
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Unknown Motion Calibration and Dynamic Imaging Reconstruction

Permalink
https://escholarship.org/uc/item/2xt6f11b

Author
Cao, Ruiming

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2xt6f11b
https://escholarship.org
http://www.cdlib.org/


Unknown Motion Calibration and Dynamic Imaging Reconstruction

by

Ruiming Cao

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Joint Doctor of Philosophy
with University of California, San Francisco

in

Bioengineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Laura Waller, Chair
Professor Daniel A. Fletcher

Professor Na Ji
Professor Bo Huang

Fall 2024



Unknown Motion Calibration and Dynamic Imaging Reconstruction

Copyright 2024
by

Ruiming Cao



1

Abstract

Unknown Motion Calibration and Dynamic Imaging Reconstruction

by

Ruiming Cao

Doctor of Philosophy in Bioengineering

University of California, Berkeley

Professor Laura Waller, Chair

Most imaging systems were developed to capture images for static objects that do not move
during the image acquisition time. As a result, motion is considered as a primary source of
imaging artifacts, which limits the observation of fast moving samples. The most common
way to suppress motion artifacts is to shorten the acquisition time, thereby minimizing mo-
tion during the observation. However, this comes with a cost of less signal and increased noise
in the measurements. While most imaging systems assume static scenes and well-calibrated
system motion during image acquisition, this thesis pioneers an alternative approach that
algorithmically estimates unknown motion. With accurate motion estimation, we can com-
putationally correct motion artifacts during the image reconstruction process, opening op-
portunities to design imaging systems specifically for dynamic scenes. The core idea of this
thesis is to simultaneously reconstruct both the object and its motion using optimization
techniques. We find this approach to be effective and versatile, demonstrating it across
various imaging modalities, object scales, and applications. This joint object and motion
optimization can be done in post-processing without altering image acquisition, enabling the
reconstruction of dynamic scenes from existing datasets affected by motion artifacts.

In addition to recovering dynamic information from static imaging systems, we also ex-
plore an opposite problem: recovering static scenes using an event camera that only detects
changes in the scene. By studying the triggering mechanism of noise events, we develop a
statistical noise model for the event camera that explains its illuminance-dependent noise
characteristics. With this understanding, we propose to form an image of a static scene using
only noise events, providing rich contextual information about static scenes to the dynamic
sensor, without requiring any change on its hardware.

This thesis demonstrates these concepts using various novel imaging systems, including an
event camera, a lensless camera, a quantitative phase microscope, a 3D refractive-index
microscope, and a super-resolution fluorescence microscope. By accurately modeling both
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unknown motion and noise, we aim to demonstrate how computational methods can bridge
the gap between static and dynamic imaging.
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Chapter 1

Introduction

Imaging systems play a crucial role in various aspects of our lives. For example, people take
photos to capture moments, doctors use medical imaging to diagnose diseases, and biologists
observe sub-cellular components using fluorescent microscopy. A modern imaging system is
typically designed to perform two core functions: image formation and signal collection. In
the context of optical imaging systems, the former is achieved through a combination of a
light source and optics, and the latter through imaging sensors. In a nutshell, light encodes
the information of the target scene, passes into the optics to be collected by the sensor, and
the photons arriving at the sensor pixels are consequently converted into electrical signals
and recorded by a digital system.

Computational algorithms have become a fundamental component in many imaging sys-
tems over the past two decades. Once the signal is captured by the sensor, computational
software processes the raw data to reconstruct the final image, which would be difficult to
capture using optical hardware alone. Smartphone photography is a good example that high-
lights the success of these computational algorithms. Over the past decade, the image quality
of smartphone cameras has significantly improved due to various algorithms such as motion
metering [100], high-dynamic range [123] and low light [70], despite the physical constraints
of compact optics and sensor pixels. Computational imaging involves the joint development
of signal acquisition methods and image reconstruction algorithms. Beyond digital photog-
raphy, computational imaging systems have significant impacts in scientific and biomedical
imaging. For example, the scan time of magnetic resonance imaging (MRI) can be accel-
erated by multiple fold when using custom phase gradient and compressive sensing-based
optimization [108].

Despite these advances, capturing fast dynamic scenes is often a challenge. Broadly
speaking, most imaging systems are designed for static scenes, and they often produce arti-
facts when the scene changes during a single acquisition. A famous example is the Temple
Boulevard photograph (Fig. 1.1), one of the earliest photographs ever taken. It captured
only the shoeshiner and the customer (red box) while missing all other pedestrians and
cars because they did not stay still during the long exposure of 4-5 minutes required by
the daguerreotype photographic process. Digital CMOS sensors also produce distortions in
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Figure 1.1: The famous Boulevard du Temple photograph taken by Louis Daguerre in 1838.
Even though it was captured at a busy hour in the morning, the street appeared empty since
the early photographic process requires a long exposure time (4-5 minutes in this case).
Hence, the shoeshiner and the customer (red box) were the only persons captured by this
photograph.

fast-moving scenes due to the sequential rolling-shutter readout of the camera circuit (see
Fig. 1.2 and Fig. 1.3). One solution to motion-related artifacts is to reduce the acquisition
time. While a shorter acquisition time is effective at reducing motion artifacts, it often lim-
its the amount of information captured and can result in noisier raw data. In other words,
reducing the acquisition time is constrained by physical limits, which can pose empirical
challenges.

