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Though music is an art form with tremendous expressive capacity, the un-

derlying frameworks of most musical compositions are highly structured and orga-

nized. As such, musical pieces are commonly studied by analyzing their melodic

and harmonic structures. Two important concepts in any such analysis are the key

and tonic. The key of a musical piece identifies a principal set of pitches that the

composer uses to build its melodies and harmonies; the tonic is the most stable

pitch in this set. Each musical piece is characterized by one overall key. However,

the key can be shifted within a piece by a compositional technique known as mod-

ulation. Notwithstanding the infinite number of variations possible in music, most

pieces can be analyzed in these terms.
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In this dissertation, we propose novel methods for modeling a corpus of

musical pieces in terms of its harmonic structure. We describe several different

models for symbolic and audio musical input, as we find both to be valuable data

formats to perform harmonic analysis on. Our models are based on Latent Dirichlet

Allocation (LDA), a popular probabilistic model traditionally used for discovering

latent semantic topics in large collections of text documents. In our variant of LDA,

we model each musical piece as a random mixture of keys. Each key is then modeled

as a key-profile – a distribution over a set of pitch classes. Using this representation,

we show how to accomplish the tasks of key-finding and modulation-tracking, the

first steps to any kind of harmonic analysis.

Our approach to such tasks is unlike that of previous studies, which depend

on extensive prior music knowledge or supervision by domain experts. Based on

a model of unsupervised learning, our approach bypasses the need for manually

key-annotated musical pieces, a process that is both expensive and prone to error.

As an additional benefit, it can also discover correlations in the data of which the

designers of rule-based approaches are unaware. Since we do not rely on extensive

prior knowledge, our model can also be applied in a straightforward way to other,

non-western genres of music with different tonal systems.
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Chapter 1

Introduction

In this thesis, we propose novel methods for automatically extracting har-

monic content – global and local key information – from music in the form of both

symbolic and raw audio input. All of our methods are based on a model of unsu-

pervised learning, bypassing the need for key-annotated training examples. In this

introductory chapter, we first talk broadly about the music information field (1.1)

– to which our work belongs. Second, we give a problem overview in which we

define the problem, explain the motivation for this work as well as where it fits

more broadly in the MIR field, and finally, present unique contributions (1.2). We

conclude this chapter with an overview of how this thesis is organized (1.3).

1.1 Music Information Retrieval

Music information retrieval (MIR) is a very broad term that can refer to

any component of an automatic system that allow us to understand, extract, or

interact with information from music. The ultimate vision for the MIR field is to

achieve a certain way of life – one in which we are surrounded by technologies that

can understand music the way we humans do, while retaining all of the benefits

of modern technology (e.g. fast search, efficient computation, and large memory).

Here is a popular quote by Downie [18] – a long-time researcher in the field –

describing what this world would look like:

1
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Imagine a world where you walk up to a computer and sing the song
fragment that has been plaguing you since breakfast. The computer
accepts your off-key singing, corrects your request, and promptly
suggests to you that “Camptown Races” is the cause of your irrita-
tion. You confirm the computer’s suggestion by listening to one of
the many MP3 files it has found. Satisfied, you kindly decline the
offer to retrieve all extant versions of the song, including a recently
released Italian rap rendition and an orchestral score featuring a
bagpipe duet.

While the current directions of music technology are not the same in 2003,

when this quote was issued (most notably: the substantial rise in mobile and in-

ternet activity, as well as the increase in music storing capabilities), the scenario

described remains relevant as it showcases a potential reality in which computers

can understand music. As one can imagine, the road to achieving such a vision

is extremely interdisciplinary. MIR broadly encompasses everything from ideas

to algorithms to applications, and draws from fields such as musicology, composi-

tion, artificial intelligence, machine learning, signal processing, computer systems,

psychology, and the cognitive sciences. The upside of such interdisciplinary in-

volvement is the knowledge that its impact reaches far and wide. The downside

is that different areas are concerned with different goals for the a similar problem.

We will make clear the goals of this thesis later on in section 1.2.2.

1.1.1 Content-Based Music Analysis

The work in this thesis belongs to a sub-area of MIR called content-based

music analysis. This area seeks to automatically extract content from musical

pieces. What is musical content? This can be difficult to define. In literature,

content is commonly described as the topics or ideas contained in a piece of writing.

When applied to music, this can take on a lot of meanings: the mood, story,

stylings, influence, melodic structure, compositional techniques, etc. of a song can

all be considered as content. Perhaps it is easier to describe what content is not.

Content is not meta-data information, like the title or composer or year of a song.

This information does not tell us anything about what is “inside” the music, or

what the music sounds like.
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Most methods used to access, search, and organize music collections today

are still based on meta-data. When you open your default music browser, you don’t

really have the ability to search by anything other than the text of the title and

composer (and possibly genre) , unless you have spent time adding or obtaining

extra tags yourself. Content-based analysis seeks to enhance this experience by

automatically generating more useful and meaningful descriptions that are actually

related to musical content. As imagined in the quote from the previous section –

content-based methods would allow one to query a music database by humming, or

automatically create a playlist of upbeat songs. As one can imagine, these content-

based descriptions can be used to facilitate more powerful search, organization, and

creation of musical pieces.

1.1.2 Music Descriptors

For most content-based analysis, a necessary first step is to describe music

input in a way that a computer can understand and process it. The development of

these descriptions, aptly called music descriptors, have spurred a lot of research in

the MIR community – some, for the sake of producing more high-level and intuitive

descriptors from raw input; others, as mentioned above, for the development of

specific, higher-level MIR applications.

For audio music input, Herrera [29] categorizes descriptors from low to

high level. Low-level descriptors are closely related to raw audio signal. These

descriptors are unintuitive to humans, but are easily inputted to computational

systems. Two of the most popular low-level content-based descriptors on which

many MIR systems are built upon are the Mel-Frequency Cepstrum Coefficients

(MFCC) features [53], and chroma features [24]. For symbolic music, MIDI data

provides a complete transcription of the musical score, indicating exact pitches and

their durations present in the score; this can be argued to be the most low-level type

of descriptor. We note that while it would be useful to have such a transcription for

audio input as well, a large amount of literature has shown that the inaccuracies

involved in such a transcription usually do more harm than good (as polyphonic

transcription is still a challenging task that remains unsolved). Instead, the audio
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descriptors described earlier in this section have been shown to be more suitable

for most tasks at hand. For this reason, we emphasize that music descriptions do

not necessarily have to be transcriptions.

Mid-level descriptors are considered to be those that perform some gener-

alizations about the underlying data. This usually involves some statistics and

machine learning techniques, and will have more intuitive meaning for certain

users. For example, harmonic content, which this thesis aims to extract auto-

matically, may be considered as a mid-level descriptor – it requires some analysis

and transformation of raw input data to draw some more high-level information

about the musical content. Even though such annotations are interesting in their

own right, they are also useful in higher level applications, as we will discuss in

section 1.2.2. Another example of mid-level descriptors may include music tags

– words that describe musical content. These tags can range from descriptions

about mood (melancholy, upbeat), to stylings (avante garde, classical, triple me-

ter), to influences (african, blues, bop, 80s), just to name a few. While these tags

can be obtained through human annotations1 (making it a border-line high level

descriptor), much work has also been devoted to automatically extracting these

text-descriptions from audio [78, 30].

High-level descriptors are most far-removed from this thesis. Herrera re-

quires such descriptors to bridge the semantic gap; where the semantic gap is

defined by Smeulders [72] as being the lack of coincidence between the information

that one can extract from the (sensory) data, and the interpretation that the same

data has for a user in a given situation. As such, high-level descriptors should be

relevant to users and require modeling user behavior. Disciplines such as music

cognition or psychology are more heavily involved in devising these descriptors.

As mentioned above, the work in this thesis seeks to automatically extract

harmonic content of both symbolic and audio music input. Such a descriptor most

closely aligns with the content-based, mid-level descriptors discussed above. In

the next few sections, we describe the problem in more details, as well as the

motivation for such a descriptor, and potential MIR applications.
1Last.FM, is a personalized, online radio that allows users to tag songs they hear
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1.2 Problem Overview

In the last section, we briefly discussed what MIR is about, and where

content-based analysis fits into that picture. In this section, we will focus specifi-

cally on the work of this thesis, including a more formal problem definition, mo-

tivation behind this work, the goals of this thesis, and potential applications that

the proposed descriptors could contribute to.

1.2.1 Problem Definition

Though music is an art form with tremendous expressive capacity, the un-

derlying framework (for the most part) is highly organized and structured. Two

important components of this framework is the key and tonic. The key of a mu-

sical piece identifies a principal set of pitches that the composer uses to build its

melodies, chords, and harmonies. The tonic is the most stable pitch in this set.

Each musical piece is characterized by one overall key, but the key can also be

shifted within a piece by a compositional technique known as modulation. In this

thesis, we seek to extract meaningful harmonic information from musical pieces

by automatically predicting the overall key of a musical piece, as well as the local

key of shorter music segments (thereby, tracking its modulations). We consider 24

possible keys (12 major, and 12 minor keys), and primarily evaluate our models

based on how well our predictions align with ground-truth labels (both, in the

form of a single “correct” key).

1.2.2 Motivation

The motivation for extracting harmonic content comes from several different

directions. The first motivation is practical: automatically obtaining key annota-

tions for symbolic or audio music is useful for musicians for music analysis. Just as

writers exercise literary analysis, musicians must also have a deep understanding

of the compositional techniques that are used in certain pieces. Key annotations

are the first step to any such analysis, and being able to do so automatically would

give aid in the form of music pedagogy, as well as a “second opinion” from a data-
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based perspective. Key annotations can also assist human transcribers to perform

their tasks more accurately and quickly.

A second source of motivation comes from the MIR applications. As we

described above, many applications can benefit greatly from good content-based

music descriptors. Though these applications are not in the scope of this thesis,

we list previous work that have successfully used harmonic descriptors similar

to the ones proposed in this paper (key-annotations, chord transcriptions and

modulation-tracking):

1. Music annotation – software, such as The Clam Annotator [2] uses har-

monic descriptors to automatically annotate and generate music meta-data

at different levels of abstraction

2. Song segmentation uses harmonic descriptors to find where important seg-

ments of music begin and end (for example: verse, chorus, and bridge in pop

songs, or repeated sections in classical pieces). Harmonic descriptors are

more robust than melody-based descriptors, since there may be slight varia-

tion on the melody between repeated sections, while the harmonic structure

should stay the same [59].

3. Cover song detection uses harmonic descriptors to find cover songs in

large collections of music. Harmonic descriptors are very suitable for this

task as they are robust to changes in instrument, key, and performers [47, 3].

4. Automatic accompaniment – software, such as SongSmith [71] automat-

ically generates accompanying chords from songs that the user sings and

records. The chord generation process uses similar approaches as chord tran-

scription.

5. DJ Mixing uses harmonic descriptors to automatically detect the key of

songs (and then adjusts it) in order to mix songs with close tonalities. Some

examples including Harmonic Mixing2 and Mixmeister 3

2http://www.harmonic-mixing.com
3http://www.mixmeister.com
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6. Modeling Musical Tension – the building and resolving of musical tension

is closely related to whether or not the tonalities present are harmonious, or

conflicting. Prior work [17] has shown that harmonic descriptors are useful to

automatically predicting areas of rising and falling tension in classical music.

A third source of motivation is aimed specifically at the part of our work

that uses symbolic input. While symbolic (MIDI) input has not received as much

attention as audio input, it is still important for two reasons: (1) it allows more

exact analysis when musical scores are available in this format, and (2) many audio-

based models use audio synthesized from MIDI to easily obtain large training data

for their models; hence they are in need of methods that perform accurate key and

chord estimation on MIDI input.

Lastly, we find motivation for the purposes of pure research. In our work,

we have introduced a new application for a popular machine learning model that

was traditionally used primarily to discover semantic topics in text corpora. It

is interesting to understand (1) the relationship of semantic topics and words vs.

harmonic content and notes, (2) how our very different unsupervised models per-

form in comparison to supervised models of harmonic content (3) how important

prior music knowledge is in harmonic modeling, (4) how important note order is to

extracting harmonic content, and (5) how closely statistical methods can imitate

the way humans perceive tonality. These are all interesting topics that we have

been able to address as a result of our work.

1.2.3 Contributions

This thesis proposes a novel method for global and local key-finding, us-

ing both symbolic and audio input. The main contributions are found in chap-

ter 3 and 4, where three novel, probabilistic, LDA-based models are presented.

Appendix C also contains the derivations for variational inference algorithms pro-

posed in our audio LDA-based models. To summarize, the novelty of our model

includes the following:
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1. For audio input, our model uses unsupervised learning with very little prior

music knowledge. Most approaches seen previously that obtain high per-

formance use supervised frameworks where key and chord-annotated data

is necessary for training, or use hand-chosen, musically inspired parameters

instead of estimating them from data.

2. For audio input, our model is one of the few that does not rely on a time-series

representation, and instead, models songs as a bag-of-notes. (The majority

of supervised models in the past are based on hidden Markov models, used

to estimate key and/or chord transition information.)

3. For symbolic and audio input, our model requires very little prior music

knowledge, while most others require hand-tuned, tonal-system-dependent

weights.

While these novel features make our model easier to use (i.e. requires no training

data) and more generalizable (i.e. requires no hand-tuned key-profiles), they also

pose more challenges to the key and chord estimation problem by providing less

prior information. While our audio model does not obtain higher key-finding ac-

curacy than the state-of-the-art, our symbolic models were able to achieve higher

accuracy than previously published and frequently used models.

We also note that even though key-finding accuracy can be a good way to

evaluate models on a large-scale, the generative nature of our model does more

than just key prediction. More precisely, our approach models the music collection

in terms of its harmonic structure, and assigns key proportions to every song, as

well as every segment within the song. This type of modeling is arguably more

realistic than assigning a single key, as composers would agree that the harmonic

make-up of most musical compositions is not black and white.
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1.3 Thesis Organization

The following is a summary of how the remainder of this thesis is organized:

Chapter 2: Background and Previous Work gives scientific background to

the acoustics of music, as well as basic building blocks of musical composi-

tions. In particular, we review important concepts such as frequency, pitch,

tonality, and harmony. In the second part of this chapter, we review previ-

ously published work in the area of chroma feature computation, as well as

key and chord-finding systems for both symbolic and audio input.

Chapter 3: Harmonic Analysis for Symbolic Input introduces the LDA-

MIDI model, an unsupervised and generative framework for modeling musical

pieces and musical segments as a random mixture of musical keys. We also

introduce an extension to this model, called CTM-MIDI, which models key-

correlations. We evaluate both models on key-finding performance, as well

as modulation-tracking.

Chapter 4: Harmonic Analysis for Audio Input introduces the LDA-

AUDIO model, which is the model from the previous chapter, adapted for

audio input. Probabilistic inference is more challenging in this model, and

thus, a full derivation is provided in Appendix C. We use similar evaluations

tasks on the LDA-AUDIO model by observing key and chord-estimation per-

formance.

Chapter 5: Conclusion is a summary of the work described in the thesis, as well

as an overall analysis of how the novel features of our model impact performs,

in comparison with previously published models. We draw conclusions from

this analysis and point to directions for future work.



Chapter 2

Background & Previous Work

2.1 Overview

The goal of this chapter is to provide an introduction to music theory that

will allow the reader to understand the musical components of this thesis, and

second, to describe how this information can be digitized and understood by com-

puters in a process called feature extraction. There are many ways to talk about

music, so we specifically guide this discussion in a way that relates to tonality (the

focus of this thesis) as much as possible. Understanding tonality requires musical

comprehension on several different levels, so we spend the first section discussing

basic musical components (pitch, rhythm, melodies, chords) before delving into

more high-level musical structures, such as tonality, musical keys, and scales. In

the final sections, we also present related work in the area of tonality induction

and key-finding, as well as applications and systems that have utilized automatic

key and chord estimation algorithms.

2.2 Musical Building Blocks

In this section, we talk about basic musical components. These can be

thought of as “musical building blocks” in the sense that all of these components

are used in combinations and patterns to create a piece of musical work. We group

these components into three parts. First, we talk in depth about pitch and its

10
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physical/scientific counterpart, frequency. Second, we briefly mention some other

important basic dimensions of music making, such as rhythm, note durations,

tempo, and loudness. Third, we introduce melodies, harmony, and chords.

2.2.1 Pitch and frequency

Music begins at the physical level: it is a sound wave propagating through

the air, causing variations in air pressure against our eardrums. The subsequent

neural processing and interpretation of these vibrations produce the experience

that we call sound. In particular, most sounds that people recognize as musical

are dominated by periodic or regular vibrations. These periodic vibrations can be

quantified in terms of frequency – the number of times that a cycle is repeated

per second. Its perceptual counterpart is pitch. Whereas frequency refers to a

scientific/objective measurement, pitch is a subjective quality used to express the

musical experience in terms of highness or lowness: larger frequencies produces

sounds that humans interpret as “higher sounding” pitch (think: female opera

singer); smaller frequencies correspond to “lower sound” pitches (think: bass gui-

tar). For a concrete idea of how frequency related to pitch, we note that in western

music, 440 Hz is the standard reference frequency that maps to the pitch labeled

A4 (or “middle A” on the piano). The remaining sections will discuss different

aspects of this relationship that will hopefully provide a fuller picture of how pitch

and frequency are connected.

Understanding frequency: humans vs. computers

Why is frequency the distinguishing factor for how humans perceive different

sounds? Put simply, different regions of the human ear are activated by sounds of

difference frequencies. Its remarkable design involves membranes, miniature bones,

and specialized hairs of different lengths that respond and vibrate with greater or

lesser amount according to how much the sound contains its resonant frequency.

Essentially, the human ear functions as an organic filter bank: it identifies and

separates out all of the frequencies that are present in a sound wave (along with

how dominant each frequency is) and sends this information in the form of electrical
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signals to the neurons for further processing.

The computer equivalent of separating out frequencies in a sound wave is

called a Fourier transform. Just as the ear perceives the sound, computers can

record a sound wave as a digital audio signal. In its raw format, the audio signal

is said to be in the time domain as it is not much more than series of integers,

indicating amplitude as a function of time. When a Fourier transform is applied

to a segment of audio, it transforms the audio signal into the frequency domain,

which expresses the contribution (i.e. loudness) of each frequency to the overall

sound. Figure 2.1 shows an example of the two different domain representations.

Plot (a) shows the original signal in the time-domain, while plot (b) shows the

signal in the frequency-domain, after applying a Fourier transform.

A third way of analyzing audio signals is by using a spectrogram. Not

only does a spectrogram express the loudness of each frequency, but it is also

capable of depicting both as a function of time. As such, the spectrogram works in

the time-frequency domain. There are many variations on the spectrogram; most

commonly, they are created by taking the Fourier transform on short, overlapping,

consecutive segments of a longer musical audio signal (described as a short-time

Fourier transform, or SFTF ), or more specifically:

spectrogram(t, ω) = |STFT(t, ω)|2 (2.1)

where (t, ω) indicates a particular time and frequency. The horizontal axis on the

spectrogram represents time and the vertical axis is frequency. A third dimension

indicating the amplitude (or loudness/dominance) of a particular frequency at a

particular time is represented by the intensity of color of each point in the image.

Fundamental frequency, overtones, and harmonics

Recall that a distinguishing characteristic of musical sounds is that its sound

wave is periodic (or, as mentioned later on, can be decomposed into a weighted

sum of periodic waves). An example of a simple, periodic waveform is represented

by the following sinusoidal function:

x(t) = a · sin(2πft+ φ) (2.2)
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(a) (b)

Figure 2.1: A pure tone (simple sinusoidal) with frequency of 220 Hz (funda-
mental frequency for note A3) represented in three different ways: (a) original
waveform, (b) output of Fourier transform

where a represents the maximum amplitude of the signal, t represents the time

(in seconds), f the frequency (measured in oscillations per second, called hertz ),

and φ the initial phase. An example is shown in figure 2.1; its corresponding

Fourier analysis shows that the waveform consists of a single frequency: 220 Hz.

Though the sound produced by this sinusoidal wave will clearly correspond to

the pitch labeled A3, it is not a naturally occurring sound. In fact, it will sound

unrealistic and synthesized, and can only be created using a tuning fork or a

computer program.

In contrast, figure 2.2 shows the same plots for an A3 played on a real piano.

Compared to figure 2.1, we see that a) the waveform is much more complex, and

b) the Fourier analysis shows the presence of many frequencies, in addition to the

one at 220 Hz. The spike at 220 Hz is the largest, and is called the fundamental

frequency or f0. The other spikes to the right of it are called overtones. Intuitively,

these overtones are what gives the piano note its character. In the musical world,

this musical “character” is called timbre, and it is what distinguishes the same

pitch played on a piano versus a violin, cello, flute, etc. In general, when looking

at the Fourier analysis of any single note played by an instrument: the single lowest

(and dominant) frequency will be the fundamental; all other higher frequencies are

referred to as overtones.

More formally, the term partials are used to refer to the fundamental fre-
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(a) (b)

Figure 2.2: An A3 (with fundamental frequency 220 Hz) played on the piano
(as opposed to synthesized by computer) represented in three different ways: (a)
original waveform, (b) output of Fourier transform (note the multiple peaks)

quency and overtones together. The term harmonics, more specifically refers to

those frequencies that are integer multiples of the fundamental (including the fun-

damental which is 1 times itself). Harmonics are very important as they usually

produce the largest spikes in the Fourier analysis. In fact, a fairly realistic sound

wave can be produced by taking a weighted sum of sinusoidals that take on frequen-

cies that is equivalent to the harmonics. This gives us a more realistic mathematical

representation of our periodic waveform:

x(t) =
N∑
n=1

an · sin(2πnf0t+ φn) (2.3)

where n indexes a sinusoidal with a frequency of the nth harmonic. We see in the

next couple of sections why harmonics are particularly important as we investigate

the mathematical relationship between frequency and perceived pitch.

Labeling pitches as notes

So far, we have referred to pitch simply as a subjective quality that describes

a musical sound as “high” or “low”. To make this more concrete, we introduce

how pitches are organized and labeled using a combination of letters and numbers,

called the Helmholtz pitch notation. Labeled pitches are referred to as notes and its

frequencies are quantized into semitones, the smallest musical interval commonly
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used in western tonal music. A set of 12 consecutive semitones make up a special

interval called an octave. For reasons discussed later, each pair of notes that is

exactly 12 semitones (or, an octave) apart will sound identical, the only exception

being that the higher note will sound, well, “higher”. In fact, notes that are an

octave apart can sound so similar that even musicians can confuse them, especially

when those notes are played on different instruments.

This phenomenon gives rise to the pitch helix, shown in Figure 2.3, which

is a visualization that shows the cycle of 12 semitones repeated every octave. It

also conveniently shows pitch as a composite of two dimensions: height, (moving

vertically in terms of octaves) and chroma or pitch class, determining the horizon-

tal/rotational position within the helix. The cyclic nature of pitches is evident in

the labeling system as well. Each pitch is labeled with a letter and a number; the

letter indicates one of the 12 semitones (i.e. the chroma); the number indicates

which octave the semitone belongs to (i.e. the height).

To get an idea of how these notes/pitches relate to frequency, table A.1 in

the appendix shows a truncated list of mappings between notes and fundamental

Figure 2.3: Shepard’s pitch helix, which visualizes pitches in two dimensions:
height and chroma.
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frequencies. For example, A3 corresponds to a frequency of 220 Hz, while A4, the

same semitone but one octave higher corresponds to the frequency 440 Hz. In the

next section, we discuss how these mappings are obtained.

Equal temperament tuning: Mapping frequencies to pitches/notes

Musical tuning is the process of adjusting the frequency of pitches on musi-

cal instruments in order to establish typical/correct ratios of frequencies between

pitches. Though preceded by a long and complicated history, the most common

system of tuning of since the middle of the 19th century in western music is called

equal tempering. The main characteristic of this tuning system is that the per-

ceived “sound distance” between each pair of adjacent notes is the same. This is

achieved by choosing the pitches in such a way that the ratio of frequencies for all

adjacent notes is constant. This creates a logarithmic relationship between notes

and frequencies.

More specifically, western classical music (which is the main subject of

analysis here) uses the 12-tone equal tempering system. This is the reason behind

dividing the octave into 12 evenly spaced semitones. As mentioned before, notes

that are an octave apart sound identical, except that one sounds higher than the

other. Interestingly, an important natural phenomenon occurs here: Let x2 be a

note that is exactly one octave (12 semitones) above note x1, and let f2 and f1

denote their respective frequencies. Then,

f2 = 2 · f1 (2.4)

This holds true for any two notes that are an octave apart. This natural phe-

nomenon is often referred to as the “basic miracle of music” and is the basis for

many modern musical systems.

