) where it is stated that in repeated adverse
selection models in which private information is constant “the optimal long-term
contract is obtained in a straightforward manner as a replica of the one-shot optimal
contract...”. We have shown that this link between optimal long-term contracts and
optimal short-term contracts in repeated adverse selection models is severed if one
drops the assumption of equal discount factors. It is not optimal for a less informed
but more patient party to commit to not use in later periods information that is
revealed in an earlier period.
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4 Appendix: Proof of Proposition

If pn2 > vc then a buyer who does not buy in the first period will not buy in the second
period; reducing pn2 to equal vc gives the same expected profit to the seller. Therefore,
without loss of optimality, we restrict attention to pn2 ≤ vc.

The following lemma is useful in proving the Proposition.

Lemma A: In any optimal solution:

(i) 1 > vc > 0.

(ii) p1 > 0, pn2 > 0.

Proof: (i) Suppose that prices p1, p2 and pn2 are such that vc = 1. Then with
probability one there is no sale in the first period. Therefore, in the second period
pn2 = p∗ is optimal and the seller’s expected profit is δsp

∗(1 − F (p∗)). The seller can
earn a higher expected profit of (1 + δs)p

∗(1− F (p∗)) by choosing p1 = p2 = pn2 = p∗.
Thus, vc < 1 in any optimal solution.

Next we show that vc > 0. Clearly, vc ≥ a. If a > 0 then vc ≥ a > 0. Therefore,
consider the case a = 0. If vc = 0 then, as p2, p

n
2 ≥ 0, we must have p1 = 0; with

probability one there is sale in the first period and in the second period p2 = p∗ is
optimal. Thus, if vc = 0 then the seller’s expected profit is at most δsp

∗(1− F (p∗)).
Selecting p1 = p2 = pn2 = p∗ yields a higher expected profit of (1 + δs)p

∗(1 − F (p∗)).
Thus, if a = 0 then vc > 0.

(ii) We first prove that pn2 > 0. Suppose that there is no sale in the first period.
Clearly, pn2 < a cannot be optimal as pn2 = a does not decrease the probability of
second-period sale. Thus, if a > 0 we are done. Next, suppose that a = 0. By (i),
vc > 0. Then pn2 = 0 yields zero expected profit whereas a price pn2 ∈ (0, vc) yields
positive expected profit.

From (i), vc > 0. Therefore, if p1 ≥ vc then p1 > 0. Suppose, instead, that vc > p1
and pn2 ≥ p1. Then

vc − p1 > δb max{vc − pn2, 0}
and (1) implies that the marginal buyer is strictly better off buying in the first period
at price p1. Contradiction. Thus, if vc > p1 then p1 > pn2. As pn2 > 0 we have p1 > 0.

Proof of Proposition: The analysis divides into two cases, depending on whether
or not the marginal first-period buyer buys in the second period as well. We first
derive KKT conditions for each of these two cases and then apply them to prove
parts (i), (ii), and (iii) of the Proposition.

Case A: p2 ≤ vc.

Because p2 ≤ vc and, without loss of optimality pn2 ≤ vc, a buyer with value vc
is indifferent between buying in both periods or buying only in the second period.
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Thus, (1) becomes

vc − p1 + δb(vc − p2) = δb(vc − pn2)

=⇒ vc = p1 + δb(p2 − pn2). (3)

The seller’s profit function is

Πs(p1, p2, p
n
2) = [1− F (p1 + δb(p2 − pn2))][p1 + δsp2] + [F (p1 + δb(p2 − pn2))− F (pn2)]δsp

n
2

subject to the conditions

p2 ≤ p1 + δb(p2 − pn2) = vc

pn2 ≤ p1 + δb(p2 − pn2) = vc.

Therefore, the seller maximizes the Lagrangian

L(p1, p2, p
n
2, λ1, λ2) = Πs(p1, p2, p

n
2)− λ1[p2 − (p1 + δb(p2 − pn2))]− λ2[pn2 − (p1 + δb(p2 − pn2))].