Motion also presents challenges for medical imaging techniques like computed tomogra-
phy (CT) and magnetic resonance imaging (MRI). Patient movements, including voluntary
motion (such as moving an arm or shifting position) and involuntary motion (such as breath-
ing and heartbeat), can both introduce artifacts to the final image, affecting the clinical
interpretations [207]. As the motion is often periodic, motion gating methods are commonly
used to reject signals that can cause motion artifacts. Motion gating methods synchronize
the scanning with patient’s respiratory or cardiac motion cycle and only collect signal at a
specific phase in multiple motion cycles [46]. External devices, such as chest motion sensors
or electrocardiography (ECG) are often deployed to detect the specific phases of the mo-
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Figure 1.2: A de Havilland Canada Dash 8 Q-400 six-blade propeller with severe rolling-
shutter distortion. This photo was taken by Richard F. Lyon using a Google Pixel 3 cam-
era [50].
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Figure 1.3: Cessna 172 two-blade propeller with severe rolling-shutter distortion. This photo
was taken by Laura Waller using an iPhone camera [182].

tion cycle [95]. Additionally, certain MRI techniques can measure the motion cycle without
external sensors. These methods include an additional navigator echo to the MRI pulse
sequence, and the signal from the navigator echo will help the system determine the best
time to acquire imaging data [45, 191, 96].

This thesis takes a different approach to the motion challenge: instead of assuming a
static scene and working to maintain this assumption, we acknowledge the unknown motion
in the raw data and estimate it computationally. Chapter 2 introduces an illumination
scheme to capture motion-aware signal and use that to calibrate for unknown axial motion
of the imaging system. In Chapter 4, the motion is deemed as an encoding mechanism for
diversified measurements. This approach eliminates the need to shorten acquisition time,
instead framing the motion challenge as an optimization problem. Without assuming a
static scene, this thesis addresses the challenge of simultaneously solving for both the image
and its motion, as both variables are unknown. Resolving the motion not only eliminates
artifacts in the final image but also allows us to observe dynamics at speeds beyond the
normal capabilities of the imaging system, as demonstrated in Chapter 5.

Previous work has explored methods to estimate unknown global motion during image
reconstruction. The global motion is often caused by sample drifting in the context of
super-resolution microscopy. The drifting motion (global translation motion) can often be
identified using spatial cross-correlation between different raw images, and the effect of the
motion can then be corrected during the reconstruction [117, 137, 68]. In contrast to global
motion, local deformable motion involves complex, nonlinear transformation, requiring a
large number of parameters for accurate modeling. As a result, accounting for deformable
motion during image reconstruction is particularly difficult due to its complexity to model
and the large number of parameters to estimate for.
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From the perspective of inverse problems, while global drifting motion can often be
resolved, introducing unknown deformable motion parameters complicates the problem and
can make it ill-posed. Since deformable motion occurs at the pixel level, the number of
parameters needed to represent it is comparable to those required to represent the image.
Thus, given the same set of measurements used for reconstructing a final image, jointly
estimating the unknown motion during the image reconstruction makes the inverse problem
less well-conditioned and cannot work for all cases. In Chapters 4 and 5, we explore the
assumption of motion smoothness to mitigate the ill-posedness and enable the joint motion
and image optimization.

This thesis features a number of optical imaging modalities, including quantitative phase
contrast, 3D refractive index tomography, 2D/3D super-resolution fluorescent imaging, lens-
less photography, and event-based cameras. While they have different designs and uses, we
often consider them under the same inverse problem framework:

y = Ax (1.1)

The measured signal is denoted as y, and the scene we want to recover is x. A is the physical
forward model of the imaging system which connects the measured signal with the final
reconstruction. When dealing with dynamic scenes, the inverse problem is rewritten as:

y (t) = Ax (t) , (1.2)

where both the signal and the reconstruction vary with time. There are two key aspects
for effectively solving inverse problems: The first is encoding information into measurements
through a favorable design of the forward model A. The second is decoding the information,
particularly when the inverse problem is ill-posed, by establishing appropriate priors for the
scene x.

The remainder of this chapter introduces the imaging modalities that will be discussed
in greater detail in the following chapters.

1.1 Quantitative phase imaging

Quantitative phase imaging (QPI) measures a sample’s phase delay, which is directly related
to optical path length. Since phase cannot be measured directly, QPI methods use various
phase contrast mechanisms to encode phase information into the captured intensity mea-
surements. These measurements are then used to calculate the phase. Several established
QPI methods include digital holographic microscopy [88], ptychography [149], and spatial
light interference microscopy [187], each taking unique approaches. Most of these methods
use coherent light. However, methods using partially spatially coherent light [183, 175, 127]
can offer higher spatial resolution [14], reduced coherence-induced speckle [56], and are often
less expensive.

QPI techniques provide high-contrast, label-free imaging, making them suitable for var-
ious scientific and industrial applications [142]. They enable observation of transparent
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samples, such as living cells, without the need for exogenous contrast agents. This preserves
the natural state of the specimens and allows for continuous real-time observation.

1.2 Super-resolution imaging

The spatial resolution of any far-field optical imaging system is fundamentally limited by
diffraction, which depends on the system’s numerical aperture (NA) and light wavelength.
Super-resolution microscopy allows observation of sub-cellular and molecular structures at
resolutions beyond the diffraction limit, providing unprecedented insights into biological
processes. This breakthrough was recognized by the 2014 Nobel Prize in Chemistry [118,
199].

