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(complex RPTSs); the mean and standard deviation of these 6 values are illus-
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ent

(min) reaches
zero. In contrast S

ent

(max) is independent of L (and hence the size of the bath):
maximum entanglement is achieved when particles are equally distributed in each
region, and enlarging the bath, given this distribution of particles, does not a↵ect
the entanglement entropy of the system. S

ent

(ave) decreases with L, and is ex-
pected to approach zero for large system sizes as almost all particles on average
would be in the bath when the system is large and the subsystem is small. We
also plot the thermodynamic entropy (2.3) of the subsystem during equilibrium
(red dashed line), which is expected to equal S
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(ave)
(by about ln 2) for L = 8 = 2� is due to Page curve [228]. We stress that maximal
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(2) of maximal S
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, state (3) of minimal S
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, and equilibrium state (4) – which
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lattice corresponds to the case with the state (2) of maximal S
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: in this case
the average number of particles in the bath is the same as the average number of
particles in the subsystem. This configuration is di↵erent than that of the equi-
librium state (4), in which case particles are distributed uniformly. In (b), larger
macrostates correspond to larger observational entropy, showing correspondence
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Abstract

Rare fluctuations of entropy in quantum systems

by

Dana Faiez

The notion of entropy has been at the core of thermodynamics and statistical physics

since the 19th century, originally mentioned in the statement of the second law of thermody-

namics as “entropy is non-decreasing in an isolated system.” In the context of both classical

and quantum mechanics, there are cases where the second law is violated. In other words,

entropy of the system may fluctuate downward. The question of how low or high the entropy

of a quantum system can get is of interest in the context of small systems that can maintain

quantum coherence for short times, and in the context of our universe, assuming it is an isolated

quantum system. We explore the rare and extreme fluctuations of two well-developed notions of

entropy that are relevant and interesting in isolated thermodynamic quantum systems, namely

the observational and entanglement entropy. We find several fundamental di↵erences in the

behavior of the two when fluctuating to their extremes. We also provide an analytical proof of

a tight upper bound on entanglement entropy for systems constrained to conservation laws.
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Chapter 1

Introduction

“You should call it entropy, for two reasons. In the first place your uncertainty function

has been used in statistical mechanics under that name, so it already has a name. In the second

place, and more important, no one really knows what entropy really is, so in a debate you will

always have the advantage.”

- John von Neumann

1.1 Motivation

The second law of thermodynamics, one of the most fundamental laws of nature, can

be stated in various forms. For instance, it can be a statement about the limits of heat transfer

to mechanical work in a cyclic process, or the impossibility for heat to flow spontaneously from

a cold to a hot reservoir. But the statement that will be the focal point of this thesis is one that

concerns the concept of entropy, a concept coined by Rudolf Clausius in the mid 19th century.

A formulation of the second law in terms of entropy takes a simple form of �Stot ≥ 0 where Stot

refers to the entropy of an isolated system. In other words, “the entropy of an isolated system

1



never decreases over time.”

A statistical interpretation of entropy came about with the introduction of statisti-

cal mechanics by Ludwig Boltzmann, Josiah Willard Gibbs, and James Clerk Maxwell in the

late 19th century. Boltzmann introduced the well-known H-theorem [46], which led to a new

definition of entropy that makes use of the statistical weight of the macrostate. For a given

macrostate, Boltzmann entropy is given by,

SB = kB ln⌦, (1.1)

where kB is Boltzmann constant.1 A concept Boltzmann took advantage of in developing statis-

tical mechanics and this definition of entropy is the distinction between micro- and macrostates.

The complete specification of a system’s microscopic degrees of freedom is what constitutes the

microstates M(t), whereas the macrostate ⌦(t) is given by values of the “observables of interest”

– those that characterize the system on the macroscopic level, such as volume, temperature, and

pressure. Microstates would belong to the same macrostate if they look macroscopically the

same. As a result, macrostates are composed of a set of microstates, i.e., ⌦(t) = ⌦(M(t)).
If the observable of interest is an energy macrostate (which consists of all microstates in

an energy shell), Boltzmann entropy is equal to thermodynamic entropy of the microcanonical

ensemble [92, 163, 277, 53], and is proportional to Clausius’s entropy for systems in thermal

equilibrium. Considering general (not necessarily energy) macrostates, Boltzmann entropy is

typically time-dependent and able to describe systems out of equilibrium, unlike the original

definition of entropy [136].

Let’s look at an example for a better intuition about Boltzmann entropy. Consider

flipping ten fair coins one at a time. The chance that all coins turn out to be heads – a

seemingly ordered configuration and one with a small number of constituent microstates (only

1We will set both kB and Planck constant �h to unity from now on.
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one in this case), is much less than finding equal number of heads and tails – a less ordered

macrostate and one with high number of constituent microstates. This is only a statistical truth:

larger macrostates are more likely to occur. Boltzmann entropy quantifies this likelihood based

on the size of the macrostate.

A related concept that will be a crucial tool for the studies of this thesis, is the notion

of coarse-graining ; a set consisting of macrostates achieved by partitioning the microstates into

macroscopically distinct configurations [194]. This concept has been utilized in the development

of other notions of entropy primarily to describe dynamical systems, such as entropy of parti-

tion [180], Kolmogorov-Sinai entropy [117, 192, 180, 121], or topological entropy [117, 192, 180].

Take the volume coarse-graining for example in the case of gas particles inside an isolated box

evolving according to the laws of physics. Depending on the initial condition as well as the size

of the coarse-graining, the system’s entropy either stays about the same if the gas particles were

initially at equilibrium, or increases towards a maximum value as the system reaches a highly

disordered state. An example of the latter case is when all particles are initially localized at one

corner of the box and hence occupying a small volume.

A formulation of the second law in terms of entropy is commonly stated as “the entropy

of the universe never decreases over time.” In this statement, the universe contains all the matter

and energy there is and therefore by definition is considered an isolated system. The second

law implies then that this isolated system evolves towards the most random and disordered

macrostate (with the constraint of constant total energy), the thermal equilibrium state, and

that the earlier times in the history of the universe are associated with more orderly macrostates.

The fact that we associate the earlier times with more orderly states and the later times with

more disordered states seems to be why we can distinguish the past from the future.

Interestingly, this apparent thermodynamic arrow is in the presence of time-symmetric

laws of nature; a CPT invariant quantum field theory coupled to a classical cosmological geom-
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etry is an example of a contemporary theory governing the dynamics of the universe that does

not distinguish the forward direction of time from its reversal [141, 148].2 It is therefore only the

increase in entropy described by the second law that is correlated to the irreversibility of natural

processes and the asymmetry between future and past [191, 185, 152]. This thermodynamic

arrow is often correlated to the cosmological arrow of time [60, 105, 159].

In order to account for this observed entropy increase in only one time direction, one

would appeal to the hypothesis that an extremely low entropy initial state (presumably close to

the Big Bang) is what grounded the asymmetric behavior of natural processes. This is known

as the Past Hypothesis [9, 95]. This is of course an extremely fine tuned initial condition and

one of the oldest problems of cosmology [44, 8, 57, 194]. As Boltzmann put in writing: “The

second law of thermodynamics can be proved from the [time-reversible] mechanical theory, if

one assumes that the present state of the universe. . . started to evolve from an improbable

[i.e. special] state” [45]. Our thermodynamic arrow of time, from which the psychological arrow

of time follows – our subjective sense of time [150, 149, 159, 225] – is an emergent feature of a

special initial condition of the universe. A possible resolution to the open question of why the

universe started from such an improbable low entropy state is a rare downward fluctuation of

entropy from a thermal equilibrium state.3

The occurrence of such fluctuations was mentioned by Zermelo [51] in a criticism of

Boltzmann for not considering the possibility of downward fluctuations of entropy in an isolated

system. As a counter example, he brought up the Poincaré recurrence theorem which shows

that an isolated classical system can return arbitrarily close to its initial state, given enough

time [319].

In response to Zermelo [51], Boltzmann explains that fluctuations in entropy are pos-

2Although it has been shown experimentally that processes such as the K0K̄0 transitions violate time-
symmetry, it is widely believed that the concept of time reversal in the basic laws of nature is not connected to
that of the arrow of time [280].

3See [94, 3, 238, 58] for examples of various objections to this resolutions.
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sible but unlikely. For example, particles can spontaneously contract into a small space (e.g.,

corner of a room), and correspond to a macrostate with lower entropy. Boltzmann was the

first person to estimate the recurrence time and estimated that the time needed for a cm3 of

gas to return to its original state is of the order of many trillion of digits [310]. This laid the

groundwork for the study of fluctuations in entropy. Much later, the relations that constrain

the probability distribution of entropy fluctuations, the fluctuation theorems, became one of the

most significant discoveries in non-equilibrium statistical physics [111, 173, 68, 284, 211].

These fluctuations become especially relevant in small isolated systems with few degrees

of freedom, as well as large systems that have access to extremely long timescales. Although

exponentially rare, fluctuations can be of interest in the context of cosmology and understanding

of the origin of our universe. Several scenarios such as the formation of black (and white) holes

in de Sitter or thermal anti de Sitter [156], thermal transitions in cosmological inflation [96],

creation of a Big-Bang universe from an eternal thermal bath [10], and formation of the so-

called Boltzmann Brains have been discussed in [3]. These processes all have a particular

trait in common, a localization of matter and energy in an orderly manner. One interesting

and important question is about the choice of a suitable entropy that can characterize such

localization. Another relevant question is whether this localization can occur for an isolated

quantum system and if so, to what extent this localization can occur given time-scales of the

order of the Poincaré time; after all, the universe is quantum mechanical (although the question

of how one must apply quantum theory to the universe is an open and subtle question).4 A

suitable entropy is one that is well-defined out of equilibrium. This raises other questions: Do

the out of equilibrium fluctuations of di↵erent entropies describe qualitatively the same state

of a given system, and to what degree do their non-equilibrium behavior carry over from the

4For instance, there are no satisfactory and widely accepted quantum theory of gravity. Also, whether
one can associate a wavefunction to the whole universe, without any observers on the“outside” is not well
established [153, 226].
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equilibrium case?

In this thesis, we address these questions by studying numerically the out-of-equilibrium

behavior and the extreme fluctuations of two well-developed notions of entropy that are relevant

and interesting in isolated thermodynamic quantum systems, the observational entropy and

entanglement entropy.

The observational entropy [168, 269, 268] is a generalization of Boltzmann entropy

to quantum systems. Originally introduced by von Neumann [316, 315] as a resolution to

the fact that the [von Neumann] entropy does not increase in isolated systems, then briefly

mentioned by Wehrl [320] as “coarse-grained entropy,” observational entropy has experienced a

recent significant resurgence. It was generalized to multiple coarse-grainings [168, 269], found to

dynamically describe thermalization of isolated quantum [269, 199] and classical [268] systems,

discussed in relationship with other types of entropies [137], found to increase under Markovian

stochastic maps [128], and argued for as a natural candidate for entropy production [293] because

its definition does not need an explicit temperature dependence.

Entanglement entropy [243, 140, 313, 314] on the other hand is a well-known entropy

measure that quantifies the amount of non-local correlation (entanglement) between a subsystem

and its complement. It has a wide range of use and is important in understanding thermalization

in isolated systems [81, 334, 181], quantum correlations and phase transitions [242, 193, 312],

the holographic principle and black hole entropy [106, 236], as well as quantum information

theory [227, 308, 64].

We take these two entropies and explore the extreme values they can reach during

the time evolution of a given isolated system. We also look for how high entropy can get

beyond its typical value. The latter is particularly important due to the fact that states with

high entanglement entropy correspond to highly entangled states and such entangled states are

the backbone of quantum information protocols as they are considered a resource for tasks
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such as quantum teleportation [33, 161], cryptography [104], and dense coding [36]. In these

quantum information protocols, more entanglement usually leads to a better performance. As

a result, setting precise upper bounds on how much entanglement in principle is available in

performing these tasks is essential [336, 202, 175, 14, 290, 314, 313, 26, 24, 123, 167, 166]. This

is indeed one of the accomplishments of this thesis: The derivation of a general tight upper

bound on entanglement entropy for closed systems (i.e. a thermodynamic system that can

exchange energy with its surroundings while keeping the number of particles fixed) along with

a numerical confirmation of this bound on an isolated system of one-dimensional fermionic gas.

Besides the aforementioned practical applications, the study of entropy and its fluctu-

ations in the context of quantum mechanics incites historical yet not fully resolved discussions

around the concept of the arrow of time on the cosmological and local scale. For instance, how

does an observational entropy with a suitable coarse-graining relate to the cosmological arrow

of time and as a result the psychological arrow of time[150, 149, 159, 225]?5

Throughout the first half of this thesis, we take entanglement entropy as our case

study as it is a commonly used entropy especially for studying thermalization. We discuss

the conceptual di↵erences between entanglement and observational entropy and raise further

questions for the reader in the context of open systems: if both entropies increase towards the

canonical entropy, do they reconcile in what they might indicate to the observer about the

equilibration time of the subsystem? Also, does the use of observational entropy mean that

whether a system is in thermal equilibrium depends upon the use of coarse-graining and is a

subjective matter?

These questions, some of which are still considered unresolved, have been a subject of

fascination for physicists since the birth of quantum mechanics. It concerns the interpretation

5The connection between the psychological arrow of time with that of thermodynamics has been indicated by
many authors. See, for example, [100, 155, 262].
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of quantum mechanics, the role of the observer in this theory, as well as the concept of time

– whether this is an emergent phenomenon or a fundamental one, whether it is objective or

depends on the observers knowledge of the system and is therefore subjective. This thesis

touches on a few of these questions and provides numerical evidence that may improve one’s

intuition regarding observational and entanglement entropy of isolated quantum systems.

1.2 Preliminaries

In this section, we cover the essentials from quantum mechanics that build the foun-

dation for the studies presented in this thesis. We introduce the extended Hubbard model that

we utilize throughout this work, as well as a few definitions of entropy and their properties in

the context of both classical and quantum systems.

1.2.1 States and systems

In standard Schrödinger quantum mechanics, for any physical quantum system which

we denote here as A or B, there exists a corresponding complex vector space, known as the

Hilbert space, H, in which inner product is defined. In this thesis, we will only consider finite

dimensional Hilbert space, with dim(H) > 0. Using Dirac bra-ket notation, a vector in this

space is denoted as � � ∈ H with � � ∈ H∗ as its dual vector. We later use � �S to specify the

quantum state associated with the physical system S. For two vectors � �, ��� ∈ H, � ��� and
� ���� indicate the inner and outer products respectively.

Extending these definitions to a composite system AB, the corresponding Hilbert space

is the tensor product of the Hilbert spaces of the two subsystems, HAB =HA ⊗HB . The tensor

product symbol ⊗ between the vectors may be neglected at times for simplicity. The dimension

of HAB is the product of dim(HA) and dim(HB). HAB includes all vectors that can be written
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as

� � =�
i,j

ci,j �ai, bj�, (1.2)

with complex coe�cients ci,j , and �ai� and �bj� the basis states of HA and HB respectively. We

often will use the more compact notation �ai, bj� or �ai��bj� in place of �ai�⊗ �bj�.
The state vector � � describes what is known as the “pure” state; an idealized de-

scription of a state and when all information about the state is encoded in � � and known.

Therefore, the state vector can not describe statistical mixtures; when there are ensembles of

quantum states, one needs to make use of the notion of density matrices, also known as density

operators. In general, the density matrix has the following properties:

● ⇢̂† = ⇢̂ (hermiticity),

● tr⇢̂ = 1 (normalization),

● ⇢̂ ≥ 0 (positivity).

One can write a generic description of density matrix as a mixture of K pure states,

⇢̂ = K�
i=1

pi� i�� i�. (1.3)

{� i�} is a set of pure states, not necessarily orthogonal. The number K is not nec-

essarily the dimension of Hilbert space and the coe�cients {pi} are non-zero and less than one

and although ∑K
i=1 pi = 1, one must be careful in interpreting them as the probability to find

the system in the state � i�. On the other hand, if one choses to describe density matrix as a

mixture of orthogonal pure states, then K = dim(H) and the coe�cients become the eigenvalues

of ⇢̂, {�i} such that 0 ≤ �i ≤ 1 and ∑K
i=1 �i = 1.

A pure state is a special case of (1.3) where all coe�cients pi are zero except one, i.e.,

⇢̂ = � �� � and hence tr(⇢̂2) = 1. Otherwise, it is considered a “mixed” state and tr(⇢̂2) < 1. One

would have what is known as the “maximally mixed” state when the probability associated with
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each orthogonal state � i� is the same and equal to 1�K. In this case the density matrix is of

the following form

⇢̂ = 1

K

K�
i=1
� i�� i� = I

K
. (1.4)

The time evolution of ⇢̂ for an isolated system is described by the von Neumann equa-

tion. Given a state ⇢̂
0

at some initial time ⌧ = 0, the state at later time ⌧ > 0 is given by

⇢̂⌧ = U⌧ ⇢̂0U
†
⌧ , (1.5)

where U⌧ = e−i⌧ ˆH is the Hermitian, unitary time evolution operator. Ĥ is the Hamiltonian

operator of the system and can be diagonalized using the spectral decomposition

Ĥ =�
i

EiP̂Ei , (1.6)

with {Ei} as the eigenvalues of the Hamiltonian and P̂Ei as the projector onto a

subspace HEi . The projection operator or projector P̂Ei is a linear map P̂ ∈ L(H) with the

following properties:

● P̂ = P̂ † (hermiticity),

● P̂ 2 = P̂ (idempotency),

● ∑i,j P̂iP̂j = �ij (orthogonality).

In the case of a pure state, which we will take as our case study for the main portion

of this thesis, ⇢̂ commutes with H, i.e. [⇢̂,H] = 0 and does not evolve with time.

Making use of the spectral decomposition again and expanding ⇢̂ in energy basis, we

define what is called the thermal state, also known as Gibbs state. At any given temperature,

T = 1��, the thermal (Gibbs) state is given by

⇢̂th = e−� ˆH

Z
, (1.7)
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where Z = tre−� ˆH is the partition function. More intuitively, this is the state that an open

quantum system (a system that can exchange energy/particles with the environment) would

evolve to upon reaching equilibrium with its surroundings. However, the unitary dynamics of

isolated systems does not allow a pure state to reach thermal equilibrium (unless started from

such state). However, according to strong Eigenstate Thermalization Hypothesis [82, 292], a

pure state is likely to be in a state that resembles ⇢̂th given long enough time.