All prices and Lagrange multipliers are non-negative, and by Lemma A(ii), p1 > 0
and pn2 > 0 at an optimal solution. Therefore, the KKT conditions are

∂L

∂p1
=

∂L

∂pn2
= 0, p2

∂L

∂p2
= λ1

∂L

∂λ1
= λ2

∂L

∂λ2
= 0. (4)

Differentiating L with respect to p1 and pn2 and then substituting from (3) we get

∂L

∂p1
= [1− F (p1 + δb(p2 − pn2))]− f(p1 + δb(p2 − pn2))[p1 + δs(p2 − pn2)] + λ1 + λ2

= [1− F (vc)]− f(vc)[vc + (δs − δb)(p2 − pn2)] + λ1 + λ2 = 0

=⇒ [1− F (vc)] = f(vc)[vc + (δs − δb)(p2 − pn2)]− λ1 − λ2 (5)

∂L

∂pn2
= δb{f(p1 + δb(p2 − pn2))[p1 + δs(p2 − pn2)]− λ1 − λ2}

+δs[F (p1 + δb(p2 − pn2))− F (pn2)]− δsf(pn2)pn2 − λ2
= δb{f(vc))[vc + (δs − δb)(p2 − pn2)]− λ1 − λ2}

+δs[F (vc))− F (pn2)]− δsf(pn2)pn2 − λ2
[using (5)] = −(δs − δb)[1− F (vc)] + δs[1− F (pn2)]− δspn2f(pn2)− λ2 = 0.

Further,

∂L

∂p2
= δs[1− F (p1 + δb(p2 − pn2))]− δbf(p1 + δb(p2 − pn2))[p1 + δs(p2 − pn2)]

−(1− δb)λ1 + δbλ2

= δs[1− F (vc)]− δb{f(vc)[vc + (δs − δb)(p2 − pn2)] + λ1 + λ2} − λ1
[using (5)] = (δs − δb)[1− F (vc)]− λ1

9



Thus, (4) becomes

f(vc)[vc + (δs − δb)(p2 − pn2)]− [1− F (vc)] = λ1 + λ2 (6)

−(δs − δb)[1− F (vc)] + δs[1− F (pn2)]− δspn2f(pn2) = λ2 (7)

p2
{

(δs − δb)[1− F (vc)]− λ1
}

= 0 (8)

λ1[p2 − vc] = 0 (9)

λ2[p
n
2 − vc] = 0 (10)

Case B: p2 > vc.

As p2 > vc and pn2 ≤ vc, equation (1) becomes

vc − p1 = δb(vc − pn2)

=⇒ vc =
p1 − δbpn2

1− δb
(11)

The seller’s profit function becomes

Π̂s(p1, p2, p
n
2) =

[
1− F

(p1 − δbpn2
1− δb

)]
p1 + [1− F (p2)]δsp2 +

[
F
(p1 − δbpn2

1− δb

)
− F (pn2)

]
δsp

n
2.

Substituting vc =
p1−δbpn2
1−δb

into the inequality pn2 ≤ vc yields pn2 ≤ p1. Thus, the
Lagrangian to be maximized is

L̂(p1, p2, p
n
2) = Π̂s(p1, p2, p

n
2)− λ̂1(vc − p2)− λ̂2(pn2 − p1).

By Lemma A(ii), p1 > 0 and pn2 > 0. By assumption, p2 > vc which together with
Lemma A(i) implies p2 > 0. Therefore, the KKT conditions are

[1− F (vc)]− f(vc)[vc +
(δb − δs)
(1− δb)

pn2]− λ̂1 + λ̂2 = 0 (12)

δs[1− F (p2)]− δsf(p2)p2 + (1− δb)λ̂1 = 0 (13)

δbf(vc)

1− δb
(p1 − δspn2)− f(pn2)δsp

n
2 + [F (vc)− F (pn2)]δs + λ̂1δb − λ̂2 = 0 (14)

λ̂1[vc − p2] = 0 (15)

λ̂2[p
n
2 − p1] = 0. (16)

Because vc < p2, by (15) λ̂1 = 0. Then by (13), p2 = p∗.

(i) The seller is more patient than the buyer, i.e., δs > δb.

We first show that Case B cannot hold at any optimal solution. Noting that
λ̂1 = 0, we can write (12) as

f(vc)vc − [1− F (vc)] =
(δs − δb)
(1− δb)

pn2f(vc) + λ̂2

10



As pn2 > 0 by Lemma A(ii), δs > δb, and λ̂2 ≥ 0, the fact that F is regular implies
that vc > p∗. But p∗ = p2, which contradicts our assumption that p2 > vc. Thus, at
any optimal solution, p2 ≤ vc.

Next, we apply the KKT conditions for Case A. If p2 = 0 then, as vc > 0 by
Lemma A(i), (9) implies λ1 = 0. Next, as vc < 1, again by Lemma A(i), we have
F (vc) < 1. But then λ1 = 0 and F (vc) < 1 together with (8) imply that ∂L

∂p2
> 0.