There are three fundamental approaches for super-resolution microscopy: stimulated
emission depletion (STED) microscopy [71], single-molecule localization microscopy (SMLM) [12,
150], and structured illumination microscopy (SIM) [67]. STED microscopy reduces the effec-
tive point spread function by depleting fluorophores around the focal point. SMLM achieves
super-resolution by precisely localizing sparsely located individual fluorophores over time.
SIM enhances resolution by projecting patterned light onto the sample and using computa-
tional algorithms to reconstruct high-resolution images from the resulting moiré patterns.

These methods have revolutionized biological research by providing insight into the in-
tricate workings of cells and their components [158]. For instance, super-resolution imaging
allows scientists to visualize the spatial organization [78] and interactions of molecular struc-
tures in cells at nanometer-resolution [128]. This has led to breakthroughs in understanding
cellular processes such as membrane organization [78], protein interactions [155], and intra-
cellular transport mechanisms [6].

1.3 Event camera

Event cameras [109], also known as neuromorphic cameras or dynamic vision sensors, are an
emerging imaging modality for capturing dynamic scenes. Their ability to capture data at a
much faster rate than conventional cameras has led to their application in high-speed navi-
gation, augmented reality, and real-time 3D reconstruction [57]. Unlike conventional CMOS
cameras, which output intensity images at fixed intervals, event cameras detect brightness
changes at each pixel asynchronously. When the brightness change at a pixel exceeds some
threshold, an event is recorded. The output from an event consists of three elements: a
timestamp, the spatial coordinate of the triggered pixel, and a binary polarity, indicating
whether it is an increase or decrease of brightness.

1.4 Outline

Here is an outline of this thesis:
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• In Chapter 2, we discuss a practical method for 3D differential phase contrast (DPC)
phase microscopy to estimate the axial positions of a defocused image stack when a
precise motion stage is not available. This chapter includes the research published
in [23, 28].

• Chapter 3 is a detour from the motion estimation and explores a systematic way to
optimize the illumination patterns to improve the information encoding efficiency of
an imaging system. This chapter includes the research published in [24, 28].

• In Chapter 4, we propose a novel dynamic super-resolution microscopy method that
uses fixed random speckle illumination and takes sample motion as a contrast mech-
anism to encode diversified information. This chapter covers the research published
in [25, 22, 29].

• In Chapter 5, we propose a motion-resolved reconstruction method called the neural
space-time model, which jointly estimates the scene and its motion dynamics for multi-
shot imaging systems. This model effectively improves the temporal resolution of
systems designed for static imaging. This chapter covers the research published in [26].

• In Chapter 6, we investigate the event camera, an emerging dynamic sensor that detects
only brightness changes, and introduce a Noise2Image method to recover the absolute
brightness of a scene from the noise characteristics. This chapter covers the research
published in [27].

• Chapter 7 serves as a conclusion and provides some future directions and outlook.
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Chapter 2

Self-calibrated 3D differential phase
contrast microscopy

Differential phase contrast (DPC) microscopy is a practical QPI method that recovers quan-
titative phase from multiple images with different illumination source patterns [114, 175].
The illumination source diversity can be conveniently achieved with a programmable LED
array [212, 175, 105]; thus, QPI is enabled by a simple and inexpensive modification to a
commercial microscope. The LED array microscope is, in general, a powerful platform for
computational illumination microscopy, enabling not only QPI, but also multi-contrast [212,
176], super-resolution [211, 177] and 3D imaging [174].

Since phase is a projected quantity related to both the refractive index (RI) and thickness
of the sample, 3D phase imaging amounts to volumetric reconstruction of the sample’s
RI [196, 14]. Interferometric and diffraction tomography techniques [171, 89, 13, 174, 76, 35,
33, 98], as well as 3D Fourier Ptychography [174, 112], reconstruct 3D RI from projection
measurements captured at different illumination angles with spatially coherent light. 3D
DPC [32, 162], on the other hand, uses partially coherent illumination (e.g. LED array
illumination with many LEDs on) to create strong depth sectioning effects [156] that blur out-
of-focus planes [175]. The sample is then scanned axially to image the third (z) dimension.
This approach is practical because it gives good signal and does not require well-aligned
illumination [35, 98, 44]; however, it does require an axial motion stage, which increases
hardware complexity and cost.

Axial scanning for 3D DPC is usually performed by an automated motion stage which
stops at each defocus plane [32]. This ”stop-and-stare” strategy limits the overall speed of
capture [140] because the camera must wait for the motion stage to move and settle before
capturing each frame. Fast focusing mechanisms like focus-tunable lenses [162] can improve
capture speed, but are expensive to implement. For high-NA systems, motion stages are
particularly expensive since the depth-of-field (DoF) is short, so high-precision axial motion
is required [162].

This chapter includes the research I presented or published in [23, 28].
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Here, we present an extension of 3D DPC that enables fast axial scanning without a dedi-
cated motion stage. Instead, we hand-turn the focus knob of the microscope to scan through
focus while capturing video measurements, and then use an algorithmic self-calibration pro-
cedure to solve for the defocus positions in post-processing. The system capture speed is
increased because the images are taken during the scanning motion, and the overall cost of
the system decreases significantly without the need for an axial motion stage.