Another state that we make use of in the numerical portions of this thesis is the

following random pure thermal state (RPTS) (also known as the thermal pure quantum or

canonical thermal pure quantum) [294, 295, 228]),

� � = 1√
Z
�
E

cEe
−�E�2�E�, (1.8)

where �E�’s are the eigenstates of the Hamiltonian. The coe�cients {cE} are random complex

or real numbers, cE ≡ (xE + iyE)�√2, and cE ≡ (xE + yE)�√2 respectively, which leads to what

will refer to as the complex or the real RPTS, with xE and yE obeying the standard normal

distribution N (0,1), and Z = ∑E �cE �2e−�E is the normalization constant. These states emulate

a thermal state, while being pure.

We choose an extension of the Hubbard Hamiltonian, for the unitary evolution of this

RPTS state. This model consists of a kinetic term allowing for tunneling (hopping) of particles

between sites of the lattice and a potential term consisting of an on-site interaction. Despite its

simplicity, the Hubbard model exhibits almost all interesting phenomena one observes in nature:

magnetic ordering, a metal-insulator transition, superconductivity, a Tomonaga-Luttinger liquid

in one space dimension, among others. We choose this Hamiltonian since it has been extensively

studied in the literature [263, 275, 274, 81, 39, 7, 224].

We consider a system of n spin-less fermions in a one-dimensional lattice of size L with

hard wall boundary conditions. The Hamiltonian describing fermions in L sites is given by,
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Ĥ ≡ Ĥ(1−L),
Ĥ = L�

i=1
[−t(f †

i fi+1 + h.c.) + V nf
i n

f
i+1

−t′(f †
i fi+2 + h.c.) + V ′nf

i n
f
i+2].

(1.9)

(Due to the hard-wall boundary conditions, terms with fL+1, nf
L+1, fL+2, and nf

L+2 are

not included.) Here fi and f †
i are fermionic annihilation and creation operators for site i and

nf
i = f †

i fi is the local density operator. The nearest-neighbor (NN) and next-nearest-neighbor

(NNN) hopping terms are respectively t and t′ and the interaction strengths are V and V ′. The
schematic depiction of such fermionic chain is illustrated in Fig. 1.1. Later we will also require

“local” forms of the Hamiltonian using smaller ranges (k − l). We compute the eigenvalues and

eigenvectors of relevant Hamiltonians using exact diagonalization where the software library

Linear Algebra Package (LAPACK) in C [90] has been utilized.

V`

t` t`

V V t

Figure 1.1: A one-dimensional lattice of size L = 5 sites and n = 3 particles is shown. The right
hand side of the figure illustrates the hopping terms t or t′ i.e., particles move to the nearest-
neighbor (NN) and next-nearest-neighbor (NNN) sites respectively. The left hand side of the
figure shows the interactions of strengths V and V ′ between NN and NNN respectively.

This model is an archetypal example of both non-integrable (generic) and integrable

quantum systems. The case in which only nearest-neighbor interaction and hopping exist (t′, V ′ =
0), is an example of an integrable system. Whereas the case with both nearest-neighbor and

next-nearest-neighbor interaction and hopping (t′, V ′ ≠ 0) is an example of a non-integrable

system. More intuitively, in the latter case, the interaction among particles is su�cient to result

in full thermalization. This is however not the case in integrable systems, i.e., the interactions

do not su�ciently mix particles; this leads to a large number of constants of motion that prevent
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full thermalization [275, 274].

1.2.2 Entropies

The second law of thermodynamics originated the notion of entropy [65]. It then was

developed further and extended to other fields such as statistical mechanics and information

theory. In the context of quantum mechanics however, there is disagreement as to how to define

entropy such that the second law is respected. We briefly cover a few definitions of entropy in

thermodynamic, statistical mechanical, and information theory, in both quantum and classical

context. We delve into more detail of the two entropies that we take as our case studies in this

thesis, observational and entanglement entropy.

Thermodynamic (Clausius) entropy was conceive as a result of Clau-

sius principle ‘spontaneous processes are not thermodynamically reversible’. He

states that ‘the entropy of an isolated system never decreases over time.’ and de-

fined a change in system’s entropy for a reversible process receiving an infinitesimal

amount of heat �Q at absolute temperature T as,

�Ssys ∶= � b

a

�Qrev

T
. (1.10)

The integral on the right-hand side depends on the initial and final states, a and

b. In other words, entropy is a state function and does not depend on the path

taken between the two states [11, 255].

Clausius statement of the second law of thermodynamics and the inven-

tion of entropy as the ratio of two macroscopic components, heat and absolute

13



temperature, was truly a stepping stone in understanding the limits of cyclic pro-

cesses as well as the relation between the arrow of time and the concept of entropy.

But the relation to disorder and underlying microscopic structure of systems were

investigated later when physicists understood the nature of individual atoms and

molecules the microscopic world.

Gibbs entropy is a statistical extension of Clausius entropy and requires

macroscopic states to be given by a distribution on the microstates [130]. For a

system with a discrete set of microstates this entropy is defined as,

SG = −�
i

pi lnpi (1.11)

where pi is the probability of a microstate; it specifies the sampling probability

of observing a particular state when choosing a system from a large number of

identical copies. The sum is extendable to an integral over phase space given a

phase-space state density. In that case, pi can be interpreted as the probability

to find the system in a particular region of phase-space [32].

This probability allows one to find macroscopic properties of the system

without having access to all degrees of freedom. For instance, in the case of

internal energy, one only needs to know the energies of each microstate and the

probabilities associated with them,

U =�
i

pi✏i, (1.12)
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where in equilibrium, the probability of a microstate i with energy ✏i is,

pi = e−✏i�∑i e−✏i� . (1.13)

One notices that this definition of probability in general does not require

the system to be in equilibrium and therefore (1.11) is also applicable to states

out of equilibrium.

Boltzmann entropy also known as Boltzmann-Planck equation is de-

fined as,

SB = ln⌦ (1.14)

where ⌦ is the number of available microstates in the macrostate of interest [47].

All microstates are still equally likely (according to the fundamental postulate of

Statistical Mechanics for isolated systems), but since some macrostates contain

more microstates than others, they are more likely to occur. This definition of

entropy enables us to understand this notion from the statistical point of view

and is well-defined for non-equilibrium states.

With this view on entropy, Boltzmann made use of the probability theory

in the case of interacting gas molecules in a box. As particles interact and evolve

over time, the system will explore all accessible phase space; it will spend more

time in the larger macrostates (in other words, larger macrostates are more likely

to occur). The equilibrium – the state that the system spends the most time in,

is the lasrgest macrostate and thus corresponds to maximum entropy. Boltzmann

argues that the increase in entropy (the second law of thermodynamics) is simply
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a statistical truth and given a colliding set of particles, the states with higher

disorder are the most probable ones [47, 255].

The notion of entropy developed from its original statement in thermody-

namics, to that of Boltzmann and Gibbs in statistical mechanics. The extension

of this concept to other fields was carried on by Claude Shannon (1948) in the

field of classical information theory. He saw entropy as a measure of uncertainty

in a random variable; in other words, the expected value of information content

within a message.

Shannon entropy has been an essential tool in developing a theoretical

framework for the processing of electrical signal which revolves around two central

issues: 1. The maximum amount of compression of a message while retaining the

fidelity of the original information. 2. The rate of reliable transmission of a

message over a noisy channel [285, 286, 118].

For a given random variable X (the message) with N elements (total

number of characters) consists of n unique characters, the Shannon entropy is

given by:

H(X) = − n�
i=1 p(xi) log2 p(xi). (1.15)

Intuitively, (1.15) gives us a tool to quantify the number of bits needed to code

the transmitting data. The use of base-2 in the logarithm is therefore fitting for

this purpose.
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Consider a message, for example a string of numbers. The elements of this

message are chosen from a reference set of single-digit numbers {0, 1, 2, 3, 4, 5,

6, 7, 8, 9} with corresponding probabilities p(xi) = count
N where N = 10 and count

is the count of character ni. The Shannon entropy of message X = ”1223334444”
for instance then is 1.84644 bits/symbol.

The quantum adaptation of this entropy was introduced by von Neumann

(1932), almost 20 years before Shannon entropy was (1948). Quantum versions of

many classical entropic notions gradually became of interest and were developed

especially due to the advance of research in the field of quantum information the-

ory. Processing, transmission and storage of quantum information, being some of

the main tasks in this field, require the use of entropic measures for characteriza-

tion of quantum states. Some of these quantum entropies are the focal point of the

theory of entanglement (e.g. [282]) and quantum communication (e.g. [331, 240]).

Here we will focus on a few of these notions and their properties relevant to the

study of rare fluctuations in isolated quantum systems.

von Neumann entropy is an extension of Shannon entropy for a dis-

crete probability distribution {p1, p2, ..., pn} to density matrices in quantum statis-

tics [315, 160, 326]. Given density matrix ⇢̂, von Neumann entropy is defined as,

S(⇢̂)VN = −tr(⇢̂ ln ⇢̂). (1.16)

Note the use of natural logarithm instead of log base 2 in (1.16). The latter is

commonly used in information theory in order to quantify information in binary
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digits as in (1.15). von Neumann entropy quantifies the amount of information

present in a quantum system, and in the case of a pure state S(⇢̂)VN = 0. This

can easily be seen by writing (1.16) in terms of eigenvalues of the density matrix,

{�i},
S(⇢̂)VN = −�

i

�i ln�i (1.17)

and realizing that for a pure state all eigenvalues are zero except one. More

intuitively, given that the density matrix can be written as ⇢̂ = � �� �, one would

be completely aware of the state of the quantum system and as a result there

would be no surprise in finding out which pure state the system belongs to as long

as the measurement is done in that basis.

Another important note is that S(⇢̂)VN is manifestly invariant under a

unitary transformation,

⇢̂→ U ⇢̂U †. (1.18)

As a result, the entropy of a pure quantum state stays at zero at all times during

a unitary evolution.

von Neumann entropy has many other properties and we will touch on

some of them here:

● S(⇢̂)VN ≥ 0 (Non-negativity). This can be realized by referring to the defini-

tion of this entropy in terms of its eigenvalues (1.17) and using 0 ≤ � ≤ 1.
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● 0 ≤ S(⇢̂)VN ≤ dim(H). von Neumann entropy is minimal when the state is

pure and maximal when the state is maximally mixed.

● S(⇢̂A ⊗ ⇢̂B)VN = S(⇢̂A)VN + S(⇢̂B)VN (Additivity).

● Given a bipartite state ⇢̂AB, S(⇢̂AB)VN ≤ S(⇢̂A)VN +S(⇢̂B)VN (Subadditivity).

The Additivity recovers when the bipartite state is a product state, i.e., ⇢̂AB =
⇢̂A ⊗ ⇢̂B.

Rényi entropy is another commonly used measure in quantum informa-

tion theory. Given a density matrix ⇢̂, Rényi entropy is given by,

S↵ = 1

1 − ↵ log tr(⇢̂↵), ↵ ∈ (0,∞). (1.19)

The Rényi entanglement entropy approaches the Von Neumann in the limit of

↵ → 1. This entropy has the same lower and upper limits as that of von Neumann

entropy. It is also additive and non-negative but not subadditive in general [204,

196].

Entanglement entropy is the von Neumann entropy when defined on a

subsystem A, described by a reduced density matrix trB⇢̂AB = ⇢̂A. This entropy

is a measure of mixedness of this state which is linked to the amount of quantum

correlations, i.e., entanglement A has with B. To quantify this more precisely, we

shall focus on the bipartite case for the moment and introduce Schmidt decom-

position (SD) [140, 283]:

Consider a pure state  ∈ HAB consisting of two subsystems A and B.
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Assuming dim(HA) =m ≤ dim(HB) = n, one can always find a set of orthonormal

basis {u1, ..., um} ⊂HA and {v1, ..., vm} ⊂HB such that,

 = m�
j=1dj �uj, vj�, (1.20)

where the real and non-negative scalars {dj} are called Schmidt coe�cients.

There are a few immediate and useful conclusions one can make from SD.

First is the fact that, although dimension of the two Hilbert spaces HA and HB

may be di↵erent, ⇢̂A has the same non-zero eigenvalues as that of ⇢̂B. In other

words, by taking the partial trace of the pure state over system B for instance,

⇢̂A = trB(� �� �) = trB m�
j,j′

djd
′
j ��uj��u′j ��⊗ ��vj��v′j �� = m�

j,j′
djd

′
j ��uj��u′j �� trB ��vj��v′j ��

= m�
j,j′

djd
′
j ��uj��u′j ���

k

�vk�vj��v′j �vk� = m�
j,j′

djd
′
j �v′j �vj�

= m�
j,j′

djd
′
j ��uj��u′j �� �jj′ = m�

j

d2j �uj��uj �,
(1.21)

one would get {d2j} as the eigenvalues of ⇢̂A. Similarly, (1.21) can be done for ⇢̂B

from which we find that the reduced state of ⇢̂ on either subsystem would have

the same spectrum, i.e., the square of the Schmidt coe�cients are the non-zero

eigenvalues of both A and B.

Another conclusion is about the so called Schmidt number, which is the

number of non-zero eigenvalues of the reduced state A (or B). The state is pure

if and only if this number is equal to 1. In this case, ⇢̂AB = ⇢̂A ⊗ ⇢̂B and the state
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is known to be a product state (or a separable state.) Otherwise, the state can

not be written as a tensor product of the two composite states; the reduced states

are mixed and said to be entangled with each other.

The latter conclusion is an indication of the link between mixed-ness and

entanglement of the two subsystems. In order to measure entanglement then, we

could measure the amount of mixed-ness in a given subsystem, using von Neumann

entropy (1.16) of the reduced density matrix, also known as entanglement entropy,

Sent(⇢̂) = −tr(⇢̂A) ln ⇢̂A. (1.22)

Using (1.20) we immediately find that,

Sent(⇢̂A) = Sent(⇢̂B) = −�
j

d2j lnd
2
j . (1.23)

For a product state dj = 1 and entanglement entropy equals 0. On the other hand,

if all coe�cients d2j are the same (d2j = 1�m), entanglement entropy is maximal

and the state is said to be maximally entangled. On a more intuitive level, given

q qubits in subsystem A and q qubits in subsystem B, then eSent = 2q counts the

number of entangled states for a maximally entangled state.

As expected, following the properties of von Neumann entropy, entangle-

ment entropy is additive, subadditive and non-negative.

Entanglement entropy can be defined whenever Hilbert space is parti-

tioned into two (or more) factors for a given pure state. For instance, considering

an n-body wave function in first quantized form, the partition could be done in

21



terms of identical particle labels. As discussed in Ref. [19, 309] such a biparti-

tion of indistinguishable particles is solely specified by the number of particles in

the subsystem, nA and entanglement entropy measures the amount of quantum

correlations between a the two subsets with n and n − nA particles.

Another example is when Hilbert space is split into two factors such that

the subsystem A is a subregion of space. Two important and well-known geometric

properties arise in this case:

Consider a systemAB withN particles, the subsystemA with q qubits and

the rest, i.e., the bath B with N − q qubits. With the dimension of corresponding

Hilbert spaces 1 � dim(HA) = m � dim(HB) = n, the Lubkin-Lloyd-Pagels-

Page (LLPP) theorem [208, 207, 243, 329] shows that the smaller subsystem A is

typically almost maximally mixed with the bath, given that the total system is in

a randomly chosen pure state. This maximally mixed state (and with maximum

entanglement entropy) leads to the canonical density matrix given in (1.7) [301,

134, 139]. This can be shown using Schurs lemma [337] and by taking advantage of

Lagrange multiplier technique [140]. The volume law states that the entanglement

entropy scales with the volume of the subsystem [243, 228]. In other words,

Sent ∝ Volume(A), (random state). (1.24)

In the case of groundstate however, and for gapped Hamiltonians with

local interactions, the entanglement entropy follows the area law [140]:

Sent ∝ Area(A), (groundstate, gapped Hamiltonian). (1.25)
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Intuitively, the area law suggests that the lower energy states occupy only a small

part of the full Hilbert space, and be described by a small number of parameters,

unlike the typical states following the volume law. For one-dimensional systems,

Sent ∝ const and is independent of the system size. This is an important feature

used in quantum condensed matter, knwon as the density matrix renormalization

group (DMRG) technique [279, 302].

It is worth noting that one can also consider an extension of this entropy

to the multipartite case where the entanglement of a subregion with all other

partitions in the system is the quantity of interest. This is a more complicated

case than in bipartite one [93, 327, 250, 62, 124, 276].

In the following section of this thesis, we will take bipartite entanglement

entropy as one of our case studies in order to explore rare entropy fluctuations of

a region inside an evolving isolated system.

Observational entropy is an adaptation of Boltzmann entropy to quan-

tum systems. It was mentioned but not developed by von Neumann in 1929 [316,

315] then more recently rediscovered, developed, generalized to include multi-

ple (even non-commuting) coarse-graining, and connected to thermodynamics

in [168, 269], using the following construction:

Let us assume that the Hilbert space can be decomposed into a direct

sum of orthogonal subspaces H = �iHi, where each subspace corresponds to

a macrostate specifying a single macroscopic property of the system (such as
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energy or number of particles). Defining projector P̂i as the projector onto a

subspaceHi, the set C = {P̂i} forms a trace-preserving set of orthogonal projectors,

denoted a coarse-graining. The probability that a quantum state ⇢̂ is in a given

macrostate can be calculated as pi = tr[P̂i⇢̂]. Equivalently, we can say that this

is the probability that a system described by a quantum state ⇢̂ will be found

having a value i of a macroscopic property defined by the coarse-graining, when

performing a coarse-grained measurement on it in the basis given by the coarse-

graining.

Assuming that an observer cannot distinguish between di↵erent microstates

k within the same macrostate i with their macroscopic measurement, they asso-

ciate the same probability p(k)i = pi�dim(Hi) = pi�tr[P̂i] to every microstate (given

by a pure quantum state) in the macrostate. Given this inability to distinguish be-

tween di↵erent microstates within the same macrostate, we consider the Shannon

entropy of the probabilities p(k)i ,

SO(C) ≡ −�
i,k

p(k)i lnp(k)i = −�
i

pi ln
pi

tr[P̂i] (1.26)

This defines observational entropy with a single coarse-graining.

