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Introduction 
Categorization is critical for our ability to organize 
information. A comparative analysis may provide important 
insights into the cognitive and neural mechanisms underlying 
category learning. We have examined category learning in 
rats and pigeons because of differences in brain organization 
between mammals and birds. Species differences in category 
learning and representation can indicate how the differences 
in brain organization lead to differences in cognition. 

Category structure and supervision are factors importantly 
influencing category learning and representation in humans 
(Kloos & Sloutsky, 2008; Love, 2002). Humans can learn 
categories with dense defining features with no supervision, 
but we need supervision to learn categories with sparse 
features. These finding have been interpreted as evidence for 
multiple category learning systems in the brain. The current 
study examined the roles of feature density and supervision 
in visual category learning in rats and pigeons. 

Experiment 1 
Rats were trained on a discrimination task earlier used for 
category learning with photographic stimuli (Brooks et al., 
2013). Rats were trained with two visual categories in which 
feature density could be precisely manipulated (see Figure 1). 
One category was associated with a left response, whereas the 
other category was associated with a right response. 

 
 

 
 
 
 
 
 
 

Figure 1: Exemplars of one high-density (dense) category 
(top) and one low-density (sparse) category (bottom). 

 
Each stimulus category had five features. In the dense 

condition, three of the features were category-relevant, 
whereas the sparse condition had only one relevant feature. 
High supervision was defined as delivery of a food reward 
only after a correct choice. In contrast, low supervision was 
defined as delivery of a food reward regardless of whether or 
not the choice was “correct.” Rats were trained in a 2 x 2 
design with density and supervision as factors: dense–high 
supervision, sparse–high supervision, dense–low 
supervision, and sparse–low supervision. The rats were 
trained until reaching a criterion of 75% correct responding 
for both categories for 2 consecutive days or for a maximum 
of 60 days. After meeting the training criterion, the rats were 
given testing sessions in which training stimuli were mixed 
with probe trials. Probe trials included novel exemplars 
(novel irrelevant features), rotated stimuli (in which the 
relevant features appeared in different locations), and 
singleton stimuli (only one relevant feature was presented, in 
the absence of any other features). 

Figure 2: Mean accuracy of rats trained in the dense–high 
supervision (dense-high), sparse–high supervision (sparse-
high), dense–low supervision (dense–low), and sparse–low 
supervision (sparse-low) conditions. 
 
All rats in the dense–high supervision condition (6/6) showed 
rapid learning of the two categories (see Figure 2). They also 
showed very high accuracy with novel stimuli. Accuracy 
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dropped significantly when rotated or singleton stimuli were 
presented, suggesting that the rats’ representations of the 
categories included feature-location binding. Some of the rats 
in the sparse–high supervision condition (2/6) learned and 
showed substantial generalization to novel exemplars. Like 
rats in the dense–high supervision condition, the rats in the 
sparse–high supervision condition that learned showed a 
significant drop in accuracy during presentations of the 
rotated and singleton test stimuli. Rats trained in the low 
supervision conditions did not learn. Only one rat in the 
dense–low supervision condition reached criterion 
performance. Rats that did not learn showed a position bias 
and were slower to learn when switched to high supervision. 

Experiment 2 
Pigeons were trained and tested under identical conditions as 
the rats. This experiment is in progress and, currently, 
training and testing has been conducted with a limited 
number of animals: dense–high supervision (2), sparse–high 
supervision (3), dense–low supervision (2), and sparse–low 
supervision (3). All of these pigeons learned relatively 
quickly, compared to the rats. 

Figure 3: Mean accuracy of pigeons trained in the dense–high 
supervision (dense-high), sparse–high supervision (sparse-
high), dense–low supervision (dense–low), and sparse–low 
supervision (sparse-low) conditions. 

 
As can be seen in Figure 3, pigeons in the high density 

conditions learned rapidly, in five or fewer sessions, 
regardless of the level of supervision. They also showed very 
high accuracy to novel stimuli (above 90%), and to rotated 
and singleton stimuli as well (above 90%). Pigeons in the 
sparse conditions took longer to learn but, just as in the dense 
conditions, the level of supervision minimally affected their 
rate of learning. In both sparse conditions, accuracy to novel 
stimuli was high, albeit lower than in the dense conditions 
(85%). Accuracy to the singleton stimuli was high as well 
(85%), but it dropped a bit more for the rotated stimuli (75%). 
Pigeons’ representations of the categories seemed to include 
feature-location binding as well, just as we observed in the 
rats; however, this factor played a much smaller role in the 
pigeons’ performance. 

Conclusions 
The results indicate clear differences in category learning 
between rats and pigeons. Pigeons learned rapidly in all four 

conditions and their learning rate was not affected by the 
level of supervision. For pigeons, the most important factor 
was the density of category-relevant features—dense 
categories were learned faster than sparse categories. In 
contrast, rats showed robust learning only in the dense–high 
supervision condition. Statistical density is therefore a crucial 
factor for visual category learning in birds, rodents, and 
humans. The interaction of density and supervision is more 
complex, however, and may be related to whether the 
organism is remembering visual features, binding features 
and spatial locations, or learning category rules. 

The differences in category learning between pigeons and 
rats may reflect differences in brain organization. Birds do 
not have a laminar cortex or a prefrontal cortex. Thus, the 
pigeons’ insensitivity to the level of supervision might be 
related to the absence of prefrontal processing of differential 
reinforcement. The clear superiority in learning rate in the 
pigeons relative to the rats suggests, however, an advantage 
in memory for visual stimuli, which might be related to 
specializations within the visual areas of the avian brain. 
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