2.1 Background on 3D differential phase contrast

imaging

An inhomogeneous 3D volume can be written as a scattering potential, V , such that

V (r) = k20
(
n2
0 − n2 (r)

)
, (2.1)

where r denotes the 3D spatial coordinate, k0 is the wave number, n0 is the RI of the
surrounding medium, and n (r) is the complex RI of the sample (real part for phase and
imaginary part for absorption). When coherent light propagates through the 3D volume, we
can write the evolution of the electric field using the Lippmann-Schwinger equation:

U (r) = Uin (r) + Uscat (r) = Uin (r) +

∫∫∫
U (r′)V (r′)G (r − r′) d3r′, (2.2)

where Uin, Uscat are the incident and scattered light and G is the 3D Green’s function [14].
For a partially coherent source, we calculate the intensity distribution at the sensor by

treating the source as a collection of different spatially-coherent sources and summing the
intensity generated by each after coherent propagation:

I (r) =

∫∫
S (u′) |U (r;u′) |2d2u′, (2.3)

where S represents the 2D angular distribution of the incoherent source (assuming Kohler
geometry) and u′ describes the spatial frequency of each spatially coherent source (e.g. each
LED). The 3D spatial coordinates, r, is dropped in future expressions for simplicity.

Previous work [32] simplified Eq. 2.3 by taking the first Born approximation [14] in
order to obtain a linear model directly relating the intensity measurements to the scattering
potential. The Born approximation assumes U ≈ Uin in the integral term of Eq. 2.2 and
is valid for weakly-scattering objects where Uin ≫ Uscat. The weak object approximation
applies when the auto-correlation of Uscat is negligible due to weak scattering, |Uscat|2 ≈
0 [167]. If we separate the scattering potential into its real and imaginary parts, Ṽ =
ṼRe + i · ṼIm, the background subtracted 3D image stack under the ith illumination pattern,
I ′i, can be written as

Ĩ ′i = H
(i)
Re · ṼRe +H

(i)
Im · ṼIm, (2.4)
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Figure 2.1: (a) Imaging setup on a commercial inverted microscope with a custom LED array
illumination unit. The sample is imaged with various partially-coherent illumination patterns
and at different focal planes; then a computational algorithm recovers the 3D refractive index
map from the captured dataset. (b) We capture images continuously while cycling through
different illumination patterns and scanning axially by hand-turning the focus knob. The
single LED illumination pattern (spatially coherent) enables self-calibration of the defocus
positions, such that the precise focus position need not be known.
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where ·̃ denotes Fourier transform and H
(i)
Re and H

(i)
Im are the real and imaginary parts of the

transfer functions corresponding to phase and absorption contrast, respectively, for the ith
pattern Si [32]:

H
(i)
Re = Fz i[(S

′
i · Pz) ⋆ (Pz · Γ)− (Pz · Γ) ⋆ (S ′

i · Pz)],

H
(i)
Im = Fz[(S

′
i · Pz) ⋆ (Pz · Γ) + (Pz · Γ) ⋆ (S ′

i · Pz)],
(2.5)

where Fz denotes Fourier transform along the z axis, and ⋆ denotes cross-correlation. S ′
i

is the flipped source distribution of Si, Pz is the pupil function with defocus kernel, and
Γ (u) = 1

4π
√

n2
oλ

−2−|u|2
for lateral spatial frequency u.

Given defocus image stacks for each of M different source patterns, the scattering poten-
tials can be found by solving the following inverse problem:

argmin
ṼRe,ṼIm

∑
i=1,...,M

|Ĩ ′i −H
(i)
Re · ṼRe −H

(i)
Im · ṼIm|22 + η ·R (VRe, VIm)

2
2 , (2.6)

where R (·) is the regularization term. When Tikhonov regularization (L2 norm of VRe and
VIm) is used, we can find an analytical estimator for the scattering potential:(

V ∗
Re

V ∗
Im

)
=

(∑
|H(i)

Re|2 + η
∑
H

(i)H
Im H

(i)
Re∑

H
(i)H
Re H

(i)
Im

∑
|H(i)

Im|2 + η

)−1(∑
H

(i)H
Re Ĩ ′i∑

H
(i)H
Im Ĩ ′i

)
. (2.7)

Thus, the 3D absorption and refractive index distributions can be recovered from the raw
data.

2.2 Axial scanning and defocus self-calibration

In previous work, axial through-focus scanning was performed by a motion z-stage with
closed-loop control. With the ”stop-and-stare” strategy, the user moves the stage to each
desired focal plane and acquires images with known defocus positions. Here, we instead
hand-turn the built-in focus knob on a standard microscope while continuously updating
the illumination patterns and capturing images at a fast enough frame rate such that there
is negligible motion blur in each frame. This enables fast axial scanning without hardware
dependency; however, the user can no longer specify the focal planes and the defocus position
of each image is unknown.

We seek an algorithmic way to infer the unknown defocus positions in post-processing,
known as self-calibration. With partially coherent illumination (many LEDs turned on at
once), the system will have strong optical sectioning [156], meaning that images taken at a
particular focal plane will have little information from other focal planes. Thus, the problem
of jointly solving for the defocus positions and the 3D sample becomes very ill-posed. If
spatially coherent illumination (a single LED) is used instead, there is no optical sectioning
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and changing focus of the microscope only changes the defocus kernel. This makes 3D
reconstruction difficult but gives good information to solve for defocus positions. Hence, we
choose to use both partially coherent illumination patterns designed for DPC and a self-
calibration pattern with only a single LED on. While the focus knob is swept by hand, the
LED array quickly alternates between these patterns, with each lasting for one exposure.