In order to figure out the mapping between frequencies and pitches, we note

the following constraints: 1) notes that are an octave apart have double or half

the frequency of the other, and 2) the octave must be divided into 12 semitones

such that the ratio, r between frequencies of any two adjacent notes is constant.
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We can solve for r as follows:

f1 · r12 = f2 (2.5)

r = 2
1
12 (2.6)

This means that the ratio of frequencies between any two adjacent notes is r =

2(1/12), and the ratio of frequencies between notes with an interval of n semitones

is similarly rn = 2(n/12). As noted before, in western music, a frequency of 440 Hz

is a standard reference to describe the pitch known as the note “middle A” on a

piano; the frequencies of all other pitches can be computed based on this landmark

and the ratio of frequencies that we just computed.

2.2.2 Rhythm, tempo, and loudness

Pitch may be the most prominent musical building block; however, there

are several other really basic dimensions that must be used in combination with

pitch to create music. Because they are not the focus of this thesis, we touch

on each briefly. Rhythm is the part of music that deals with time. At a basic

level, it dictates the length of time an individual note should be played for. More

specifically, all musical pieces have an underlying beat, which is a basic unit of time.

Rhythm tells us how many beats each note should last. More advanced concepts

such as metric structure, have certain restrictions in terms of how many beats can

be contained in a segment of music, thereby constraining the types of rhythms that

may be created. The tempo of a musical piece is the speed or frequency of the beat;

it is a measure of how quickly the beat flows. Music pieces with faster tempos often

feel very high-energy, or grandiose. Those with slower tempos may feel relaxing,

and perhaps even somber. Tempo is often measured in beats per minute (bpm).

For example, 60 bpm means a speed of one beat per second, a frequency of 1 Hz.

Loudness is fairly intuitive – it is basically how loudly or softly the music is played;

it is determined, for example, by the strength in which a pianist strikes a key or a

violinist pushes down on the bow. The loudness and softness of music, especially

in western classical music, plays a large role in the story-telling aspect of music. A

crescendo, for example, commands a gradual increase of sound, which often causes
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a building of tension, while a decrescendo – a gradual decrease in sound – may

resolve tension or convey a more peaceful mood in the music.

2.2.3 Melody, harmony, and chords

The mid-level musical components we refer to here build on top of the

low-level elements discussed before. A melody is a sequence of pitched notes with

durations (i.e. rhythm). Together, these things create a clearly defined musical

“shape” and sound. A melody can be as simple as “Twinkle Twinkle Little Star” but

can also be a complex orchestral theme that is backed up by dozens of instruments.

Harmony is a term that denotes the simultaneous combination of notes, called

chords, and a sequence of chords, called chord progressions. It is also a term that

is used to describe the system of structural principles that govern the combination

of notes that can form pleasing-sounding chords (which is dependent on culture,

of course). Having described both harmony and melody, we see that both refer to

a combination of pitches – melody is the sequential combination of pitches, while

a chord is the simultaneous combination of pitches. In this sense, it is sometimes

very difficult to separate melody from harmony, as they heavily influence each

other.

2.3 Tonality

Tonality is a system of music that arranges hierarchical pitch relationships

around a tonic, a tonal “center” of a musical piece. If all of the basic musical

elements (from the previous section) were words on a page, then the tonic would

be the ideas expressed through those words. More specifically, a writer will first

have an idea that will then cause the writer to use a certain set of vocabulary

to best convey that idea. Similarly, tonality is a system of music in which a

composer will first choose a tonic for his or her music piece, and then arrange all

of the pitches in a way that the harmonies and relationships between those pitches

reflect that tonic. We discuss tonality and the concept of a tonic in more detail

at two different levels: a technical discussion from a music theory standpoint, and
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then a more practical and intuitive look at what tonality looks like, and how it is

used in music composition.

2.3.1 Theory of Tonality

In western tonal music, tonality is concretely organized through the use

of keys and scales. (Tonal systems in other cultures may not necessarily evolve

around such concepts.) A key defines a system of relationships between a series of

pitches called a scale; in effect, each key is associated with a scale (though there

are scales that are not associated with keys). There are two basic key modes :

major and minor. A key in minor mode will have a slightly different scale than

the same key in major mode. Now, within this thesis, we will only talk about

keys that are associated with diatonic scales – each of these scales consist of seven,

ordered pitch classes. Specifically, the diatonic characteristic of the scale refers to

the specific pattern of intervals separating the seven notes. For major scales, the

pattern of interval between notes is: T − T − S − T − T − T − S, where S stands

for an interval of a semitone, while T stands for an interval of a whole tone (twice

the distance of a semitone). For minor scales, the pattern is slightly different:

T − S − T − T − S − T − T . We note that this particular version of the minor

scale is called the harmonic minor. Other variations (including the commonly used

melodic minor) of the minor scale also exist. Figure 2.5 visualizes the patterns of

the major and minor scales.

Figure 2.4 demonstrates this pattern for the major scales: Each column

indicates a semitone, and each row indicates one of the 12 major keys. Each cell

along a row will either be colored or uncolored: a colored cell indicates that that

particular semitone is a part of that key’s scale (the roman numeral indicates the

scale degree); a non-colored cell indicates that that semitone is not a part of the

key’s scale. We note that each key is related to the next by simple transposition of

scales. Figure 2.5 shows scale patterns across two different modes, for a single key

C. As with the major scale, the scale for any minor key can be obtained by simply

transposing the pattern given for C minor the appropriate number of steps.

Each pitch class within the scale has a name which indicates how important
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that pitch class is with respect to that particular key. Figure 2.6 shows the names

of each scale degree, as well as their roman numeral shorthand. The first note in

the scale is the tonic degree, abbreviated as the roman numeral I. As mentioned

earlier, this is the central and most important pitch class within the key. In fact,

the key is also identified by the tonic. For example, as shown in figures 2.5 and 2.4,

both keys C major or C minor have pitch class C as its tonic. Besides the tonic,

two other important pitch classes are the dominant degree (fifth note on the scale)

and the subdominant degree (fourth note on the scale). Intuitively, the scales and

chords based on these two pitch classes have many common notes, making it easy

to transition in and out of.

How many different keys are there? Recall that there are 12 unique pitch

classes. Since each of these pitch classes can be the tonic of a key, and since there

are two different modes, this gives us a total of 12 × 2 = 24 total keys: 12 major

and 12 minor keys. There are many interesting relationships between these 24

tonalities, and one common method of visualization is the circle of fifths, as shown

in Figure 2.7. Here, the 24 keys are arranged in a circle; minor keys are inside the

circle and major keys lie outside. The major and minor keys that lie directly across

each other on the circle indicate that they are relative (major or minor) keys of

each other (i.e. C major is the relative major of A minor); this means that they

share the same collection of pitch classes and key signature – the particular group

of sharp and flat signs assigned to specific pitches in order to represent the notes

in the key (shown in the middle circle within the circle of fifths in Figure 2.7). The

two keys only differ by the position of the third degree in their respective scales.

Neighboring pairs of major-minor keys indicate a separation of a fifth in-

terval. For example, moving clock-wise on the outer circle, the key of G major

follows C major since the pitch class G is the fifth note on the C major scale (or,

the dominant degree). Not only have we established that the dominant degree is

the second most important note in the scale, it also follows that the key signature

of the key based on that degree (in this case, G major) differs by only one acciden-

tal (i.e. a sharp or a flat). This means that C and G are very similar in the sense

that their tonal properties are similar. Another relationship between tonalities
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Figure 2.4: Scales for all 12 major keys. Each column indicates a semitone, and
each row indicates a key. Each cell along a row will either be colored or uncolored:
a colored cell indicates that that semitone is a part of that key’s scale (the roman
numeral indicates the scale degree); a non-colored cell indicates that that semitone
is not a part of the key’s scale.

are the parallel major and minor of a key. These keys share the same tonic (for

example, C major and C minor), but have very different diatonic collections (i.e.

two notes are different in the respective scales). Finally, we note that in certain

circumstances, music pieces will use pitch classes outside of its tonic major or mi-

nor scale. Sometimes, this can be done without weakening its sense of orientation

towards the tonic (referred to as tonal); other times, it does the opposite, and

indeed creates a sound of dissonance or instability. This is referred to as atonal.
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2.3.2 Tonality in music

The previous section gave a fairly technical definition of tonality. Here, we

discuss the more practical side of tonality – what it sounds like and how it is used

in music composition. When a composer writes music, they must first decide on a

key to write the music piece in. This determines the kind of melodies, harmonies,

and chords that will be present in the musical piece.

For example, if a musical piece is in the key of E major, then the tonic will

be the note E, and the dominant degree will be the note B. We will expect the

composer to use these notes quite frequently. Moreover, there are certain chords

that will sound especially pleasing in the context of this key. The most basic of

such chords is the tonic triad, which is a three-note chord whose lowest note (called

the chord’s root) is the tonic (E − G# − B, in this case). Dominant chords are

also significant as they create a sense of tension in the context of the tonic chord,

and needs the tonic chord for resolution. A dominant chord can be some variation

of a triad that has the dominant degree as its root (G# − B − E, for the key of

E major). Other variations include a dominant seventh chord, in which a fourth

note that is the seventh degree (of the scale of the dominant degree) is added onto

the chord. The interested reader should refer to [38] for more details as there are

hundreds of different chord variations.

Figure 2.5: Comparing scales across different modes (for the same key, C). We
note that Figure 2.4 can be reproduced for all minor keys by taking the C minor
scale pattern shown here and transposing the pattern by the appropriate number
of steps (i.e. offset by interval from C)
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Figure 2.6: Names of different scale degrees. I indicates the first note in the scale,
II indicates the second, and so on. There are a total of seven notes in western,
diatonic scales, which will be the main focus of our study.

Figure 2.7: The circle of fifths, used to visualize the 24 major and minor keys in
western tonal music. The inner circle shows minor keys and the outer circle shows
major keys. Adjacent keys are separated by a fifth interval.
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Though each musical piece will have a clearly defined overall key (and usu-

ally begin and end in this key), few pieces stay in this key the entire time. Modula-

tion is the term for when a composition moves from one key (or one tonal center)

to another within a song; it is a compositional tactic that is used to articulate

or create structure, as well as add interest within the piece. The most common

modulations are to closely related keys – for example, those that are neighbors on

the circle of fifths (figure 2.7). The most common destination key for major keys is

the dominant degree (for example, modulating from C major to G major) or even

the subdominant; for minor keys, it is the mediant (III) degree (for example, from

C minor to E minor). Modulations to the relative major or minor are also simple

(for example, C major to A minor), as these keys share all pitches in common.

Common chord modulation is one popular method of modulation: it moves

from the original key to the destination key by way of a chord both keys share.

For example, the keys of G major and D major have four important chords in

common: G, Bm, D, Em. Chords with G as root acts as the tonic chord for the

key of G major, while also acting as the subdominant chord for the key of D major.

Similarly, a chord with D as root acts as the tonic chord for D major, while also

acting as the dominant chord for the key of G major. This is why it is easiest

and most common to modulate between closely related keys, as this maximizes the

number of pitches and chords that the two keys share.

From a cognitive standpoint, tonality plays a large role in how humans per-

ceive the music. Tonality is what distinguishes the “sound” of western music from

other sounds (such as that of Chinese or Middle-Eastern music, for example). In

western tonal music, the tonality of a song can make a song sound “happy” or

“sad” [34]. It can also build feelings of tension and urgency, as well as resolve

them [50] by moving from dissonant-sounding chords (tension) to more stable

chords (resolution). Thus, tonality not only acts as the “glue” that holds all of

the basic music theory elements together, but it also largely influences people’s

emotional response to music.
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2.4 Tonality Induction

Having discussed tonality in the previous section, we now review methods

for how to analyze tonality in a piece of music. This process is called tonality

induction, and its goal is to find the global tonal center of a piece, as well as how

the tonal center shifts locally through the piece. Concretely, this can take on the

form of several different – but highly related – tasks, which we outline below:

Key-finding. Without any modifiers, key-finding refers to finding the overall

key of a piece. Almost all key-finding models classify each song into one of

the 24 major/minor keys.

Local key-finding/Modulation Tracking. As a result of modulation, the

tonal center of the piece will move around during the duration of a song.

Local key-finding refers to finding the key of a local/short segment of music.

Chord-estimation. This may refer to literally identifying the sounds produced

by multiple notes played simultaneously as a particular chord type. However,

more often, chord-estimation refers to identifying the chord progressions in

a piece of music, i.e. segmenting a song into uniform pieces and identifying

the local key in each of those segments.

Because these tasks are so closely related, there exists a lot of overlap in concepts

and approaches. For example, knowing the key of a piece allows us to predict

the kind of chords that will appear, and knowing the chords and their pattern of

progression will also strongly suggest a key.

The remainder of this section discusses previous work for developing al-

gorithms that will automatically perform these tasks. Music experts are then

used to evaluate the findings of these automatic algorithms. We first give an

overview of the feature extraction process for both symbolic and audio-based sys-

tems (section 2.4.1). This is an important step that determines how musical input

is interpreted by the computer. We then organize tonality induction models we

review by the type of input the system/algorithm takes in: symbolic or acoustic.

Systems that require symbolic input (section 2.4.2) tend to be tonality induction
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approaches motivated from a cognitive and psychological standpoint (as they are

interested in how humans perceive and understand tonality [81, 34]). Since their

interest lies in the structure and organization of the musical notes, a clean and

accurate symbolic representation of the musical score (by way of a file format like

MIDI) is used for input. Systems that take acoustic signals (section 2.4.3) are

generally motivated by the MIR community. Their goal is to create applications

that are readily useful to the everyday listener with hundreds of thousands of .mp3

(or other audio file formats) stored on their computer. At the end of the section,

Tables 2.1-2.3 provide a summary of previous studies related to symbolic/audio

key/chord estimation tasks.

2.4.1 Feature Extraction

Any system that perform automatic tonality induction requires music to

be inputted into a computer program somehow. The process of digitizing music

input into a format that is recognizable by a computer is called feature extraction.

Below, we describe some common methods for feature extraction for two different

types of input: symbolic and audio.

Symbolic Features

Symbolic input refers to an exact transcription of a piece of music. The

bare minimum of such a transcription would include all of the notes and note

durations present in the piece. Depending on the file format type, other musical

attributes – such as tempo, meter, and loudness information – are also encoded.

There are many symbolic file formats, with MIDI being undoubtedly the most

popular. This is due to the fact that MIDI is not simply a system for musical

notation (as many other formats are), but also acts as an industry specification by

which digital musical instruments and computers connect and communicate with

each other. This enables musicians to automatically recording and digitizing their

performances on MIDI instruments, making it relatively easy and quick to create

MIDI formatted music files. (The other option, is to manually enter music notation

into software such as Finale or Sibelius, which takes a lot more time, but results
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in more accurate transcriptions.)

Symbolic MIDI files are easy to interpret. Most MIDI file readers represent

each note event in a MIDI file in the form of a tuple. For example, the MIDITool-

Box [20] (for Matlab) that is used in this thesis encodes each MIDI song as a list

of note events. Each note event is represented by the following seven values: (1)

onset time (in beats), (2) duration (in beats), (3) MIDI channel, (4) MIDI pitch,

(5) velocity, (6) onset time (in seconds), (7) duration (in seconds). The fourth

element – MIDI pitch – maps the 88 notes on a keyboard (from A0 to C8) to

MIDI numbers which span from 21 to 108.

Audio Features

Audio input is differs greatly from symbolic input, for all the reasons de-

scribed in section 2.2.1. As we have seen, a combination of acoustics, physics and

psychology make the interpretation of audio input quite complicated and requires

several pre-processing steps before arriving at a representation that is useful for

our musical task at hand. Many early approaches for tonality estimation adapt

the findings of the symbolic, score-based models (from the previous section) to

using acoustic signals as input. Traditionally, this was a two step process: first,

polyphonic transcription techniques [9, 35] were used to identify the individual

notes played. Then, the same tonal models used previously would be applied to

the symbolic representation in order to do whatever task at hand (global/local

key-finding, chord recognition, etc.). Unfortunately, this approach suffered greatly

from recognition errors at the first stage, due to the presence of noise and overlap-

ping harmonics of notes in the spectrum of the input audio signal.

Leman [49] is often credited as the first to propose a working tonality induc-

tion system that used acoustic input. This system is based on an auditory model

using a Kohonen map – a self-organizing map created using artificial neural net-

work techniques [37] with trained tonal centers for the recognition. However, the

real key to his success was avoiding the first stage of unreliable note transcription.

Instead, Leman used the spectrum of the audio signal to create an intensity map of

twelve semitone pitch classes, very similar in concept to the 12-dimensional input



28

vector used in the Krumhansl-Schmuckler and Temperley key-finding algorithm.

It is observed that this procedure collapses pure tones of the same pitch class,

independent of octave, to the same frequency bin, and for complex tones, the har-

monics also fall into particular, related bins. Representing the audio in this way

directly preserved tonal and harmonic information, and served as a more robust

representation than transcribed notes. Since then, the idea of collapsing frequency

bands into chroma bins has become very popular feature for audio-based tonal-

ity induction methods. Many different approaches have been proposed; most are

based on one of two frequency transforms: the DFT (discrete Fourier transform)

or the Constant-Q transform.

DFT-Based Features. Fujishima [24] was among the first to create a

tonal system that used a DFT-based acoustic feature. He called these features

pitch class profiles (PCP), which are computed as follows: First, the algorithm

transforms a fragment of the acoustic signal to a DFT spectrum: X(k) for each

k = 0, 1, . . . , N−1 (whereN is the total number of samples in the signal) calculated

as follows:

X(k) =
N−1∑
n=1

e−2πikn/N · x(n) (2.7)

Since x(n) is real X(0), . . . , X(N/2 − 1), or just the first half, gives the entire

spectrum. The PCP is then computed from the DFT spectrum:

PCP (p) =
∑

`s.t.M(`)=p

||X(`)||2 (2.8)

where M(`) is a table that maps a spectrum bin index to the PCP index. For

example:

M(`) =

{
−1 if ` = 0,

round(12 log2((fs · 1
N

)/fref )) ·mod12 if ` > 0
(2.9)

Here, fref is the reference frequency that falls into the first PCP bin, PCP (0).

The term (fs · 1
N

) represents the frequency of the spectrum bin X(`). Conceptu-

ally, these PCP vectors are very similar to Leman’s work, in which each of the

12 bins represent the intensity of each of the twelve semitone pitch classes. For
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instance, the first PCP element shows how strong the note C (given that the ref-

erence frequency corresponds to C) is within that segment of audio. Fujishima’s

PCP vectors soon became the basis for others who derived DFT-based features.

Gomez [26] builds on Fujishima’s work. She introduces HPCP features that modify

the PCP features by 1) using higher resolution bins to avoid spectral leakage, and

2) explicitly considering the presence of harmonics. Some other works of interest

includes Pauws [63], who computes a spectrum that is modeled as a combination

of the spectral content of the perceptual pitch, and the musical background, and

Chuan [13], who looks for spectral peaks of frequencies in the DFT and determines

their relative strengths.

Others have proposed variations on these DFT-based feature vectors. For

example, Gomez [26] builds on Fujishima’s work introducing HPCP features that

modify the original PCP features in the following ways: First, HPCP bins have

a higher resolution than regular PCP bins, meaning that there are often more

than 12 bins. Thus, instead of contributing to a single HPCP bin, each frequency

makes a weighted contribution to multiple bins in a certain window around that

frequency value. The closer that frequency value is to the bin; the higher the

weight of contribution. This minimizes the estimation errors that arise due to tun-

ing differences. Second, the HPCP computation explicitly considers the presence

of harmonics. Recall that when a single note is played, spectral components will

appear at frequencies of the different harmonics (i.e. f, 2f, 3f, . . . ). In order to

make these extra harmonic components contribute to the HPCP bin of its fun-

damental frequency, a weighting procedure is used such that each frequency fi

considered will make a decaying contribution as a harmonic frequency to bins that

represent:

fi,
fi
2
,
fi
3
, . . . ,

fi
# of harmonics

(2.10)

Some other works of interest includes Pauws [63], who computes a spectrum that is

modeled as a combination of the spectral content of the perceptual pitch, and the

musical background, and Chuan [13], who looks for spectral peaks of frequencies

in the DFT and determines their relative strengths.
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Constant-Q-Based Features. Another type of frequency mapping is

based on a frequency transform that is similar to the DFT, called the constant-Q

transform. Many others have also used the constant-Q feature successfully in their

key-finding algorithms and applications [66, 84, 27, 48]. The constant-Q transform

was originally introduced by Brown [7], and then Brown and Puckette [8] later

proposed an algorithm for more efficient computation. Like the DFT, the constant-

Q transform is also a bank of filters that separates the input signal into multiple

components. Each one of these components carries a single frequency subband of

the original signal. The difference lies in how the filters are spaced. The constant-

Q transform has geometrically spaced filters, such that the ratio between each

subsequent filter is constant.

fk = f0 · 2
k
b (2.11)

Here, f0 is the minimal center frequency, and b is the desired number of filters per

octave. The above equation may be understood more intuitively as a recurrence

relation:

fk+1 = fk · 2
1
b (2.12)

It should be clear that spacing the filters in this way makes the ratio between

frequency and interval (referred to as Q) stay constant and independent of k:

Q =
fk

fk+1 − fk
=

fk
fk · 21/b − fk

= (21/b − 1)−1 (2.13)

When the minimal center frequency f0 is set, for example, to that of midinote 0

(i.e. lowest possible C on the piano, with a frequency of about 8.17 Hz), then each

successive filter will have a center frequency equal to the next musical note on the

chromatic scale. We note that the Fourier transform in its original form does not

have this property; its filters are spaced additively instead of geometrically, and

thus calls for an extra step in which frequencies must be specifically mapped to

chroma bins (i.e. the table M(`) in Fujishima’s work). In the end, the constant-Q

transform retains a similar 12-dimensional vector indicating the contribution of

each pitch class. For a more detailed explanation of how the constant Q transform
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is computed, please refer to [7] and [8]. The first reference gives a derivation for

the constant Q transform based on the Fourier transform, while the second gives

a derivation based on the fast Fourier transform, making the overall computation

much more efficient.

This summary details the most basic prototype of fourier-based features.

Additionally, later in section 4.3, we describe two additional enhancements by

Harte [27] and Mauch [57] that were use in our own experiments. We note, however,

that there exists a large corpus of related work involving acoustic feature extraction

that is out of the scope of this thesis.

2.4.2 Tonal Models for Symbolic Input

One of the first approaches for tonal induction is attributed to Longuet-

Higgins, a pioneer in developing computation models for music cognition. In his

earliest work [54], Longuet-Higgins proposed that musical notes can be neatly

arranged in a two-dimensional harmonic network: one axis represents notes that

are five scale steps apart, and the other axis represents notes that are a major third

apart. He then observed that members of the same key form distinctive shapes

in this harmonic network, and proposed a key-finding method based on a Shape

Matching Algorithm (SMA) that used the shapes to identify the key of subjects

of Bach’s “Well-Tempered Clavier.” Figure 2.8 shows an example of how different

keys look in the harmonic network. This key estimation algorithm analyzes the

different tones of the score in order to find whether or not they are contained in

the diatonic major and minor scales. It then eliminates the keys that have a tone

in the sequence which is non-diatonic on this key. If all keys are eliminated or

there is more than one key candidate, they use a tonic-dominant rule to estimate

the key. Several other researchers have proposed networks and representations for

expressing harmonic relations for automatic key-finding. Some of these include

Reimann’s Tonnetz network [15] (a re-interpretation of Leonhard Euler’s original

work), Shepard’s pitch helix [70], Lewin and Cohn’s transformational theory within

the Tonnetz [52, 14], Krumhansl’s torus [41], and Chew’s spiral array [11].

Another early work in the field is by Winograd [82], who proposes a method
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for automatic tonal analysis using ideas derived from linguistics. He eloquently dis-

cusses the complexities of such analysis by comparing it to understanding language.

One aspect of music highly amenable to [linguistic] treatment is the
harmonic structure of tonal music. First of all, it is not trivial. It
takes a rather sophisticated understanding of music to perform har-
monic analysis (as opposed to simple chord identification) ... Fur-
ther, even experienced theorists can disagree on the “reading” (pars-
ing) to be assigned to a particular composition ... There is of course
close agreement on all but the most detailed points, and a program
should strive for an “intelligent” reading. This makes the problem
interesting as a problem in artificial intelligence, not only for its own
sake, but because of its clear relationship to the problem of parsing
and understanding structures in other languages with a semantic
component.