Thus, p2 = 0 cannot be optimal. Therefore, p2 > 0. Then (8) becomes

(δs − δb)[1− F (vc)]− λ1 = 0. (17)

As F (vc) < 1, we have λ1 > 0, which together with (9) implies that p2 = vc. Thus,
as pn2 ≤ vc, we have p2 ≥ pn2.

Substituting from (17) into (7) yields

δs[1− F (pn2)− f(pn2)pn2] = λ1 + λ2 (18)

= vcf(vc)− [1− F (vc)] + (δs − δb)(p2 − pn2)f(vc)

= vcf(vc)− [1− F (vc)] + (δs − δb)(vc − pn2)f(vc)

where the second equality follows from (6). As λ1 > 0, λ2 ≥ 0 and F is regular,
pn2 < p∗. Further, if vc = pn2 then vc > p∗ which contradicts p∗ > pn2. Thus, vc > pn2
and hence, λ2 = 0.

Substituting λ1 = (δs − δb)[1− F (vc)] and λ2 = 0 in (6), and noting that p2 = vc,
pn2 > 0, δs > δb yields

(1 + δs − δb)
1− F (vc)

f(vc)
= vc + (δs − δb)(p2 − pn2)

= vc + (δs − δb)(vc − pn2)

< (1 + δs − δb)vc
=⇒ vc > p∗.

Thus, we have proved that

vc = p2 > p∗ > pn2 .

Further, (18) is satisfied by unique pn2, vc. Uniqueness of p1 follows from (1). Next,
vc = p2 > pn2 and (3) imply that

vc = p2 > p1 > pn2 .

The KKT conditions are satisfied at a unique set of interior prices. Therefore, this
solution is either a global maximum or a global minimum for the Lagrangian. As the
expected profit at these prices is positive and greater than zero expected profits at
the solution p1 = p2 = pn2 = λ1 = λ2 = 0, this solution represents a global maximum.

(ii) The seller and the buyer are equally patient, i.e., δs = δb.
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An identical argument to that used to for δs > δb eliminates Case B for δs = δb.
Let δ ≡ δb = δs. It is straightforward to check that and p1, p2 such that p1 ≥ p∗,
p1 + δp2 = (1 + δ)p∗, and pn2 = vc = p∗, and λ1 = λ2 = 0 satisfy (6) through (10), the
KKT conditions for Case A.

(iii) The seller is less patient than the buyer, i.e., δs < δb.

First consider Case A. As δs < δb, λ1 ≥ 0, and F (vc) < 1, equation (17) is not
satisfied. Therefore, ∂L/∂p2 < 0 and p2 = 0. As vc > 0, (9) implies that λ1 = 0.
The remaining KKT conditions, (6) and (7), have as a unique solution vc = pn2 = p∗,
p1 = (1 + δb)p

∗, λ2 = (δb− δs)p∗f(p∗) = (δb− δs)(1−F (p∗)), λ1 = p2 = 0. In essence,
the price is p∗ in each period but the seller gets all of the buyer-discounted revenue
in the first period. The marginal buyer buys in both periods.

The seller’s expected profit at these prices are (1 + δb)p
∗(1−F (p∗)). It remains to

show that prices in Case B (p2 > vc) do not yield greater expected profits. Note that
optimal prices within Case B must satisfy p2 = p∗. Therefore, vc < p∗. Further, from
(11), p1 = (1− δb)vc + δbp

n
2. As pn2 ≤ vc, optimal prices within Case B must satisfy

p2 = p∗ > vc ≥ p1 ≥ pn2.

The expected profits at these prices are

(1− F (vc))p1 + δsp2(1− F (p2)) + δs(F (vc)− F (pn2))pn2
= (1− F (vc))p1 + δsp

∗(1− F (p∗)) + δs(F (vc)− F (pn2))pn2
< (1− F (vc))p1 + δbp

∗(1− F (p∗)) + δs(F (vc)− F (pn2))pn2
≤ (1− F (vc))vc + δbp

∗(1− F (p∗)) + δs(F (vc)− F (pn2))pn2
< (1 + δb)p

∗(1− F (p∗))

where the last inequality follows from the fact that when selling one unit to a buyer, a
take-it-or-leave-it price of p∗ is the optimal mechanism (which yields greater expected
profit than setting a price of vc in the first period and, if there is no sale, dropping
prices to pn2 in the second period).
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