A generalization of this quantity for multiple coarse-grainings that allows

many of its properties to be retained is

SO(C
1

,...,Cn) ≡ −�
i

pi ln
pi
Vi
, (1.27)

where multi-index i = (i1, . . . , in) denotes a set of macroscopic properties, pi is
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the probability of these properties being measured (in the given order), and Vi =
tr[P̂in�P̂i

1

�P̂in] denotes a joint Hilbert space volume of all systems that have

properties i = (i1, . . . , in) measured in this order. Equivalently, we can call Vi the

volume of multi-macrostate i.

An important property of SO is that it depends on the order of coarse-

grainings, and that for any ordered set of coarse-grainings (C1, . . . ,Cn) and any

density matrix ⇢̂,

SVN(⇢̂) ≤ SO(C
1

,...,Cn)(⇢̂) ≤ ln dimH, (1.28)

SO(C
1

,...,Cn)(⇢̂) ≤ SO(C
1

,...,Cn−1)(⇢̂). (1.29)

In words, this means that observational entropy is lower bounded by the von Neu-

mann entropy, which can be interpreted as an inherent uncertainty in a quantum

system, upper bounded by the maximal uncertainty in the system, and that with

each added coarse-graining, the observational entropy does not increase. These

properties show that observational entropy can be interpreted as an observers’ un-

certainty about the system, given that all that the observer can do is to perform

a set of macroscopic measurements on this system.

Despite the intuitive interpretation of this general quantity, its physical

meaning depends upon the coarse-graining. Several pertinent examples we have

identified are as follows:

Observational entropy with energy coarse-graining, SE, is achieved

by choosing coarse-graining CE = {P̂E}E, where P̂E is a projector onto a subspace
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associated with eigenvalue E of the Hamiltonian Ĥ (for non-degenerate Hamilto-

nians, P̂E = �E��E� is a projector onto a single energy eigenstate). Observational

entropy SE ≡ SO(CE) then gives the equilibrium value of the thermodynamic en-

tropy. For example, for a microcanonical state ⇢̂micro = 1
N(E) ∑E≤Ẽ<E+�E �Ẽ��Ẽ� it

gives the microcanonical entropy,

SE(⇢̂micro) = ln(N(E)) = ln(⇢̂(E)�E) = Smicro(E), (1.30)

where ⇢̂(E) denotes the energy density of states, while for the canonical state

⇢̂th = 1
Z exp(−�Ĥ) it gives the canonical entropy,

SE(⇢̂th) = lnZ + ��E� = SVN(⇢̂th) = Sth. (1.31)

Observational entropy with coarse-graining in local Hamilto-

nians, SF , leads to time-dependence while still pertaining to thermodynam-

ics. the coarse-graining CĤ
1

⊗�⊗Ĥm
is such that P̂E

1

,...,Em = P̂E
1

⊗ � ⊗ P̂Em ,

ĤjP̂Ej
= EjP̂Ej

, are projectors onto local energy eigenstates. The resulting en-

tropy SF ≡ SO(C
ˆH
1

⊗�⊗ ˆHm
) is named factorized observational entropy with energy

coarse-graining (FOE) which measures how close to equilibrium these local regions

are.

As an example, consider the Hilbert space divided into two parts H(1) and
H(2), with the joint system being H = H(1) ⊗H(2). The Hamiltonian Ĥ can then

be separated into three terms

Ĥ = Ĥ(1) ⊗ Î + Î ⊗ Ĥ(2) + ✏Ĥ(int), (1.32)
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where Ĥ(1) and Ĥ(2) are the Hamiltonians that describe internal interactions in

the first and second systems respectively. Ĥ(int) is an interaction term and ✏

determines the interaction strength. Contribution of this term to the total energy

however is expected to be small for large subsystems and local interactions.

FOE is built up from the coarse-graining that projects to the eigenstates

of the local Hamiltonians Ĥ(1) and Ĥ(2); this corresponds to simultaneous mea-

surements of local energies and can be formally written as,

SF (⇢̂) ≡ SO(C
ˆH(1)⊗C ˆH(2))(⇢̂). (1.33)

Explicitly, this factorized coarse-graining is given by {P̂E
1

⊗ P̂E
2

}E
1

E
2

, and the

projectors are given by spectral decompositions of local Hamiltonians, Ĥ(1) =
∑E

1

E1P̂E
1

, Ĥ(2) = ∑E
1

E2P̂E
2

. The generalization of this definition to an arbitrary

number of local Hamiltonians is done in [269].

It is shown in Ref. [269] that in the long-time limit, FOE is upper-bounded

by the von Neumann entropy of the diagonal density matrix, ⇢̂d , defined as

the diagonal part of the density matrix written in an energy basis, �E�⇢̂d�E′� ≡
pE(⇢̂t)
tr[P̂E] �EE′ , equivalent to

⇢̂d =�
E

pE(⇢̂t)
tr[P̂E] P̂E, (1.34)

which is a constant density matrix for closed quantum systems, defined fully by

the initial density matrix ⇢̂0. This density matrix is microcanonical if the diagonal

elements are peaked around one set of invariants. Otherwise if they are spread out,
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this density matrix is a macroscopic superposition of di↵erent thermal states [246].

The latter will be the focus of studies in this thesis. In this case, FOE is bounded

by the von Neumann entropy of diagonal density matrix, S(⇢̂d) up to a correction

term of order ✏ representing the interaction strength between the subsystems; this

entropy is in turn bounded by the corresponding canonical entropy:

SF (⇢̂) +O(✏) ≤ S(⇢̂d) ≤ S(⇢̂th). (1.35)

Sth ≡ S(⇢̂th) is the canonical (thermodynamic) entropy defined as von Neumann

entropy of the canonical state, ⇢̂th with the mean energy of the system given by

E ≡ tr[Ĥ ⇢̂t] = tr[Ĥ ⇢̂d] and thr inverse temperature � given as the solution to

equation E = −@ lnZ
� . The correction term O(✏) is a finite size correction, and

expected to be small for systems with large coarse-grainings. In other words,

O(✏) is negligible if the energy of interaction between the subsystems is much

smaller than the energies of the subsystems. There are a few exceptions to the

bound (1.35) and are discussed in Ref. [269].

Observational entropy with position and energy coarse-graining,

SxE, is a closely-related example and is the main focus of this thesis. This obser-

vational entropy, coarse-grained first in local particle numbers, and then in total

energy, can be interpreted as entropy that an observer would associate to a sys-

tem where m partitions are allowed to exchange energy but not particles, in the

long-time limit. SxE is upper bounded by thermodynamic entropy similar to FOE.

Consider an observer who wishes to measure coarse-grained position of
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the particles and energy of the system. The two relevant coarse-grainings are

CX̂(�) = {P̂ (�)�x }�x, P̂ (�)�x = ��̃x∈C�x ��̃x���̃x�, (1.36a)

CĤ = {P̂E}E, P̂E = �E��E�, (1.36b)

where CX̂(�) , which corresponds to coarse-graining in position space with p number

of bins of size �. For indistinguishable particles, this coarse-graining is equivalent

to measuring number of particles in each box, and can be written as CX̂(�) =
CN̂

1

⊗�⊗N̂p
≡ CN̂

1

⊗�⊗CN̂p
. CĤ consists of projectors from the spectral decomposition

of the total Hamiltonian Ĥ = ∑E EP̂E.

Observational entropy utilizing the aforementioned coarse-grainings can

be written as,

SxE(⇢̂) ≡ SO(C
ˆX(�) ,C ˆH)(⇢̂). (1.37)

which corresponds to first measuring the coarse-grained position and then energy

of the system. This entropy increases in a closed system and reaches the correct

thermodynamic value given by the microcanonical ensemble, i.e., microcanoni-

cal entropy, for initial pure states that are superpositions of energy eigenstates

strongly peaked around a given value of energy, and reaches a value that is be-

tween the canonical entropy and the mean value of the microcanonical entropies

for other initial states.

Denoting by pxE the probability of observing a position macrostate x

and then energy state E, and denoting the corresponding Hilbert space volume
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VxE = tr[P̂EP̂x], (1.28) implies that SxE is maximized when pxE ∝ VxE. In general,

SxE is large if pxE is high for large volumes VxE while low for small volume; SxE is

small if pxE is low for large volumes VxE, and large for small volumes VxE. That

is, SxE is low to the extent the state is localized in a small region of space with a

well-defined energy, and high otherwise.

The evolution of Sent, FOE, and SxE will be discussed in more detail in

section 2.2.

1.3 Methodology

1.3.1 Nelder Mead Simplex algorithm

In this thesis we look for the extreme downward and upward fluctuations

of two types of entropies. As a result, optimization is an essential tool for this

type of exploration. Numerous optimization algorithms are known and used across

field, each suited to solve a particular type of problem. Each algorithm has its own

advantages and drawbacks. For instance among the heuristic methods, simulated

annealing is guaranteed to find the optimal solution statistically speaking, however

the search is normally very slow.

Optimization algorithms also utilize di↵erent techniques to converge iter-

atively to the optimal solution(s). They may use first or second derivatives, or

function values, i.e., a direct search method which uses comparison of function
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Figure 1.2: Six operations on a simplex with three vertices during the Nelder Meads downhill
simplex search [209]. (a) The initial simplex formed by choosing a random set of parameters{x

1

, x
2

, x
3

}. The centroid, xM , of all points except the one with highest function value, i.e. x
3

is shown. (b) Reflection of the simplex about the reflection point xR (in red). (c) Expansion
using the point xE (in yellow). (d) Outside contraction using the point xOC (in orange). (e)
Inside contraction using the point xIC (in purple). (f) Shrinkage on the simplex towards the
best point x

1

by replacing all points except x
1

(in green).

values only.

The Nelder Meads simplex method [230, 248, 209] (NMSM) is a popular

heuristic method of choice for many practitioners and is also the optimization

method of choice in this thesis. It is relatively easy to implement and can optimize

a function without calculating its derivatives which is normally more complicated

and requires more computational power. In this section, we describe this method

in detail and discuss means to overcome the drawbacks of this method.

The Nelder Meads simplex method is a direct downhill search method

to search for local minima and is applicable for multidimensional optimization
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problems. It uses a special type of polytope, an n + 1 simplex, to search for its

promising directions. A simplex is defined as a geometrical figure which is formed

by n + 1 vertices on Rn space.

The function values at each vertex is evaluated iteratively. The vertex

resulting in the highest function value is replaced with a new vertex. Based on

the function value at this new vertex, a new simplex will be formed through

operations such as reflection, expansion, contraction, outside/inside contraction.

Otherwise, i.e., if the function value of the new vertex is worse than all other

vertices, the simplex will be shrunk around the best vertex, and this process will

be continued until the criterion for convergence are met.

The convergence speed of this algorithm can be controlled by three pa-

rameters ↵, �, �, and �. ↵ is the reflection coe�cient, controls the distance from

the reflected point to a centroid point and is normally set to ↵ = 1 ; � is the con-

traction coe�cient, normally set to � = 1
2 and defines how far a contracted point

should be from the worst point; � is the expansion coe�cient and defines how far

to expand from the reflected point and has a standard value of � = 2. And finally,

� is the shrinkage parameter with standard value of � = 1
2

Here are the steps NMSM undertakes for searching for a local minima:

● create a simplex by choosing a random set of parameters {x1, x2, ..., xn, xn+1}
in the domain of choice 1.2(a).

● compute function values at each vertex, fi = f(xi).
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● sort the vertices such that the associated function values are in the ascending

order, f1 ≤ f2 ≤ ... ≤ fn+1.
● calculate the centroid of all points except the one with highest function value,

i.e., xn+1. This point is shown in 1.2(a), xM = 1
n ∑n

i=1 xi.

● calculate the reflection point xR = xM + ↵(xM − xn+1).
● calculate fR at the reflection point xR,

– if xR is better than xn, but worse than x1, i.e., f1 ≤ fR ≤ fn, create a new

simplex using {x1, x2, ..., xn, xR} vertices: reflection 1.2(b).

– if xR is better than all other points, i.e., fR ≤ f1 ≤ f2 ≤ ... ≤ fn+1, compute

the expansion point xE = xM + �(xR − xM).
∗ if xE is worse than xR, accept xR and perform a reflection.

∗ otherwise, accept xE and create a new simplex using {x1, x2, ..., xn, xE}
as vertices: expansion 1.2(c).

– if xR is better than xn+1, but worse than xn, i.e., fn ≤ fR ≤ fn+1, compute

the point xOC = xM + �(xR − xM).
∗ if xOC is better than xR, accept xOC , create a new simplex with

{x1, x2, ..., xn, xOC} vertices: outside contraction 1.2(d).

∗ Otherwise, perform a shrinkage on the simplex 1.2(f).

– if xR is worse than all other points, i.e., fn+1 ≤ fR, compute xIC = xM −
�(xM − xn+1).
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∗ if xIC is better than xn+1, accept xIC and create a simplex using

{x1, x2, ..., xn, xIC}: inside contraction 1.2(e).

∗ Otherwise, perform a shrinkage on the simplex 1.2(f).

● if all the the above cases fails, perform a shrinkage on the simplex towards the

best point x1 by replacing all points except x1 with xi → x1+�(xi−x1) 1.2(f).
The search would stop when the values of f on the vertices are close

enough to each other, i.e., 1
n+1 ∑n+1

i=1 (fi − f̄)2 < ✏ where f̄ = 1
n+1 ∑n+1

i=1 fi. The search

would also stop if su�cient number of iterations, iter has been completed (both

iter and ✏ can be controlled by the user).

We apply this method to search for the near global minima and maxima

values that the entropies under study can achieve during their time evolution.

This optimization is performed with respect to the phases 0 ≤ �E = E⌧ ≤ 2⇡ that

appear in the time evolution of the wave function, Û⌧ = e−iĤ⌧ . The number of

phases to optimize over is equal to the dimH. As long as the di↵erences of E’s

are irrational (or close to being to), this method must give the same result as

maximizing over all times ⌧ .

As mentioned before, NMSM is a heuristic method and does not guarantee

to find the optimal solution. However, there are several possibilities for overcoming

this issue. In this study,we do so by repeating the optimization process with many

di↵erent random initial simplexes.
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1.3.2 Monte Carlo sampling method

Getting access to the distribution of entropy far from equilibrium and

collecting statistics of super-rare events require evolving the system for extremely

long time. A more e�cient way to sample the low values of entropy is by using the

Metropolis-Hastings (MH) algorithm which provides us with successive iterations

in a Markov chain Monte Carlo (MCMC) simulation [154, 177, 212]. The repeated

random sampling is performed on the phases �E = E⌧ ≤ 2⇡ that appear in the

time evolution of the wave function, Û⌧ = e−iĤ⌧ .

We choose deterministic, pseudo-random numbers which make it easy to

test and re-run simulations. There are four hyper-parameters in this method: the

e↵ective (inverse) temperature, �MC ; the number of moves in each iteration, i.e.,

the number of phases to be changed in one step, m; the step size which determines

the size of the jumps from the sampled value, s; the number of iterations to be

completed in one round of MC sampling, iter. This procedure has the following

steps:

● Initialize all phases using pseudo-random numbers between 0 and 2⇡. Initial-

ize the wave function,  init and entropy of interest Sinit accordingly. Also,

initialize an integer called accept = 0. This is to keep track of the number of

accepted changes on phases.

● Compute the following during each iteration:
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– Randomly choose m phases and save them as �init.

– Compute the change in m phases as, �� = 2⇡s(2r − 1), where r is a

pseudo-random number between 0 and 1.

– Using ��, compute the new phases as, �new = mod(�init +�(�), (2⇡));
where the mod function computes the remainder of the two input ar-

guments. This is done in order to prevent the the value of phase from

becoming too large. Accordingly, compute  new and entropy of inter-

est, Sattempt. This value of entropy is considered a “candidate” since it

not automatically accepted and is supposed to go through the following

acceptance procedure.

– Compute the change in entropy, �S = Sattempt − Sinit.

– Reject this update if condition for rejection, i.e., e−�MC�S < r is satisfied.
Otherwise, accept this update, set Sinit = Sattempt, save its value, and

increment accept by one.

During an MH run, the acceptance rate must be monitored to make sure

the updates are being accepted at a reasonable rate. If an algorithm rejects too

many of the candidates, it would not be able to sample enough from the desired

distribution and will not mix well. On the other hand, an algorithm that accepts

too many or all candidates, the mixing will occur too slow and many iterations

is required to achieve the desired distribution. According to Ref. [177, 212], the

ideal acceptance rate is around 50%.
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Figure 1.3: Shows three examples of the sampled entropies S
xE

(blue dots) as well as the
evolution of the acceptance rate (pink dots) throughout an MH simulation with fixed �MC = 50
and step size s = 5 for all three cases. The di↵erent acceptance rates are due to the di↵erence in
the number of moves: 100, 10, and 1 from left to right. This illustrates the insu�cient mixing
of the cases on the left and right compared to the middle one. It also compares the speed of
convergence throughout 10000 iterations.

Fig. 1.3 shows three examples of the sampled entropies SxE (blue dots)

as well as the evolution of the acceptance rate (pink dots) throughout an MH

simulation with fixed �MC = 50 and step size s = 5 for all three cases. The

di↵erent acceptance rates are due to the di↵erence in the number of moves: 100,

10, and 1 from left to right. The left plot is an example where acceptance rate
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is too low (↵ ≈ 25%). As a result, most candidates are rejected and not many

entropies from the desired part of the distribution (left tail) are sampled in 10000

iterations. In the middle graph ↵ ≈ 60% and the sampled values of entropy include

the region of interest and there is su�cient amount of mixing. Finally, the graph

on the right is an example where acceptance rate is too high (↵ ≈ 90%). In this

case, most cases are accepted, the sampled values of entropies are more focused

around the mode value, with some entropies sampled from the less likely regions

of the distribution. Overall, there is less mixing compared to the middle case.
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Chapter 2

Entropy fluctuations in isolated

quantum systems

2.1 Overview

In this chapter, we discuss time evolutions of the two aforementioned en-

tropies relevant for describing the dynamics of isolated quantum systems: bipartite

entanglement entropy and observational entropy. We illustrate numerically what

values these entropies approximately converge to and discuss the intuition behind

their evolution – what each entropy mean and is useful for. We first discuss the

fluctuations of these entropies over time evolution, not including the rare fluctua-

tions that would only occur if the system has access to long time-scales. We then

characterize the rare fluctuations, and find the maximal, minimal, and typical en-

tropy of each type that the system can eventually attain through its evolution. We
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find that while both entropies are low for some “special” configurations and high

for more “generic” ones, there are several fundamental di↵erences in their behav-

ior. Observational entropy behaves in accord with classical Boltzmann entropy

(e.g. equilibrium is a condition of near-maximal entropy and uniformly distributed

particles, and minimal entropy is a very compact configuration). Entanglement

entropy is rather di↵erent: minimal entropy “empties out” one partition while

maximal entropy apportions the particles between the partitions, and neither is

typical. Beyond these qualitative results, we characterize both entropies and their

fluctuations in some detail as they depend on temperature, particle number, and

coarse-graining size.