Our capture strategy thus collects images for the single-LED illumination at different
defocus positions, which are used for self-calibration. The LED array is placed sufficiently
far from the sample such that an LED illuminates the sample with a plane wave (spatially
coherent light), defined as exp (i2πu′ · x), where u′ corresponds to the plane wave angle.
Because the light is spatially coherent, we can model the single-LED self-calibration images
as

Icalib (x, z) = |F−1[Pz (u− u′) · õ (u)]|2, (2.8)

where o is the 2D complex-field, and u denotes the lateral spatial frequency. Pz is the
pupil function with a defocus distance z, modeled by angular spectrum propagation [14],

Pz (u) = P (u) exp
[
i2πz

√
1
λ2 − u2

]
. This single-LED illumination can be from any angle;

we choose an off-axis LED because the image will shift laterally with defocus, providing
stronger defocus contrast.

Joint optimization for self-calibration

Once the dataset (with N images) is captured, we then need to jointly solve for the field and
the defocus positions. The problem can be written in a joint optimization form,

argmin
o,z

N∑
i=1

∥Icalib (x, zi)− |F−1[Pzi (u− u′) · õ (u)]|2∥22. (2.9)

This formulation takes N intensity images, Icalib (zi), to solve for one 2D complex-field, o, and
defocus positions, zi for i = 1, ..., N , and thus is well-constrained even with only a few defocus
planes [2]. The optimization problem is, however, non-convex, and the defocus positions zi
and complex-field o are dependent on each other. As a result, when we use gradient descent-
based methods to optimize them, their gradients will be affected by one another, making
it difficult to reach convergence. However, if the defocus positions are known, the field can
be solved for; similarly, if the field is known, the defocus position can also be determined
for each image. For a non-divergence solution, we alternate the optimization for these two
unknowns, such that only one variable is updated at each time [213, 31].

To perform the optimization, we first initialize the defocus positions with a guess of the
total range of defocus and equal spacing between images. Then, we use gradient descent,
implemented with Adam [90] for fast convergence, to optimize the complex-field in Eq. 2.9
with z fixed. Next, we fix the complex-field at the current estimate and update the defocus
positions, z. We check the loss after each iteration and stop the update if it converges
earlier. These alternating updates continue until the convergence of both variables. To
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ensure a unique solution of defocus positions, a non-decreasing condition is assumed, such
that the defocus motion is only in one direction. This condition is enforced by projecting
the updated defocus positions into a non-decreasing sequence.

After joint optimization, we know the defocus position for each single-LED image. Then
the defocus positions for images using other illumination patterns are bi-linearly interpolated
by the nearest known defocus positions from single-LED images. We also note that, since
image planes are no longer equally spaced, during the 3D reconstruction as in Eq. 2.4, a
non-uniform discrete Fourier transform needs to be computed in the z direction.

2.3 Experiment setup for DPC

Experiments were performed on a commercial inverted microscope (Nikon TE2000-U) with
a 40× 0.65NA objective lens (Nikon). A customized LED quasi-dome array (SCI Mi-
croscopy) [139] was installed on the microscope to replace the conventional illumination
unit. The top panel of the LED array was positioned 65mm above the focal plane and only
the ‘brightfield’ LEDs were used (those that illuminate the sample from an angle within the
NA of the objective lens). Green LEDs (λ centered at 525nm) were used throughout the
experiment. We used a sCMOS sensor (PCO Edge 5.5 monochromatic) to capture intensity
images in global shutter mode. Each exposure was hardware triggered by the LED array’s
controller (Tenseey 3.2) after every illumination pattern update. We used an automated
piezoelectric z-stage (Thorlabs MZS500-E) to defocus the sample for the comparison case of
controlled axial scanning. For hand-turning defocus, the fine focus knob of the microscope
was spun, and an off-axis LED at NAx = 0.36, NAy = 0.0 was used as the self-calibration
single-LED pattern.

2.4 Validation of defocus self-calibration

We validate the self-calibration algorithm on experimental data from single-LED illumina-
tion. We use the precision z-stage to defocus and acquire an evenly-spaced image stack with
140 planes with a step size of 1µm. This image stack is acquired with the same optics and
exposure setting as in the rest of study. Then, we randomly choose a number of images with
defocus positions in a monotonic order, and those chosen images become an unevenly-spaced
image stack with known defocus positions, which can be used to validate our self-calibration
algorithm. We repeat this process to randomly generate 20 image stacks for each of 10
different average defocus spacing between images, from 1µm to 10µm. The self-calibration
algorithm, blind to the knowledge of their ground truth positions, is performed on each
image stack as follows. The self-calibration is initialized with a linear defocus estimation.
Then, the joint updates are performed for 100 iterations, each of which contains 50 gradient
descent steps to update the field and 10 steps to update the defocus positions.
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Figure 2.2: Algorithmic self-calibration for defocus positions. (a) Self-calibration images
from a single off-axis LED at different depth planes for a simple object (a single polystyrene
bead). (b) Experimental average defocus position errors before (linear guessing) and after
self-calibration for different average defocus spacing between measurements. Each data point
shows the average over 20 unevenly-spaced image stacks, and the error bars denote 2× the
standard deviation.