Winograd then proposed a generative grammar (based on the works of

Chomsky [12]) that attempts to provide a neat and useful way of expressing the

many structural and syntactic rules governing music composition. Figure 2.9 shows

a simplified example of what a grammar of tonal harmony might look like. Wino-

grad implemented his grammar in the form of a computer program that took as

input the notes representing the harmonies for each beat. Winograd’s program

took a first pass through the music to label harmonies, and then a second pass

to determine the function of the chords. In general, the program lacked general-

ity and mostly focused on examining the effectiveness of Winograd’s experimental

aasdfasdf

E B F C G D A E B

C G D A E B F C G

A E B F C G D A E

F C G D A E B F C

D A E B F C G D A

A E

F C G D

B

F C G D

A E

C MINOR

C MAJOR

Figure 2.8: In Longuet-Higgins’s key-finding algorithm, tonalities are mapped
to a two dimensional structure, where different keys will take on unique shapes.
Key-finding is done by recognizing these certain shapes.
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Figure 2.9: A simple generative grammar for tonal harmony by Winograd [82],
who likens tonal harmonic analysis to parsing a semantic language.

grammars. It did, however, form the basis of several more complete and sophisti-

cated harmonic analysis programs, such as BANALYZE [83] and CHORALE [19],

both of which did extensive harmonic analysis (and even composed in the style)

of Bach compositions.

Landmark work produced by Krumhansl and collaborators introduced the

concept of “key-profiles” (used in a simple template-matching approach) that re-

mains very popular to this day. Krumhansl’s work began as a series of innovative

psychology experiments called probe-tone experiments [43, 42, 41]. After some

trial-and-error, experiments tried ensuring that both musicians and non-musicians

would be on the same playing field. In short, the experiment asked subjects to

listen to an incomplete scale (for example: C-D-E-F-G-A-B), and then rate (on a

scale of one to seven) how well each of the 12 possible tones “complete” the scale.

The definition of “completion” remains vague, however, Krumhansl’s experiment

revealed an innate sense in subjects (who were presumably raised listening to west-

ern tonal music) regarding what does and does not fit in a musical context. From
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these experiments, a multidimensional scaling solution was used to assign precise,

quantitative numbers that reflect the stability of each pitch in the context of a par-

ticular key. These numbers form a key-profile for that particular key. Figure 2.10

shows key-profiles for C major and C minor. Because of the cyclic relationship be-

tween different keys within each mode, key-profiles for other keys can be obtained

by simple transposition.

Figure 2.10: C major and C minor key-profiles derived from Krumhansl and
Kessler using probe-tone studies. These profiles indicate the prevalence of each of
the 12 pitch classes in a key.

The key-profile was also the point of departure for Krumhansl and Shmuck-

ler’s key-finding algorithm [41]. The premise behind the algorithm is simple: If one

can determine the salience of each of the 12 semitones within a selected segment of

music, then one can take the resulting 12-component vector of salience and corre-

late it with the key-profiles of all major and minor keys. The key-profile with the

highest correlation determines the key. In most common applications of this key-

finding algorithm, salience was equated with the total duration of each chromatic

pitch within the musical passage. Initial tests showed that it did reasonably well

on just the first four tones of Bach, Shastokovich, and Chopin preludes. Conse-

quently, in addition to identifying the global key of a piece of music, the algorithm

also worked reasonably well for modulation tracking and doing localized key-finding

(achieved by simply applying the algorithm to short segments of music). This kind

of simplicity and flexibility undoubtedly contributed to the algorithm’s popularity

as it became the key-finding algorithm of choice (for symbolic music input, or used
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to adapt to audio music input) in many later applications, [65, 26, 32]. As with any

successful model, it also spurred a number of researchers to approach key-finding

by extending Krumhansl and Kessler’s key-profiles [74, 56, 73].

Temperley [74] then built upon Krumhansl’s work and contributed in several

ways. First, Temperley chose to discard note duration information in the 12-

dimensional input vector that represents the musical score. Instead, each pitch is

given a 0 or 1 indicating if it was present in the passage of music. This was done

after he observed that a repeated note in the passage would be given too much

weight. Second, Temperley specifically addressed local key-finding and modulation

tracking by performing the Krumhansl-Schmuckler algorithm on small segments

of music (a half-measure, but no longer than one second). He further proposed

that once in a certain key, most songs prefer to remain in that key unless there is

strong evidence to do otherwise. Thus, to handle this, the model imposes a “change

penalty” if the predicted key for one segment differs from the next. Using dynamic

programming, he was able to find the optimal sequence of local keys within a song.

In a later publication, Temperley also empirically derived a new set of key-profiles

by averaging frequency counts of each pitch from a corpus of excerpts taken from

the Kostka and Payne music theory textbook [38]. Appendix A.1 shows a sample

of many new key-profiles developed by researchers, including Temperley.

2.4.3 Tonal Models for Acoustic Input

In this section, we present some models of tonality induction that take

acoustic signals as input. We categorize these models into two groups, based

on their underlying approach. The first group uses template-based matching ap-

proaches, where a set of key-profiles (such as the ones from Krumhansl-Kessler [41])

are pre-defined, and classification is done by assigning each acoustic feature vec-

tor to the key whose key-profile is most similar to it. The second group models

the music data using machine learning methods and infers the key-profile directly

from the dataset; each model has its own heuristics for performing the classification

stage.
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Template-based matching approaches

The techniques described in this section first use pre-defined key templates

to represent each of the 24 keys, then correlate these templates with the feature

vector computed from audio. The key template that yields the maximum correla-

tion is the key that is assigned to the segment of audio represented by that feature

vector. We refer to this as the maximum key-profile correlation (MKC) algorithm.

We begin with Fujishima [24], whose PCP vectors were used to create the

first comprehensive audio chord recognition system. His system supported 27 possi-

ble chord types. Each chord type, c, was represented with a binary, 12-dimensional

template vector, CTTc(p), where p is one of the 12 pitch classes. If the chord type

c has the pitch class p in it, then CTTc(p) is set to 1, and 0 otherwise. For instance,

the CTT for a major 7th chord with root C is (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1)T . Each

segment of music was then classified as the chord type that produced the smallest

euclidean distance between its CTT and the PCP. He reports very high accuracy

– up to 94% on the 208 frames of the first 50 seconds from the opening theme of

Smetana’s “Moldau”, though his experiments are restricted to monophonic music

data only. Harte and Sadler [27] who derived the constant-Q based high-resolution

chroma features also used a similar matching approach for a chord recognition sys-

tem. They defined 48 binary chord templates (triads of major, minor, diminished

and augmented for each pitch class). They used two full Beatles albums (28 songs

total) for evaluation and obtained an accuracy of 62.4%.

Pauws [63] proposed a key-finding algorithm that was based on the human

auditory system and how they perceived music. He computed chroma features

much like Fujishima, but added several extra pre-processing stages to obtain a

harmonically compressed spectrum (similar to Gomez’s extended work with the

HPCPs [26]). These steps included low-pass filtering, enhancing spectral compo-

nents to cancel out spurious peaks, logarithmic frequency scaling, and the use of

a weighting function similar to human auditory sensitivity. Using the MKC al-

gorithm with Krumhansl-Kessler key-profiles, Pauws evaluated his system on 237

classical piano pieces that included Bach, Shastakovich, and Chopin preludes. The

highest accuracy of 75.1% was obtained by evaluating the first 30 seconds of each
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song, from the beginning. When adding relative, dominant, sub-dominant and

parallel errors as correct matches, accuracy increased to 94.1%.

Zhu [84] proposes an interesting variation on the MKC algorithm for key-

finding. His approach is based on the assumption that the scale root note plays

the foremost role in tonal music (i.e. one of the 12 pitch classes), as opposed to the

mode of the key (i.e. major or minor). In his approach, pitch profile features are

first extracted. These are very similar to basic key-profiles, but with the following

enhancements: First, a constant-Q transform of the input signal is taken. Second,

Zhu accounts for mistuning of the recording by calibrating against the standard 440

Hz (similar to Gomez [26] and Harte’s [27] approach with high-resolution chroma

bins). Third, to address the presence of harmonics, partials from each note are

extracted. In the last step, Zhu does something called consonance filtering which

extracts only the prominent partials that are relevant to the music scale (i.e. all

“accepted” partials within close proximity in the music must belong to a single

diatonic key; otherwise, it is eliminated). One of the most novel parts of their

algorithm is the key detection stage: From this pitch profile feature, only the

diatonic scale root is predicted first. Once this is done, both the diatonic scale

root and the pitch profile feature are used to predict the entire key (i.e. major or

minor). Using 60 pieces of pop music and 12 pieces of classical music (all from

Vivaldi’s “The Four Seasons”), the accuracy they obtained was 90% and 83.3%,

respectively. The higher accuracy in pop music than classical, they argue, is due

to a smaller number of modulations.

Izmirli [32]’s algorithm not only does global key-finding, but tracks mod-

ulations as well. First, conventional chroma vectors are extracted from the in-

put signal and an adaptive tuning algorithm is then applied to correct mis-tuned

recordings. While others move to the next stage of predicting the key for the entire

song based on the extracted features, Izmirli first performs a segmentation step.

This segmentation aims to find the points in which the key changes; each resulting

segment should then correspond to a part of the music that stays in the same local

key. Segmentation is done using a variation of non-negative matrix factorization

(NMF) [46], an algorithm that aims to decompose an (n × m) matrix V , into a
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product of two smaller, rectangular matrices W and H. To accomplish segmenta-

tion, the V matrix is a (12×m) matrix which holds averaged chroma vectors for

small windows of time (i.e. first 5 seconds of chroma vectors in the song are av-

eraged, and represent the first column of V ). Upon decomposition, the W matrix

will hold as many columns as there are segments in the song; each segment will

correspond to a 12-dimensional column vector – similar in concept to the original

chroma vector in the sense that it strongly suggests tonality information for that

segment. In effect, this is similar to vector quantization, where as many similar and

contiguous chroma vectors are grouped together as possible, before forming a new

group (i.e. modulation to a different key). To perform modulation tracking, once

segmentation is finished, a MKC algorithm using Krumhansl-Kessler key-profiles

is applied to each discovered segment, and predicts a local key for that segment.

For overall key-finding, the key of the first segment is taken to be the overall key

of the piece.

Machine learning approaches

So far, we have looked at audio key-finding algorithms that use a pre-defined

musical template in their key detection stage to estimate the overall (or local) key.

While this has produced good results, this method has several disadvantages. First,

there is a disconnect between the numbers obtained through cognitive experiments

(i.e. the probe-tone studies) and how it actually relates to the low-level chroma

features extracted from real audio signals. Second, the performance of these al-

gorithms rely very heavily on these rigid key-profiles; they may not adapt well

to diverse types of music, and do not acknowledge the specific test data at hand.

Therefore, researchers have also been interested in alternative approaches that will

learn musical rules from the musical audio and (sometimes) specific test data set.

Machine learning algorithms provide many options here by allowing models to be

built on audio training data (that is assumed to be similar to the test data), instead

of heuristics or hand-crafted music theory rules.

To the best of our knowledge, Ellis and Sheh [69] were the first to use hidden

Markov models (HMM) for tonality induction – specifically for local key-finding
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Figure 2.11: Summary of a common approach to key-finding using HMMs.
Chords are modeled as hidden nodes that generate the observed chroma features
from some distribution (usually Gaussian).

(i.e. chord estimation), as well as overall key detection. Since then, HMMs have

become the machine learning algorithm of choice for this problem as researchers

quickly recognized that music can be conveniently modeled as time-series data.

The graphical model for the HMM is shown in Figure 2.11. Each node represents

a time step, where time moves from left to right. The top row are “hidden” states

and the bottom row are “observed” states. For the task of chord estimation, the

hidden nodes usually correspond to the chord label at that particular time step

(since we do not know what it is), and the observed nodes correspond to the

extracted features from the audio signal that we do observe. Each of the hidden

nodes can take on one of N possible states, where N is the total number of different

chord types that the system supports. The HMM requires the following model

parameters in order to be fully defined:

Initial probability distribution: An N -dimensional vector indicating the prior

probability of each hidden state (i.e. chord type) occurring

Transition probabilities: An (N ×N) matrix indicating probability of transi-

tioning from one hidden state to another, for all possible pairs of states.

Observation probability distribution: The distribution by which the ob-

served chroma features are generated from the hidden chord labels. The

Gaussian distribution is frequently used and a set of N Gaussian parameters

(mean and variance) are also included in the model parameters.
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In Ellis and Sheh’s work [69], overlapping windows of 100 ms were used to

compute PCP features, which were then used to train an HMM with a total of N =

147 different chord types (this includes 7 different chord families: major and minor,

major and minor sevenths, dominant sevenths, augmented, and diminished). The

observation probabilities were assumed to be gaussian, and all model parameters

were learned from the data using the expectation maximization (EM) algorithm [16]

(a popular algorithm for maximum likelihood estimation of model parameters in

the presence of hidden variables). Once model parameters are estimated, the

Viterbi algorithm [80] is used to recover the chord sequence (i.e. the sequence

of hidden states) with the highest likelihood given the model parameters. This

best path assigns a chord to every node (representing a 100 ms segment of audio),

resulting in a time-aligned chord transcription. The authors tried several different

HMM configurations; the best of which used a forced alignment of known chord

labels without segmentation information in order to more accurately learn better

model parameters. Their system was then evaluated on 20 songs from three early

Beatles albums, with 18 songs for training and 2 songs held out for test.

Chai [10] adopted a similar HMM based model for the same task of modula-

tion tracking/chord-estimation. Her system extracts 24-dimensional PCP features

from the input audio signal (for higher resolution of chroma bins). Similar to

Zhu [84], the key detection step is broken into two different stages: 1) Detect

the key without considering its mode – for example, both C major and A minor

(which are relative keys in that they have the exact key signatures) are considered

the same key, and 2) Detect the mode, major or minor. Note that this is different

from Zhu’s work – the first step in Zhu’s system grouped together parallel keys

(i.e. C minor and C major) where as Chai’s work groups together relative keys (i.e.

C major and A minor). Both stages in Chai’s system are accomplished through

HMMs. In the first stage, the HMM has 12 possible states, corresponding to the

12 keys with unique key signatures. In the second stage, an HMM with 2 possi-

ble states, corresponding to major or minor, determines the mode. We note that

instead of using the conventional Gaussian for observation distributions, a cosine

distance is used instead (even though it is not a proper probability distribution).
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The cosine distance is measured between the observed 24-dimensional chroma vec-

tors, and pre-defined, binary key or mode (depending on the stage) templates. The

binary key template contains 1’s for all notes that are in that key’s diatonic scale

and 0 otherwise (much like Temperley’s flat key-profile), while the binary mode

template contains a 1 for the dominant degree in the major template, and 1 for

the tonic degree in the minor template, with 0 for every other scale degree. As a

departure from Ellis and Sheh’s work, all other HMM parameters (initial distribu-

tions, transition probabilities) are manually assigned and hand-tuned according to

basic music theory principles. To that effect, this model is “safer” for a small data

set, but also does not completely leverage the power of the learning algorithm to

automatically tune those parameters.

While others used represented chord labels as hidden states in HMMs, and

used the resulting model to do chord estimation, Peeters [64] proposes an HMM-

based key-finding algorithm that works slightly differently: First, training is done

only for a major and minor model; these HMMs contain anywhere from three to

nine different states, which have no intuitive meanings (i.e. they do not correspond

to chord labels as they did in Ellis and Chai since Peeters is not interested in de-

coding the sequence of hidden chord labels). Once model parameters are learned

for both the major and minor HMMs, Peeters performs circular permutation on

the learned Gaussian observation distribution parameters, which results in 24 addi-

tional major/minor HMM models. The final key estimation is done by computing

the likelihood of each key model given an unknown chroma sequence, and selecting

the model with the maximum likelihood. Like Ellis’s work, Peeter’s key-finding

system is purely data-based and incorporates no prior musical knowledge. The

advantages, he argues, are: 1) it does not make assumptions about the presence

of harmonics of the pitch notes in chroma vectors, and 2) it does not require the

choice of a specific key-profile such as Krumhansl/Temperley, or even assumption

of Diatonic scales, etc., and 3) it allows for key modulations over time through

transition probabilities. Unlike Ellis, however, Peeter takes on only 24 different

chord types – 12 major and 12 minor – which is arguably more manageable for

tests with small training sets.
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Lee notes that Peeter’s accuracy may have been higher had he chose to

explicitly assign the states of the initial major and minor models as hidden chord

labels, similar to what his predecessors had done. Thus, Lee proposes such a

system in [48]. Like Peeter, Lee also trains 24 HMM models, one for each key.

The likelihood of each HMM is then computed for each unknown chroma vector

sequence (representing either an entire song, or a segment of a song) and the key

whose HMM yields the maximum likelihood is assigned to that chroma sequence.

The main difference, however is that instead of constructing states with no real

meaning, Lee trains his HMMs such that each observed state (which corresponds to

a chroma vector) is drawn from a hidden state that corresponds to a hidden chord

label for that chroma vector. In doing so, Lee’s model simultaneously performs

overall key-finding and chord estimation at the same time. Lee argues that this is

a more robust model as key-finding and chord estimation are closely related tasks.

However, this is not his only contribution. In order to tackle the problem of having

little or no labeled training data (as so many researchers had faced before), Lee

suggested taking available symbolic music data (i.e. MIDI scores, of which many

can be found online, especially for classical music), running symbolic key-finding

and chord estimation algorithms, and then synthesizing time-aligned audio from

the symbolic data. Since the audio and MIDI data will be perfectly time-aligned,

the results of tonality induction from the MIDI data (such as global and local key

predictions) can be used as training labels for the audio data. Lee argues that key-

finding and chord estimation algorithms for MIDI data is accurate enough that it

can be used as ground-truth labels for the audio version.

2.4.4 Summary

Having presented a sweeping overview of many different kinds of tonality

induction methods, we briefly summarize our findings and try to compare perfor-

mance across models. First, we note that evaluation criteria for symbolic tonality

induction is much more varied than that of audio tonality induction. In general,

fewer pieces of music are used for evaluation (as some models require a large amount

of time for the evaluation of even a single piece), and often the aim of the work
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goes beyond simply finding the correct key of the song. In that sense, it is quite

difficult to compare the results reported from those models. We see that tonality

induction methods based on audio, however, are much more coherent in terms of

goals and applications. The fact that these algorithms are made for audio as input,

strongly suggests that they are motivated by useable, everyday applications.

As we have seen, most models choose to pursue either the task of key-

finding and/or chord estimation. To have a bird’s eye view, we provide a summary

of the previous work discussed above, as well as some others not discussed here, in

Tables 2.1 through 2.3. Each previously published work indicates the main task

at hand (key-finding or chord-estimation) as well as what kind of input data they

focus on (symbolic or audio). We note several things about the compiled tables:

1. Some key components of each model are listed; however, it may not be com-

prehensive. Please refer to the author’s original work for more details.

2. All accuracies are approximate, and though we tried to find the best perfor-

mance from each authors’ work, we cannot guarantee it to be exhaustive.

3. Some accuracies are averaged over multiple datasets (within the same genre)

that an author reported.

4. MIREX scores indicate a type of composite score that rewards points to errors

that predict closely related keys. This is discussed more in section 4.6.2 when

we also use MIREX scores to report our accuracies

We will refer back to these tables when we discuss and evaluate our own models

later on in Chapters 3 and 4.

2.5 Conclusion

In this chapter, we have presented the scientific background on which this

dissertation work is largely based. We first presented some of the fundamentals

of physical music making, as well as the building blocks of music composition,
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including elements like pitch, chords, melodies, harmonies, rhythms, tempo, loud-

ness, and duration. We then worked our way up to higher-level concepts such as

tonality, which all other musical building blocks evolve around. Some background

in theoretical/cognitive studies regarding how humans understand and perceive

tonality set us up for an entire field devoted to automatic tonality induction. We

saw that early on, interest in tonality induction stemmed from a cognitive and

theoretical standpoint, and thus largely involved symbolic music representations.

More recently, interest in tonality induction has shifted, with the goal of being able

to perform automatic analysis on audio music files, which is more prevalent and

relevant to personal music search and organization applications.

As such, we presented an overview of tonality induction methods for acous-

tic input, largely focusing on two concrete tasks: key-finding and modulation

tracking/chord-estimation. We looked at two broad categories of methods: tem-

plate matching algorithms and machine learning based algorithms. We saw that

template-matching algorithms are efficient and require no training data. However,

their performance is very much dependent on the pre-defined templates or pro-

files, which may not be universal, and can easily vary from genre to genre. On

the other hand, machine learning algorithms can learn key and chord distributions

on-the-fly, based on a given data set; it can be constructed to not be specific to

any particular genre of music. Models such as the HMM can also elegantly model

transitions between local key changes, using a probabilistic approach, as well as

how these local keys contribute to the global key of the song. The bottleneck of

such algorithms, however, is the availability of training data, on which the perfor-

mance is heavily dependent. This is especially problematic in supervised learning,

where the training data must have ground truth that must be provided by humans,

involving a great amount of time and labor.

In the next chapter, we propose a novel key-finding and chord-estimation

algorithm that is quite different from all of the models that we have discussed so

far. In chapter 3, we propose a model for symbolic music, and in chapter 4 we

adapt the same model for audio music. Both models address the issue of lack of

training data by using unsupervised learning. In this framework, essentially no
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labeled data is needed, thus reducing the amount of manual labor required to get

such a model to perform well. Our models also assume little prior music knowledge,

and is flexible enough to be adapted to other genres of music, and potentially other

tonal systems as well.



Chapter 3

Harmonic Analysis for Symbolic

Music

3.1 Introduction

In this thesis, we show how to perform key analysis and learn musical key-

profiles automatically from the statistics of large music collections. This chapter

focuses on the use of symbolic music input, while the next chapter will focus on

audio music input. Unlike previous studies, we take a purely data-driven approach

that does not depend on extensive prior knowledge of music or supervision by do-

main experts. Based on a model of unsupervised learning, our approach bypasses

the need for manually key-annotated musical pieces, a process that is both expen-

sive and prone to error. As an additional benefit, it can also discover correlations

in the data of which the designers of rule-based approaches are unaware. Since we

do not rely on prior knowledge, our model can also be applied in a straightforward

way to other, non-western genres of music with different tonal systems.

3.2 LDA-MIDI Model

Our model is based on Latent Dirichlet Allocation (LDA) [6], a popular

probabilistic model that aims to find a short descriptions that can summarize the

49
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contents of a large corpus. Originally proposed in the context of text document

modeling, LDA posits that one way of summarizing the content of a text document

quickly is to look at the set of words it uses. Because words carry very strong

semantic information, documents that contain similar content will most likely use

a similar set of words. As such, mining an entire corpus of text documents can

expose sets of words that frequently co-occur within documents. These sets of

words may be intuitively interpreted as topics and act as the building blocks of

the short descriptions.

More formally, LDA is an unsupervised, probabilistic, generative model for

discovering latent semantic topics in large collections of text data. Each discovered

topic is characterized by its own particular distribution over words. Each docu-

ment is then characterized as a random mixture of topics indicating the proportion

of time the document spends on each topic. This random mixture of topics is es-

sentially our “short description”: It not only expresses the semantic content of a

document in a concise manner, but also gives us a principled approach for describ-

ing documents quantitatively. We can now compare how similar one document is

to another by looking at how similar the corresponding topic mixtures are.

Our variant of LDA is based on the premise that musical pieces in the same

key use similar sets of pitches. Roughly speaking, our model treats each song as

a “document” and the notes in each beat or half-measure as a “word”. The goal

of learning is to infer harmonic “topics” from the sets of pitches that commonly

co-occur in musical pieces. These harmonic topics, which we interpret as keys,

are expressed as distributions over the twelve neutral pitch-classes – very similar

in nature to the key-profiles that we have talked about in previous work [41, 73].

Table 3.1 summarizes the relationship between elements of LDA and our model,

LDA-MIDI. The remainder of this section describes our probabilistic topic model,

first developing the form of its joint distribution, then sketching out the problems

of inference and parameter estimation.
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Table 3.1: Summary of analogous elements between the original LDA model, and
our LDA-MIDI model, which performs harmonic analysis on music pieces.

Original LDA LDA-MIDI

a word notes in segment

contains semantic information contain harmonic information

document song

expressed as a mixture of topics expressed as a mixture of keys

topic key

defined as a distribution over words defined as a distribution over pitches

3.2.1 Notation and Terminology

Below are some important notation and terminology that will be used

through the thesis. We try to parallel these terms with the original LDA notation

as closely as possible.

1. A note u ∈ {A,A],B, . . . ,G]} is the most basic unit of data. It is an ele-

ment from the set of neutral pitch-classes. For easy reference, we map these

pitch-classes to integer note values 0 through 11. We refer to V = 12 as the

vocabulary size of our model.