2.2 Time evolution of entropy

Before focusing our attention to the three entropies of interest (SxE, SF ,

and Sent), we will consider a simpler example of observational entropy namely

the entropy with only a position coarse-graining and discuss its behavior under

unitary time evolution.

2.2.1 Time evolution of entropy, Sx

Given a one-dimensional system with n indistinguishable particles, we

choose a coarse-graining into p bins, each of size �. Such an observation results

in the bin number that every particle belongs to. For this purpose, we denote the
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binned particle positions by �x = (x(1), . . . , x(n)), where each element can take one

of the equally spaced values x1, . . . , xp.

As an example, the second particle contained in the first bin, is denoted

as x(2) = x1. For indistinguishable particles, any permutation ⇡ of elements of �x
constitutes the same vector, �x ≡ ⇡(x(1), . . . , x(n)). We define a set of coarse-grained

projectors indexed by �x,
CX̂(�) = {P̂ (�)�x }�x, where P̂ (�)�x = ��̃x∈C�x ��̃x���̃x� (2.1)

and C�x represents a hypercube of dimension n and width � = xj+1 − xj. Vector

��̃x� contains the exact position of each particle, and corresponds to a basis vector

in the Hilbert space. Each hypercube defines one macrostate, which by the above

definition is formed by vectors of position ��̃x� that correspond to the same vector

of positional bins �x. The coarse-graining CX̂(�) then represents measurements of

positional macrostate given a resolution of size �.

For indistinguishable particles, this coarse-graining represents the number

of particles in a given box of size � instead. For example, on a one-dimensional

lattice of length L = 9 of with n = 4 indistinguishable particles coarse-grained

into p = 3 boxes of size � = 3, the first particle could be in the box {1 − 3}, the
next two could be in box {4 − 6}, and the final one could be in the box {7 − 9}.
This represents one projector of this coarse-graining by the “signature” [1,2,1],
which represents the number of particles in each box. As a result, in the case of

indistinguishable particles, we can write CX̂(�) = CN̂
1

⊗�⊗N̂p
≡ CN̂

1

⊗�⊗ CN̂p
. When
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a projector P̂�x ∈ CX̂(�) acts on a wave function, it is projecting out the components

of the wave function with P̂�x’s signature.

Figure 2.1: Evolution of the observational entropy with positional coarse-graining of the non-
integrable system of size L = 16, coarse-grained into p = 4 parts of size � = 4, starting at
t = 0 in a state of N = 4 particles contained in the left side of the box (sites {1 − 8}). As time
passes, particles expand through the entire box and the Observational entropy quickly increases,
reaching value not far from the maximal value S

max

= ln dimH, where dimH = �LN� = 1820,
depicted by the straight green line [270].

The evolution of this observational entropy is illustrated in Fig. 2.1. We

choose an initial condition such that all n = 4 particles are confined to the first 8

sites of the lattice at t = 0, subject to the Hamiltonian describing a non-integrable

system (1.9) with t = t′ = 1.9, V = V ′ = 0.96. The full lattice has a size of L = 16
sites, coarse-grained into p = 4 parts of size � = 4. Once the right wall is moved to

the end of the lattice at t = 0, particles expand through the entire lattice and the

Observational entropy quickly increases, reaching a value not far from the maximal

value Smax = ln dimH, where dimH = �LN� = 1820, depicted by the straight green
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a)

b)

c)

Figure 2.2: a) Sketch of Hilbert space, b) evolution of probabilities, and c) graph of Observational
entropy, in 12-dimensional Hilbert space with subspaces of dimensions 1, 3, and 8 respectively.
Blobs in a) represent the amount of probability projected into each Hilbert subspace, but it
should be kept in mind that the right picture is projecting a density matrix that lives in 12-
d space into these lower-d subspaces; this cannot be depicted here. The blue curve in b)
represents a possible evolution of probabilities pi(t) = tr[P̂i⇢̂t], with density matrix starting in
the 1-d subspace Hilbert subspace H

1

. Panel c) depicts Observational entropy as function of
probabilities p

2

and p
3

(where p
1

= 1− p
2

− p
3

), and the blue curve is the corresponding entropy
SO(C)(⇢̂t) from evolution b). Observational entropy is a strictly concave function; since each
corner of its graph represents one of the subspaces, the entropy must increase at least for a short
time when starting in one of them [270].
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line.1 Intuitively, observational entropy measures how uniformly the distribution

of particles are over the macrostates. The fact that it almost reaches the maximal

value means that in the long-time limit, probability of each particle being in a

given macrostate is linearly proportional to the macrostate’s volume (1.28).

We refer the reader to Fig. 2.2 for a more intuitive description and de-

piction of why an observational entropy with an appropriate coarse-graining may

increase over time. In Fig. 2.2 (b) a possible evolution of probabilities pi(t) =
tr[P̂i⇢̂t], with density matrix starting in the 1-d subspace Hilbert subspace H1

probabilities is shown and in Fig. 2.2 (c), the general shape of the evolution of

Observational entropy as a function of probabilities is illustrated in blue.

Although the question of to what value observational entropy converges

to, for general coarse-graining is di�cult to analyze for the case of isolated systems

(since the density matrix does not approach the generalized canonical density ma-

trix ⇢̂th, unlike what happens with an open system2), the fact that the amplitudes

of the wave-function written in an eigenbasis of the Hamiltonian are fixed and

only the respective phases change in isolated systems, hints at a relevant figure

of merit, namely the micro-canonical ensemble. What we can say in general how-

ever, is that in isolated systems observational entropy increases to a value that

depends on the initial state, although entropy for many initial states increases
1However, it is important to note that closed quantum systems are not in general ergodic in classical sense,

and the Observational entropy does not usually reach the maximal value S
max

= ln dimH. As an example, if the
system starts from an energy eigenstate, this state never evolves and therefore the Observational entropy remains
constant for any choice of coarse-graining.

2We only consider observational entropy in the context of isolated systems in this thesis. More detailed
discussion on what value observational entropy increases to in an open system can be found in Ref. [269].
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and converge to a similar value.

The increase of observational entropy (for most initial conditions and ap-

propriate coarse-grainings) then resembles the second law of thermodynamics, but

in the context of quantum systems, as it has a tendency to increase or stays the

same in an isolated system. Just like the Boltzmann entropy, downward fluctua-

tions exists and one can find states where the entropy decreases, but such states

are rare. We will discuss such rare fluctuations in later sections of this thesis.

Now, let’s discuss the meaning of the increase in this entropy from the

observer’s point of view. Consider an observer who chooses a coarse-graining

C = {P̂i}i that defines macrostates of interest to be measured. The time-dependent

Observational entropy,

SO(C)(⇢̂t) = −�
i

pi(t) ln pi(t)
trP̂i

(2.2)

describes the increasing amount of disorder in the system with respect

to these chosen macrostates. Low Observational entropy means that the state of

the system is localized in a few small macrostates. From the subjective point of

view of the observer, this is perceived as a highly ordered state. High entropy

on the other hand means that the state of the system is contained within a large

macrostate, or spans across many small macrostates.Note that this has nothing

to do with the system being in pure or mixed state. The Observational entropy

does not distinguish between pure and mixed states, but only between di↵erent
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probability distribution of measurement outcomes. Therefore, even though the

system may be pure, an observer (depending on their choice of coarse-graining C)
may “see” this state as highly disordered if this pure state cannot be localized

in a few small macrostates. It is worth emphasizing again that this entropy is

not necessarily linked to any particular thermodynamic quantity; such possible

connection depends entirely on the choice of coarse-graining.

When the Observational entropy achieves (approximately) its maximum,

we say that the system has thermalized with respect to coarse-graining C. Growth

of this entropy describes the loss of perceived order due to the time evolution.

Given a coarse-graining that leads to an overall increase in observational entropy,

as time passes, the state of the system spreads into more and larger macrostates,

and the observer loses the ability to say much about the system. With those

coarse-graining that correspond to observables that are constant in time, i.e.,

[C, Ĥ] = 0, observational entropy remains constant.

2.2.2 Time evolution of entropy, SxE, SF , and Sent

For the rest of this thesis, we will focus on two types of observational

entropies, SxE and FOE, as well as entanglement entropy Sent introduced in sec-

tion 1.2. Here, we consider the time evolution of these entropies. We discuss to

what value they seem to converge and what the e↵ects of di↵erent coarse-grainings

and initial conditions are on their evolution
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We take n = 3 particles in a lattice of size L = 16 sites and evolve this

system using a non-integrable full Hamiltonian Ĥ(1−L) with parameters t = V = 1,
t′ = V ′ = 0.96 (1.9). We take the inverse temperature � = 0.1. Taking advantage

of the hard wall boundary conditions, we set the system initially to be confined

by the hard walls to L = 8 sites, evolving through the local Hamiltonian Ĥ(1−8).
At time t = 0 the position of the right wall is changed to L = 16. The fermions

then expand through the evolution of the full Hamiltonian Ĥ(1−16).
In our first simulation illustrated in Fig. 2.3, we consider SxE (blue lines)

and SF (red lines) for two di↵erent initial conditions: Complex RTPS, which

models the canonical ensemble in an isolated system 1.2 shown as solid lines,

and the second energy eigenstate shown as dashed lines. We compare the two

observational entropies using the same partition for positional coarse-graining of

SxE and coarse-graining of FOE, i.e., m = p = 2 partitions each of size � = 8

sites. More specifically, the coarse-graining is given by local Hamiltonian, C =
CĤ(1−8) ⊗ CĤ(8−16) , for FOE, and local position operators for SxE.

Both entropies initially have higher values if their state at t = 0 was in

a superposition of eigenstates as supposed to one eigenstate. In the latter case,

the system initially is in an energy eigenstate of the reduced Hamiltonian – which

corresponds to the coarse-graining in FOE. As a result, this entropy has only one

non-zero probability which is why it is initially zero.

Once the wall is moved at t = 0, due to the interaction term in the full
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Hamiltonian between the first and last 8 sites, the local energy representation

quickly populates over many other basis vectors and as a result, the entropies

increases rapidly. Both entropies evolve to an approximately constant value –

with the entropies starting in an eigenstate reaching a value smaller than those

initially in RTPS. In both cases however, they are bounded by thermodynamic

entropy S⇢̂th (illustrated as dotted horizontal line in Fig. 2.3), as discussed in 1.2.

As one can see from Fig. 2.3, overall, the two observational entropies

behave very similarly. As shown analytically in [269], SxE and SF give the same

result as long as a) the coarse-grained position projectors match the partitions

of the Hilbert space for the FOE, which is the case in Fig. 2.3 with p = m = 2

and b) the interaction energy between partitions is zero, or small such that the

di↵erence between energy eigenvalues of the Hamiltonian without the interaction

term and the full Hamiltonian is much smaller than the typical energy di↵erence

between the eigenvalues of the full Hamiltonian. For large subsystems and local

interactions, contributions of this interaction term to the total energy is expected

to be small.

In what follows, we will consider di↵erent coarse-grainings for only SxE (as

we expect SF to behave similarly, we will not include it in the next simulation).

As a comparison, we also plot the evolution of entanglement entropy.

Using the same Hamiltonian parameters, number of particles and initial

and final system sizes as before, we compare the evaluations of SxE (dashed lines)
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Figure 2.3: The evolution of factorized observational entropy SF (red lines) and observational
entropy with position and energy coarse-graining S

xE

(blue lines) according to a non-integrable
Hamiltonian is shown. The coarse-graining is given by local Hamiltonian, C = C

ˆH(1−8) ⊗ C ˆH(8−16) ,
for FOE, and local position operators for S

xE

. The system of size L = 8 sites is initially in either
complex RTPS (solid lines) or the 2nd energy eigenstate (dashed lines). The hard wall on the
right is then moved to L = 16. As a result, the particles expand and both entropies increase.
In the case of the system initially in an energy eigenstate of the reduced Hamiltonian – which
corresponds to the coarse-graining in FOE, this entropy has only one non-zero probability. As
a result, FOE is initially zero given this initial condition. Both entropies increase to a constant
bounded by canonical entropy, S⇢̂th (dotted straight line).

and Sent (solid lines), when both start from the same complex RTPS state in

the left 8 sites of the lattice. We take entanglement entropy with bath size of

�B� = 12 sites and therefore subsystem of size � = 16 − 12 = 4 (notice that we

use the same notation � for for the subsystem size and position coarse-graining.

This is because, we take these two values to be always the same when comparing

the entanglement entropy and SxE) and �B� = 8 sites with subsystem of size � =
16 − 8 = 8 sites, illustrated as red and blue solid lines respectively.

As depicted in Fig. 2.4 (a), in the latter case of �B� = 8, because the
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system starts out with all particles confined to the left 8 sites and no particles

are in the bath, entanglement entropy is zero initially (see the illustration in 2.4

(b)). Once the right wall is moved to L = 16, particles are quickly distributed

throughout the lattice according to the non-zero NN and NNN parameters of the

Hamiltonian; it then reaches a steady state (which, for all parasitical purposes we

may call equilibrium) which is described by the volume law [228] and equals the

thermodynamic entropy of the subsystem, Sth(A), computed according to (blue

straight dashed line),

Sth(A) = �

L
Sth. (2.3)

Sth is computed as the von Neumann entropy of a thermal state of the full system,

i.e. Sth(A+B) = −tr[⇢̂th ln ⇢̂th], while Sth(A) = −tr[⇢̂(A)th ln ⇢̂(A)th ] where ⇢̂(A)th = e−� ˆHA

Z

for the reduced system.
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a)

b)

c)

A B

moved to the right end

t=0

t>0

A B

moved to the right end

t=0

t>0

Figure 2.4: (a) Evolution of entanglement entropy S
ent

and observational entropy S
xE

. In the
former case, we take two bath sizes of �B� = 12 and �B� = 8 (red and blue solid line respectively).
In the latter case, we take two di↵erent position coarse-graining sizes of � = 4 and 8 sites
(red and blue dashes lines respectively). In all cases, the system has an initial size of L = 8.
The right wall is moved to L = 16 at t = 0. S

ent

= 0 initially because the system starts out
with all particles confined to the left 8 sites and no particles are in the bath. Once the wall
is moved, entanglement entropy evolves to the value close to the thermodynamic entropy of
the corresponding subsystem. On the other hand, S

xE

is initially non-zero in both cases and
evolves to an approximately constant value, upper bounded by thermodynamic entropy of the
full system of size L = 16. With both coarse-grainings, the thermalization (according to the
chosen coarse-grainings) occurs very rapidly once the wall is moved at t = 0. (b) A sketch of a
lattice of total size L = 16. The right hard wall depicted as a thick black line. The system initially
confined to 8 sites at t = 0 and all particles confined to sites 1 − 8 (the gray scale represents the
density of particles in a given region). The subsystem (A) and bath (B), both of size 8 sites
are shown as red and blue rectangles respectively. (c) Same as (b) but with subsystem (A) and
bath (B) of sizes 4 and 12 sites respectively.

In the former case of �B� = 12 on the other hand, the system initially has
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non-zero entanglement entropy. As can be seen from Fig. 2.4 (c), at t = 0 the left

4 sites belong to the subsystem and the next 4 sites belong to the bath. Since we

chose the initial condition to be in RTPS, according to typicality – stating that

there exist large subspaces in which all pure states are close to being maximally

entangled [157], we expect particles in the initial system to be almost maximally

entangled. As a result, we expect the system to have an initial entanglement

entropy equivalent to the thermodynamic of the 4-site subsystem inside the system

of size L = 8. Based on (2.3), this means, Sth(A)(t = 0) ≈ 4
8 × 3.98 ≈ 1.99, where

the initial system of size L = 8 with 3 particles has thermodynamic entropy of

3.98. This is in fact the maximum entanglement entropy a system of this size can

have (i.e. when dim(A) = L�2) [228].
Once the wall is moved to L = 16, entanglement entropy decreases to

the value close to the thermodynamic entropy of the subsystem (of size 4 sites),

Sth(A)(t > 0) ≈ 4
16 × 6.28 ≈ 1.57 (red straight dashed line), where 6.28 is the

thermodynamic entropy of the full system of size L = 16.
We now turn to the evolution of observational entropy SxE with two dif-

ferent position coarse-grainings, � = 4 and 8 sites (red and blue dashes lines re-

spectively), depicted in Fig. 2.4 (a). Initially, this entropy is non-zero and evolves

to an approximately constant value, upper bounded by thermodynamic entropy

of the full system of size L = 16. With both coarse-grainings, the thermalization

occurs very rapidly once the wall is moved at t = 0.
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One notices that SxE with finer positional coarse-graining (red line) is

higher than that with larger coarse-grainig (blue line). This may seem counter

intuitive at first, especially given the theorem on the monotonicity of observational

entropy given in Ref. [269],

If C1 � C2 then

SO(C
1

)(⇢̂) ≥ SO(C
2

)(⇢̂). (2.4)

In other words, observational entropy is a monotonic function of the coarse-

graining. However, in the cases where the coarse-grainings do not commute, the

aforementioned theorem does not apply and whether the entropy will increase or

not depends on the complex relation between the non-commuting coarse-grainings.

Another note to make here in comparing these two types of entropies is

that while bipartite entanglement entropy is a useful tool for measuring thermal-

ization of a subsystem connected to a thermal bath, observational entropy SxE

can measure thermalization of not only open systems but also of isolated systems.