The error of the self-calibration is quantified by comparing with the ground truth defocus
positions and results are plotted in Fig. 2.2. With average defocus spacing of 1µm, the defocus
position error was 91nm, which is close to the resolution of the z-stage (50nm). When the
average defocus spacing is 5µm, the defocus position error is 0.29µm while the error of linear
guessing jumps to 1.82µm.
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Chapter 3

3D DPC illumination pattern
optimization

We further improve the practicality of 3D DPC by optimizing the illumination source pat-
terns. Previous work [114, 32] used four half-circular illumination patterns at each focal
plane, though later works have shown the ability to reduce the number of images cap-
tured [138, 162]. The half-circle designs were developed heuristically for use with analytical
inversion methods. However, since arbitrary patterns can be used in our system, we aim
to optimize for illumination patterns that best encode the 3D phase information in the raw
images. To enable a systematic design of the LED patterns, Hugonnet et al. [80] defined an
objective function to evaluate illumination patterns. However, the optimized design often
becomes very sensitive to the choice of objective function (e.g., to balance high vs. low fre-
quency, sensitivity vs. signal-to-noise ratio (SNR)). Recently, a class of data-driven methods
called physics-based learning have been used to optimize the illumination design end-to-end
to improve the final reconstruction without a crafted objective function [85, 83]. Here, we
employ physics-based learning to optimize the illumination patterns for our 3D DPC setup,
ensuring efficient and robust capture strategies. Combining this with our self-calibrated
axial motion, we demonstrate practical high-quality refractive index reconstruction on a
commercial microscope with LED array illumination.

3.1 Physics-based learning to optimize illumination

pattern

The choice of illumination patterns will largely dictate the quality of the results. As described
above, we time-interleave a single-LED illumination with multiple DPC patterns. Instead
of using the traditional half-circle DPC patterns, we use new techniques in physics-based
learning [85] to design better partially coherent DPC illumination patterns. The forward

This chapter includes the research I presented or published in [24, 28].
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Figure 3.1: Illumination patterns were designed by physics-based learning to optimize en-
coding of phase information into intensity measurements.

model of image formation for 3D DPC ‘encodes’ the sample’s scattering potential into 2D
intensity measurements, and the reconstruction ‘decodes’ the 3D information from these
measurements. As described in Section 2.1, the encoding and decoding processes are de-
scribed by the system’s transfer functions, which specify what information can be encoded
into the measurements as well as how much of the encoded information can be recovered
(without being overwhelmed by noise, etc.).

Since both the forward model and the reconstruction are differentiable in simulation,
physics-based learning can optimize the patterns by forming the encoding-decoding pipeline,
as in Fig. 3.1, then defining a loss function to measure the discrepancy between the the true
scattering potential of a simulated sample and its reconstruction. The simulated samples,
which the optimized illumination patterns will be tailored to, are expected to have a spatial
frequency distribution similar to the experimental samples. The illumination patterns are
updated iteratively to minimize the loss function. Our loss function consists of an object
consistency loss and a source physical constraint term:

Loss (S) = ∥V − rec{fwd [H (S) , V ] , H (S)}∥22 + µ · c (S) , (3.1)



CHAPTER 3. 3D DPC ILLUMINATION PATTERN OPTIMIZATION 17

where S denotes a set of illumination patterns. The real and imaginary components of the
transfer function and scattering potential are written together for conciseness. The object
consistency loss measures the L2-distance between the reconstruction and the true scattering
potential, V , where fwd and rec are the forward model and reconstruction as described in
Eq. 2.4 and Eq. 2.6, respectively.

The source physical constraint term, c, enforces non-negative light intensity and limits
the maximum intensity of each LED to one:

c (S) =


−S, S < 0

0, 0 ≤ S ≤ 1

S − 1, S > 1.

(3.2)

This term will give a reverse gradient when S goes below 0 or above 1. The overall weight
of this term is set to be large, so that its gradient also prevails over the gradient of object
consistency when the light intensity goes beyond the range. We find this term effective
to eliminate trivial solutions with very large or negative values for light sources, and the
optimized patterns do not require a normalization or clipping at the end.

3.2 Practical considerations

We discuss a few practical considerations that we include in the optimization. First, it is
important to simulate the noise in the forward model to discourage solutions that bring good
phase contrast but sacrifice the overall SNR. Hence, we model the readout noise and the signal
noise in the forward model. The readout noise is from a Gaussian distribution by its nature,
and the signal noise is from a Poisson distribution, which is also approximated as Gaussian
for the relatively high light levels in our system. During physics-based learning, both the
readout and the signal noise are sampled from standard normal distributions and scaled with
the total illumination intensity,

∑
S, before being added to the simulated intensity images

at the end of the forward model. The total noise, I ′noise, added to the normalized intensity
images can be written as

I ′noise =
α ·Nreadout

texp
∑
S

+
β ·Nsignal√
texp

∑
S
, where Nreadout, Nsignal ∼ N (0, 1) , (3.3)

where texp is the exposure time, and α, β are coefficients we obtained from experimentally-
captured images. Since the additive noise carries no information about the sample, it will
only negatively affect the reconstruction and raise the loss value. In this way, the physics-
based learning optimization will have an incentive to use higher total illumination power.

Second, binary-valued illumination patterns (i.e., each LED is either on or off) are eas-
ier to implement in practice because: 1) the hardware delay time of binary-valued pattern
updates are shorter, and 2) binary-valued patterns do not require per-LED illumination
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intensity calibration. However, this binary-value constraint requires a combinatorial opti-
mization, which is difficult to solve in practice. Instead, we still use gradient descent to
optimize for continuous-valued patterns while promoting a binarized LED intensity value
distribution (values to be close to either 0 (off) or 1 (on)) as follows. At each iteration,
we feed in the binarized patterns to the forward model while keeping the continuous-valued
patterns for the reconstruction. Since only the continuous-valued patterns are updated dur-
ing the gradient descent optimization, the final optimized patterns will have more intensity
values close to 0 or 1 to minimize the mismatch due to the binarized patterns in forward
model. After the optimization, the binary-valued patterns can be obtained by thresholding
the continuous-valued optimized patterns.