2. A segment is a basic unit of time in a song (e.g., a measure). We denote the

notes in the nth segment by un = {un1, . . . , unL}, where un` is the `th note

in the segment. Discarding the ordering of the notes, we can also describe

each segment simply by the number of time each note occurs. We use xn to

denote the V -dimensional vector whose jth element xjn counts the number

of times that the jth note appears in the nth segment.

3. A song s is a sequence of notes in N segments: s = {u1, . . . ,uN}. Discarding

the ordering of notes within segments, we can also describe a song by the

sequence of count vectors X = (x1, . . . , xN).

4. A music corpus is a collection of M songs denoted by S = {s1, . . . , sM}.
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5. A topic z is a probability distribution over the vocabulary of V = 12 pitch-

classes. Topics model particular groups of notes that frequently occur to-

gether within individual segments. In practice, these groupings should con-

tain the principle set of pitches for a particular musical key. Thus, we inter-

pret each topic’s distribution over twelve pitch-classes as the key-profile for

a musical key. We imagine that each segment in a song has its own topic

(or key), and we use z = (z1, z2, . . . , zN) to denote the sequence of topics

across all segments. In western tonal music, prior knowledge suggests to

look for K = 24 topics corresponding to the major and minor scales in each

pitch-class. Section 3.2.4 describes how we identify the topics with these

traditional key-profiles.

With this terminology, we can describe our probabilistic model for songs in a

musical corpus. Note that we do not attempt to model the order of note sequences

within a segment or the order of segments within a song. Just as LDA for topic

modeling in text treats each document as a “bag of words”, our probabilistic model

treats each song as a “bag of segments” and each segment as a “bag of notes”.

3.2.2 Generative process

Our approach for automatic key-profiling in music is based on the genera-

tive model of LDA for discovering topics in text. However, instead of predicting

words in documents, we predict notes in songs. Our model imagines a simple,

stochastic procedure in which observed notes and key-profiles are generated as

random variables. In addition, we model the key-profiles as latent variables whose

values must be inferred by conditioning on observed notes and using Bayes rule.

We begin by describing the process for generating a song in the corpus.

First, we draw a topic weight vector that determines which topics (or keys) are

likely to appear in the song. The topic weight vector is modeled as a Dirichlet

random variable. Next, for each segment of the song, we sample from the topic

weight vector to determine the key (e.g., A minor) of that segment. Finally, we

repeatedly draw notes from the key-profile until we have generated all the notes in

the segment. More formally, we can describe this generative process as follows:
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1. For each song in the corpus, choose a K-dimensional topic weight vector θ

from the Dirichlet distribution:

p(θ|α) =
Γ(
∑

i αi)∏
i Γ(αi)

∏
i

θαi−1. (3.1)

Note that α is aK-dimensional corpus-level parameter that determines which

topics are likely to co-occur in individual songs. The topic weight vector

satisfies θi ≥ 0 and
∑

k θk = 1.

2. For each segment indexed by n ∈ {1, . . . , N} in a song, choose the topic

zn ∈ {1, 2, . . . , K} from the multinomial distribution p(zn=k|θ) = θk.

3. For each note indexed by ` ∈ {1, . . . , L} in the nth measure, choose a pitch-

class from the multinomial distribution p(un` = i|zn = j, β) = βij. The β

parameter is a V ×K matrix that encodes each topic as a distribution over

V = 12 neutral pitch-classes. Section 3.2.4 describes how we identify these

distributions as key-profiles for particular musical keys.

This generative process specifies the joint distribution over observed and

latent variables for each song in the corpus. In particular, the joint distribution is

given by:

p(θ, z, s|α, β) = p(θ|α)
N∏
n=1

p(zn|θ)
Ln∏
l=1

p(unl|zn, β). (3.2)

Figure 3.2 (a) shows the graphical model for the joint distribution over all songs

in the corpus. As in LDA [6], we use plate notation to represent independently,

identically distributed random variables within the model. Whereas LDA for text

describes each document as a “bag of words”, we model each song as a “bag of

segments”, and each segment as a “bag of notes”. As a result, the graphical model

in Figure 3.2 (a) contains an additional plate beyond the graphical model of LDA

for text. To summarize how our model works, Figure 3.1 gives a more visual

overview of the parameters that are involved in this generative process (as well as

their musical representations).
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Figure 3.1: An overview of all the parameters involved in the generative process.
Here, the outer box on the left hand-side represents an entire corpus of songs (with
three small documents at the bottom indicating other songs in the corpus). The
large musical score in the center represents the “current” song being analyzed. We
see that α, the Dirichlet prior is associated with the entire corpus, as the single
α parameter gives key proportions over all of the songs in the corpus. The θ
parameter is learned at the song level, and gives a distribution over keys for that
song (i.e. key-finding). The z parameter is learned at the segment level, and gives
a distribution over keys for each segment in the song (i.e. chord-finding). Finally,
the β matrix defines each of the 24 musical keys as distributions over pitches; the
weights given by this distribution can be viewed as key-profiles.
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Figure 3.2: (a) Graphical representation of our model and (b) the variational
approximation for the posterior distribution in eq. (3.5).

3.2.3 Inference and learning

The model in eq. (3.2) is fully specified by the Dirichlet parameter α and

the musical key-profiles β. Suppose that these parameters are known. Then we

can use probabilistic inference to analyze songs in terms of their observed notes.

In particular, we can infer the main key-profile for each song as a whole, or for

individual segments. Inferences are made by computing the posterior distribution

p(θ, z|s, α, β) =
p(θ, z, s|α, β)

p(s|α, β)
(3.3)

following Bayes rule. The denominator in eq. (3.3) is the marginal distribution, or

likelihood, of a song:

p(s|α, β)=

∫
p(θ|α)

N∏
n=1

K∑
zn=1

p(zn|θ)
Ln∏
l=1

p(unl|zn, β) dθ. (3.4)

The problem of learning in our model is to choose the parameters α and β that

maximize the log-likelihood of all songs in the corpus, L(α, β) =
∑

m log p(sm|α, β).

Learning is unsupervised because we require no training set with key annotations

or labels.

In latent variable models such as ours, the simplest approach to learning

is maximum likelihood estimation using the Expectation-Maximization (EM) al-

gorithm [16]. The EM algorithm iteratively updates parameters by computing



56

expected values of the latent variables under the posterior distribution in eq. (3.3).

In our case, the algorithm would iteratively alternate between an E-step, which

represents each song in the corpus as a random mixture of 24 key-profiles, and

an M-step, which re-estimates the weights of the pitch classes for each key-profile.

Unfortunately, these expected values cannot be analytically computed; therefore,

we must resort to a strategy for approximate probabilistic inference. We have de-

veloped a variational approximation for our model based on [33] that substitutes

a tractable distribution for the intractable one in eq. (3.3), described below.

Variational Inference

The variational approximation for our model substitutes a tractable distri-

bution for the intractable posterior distribution that appears in eq. (3.3). At a high

level, the approximation consists of two steps. First, we constrain the tractable

distribution to belong to a parameterized family of distributions whose statistics

are easy to compute. Next, we attempt to select the particular member of this

family that best approximates the true posterior distribution.

Figure 3.2 (b) illustrates the graphical model for the approximating family

of tractable distributions. The tractable model q(θ, z|γ, φ) drops edges that make

the original model intractable. It has the simple, factorial form:

q(θ, z|γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn) (3.5)

We assume that the distribution q(θ|γ) is Dirichlet with variational parameter γ,

while the distributions q(zn|φn) are multinomial with variational parameters φn.

For each song, we seek a factorial distribution of the form in eq. (3.5) to approx-

imate the true posterior distribution in eq. (3.3). Or more specifically, for each

song sm, we seek the variational parameters γm and φm such that q(θ, z|γm, φm)

best matches p(θ, z|sm, α, β).

Though it is intractable to compute the statistics of the true posterior

distribution p(θ, z|α, β) in eq. (3.3), it is possible to compute the Kullback-Leibler
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(KL) divergence

KL(q, p) =
∑
z

∫
dθq(θ, z|γ, φ) log

q(θ, z|γ, φ)

p(θ, z|s, α, β)
(3.6)

up to a constant term that does not depend on γ and φ. Note that the KL di-

vergence measures the quality of the variational approximation. Thus, the best

approximation is obtained by minimizing the KL divergence in eq. (3.6) with re-

spect to the variational parameters γ and φn. To derive update rules for these

parameters, we simply differentiate the KL divergence and set its partial deriva-

tives equal to zero. The update rule for γm is analogous to the one in the LDA

model for text documents [6]. The update rule for the multinomial parameters φni
is given by:

φni ∝
V∏
j=1

βx
j
n
ij exp[Ψ(γi)], (3.7)

where Ψ(·) denotes the digamma function and xjn denotes the count of the jth

pitch class in the nth segment of the song. We omit the details of this derivation,

but refer the reader to the original work on LDA [6] for more detail.

Variational Learning

The variational approximation in eq. (3.5) can also be used to derive a lower

bound on the log-likelihood log p(s|α, β) of a song s. Summing these lower bounds

over all songs in the corpus, we obtain a lower bound `(α, β, γ, φ) on the total

log-likelihood L(α, β) =
∑

m log p(sm|α, β). Note that the bound `(α, β, γ, φ) ≤
L(α, β) depends on the model parameters α and β as well as the variational pa-

rameters γ and φ across all songs in the corpus.

The variational EM algorithm for our model estimates the parameters α

and β to maximize this lower bound. It alternates between two steps:

1. (E-step) Fix the current model parameters α and β, compute variational

parameters {γm, φm} for each song sm by minimizing the KL divergence in

eq. (3.6).

2. (M-step) Fix the current variational parameters γ and φ across all songs from

the E-step, maximize the lower bound `(α, β, γ, φ) with respect to α and β.
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These two steps are repeated until the lower bound on the log likelihood converges

to a desired accuracy. The updates for α and β in the M-step are straightforward

to derive. The update rule for β is given by:

βij ∝
M∑
m=1

N∑
n=1

φimnx
j
mn. (3.8)

While the count xjmn in eq. (3.8) may be greater than one, this update is otherwise

identical to its counterpart in the LDA model for text documents. The update

rule for α also has the same form.

3.2.4 Identifying Topics as Keys

We have seen from the previous section that the estimated parameter β

expresses each topic as a distribution over V = 12 neutral pitch-classes. While

this distribution can itself be viewed as a key-profile, an additional assumption

is needed for topics to be identified with particular musical keys. Specifically, we

assume that key-profiles for different keys are related by simple transposition: e.g.,

the profile for C] is obtained by transposing the profile for C up by one half-

step. This assumption is the full extent to which our approach incorporates prior

knowledge of music.

The above assumption adds a simple constraint to our learning procedure:

instead of learning V ×K independent elements in the β matrix, we tie diagonal

elements across different keys of the same mode (major or minor). More specifi-

cally, we add the following constraint to our algorithm: Instead of learning V ×K
different elements in the β matrix, we allow the algorithm to learn only V different

elements for each major and minor mode. These elements are then repeated for

each key-profile of the same mode but shifted by one position for each new key-

profile. This gives a clean formulation of all twelve musical keys for each mode: as

the set of dominant pitches in the distribution are rotated from column to column

all possible 24 configurations are obtained. Figure 3.3 shows an example of what

our β matrix looks like.

Enforcing this constraint, we find that the topic distributions learned by the

variational EM algorithm can be unambiguously identified with the K = 24 major
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Figure 3.3: In LDA-MIDI, we force the elements of the β matrix to be tied
diagonally within the major and minor modes. As such, instead of learning (K =
24)× (V = 12) = 288 different parameters, we are only learn 24 (12 for major and
12 for minor). The remaining weights are achieved through circular shifting – or
transposition, in musical terms.

and minor modes of classical western music. For example, one topic distribution

places its highest seven weights on the pitches C, D, E, F, G, A, and B; since these

are precisely the notes of the C major scale, we can unambiguously identify this

topic distribution with the key-profile for C major. We see that each row of this

β matrix essentially acts as a key-profile for that identified key, as we will discuss

later in section 3.3.4.

3.3 Results and Evaluation

We evaluate our LDA-MIDI model in several different ways. First we talk

about datasets and basic experiment set-up. Then, we evaluate how well our model

does on the tasks of overall key-finding and modulation tracking by comparing it

to other state-of-the-art techniques. We note that while our method requires no

training or prior musical knowledge, all competitive methods either use supervised

learning, or rely heavily on hand-tuned weights based on extensive music theory

knowledge. In fact, our model also produces distributions that are similar to these
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Table 3.2: Description of MIDI datasets used in symbolic music experiments.

ID Size Genre Source
WTC-MID 96 Baroque (Bach’s WTC

Books I & II)
classicalarchives.com/midi

CLA-MID 235 Baroque, Classical classicalmusicmidipage.com
ROM-MID 278 Classical, Romantic,

Contemporary
classicalarchives.com/midi

KP-MID 46 Classical thru Contem-
porary

Tonal Harmony Workbook [39]

BEA-MID 174 Rock, No vocals davidbmidi.com,
earlybeatles.com

hand-tuned weights (called key-profiles) as a by-product, and we analyze how it

compares to hand-chosen ones. Finally, we show some extensions of the basic

LDA-MIDI model, as well as some simple applications of symbolic key-finding.

3.3.1 Experimental Setup

In this section, we show some results obtained by the basic LDA-MIDI

model. We used four different MIDI datasets for evaluating. The first three

datasets were compiled to reflect different musical genres: CL-MID contains clas-

sical piano and orchestral pieces with baroque and classical stylings; RO-MID,

also contains some baroque and classical, but includes many more pieces from the

romantic era, and even some from the contemporary and impressionistic eras; BE-

MID, is a pop/rock dataset that contains instrumental MIDI recordings of songs

from 13 albums of The Beatles. The fourth dataset, KP-MID, contains a mix of

classical music, ranging from the baroque to the contemporary eras. Though this

dataset is redundant in terms of genre, it is the only dataset for which chord and

local key annotations were available. Table 3.2 summarizes these four datasets.

The first set of results come from using the LDA-MIDI model, with the

MIDI datasets from 3.2 as input. There are a couple components of this model

that are open for experimentation that have high impact on classification rates.

One such component is the length of a song segment. We tried several different

methods, including segmenting at the tactus level (defined as the main beat), half-
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measure level, and at the full-measure level. We also tried a fixed length across all

songs (for example, the equivalent length of four tactus-beats, or a fixed number

of seconds). Since the MIDI data itself does not tell us where these measure

boundaries occur, additional pre-processing uses beat-tracking algorithms [21] in

order to make an educated guess. We report accuracies across these different

methods of segmentation.

A second component determines how notes in a segment are converted to

the 12-dimensional vectors inputted into the LDA-MIDI model. Octaves must be

collapsed, but beyond this there are several other considerations such as whether

or not to incorporate information about each note’s duration, metrical position

within a measure, the number of times the note appears, or the octave in which

the note occurs in. We experimented with all of these options, and found that

raw note duration and note count can be misleading (for example, a repeated note

is given too much weight). Instead, the best option is to count the number of

distinct notes that are struck. For example, the first element in 12-dimensional

vector maps to the pitch class A. If the note A4 appears six times in this segment,

then pitch class A is recorded as only having a count of 1, since only one distinct

note A4 was played. However, if both A4 and A5 each appear once, then the pitch

class A will be given a count of two, since two distinct A notes occurred. In this

way, we are somewhat preserving both octave and note count information, but on

the other hand, we are completely disregarding duration information.

3.3.2 Overall Key-Finding

Recall that from the posterior distribution in eq. (3.3) of the LDA-MIDI

model, we can infer hidden variables θ and z that identify dominant keys in whole

songs or segments within a song. In particular, we can identify the overall key

of a song from the largest weight of the topic vector θ. Likewise, we can identify

the key of particular segments from the most probable values of the topic latent

variables zn.

We first show results at the song-level, using our model to determine the

overall key of the musical pieces in our datasets. We also compared our model
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Table 3.3: Key-finding accuracy of our LDA model and other popular symbolic
knowledge-based key-finding models. The LDA-MIDI model is abbreviated as
LDA. The next five models (KK, DT, BA, HB, and CS) use the MKC key-finding
model [41], with different hand-tuned key-profiles. The remaining two models
(CBMS, BAYES) pair hand-tuned key-profiles with Bayes and dynamic program-
ming to model key changes [75, 76]. (Note: We used the Melisma Analyzer soft-
ware, developed by the author of this algorithm, to obtain results for the CBMS
and BAYES models, but over half of the dataset for ROM-MID and BEA-MID
were incompatible with their software, so we chose not to report results.)

Dataset LDA KK DT BA HB CS CBMS BAYES

WTC-MID 0.979 0.917 0.979 0.958 0.948 0.979 0.822 0.911

CLA-MID 0.865 0.793 0.844 0.823 0.823 0.848 0.626 0.781

KP-MID 0.804 0.674 0.696 0.717 0.698 0.652 0.696 0.761

ROM-MID 0.795 0.723 0.777 0.737 0.766 0.781 – –

BEA-MID 0.678 0.747 0.667 0.558 0.523 0.649 – –

to some other symbolic key-finding algorithms, as shown in Table 3.3. Most of

these (denoted KK, DT, BA, HB, and CS) are knowledge-based methods that

use the MKC key-finding model [41] with hand-crafted key-profile weights1. Ap-

pendix A.1 properly cites and describes each of these five key-profiles in details.

The last two (CBMS, BAYES) use a combination of knowledge-based key-profiles

and some statistical methods. For example, CBMS uses dynamic programming to

find the optimal sequence of chords first [75], while BAYES2 uses a simple applica-

tion of Bayes rule and supervised learning [76]. For more details, these models are

reviewed in section 2.4. From Table 3.3, we observe that though these models ob-

tained their key-profiles using rule-based or supervised methods, our unsupervised

model (with almost no prior musical knowledge) yields better results the majority

of the time. We hypothesize that our unsupervised model generalizes better to

multiple datasets.

The overall decrease in classification scores seem to indicate that datasets

grow more challenging going down the list in Table 3.3. Since the datasets are
1Implemented following: http://extra.humdrum.org/man/keycor/
2Code from: http://www.link.cs.cmu.edu/music-analysis/
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organized in rough chronological order, it is reasonable to assume that key-finding

methods find earlier works (Baroque or Classical) to be less challenging than later

works (Romantic and Contemporary), since the latter contains compositions that

are more complex and strays further from basic music theory principles.

In further analyzing the results of our model, we see that many of the

errors made by the LDA-MIDI model are due to confusion with keys that are

musically very similar. To get a better understanding of these errors, we identify

three specific types of errors: (1) perfect fifth errors, (2) relative major and minor

errors, and (3) parallel major and minor errors, and visualize the percentage of the

dataset that these errors take up. (For an overview of what these relations mean,

please see section 2.3.) All other errors that do not fall into one of these three

categories are considered “other”, even though most of these mistakes still involve

confusing fairly similar keys. Table 3.4 summarizes this information by grouping

all of the errors across the five MIDI datasets by error type. We see that in general,

perfect fifth and relative major/minor errors occur more frequently than parallel

major/minor errors.

Relative major/minor errors are not surprising, as keys with this relation-

ship have identical key signatures and scales. In other words, all of the pitches

that are contained in the scale of one key, also occur in the scale of its relative

major/minor key. The ability to distinguish between such keys requires the model

to correctly weight the significance of each scale degree (i.e. A minor is the relative

minor of C major – to distinguish between these two keys, we would expect the

tonic pitch (C for C major, or A for A minor) to be fairly prominent. However, if

note A happens to be used frequently in a C major song, then the two keys may be

confused for each other. Human experts will be able to decipher the two keys by a

number of external cues: by listening for the distinctive “sound” of the minor key,

by looking at the chord progressions involved, and by giving more weight to bass

notes or beat-synchronous notes (which will most often involve the tonic note). A

downfall of our model is that, because it is given very little prior knowledge, it

does not have knowledge about key-related chords, or precisely where down-beats

occur. This may be a direction for future work.
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We also observe that the Beatles dataset (BEA-MID) shows an especially

high error rate involving perfect fourths, perfect fifths, and relative majors. The

perfect fourth areas are likely due to the fact that many Beatles songs are written

with a Blues influence, which makes heavy use of dominant seventh chords, instead

of chords based on major triads. The dominant seventh chord is similar to a major

triad, but includes a flatted seventh note, making it look more similar to the scale

of the perfect fourth key, instead of the scale of its tonic (for example, the model

mis-classified several E major songs as A major, because many E7 chords were

present).

Figure 3.4: A break-down of common errors made by LDA-MIDI. The graph
specifically groups errors across different datasets into respective error types.

In order to visualize errors more generally, we “superimpose” error rates

onto the circle-of-fifths structure. This way, it is easy to tell the relationship

between the incorrectly predicted key with the correct key. We note that in order

to be more specific about cross-mode errors, we analyze major songs separately

from the minor songs. Figures 3.5 and 3.6 each shows two confusion circles. The

top confusion circle visualizes errors made on songs that have major key labels,

and the one shown at the bottom visualizes errors for songs in minor keys. In

order to make this representation key independent, we use relative scale degrees

as opposed to specific key names. The key bounded by a rectangle at the 12 o’

clock position (inner/outer depending on major/minor) of each circle represents

the correctly labeled key as the tonic degree; all other points on the circle represent
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Figure 3.5: Confusion circles visualize symbolic key-finding errors made by the
LDA-MIDI model. The top confusion circle breaks down the errors for ground-
truth major songs from the classical MIDI dataset (CLA-MID), and the bottom
circle does the same for ground-truth minor songs. All percentages shown are with
respect to all songs in the dataset.
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Figure 3.6: Confusion circles visualize symbolic key-finding errors made by the
LDA-MIDI model. The top confusion circle breaks down the errors for ground-
truth major songs from the Beatles MIDI dataset (BEA-MID), and the bottom
circle does the same for ground-truth minor songs. All percentages shown are with
respect to all songs in the dataset.
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incorrectly labeled songs with a scale degree that is relative to that correct key.

In a nutshell, points on the circle closer to the correct key are more similar. We

display the confusion circles for two datasets: CLA-MID, representing classical,

and BEA-MID representing pop. This gives us a bird’s eye view of the type of

errors that are being made. We can see that while there are a couple of outliers

(which may be caused by the use of diminished, or other chord types that are not

modeled), most of the errors occur close to the tonic of the circle – for example, in

the major confusion circle, perfect fourth errors lie to the left of the tonic, perfect

fifth errors lie to the right, and parallel minor errors are at the 9 o’clock position.

3.3.3 Chord-Estimation

Since our model naturally learns distribution over topics for each segment,

we evaluate how well it does on the tasks of chord-estimation/modulation tracking

(We use both terms as the line between these two tasks gets a bit hazy, depend-

ing on the genre of music we are working with. Classical datasets generally give

segment labels that are more similar to local changes within key; hence, modula-

tion tracking. But the Beatles dataset was given smaller segments as input and

our model gives more fine-tuned key-labels that are more like that of chord esti-

mation.) Recall that segment key information can be extracted from the hidden

variable z that we inferred from our posterior distribution. Intuitively, z is the

distribution from which the notes of each segment are drawn from and can provide

information about the most likely key that each segment belongs to.

Though it is relatively straightforward to obtain these segment-level key

predictions, proper evaluation remains a difficult problem, as echoed by many

others working on this problem. This is because manual segment-level annotation

requires particular musical expertise that is not cheap nor fast. The somewhat

ambiguous nature of tonal induction sometimes makes it difficult for two experts

to agree on a ground-truth label.

For our evaluation, we first show in great detail how our LDA-MIDI model

analyzes the first twelve measures of Bach’s Prelude in C minor from Book II of

the Well-Tempered Clavier. Results are then compared to annotations by a music
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Figure 3.7: Key judgments for the first 12 measures of Bach’s Prelude in C mi-
nor, WTC-II. Annotations for each measure show the top three keys (and relative
strengths) chosen for each measure. The top set of three annotations are judg-
ments from our LDA-based model; the bottom set of three are from human expert
judgments [41]
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theory expert, reported from [41]. This is summarized in Figure 3.7 – to the left of

each measure of music shows two small bar graphs. The graph on top shows the

top three keys (and relative strengths) chosen for that measure by human experts.

The bottom graph shows the strengths of the three keys that were given the highest

weights in the segment’s key distribution. We can see that the top choice of key

from our model differs from the expert judgement in only two measures (5 and 6).