In the latter case however, one should be careful in defining the notion of thermal-

ization since the density matrix does not evolve exactly to the canonical one, as

it would in an open system. Here, when the Observational entropy achieves (ap-

proximately) its maximum, we say that the system has thermalized with respect

to coarse-graining C. This leads to the notion of subjective thermalization. An ob-

servational entropy such as SxE has the capacity to describe the dynamics based

on the observer’s knowledge of the isolated system. Its growth then describes the
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loss of perceived order due to the time evolution as the state of the system spreads

into more and larger macrostates, and the observer loses the ability to say much

about the system as time passes.

Given this notion of subjective thermalization, we ask how di↵erent coarse-

grainings may e↵ect thermalization time of the system, from the point of the

view of the observer. The time it takes for observational entropy to reach its

maximum may be di↵erent depending on the choice of the coarse-graining (given

the same initial conditions). Although this is yet to be explored in detail in

future studies, we expect that given an observational entropy with only one coarse-

graining, the thermalization time would be longer with a finer coarse-graining. In

other words, with more knowledge of the system, the observer would have to wait

longer to observe thermalization. On the other hand, in the case where there

are multiple non-commuting coarse-grainings, the problem is more subtle and no

decisive statement can be made.

2.3 Typical and rare fluctuations in entropy

In this section we explore the distribution of entropy fluctuations with

and without the extreme values. We take entanglement and observational en-

tropy as our case studies and explore the global minima and maxima that they

can achieve over long-time evolution. We will discuss the qualitative di↵erences

between corresponding states.
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2.3.1 Distribution of typical and rare fluctuations

First, we plot histogram of entanglement (Fig. 2.5) and observational en-

tropy (Fig. 2.6), in a system of size L = 16 with n = 2 particles. We take t = t′ = 1.9,
V = V ′ = 0.5, and � = 1�T = 0.01. The size of position coarse-graining � = 4 sites

and the subsystem, when considering entanglement entropy, is also 4 sites. Start-

ing from a complex RPTS, the system is evolved and at each small fixed time step

we read out the value of entropy. Evolving for a long time, we therefore achieve

su�cient statistics that tells us how likely it is to find any given value of entropy.

We can also ask what the minimum and maximum values of entropy are,

given infinite time. Due to the exponential suppression of these extreme values,

histogram cannot provide this minimum; we therefore use a minimization algo-

rithm, introduced in section 1.3 and explained in more detail below. We then add

these results to the histogram (orange and blue vertical lines in Figs. 2.5 and 2.6).

The search for (near) global minima of entropy goes as follows: For a given

L and �, we initialize the state in the same complex RPTS as the one we used

to create the histograms in 2.5 and 2.6. We then find the maxima and minima

for this initial state by maximizing over phases �E = E⌧ . For each histogram, we

provide three heat maps, displaying the particle density (�ni�, i = 1, ...L) on the

lattice sites for states of maximal, average, and minimal entropy.

Entanglement entropy achieves a minimal value that is very close to zero.

We plot the heat map (below the histogram in Fig. 2.5) of the particle density of
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the state that corresponds to this minimum. We can see that in this situation,

the particles moved almost entirely into the bath, thus naturally producing a

separable state � min� ≈ �0�A⊗ � �B, where �0�A denotes vacuum in the subsystem.

One might think that an alternative state � min� ≈ � �A ⊗ �0�B, could also lead to

zero entanglement entropy. However, as it is explained in chapter 3, one can not

cluster all particles in a small region when starting in a RPTS.

On the other hand, the state with maximum value of entanglement entropy

is the one where the subsystem and the bath contain the same average number

of particles.3 The smaller region therefore has a higher density of particles, as

illustrated on the heat map. Intuitively, there have to be some particles in the

subsystem and some in the bath, for any correlations to exist; and to create the

maximum correlation, there should be the same amount of particles on either side.

As can be seen from comparing the heat maps in Fig. 2.5, the state that has the

maximum entanglement entropy is quite di↵erent from the thermal equilibrium

state, where particles are distributed uniformly.
3In general, particles distribute themselves throughout the lattice such that the average number of particles in

the subsystem follows the necessary but not su�cient condition for the state to be maximally entangled, stated
in Ref. [114]. In the numerical studies shown here, the average number of particles in the subsystem is equal to
that of the bath but this is not in geenral the case.
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i:

Figure 2.5: Semi-log probability histogram of entanglement entropy, S
ent

. The y-axis represents
the probability of finding the state at any given value of the entropy represented on the x-axis.
The heat maps display the particle density (�ni�, i = 1, ...L) on the lattice sites. The left tail
of the histogram, representing the downward fluctuations in entropy, can be fitted with a linear
function: this shows that fluctuating to small values is exponentially suppressed in this data set.
The blue vertical line on the left is the minimum value the entanglement entropy can achieve, and
is found using a minimization algorithm. This value is very close to zero. The heat map below
shows the particle density on the lattice of the state that corresponds to this minimum. We
can see that in this situation, the particles moved almost entirely into the bath, thus naturally
producing a separable state. The orange vertical line on the right is the maximum value of the
entanglement entropy, and is also obtained by the minimization algorithm. The heat map above
shows the particle density on the lattice of the state that corresponds to this maximum. In this
situation, both the subsystem and the bath have the same number of particles, hence we see a
higher density of particles in the subsystem. The state that gives the maximal entanglement
entropy, is very far from the thermal equilibrium state.

The minimum in SxE is achieved by simply localizing the particles in one

of the regions to the extent possible (it does not matter significantly which one, as

they all give almost equal entropy; however, if one of the regions was smaller than

the others, it would localize into this smallest region). The minimal value of SxE

never goes below about half of the maximal entropy; this, again, has to do with
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i:

Figure 2.6: Similar to entanglement entropy, downward fluctuations of S
xE

to small values is
exponentially suppressed in this data set. However, in contrast to entanglement entropy, the
minimum of S

xE

represented by the blue vertical line on the left does not go to zero; it is at about
63% of the maximum value. This is because it is impossible to localize the particles entirely into
the small region, and the remaining regions still contribute significantly to the total entropy.
As one can see from the heat map of the state corresponding to the minimum, a significant
number of particles moved into one of the partitions of size 4 sites, resulting in partitions being
far from thermal equilibrium from each other. The vertical lines represent the minimum, the
average, and the maximum of S

xE

from left to right. The heat map above shows the uniform
distribution of particles for such state. In contrast with entanglement entropy, the states that
give the average and maximal values of S

xE

are very similar to each other, as one would expect
from the behavior of Boltzmann entropy.

the inability to cluster all particles in a small region, when starting in an RPTS

(see 3.0.2 for more discussion on the relation between spatial localization and

minimization of entropy). The maximum of SxE is given by a state where particles

are uniformly distribution across all regions. SxE is therefore in accordance with

the Boltzmann entropy, in contrast to entanglement entropy.

The distribution of both entropies illustrated in the semi-log histograms 2.5
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a)

b)

Figure 2.7: Sampled distributions for (a) entanglement and (b) observational entropy using
MH algorithm. We take a L = 16 site lattice with 2 particles. (a) Entanglement entropy with
subsystem of two di↵erent sizes � = 4 and 8 sites, sampled using �MC = 26 and 40 shown in blue
and orange respectively. (b) Observational entropy with two di↵erent position coarse-grainings
� = 4 and 8 sites, sampled using �MC = 50 and 57 is illustrated in blue and orange respectively.
In all cases, an approximately linear left tail is an indication of the fact that the decreasing of
entropy far from equilibrium is exponentially unlikely.
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and 2.6, in particular the approximately linear shape of the left tail, suggests that

in regions far from equilibrium decreasing entropy is exponentially suppressed.

This is similar to the statement given by a group of Fluctuation theorems (FTs)

which are fundamental in nonequilibrium statistical mechanics [111, 173, 68, 284,

211] and is given by p(−�S)�p(+�S) = exp(−�S).
This relation sets a constraint on the probability distributions of entropy

fluctuating far from equilibrium. This group of FTs, extensively studied for

closed [298, 108, 260] and open systems [109, 50, 215] pertain when an external

force drives the system out of equilibrium.

These studies do not however explore the aforementioned relation when

the system is completely isolated, i.e., there is no exchange of energy or particles

between the system and the surrounding, and the system evolves unitarily in the

absence of any external drive. In exploring whether a relation similar to that of FT

for driven systems still hold true in the context of observational and entanglement

entropy in isolated systems, we take advantage of the MH algorithm introduced

in section 1.3 for sampling the entropy distributions. This method allows us to

get access to rare fluctuations far from equilibrium more e�ciently (compared to

evolving the system for extremely long time.)

Fig. 2.7 shows the sampled distributions for entanglement (a) observa-

tional (b) entropy. We take the same system and Hamiltonian parameters as

those in Figs. 2.5 and 2.6. For both entropies we take two cases for the position
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coarse-graining and subsystem size. In Fig. 2.7 (a), entanglement entropy with

subsystem of two di↵erent sizes � = 4 and 8 sites, sampled using �MC = 26 and 40

shown in blue and orange respectively. In Fig. 2.7 (b), observational entropy with

two di↵erent position coarse-grainings � = 4 and 8 sites, sampled using �MC = 50
and 57 is shown in blue and orange respectively. The non-zero value of �MC in all

cases led to having an acceptance rate ↵ � 50% and resulted in a biased sampling

such that the lower values of entropies are more likely to be sampled. As a result,

in obtaining the final distribution one must compensate for this bias, according

to the �MC values used in sampling.

In all cases, an approximately linear left tail is an indication of the fact

that the decreasing of (observational or entanglement) entropy is exponentially

unlikely. This is a qualitative result that hints at the existence of a fluctua-

tion theorem, similar to the aforementioned FT, that holds for truly isolated

systems“driven” out of equilibrium by their unitary evolution.

2.3.2 Typical fluctuations

Before discussing the dependencies of extreme fluctuations on system size

and temperature, let us take the rare cases aside for the moment and understand

the behavior of typical fluctuations in entanglement and observational entropy

throughout the unitary evolution of an isolated system. We take two cases of

fixed particle density n�L = 1�3,1�2. We vary n from 2 to 7 particles in system of
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varying size L between 6 and 15 sites. The rest of the parameters are the same

as the ones described in the beginning of section 2.3.

Fig. 2.8 illustrates the dependence of relative standard deviation of en-

tropies �(S) on system size L in a semi-log plot. �(S) ≡ �(S)�S̄ where S̄ is the

average value of entropy values (which is approximately the value of entropy at

equilibrium) and �(S) is the standard deviation of entropy. For a given parti-

cle density, fluctuations of entanglement entropy seem to be larger than than of

observational entropy (entanglement entropy shown as gray and red marks and

observational entropy as light and dark blue for n�L = 1�3 and 1�2 respectively).

The dashed lines are the linear fit which indicate an exponential dependence of

relative fluctuations of entropy on system size, in other words �(S) ∝ e−cL with

c being a constant corresponding to the slope of the linear fit. This is in con-

trast with fluctuations of quantities such as particle density and internal energy

in classical systems which are proportional to 1�√L [300, 213].

For comparison, Fig. 2.8 also illustrates the relative standard deviation

of an observable, in this case, the particle density of site number 2, < n2 >. For

two cases of fixed n�L = 1�3,1�2 (represented as pink and purple marks). It is

indicated again by Fig. 2.8 that �(< n2 >) ∝ e−c′L [70] (with c′ representing the

slope of the linear fit) and hence both (observational and entanglement) entropy

and particle density decay exponentially with system size, altough at di↵erent

rates. As Ref. [70] explains, these fluctuations should not be confused with the
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fluctuations of observables that one observes from measurements in which case

the fluctuations are larger and decay as 1�√L.

Figure 2.8: Relative fluctuations (�) of observational and entanglement entropy as well as particle
density < n

2

> are shown as a function of system size L. Two cases of fixed n�L = 1�2,1�3 are
considered. The relative fluctuations in entropy �(S) ≡ �(S)�S̄ decay exponentially with L
similar to that of the chosen observable, < n

2

> . The fluctuations in entanglement entropy
seemed to be larger than that of observational entropy given the same n�L.

2.3.3 Dependence of extreme fluctuations on the system size

Next, we study the dependence of the minimum, maximum, and mean

values of entropy on the system size. The minimum and maximum values are

found using the minimization algorithm as in figures 2.5 and 2.6, and the average

value is found by evolving the system for a long time.

These values are shown for entanglement entropy in Fig. 2.9. The size of

the subsystem is kept fixed at � = 4 while the system size (and hence the bath size)
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is varied such that 8 ≤ L ≤ 28. The number of particles and inverse temperature

are kept fixed at n = 2 and � = 0.01 respectively. For each L, we initialize the state

in 6 di↵erent complex RPTS, then find the minima, maxima, and average values

of entropy for each one of them. The plotted mean value is taken over these six

minima, maxima, and average. The standard deviation (denoted as error bars)

for a given system size L is also shown.

The first observation is the decrease of the minimum entanglement entropy

with system size L. As we discussed in the previous section in relation with

Fig. 2.5, the entanglement between the subsystem and the bath is reduced mostly

by moving all the particles into the bath. It is clear that as the bath (of size

L −� where � is fixed) gets larger, it becomes easier to cluster all the particles

in the larger bath, which makes the subsystem emptier, thus creating a state that

resembles very closely a product state, and thus has a very small entanglement

entropy.

It is important to emphasize that reduction in entanglement entropy is

not achieved through disentangling the particles, but by disentangling the re-

gions through the means of particles hopping and emptying the smaller region.

Therefore the following question is raised: how much entropy would be reduced if

particles’ hopping between the regions was forbidden? A simulation of this case

– where the hopping terms between the two regions are zero – revealed that the

reduction of entanglement entropy is much smaller: about a 20% reduction.
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On the other hand, maximum entanglement entropy stays constant and

independent of system size. The upper bound on entanglement entropy is derived

in later chapter 4.3 for closed, fermionic and bosonic systems [114]. Specifically,

in Fig. 2.9, where a (one-dimensional) fermionic lattice is considered, we have

Sent(max) ≤ ln n�
nA=0

min
���������

nA
�,�L −�

n − nA
��������. (2.5)

In the case of n = 2 and � = 4 explored in Fig. 2.9, Sent(max) achieves
exactly this upper bound at ln 6 = 1.79. The upper bound (2.5) is independent of

the size of the bath in the limit of large L, which explains the constant maximum

value in Fig. 2.9 (the large L in this case is already L ≥ 12, and L = 8 gives

coincidentally the same value).

We should also note that relation (2.5) only depends on a few parameters,

namely the size of the total system, size of the subsystem, the total number of

particles (which is assumed to be fixed), and the assumption that the system is

pure. Hence, it does not matter where the subsystem or bath is placed inside the

system (for example in the middle or at the edge of the lattice).

The average entanglement entropy in the high temperature limit should

be approximately equal to the thermodynamic entropy of the subsystem [253, 81,

330], which is a fraction of the total thermodynamic entropy (2.3).

This has been confirmed in various numerical simulations [291, 334, 181].

We see that this prediction, plotted as a red dashed line in Fig. 2.9, fits quite

well with the data. (The relation (2.3) is only approximately true in the high
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Figure 2.9: The minimum (blue dots), maximum (orange circles), and average (green stars) val-
ues of entanglement entropy is computed for 6 di↵erent initial random states (complex RPTSs);
the mean and standard deviation of these 6 values are illustrated in this figure for various system
sizes. S

ent

(min) approaches zero in the limit of large L: disentanglement of the two regions is
mostly done by moving the particles into the bath and emptying the subsystem and in this
limit: almost all particles are in the bath and none in the subsystem. Hence S

ent

(min) reaches
zero. In contrast S

ent

(max) is independent of L (and hence the size of the bath): maximum
entanglement is achieved when particles are equally distributed in each region, and enlarging
the bath, given this distribution of particles, does not a↵ect the entanglement entropy of the
system. S

ent

(ave) decreases with L, and is expected to approach zero for large system sizes as
almost all particles on average would be in the bath when the system is large and the subsystem
is small. We also plot the thermodynamic entropy (2.3) of the subsystem during equilibrium
(red dashed line), which is expected to equal S

ent

(ave) in the limit of large system sizes and high
temperatures (see Eq. (2.3)). Noticeably lower value of S

ent

(ave) (by about ln 2) for L = 8 = 2�
is due to Page curve [228]. We stress that maximal entanglement entropy does not equal the
average.

temperature limit and not the low temperature limit, as is discussed in [147, 164].)

Comparing the maximum value of entanglement entropy with the average,

we note that Sent(max) is constant while Sent(ave) decreases with L. This is

expected, since the average state spreads the particles uniformly over the entire

system (creating less entanglement between the subsystem and the bath), while

maximizing entanglement entropy maximizes correlations among particles in the
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two regions, A and B, such that the probability of measuring nA particles in

sublattice A (which must be the same as the probability of measuring n − nA
particles in sublattice B) follows the relation (4.15). This is discussed in more

detail in section 4.3.

Using the same procedure, we find the mean values of minima, maxima,

and averages of SxE, and their variances, and plot them as a function of the system

size in Fig. 2.10. Partitions have equal sizes fixed at � = 4 and the system size L

(and therefore the number of partitions m = L
�) is varied.

The minimum values of observational entropy SxE reduces to about a

half of its maximum value independent of the system size, as long as it is large.

These values could be indirectly estimated by simply assuming that the spatial

localization is key in minimizing the entropy (see Fig. 3.3 and Eqs. (3.1) and

(3.2)).

The maximum value of SxE is almost exactly the same as the thermo-

dynamic entropy of the full system, and very close to the average value of SxE.

This is expected from the theory [269], that shows SxE(ave) ≤ SxE(max) � Sth,

and SxE(ave) di↵ers from thermodynamic entropy Sth by order-1 corrections (that

depend on the energy distribution of the initial state), by lnN corrections (that

depend on how close the initial state is to the thermal state), both of which become

irrelevant in the thermodynamic limit, and by finite-size corrections (coming from

interaction energy between partitions), which become irrelevant when partitions
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Figure 2.10: The minimum (blue dots), maximum (orange circles), and average (green stars)
values of observational entropy S

xE

is computed for 6 di↵erent initial random states(complex
RPTSs); the mean and standard deviation of these 6 values are illustrated in this figure for var-
ious system sizes. Partitions have equal sizes fixed at � = 4. All S

xE

(min), S
xE

(ave), S
xE

(max)
increase with L, and S

xE

(ave) ≈ S
xE

(max) are approximately equal the thermodynamic entropy
of the full system Sth(A +B), as expected from the theory.

are large enough.