Third, we take into account the slight misalignment of the LED array to improve the
robustness of the optimized patterns. We randomly add a small lateral shift to the source
patterns during the forward model while assuming the original, not-shifted patterns in the
reconstruction. This mismatch will deteriorate the reconstruction for illumination patterns
sensitive to misalignment, and we find that the optimized patterns with this consideration
are denser and more connected.

3.3 Optimization setup

To determine the optimal number of DPC illumination patterns, we compare the final ob-
ject consistency losses for the optimizations with different numbers of patterns. When an
additional pattern does not further reduce the loss, it is considered unnecessary. Fig. 3.2
shows the relationship between the object consistency loss and the number of DPC patterns.
When noise is incorporated into the simulation (Fig. 3.2(b)), having more patterns in a fixed
total acquisition time reduces the SNR. We find 2-4 DPC patterns gives the minimal loss
value, and thus we choose to have four illumination patterns, as in the case of half-circular
DPC illumination patterns.

Next, we use end-to-end optimization to find the patterns for our four DPC illuminations.
The patterns are randomly initialized from a uniform distribution and then optimized by
an Adam optimizer [90] for 250 iterations. The optimization is implemented in Tensorflow
(Google), and we use a single GPU (NVIDIA Titan X) to accelerate the computing. The
optimized patterns are shown in the first two rows of Fig. 3.3(c). The typical DPC half-circle
patterns (Fig. 3.3(a)) and the optimized patterns without applying the practical considera-
tions in Sec. 3.2 (Fig. 3.3(b)) are shown for comparison. The patterns without the practical
considerations (Fig. 3.3(b)) have more emphasis on high-angle illumination; the patterns
optimized with the practical considerations (Fig. 3.3(c)) have dense and connected patterns
to cover more low-angle LEDs, which presumably give a better SNR and are more robust
for misalignment.

Throughout the pattern optimization, we use ground truth simulated objects that are
somewhat similar to the types of samples we expect in experimental applications. We sim-
ulate spherical objects with smaller high-RI spheres inside to mimic simple cells. A small
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Figure 3.2: The final object consistency loss of physics-based learning as the number of
illumination patterns varies, (a) without noise, and (b) with simulated noise. Marker colors
indicate the acquisition time for each set of illumination patterns.

Gaussian noise with mean 0 and standard deviation 0.25 (which is about 3% of the real part
of the maximum scattering potential value) is also added to each object’s scattering potential
to increase the spatial frequency diversity of simulated objects and to avoid over-fitting to
particular spatial frequencies.

3.4 Experimental validation and transfer function

analysis

The optimized DPC patterns were programmed on the experimental system for validation.
We imaged 10µm polystyrene-based microsphere beads (Sigma-Aldrich) with RI 1.6 [168] in
RI 1.584 index-matching oil (Cargille; RI 1.592 at λ = 525nm). Some microspheres were
greater than 10µm in diameter, possibly due to their reaction to the index-matching oil
or degradation during storage. We acquired an image stack for each illumination pattern,
defocused by the precision z-stage with 1µm spacing between planes.

As a comparison, the RI reconstructions for the half-circular DPC patterns used in [32],
patterns optimized without practical considerations, and patterns optimized with practical
considerations are shown in the third row of Fig. 3.3 respectively. The patterns optimized
with practical considerations (Fig. 3.3(c)), give more accurate RI values and reduce elonga-
tion artifacts [32] in the axial direction compared with the half-circular baseline (Fig. 3.3(a)
and patterns optimized without the practical considerations (Fig. 3.3(b)). Therefore, the
practical considerations helps to improve experimental robustness and the patterns opti-
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Figure 3.3: Experimental 3D refractive index volume reconstruction with different illumi-
nation pattern designs, for a polystyrene bead sample. (a) Half-circular differential phase
contrast (DPC) patterns, (b) optimized patterns without practical considerations in Sec-
tion 3.2, and (c) optimized patterns with practical considerations, which gives the best
reconstructions.

mized with the practical considerations (Fig. 3.3(c)) are used as our final optimized DPC
patterns. A 3D reconstruction of human embryonic stem cells using the final optimized DPC
patterns is shown in Fig. 3.4.

To further investigate the optimized DPC patterns, we visualize the 3D phase transfer
functions (HRe in Eq. 2.4) corresponding to the patterns (Fig. 3.5). Note that zeros in the
transfer function indicate that no phase information is encoded in the intensity measurements
for that spatial frequency. Therefore, a good set of illumination patterns should have as
many non-zero regions as possible to recover 3D information. Dotted circles in 2D slices
indicate the region of missing cones (also illustrated in 3D in Fig. 3.5(c)), in which the
phase information cannot be encoded due to the limited NA [166, 167]. Fig. 3.5(b) shows
the 3D transfer function for a traditional DPC half-circular pattern, for comparison. The
transfer function of DPC pattern has good coverage at the zero axial frequency plane, but
misses the low-frequency content (indicated by the arrows in Fig. 3.5(b)) outside of the
missing cones at non-zero axial frequencies. This explains the RI underestimation of the
DPC patterns in Fig. 3.3(a); the transfer functions for the optimized patterns have good
coverage of low-frequency content across different axial frequencies and thus recover a more
accurate quantitative RI value.
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Figure 3.4: Experimental 3D refractive index volume reconstruction of human embryonic
stem cells (hESC) using optimized illumination patterns. (a) A lateral slice of the refractive
index reconstruction with two zoomed-in regions at different z planes. (b) 3D rendering.
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Figure 3.5: Comparison of the 3D phase transfer functions for (a) the 4 optimized illumina-
tion patterns from our physics-based learning, and (b) a half-circular DPC pattern. Dotted
circles in (a) and (b) indicate the phase transfer function’s missing cones, which can also be
seen in (c) the 3D visualization of the theoretically feasible support regions of the transfer
function (due to the limited NA).
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3.5 Experimental validation with self-calibration +