For a more large-scale evaluation of modulation-tracking on a classical data

set, we test on the Kostka-Payne dataset (abbreviated KP-MID in the previous

section). This dataset contains musical excerpts taken from Kostka and Payne’s

Tonal Harmony workbook that includes homework exercises commonly used by

beginning music theory students [38]. The ground-truth measure annotations are

taken from the textbook’s accompanying instructors manual. The dataset itself

consists of 46 different pieces, ranging from all eras of classical music. Each piece

is rather short – between 20 - 50 measures long. In total, there are 884 frames

for which we must predict local keys for. We report a best accuracy score of

63.5% on this dataset. David Temperley’s key-finding algorithm from his book The

Cognition of Basic Musical Structures [75] reports a best accuracy score of 87.0%

on this same dataset. However, we note that Temperley obtained this accuracy by

inputting hand-corrected harmony and meter structure into his algorithm. Thus,

future work for our model may also be to incorporate more structural features.

We also manually obtained measure-level chord annotations for 14 songs

from the Beatle’s “Please Please Me” album (which is included in dataset BEA-

MID), with the help of Beatles guitar/piano score arrangements. Though annota-

tions exist for the audio-version of this dataset we were not satisfied with results

from MIDI-to-AUDIO alignment software (due to different kinds of repeats that

were taken). We ended up with a total of 1115 frames, each corresponding to a

measure. The results were quite encouraging: 87.4% of the measures were correctly

predicted. Upon further analysis, many of the errors were extremely understand-

able. The most common source of error being due to chord changes within a

measure – this gave the algorithm conflicting information about what chord to la-

bel the segment with. Table 3.4 shows the fraction of correctly predicted measures,
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as well as whether or not the overall key was predicted correctly.

One result that may comes as a surprise is the song “Love Me Do.” The

algorithm correctly predicts the chords for every single measure, yet fails to predict

the right key (the model chose C major, while the correct key is G major). This

particular song alternates continuously between G major and C major chords (with

a couple of D major chords scattered throughout). In fact, possibly more than half

of the chords in this song are in C major. Unfortunately, since the LDA-MIDI

model makes its decisions based on note co-occurrences, both G major and C

major are given such high weights in the overall key distribution, that choosing

between them is almost arbitrary (the key distribution shows that C major is given

a 2% higher weighting than G major). On the other hand, a human expert would

be able to look past the simple fact that C major chords appear just as often as G

major chords, and see that (1) the additional D major chords hint that an overall

key of C major is extremely unlikely, since the D major chord is not a part of the

C major scale (but is a part of the G major scale), and (2) by looking notes on

which the down-beats occur, and whether musical phrases begin with a C or G.

3.3.4 Unsupervised Learning of Key-Profiles

We have seen so far that each of the LDA parameters has corresponded

to musically intuitive representations: the song-level topic proportion vector θ

predicts the distribution of musical keys for the composition, and the segment-

level topic proportion vector z predicts the chords present in a measure of music,

or the local key that the song has modulated to. We show one more by-product

of the LDA-MIDI model that gives us insight to our data. Recall that one of the

learnt model parameters is the β matrix which defines each of the 24 topics as a

distribution over our vocabulary of V = 12 pitch classes. These act very similarly

as the key-profiles we have seen that have been manually hand-crafted in previous

work. In our model, the LDA-MIDI model automatically learns these key-profiles

in an unsupervised setting, from data.

Figure 3.8 shows the β matrix learnt from the CLA-MID dataset (which

seems to look most “standard” from a music theory standpoint). We note that
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Table 3.4: Chord-estimation accuracies for each song from the Beatles album
“Please Please Me”.

Song Title Chord Correct Key Correct?

I Saw Her Standing There 93.8% Yes

Misery 97.3% Yes

Anna Go To Him 89.9% Yes

Chains 90.1% Yes

Boys 92.0% Yes

Ask Me Why 84.6% Yes

Please Please Me 74.6% Yes

Love Me Do 100% No

P.S. I Love You 86.8% Yes

Baby It’s You 98.7% Yes

Do You Want To Know A Secret? 64.0% No

A Taste of Honey 75.6% Yes

There’s a Place 70.4% Yes

Twist and Shout 87.2% No

Average 87.4% 78.6%

these key-profiles have the same general shape as those of the KK profiles (though

the actual weights for each pitch-class are not comparable since our weights denote

actual probabilities). Note that in both major and minor modes, the largest weight

occurs on the tonic (C), while the second and third largest weights occur on the

remaining degrees of the triad (G, E for C major; G, E[ for C minor). Our key-

profiles differ only in the relatively larger weight given to the minor 7th (B[) of

C major and major 7th (B) of C minor. Otherwise, the remaining degrees of the

diatonic scale (D, F, A for C major; D, F, A[ for C minor) are given larger weights

than the remaining chromatics.
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Figure 3.8: Key-profiles for C Major and C minor learned from LDA-MIDI on
the CLA-MID dataset.

3.4 Extension: Learning Key Correlations

One limitation of the original LDA model for text was that the topics drawn

from each document were independent of one another. For example, if we know

that a text document already contains a topic regarding education, then there is a

high probability that a topic about schools may also be present, as opposed to a

semantically unrelated topic, like genetics research. However, LDA is not capable

of modeling this kind of topic correlation. Under a Dirichlet, the components

of the document-level topic vector are nearly independent, and leads to a strong

yet unnatural assumption that the presence of one topic has no influence on the

presence of another topic.

We see that this issue arises in music as well – certain groups of musical keys

are more likely to be used in a song than others. For example, it is very common

for a song whose overall key is C major, to also contain sounds from G major.

First, there is the obvious – all three of these keys are very similar. G major is a

perfect fifth away from C Major, and its key signature differs by a single accidental

(the F in the G Major scale is raised half a step – or, sharped – while it is not

in C Major). For this reason, the keys of G Major and C Major also share many

common chords: triads rooted at the first, third, fifth, and sixth scale degrees on

the C Major scale, are the same triads rooted at the fifth, seventh, first, and second
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degrees on the G major scale. Since they share so many of the same scale pitches

and chords, it is extremely likely to hear the “sounds” of G major baked into a C

major song. On the other hand, it would be extremely unlikely to hear sounds of

B major, as it is tonally very dissimilar. Learning these key correlations directly

from the data may help weed out “intruding” keys that theoretically have a low

probability of being in the song. We describe such a model below.

3.4.1 CTM-MIDI Model

To see if modeling key correlations improve things, we borrow concepts used

in the Correlated Topic Model (CTM) [5], which can be thought of an an extension

to the original LDA model for text. In order to remove the independence assump-

tion under the Dirichlet, the CTM uses a logistic normal distribution instead. The

logistic normal can be seen as a transformed multivariate Gaussian distribution

on the simplex. This makes it possible for a logistic normal random variable to

be used as a Multinomial parameter, which allows easy integration with the orig-

inal LDA model. The logistic normal distribution is chosen in particular so that

correlations between topics can be modeled through the covariance matrix of the

Gaussian distribution.

Recall that in LDA, the document-level topic vector θ was drawn from a

Dirichlet parameterized by aK-dimensional α. Now, θ will be drawn from a logistic

normal distribution instead. The revised graphical model is shown in Figure 3.9,

and the new generative process is detailed below. Note that the generative process

is identical to that of LDA-MIDI except that key proportions are drawn from a

logistic normal distribution rather than a Dirichlet.
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Figure 3.9: The graphical model for the Correlated Topic Model (CTM) adapted
for symbolic music (CTM-MIDI). The corresponding generative process is identical
to that of LDA-MIDI except that the key proportions are drawn from a logistic
normal (parameterized by µ and Σ) rather than a Dirichlet. The main difference
from the original CTM for text is the additional plate around the notes u – instead
of each word having its own topic, each group of notes (within a segment) has its
own topic.

For each song in the corpus indexed by m ∈ {1, . . . ,M}:

1. Draw η ∼ N (µ,Σ)

2. Map η to the simplex: f(ηi) = exp ηi/
∑

j exp ηj

3. For each segment indexed by n ∈ {1, . . . , N} in a song:

(a) Choose the topic zn ∈ {1, 2, . . . , K} from the multinomial distribution

p(zn=k|f(η)) = θk

(b) For each note indexed by ` ∈ {1, . . . , L} in the nth measure:

i. Choose a pitch-class from the multinomial distribution

p(un`= i|zn=j, β) = βij.

Posterior inference is even more challenging in CTM-MIDI than it was for

LDA-MIDI. Not only is the posterior distribution of the latent variables intractable

to compute, but the logistic normal distribution is also not conjugate to the multi-

nomial. In brief, the strategy employed here is to form a factorized distribution

of the latent variables (similar to the one formed in LDA-MIDI), parameterized

by additional variational parameters. These variational parameters are fit in such

a way that the Kullback-Leibler (KL) divergence between the approximate and
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Figure 3.10: Example of the tied covariance structure learned from CTM-MIDI.

true posterior is minimized. To deal with non-conjugacy of the logistic normal

distribution, iterative methods are used for optimizing the necessary variational

parameters. A more thorough explanation is provided in [5]. This variational in-

ference algorithm was modified to carry out the generative process detailed above,

to work for harmonic analysis with symbolic music input. In particular three sig-

nificant modifications were made to the original CTM (the first two modifications

were also used in the adaptation of LDA to LDA-MIDI model):

1. An additional level of hierarchy is imposed (shown in the graphical model as

an additional plate around notes u), in which topic proportions are learned

for a collection of notes within the same segment.

2. Elements of the β matrix are tied diagonally such that all columns are related

by transposition (i.e. circular shifting) within the confines of its own mode.

Now, only 24 different elements are learned (12 for major and 12 for minor),

instead of 12× 24 = 288.

3. The covariance structure is also tied diagonally (similar to the β matrix).

Each of the K = 24 rows are related by transposition (within the confines of

its own mode). This assumes that correlations depend only on the intervals

between certain keys, instead of the absolute key. Figure 3.10 shows an

example of the learned Σ matrix, labeled with hypothesized key names.
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Table 3.5: Summary of key-finding accuracies when compared to the new CTM-
MIDI model for all five symbolic datasets. The first two columns show results from
the CTM-MIDI and LDA-MIDI models, respectively. The last column(s) shows
the competing model with the highest accuracy; the left side shows the accuracy,
the right side indicates the model from which it was obtained. Bolded numbers
are the highest accuracies across the row for that dataset.

Dataset CTM LDA OTHER

WTC-MID 0.958 0.979 0.979 DT, CS

CLA-MID 0.848 0.865 0.848 CS

KP-MID 0.783 0.804 0.761 BAYES

ROM-MID 0.820 0.795 0.781 CS

BEA-MID 0.753 0.678 0.747 KK

3.4.2 Results and Evaluation

To evaluate the new CTM-MIDI model, we use it to perform key-finding

using the same datasets from the previous chapter. Table 3.5 summarizes these

findings. It is interesting to see that during evaluation, the new CTM-MIDI model

improved key-finding accuracy significantly for more contemporary datasets, while

obtaining accuracies that were either the same or a little lower for other early

classical datasets. It seems that learning the correlation of keys is more helpful on

datasets that contain more complex chords and harmonies.

The improvement from 67.8% to 75.3% on the Beatles dataset is especially

worth noting. It seems that by learning correlations between keys, the CTM-based

model is able to find sets of keys that commonly occur together, even when it is

not explicit in the raw MIDI notes. Figure 3.11 shows a comparison of how CTM-

MIDI decreases error rates all across the board, except for relative minor errors.

To further understand some of these errors, we show how the learned weights of

the 24 keys are distributed for two songs in Figure 3.12 – on the left is an example

of a song in which CTM correctly predicts the key, while LDA misclassifies it, and

on the right is an example of the opposite: LDA is correct, but CTM is wrong.

In the first example (left), LDA does not get any hint of the E Major (the correct
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Figure 3.11: A comparison of common errors made by the CTM-MIDI and LDA-
MIDI models, on the Beatles dataset.

key). This is a reasonable error for LDA because the song contains a lot of E7

chords, which will look a lot more like A major to LDA than E major. In the

CTM-based model however, it seems that correlations have been learned between

E Major, A Major, and B Major; we see several occurrences in which this set of

three keys are given high weights. In this example, the E major is correctly given

the highest weight. On the other hand, we see how learning correlations may be

harmful. In the second example (right), perhaps CTM makes too strong of an

assumption regarding the correlation of this same set of keys, and incorrectly gives

too much weight to E major.

Interestingly, the key-profiles learned by the CTM-MIDI model also reflects

the dominant seventh behavior. Figure 3.13 shows the CTM-based key-profiles

learned from the Beatles dataset in the top row, and the LDA-based key-profiles

from the same dataset in the bottom row. Comparing the two models, we see that

in the CTM-based model, the fourth scale degree, and the seventh are emphasized

more in the major profile. In the C minor profile, it is interesting to see the flatted

seventh emphasized as well. All of these aspects indicate that the CTM-MIDI

model has picked up on the different types of harmonies that the Beatles dataset

uses, which are significantly different from other classical datasets.

We finish this section by noting that the learned covariance structure in

the CTM-MIDI model provides a great visualization of how keys are related to

each other in various datasets. Figure 3.14 visualizes the key correlations learned
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by the model. The keys are arranged like the circle of fifths (with some slight

modifications – e.g. major and minor circles are swapped, and circle is rotated).

Lines connecting one key to another indicates a significant correlation; the darker

(more red) the color of the line, the stronger the correlation.

Figure 3.12: Examples of key-distributions learned by the LDA-MIDI and CTM-
MIDI models, for two different Beatles songs.

3.5 Discussion & Conclusion

In this chapter, we presented two LDA-MIDI and CTM-MIDI that auto-

matically predicts global and local keys from symbolic music input. While most

previous methods either (1) use supervised frameworks that require key-annotated

data, or (2) integrate extensive music theory knowledge (for example, to hand-craft

musical key-profiles or use hand-chosen parameters for HMMs), our method is un-

supervised, and assumes very little prior music knowledge. The extent of musical

knowledge is 1) to know to look for K = 24 keys, and 2) the assumption that the

distribution over pitches for these musical keys must be related by transposition.

The LDA-MIDI model elegantly learns three useful musical representations

at once: a distribution over keys for each song to facilitate key-finding; a distri-
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Figure 3.13: Key-profiles learned from CTM-MIDI (top row) and LDA-MIDI
(bottom row) on the Beatles dataset (BEA-MID).
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Figure 3.14: Correlations between the 24 major/minor keys, learned from CTM-
MIDI. The color of the edge connecting the keys indicate correlation strength;
red indicates one of the strongest correlations while blue indicates a very weak
correlation. These correlations in particular improved key-finding for the symbolic
Beatles dataset by almost 6% over the predictions of the LDA-MIDI model.
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bution over keys for each musical segment to facilitate chord-finding/modulation

tracking; and a distribution over pitches for each key to facilitate the unsupervised

learning of key-profiles that help better understand the statistics of the dataset.

During evaluation, the model does quite well compared to some of the state-of-

the-art symbolic key-finding techniques, obtaining the highest accuracy rates across

most datasets that we tested.

The CTM-MIDI model further extends the LDA-MIDI model by making

the assumption that certain keys are more likely to appear together. As a result, a

covariance structure between the 24 different keys are learned, and evaluations have

shown that this assumption indeed improves key-finding accuracy for songs with

more complex harmonic structures. In particular, since our models are key-based,

chords beyond the 24 major and minor triads are not modeled by our system. When

these more complex chords do occur, LDA-MIDI is most likely to confuse them

with the closest major/minor triad chord (which usually has a different root). Our

results show that in some instance, CTM-MIDI is able to choose the correct key

based on correlation information, even when it is not explicit in the bag-of-notes

MIDI representation.

So far, we have only shown models to work with symbolic input. As men-

tioned previously, we deem models for symbolic input important for two reasons:

(1) they provide more accurate analysis for those purely interested in the analysis

aspect, and (2) they provide high-accuracy annotated training data for audio-based

harmonic analysis systems. However, we also acknowledge that the use of audio

input is much more widespread and practical. In the next chapter, we explore

similar LDA-based models that take audio input.
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Chapter 4

Harmonic Analysis of Audio Data

4.1 Introduction

In the last chapter, we presented models that took symbolic MIDI files on

input. These models were shown to automatically perform harmonic analysis tasks

such as key-finding and modulation tracking with fairly high accuracy, while also

producing several useful representations and visualizations for analysis. While we

expressed the merits for investigating such a model that required symbolic input,

we also recognize the more practical need for models that accept raw audio input.

Doing so greatly improves the versatility of the model as it would allow for the

analysis of mp3 and CD recordings, which are more readily available to the casual

music listener, rather than digitized musical scores (i.e. MIDI files).

In this chapter, we describe how to adapt the models from the previous

chapter to work with raw audio data. In the following, we begin with a discussion

on how our audio datasets are obtained, as well as the features used in the audio-

based models. We then evaluate how well the model from the previous chapter

(LDA-MIDI) fares with raw audio input 4.4 (for simplicity, we refer to this combi-

nation of using audio input on the LDA-MIDI model as the LDA-QUANT model,

as we will see later that audio features are first quantized), and then develop a more

advanced and unified LDA-based model for audio in section 4.5 (LDA-AUDIO).

82
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4.2 Audio Datasets

To have grounds for comparison between the MIDI and AUDIO models

later on, we were intentional about the audio data used for our modeling and

experimentation. Similar to Lee’s approach in [48], we obtain some of our audio

datasets by synthesizing our MIDI song collection using music fonts. Doing this

allows us to easily compare between the MIDI and AUDIO models with the exact

same songs and segment boundaries. We provide more details in our results section.

Synthesis is done using Timidity++, a free software synthesizer that can

play MIDI files and then render to the sound card in real time1. What makes

Timidity++ especially attractive is that it supports the use of SoundFonts; this

is a sample-based synthesis technique that creates harmonically rich audio that

sounds very similar to a real audio recording. For our experiments, we used the site

http://www.sf2midi.com/ where we found soundfont sinfon36.cfg which contains

many orchestral instruments. Once a MIDI file is synthesized and converted into

an audio (WAVE) file, the file is down-sampled to 11025 Hz (in order to speed

computation).

4.3 Audio Features

Chroma vectors have been the most common choice of features for harmonic

analysis tasks ever since Fujishima adopted them for his first key-estimation sys-

tem [24] in 1999. In section 2.4.1, we described how each of its 12 dimensions

represent the relative intensities of the 12 semitones on the (octave-independent)

chromatic scale, as well as common methods for computing them. In addition,

chroma vectors are efficient to compute, low in dimensionality, and (for the most

part) robust to noise and harmonics. This makes them ideal for the tonality induc-

tion tasks at hand, and they very closely mirror the MIDI features (12-dimensional

note counts) used for our symbolic models in the previous chapter.

While previously, in section 2.4.1, we described the basic chroma vector

formulation, in our experiments we work with two additional enhancements on top
1http://timidity.sourceforge.net
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of these original features. In brief, tuned chroma vectors [27] deals with mistun-

ings, and non-negative least squares (NNLS) chroma vectors [57] uses pre-defined

note templates to carry out approximate note transcription in order to reduce the

presence of harmonics. We discuss both in turn below.

4.3.1 Tuned Chroma

Harte [27] proposes a tuning algorithm that is applied to a chroma vector

computation that uses 36 bins per octave instead of 12. The tuning produces

cleaner and stronger chroma vector signals, as well as more accurate boundaries

between semitones. This is especially useful for audio recordings that contain

instruments that are not tuned to concert pitch with A4 = 440Hz. To see the

results visually, Figure 4.1 compares chroma vectors for a chromatic scale before

and after the tuning algorithm. Notice that the intensities of each chroma vector

bin becomes much more well-defined than before. We summarize the stages of the

algorithm below for an audio sample below:

1. Compute a constant-Q transform on sliding windows of audio, using b = 36

instead of b = 12. Using 36 bins produces a higher resolution 36−dimensional

PCP that is able to distinguish between adjacent semitone frequencies regard-

less of the record-specific tuning.

2. A 36-bin PCP is then computed from the constant-Q spectrum vector, C,

mapping each semi-tone as multiple of 36 to the same bin:

PCPb =
M∑
m=0

|Cb+36m| 1 ≤ b ≤ 36 (4.1)

where M is the number of octaves spanned by the constant-Q spectrum.

3. For each PCP, pick the 12 bins with the highest values (out of the 36 total

bins). These bins should roughly correspond to 12 different semi-tones, and

each of the high-value bins are referred to as a “peak”.

4. For each peak, look at the values of its two adjacent bins and apply quadratic

interpolation to find the “true” peak in that local area (i.e. each grouping of
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(a) Original 12-dimensional chroma vec-

tor

(b) Original 36-dimensional chroma vec-

tor

(c) Final, collapsed 36-dimensional

chroma vector

Figure 4.1: This set of images illustrate the process by which Harte [27] quan-
tizes chroma vectors to make them more well defined. (a) shows the original
12-dimensional chroma vector representation for a simple chromatic scale. (b)
shows the 36-bin version of the same computation. (c) shows the result of finding
peak intensities over all chroma vectors in the musical segment, adjusting for the
offset of peak values, and then collapsing the 36-bin chroma vector back down to
12-dimensions. Comparing the final result in (c) with the original (a) shows that
the quantized chroma vector more accurately defines borders between semitones.
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three bins can be thought of as a local area corresponding to a semitone for

which we are trying to find a true peak). The resulting peak may actually

be a number between discrete bins.

5. Now, each of the 12 newly found “true peaks” can be expressed as a number

between 0 and 3, relative to the starting and ending values of its two adjacent

bins. This can be done by simply taking the modulo of each “true peak”

computed from the previous step and 3.

6. For each PCP, we now have 12 numbers that correspond to peak values,

normalized to be between the range of 0 and 3. Out of all normalized peak

values across all windows in the song, we find the most frequently occuring

peak value (by means of a histogram). This resulting value becomes the

“center tuning value” for semitones (i.e. this center tuning value is assumed

to be the correct peak value for all of our local three-bin groupings). This

means that all peaks positioned at +/− 1.5 (relatively) of the center tuning

value, should be considered to be a part of the same semitone. Let c = center

tuning value. Then, the bth semitone (where b = 1, . . . , 12) should contain

the values of peaks positioned between 3(b−1)+c−1.5 and 3(b−1)+c+1.5.

At the conclusion of this algorithm, we obtain a quantized and tuned 12-dimensional

PCP vector with very clear semitone boundaries. Again, note the difference be-

tween images in Figure 4.1.

4.3.2 NNLS Chroma

A second variation to the conventional chroma calculation is used in our

experimentation. The NNLS chroma was developed by Mauch [57], and is one of

many that tries to remove the partials of the notes played in chords. As previously

discussed, the presence of partials affects not only polyphonic music transcription

(in which pitch and octave information must be recovered from audio), but makes

it challenging for audio chord recognition as well. While collapsing the spectrum

into 12 octave-independent bins will “fold” partials into the correct bins for some
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types of chords, others will still suffer from distortion due to partials mapping into

the wrong bins. Mauch explains this very well in his short example:

The motivation for [removing partials] is the observation that the
partials of the notes played in chords compromise the correct recog-
nition of chords... The major chord (in root position) does not pose
a serious problem, because the frequencies of the first six partials
of the bass note (C) coincide with the chord notes: for example,
a C major chord (consisting of C, E, and G) in root position has
the bass note C, whose first six partials coincide with frequencies at
pitches C, C, G, C, E, G. Hence, using a simple spectral mapping
[i.e. conventional chroma calculations] works well for major chords.
But even just considering the first inversion of the C major chord
(which means that now E is the bass note), leads to a dramatically
different situation: the bass note’s first six partials coincide with E,
E, B, E, G#, B – of which B and G# are definitely not part of
the C major triad. Of course, the problem does not only apply to
the bass note, but to all chord notes. This is a problem that can be
eliminated by a perfect prior transcription because no partials would
interfere with the signal.

Previous work in remove partials in chroma calculations have tried em-

phasizing the fundamental frequency component or used relatively simple forms

of approximate note transcription before producing the chroma features [25, 79].

Mauch takes a more direct approach by integrating more realistic transcription

methods used in polyphonic music transcription before collapsing the spectrum

into the 12-bins that form the chroma. The note transcription algorithm he uses is

based on non-negative least squares (NNLS), hence the name of the feature. The

computation is briefly summarized below:

1. Calculate the log-frequency spectrogram and applying global tuning estimation.

This is done by mapping the spectrogram to bins that are spaced a third of a

semitone apart, estimating the global tuning, then adjusting the bins (based

on the estimated tuning) such that the center bin corresponds to the correct

frequency [64]. (This is similar to the process of obtaining quantized chroma

features, described in the previous section.)

2. Pre-process the log-frequency spectrum. Three options are considered, but

the method that is reported to work the best is subtracting the background
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spectrum (using a running mean of bins that spread an octave-wide) and

then dividing by its respective running standard deviation. This is similar

to spectral whitening and serves to discard timbre information [36].