2.3.4 Dependence of extreme fluctuations on temperature

Now, we look at the dependencies of the average and both extremes of

Sent and SxE on inverse temperature �. Each data point in Figures 2.11 and 2.12

are computed by taking the mean of the min, max, and average entropies over 6

di↵erent complex RPTSs. We also included the thermodynamic entropy of the

subsystem, Sth(A), and of the total system, Sth(A +B), in Figures 2.11 and 2.12

respectively.

Fig. 2.11 plots the entanglement entropy versus �. As one would expect,
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Figure 2.11: The minimum (lower blue stars), maximum (orange upper stars), and average
(green middle stars) values of entanglement entropy is computed for 6 di↵erent initial random
states (complex RPTSs); the means of these 6 values are illustrated in this figure for various
inverse temperatures, �. We take L = 16, � = 4, and n = 2. In low � limit, S

ent

(ave) follows the
volume law, and is approximately equal the thermodynamic entropy of the subsystem Sth(A).
In high � limit, the initial state is practically the energy ground state, and therefore it does not
evolve, so all values coincide, at a value given by the area law.

there are high fluctuations in the low � (high temperature) limit. In this limit, the

average entanglement entropy coincides with the thermodynamic entropy of the

subsystem, which is known as the Volume law [228]. Both maximal and minimal

entanglement entropy diverge from the average at low �, and are almost constant

in this limit: Sent(max) ≈ 1.79 (which is the high-temperature limit obtained

previously in Fig. 2.9), and Sent(min) ≈ 0.05. There are almost no fluctuations in

the opposite high � (low temperature) limit, where the thermal state is almost

identical to the ground state, and therefore it does not evolve. The entanglement

entropy approaches a constant value given by the Area law [102, 188, 64]. The
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Figure 2.12: The minimum (blue lower stars), maximum (orange upper stars), and average (green
middle stars) values of observational entropy S

xE

is computed for 6 di↵erent initial random states
(complex RPTSs); the means of these 6 values are illustrated in this figure for various system
sizes. We take L = 16, � = 4, and n = 2. In low � limit, S

xE

(ave) ≈ S
xE

(max) ≈ Sth(A +B),
and S

xE

(min) has the same shape, and about a half of the maximum value, as expected from
Eqs. (3.1) and (3.2). All values coincide in the high � limit where the initial state is practically
the energy ground state. Its higher value compared to Sth(A+B) is expected from the fact that
measuring position of this highly non-local state first, creates a large uncertainty in energy, and
therefore also large S

xE

. The dip in S
xE

(min) is the result of two competing factors: higher
temperature results in higher entropy on average, but also higher ability of the system to localize,
and therefore possibly lower values of S

xE

. � ≈ 0.5 is the lowest possible temperature such that
the state can localize in one of the bins of size � = 4.
di↵erence between entanglement entropy and thermodynamic entropy is discussed

in more detail in [164].

Fig. 2.12 plots the observational entropy SxE versus �, and we took the

same settings as with entanglement entropy. One can notice two interesting fea-

tures in this graph. First, values of SxE at high � (low temperature) limit are

quite large, and do not seem to follow the Sth(A+B) anymore. The fact that the

SxE is not zero in this low temperature limit is because measuring position does
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not commute with measuring energy. By measuring the position of the ground

state, which is highly non-local, one would add a lot of energy to it, as well as

uncertainty in energy. Therefore, since SxE measures the total uncertainty when

measuring the position first and then energy, this total uncertainty will be large.

SxE can be also interpreted as a thermodynamic entropy of the system, as if the

numbers of particles in each bin were fixed, but the energy between the bins was

still allowed to exchange [268, 168, 269]. It therefore makes sense that the value

of this entropy is relatively large, since by measuring the position we fix the num-

ber of particles in each bin, and this state has a relatively large thermodynamic

entropy. This e↵ect is smaller (SxE for high � is smaller), when size of the par-

tition � becomes large compared to the size of the full system, since position

measurement does not a↵ect energy as much in that case. We note that this is

a purely quantum e↵ect, however, switching the order of coarse-grainings (while

taking some small coarse-graining of width �E in energy as well), SEx leads to

an entropy that is bounded above by Sth(A +B) even at such low temperatures.

This is because measuring energy of a ground state does not a↵ect this state at all,

and additional measurement in position does not add any new information (see

Theorem 8 in [269]). This e↵ect was not noted in the original paper [269], mainly

because defining microcanonical entropy at such low temperatures is problematic,

as the energy density of states is not well defined.4

The second interesting feature of this graph is the dip in SxE(min) at
4Fig. 7 in [269] does not show S

xE

nor microcanonical entropy for really low, or really high energies E.
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� ≈ 0.5. This dip is a result of two competing factors: first, by increasing the

temperature, we increase the ability of the system to localize. Generally, localizing

the system in one of the partitions leads to a decrease in SxE (see 3.0.2). Thus,

with high enough temperature the system is able to localize in one of the partitions

of size � = 4 and decrease the entropy. However, further increasing temperature

does not help in decreasing SxE(min) anymore, as the further ability to localize

is already below the resolution of the positional coarse-graining in SxE, and its

only e↵ect is then an increase in the total thermodynamic entropy, and hence

also an increase SxE(min). That is also why we see the increase in SxE(min) for
really high temperature (low �), in a shape that approximately follows Eqs. (3.1)

and (3.2).

2.3.5 Discussion

To complete our analysis of our findings here, we refer to the depction 2.13.

In particular, Fig. 2.13 (a) and (b) show entropies for various types of macrostates,

described by their particle density, in order of smaller to higher entanglement and

observational entropy, respectively. From the Boltzmann point of view, the size

of the macrostate is determined by the number of microstates corresponding to

the same macroscopic appearance: in this figure, size of the macrostate ⌦ is the

number of orthogonal quantum states that give the same distribution of particle

density.
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Figure 2.13: This illustration shows entropies for various types of macrostates described by
distributions in their particle density, in order of smaller to higher (a) entanglement entropy
and smaller to higher (b) observational entropy. This is done as follows: we compute di↵erent
types of microstates: state (1) of minimal SxE , state (2) of maximal S

ent

, state (3) of minimal
S
ent

, and equilibrium state (4) – which is practically identical to the state of maximal SxE .
We then plot their particle density and the percentages of the total number of particles in
each subsystem. Each distribution of particle density defines a macrostate. The number of
microstates that would lead to the same distribution of particle density defines the size of the
macrostate, and is denoted ⌦. The Boltzmann entropy of a macrostate is then defined as
SB = ln⌦. In (a), the bottom lattice corresponds to the case of state (3) of minimal S

ent

: most
particles are localized in the bath, and as a result the size of this macrostate is large compared
to the other cases. The top lattice corresponds to the case with the state (2) of maximal S

ent

:
in this case the average number of particles in the bath is the same as the average number of
particles in the subsystem. This configuration is di↵erent than that of the equilibrium state (4),
in which case particles are distributed uniformly. In (b), larger macrostates correspond to larger
observational entropy, showing correspondence with Boltzmann entropy SB = ln⌦.

One notices that higher entanglement entropy does not necessarily mean

that the macrostate is larger – the size of the macrostate appears to be rather
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unrelated to the amount of entanglement entropy. Specifically, it would be more

likely to observe a state with minimal entanglement entropy as compared to the

maximal entanglement entropy (as the former has a larger macrostate). The size

of the macrostate and the entropy of the state match for the case of observational

entropy, showing that (quantum) observational entropy matches well with the

classical conception of Boltzmann entropy.

It should be noted that in this thesis we focused on bipartite entanglement

entropy, since it is very often used in literature. One could argue that multipartite

entanglement entropy, defined as the sum of local von Neumann entropies, could

behave similarly to SxE and be more Boltzmann-like, meaning that the larger

macrostates have associated higher values of entropy. 5

Because of its close relation to Boltzmann entropy, observational entropy

could accompany the entanglement entropy to better understand the concept of

thermalization in isolated quantum systems, and to illuminate the behavior of out-

of-equilibrium states which lie at the heart of statistical mechanics. This entropy

is also rather new in the field of quantum thermodynamics and hence further work

on this particular entropy is of interest

5This property would be however dependent upon having equally-sized regions, and the equivalence would
break even when the size of a single region is di↵erent from others.
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Chapter 3

Maximal probability of localization

3.0.1 Overview

In this chapter we show numerically that the result of Deutsch et al. [83]

– shown analytically for a toy model with random energy eigenvectors as well

as for a non-degenerate weakly interacting gas – holds true for a physical sys-

tem of a fermionic lattice. We show exolicitely the connection, already hinted

in the previous chapter, between the spatial localization and the minimization of

entropies.

In particular, Deutsch et al. showed that starting from a RPTS, under

certain conditions, the maximum probability Pmax ≡ P(N,0) that all particles are

localized into the subsystem of interest is 1�2 in the case of initial real RPTS

and ⇡2�16 in the case of complex RPTS. We show that this localization is key in

minimizing SxE.
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3.0.2 Role of localization in extreme values of entropies

We are going to require that the same conditions as in [83] to be satisfied:

The first condition is that the dimension M of the subspace X (the subspace of

Hilbert space associated with “all particles being in the subsystem of interest”)

is much smaller than the dimension N of the full system, N �M2, which can be

for example satisfied in the case of dilute gas (small number of particles) when

the size of the subsystem of interest � into which we localize the particles is

much smaller than the size L of the full system, L � �. At the same time,

the second condition is that the size of the subsystem is much larger than a

thermal wavelength (specified below), � � �T . The third condition is that the

size of the subsystem of interest, �, is also much greater than the scattering

length, i.e., we consider the Hamiltonian with only local interactions, leading to

a weakly correlated system. However unlike what is used in [83] – in which the

energy eigenstates of the toy model are randomly distributed or are that of a non-

degenerate weakly interacting gas – in our case the energy eigenstates are that of

a Hamiltonian modeling a fermionic lattice.

First, we investigate the second condition, �� �T in more detail. At any

value of �, there exists a spatial scale known as the thermal wavelength such that

�T ∝ √� (for example, in the case of an ideal gas, �T = 2h� �
2m). Qualitatively,

�T is the minimum size of quantum wavepackets that describe the particles in a

given system at a given temperature. Because of this relation between �T and
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Figure 3.1: Maximum probability P
max

of localizing all particles in the middle 5 sites for real
(crosses) and complex (stars) initial RPTSs, in a lattice of size L=10 (blue diamonds), 20 (green
squares), and 30 (red circles), with 3 particles as a function of

√
�. This plot illustrates that

at low �, P
max

approaches di↵erent constant values for real (0.5 red lower line) and complex
(⇡2�16 black upper line) RPTSs when the system size is large enough. In the same limit, P

max

approaches unity for smaller systems. For higher values of �, P
max

approaches zero independent
of system size.

√
�, we can focus on the dependence of Pmax on

√
�.

Therefore, in Fig. 3.1 we study the maximum probability Pmax of local-

ization for di↵erent values of
√
� while fixing the size of the box �. We localize

in the region of size � = 5, and use the lattice sizes L = 10, 20, and 30, with n = 3
particles inside. We do this for both real and complex initial RPTSs.

We see that for cold systems (high �), the probability of localization is very

small, in fact, Pmax approaches zero. This is in accordance with the result of [83]

which asserts that, in the limit of large
√
� such that � � �, Pmax ∝ ( �

�T
)Npd�2

where d is the dimension of the lattice (in our case d = 1). Intuitively, since �T

is the minimum size of quantum wavepackets, it makes sense that one can not
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Figure 3.2: The maximal probability P
max

is computed for a range of dimensions of Hilbert space
N , while M — dimension of the subspace of the Hilbert space associated with “all particles in
the localized region” — is kept fixed. Hence the size of the physical region in which particles
are localized in is kept fixed as well, at � = 5 sites. For each N , we start in 100 di↵erent real
and complex RPTSs with the same temperature, and plot the mean and standard deviation of
P
max

(the red lower set of bars as real, and the upper set of black bars as complex). This plot
indicates that in the limit of large system sizes, the maximum probability of localization of all
particles into a small region approaches ∼ 0.5 (red lower line) in the case of real initial states
and ∼ ⇡2�16 (black upper line) in the case of complex initial states.

localize the wavefunction in a subspace smaller than this length scale.

For hot systems (low �), the probability of localization Pmax achieves high

values. One notices that for small systems for e.g. L = 10, the gap between Pmax

for the real and complex wave functions disappears. This is trivial, since in this

case, the size of the subsystem of interest is becoming comparable to that of the

full system, and therefore it is very easy to localize all particles in it. For larger

system sizes for e.g. L = 20,30 all three conditions stated above are satisfied, and

Pmax approaches constant values of ∼ 1�2 in the case of real RPTSs and ∼ ⇡2�16
in the case of complex RPTSs. The low � regime is further explored in Fig. 3.2.
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To generate this graph, we used the same algorithm to maximize probabil-

ity as the one used in [83], and � = 0.01. We start in 100 di↵erent real and complex

RPTSs, and for each one of them we perform the maximization procedure. We

use three fermions and choose the small region to be �5 sites. Pmax is plotted as

a function of N�M2 for both cases of complex and real RPTSs.

As one can see, when the system is hot enough, it is possible to localize all

the particles into the small region, and the probability that we find them there is

at most 1�2 and ⇡2�16 for real and complex RPTSs respectively. The presence of

some fluctuations is expected since our model is a real system with non-random

energy eigenvectors. This numerically confirms that the results of Deutsch et

al. [83] also holds for a realistic quantum thermodynamic system such as ours,

and we can apply this result in the next section.

In figures 2.5 and 2.6 we showed that minimizing entanglement and ob-

servational entropy leads to a substantial probability of localization in the larger

and smaller regions respectively. In this section, we investigate what happens to

entanglement entropy when one localizes particles into the small region as op-

posed to the bath, and the extent to which the spatial localization plays a role in

minimizing the SxE.

We compute entropies of localized states, for � = 4 and varying system

sizes L. We consider n = 2 particles in the system, and temperature is fixed

at � = 0.01, so that the three conditions from the previous section are satisfied.
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Figure 3.3: n = 2 particles are localized in the first 4 sites for varying system sizes L. S
xE

and S
ent

of such a state (i.e., when P
max

is achieved) are computed and are respectively named
S
xE

(loc) and S
ent

(loc). This is done for 6 di↵erent complex RPTSs. What are illustrated here
are the mean and standard deviation of these 6 values. For comparison purposes, minimum
values of S

xE

achieved using optimization algorithm, S
xE

(min), are also plotted. Comparing
these minima with corresponding S

xE

(loc) for each system size, one finds that these values are
relatively very close to each other. This is an evidence of the key role of spatial localization in
minimizing observational entropy. In contrast, entanglement entropy grows to a constant value.
This is related to the fact that entanglement entropy depends heavily on the distribution of
particles for a given state. When the probability of localization is maximized for large system
sizes, this distribution is fixed and independent of system size. We therefore expect entanglement
entropy of such localized states to also reach a constant value independent of system size.

For each L, we start in 6 initial complex RPTSs, and localize them into a phys-

ical region of fixed size � = 4, by maximizing probability Pmax for each initial

state. We then compute the mean values and standard deviations of Sent and

SxE of such localized states, and plot them in Fig. 3.3. The mean values of Pmax

(averaged over 6 initial RPTSs) for system sizes of L = [8,12,16,20,24,28] are
Pmax = [0.90,0.73,0.67,0.67,0.65,0.63].

SxE(loc) is very close to the minimum SxE(min) (discussed in detail in

Fig. 3.3), showing that spatial localization is key in minimizing SxE. The theory
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predicts [83]

SxE(loc) = Sth(L,n,�)
− Pmaxn ln

L
� − (1 − Pmax)n ln L

L−�
− Pmax lnPmax − (1 − Pmax) ln(1 − Pmax),

(3.1)

for large L (where Sth(L,n,�) ≡ Sth(A +B)), which is bounded below by

SxE(loc) ≥ (1 − Pmax)Sth(L,n,�), (3.2)

which shows that SxE(loc) cannot fall below a certain fraction of the total ther-

modynamic entropy of the system. Eq. (3.1) is plotted as a dashed line in Fig. 3.3

and as expected from Eq. (3.2), the ratio R = SxE(loc)�Sth(A + B) remains ap-

proximately constant for large L.

The fact that SxE(loc) and SxE(min) are almost the same and that SxE(min)
is bounded by a fraction of thermodynamic entropy also explains why the mini-

mum of SxE in Fig. 2.6 does not go to zero, and why SxE(min) in Fig. 2.12 goes

upwards for small � (in the case of low � Pmax = ⇡2�16).
3.0.3 Discussion

We end this chapter by a discussion on the interpretation of our results ac-

companied and supported by the original work on the role of localization in entropy

fluctuations [83]. We numerically confirmed for the case of a one-dimensional lat-

tice that SxE can not fluctuate down more than about 50%, given that the initial
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state was in equilibrium and not in a low entropy state.1

In comparing to the classical case, this demonstrate an importance dif-

ference in that a chaotic classical system will eventually explore all accessible

phase space whereas in the quantum case, as we have shown by choosing an ap-

propriate measure SxE, the system would like explore subspaces of size M2 � N

with at most 50% chance. This result seems to be a unique feature of quantum

mechanics (for instance, due to the presence of superposition, particles can be

at di↵erent positions simultaneously, which leads to increasing the entropy with

postion coarse-graining.)

In the context of cosmology, as introduced in section 1.1, the Past Hy-

pothesis states that an extremely low entropy state is required for explaning the

evolution of our universe and the existance of the arrow of time. One resolution

for this fined-tuned initial condition is a rare and extreme localization of matter

and energy out of equilibrium. Assuming the universe is an isolated quantum

system with well-defined wavefunction2 and taking SxE as a measure of such lo-

calization, our result [83] adds to the implausibility of the aformentioned reslution

to the Past Hypothesis.

1In the case of low entropy initial state, according to Poincaré recurrence theorem, the system will eventually
visit the initial state given long enought time.

2How one can assig a wavefunction to the universe including all observers is an open and subtle questions [153,
226].
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Chapter 4

Maximum entanglement in closed

systems

4.1 Overview

In this chapter, we present a motivation for a precise formulation of a

tight upper bound on entanglement entropy for systems constrained to conserva-

tion laws. We then provide an analytical proof of such an upper bound and con-

firm numerically that the entanglement entropy in a subsytem of one-dimensional

fermionic lattice can achieve this bound throughout its unitary evolution.

4.2 Motivation

Entanglement is one of the most intriguing characteristics of quantum

systems. It evolved from its perception as a mathematical artifact, as a result
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of EPR paradox [235], to becoming closely related and applicable to the fields of

condensed matter [242, 12, 42, 197, 335, 176], quantum information [104, 33, 233,

321, 231, 63, 190], quantum metrology [131, 89, 132, 79, 305, 296], and quantum

gravity [85, 297, 88, 281, 236].

In the field of quantum information, entangled states are the backbone of

quantum information protocols as they are considered a resource for tasks such

as quantum teleportation [33, 161], cryptography [104], and dense coding [36].

In these quantum information protocols, more entanglement usually leads

to a better performance. Therefore, it is important to set precise upper bounds on

how much entanglement is in principle available in performing these tasks [336,

202, 175, 14, 290, 314, 313, 26, 24, 123, 167, 166].

As di↵erent tasks require di↵erent types of entangled states, numerous

measures of entanglement have been introduced [324, 35, 251, 133]. As discussed

in section 1.2, one of the most prominent measure of entanglement is entanglement

entropy [243, 314, 313]. It is defined as the von Neumann entropy of the reduced

density matrix ⇢̂A = trB[� �� �], where � � denotes the state of the composite

system,

Sent ≡ S(⇢̂A). (4.1)

This is a valuable measure as it draws a direct connection between density

matrix and the amount of non-local correlations present in a given system. En-

tanglement entropy also gained significant attention in the past few decades due
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to the discovery of its geometric scaling in thermal state as well as ground states

(famously known as the volume law [228] and the area law [102, 188, 64] respec-

tively), and its use for characterizing quantum phase transition [242, 145, 195, 20].

Despite its importance, this quantity has proven extremely di�cult to

probe experimentally, and related Rényi-2 entanglement entropy has been mea-

sured instead [170, 181, 52]. However, an experimental proposal for measuring the

entanglement entropy has been put forward recently [222], opening new exciting

possibilities.

There exists a general bound on entanglement entropy. For a pure state

of a bipartite system, it is straight forward to show that Sent ≡ S(⇢̂A) = S(⇢̂B).
This leads to [236],

Sent ≤ lnmin�dimHA,dimHB�. (4.2)

However, one could wonder whether Eq. (4.2) is stringent enough for sys-

tems with additional conservation laws, that e↵ectively restrict some degrees of

freedom.

For example, consider a system of 2 fermionic particles contained on a

lattice comprising of 6 sites, partitioned into two sublattices of 3 sites. Since

there can be any number 0, 1, and 2 particles in each sublattice, the upper bound

on entanglement entropy given by Eq. (4.2) is Sent ≤ ln ��30� + �31� + �32�� = ln 7,

yet because of the conservation law, this could be considerably larger than the

actually achievable entropy.
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This is important because, among the aforementioned quantum tasks,

those that incorporate massive particles — such as the constituents of condensed

matter systems — often exhibit constrains such as the conservation of the total

number of particles or charge [71, 170, 181, 249, 21, 205, 52, 210]. Such re-

strictions are described by superselection rules [22, 30]. It has been suggested

that these restrictions can in fact be used as a resource and can enhance the

security of quantum communication [169, 311, 22, 216, 217] and measurement

accuracy [28, 143, 29, 31]. However, among the vast literature on quantum in-

formation protocols, specific bounds on entanglement entropy in the presence of

superselection rules are not su�cient.

Given the commonality of these conservation laws and recent e↵orts in

probing entanglement entropy experimentally, it is an incentive to provide pre-

cise bounds for this quantity. In this Rapid Communication, we derive a general

tight upper bound on entanglement entropy for closed systems (in thermodynamic

sense), which are defined as those where the total number of particles stays con-

stant. This can be applied to quantum systems evolved with a time-independent

or a time-dependent Hamiltonian, as long as this evolution conserves the total

number of particles.
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A
B

Figure 4.1: A 2-dimensional lattice of size L = 24 sites and n = 8 particles is shown. The sub-
systems A and B are also depicted as red and blue regions respectively. The smaller subsystem
A has l = 6 sites and nA = 2 particles in this example.

For a bipartite system of n spinless particles moving on a system of L

number of sites, which is partitioned into two subsystems A and B (H =HA⊗HB)

with l and L − l number of sites (see Fig. 4.1), assuming that the state of the

composite system is pure and that n ≤ l ≤ L − l, the entanglement entropy is

bounded by

Sent ≤ ln n�
nA=0min�dimH(nA)A ,dimH(n−nA)B �, (4.3)

where H(nA)A denotes the Hilbert spaces of exactly nA particles contained in

the subsystem A, and H(n−nA)B denotes the Hilbert space of exactly n−nA particles

contained in subsystem B respectively. This is a tight bound, meaning that it can

be saturated with a specific wave function of n particles. An application of this

result is shown in Fig. 4.2.
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BA

Figure 4.2: A maximally entangled state is such where one has the maximal uncertainty about
the state of the full system, but determining the state of subsystem A also determines the state
of subsystem B with certainty. This means that when constructing such a state, none of the
orthogonal states spanning subsystems A and B can be used twice. But since the conservation
law prohibits matching states whose particle numbers do not add up to the total number of
particles, the maximal entanglement entropy is lower than initially expected. In this figure, one
of the maximally entangled states � � = 1√

5

(�000101�+�001001�+�010100�+�100010�+�110000�) for
the example mentioned in the introduction is shown, leading to S

(max)
ent

= ln ��3
0

�+�3
1

�+�3
0

�� = ln 5.
The above formula can be generalized to include cases n > l, but the

fermionic and bosonic cases must be treated separately. For fermionic systems (or

systems of hard-core bosons) dimH(nA)A = � l
nA
� which leads to

Sent ≤ ln min{n,l}�
nA=max{0,n−L+l}min�� l

nA
�,� L − l

n − nA��, (4.4)

while for bosonic systems dimH(nA)A = �l+nA−1nA
� which leads to

Sent ≤ ln n�
nA=0min��l + nA − 1

nA
�,�L − l + n − nA − 1

n − nA ��. (4.5)
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4.3 Proof

Assuming that n ≤ l, the Hilbert space of n particles contained on lattice

of L sites can be decomposed as

H = n�
nA=0H(nA)A ⊗H(n−nA)B . (4.6)

This means that any wavefunction � � ∈H can be written as

� � = n�
nA=0anA � nA�, (4.7)

where � nA� ∈H(nA)A ⊗H(n−nA)B . Applying the Schmidt decomposition, we can write

each of these vectors as

� nA� = dnA�
i=1 b

(nA)
i ��(nA)i �⊗ ��(n−nA)i � (4.8)

where dnA = min�dimH(nA)A ,dimH(n−nA)B �, and {��(nA)i �}dnAi=1 and {��(n−nA)i �}dnAi=1
form orthogonal sets. , and {b(nA)i }dnAi=1 are real, non-negative scalars. Also any

two vectors ��(nA)i � and ��(ñA)j �, nA ≠ ñA, are orthogonal to each other, because

they belong into subspaces associated with di↵erent eigenvalues nA of a Hermi-

tian operator N̂A (measuring the number of particles in sublattice A). The same

argument can be made for vectors ��(n−nA)i � using N̂B. This allows us to compute

the reduced density matrix,

⇢̂A = trB[� �� �] = n�
nA=0

dnA�
i=1 �anA �2�b(nA)i �2��(nA)i ���(nA)i �, (4.9)
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and since vectors ��(nA)i � are orthogonal to each other, we can also compute the

entanglement entropy as

Sent ≡ S(⇢̂A) = − n�
nA=0

dnA�
i=1 �anA �2�b(nA)i �2 ln �anA �2�b(nA)i �2. (4.10)

Using Jensen’s theorem on the strictly concave function f(x) = lnx, which is a

standard procedure for bounding the Shannon entropy, we derive

Sent ≤ ln n�
nA=0dnA , (4.11)

which proves the theorem for n ≤ l. The inequality is saturated if and only if all

the probabilities are equal, i.e.,

�anA �2�b(nA)i �2 = � n�
nA=0dnA�

−1
(4.12)

for all nA and i. Considering decomposition (4.8), this equation is the su�cient

and necessary condition for the state to be maximally entangled in a closed system.

Now let us include cases of n ≥ l. For a fermionic system, the three cases

to consider are: n ≤ l ≤ L − l, l ≤ n ≤ L − l, and l ≤ L − l < n. Combined, for any

n ≤ L the Hilbert space can be decomposed as

H = min{n,l}�
nA=max{0,n−L+l}H(nA)A ⊗H(n−nA)B . (4.13)

The rest of the analysis proceeds analogously and leads to

Sent ≤ ln min{n,l}�
nA=max{0,n−L+l}min�dimH(nA)A ,dimH(n−nA)B �, (4.14)

with equality if and only if �anA �2�b(nA)i �2 = �∑min{n,l}
nA=max{0,n−L+l} dnA�−1 for all nA and

i. Considering that dimH(nA)A = � l
nA
� (combination: the number of ways we can
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distribute nA particles in a sublattice of l sites, where no repetition is possible due

to the Pauli exclusion principle or hard-core condition) and dimH(n−nA)B = � L−l
n−nA�,

we obtain Eq. (4.4).

For a bosonic system, the decomposition of Hilbert space is identical to

Eq. (4.6) for any n. The formula therefore remains the same, and considering that

for a bosonic system we have dimH(nA)A = �l+nA−1nA
� (combination with repetition:

the number of ways we can distribute nA particles in a sublattice of l sites, where

multiple particles can be in a single site) and dimH(n−nA)B = �L−l+n−nA−1n−nA �, we obtain
Eq. (4.5).

The condition for the maximally entangled state, Eq. (4.12), has an in-

teresting implication. It gives prediction for the number of particles in each of

the subsystems: if the state is maximally entangled, then the probability of mea-

suring nA particles in sublattice A (which must be the same as the probability of

measuring n − nA particles in sublattice B) is equal to

pnA = �anA �2 = dnA∑min{n,l}
nA=max{0,n−L+l} dnA , (4.15)

dnA =min�� l
nA
�, � L−l

n−nA��, for the fermionic gas, and

pnA = �anA �2 = dnA∑n
nA=0 dnA , (4.16)

dnA = min��l+nA−1nA
�, �L−l+n−nA−1n−nA ��, for the bosonic gas. The mean number of par-

ticles in sublattice A is nA = ∑min{n,l}
nA=max{0,n−L+l} pnAnA and nA = ∑n

nA=0 pnAnA (while

nB = n − nA) for the fermionic and the bosonic gas respectively. Therefore, if a
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state of a closed system does not satisfy these properties, it cannot be maximally

entangled.1

One can also notice that the derived bound stops depending on the total

system size L if it is large enough. Specifically, for fermionic systems and

L ≥max� max
nA∈{0,...,min{n,l}}�� l

nA
��, n� + l, (4.17)

the bound becomes

Sent ≤ ln�1 + min{n,l}−1�
nA=0 � l

nA
��, (4.18)

which no longer depends on L.

If in addition n ≥ l, then
Sent ≤ ln l�

nA=0� l

nA
� = ln 2l. (4.19)

which is equal to the maximal entropy of subsystem HA. This is the same re-

sult that could be recovered from the original bound, Eq. (4.2). Therefore, for

fermionic systems with large enough baths (subsystems B), and a large number of

particles, these bounds are the same. The same does not hold for bosonic systems

however, for which Sent ≤ ln �1 +∑n−1
nA=0 �l+nA−1nA

�� < ln∑n
nA=0 �l+nA−1nA

� = ln dimHA, ir-

respective of n, for large L and l > 1. Thus for closed bosonic systems, our bound

is always better.

It also turns out that Eq. (4.18) is the value of the bound in the ther-

modynamic limit, where both the number of particles n and size of the system L
1This is necessary, but not a su�cient condition for the state to be maximally entangled. This means that

even if the Eqs. (4.15) or (4.16) are satisfied, the state does not have to be maximally entangled. The su�cient
and necessary condition is given by Eq. (4.12) for n ≤ l and its generalizations for cases n ≥ l.
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grow to infinity, but the particle density c = n�L remains constant, while keeping

l constant. This can be shown by dividing condition (4.17) by n and taking the

limit, which gives c ≤ 1, which must be by definition satisfied for any spinless

fermionic system.

4.4 Achievability of the bound in 1D fermionic lattice

Here, we illustrate the derived upper bound (4.4) in a simulation. We

specifically focus on the case where n < l ≤ L − l. The other cases turned out to

be very similar, and we shall not show them here.

We consider a system of n spin-less fermions in a one-dimensional lattice

of size L, with Hamiltonian introduced in section 1.2 and illustrated in Fig. 1.1.

In the simulation depicted in Fig. 4.3, we take t = t′ = 1.9, V = V ′ = 0.5 2,

and cases with NN hopping only, and with interaction only. The total number of

particles is n = 3, and we take subsystem A to be the l = 4 sites on the left side of

the chain, while the full system size L, and inverse temperature � = 1�T are both

varied.

We take the initial state to be the complex RPTS which is entangled

but not maximally entangled. For instance, in the case of � = 0.01 and a given

initial RPTS, the initial entanglement entropies associated with system sizes L =
[8,9,10,11,12,13] are Sent = [2.031,2.091,2.118,2.122,2.080,2.020]. The initial

2It does not matter much which particular values we choose, as long as t, t′, V, V ′ ≠ 0, the evolution is
qualitatively the same.
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Figure 4.3: S
(max)
ent

= max⌧ Sent

(� ⌧ �) for di↵erent values of L and �, n = 3 particles, for a
subsystem A being fixed as the left l = 4 sites of the chain. In the low temperature limit, � = 2,
the initial state is close to being a ground state. In the high temperature limit, � = 0.01, the
initial state becomes a random pure state [208, 207, 243, 69], in which all the energy coe�cients
are equal on average. We show cases of (1) non-integrable system (t = t′ = 1.9, V = V ′ = 0.5)
and varying temperatures, and cases of high temperature with (2) NN hopping only (t = 1.9,
t′ = V = V ′ = 0), and with (3) interaction only (V = V ′ = 0.5, t = t′ = 0). In cases (1) and (2) and
high temperature, the maximum value of S

ent

reaches exactly the theoretical bound (dashed
line) for all L, but not in case (3). This shows that the non-zero hopping term is the most
important for reaching the maximum.

state is then evolved as � ⌧ � = e−iĤ⌧ � �.
To find the maximum value that Sent can achieve during its time evolution,

we use the simplex search algorithm. For a given L and �, we initialize the

state in 6 di↵erent complex RPTS, and find the maxima for each initial state

by maximizing over phases �E = E⌧ that appear in the time evolution of the

wavefunction, Û⌧ = e−iĤ⌧ . As long as the di↵erences of E’s are irrational (or close

to being to), this method must give the same result as maximizing over all times

⌧ . We do this because maximizing over the time by simply evolving the system

would take an extremely long time. We then plot the mean value of these six
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maxima as well as the standard deviation (depicted as error bars) in Fig. 4.3. The

theoretical bound, Eq. (4.4) for the case where n < l ≤ L− l, is plotted in the same

figure (dashed line) for various values of L.

As Fig. 4.3 illustrates, in the non-integrable case for � = 0.01 the theoret-

ical bound (4.4) is saturated exactly. For large L the bound flattens, as expected

from Eq. (4.18). As the temperature drops, the system can no longer achieve this

bound, but the maximum entanglement entropy still stays approximately constant

for large L. Interestingly, we found that the upper bound is reached during the

unitary evolution also for integrable systems with NN interaction and hopping

(t′ = V ′ = 0), or even for systems with just the NN hopping term (t′ = V = V ′ = 0),
but not when there is no hopping, which we can summarize as “As long as there

is some hopping, in both cases of integrable or non-integrable systems, the bound

is achieved during the unitary evolution, if the temperature is high enough.”

Regarding the average number of particles in the subsystem, states for

which Sent has reached its maximum in L = [8,9,10,11,12,13] were measured

to have nA = [1.50,1.55,1.58,1.58,1.58,1.58], which corresponds exactly to the

prediction of Eq. (4.15).

4.5 Discussion

In this chapter, we derived a tight upper bound on entanglement en-

tropy for bipartite systems with a conserved number of spinless particles. We
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showed numerically that at high temperature, the maximum entanglement en-

tropy of a fermionic lattice in fact reaches this upper bound during its time evo-

lution. Furthermore, by studying the maximally entangled states, we found that

measuring the particle number in one of the subsystems can serve as a simple

test of whether the state can be maximally entangled. In contrast to Ref. [313],

which derived bounds for the average entanglement entropy of all eigenstates of

quadratic fermionic Hamiltonians, our bound holds for any state in any spinless

fermionic and bosonic system with a conserved number of particles, irrespective

of the Hamiltonian being used.

Our results can be also directly transferred to lattices of identical spin-

1/2 particles with the total spin conserved, where spin-up and spin-down take the

place of a particle and a hole respectively, or to lattices of qubits consisting of

di↵erent energy states (such as cold atoms [42, 170, 181, 49], trapped ions [333,

122, 52], or superconducting qubits [119, 125, 328, 229]), when the total energy,

and therefore also the total number of excited states is conserved, while neglecting

the interaction energy.

Using that for a pure state ⇢̂AB, S(⇢̂AB) = 0 and S(⇢̂A) = S(⇢̂B), a note-

worthy consequence of the bound, Eqs. (4.4) and (4.5), is that it sets a lower bound

on conditional entropy S(A�B)⇢̂ = S(⇢̂AB)−S(⇢̂B) [61, 257, 323] which gives a suf-

ficient and necessary condition for teleportation [325], and an upper bound on

the mutual information I(A;B) = S(⇢̂A) + S(⇢̂B) − S(⇢̂AB) [307, 257, 78], which
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determines the largest possible rate of communication [241, 86, 322], and has

applications in quantum machine learning [306, 74, 184].