3. Create a note profile for each note to be considered during transcription. The

author considers 84 notes, from A0 to G#6. Each note profile is generated in

the log-frequency domain using a model with geometrically declining overtone

amplitudes [25].

4. Decompose the the individual frames of the log-frequency spectrogram Y as a

linear combination of the 84 note profiles, E. More formally, we seek to find

x, the non-negative weights that would minimize the following function:

||Y − Ex|| (4.2)

This is framed as a non-negative least squares (NNLS) problem, to which the

authors use the solution proposed by Lawson and Hanson [45]. When aggre-

gated across all frames, this solution provides an approximate transcription

of the original audio, represented by an 84×N matrix. Here, each of the N

columns corresponds to an audio frame, and each of the 84 rows corresponds

to a semitone.

5. For each frame, collapse 84 semitone bins into 12 bins by summing all of the

values of the respective pitches. This results in a 12×N matrix, where each

column is the NNLS chroma representation for an audio frame.

In our experimentation, we compare both quantized chroma features (described in

the previous section) and NNLS chroma features. Both include a global tuning

component, but only the NNLS chroma feature attempts to remove partials. Later

on, we show how big of a difference this removal of partials has on our harmonic

analysis tasks.
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4.4 Using LDA-MIDI for Audio

In our first, most basic approach, we adapt the LDA-MIDI model (described

in the previous chapter) for audio. This is done by replacing the original MIDI

note count vectors with a quantized version of the chroma vectors described in

the previous sections. Recall that in LDA-MIDI, each song s is represented as

a sequence of notes in N segments, where each segment represents a basic unit

of time in a song (e.g., a measure). Discarding all note order information, each

segment x is simply described by a 12-dimensional note count vector, indicating

the number of times each of the 12 pitch classes appear in that segment. As such,

a song can be described by a sequence of these count vectors s = (x1, . . . , xN).

Below, we describe two simple methods for obtaining similar MIDI rep-

resentations with acoustic input. For simplicity, we refer to the combination of

using LDA-MIDI for audio as the LDA-QUANT model (since chroma features

must go through a quantization step). In the first section, we first describe the

basic LDA-QUANT model; in the second section, we describe an enhancement to

the LDA-QUANT model that uses a dictionary-based vocabulary.

4.4.1 LDA-QUANT

Instead of a collapsed MIDI note count, LDA-QUANT takes in chroma

features and then quantizes them. To compute chroma features, each song is

segmented into overlapping frames with a length of 2048 samples (at a sampling

rate of 11025, this is about 0.19s) and a hop size of 2048/4 = 512. Chroma

features are computed for each frame, producing a 12 × N ′ matrix of continuous

numbers, where N ′ is the number of total frames produced. In order to preserve the

segment boundaries from the MIDI files, all frames that map to a MIDI segment are

averaged. In doing so, we obtain a 12×N representation – the same dimensionality

as the original MIDI note count vectors. We also do a bit of pre-processing on these

final chroma features: (1) we re-scale the values to be between 0 and 10 – this is to

mimic the behavior of the audio model we will present later, and (2) we threshold

very small chroma feature values and replace them with zeros. These features are
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then used in place of the input MIDI vectors, and everything proceeds as normal

in the LDA-MIDI model.

We emphasize again that since chroma features indicate the relative inten-

sities of each of the 12 pitch classes within the segment, the intuitive meaning of

these features are the same as that of the MIDI note count features. As touched

on before though, the main challenge comes from the presence of harmonics (from

the audio), as well as an ambiguous relationship between chroma intensities and

note counts.

4.4.2 LDA-QUANT with Dictionary

To make the chroma features more robust to noise and harmonics in our

model, we experiment with an additional step on top of the LDA-QUANT model.

This is a dictionary-based approach that is similar to the feature quantization

methods used in computer vision [23]. First, a dictionary is built by defining a

“vocabulary” of 12-dimensional templates. Of course, there are many ways to do

this. In mimicking computer vision approaches, one could first run an unsupervised

clustering algorithm (such as k-means [55]), with k number of clusters, and then

choose the means of those final clusters as the templates. Another approach is

to manually devise templates that will reflect the major and minor keys that the

model is trying to predict. The second method will most likely perform better as

it contains more accurate prior musical knowledge; however, in attempts to inject

as little prior musical knowledge into our model as possible, we experiment with

the first method as well.

Once the vocabulary is set, we map all of the chroma vectors we observe

to the most similar template from our vocabulary. (Here, similarity is measured

by Euclidean distance, though other distance measures may work as well.) Then,

instead of averaging all of the vectors that fall within a MIDI segment, we record

the number of frames that matched to each template. In doing so, each MIDI

segment will be represented by a V -dimensional vector, where V is the total size

of the vocabulary (i.e. total number of templates). The ith element of this vector

indicates the number of frames within that MIDI segment that map to the ith



91

template in the vocabulary.

For our first experiment, we chose musically informed templates that re-

flected the triad chord or scale of each key. A triad-based template, for example,

would contain the following vectors: [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]T for C Major and

[1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]T for C minor, assuming that the elements correspond

to C,C#, D, . . . . For all other major and minor keys to be considered too, each

of these two vectors are circularly shifted 12 times for triads in each of the 24

keys. We end up with a vocabulary size of V = 24, and 24 × N feature vectors

for a song with N segments. For our second experiment, we used the k −means
algorithm to cluster all chroma vectors into K clusters, where we experimented

with K = {128, 256, 512, . . . }. Cluster means were then chosen as templates, and

the vocabulary size is set equal to K.

4.4.3 Results and Evaluation

We show the results of our experimentation, again, using five datasets. The

first four datasets (WTC, CLA, KP, and ROM) are audio files synthesized from

the MIDI datasets described in the previous chapter. The fifth dataset (BEA-

Table 4.1: Summary of results from the LDA-QUANT model. The columns show
experimentation with the two different kinds of chroma computations discussed
in section 4.3, along with whether or not the dictionary-based method discussed
in section 4.4.2 is used. The model(s) that achieve the highest accuracy across
each dataset is bolded. The last column shows the best accuracies achieved by
MIDI-based models (from the previous chapter) for reference.

Dataset TUNED
TUNED

NNLS
NNLS BEST

+ DICT + DICT MIDI

WTC-WAV 0.229 0.875 0.938 0.938 0.979

CLA-WAV 0.570 0.764 0.763 0.806 0.865

KP-WAV 0.413 0.717 0.652 0.674 0.804

ROM-WAV 0.216 0.737 0.748 0.791 0.820

BEA-WAV 0.36 0.610 0.743 0.699 0.753
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WAV) contains real audio recordings from 10 Beatles albums. Our main task for

evaluation is overall key-finding, but we also show the results of chord-estimation

on the two datasets for which chord labels are available.

Audio Key Finding

Table 4.1 summarizes accuracy of overall key predictions. The first four

columns experiment with different types of features: quantized and nnls refer to

features explained previously in this chapter. If the word dict follows, then the

indicated feature was paired with the method of using a dictionary of triad-based

templates, also described previously. For comparison, we also show the best results

obtained from the corresponding MIDI datasets; this gives us an idea of how much

is lost (or gained) by going from MIDI – a clean, discrete representation, to audio.

From the results table, we see that the NNLS chroma features are far supe-

rior than the quantized features alone. This tell us that the removal of harmonics

before forming the chroma features is extremely important. It also seems that using

the triad-based dictionary of templates helped things – in fact, the improvement

of the quantized features with the templates over the same features without the

templates is staggering. This suggests that the use of these triad-based templates

mimics the more complex methods for removing partials before feature computa-

tion. Finally, comparing the audio models with the MIDI models also suggests

that MIDI features are more suitable for tasks such as harmonic analysis. This

is not surprising, as MIDI features do not have the problem of partials or noisy

transcriptions. While audio features may contain more information such as timbre

and melodic phrasing, those features are not particularly useful for the harmonic

analysis task. In the next section, we try to improve on these basic audio models

in order to close the gap between the MIDI-based models.

Audio Chord Estimation

Two of our audio datasets have chord annotations that we could evaluate

our chord predictions against. The first dataset is KP-WAV – since this dataset is

synthesized from MIDI, the same chord labels used in the previous chapter work



93

here as well. Using NNLS chroma, with no dictionary templates, we obtained

an accuracy of 45.0% (out of a total of 884 frames). Comparing with the 63.5%

accuracy obtained on the corresponding MIDI dataset, this is a considerable drop

in accuracy.

The second dataset is BEA-WAV. While this dataset is not synthesized

from MIDI, chord annotations were created by Harte [27] and then made available

by the Centre for Digital Music at Queen Mary, University of London2. Using the

same features and set-up as the KP-WAV dataset, we achieved a chord-estimation

accuracy of 61.8%. Note that since this dataset is not synthesized from the MIDI

Beatles dataset (BEA-MID), chord accuracy between MIDI and audio features is

not directly comparable. We discuss these results in more detail later in section 4.6.

Figure 4.2: A summary of common errors made during chord-estimation. Errors
are shown for two datasets: KP-WAV is synthesized from the MIDI dataset con-
taining excerpts from the Kostka-Payne Tonal Harmony workbook [38]; BEA-WAV
contains real audio from 10 Beatles albums.

Figure 4.2 shows a summary of the chord errors made on these two datasets.

Compared to overall key-finding, the number of “reasonable” errors is considerably

lower, and in general, chord estimation accuracy seems to be significantly lower. A

possible explanation is that in these LDA-based models, chord predictions depend

heavily on the overall key distribution learned for each song – when the input

features are noisy, irrelevant keys are given high weights. Even though the correct

overall key is given the highest weight (allowing the algorithm to predict the correct

overall key), many segments will be given chord labels that are drawn from the
2http://www.isophonics.net
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irrelevant keys. In general, we find that songs that do well at chord estimation

have highly peaked key distributions (i.e. only two or three keys are given very

high weights, with other keys given little or zero weights). These peaked keys

generally correspond to the correct chords that are used throughout the piece. On

the other hand, songs that give weights to many keys generally do poorly on the

chord estimation task, as most of the keys given large weights are irrelevant keys.

Future work may consider restricting the key distributions to give high weights to

only a couple of keys, since most songs only contain a small set of chord changes.

4.5 LDA-AUDIO Model

In this section, we decide to further pursue a model that would specifically

cater to audio input. In short, we include an extra step in the generative process

that assumes that the chroma features we observe are drawn from the MIDI note

counts – these note counts are now considered to be hidden variables that must be

inferred. In the next section, we first highlight the differences between the previous

LDA-MIDI model, and the new audio model, which we refer to as LDA-AUDIO.

In the remaining sections, we flesh out the model and a new variational inference

algorithm to learn and estimate the parameters of this model.

Figure 4.3: A comparison between the graphical models of the (a) LDA-MIDI
model from the previous chapter, with that of the (b) LDA-AUDIO model, which
will be described in this chapter.
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4.5.1 Overview

While the two models are conceptually similar, they differ substantially

at a low level. To prepare the reader for the detailed discussion ahead, we first

provide an overview of differences below, highlighting several important aspects

of the model at a high-level. Section numbers are recorded next to each heading

indicating the section in which the reader can find more details.

Generative Process (4.5.2). The differences in the generative process can be

easily seen in the graphical representation of the two models. Figure 4.3

shows the two graphical models side-by-side. Previously, the MIDI notes

within each musical segment was observed, and shaded. In the LDA-AUDIO

model, the MIDI note must now be inferred from our new observed node:

chroma vectors extracted from audio segments.

Model Parameters (4.5.4). Conceptually, the model parameters stay un-

changed from LDA-MIDI (though the update rules will look different if de-

rived purely from audio data). These include parameters α (distribution

of topics over corpus) and β (topics as distribution over pitches – i.e. key

profiles). LDA-AUDIO also introduces a couple of new model parameters A

and Σ. These are gaussian parameters used for inferring the observed chroma

features from the original, discrete MIDI notes (or pitch-class counts).

Variational Parameters (4.5.3). Just as in LDA-MIDI, the important poste-

rior distribution is intractable and requires variational approximation. Fig-

ure 4.4 shows the simplified variational model for LDA-AUDIO, in compari-

son to that of LDA-MIDI. We see that variational parameters φ and γ remain

unchanged; however, ω is a new variation parameter that approximates the

pitch-class counts in a given musical segment.

A much more thorough discussion is presented for each of the above sections in

the remainder of this chapter.
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(a) LDA-MIDI (b) LDA-AUDIO

Figure 4.4: A comparison between the graphical models of the simplified varia-
tional model for (a) LDA-MIDI from the previous chapter, and (b) LDA-AUDIO,
which will be described in this chapter.

4.5.2 Generative Process

The generative process of the LDA-AUDIO model builds on top of the previ-

ous LDA-MIDI model; the key difference here is that we no longer have knowledge

of exact pitch information as we did before with MIDI data. Instead, our new

probability model represents each input song as a collection of chroma vectors

c ∈ R12. Previously observed notes u are now hidden random variables that must

be inferred from these chroma vectors. The new generative process for each song

in the corpus is outlined below:

1. Choose topic weight vector θ ∝ Dirichlet(α).

2. For each of n segments in a song:

(a) Choose topic zn ∝Multinomial(θ).

(b) For each of ` notes in the nth segment:

i. Choose a pitch-class un` ∝Multinomial(β), where

βij = p(un` = i|zn = j, β).

(c) Generate a chroma vector cn ∝ N (Axn,Σ)

Note that the first four steps of this generative process are identical to that of LDA-

MIDI, with an additional step that occurs at the end: once all notes {xn1, . . . , xnL}



97

have been generated for a segment xn, a chroma vector cn is drawn from the

probability distribution

p(cn|xn, A) =
1

|Σ|1/2
exp

{
−1

2
(cn − Axn)TΣ−1(cn − Axn)

}
(4.3)

As before, the topic weight vector θ is a K-dimensional vector, where K =

24, representing the 24 major and minor keys of western classical music. Topics

are analogous to musical keys, and thus zn can take on one of K keys/topics. Each

note u can take on one of V = 12 pitches, and β encodes a profile for each key

as a distribution over one of the V pitches. The chroma vectors c (described in

section 4.3) are V -dimensional vectors, where each element Vi ∈ (0, 1), indicating

the strength of the ith semi-tone for the time period in that segment. Additionally,

A is a V ×V transformation matrix and Σ is a V ×V covariance matrix that must

be estimated from the data. Now, given parameters α, β,A, and Σ, and N musical

segments per song, the joint distribution for a single song is given by:

p(θ, z,x, c|α, β,A,Σ)=p(θ|α)
N∏
n=1

p(zn|θ) p(xn|zn, β) p(cn|xn, A,Σ) (4.4)

The new graphical representation shown in Figure 4.3 reflects these changes

with the additional (observed) node c, to represent chroma features, and (unob-

served) node u, to represent the symbolic pitch classes that now must be inferred

from the chroma features.

As in LDA-MIDI, we have two tasks at hand. First is the problem of

inference. From the previous section, we have a model that is completely specified

given that we know our parameters α, β,A, and Σ. Thus, we can use probabilistic

inference to analyze each song in terms of the observed chroma features that we

extract from audio recordings. This is done by computing the posterior distribution

using Bayes rule:

p(θ, z,x|c, α, β, A,Σ) =
p(θ, z,x, c|α, β,A,Σ)

p(c|α, β,A,Σ)
(4.5)

Note that we may use the notation c and s interchangeably, to indicate a single

song, depending on the context (the former specifically denotes the set of all chroma

feature vectors in a song). The denominator in Eq. 4.5 is the marginal probability
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of each individual song, which can be obtained by integrating over θ (since p(zn|θ)
= θi for the unique i such that zin = 1), and then summing over all possible

combinations of hidden topics z and notes x:

p(c|α, β,A,Σ) =

∫
θ

∑
z

∑
x

p(θ, z, x, c|α, β,A,Σ) dθ (4.6)

=

∫
θ

∑
z

∑
x

p(θ|α)
N∏
n=1

p(zn|θ) p(xn|zn, β) p(cn|xn, A,Σ) dθ (4.7)

=

∫
θ

p(θ|α)
N∏
n=1

∑
zn

p(zn|θ)
∑
xn

p(xn|zn, β) p(cn|xn, A,Σ) dθ (4.8)

The probability of the entire corpus of songs is then the product of all marginal

probabilities for each song:

p(S|α, β,A,Σ)=
M∏
d=1

∫
θd

p(θd|α)
N∏
n=1

∑
zdn

p(zdn|θ)
∑
xdn

p(xdn|zdn, β) p(cdn|xdn, A,Σ)

(4.9)

Now, we previously assumed that we know values for parameters α, β,A, and Σ in

order to infer hidden variables, when in fact, we do not. Thus, the second problem

is that of learning. In our model, we would like to estimate parameters that will

maximize the log-likelihood of our corpus, assuming that we can compute marginal

probabilities:

L(α, β,A,Σ) =
∑
m

log p(sm|α, β,A,Σ) (4.10)

The Expectation-Maximization (EM) algorithm is typically used to find maximum

likelihood solutions in a latent variable framework like this. However, the marginal

probabilities in equation 4.8 are intractable. Before, in LDA and LDA-MIDI, this

was due to the coupling between θ and β; now we have an additional latent variable

u that exacerbates the intractability even further. This prevents a straightforward

application of the EM algorithm, just as in the LDA-MIDI model, and leads us to

develop a variational EM algorithm that approximates the inference.

Having introduced the generative process in the previous section, we now

have two tasks at hand: to approximate the joint posterior distribution (since the

true posterior is intractable) and obtain estimates for model parameters so that

we can use the LDA-AUDIO model on unseen test data. We tackle the first part
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in section 4.5.3 by substituting a simpler, tractable family of distributions, with

new variational parameters that we must infer. Assuming that the variational pa-

rameters are known, we solve the second part by learning model parameters in a

maximum likelihood fashion (section 4.5.4). Finally, we put these two parts to-

gether in section 4.5.5 with a variational expectation-maximization (EM) algorithm

that alternates between inferring variational parameters and obtaining maximum

likelihood estimates of model parameters.

4.5.3 Variational Inference

To approximate the joint posterior distribution, we substitute the true pos-

terior with a simplified, factorized form instead. This effectively assuming that

there are no dependencies between the variables θ, β, and u, thereby creating a

new family of tractable distributions whose statistics are easy to compute. Figure

4.4 reflects the removal of these dependencies by dropping edges in the graphical

model – we see that there are no longer edges between θ and z, and z and u.

This family of distributions on the latent variables is now characterized by

the following variational distribution :

q(θ, z, x|γ, φ, ω) = q(θ|γ)
N∏
n=1

q(zn|φn) q(un|ωn) (4.11)

where γ is a Dirichlet parameter:

q(θ|γ) =
Γ(
∑

i γi)∏
i Γ(γi)

K∏
i=1

θi
γi−1 (4.12)

and both φ1, . . . , φn and ω1, . . . , ωn are multinomial parameters:

q(zn|φn) =
K∏
i=1

φni
zni (4.13)

q(un|ωn) =
V∏
j=1

S∏
s=0

ωjns
I(ujn,s) (4.14)

Intuitively, these variational parameters that we have introduced approx-

imate the hidden variables in our original model. For instance, γ, a Dirichlet
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parameter for which each song’s topic vector is drawn from, ends up approximat-

ing the distribution of topics for each song in the corpus. φn approximates the

distribution of topics for the nth segment within a song. Finally, each ωjns is a

multinomial parameter that approximates the number of times pitch j appears in

segment n of the music. Having specified this simplified family of distributions, we

want to choose variational parameters γ, φ, and ω that will result in a probability

distribution that matches the true joint distribution as closely as possible.

First, we begin by decomposing the log marginal probability as a sum of

some lower-bound L and the KL divergence between the true and variational pos-

teriors. This is shown below (for readability, we drop dependence parameters):

ln p(c|α, β,A) (4.15)

= ln

∫
θ

∑
z

∑
x

p(θ, z,x, c) (4.16)

= ln

∫
θ

∑
z

∑
x

q(θ, z,x)
p(θ, z,x, c)

q(θ, z,x)
(4.17)

≥
∫
θ

∑
z

∑
x

q(θ, z,x) ln
p(θ, z,x, c)

q(θ, z,x)
(4.18)

=

∫
θ

∑
z

∑
x

q(θ, z,x) ln p(θ, z,x, c)−
∫
θ

∑
z

∑
x

q(θ, z,x) ln q(θ, z,x)

(4.19)

= Eq[ln p(θ, z,x, c)]− Eq[ln q(θ, z,x)] (4.20)

= L(γ, φ, ω) (4.21)

We note that Jensen’s inequality is applied to arrive at equation (4.18). Now, in or-

der for the factorized variational posterior to match the true posterior distribution

as closely as possible, we must find the variational parameters that will minimize

the difference between ln p(c|α, β,A) and the lower-bound L. It can be verified

that this difference is actually the KL divergence between these two families of

functions (p and q):

ln p(c|α, β,A) = L(γ, φ, ω) +KL( q(θ, z,x) || p(θ, z,x, c) ) (4.22)

It should be clear from equation (4.22) that minimizing the KL divergence will be

equivalent to maximizing L, and thus making it the tightest lower-bound possi-
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ble. As is done in the original LDA paper, we take the approach of finding the

variational parameters γ∗, φ∗, and ω∗ that directly maximize the lower-bound L:

(γ∗, φ∗, ω∗) = argmax
(γ,φ,ω)

L(γ, φ, ω) (4.23)

This can be achieved by taking the derivative of the lower-bound, setting it to 0,

and solving for γ, φ, and ω in succession. Section C.1 in the appendix goes into more

detail about how this lower-bound is computed and how the optimal variational

parameters are inferred. Assuming that we are given model parameters α, β, A,

and Σ−1, the following update rules are obtained for each variational parameter:

γi = αi +
N∑
n=1

φni (4.24)

φni ∝ exp[Ψ(γi)]
V∏
j=1

S∏
s=1

βij
ωjnss (4.25)

ωjns =
exp[f(s)]
S∑
s′

exp[f(s′)]

(4.26)

where

f(s) = s
V∑
k=1

V∑
l=1

cTnkΣ
−1
kl Alj −

1

2
s2Mjj − s2

∑
k 6=j

ωknsMkj + s
K∑
i=1

φni ln βij (4.27)

Detailed derivations for the φ and ω updates can be found in Appendix C.2; the

update rule for γ is unchanged from the original LDA model, and thus, is not

included. In passing, we do note that for the update of ω, each ωjns term depends

on all other ωkns terms for which j 6= k; thus this update rule must be applied

individually along that particular dimension in the matrix. Since all three update

equations have terms that depend on others, all parameters must be updated

repeatedly until convergence for each song.

4.5.4 Parameter Estimation

Just as in the original LDA model, we can use a maximum likelihood ap-

proach to estimate the parameters in our model. This is done by finding parameters
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α, β,A, and Σ that maximize the log-likelihood of our observed data:

(α∗, β∗, A∗,Σ∗) = argmax
(α,β,A,Σ)

M∑
m=1

log p(cm|α, β,A,Σ) (4.28)

However, as shown before, this log-likelihood cannot be computed tractably. In-

stead, we can maximize the tractable lower bound obtained through variational

inference with respect to these model parameters. The update equation we get for

α is unchanged from the original LDA model, and is not shown here. The new

update equation for β is shown below:

β =
M∑
d

Q(d)φ(d) (4.29)

A = cxT (xxT )−1 (4.30)

Σ = −1

2
ccT + cxTAT − 1

2
AxxTAT (4.31)

As we will discuss next in the Experimental Set-up section, the update rules for

Gaussian parameters A and Σ shown here assume that pitch-class count vectors, x,

are available from corresponding MIDI data during a training phase. The estimates

obtained during the training phase are then used during testing. Appendix C.3

also describes the derivations for these update rules in more detail.

4.5.5 Variational EM

Both sections 4.5.3 and 4.5.4 together make up an alternating variational

Expectation Maximization (EM) procedure that is used to find approximate Bayes

estimates for our LDA-AUDIO model. Recall that the original model specified

in eq. 4.4 is a latent variable model that would have traditionally utilized the

Expectation-Maximization algorithm for inference and learning. However, due to

the intractability of the likelihood function, we resorted to computing a tractable

lower-bound instead. The variational parameter estimation acts as the expectation

step as it computes the expectation of the latent variables in our model. We then

use these expectation computations to maximize the lower-bound with respect to

the model parameters, as shown in section 4.5.4; this acts as the maximization

step. A summary of this variational EM algorithm is as follows:
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E-Step: For each song, find the values of the variational parameters {γ∗d , φ∗d, ω∗d}
that maximize the lower-bound using update eq. (4.24 - 4.26). This corre-

sponds to computing the expectation of the complete-data log likelihood

under the approximate lower-bound.