Another implication of this result is with regards to Rényi entropies of

higher order. For a general density matrix, entanglement entropy (Rényi entropy

of order ↵ = 1) is related to Rényi entropies of higher order, S↵>1, by inequality

Sent(⇢̂) ≥ S↵>1(⇢̂) [116]. This means that the upper bound on entanglement en-

tropy found in this Rapid Communication could be taken as a loose upper bound

on S↵>1(⇢̂).
This is important due to the existence of experiments involving measure-

ments on Rényi-2 entanglement entropy S↵=2 [170, 181, 52], which allows us to

compare our bound with experimental data. Ref. [170] used a system of ultra-

cold bosonic atoms trapped in an optical lattice, evolving by the Bose-Hubbard

Hamiltonian. The maximum Rényi entropy of a ground state for a system of L = 4
sites and n = 4 particles, and various sizes of subsystems l = [1,2,4] was obtained
from Fig. 4 in [170] (including an o↵set of about 0.5) as S↵=2 = [0.6,0.9,0], which
is below the bound S(bound)ent = [1.6,2.2,0] calculated from Eq. (4.5). The max-

imal achieved entropy obtained from Fig. 6 in [170] for L = n = 2 and l = 1 is

S↵=2 = 0.8 which is much closer to the bound S(bound)ent = 1.1. Ref. [181] focused

on measuring the Rényi entropy of an evolving system using the same model.

The maximum values of the Rényi entropy read out from Fig. 3 in [181] for

L = n = 6 and l = [1,2,3,6] are S↵=2 = [0.8,1.9,2.6,0], while the bound gives
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S(bound)ent = [1.9,3.0,3.4,0]. Finally, Ref. [52] used a system of trapped ions, each

carrying a spin, evolved by an XY Hamiltonian which conserves the total spin.

This model is therefore mathematically identical to a lattice of spinless fermions.

L = 10 atoms were prepared in the Néel state (n = 5), and after 5 ms the Rényi

entropy was read out for l = [1,2,3,4,5,6,7,8,9] (Fig. 2 in [52]) at values scattered

around S↵=2 ≈ [0.6,1.3,1.7,2.1,2.4,2.3,1.9,1.5,0.8] (recalculated by changing the

base of logarithm log2 → ln). These values are comparable but two of them are

slightly higher than the bound S(bound)ent = [0.7,1.4,2.1,2.8,3.5,2.8,2.1,1.4,0.7] cal-
culated from Eq. (4.4), due to inadvertently introduced decoherence (the total

Rényi entropy was 0.5 at the time of measurement).
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Chapter 5

Discussion

Physical systems are commonly in states that are far from equilibrium.

This demand for new notions of measures such as entropy that are meaningful out

of equilibrium. In this work, we took two definitions of entropy as our case studies

that are capable of describing quantum systems in this context. We presented an

interpretation of each notion and their di↵erences and discussed to what degree

their non-equilibrium behavior carries over from the equilibrium case.

Our numerical work on the extreme fluctuations demonstrated signifi-

cantly di↵erent behavior of extreme values of observational and entanglement

entropy. In particular, we found that starting from a typical state, Sent can reach

values very close to zero during the course of a unitary evolution, whereas there

exists a non-zero lower bound for SxE. We showed how these minimal values of the

two entropies are achieved through localization in the larger and smaller region

for Sent and SxE, respectively.
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We found in the high temperature limit, the maximum entanglement en-

tropy between a smaller subsystem and the rest of the system becomes large in

comparison with typical values, and this ratio grows with system size. This is be-

cause the typical value is the thermodynamic entropy for the smaller subsystem

which will tend to zero as total system size increases, (at fixed particle number

and subsystem size) but the maximum Sent goes to a constant independent of

total system size. On the other hand, the maximal observational entropy stays

close to its typical value. The latter is qualitatively similar to classical Boltzmann

entropy: the average – which is close to the most likely state – should be assigned

a very high entropy.

The particle distribution given a state with maximum entanglement or

observational entropy is also remarkably di↵erent: in the former case the particles

distribute themselves throughout the lattice such that the average number of

particles in the subsystem follows the necessary but not su�cient condition for

the state to be maximally entangled, stated in Ref. [114] (in the numerical studies

shown here, the average number of particles in the subsystem is equal to that of

the bath but this is not in general the case). In the latter case, particles tend to

distribute themselves uniformly, similar to what happens at thermal equilibrium.

As discussed in section 2.2, entanglement entropy is a well-known and

useful measure of thermalization of systems in contact with a thermal bath. How-

ever, in relation to quantum systems that are approximately isolated from their
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environment [317], measures such as von Neumann entropy are not capable of de-

scribing the evolution as they are strictly constant. Such notions of entropy make

the assumption that the observer has full access to the density matrix. However,

this is not in practice the case unless the observer has control over the system’s

preparation or can perform su�ciently many measurements in di↵erent bases on

an ensemble of identically prepared systems. In fact, von Neumann wrote him-

self [316]: “The expressions for entropy given by the author [von Neumann] are

not applicable here in the way they were intended, as they were computed from

the perspective of an observer who can carry out all measurements that are pos-

sible in principle, i.e., regardless of whether they are macroscopic (for example,

there every pure state has entropy 0, only mixtures have entropies greater than

0!)”.

Intuitively, we expect an increase in some measure of disorder even in the

absence of external influences. Take an example similar to what we have illus-

trated in this work through the simulations of one-dimensional lattice of spin-less

fermions: a system initially in a “special” state of all (or most) particles localized

in a small region of space. When evolved according to the Schrödinger equation

(which is time-symmetric), particles tend to distribute themselves throughout the

lattice. A quantification of such dynamics according to observational entropy

however, would depend not only on the initial conditions of the system, but on

the observer’s choice of coarse-graining(s) as well.
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Observational entropy provides us with a notion of entropy that respects

the second law of thermodynamics, regardless of whether the system is pure or

mixed. Analogous to classical thermodynamics where the emergence of the arrow

of time is commonly known to be due to the tendency of thermodynamic entropy

to increase, in an isolated quantum system an arrow of time could emerge due to

the increase of observational entropy. One may refer to this arrow as a “subjective

arrow of time” since the evolution of observational entropy depends on the choice

of coarse-graining.1 The connection between the quantum arrow of time that is

in general (asides from the fluctuations) in accordance with the thermodynamic

arrow of time is discussed in more detail in the work of Hartle [151] (although the

exact formulation of observational entropy is not used, his work is not completely

unrelated to our argument). He explains that the reason for isolated subsystems

evolving towards a seemingly equilibrium state in the same direction as the ther-

modynamic arrow of time is the initial low entropy state of quantum subsystems

that was inherited from the low entropy origin of the universe.

On a cosmological level, discussions of entropy and the arrow of time

(e.g. [76, 4, 10, 247, 59, 3]) require a definition that applies to non-equilibrium

states of a truly isolated system, the Universe, and potentially for indefinitely long

timescales over which large entropy fluctuations might occur. These discussions

often employ a definition of entropy that in practice mixes di↵erent notions. Ob-
1A similar concept was discussed by Hartle in Ref. [150] using models of information gathering and utilizing

systems.
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servational entropy applies in this context as well and therefore may be useful in

these discussions, for instance in relation to the Past Hypothesis.

In chapter 3 we confirmed numerically the work of Deutsch et al. [83]

stating that the probability of finding a generic state of the system in a small

subspace (M2 � N) is about 50%. Expressed in terms of an entropy with ap-

propriate coarse-graining such as SxE, this means that even the most extreme

fluctuations will not reduce this quantity by more than half. This result has an

important implication regarding the Past Hypothesis; one of the resolutions to

this hypothesis is the occurrence of extreme localization of matter and energy out

of a generic equilibrium state of the universe (i.e., an extreme downward fluctua-

tion of entropy). The argument that SxE can not reduce by more than half of its

maximum value, weakens the aforementioned resolution to the Past Hypothesis.

Other resolutions to the emergence of the arrow of time due to increasing

entropy have been put forward where no special low-entropy initial state is re-

quired. Examples are the cosmological models proposed by Carroll and Chen [59,

57] and Barbour et al. [17] (for more review on these arguments see [138, 194].)

Other studies such as [5, 87, 318, 27, 183] provide arguments for and against the

collapse of the wave function as the primary link to the existence of the arrow of

time.

The work of Rovelli [265, 266] is among the studies that does not require

a special initial condition of the universe for entropy to increase. His argument

103



suggests that the observed low entropy of the past is not because of a special

configuration of the microstate. Rather, it is due to the way we, as observers,

couple to the universe and the observables (coarse-grainings) we are naturally

evolved to use in describing the universe. The entropy of choice in his work is

von Neumann entropy of the subsystem (i.e., entanglement entropy) – the region

where the observer is interested in measuring. The coarse-graining then is given by

restricting the choice of observables to those of the subsystem. He further explains

that for any general  (t), one can find a split of the system into subsystems such

that entanglement entropy is initially zero but grows with time.

The situation where the measurements on the subsystem are imperfect

is not however considered in the aforementioned argument. If {P̂i}i – a trace-

preserving set of non-zero projectors acting on the Hilbert space that corresponds

to the subsystem, represents our coarse-graining, there is a scenario where the

measurement may not be complete. In other words, the projection is not onto a

pure state. In this case, observational entropy (of the subsystem) could be a more

suitable choice in which case it would be lower bounded by the von Neumann

entropy of the subsystem according to theorem 3 in Ref. [269]

The role of coarse-grained observations also appeared in the work of Har-

tle [152] where a generalization of Copenhagen quantum mechanics with no built

in time asymmetry is presented. He makes use of time-neutral decoherent (or con-

sistent) histories formulation of quantum theory [142, 178]. However, this formula-
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tion does not account for non-commuting coarse-grainings such as the one used in

the definition of general observational entropy with multiple coarse-graining (for

example SxE). This may also bring up a question of whether non-commutativity

of observables in the measurement process introduces a built-in asymmetry that

can be responsible for the arrow of time in quantum systems.

We should emphasize the primary remaining obstacle to such arguments

that define and use notions of entropy of the universe in the context of quantum

mechanics is a lack of understanding of the state-space of gravity and space-time

as well as a well-defined wave function of the universe without observers on the

“outside”. This also brings up issues about how an observer inside the isolated

system can make measurements. Would they make the measurement on the re-

duced state of the universe (by tracing over part of the universe that describes

themselves and anything else that they may not be interested in measuring)?

Questions of this nature have been long-standing in physics and philos-

ophy. A careful extension of the second law of thermodynamics to quantum

systems, rigorous studies on the meaning and implications of di↵erent notions of

entropy and the intuition behind them are a few examples of how we may take

a step forward in these discussions. This thesis was an attempt to improve the

understanding of two types of entropy relevant to quantum systems. We hope for

progress in endeavors to experimentally measure entanglement and observational

entropy in the near future.
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[83] Joshua M Deutsch, Dominik Šafránek, and Anthony Aguirre. Probabilistic

bound on extreme fluctuations in isolated quantum systems. Physical Review

E, 101(3):032112, 2020.

[84] Igor Devetak, Aram W Harrow, and Andreas Winter. A family of quantum

protocols. Phys. Rev. Lett., 93(23):230504, 2004.

[85] Bryce S DeWitt and Giampiero Esposito. An introduction to quantum

gravity. Int. J. Geom. Meth. Mod. Phys. , 5(01):101–156, 2008.

[86] P Ben Dixon, Gregory A Howland, James Schneeloch, and John C How-

ell. Quantum mutual information capacity for high-dimensional entangled

states. Phys. Rev. Lett., 108(14):143603, 2012.

[87] Shahar Dolev, Avshalom C Elitzur, and Meir Hemmo. Does indeterminism

give rise to an intrinsic time arrow? arXiv preprint quant-ph/0101088, 2001.

[88] Xi Dong. Holographic entanglement entropy for general higher derivative

gravity. J. High Energy Phys., 2014(1):44, 2014.

[89] Jonathan P Dowling. Quantum optical metrology–the lowdown on high-

n00n states. Contemp. Phys., 49(2):125–143, 2008.

[90] doxygen.

[91] Jiangfeng Du, Xing Rong, Nan Zhao, Ya Wang, Jiahui Yang, and RB Liu.

117

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.230504
https://www.worldscientific.com/doi/abs/10.1142/S0219887808002679
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.143603
https://www.researchgate.net/publication/258083092_Holographic_Entanglement_Entropy_for_General_Higher_Derivative_Gravity
https://www.tandfonline.com/doi/full/10.1080/00107510802091298


Preserving electron spin coherence in solids by optimal dynamical decou-

pling. Nature, 461(7268):1265, 2009.

[92] Jörn Dunkel and Stefan Hilbert. Consistent thermostatistics forbids negative

absolute temperatures. Nat. Phys., 10(1):67, 2014.

[93] Wolfgang Dür, Guifre Vidal, and J Ignacio Cirac. Three qubits can be

entangled in two inequivalent ways. Physical Review A, 62(6):062314, 2000.

[94] Lisa Dyson, Matthew Kleban, and Leonard Susskind. Disturbing implica-

tions of a cosmological constant. J. High Energy Phys., 2002(10):011, 2002.

[95] John Earman. The “past hypothesis”: Not even false. Stud. Hist. Philos.

Sci. A, 37(3):399–430, 2006.

[96] Kate Eckerle. A simple system for coleman-de luccia transitions. arXiv

preprint arXiv:2003.04365, 2020.

[97] Arthur Stanley Eddington. Arrow of time. On space and time, page 46.

[98] Sheri Edwards. Elements of information theory, thomas m. cover, joy a.

thomas, john wiley & sons, inc.(2006), 2008.

[99] Albert Einstein. Theorie der opaleszenz von homogenen flüssigkeiten und

flüssigkeitsgemischen in der nähe des kritischen zustandes. Annalen der

Physik, 338(16):1275–1298, 1910.

118

https://math.mit.edu/~dunkel/Papers/2014DuHi_NatPhys.pdf
https://iopscience.iop.org/article/10.1088/1126-6708/2002/10/011
https://www.sciencedirect.com/science/article/pii/S135521980600027X
https://www.sciencedirect.com/science/article/pii/S135521980600027X


[100] Albert Einstein. General Relativity; an Einstein Centenary Survey. CUP

Archive, 1979.

[101] Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-

mechanical description of physical reality be considered complete? Physical

review, 47(10):777, 1935.

[102] Jens Eisert, Marcus Cramer, and Martin B Plenio. Area laws for the entan-

glement entropy-a review. Rev. Mod. Phys., 82:277, 2010.

[103] Jens Eisert, Timo Felbinger, P Papadopoulos, M B Plenio, and Martin

Wilkens. Classical information and distillable entanglement. Phys. Rev.

Lett., 84(7):1611, 2000.

[104] Artur K Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev.

Lett., 67(6):661, 1991.

[105] George Francis Rayner Ellis. The arrow of time and the nature of spacetime.

Studies in History and Philosophy of Science Part B: Studies in History and

Philosophy of Modern Physics, 44(3):242–262, 2013.

[106] Roberto Emparan. Black hole entropy as entanglement entropy: a holo-

graphic derivation. J. High Energy Phys., 2006(06):012, 2006.

[107] Volkan Erol. Entanglement monotones and measures: an overview.

arXiv:1704.05058 [quant-ph], 2017.

119

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.277
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.84.1611
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.84.1611
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.67.661
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.67.661
https://iopscience.iop.org/article/10.1088/1126-6708/2006/06/012
https://arxiv.org/abs/1704.05058


[108] Massimiliano Esposito, Upendra Harbola, and Shaul Mukamel. Nonequilib-

rium fluctuations, fluctuation theorems, and counting statistics in quantum

systems. Rev. Mod. Phys., 81(4):1665, 2009.

[109] Massimiliano Esposito and Shaul Mukamel. Fluctuation theorems for quan-

tum master equations. Phys. Rev. E, 73(4):046129, 2006.

[110] Massimiliano Esposito and Christian Van den Broeck. Three detailed fluc-

tuation theorems. Physical review letters, 104(9):090601, 2010.

[111] Denis J Evans, Ezechiel Godert David Cohen, and Gary P Morriss. Prob-

ability of second law violations in shearing steady states. Phys. Rev. Lett.,

71(15):2401, 1993.

[112] Denis J Evans and Debra J Searles. The fluctuation theorem. Advances in

Physics, 51(7):1529–1585, 2002.

[113] Alexandr A Ezhov and Gennady Berman. Role of interference and entan-

glement in quantum neural processing, volume 4591, pages 367–379. 2001.
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[270] Dominik Šafránek, JM Deutsch, and Anthony Aguirre. Quantum coarse-

grained entropy and thermalization in closed systems. 99:012103, 2019.

”Copyright (2019) by the American Physical Society.”.

140

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.74.022314
https://iopscience.iop.org/article/10.1088/0953-4075/49/20/202001/meta
https://arxiv.org/abs/1905.03841
https://link.aps.org/doi/10.1103/PhysRevA.99.012103


[271] Takahiro Sagawa and Masahito Ueda. Second law of thermodynamics with

discrete quantum feedback control. Physical review letters, 100(8):080403,

2008.

[272] Varun Sahni, Yuri Shtanov, and Aleksey Toporensky. Arrow of time in

dissipationless cosmology. Classical and Quantum Gravity, 32(18):182001,

2015.

[273] Manfred Salmhofer. Renormalization in condensed matter: Fermionic

systems–from mathematics to materials. Nucl. Phys. B, 941:868–899, 2019.

[274] Lea F Santos, Anatoli Polkovnikov, and Marcos Rigol. Weak and strong

typicality in quantum systems. Phys. Rev. E, 86(1):010102(R), 2012.

[275] Lea F Santos and Marcos Rigol. Onset of quantum chaos in one-dimensional

bosonic and fermionic systems and its relation to thermalization. Phys. Rev.

E, 81(3):036206, 2010.

[276] Joseph Schindler, Dominik Šafránek, and Anthony Aguirre. Entangle-

ment entropy from coarse-graining in pure and mixed multipartite systems.

arXiv:2005.05408 [quant-ph], 2020.

[277] Ulrich Schneider, Stephan Mandt, Akos Rapp, Simon Braun, Hendrik

Weimer, Immanuel Bloch, and Achim Rosch. Comment on” consistent

thermostatistics forbids negative absolute temperatures”. arXiv:1407.4127

[cond-mat.quant-gas], 2014.

141

https://www.sciencedirect.com/science/article/pii/S0550321318301901
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.86.010102
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.81.036206
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.81.036206
https://arxiv.org/abs/2005.05408
https://arxiv.org/abs/1407.4127


[278] JF Schneiderman, MD Shaw, B Palmer, P Delsing, and PM Echternach.

Quasiparticle poisoning and quantum coherence in a di↵erential charge

qubit. arXiv preprint arXiv:0705.0695, 2007.
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