M-Step: Maximize the resulting lower-bound with respect to the model param-

eters {α∗, β∗, A∗,Σ∗}, using the update eq. (4.29 - 4.31). This corresponds to

finding the maximum likelihood estimates under the approximate posterior

computed in the E-step.

Just as in regular EM, the expectation and maximization steps are computed

iteratively until convergence. What we end up with are variational and model

parameter estimates. The variational parameter α gives a rough distribution over

topics in the entire corpus; γ gives a distribution over musical keys in each song,

φ gives a distribution over musicals for each musical segment, and ω estimates the

contribution of each of the 12 semi-tones in a given segment of music.

4.6 Results and Evaluation

Below, we evaluate the performance of the LDA-AUDIO model. We begin

with some details about experimental set-up, and then show results on key-finding

and chord-estimation tasks.

4.6.1 Experimental Set-up

In this section, we give some details about how we set up our models and

experiments. For chroma features, we compare both quantized and NNLS chroma,

without any sort of dictionary. The remaining details of set-up mostly concern

different configurations for learning variational and model parameters A and Σ.

As shown in eq. 4.3, LDA-AUDIOmodel assumes that each observed chroma

vector (corresponding to a segment of music) is drawn from a Gaussian distribu-

tion, parameterized by covariance Σ, and a linear transform A on the original,

unobserved MIDI note count vector x. There are two ways in which the Σ and
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A parameters can be estimated: (1) assuming that MIDI note counts are never

available, and learning A and Σ from audio data alone, or (2) assuming that MIDI

note counts for audio data can be obtained during a prior training phase.

While the first approach would be ideal (as no additional data or training

phase would be necessary), in practice it performed very poorly in our experiments.

This may be due to the fact that our datasets are too small to learn so many

parameters accurately in unsupervised fashion. On the other hand, learning A

and Σ from properly aligned MIDI and audio data provides a much more accurate

estimation. While this second approach requires additional work, we note that

the assumption of observing MIDI data during an initial training phase is very

reasonable. Given a specific genre of music, it is not difficult to obtain a set of

MIDI files and then synthesize them into audio. The parameters learned from

this process should be very similar to values that would have been learned by

unsynthesized audio (i.e.directly from a CD recording) songs from the same genre.

We note that even if we do utilize observed MIDI data during training, our overall

model is still unsupervised, as harmony (i.e. key or chord) labels are never provided

during the training phase, and variational parameters (γ, φ, ω) are still inferred

directly from the audio data. Appendix C.3.2 discusses the estimation of A and Σ

in more detail.

4.6.2 Overall Key-Finding

To evaluate the LDA-AUDIO model, we again use it to perform overall key-

finding. Key prediction is done in the same way as previous MIDI-based models:

by looking at the key distribution for each song (from variational parameter γ), and

assigning the key to the one with the highest weight. Table 4.2 summarizes these

results, comparing both quantized chroma features and NNLS chroma features. In

the last two columns, best results obtained from the more basic LDA-based audio

models (section 4.4), as well as the best accuracy obtained from corresponding

MIDI datasets (chapter 3) are also shown for reference. The highest accuracy

across all audio-based models (first three columns) is bolded for each dataset.

In general, there are several trends. Again, NNLS chroma features make
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a big difference to final key-finding results, for the same reasons described previ-

ously for the LDA-QUANT model: the removal of partials in the chroma features

(which NNLS chroma performs) is extremely important to our key-finding task.

Second, we observe that the more unified LDA-AUDIO model indeed outperforms

the simpler LDA-QUANT model on the majority of datasets. This indicates that

the additional assumption of drawing observed chroma features from discrete MIDI

note counts is effective. In Figure 4.5, we also show a summary of the most com-

mon errors made by the LDA-AUDIO model for key-finding. Consistent with

MIDI-data findings, almost half of the errors in the Beatles dataset come from

perfect fourth errors. As explained before, many of the Beatles songs are written

with a Blues style influence, resulting in frequent usage of a dominant seventh

chord (in which the seventh degree in the scale is flatted), as opposed to chords

based on the common triad. Because our model only consists of 24 major/minor

chords, these dominant seventh chords are not modeled, and when mapped to the

24 major/minor chords, most closely align with the major triads in the key that

is a perfect fourth above (e.g. an E7 chord is most similar to an A major triad).

We saw in the previous chapter that learning correlations between the keys (using

CTM-MIDI) alleviated this problem to some extent. Future work may consider

Table 4.2: Summary of results from overall key-finding for LDA-AUDIO, along
with comparisons to best accuracies obtained by previous models. The first two
columns show results for LDA-AUDIO using two different types of chroma features.
The third column showcases the best accuracy obtained from the LDA-QUANT
model (section 4.4), and the fourth column shows the best accuracy obtained from
the MIDI-based models discussed in chapter 3.

LDA-AUDIO Previous Models

Dataset TUNED Chroma NNLS Chroma LDA-QUANT LDA-MIDI

WTC-WAV 0.802 0.906 0.938 0.979

CLA-WAV 0.713 0.819 0.806 0.865

KP-WAV 0.565 0.717 0.717 0.804

ROM-WAV 0.709 0.820 0.791 0.820

BEA-WAV 0.500 0.750 0.743 0.753
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incorporating something similar to the audio version of the model

Figure 4.5: A summary of common errors made during key-finding by the LDA-
AUDIO model.

While we have shown that our current audio-based model improves on previ-

ous, simpler models, it is difficult to do a fair comparison with other previously pub-

lished models since there are few standard datasets. For key-finding performance

on classical music, our LDA-AUDIO model gives an average of 83% across all classi-

cal datasets. According to the summary of previous work in Tables 2.1-2.3, is com-

parable to what others have achieved on similar classical datasets [63, 84, 64, 32] –

most of which use supervised methods and/or use hand-chosen parameters. Note,

also, that several previous works report using MIREX scores – this is a particular

way of scoring used by the popular MIREX competition.3 For fair comparison,

our MIREX composite score is 85.0% out of a total of 657 classical songs.

Though not specifically noted in that table, some have also reported au-

dio key-finding accuracy specifically on various subsets of Bach’s Well Tempered

Clavier: Lee’s key and chord-finding system [48] reports an 85.4% accuracy on the

48 preludes and fugues from Book I; Noland’s key-finding system [61] reports a

98% accuracy on the same dataset. Our accuracy on just Book I is 91.7% using

LDA-AUDIO, and 93.8% using the basic LDA audio model. While our model does
3MIREX is a popular MIR competition held as a part of ISMIR. One of their tasks is audio

chord-estimation, which uses the Beatles dataset as a test set. According to MIREX scoring,
partial points are given when incorrectly predicting a related key. The points are rewarded as
follows: Correct key: 1 point; perfect fifth: 0.5 points; relative major/minor: 0.3 points; parallel
major/minor: 0.2 points. Please see http://www.music-ir.org/mirex/wiki/MIREX_HOME for
more information.
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not beat the state-of-the-art, we note that both reported models use supervised

methods and/or include hand-derived musical information.

While many results have been reported for the audio Beatles dataset, most

report on the task of chord estimation and not key-finding. A couple that do

report on key-finding accuracy includes: Lee [48] who reports a 97% key-finding

accuracy across 28 Beatles songs (from the albums Please Please Me and Beatles

for Sale); Noland [61] who reports a 71% accuracy across 110 Beatles songs; and

Rocher [68] who reports a 62.4% accuracy across 174 Beatles songs. As shown

above, our highest accuracy across 136 Beatles songs is 75%. Perhaps Lee’s high

accuracy is due to the fact that he is the only one out of the three that trains

a supervised model that includes Beatles MIDI data, while the other two models

rely on hand-chosen, musically inspired parameters. Lee also uses a much smaller

dataset with, arguably, some of the simpler songs. As a direct comparison, our

LDA-AUDIO model achieves a much higher accuracy of 89.2% on the same dataset

that Lee reports accuracy on.

4.6.3 Chord Estimation

For completeness, we also report the accuracy of the chord-estimation task

using LDA-AUDIO on the same two datasets described previously in section 4.4:

KP-WAV achieves a 55.9% accuracy (compared to 45.0% from the basic LDA audio

model) and BEA-WAV achieves a 60.8% accuracy (compared to 67.1% from the

basic LDA audio model). This is summarized in Table 4.3.

The current state-of-the-art for chord-estimation on the Beatles dataset

Table 4.3: A comparison of chord-estimation accuracies for the KP-WAV and
BEA-WAV datasets. We report on both audio models described in this chapter,
as well as its raw accuracy and MIREX accuracy (refer to footnote 3)

Dataset
LDA-QUANT LDA-AUDIO

Raw MIREX Raw MIREX

KP-WAV 0.450 0.513 0.559 0.608

BEA-WAV 0.618 0.671 0.491 0.559
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(BEA-WAV) stands at around 80% and above (MIREX scoring) [57, 60]. Com-

pared to this, our accuracies are quite low, indicating that our bag-of-segments

model does not model chord progressions successfully. For this task, HMM-based

models (which are used for most chord progression models) have a large advantage

over our LDA-based model since chord transition probabilities are properly mod-

eled. These make a large impact in being able to more accurately predict how likely

a modulation will occur, and to which local key or chord the next segment will tran-

sition to. Our post-processing step of using mode-based filtering tries to perform

temporal smoothing to address this issue, but is not nearly as powerful as transi-

tion state modeling in HMMs. Most state-of-the-art chord-estimation systems also

take a unified approach in which bass notes are estimated and incorporated into

chroma feature calculations, as well as beat and meter structure. For future work,

we may consider incorporating temporal structure into our LDA-based models, as

well as more information about beat and meter structure.

4.7 Conclusion

In this chapter, we presented several LDA-based models for harmonic anal-

ysis that takes in raw audio input. First, we experimented with using audio input

into the LDA-MIDI model described in Chapter 3. Instead of using MIDI note

counts as input, we use chroma features. Two methods of chroma feature calcula-

tions are described and used throughout our experiments. This basic LDA-based

audio model did well, but still had lower accuracy rates than the MIDI-based

models described in Chapter 3. We then presented a more unified model, called

LDA-AUDIO, that improves on the previous by modeling observed chroma fea-

tures as being drawn from discrete pitch-class counts. We sketch out the new

generative process, as well as a new variational inference algorithm for the model.

Using LDA-AUDIO, we find that key-finding accuracy generally improves, while

chord-estimation accuracy improved only for the classical dataset. From these ex-

periments, we have gained insight into where our model excels, as well as areas

that could use improvement.



109

4.8 Acknowledgements

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of

the Neural Information Processing Systems (NIPS) Workshop on Topic Modeling

2009. Hu, Diane; Saul, Lawrence K. The dissertation author was the primary

investigator and author of this paper.



Chapter 5

Conclusion

5.1 Summary

In this dissertation, we have presented a novel approach for key-finding in

symbolic and audio music. The main contribution of this work is developing an

unsupervised framework that requires very little prior knowledge and no hand-

chosen parameters. For symbolic input, our performance on key-finding tasks

seems to match (if not exceed) most previously published approaches. For audio

input, key-finding accuracy also seems comparable to many previously published

models – even those who use supervised frameworks and require extensive prior

music knowledge.

Our approach is also unique in that no time-series modeling is used. Instead,

our LDA-based models represent each song as a bag-of-segments, containing notes.

Segment order is not modeled, and note order within a segment is not modeled

either. In doing so, we have addressed some interesting questions that we raised

at the beginning of this thesis. First, we have learned that groups of notes in close

proximity contain a tremendous amount of harmonic information – analogous to

semantic information contained in a sentence in a book. The harmonic content is

strong enough that we can successfully perform global and local key-finding with

no more information than the co-occurrence information given by notes contained

within a song. We also show that it is possible to learn prior music knowledge solely

from data; and in doing so, provide a more flexible framework that generalizes to

110
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varying music genres. Finally, though our model of key-finding performs with fairly

high-accuracy, we find that discarding note and segment order information hinders

us from successful chord estimation. In the next section, we list some ideas that

we have for future directions that may improve the accuracy of harmony-related

tasks, or build on top of our work.

5.2 Future Directions

There are two areas which we would like to investigate further for future

work. The first is concerned with better modeling, and the second aims at novel

applications that can use the harmonic descriptors that we have introduced.

5.2.1 Potential Model Enhancements

There are a couple of areas that can be improved in our LDA-based mod-

els. For both symbolic and audio input, being able to incorporate time-series in-

formation (such as note order or segment order) would most likely increase chord

estimation accuracy. One possible implementation of this idea would be to add

dependencies between the keys chosen at the segment level. This would involve

drawing each segment-level key simultaneously from the key weight distribution as

well as the key predicted from the last segment, based on a transition probability

table. Learning transition probabilities in this way could greatly reduce the abrupt

local key changes that we saw in our LDA-based models, as well as learn likely key

transitions (which should be easily learned).

Another area of improvement that applies to both symbolic and audio-

based models involves incorporating more specific information that imitates the

way human experts perform key-finding and chord transcription. For example, two

important considerations are notes that occur during the down-beat (often this is

the first beat in a measure), or bass notes (such as the root of a chord). Usually,

these notes are more prominent in the melody and sound, and thus, contain more

important key information. One possible way to incorporate this into the symbolic

model is to learn separate key-profiles for these particular notes and give them
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higher weight in the key-finding decision process. This is a bit more tricky in

audio – since we discard octave information in our current chroma representation,

it is impossible to identify and distinguish bass features. One possible solution is

to make use of Mauch’s bass chroma features [57]. These are similar to the NNLS

chroma features he proposes, but considers only low frequencies before collapsing

the spectrogram into the standard 12-dimensional bins. Using these bass chroma

features could lead to more accurate key-profiles and more accurate key-finding.

One last area of improvement is specific to our audio model. Recall that the

generative process of LDA-AUDIO assumes that the observed chroma features are

drawn from the probability distribution where c is the chroma feature, u are the set

of MIDI notes from which the chroma features are drawn from, and A and Σ are

parameters of the normal distribution. This step may be unrealistic in portraying

the relationship between the chroma features, and the MIDI notes. Perhaps a more

realistic method would more closely mirror polyphonic transcription methods, in

which chroma features are modeled as a weighted combination of note or chord

profiles. This may lead to more accurate chroma representations. Similarly, there

may be better ways to define the distribution of ω, the variational parameter from

which the hidden MIDI notes u are drawn from. Currently, it is being modeled

as a 10-dimensional multinomial distribution and, unfortunately, creates a large

number of parameters (10 × V × N) that must be learned for each song (where

V = 12, the size of the vocabulary and N =the number of segments in that song).

5.2.2 Potential Applications

We have already listed many applications that have successfully used har-

monic descriptors in section 1.2.2. We go into more detail regarding two of them.

The first direction seeks to use song summaries generated by our model (in the form

of a distribution over the 24 keys) as features in a supervised learning framework

to do genre classification, or even cover song detection. It would be interesting to

see how our harmonic descriptors compare to current features used for such tasks.

Second, we have begun initial studies on how harmonic descriptors can be

used to model tonal tension. In music, tonal tension can be described as the
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building up and resolving of conflict in music. Such work could be used for higher-

level applications such as music emotion classification (where the goal is to predict

the type of mood or emotion a piece of music embodies; [44] for example) or aid

in segmenting scenes from a movie based on its music soundtrack (since increasing

tension is often indicative of story content).

Several very complex mathematical models have been built in attempts to

model musical tension one of the most most well-known works being based on

Lerdahl’s General Theory of Tonal Music [51]. These math/theory-based models

make annotating an extremely laborious task – a task that usually only few can

execute accurately. In [17], Dominquez takes a different, data-based approach. He

quantitatively defines tension as the amount of conflict between local and global

keys. The more difference, tonally, between a segment of music, and the overall

key, the more tension the listener will feel. It is not until local and global keys are

harmonious, that the listener feels as if the tension has been resolved. A potential

application that builds on top of this idea is to model the global and local key

and develop a similarity measure that may predict the rising and falling tension.

Initial work in this direction looks promising, which caused us to begin work in

collecting ground-truth labels for such a task. Since musical tension is a fairly

subjective (and possibly emotive) notion, the most valuable ground-truth should

come from human judgements. To collect these judgements, we have created a web

interface that will play musical excerpts, and allow users to indicate the amount

of musical tension they feel (while listening) buy dragging a slider left and right

(right indicates increasing tension, left indicates decreasing tension). Prior work by

Krumhansl [40, 22] has collected similar data and shows that such judgements are

generally consistent across listeners – both musically and non-musically trained.

Once these judgements are collected, evaluation of a tonal tension model will be

possible at a larger scale.
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5.3 Final Remarks

It is our hope that the presented framework for extracting harmonic in-

formation will make a contribution to the MIR community as well as useful MIR

applications. We also hope that we have shown a novel application of the orig-

inal Latent Dirichlet Allocation (LDA) model, and have made some interesting

connections between the use of words in expressing semantic topics, and the use

of musical notes in expressing harmonic topics. With this phase of research con-

cluded, we hope that future work may bring more insight into the problem of

automatic harmonic analysis.



Appendix A

Musical References

A.1 Key-Profiles in Literature

This section presents five popular key-profile weight sets developed by re-

searchers over the years. All key-profiles are for the keys of C Major and C minor;

others can be obtained through transposition. Analysis of these key-profiles are

attributed to Sapp [73], and unless otherwise noted, these key-profiles are mainly

used with the KS key-finding model [41], described in section 2.4.

1. Original key weightings from Krumhansl and Kessler [41], obtained from sev-

eral probe-tone studies. It is sometimes criticized to identify the dominant

key as the tonic more often and aggressively than needed
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2. Weightings from Temperley [77] which seem to perform better on major songs

than minor since the relative major is strongly preferred.

3. Weightings from Aarden, which gives slight bias toward the sub-dominant [1]

4. Weightings from Budge [28] obtained using chord statistics from a corpus
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5. Weightings from Sapp [73], derived by: (1) starting with all 0 weights (2)

adding 1 to pitches in scale, (3) adding 1 to tonic and dominant scale degrees

(to distinguish between major/minor modes).

6. Weightings learned in an unsupervised framework from our LDA-MIDI model.

Please refer to section 3.3.4 for more details.
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A.2 Frequency and Pitch Mappings

Table A.1: Relationship between pitch, note names, and frequency.

Pitch Name Alternative Spelling Frequency

C3 −− 130.81

C#3 Db3 138.59

D3 −− 146.83

D#3 Eb3 155.56

E3 −− 164.81

F3 −− 174.61

F#3 Gb3 185.00

G3 −− 196.00

G#3 Ab3 207.65

A3 −− 220.00

A#3 Bb3 233.08

B3 −− 246.94

C4 −− 261.63

C#4 Db4 277.18

D4 −− 293.66

D#4 Eb4 311.13

E4 −− 329.63

F4 −− 349.23

F#4 Gb4 369.99

G4 −− 392.00

G#4 Ab4 415.30

A4 −− 440.00

A#4 Bb4 466.16

B4 −− 493.88

C5 −− 523.25



Appendix B

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) [6] is an unsupervised model for discov-

ering latent semantic topics in large collections of text documents. The key insight

into LDA is the premise that words contain strong semantic information about

the document. Therefore, it is reasonable to assume that documents on roughly

similar topics will use the same group of words. Latent topics are thus discov-

ered by identifying groups of words in the corpus that frequently occur together

within documents. Learning in this model is unsupervised because the input data

is incomplete: the corpus provides only the words within documents; there is no

training set with topic or subject annotations.

We will explore the LDA model in the remaining sections. In section B.2,

we describe the generative procedure on which LDA is based and the joint distri-

bution that is specified by this procedure. In section B.3, we see how the values of

the latent random variables (topics) are inferred by conditioning on the observed

random variables (words) using Bayes rule.

B.1 Notation and Terminology

Before moving forward, we first introduce the terminology and notation

that will be used throughout the rest of this section.

1. A word w ∈ {1, . . . , V } is the most basic unit of discrete data. For cleaner
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notation, w is a V -dimensional unit-based vector. If w takes on the ith

element in the vocabulary, then wi = 1 and wj = 0 for all j 6= i.

2. A document is a sequence of N words denoted by w = (w1, w2, . . . , wN),

where wn is the nth word in the sequence.

3. A corpus is a collection of M documents denoted by D = {w1,w2, . . . ,wM}.

4. A topic z ∈ {1, . . . , K} is a probability distribution over the vocabulary of

V words. Topics model particular groups of words that frequently occur

together in documents, and thus can be interpreted as “subjects." As we will

discuss in section B.2, the generative process imagines that each word within

a document is generated by its own topic, and so z = (z1, z2, . . . , zN) denotes

the sequence of topics across all words in a document.

B.2 Generative Process

LDA is an unsupervised, generative model that proposes a stochastic pro-

cedure by which words in documents are generated. Given a corpus of unlabeled

text documents, the model discovers hidden topics as distributions over the words

in the vocabulary. Here, words are modeled as observed random variables, while

topics are observed as latent random variables. Once the generative procedure is

established, we may define its joint distribution and then use statistical inference

to compute the probability distribution over the latent variables, conditioned on

the observed variables.

We begin by describing, at a high-level, the process for generating a docu-

ment in the corpus. First, we draw a topic weight vector (modeled by a Dirichlet

random variable) that determines which topics are most likely to appear in a doc-

ument. For each word that is to appear in the document, we choose a single topic

from the topic weight vector. To actually generate the word, we then draw from

the probability distribution conditioned on the chosen topic. From this procedure,

we see that each word in a document is generated by a different, randomly chosen

topic. The available choice of topics for each document are, in turn, drawn from
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a smooth distribution over the space of all possible topics. This process can be

described more formally below.

For each document indexed by m ∈ {1 . . .M} in a corpus:

1. Choose a K-dimensional topic weight vector θm from the distribution

p(θ|α) = Dirichlet(α).

2. For each word indexed by n ∈ {1 . . . N} in a document:

(a) Choose a topic zn ∈ {1 . . . K} from the multinomial distribution

p(zn = k|θm) = θkm.

(b) Given the chosen topic zn, draw a word wn from the probability distri-

bution p(wn = i|zn = j, β) = βij.

Since the generative process imagines each word to be generated by a differ-

ent topic, the LDA model allows documents to exhibit multiple topics to different

degrees. This overcomes the limitations of the mixture of unigrams model which

only allows a single topic per document. We also note that the LDA model does

not attempt to model the order of words within a document. It is precisely this

“bag-of-words" concept that is central to the efficiency of the LDA model.

The parameter α is a K-dimensional parameter that stays constant over

all of the documents within a corpus. By drawing topic mixture weights from

α, we introduce an additional level of indirection that allows us to analyze an

unseen document in relation to the rest of the existing documents in the corpus.

This overcomes the limitations of the pLSI model [31] – the predecessor to LDA

– which treats the topic mixture weights as a large set of individual parameters

that are explicitly linked to documents in the training set. The parameter φ is a

V ×K matrix that is also estimated from data. It encodes each of the K topics as

a distribution over V words. In some instances, an additional Dirichlet prior η is

placed over the multinomial parameter β to account for sparsity in case of a large

vocabulary. We do not discuss the learning procedure for this hyper-parameter,

but the interested reader can refer to the original LDA paper for details.
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Figure B.1: (a) Graphical representation of LDA and (b) the variational approx-
imation (right) for the posterior distribution in eq. (B.3).

The Dirichlet distribution is given by:

p(θ|α) =
Γ(
∑

i αi)∏
i Γ(αi)

∏
i

θαi−1 (B.1)

The Dirichlet is used because it has a number of nice properties: it is in the

exponential family, has finite dimensional sufficient statistics, and is a conjugate

prior to the multinomial distribution. These properties will make the inference and

parameter estimation algorithms for LDA simpler, as we will see in appendix B.3.1.

As a Dirichlet random variable, the topic weight vector θ has the property such

that θi ≥ 0 and
∑K

i=1 θ
i = 1, and thus lies in the (K − 1)-simplex. Basically,

each document is characterized by its own topic weight vector, which indicates the

contribution of each of the K topics to that document.

The generative process given above defines a joint distribution for each

document wm. Assuming for now that parameters α and β are given to us, the

joint distribution over the topic mixtures θ and the set of N topics z is:

p(θ, z,w|α, β) = p(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn, β) (B.2)

Figure B.1(a) shows the graphical representation of the joint distribution

for the entire corpus. Plate notation is used to more concisely represent multi-

ple independently, identically distributed random variables within the model. All

variables that lie within a box (or plate) indicates that it is replicated X number

of times, where X is the number in the bottom right hand corner of the box.
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B.3 Inference and Learning

The model given in equation (B.2) is completely specified by the parameters

β and α. Now, the central task for using LDA is to determine the posterior

distribution of the latent topic variables conditioned on the words that we observe

in each document. Bayes rule is used:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)

The normalizing factor in the denominator of eq. (B.3) is the marginal distribution,

or likelihood, of a document:

p(w|α, β) =

∫
p(θ|α)

(
N∏
n=1

∑
zn∈Z

p(zn|θ)p(wn|zn, β)

)
dθ

=
Γ(
∑

i αi)∏
i Γ(αi)

∫ ( K∏
i=1

θαi−1
i

)(
N∏
n=1

K∑
i=1

V∏
j=1

(θiβij)
wj

n

)
dθ (B.3)

The optimal values of α and β are chosen to maximize the log-likelihood of

all of the documents in the corpus,

L(α, β) =
M∑
m=1

log p(w|α, β) (B.4)

A maximum likelihood estimation approach is used to find the optimal param-

eter values. However, because the model includes latent variables z and θ, the

data is considered incomplete, thus preventing the minimization from being able

to be computed directly. As with most latent variable models, the Expectation-

Maximization (EM) algorithm is used instead. The EM algorithm iteratively up-

dates the parameters by computing expected values of the latent variables under

the posterior distribution in equation (B.3).

Unfortunately, this posterior distribution is intractable due to the coupling

of the θ and β parameters. Therefore, a strategy for approximate probabilistic

inference must be used instead. At a high-level, the approximation consists of two

steps. First, we choose a tractable family of distributions, whose statistics are easy

to compute. We use this as a surrogate for the true posterior distribution:

q(θ, z|γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn) (B.5)
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Figure B.1(b) illustrates the corresponding graphical model for this approximat-

ing family of tractable distributions; it was obtained by dropping edges in the

graph, and thus removing dependencies between variables that caused intractabil-

ity. Next, we attempt to select the particular member of this family that best

approximates the true posterior distribution. This is done by computing the op-

timal variational parameters, γ and φ, that minimizes the difference between the

variational distribution and true posterior distribution. The following sections

contain the details of variational inference and learning in this approximation.

B.3.1 Variational Inference

In our model, we substitute a surrogate variational distribution for the

intractable posterior distribution p(θ, z, x|α, β), shown in eq. (B.3). This involves

two steps, which we will describe in turn.

First, we must find a tractable variational distribution, a family of distri-

butions parameterized by a set of variational parameters. This variational dis-

tribution acts as an approximation to the true distribution, but whose statistics

are much easier to compute. One way to obtain a tractable family of distribu-

tions is to remove dependencies between variables that cause intractability in the

true distribution. In the graphical illustration, this is equivalent to dropping some

edges between nodes. Figure B.1(b) shows the new graphical illustration reflecting

the simplified model. Dropping the document index m, the resulting variational

distribution is as follows:

q(θ, z|γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn) (B.6)

Here, the distribution q(θ|γ) is Dirichlet with variational parameter γ. This vari-

ational parameter exists at the document level, showing the distribution of topics

in each document. The distributions q(zn|φn) are multinomial with variational

parameters φn. This variational parameter exists at the word level, where φni is

the probability that nthe word is generated by the ith latent topic.

The second step is to select optimal parameters for the family of distribu-

tions such that the variational distributions best matches the true distribution.
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More specifically, for each document wm, we wish to choose the variational param-

eters γm and φm such that (θ, z|γm, φm) is made to most closely resemble the true

posterior p(θ, z|wm, α, β).

To measure the quality of resemblance, we compute a lower bound on the

log-likelihood of each document log p(w|α, β) using Jensen’s inequality:

log p(w|α, β) (B.7)

= log

∫ ∑
z∈Z

p(θ, z,w|α, β)q(θ, z)

q(θ|z)
dθ

≥
∫ ∑

z

q(θ, z) log p(θ, z,w|α, β) dθ −
∫ ∑

z

q(θ, z|γ, φ) log q(θ, z) dθ

= L(γ, φ;α, β) (B.8)

It can be seen that the difference between the log likelihood log p(w|α, β) and

the lower bound L(γ, φ;α, β) is actually the KL divergence (KL) between the

variational posterior probability and the true posterior probability:

KL(q, p) =
∑
z

∫
q(θ, z|γ, φ) log

q(θ, z|γ, φ)

p(θ, z|s, α, β)
dθ (B.9)

Thus, the KL divergence can be used to measure the quality of the variational

approximation. More specifically, the best approximation is one that minimizes

the KL divergence in equation (B.9) with respect to the variational parameters γ

and φn for each document. To derive update rules for these parameters, we simply

differentiate the KL divergence and set its partial derivatives equal to zero. The

resulting update rules are as follows:

φni ∝
V∏
j=1

βx
j
n
ij exp

(
Φ(γi)− Φ(

∑K
j=1 γj)

)
(B.10)

γi = αi +
N∑
n=1

φni (B.11)

We use Φ(·) to denote the digamma function (the first derivative of the log Gamma

function). Also, recall from section B.1 that xn represents the nth word in the

document as a V -dimensional unit-based vector. Thus, there will be exactly one

value of j for which xjn = 1, and that is when j is equivalent to the vocabulary

index of the nth word in the document.
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B.3.2 Parameter Estimation

We wish to obtain estimates of the model parameters α and β that maximize

the log likelihood of the entire corpus:

L(α, β) =
M∑
d=1

log p(w|α, β) (B.12)

However, since p(w|α, β) cannot be computed tractably, we refer to a variational

EM algorithm that uses the variational lower bound L(γ, φ;α, β) in eq. (B.7) as a

surrogate for the intractable log likelihood instead. The variational EM algorithm

then estimates the parameters α and β to maximize this lower bound while fixing

the variational parameters γ and φ to values obtained from the update rules in

equations (B.11) and (B.10). The update rule for β can be written out analytically:

βij ∝
M∑
d=1

Nd∑
n=1

φdniw
j
dn (B.13)

Maximizing the lower bound with respect to α is a little more complicated. Taking

the derivative of L(γ, φ;α, β) with respect to αi gives:

∂L

∂αi
= M

(
Φ(
∑K

j=1 αj)− Φ(αi)
)

+
M∑
m=1

(
Φ(γmi)− Φ(

∑K
j=1 γmj)

)
(B.14)

Unfortunately, this derivative, with respect to αi, depends on αj, for all j 6= i,

and so we must resolve to an iterative method to find the maximum value for α.

We thus invoke the linear-time Newton-Raphson algorithm in which the Hessian

is inverted in linear time, to obtain α.

Given these update rules, the full variational EM algorithm is as follows:

1. (E-step) Fix the current model parameters α and β and compute the varia-

tional parameters γm and φm for each document wm by maximizing the KL

divergence in eq. (B.9) using the update rules in eq. (B.11) and (B.10).

2. (M-step) Fix the current variational parameters γ and φ across all songs from

the E-step and compute the model parameters α and β by maximizing the

lower bound in eq. (B.7) using the update rules in eq. (B.13) and (B.14).

These two steps are repeated until the lower bound on the log likelihood converges.
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Variational Inference for

LDA-AUDIO

This section contains derivation details for variational inference in the LDA-

AUDIO model. The first section (C.1) provides the full expansion of the variational

lower-bound described in eq. 4.23. The next three sections show how to maximize

the lower-bound with respects to variational parameters γ and ω.

C.1 Variational Lower-Bound

Recall from eq. (4.22) that we can decompose the log-likelihood of each song

c as the sum of some function L and the KL divergence between the variational

posterior q, and true posterior p:

ln p(c|α, β,A,Σ) = L(γ, φ, ω) +KL(q(θ, z,x||p(θ, z,x, c)) (C.1)

Since the KL divergence is non-negative, it should be clear that L is lower-bound

on the true posterior p(c|α, β,A,Σ). Eq. (4.20) also showed that the lower-bound

was derived to be the difference between the expected values of the two families of
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functions, which we can break down each further:

L(γ, φ, ω) = Eq[ln p(θ, z,x, c|α, β,A,Σ)]− Eq[ln q(θ, z,x)] (C.2)

= (Eq[ln p(θ|α)] + Eq[ln p(z|θ)] + Eq[ln p(c|x, A,Σ)] + Eq[ln p(x|z, β)])

− (Eq[ln q(θ|γ)] + Eq[ln q(z|φ)] + Eq[ln q(x|ω])) (C.3)

Figure C.1 shows the results of expanding each of the seven terms in eq. (C.3).

The main differences between the LDA-AUDIO model and the original LDA model

occur in terms (3), (4), and (7). Detailed derivations of these terms are shown

below in sections C.1.1 and C.1.2.

Figure C.1: Expanding all seven terms from the lower-bound derived in eq. (C.3).
Terms (3), (4), and (7) are significantly different from the original LDA model, and
are discussed in more detail in sections C.1.1 and C.1.2.
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C.1.1 Computing the expectation over chroma vector c

In this section, we show how to derive the third term Eq[p(c|x, A,Σ)] in the

lower-bound (shown in Figure C.1). The derivation begins with:

Eq[ln p(c|x, A)] (C.4)

= Eq[ln
N∏
n=1

p(cn|xn, A)] (C.5)

= ln
1

|Σ|N/2
+ Eq

[
N∑
n=1

−1

2
(cn − Axn)TΣ−1(cn − Axn)

]

= ln
1

|Σ|N/2
− 1

2

N∑
n=1

cTnΣ−1cn +
N∑
n=1

cTnΣ−1AEq[xn]− 1

2

N∑
n=1

Eq[x
T
nA

TΣ−1Axn]

(C.6)

The last two terms in eq. C.6 compute different expectations over x. The first

expectation term is relatively simple to resolve. In matrix form:

N∑
n=1

cTnΣ−1AEq[xn] =
N∑
n=1

cTnΣ−1A
S∑
s=1

ωns (C.7)

=
N∑
n=1

S∑
s=1

cTnΣ−1Aωns

where ωn is a (V ×N) matrix and ωns is scalar multiplication between matrix ωn
and scalar s. To be complete, we also give the equivalent formulation in scalar

form:
N∑
n=1

cTnΣ−1AEq[xn] =
N∑
n=1

V∑
j=1

V∑
k=1

V∑
l=1

S∑
s=1

cTnkΣ
−1
kl Aljωjnss (C.8)

The second expectation term from eq. C.6 is a little less straightforward. We begin

the derivation below:

−1

2

N∑
n=1

Eq[x
T
nA

TΣ−1Axn] = −1

2

N∑
n=1

Eq tr[xTnA
TΣ−1Axn] (C.9)

= −1

2

N∑
n=1

Eq tr[xnxTnA
TΣ−1A]

= −1

2
tr

[
N∑
n=1

Eq[xnx
T
n ]ATΣ−1A

]
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Given the distribution for q(xn|ωn), let us first compute the term Eq[xnx
T
n ] found

in the previous equation.

Eq[xnixnj] =


Eq[x

2
jn] =

S∑
s=0

s2ωjns if i = j

Eq[xin]Eq[xjn] =
S∑
s=0

s2ωjnsωins otherwise

In matrix form:

Eq[xnxn
T ] =


∑

s s
2ω1ns

∑
s s

2ω1nsω2ns . . .
∑

s s
2ω1nsωV ns∑

s s
2ω2nsω1ns

∑
s s

2ω2ns . . .
∑

s s
2ω2nsωV ns

...
...

...
...∑

s s
2ωV nsω1ns

∑
s s

2ωV nsω2ns . . .
∑

s s
2ωV ns


In matlab, this matrix can be constructed by doing something like this.

Let:

U =


1 2 · · · S

1 2 · · · S
...

1 2 · · · S

 V =


1

2
...

S


2

Wn = U. ∗ ωn

where V is a (S× 1) matrix and U is a (V ×S) matrix. The off-diagonal elements

can be taken from WnW
T
n . The diagonal elements can be taken from ωn ∗ V . In

matrix form, this can be written as an (V × V ) matrix:

Eq[xnx
T
n ] = diag[ωnV − ω2

nV ] +WnW
T
n (C.10)

= diag[(ωn − ω2
n)V ] +WnW

T
n (C.11)

Continuing the derivation of eq. C.10 above, we get the following:

−1

2

N∑
n=1

Eq[x
T
nA

TΣ−1Axn] = −1

2
tr

[
N∑
n=1

Eq[xnx
T
n ]ATΣ−1A

]
(C.12)

= −1

2
tr

[
N∑
n=1

(diag[(ωn − ω2
n)V ] +WnW

T
n )ATΣ−1A

]
It will be useful later on to express eq. C.13 in scalar form, so we continue expand-

ing. We note that since the term inside the expected value is a scalar in eq. C.10,
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it is trivially equivalent to taking the trace of it as we do beginning in eq. C.13.

Finally, in the following derivations, let M = ATΣ−1A.

= −1

2
tr

[
N∑
n=1

(diag[(ωn − ω2
n)V ] +WnW

T
n )M

]

= −1

2
tr

[
N∑
n=1

(diag[(ωn − ω2
n)V ])M +WnW

T
nM

]

= −1

2

N∑
n=1

tr[diag[(ωn − ω2
n)V ])M ] + tr[WnW

T
nM ]

= −1

2

N∑
n=1

[(
V∑
j=1

S∑
s=1

(ωjns − ω2
jns)s

2Mjj

)
+

(
V∑
j=1

V∑
k=1

S∑
s=1

ωjnsωknss
2Mkj

)]

Putting all of this together, we can return to our original equation from eq. C.6 at

the beginning of the section and filling in the terms that we have just computed:

Eq[ln p(c|x, A)] (C.13)

= Eq[ln
N∏
n=1

p(cn|xn, A)] (C.14)

= ln
1

|Σ|N/2
+ Eq

[
N∑
n=1

−1

2
(cn − Axn)TΣ−1(cn − Axn)

]

= ln
1

|Σ|N/2
− 1

2

N∑
n=1

cTnΣ−1cn +
N∑
n=1

cTnΣ−1AEq[xn]− 1

2

N∑
n=1

Eq[x
T
nA

TΣ−1Axn]

= ln
1

|Σ|N/2
− 1

2

N∑
n=1

cTnΣ−1cn +
N∑
n=1

S∑
s=1

cTnΣ−1Aωns

−1

2
tr

[
N∑
n=1

(diag[(ωn − ω2
n)V ] +WnW

T
n )ATΣ−1A

]
(C.15)

= ln
1

|Σ|N/2
− 1

2

N∑
n=1

V∑
j=1

V∑
k=1

cTnkΣ
−1
kj cjn +

N∑
n=1

V∑
j=1

V∑
k=1

V∑
l=1

S∑
s=1

cTnkΣ
−1
kl Aljωjns

−1

2

N∑
n=1

[(
V∑
j=1

S∑
s=1

(ωjns − ω2
jns)s

2Mjj

)
+

(
V∑
j=1

V∑
k=1

S∑
s=1

ωjnsωknss
2Mkj

)]
(C.16)
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C.1.2 Computing the expectation over note x

In this section, we compute two of the terms in the variational lower-bound

shown in eq. C.3. The expansion of the fourth term (from Figure C.1) is shown

below:

Eq[ln p(x|z, β)] = Eq

[
ln

N∏
n=1

p(xn|zn, β)

]
(C.17)

= Eq

[
N∑
n=1

K∑
i=1

V∑
j=1

ln β
(zinxjn)
ij

]
(C.18)

=
N∑
n=1

K∑
i=1

V∑
j=1

Eq[zinxjn] ln βij (C.19)

=
N∑
n=1

K∑
i=1

V∑
j=1

Eq[zin]Eq[xjn] ln βij (C.20)

=
N∑
n=1

K∑
i=1

V∑
j=1

S∑
s=0

φni ln βijωjnss (C.21)

Note that x and z are independent of each other in eq. C.21 so we can break up

that expectation term. Below, we also expand the seventh term in the lower-bound

(from Figure C.1):

Eq[ln q(x|ω)] = Eq

[
ln

N∏
n=1

q(xn|ωn)

]
= Eq

[
ln

N∏
n=1

V∏
j=1

S∏
s=0

ωjns
I(xjn,s)

]
(C.22)

=
N∑
n=1

V∑
j=1

S∑
s=0

Eq[I(xjn, s)] lnωjns =
N∑
n=1

V∑
j=1

S∑
s=0

ωjns lnωjns

C.2 Inferring Variational Parameters

Recall that our goal from the previous section was to produce the tightest

possible lower-bound on the log posterior. Thus, we maximize the lower-bounded

obtained in eq. (C.2) with respect to each of the variational parameters γ, φ, and

ω, where γ parameterizes a Dirichlet distribution, and both φ and ω parameter-

ize multinomials. The two sections below show how to do this maximization for

variational parameters φ and ω. The maximization for γ is very similar to the

LDA-MIDI model, and is not shown here.
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C.2.1 Inferring φ

We maximize the lower-bound L(γ, φ, ω;α, β,A,Σ) with respect to φni, the

probability that the notes in the nth segment of music is generated by musical key

i. Since the distribution over musical keys for each segment should be multinomial,

this maximization constrains
∑K

i=1 φni = 1 for each n.

First, we write out the lower-bound with respect to relevant φni terms as

follows:

L[φni] = φni

(
Ψ(γi)−Ψ

(∑K
i′=1 γi′

))
+ φni

V∑
j=1

S∑
s=0

ωjnss ln βij − φni lnφni + λn

(
V∑
j=1

φni − 1

)
(C.23)

Taking the derivative of L[φni] gives the following:

∂L[φni]

∂φni
=

(
Ψ(γi)−Ψ

(∑K
i′=1 γi′

))
+

V∑
j=1

S∑
s=0

ωjnss ln βij − lnφni − 1 + λn (C.24)

Setting eq. C.24 equal to 0 and solving for φni:

φni ∝ exp
{

Ψ(γi)−Ψ
(∑K

i′=1 γi′
)}

exp
{∑V

j=1

∑S
s=0 ωjnss ln βij

}
(C.25)

= exp
{

Ψ(γi)−Ψ
(∑K

i′=1 γi′
)} V∏

j=1

S∏
s=0

βij
ωjnss (C.26)

C.2.2 Inferring ω

Next, we maximize the lower-bound L(γ, φ, ω;α, β,A,Σ) with respect to

ωnjs, the probability that pitch j in segment n has a note count of s. For con-

venience, let M = ATΣ−1A. Writing the lower-bound with respect to each ωnjs

term, we get:
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L[ωnjs] =
V∑
k=1

V∑
l=1

cTnkΣ
−1
kl Aljωjnss

− 1

2

[
(ωnjs − ω2

njs)s
2Mjj + ω2

jnss
2Mjj + 2 ωjnss

2

V∑
k 6=j

ωknsMkj

]

+
K∑
i=1

φni ln βijωnjss− ωnjs lnωnjs +

N,V∑
n′j′

λn′j′

(
S∑
s′

ωn′j′s′ − 1

)

=
V∑
k=1

V∑
l=1

cTnkΣ
−1
kl Aljωjnss

− 1

2

[
ωjnss

2Mjj − ω2
jnss

2Mjj + ω2
jnss

2Mjj + 2 ωjnss
2

V∑
k 6=j

ωknsMkj

]

+
K∑
i=1

φni ln βijωnjss− ωnjs lnωnjs +

N,V∑
n′j′

λn′j′

(
S∑
s′

ωn′j′s′ − 1

)

=
V∑
k=1

V∑
l=1

cTnkΣ
−1
kl Aljωjnss−

1

2

[
ωjnss

2Mjj + 2 ωjnss
2

V∑
k 6=j

ωknsMkj

]

+
K∑
i=1

φni ln βijωnjss− ωnjs lnωnjs +

N,V∑
n′j′

λn′j′

(
S∑
s′

ωn′j′s′ − 1

)
(C.27)

where

λnj = ln
∑
s′

exp {Cnjs′} (C.28)

and Cnjs is the expression that includes all terms that do not depend on ωnjs. It

is used as a normalization factor while constraining the distribution of note counts

in ω to be multinomial (i.e. adding up to 1). Now, taking the derivative of L[ωjns]:

∂L[ωjns]

∂ωjns
= s

V∑
k=1

V∑
l=1

cTnkΣ
−1
kl Alj −

1

2
s2Mjj − s2

∑
k 6=j

ωknsMkj

+ s

K∑
i=1

φni ln βij − lnωjns − λnj

(C.29)
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Finally, setting eq. (C.29) equal to 0 and solving for ωjns, we get:

ωjns =
exp[f(s)]
S∑
s′

exp[f(s′)]

(C.30)

where

f(s) = s
V∑
k=1

V∑
l=1

cTnkΣ
−1
kl Alj −

1

2
s2Mjj − s2

∑
k 6=j

ωknsMkj + s
K∑
i=1

φni ln βij (C.31)

C.3 Estimating Model Parameters

In this section, we show how to obtain estimates of the model parameters

α, β, and A, assuming that only the raw audio data is observed. We note that

in our experimentation, it is difficult for this method to obtain estimates that are

as good as that obtained from the LDA-MIDI model, since the pitch information

we get there is much cleaner. Nonetheless, we show this derivation as a means for

comparison later on. Recall that all three model parameters exist at the corpus

level. Thus, in the remainder of this section, we use L to represent the overall

variational lower bound (i.e. the sum of the individual variational bounds for each

song in the corpus).

C.3.1 Estimating β

We maximize the lower bound L(γ, φ, ω;α, β,A) with respect to matrix βij:

L[βij ] =
M∑
d=1

Nd∑
n=1

S∑
s=0

φ
(d)
ni ω

(d)
jnss ln βij +

K∑
i′=1

λi′

(
V∑
j′=1

βi′j′ − 1

)
(C.32)

Take the derivative of L[βij ]:

∂L[βij ]

∂βij
=

1

βij

(
M∑
d=1

Nd∑
n=1

S∑
s=0

φ
(d)
ni ω

(d)
jnss

)
+

K∑
i′=1

λi′ (C.33)
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Set eq. (C.33) to 0 and solve for βij:

1

βij

(
M∑
d=1

Nd∑
n=1

S∑
s=0

φ
(d)
ni ω

(d)
jnss

)
= −

K∑
i=1

λi (C.34)

βij ∝
M∑
d=1

Nd∑
n=1

S∑
s=0

φ
(d)
ni ω

(d)
jnss (C.35)

To see this in matrix form, let:

V =


1

2
...

S

 and Q(d) =


| | |

ω
(d)
1 V ω

(d)
2 V · · · ω

(d)
n V

| | |


Then β is a (K × V ) matrix:

β =
M∑
d

Q(d)φ(d) (C.36)

We note that each ωi is a (V × S) matrix and each ω
(d)
i V is a (V × 1) matrix.

Similarly, each Q(d) is a (V ×N) matrix and each φ(d) is a (N×K) matrix. Finally,

last term in eq. (C.32) is a Lagrange multiplier that restricts all rows of β to sum

to 1.

C.3.2 Estimating A

A is a transform that describes how our audio chroma features correlate

to our MIDI-features. More specifically, recall (from the generative process in

section 4.5.2) that a Gaussian distribution models the process of drawing observed

chroma vector cn from MIDI notes in the corresponding segment of music xn:

p(cn|xn, A) =
1

|Σ|1/2
exp

{
−1

2
(cn − Axn)TΣ−1(cn − Axn)

}
(C.37)

In our experimentation, we assume that MIDI notes (xn) are observed dur-

ing a training phase (but unobserved during testing), and thus estimates A from

the “ground-truth” MIDI notes. While it is possible to derive the MLE for A with-

out ground-truth MIDI notes, doing so makes it much more difficult to learn an
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accurate transform, and requires a lot more data. To do so, we first expand the

terms in the log posterior distribution:

L = ln
N∏
n=1

p(cn|xn, A,Σ−1)

= −N
2

ln |Σ| − 1

2

N∑
n=1

(cn − Axn)TΣ−1(cn − Axn)

= −N
2

ln |Σ| − 1

2
tr[cTΣ−1c] + tr[cTΣ−1Ax]− 1

2
tr[xTATΣ−1Ax] (C.38)

Next, we maximize L with respect to A:

Isolate terms: L[A] = tr[AxcTΣ−1]− 1

2
tr[ATΣ−1AxxT ] (C.39)

Take derivative:
∂L[A]

∂A
= Σ−1cxT − Σ−1AxxT (C.40)

Set equal to 0 and solve for A: A = cxT (xxT )−1 (C.41)

We can also maximize L with respect to Σ. Let Z = Σ−1:

Isolate terms:

L[Z] = −N
2

ln |Z−1| − 1

2
tr[ZccT ] + tr[ZAxcT ]− 1

2
tr[(Ax)TZAx]

(C.42)

Take derivative:
∂L[Z]

∂Z
= −Z−1 − 1

2
ccT + cxTAT − 1

2
AxxTAT

(C.43)

Set equal to 0 and solve for Z:

Z−1 = Σ = −1

2
ccT + cxTAT − 1

2
AxxTAT

(C.44)
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