optimized patterns

We combined hand-turning axial scanning (Chapter 2) with the optimized illumination pat-
terns into our final 3D DPC system. We imaged 10µm borosilicate glass (RI 1.56) micro-
spheres (Duke Standards, Thermo Fisher) in RI 1.54 index-matching oil (Cargille; RI 1.546 at
λ = 525nm). The illumination sequence consisted of the 4 optimized patterns in Fig. 3.3(c)
and one single-LED illumination for defocus self-calibration. During the acquisition, we con-
tinuously turned the fine focus knob by hand at an approximately steady speed, while the
LED array looped through the illumination patterns and sent triggers to the camera after
each update. We acquired 375 frames (75 frames for each illumination) in about 25 seconds,
and the total defocus was about one rotation of the fine focus knob, roughly 100µm of de-
focus. With single-LED illumination measurements, we performed defocus self-calibration
and recovered the defocus positions shown in Fig. 3.6(a). The self-calibration optimization
took about 7 minutes to finish 100 iterations using a single GPU (Nvidia Titan X). The
self-calibration update reached its convergence after around 50 iterations (see Fig. 3.6(b)).
The reconstructed 3D RI volume is visualized in Fig. 3.6(c), with zoom-in lateral and axial
sections for the two insets. Many detailed features within microspheres (presumably due to
the fabrication imperfection) can be observed with clear contrast in both insets, showing the
efficacy of the optimized patterns. The quantitative RI values also match well to the labeled
value of the glass microspheres (RI 1.56), with the exception of a negative relative RI and
a zero relative RI microsphere in inset 2 of Fig. 3.6(c). We believe these two microspheres
have different RI inherently after checking the measured image contrast. The halo artifact
for phase imaging described in [195, 126] can also be observed for our 3D reconstruction on
the in-focus plane of an object; a non-negativity constraint can be used during the Tikhonov
reconstruction to suppress the halo artifact as described in [32].

3.6 Conclusion

We demonstrated an extension of 3D differential phase contrast (DPC) imaging with im-
proved reconstruction and without a motion z-stage. In Chapter 2, we introduced a practical
stage-free axial scanning by spinning the built-in focus knob while taking measurements and
then self-calibrating for the actual defocus positions later using a joint update algorithm. In
this chapter, we showed the illumination patterns can be optimized for a better refractive
index reconstruction.

Future work could focus on tailoring the loss function for the optimization based on the
application. For example, low-frequency contrast will be more important if we are interested
in segmenting densely placed cells. It is also worthwhile to investigate the role of different
regularization of the reconstruction. We used Tikhonov regularizer in this paper for its
generality, while other regularizers, such as total variation (TV) and deep learning-related
ones [62, 200], might bring other insights in particular imaging scenarios.
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Figure 3.6: Experimental 3D refractive index reconstructions of borosilicate glass beads from
a hand-tuned defocus stack. (a) Reconstructed refractive index at one depth slice, with two
zoom-ins showing lateral and axial cross-sections and different depth slices. (b) Recovered
defocus positions after self-calibration. (c) Self-calibration loss (defined in Eq. 2.9) for each
iteration of the joint optimization, which converges after 80 iterations.
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Chapter 4

Speckle Flow SIM: dynamic speckle
structured illumination microscopy

Structured illumination microscopy (SIM) [67] is a practical super-resolution method that
uses patterned illumination to encode high-frequency information from Moiré patterns, and
then computationally decodes the image, enabling 2× better resolution than the diffraction
limit. Compared with other super-resolution methods (e.g., STED [71], PALM [12]), SIM has
faster frame rates, lower photo-toxicity [60], and is compatible with both brightfield [34] and
generic fluorescence methods [67]. Although SIM usually uses sinusoidal illumination, it can
also be implemented with random unknown speckle illumination, called speckle SIM [120].
The speckle is generated by a plane wave passing through a scattering layer and thus is
easy to set up in experiment and does not require a calibration step for the structured
pattern [194, 94].

In both sinusoidal and speckle SIM, multiple images must be captured to achieve super-
resolution; hence, SIM trades off the system’s temporal resolution for spatial super-resolution.
Sinusoidal SIM methods usually take ∼10 diffraction-limited raw measurements, each with
a different shift or rotation of the sinusoidal illumination pattern, to reconstruct a 2× super-
resolved image [67]. Speckle SIM methods often require dozens of randomized speckle illu-
minations [120] or shifted speckle patterns [201, 203]. In both cases, the multi-shot nature
of SIM effectively reduces the frame rate by at least ∼10-fold. If the scene contains motion
during the multi-shot acquisition, the recovered super-resolved image will suffer from motion
artifacts [54]. Here, we explore methods for modeling the spatio-temporal relationship of the
dynamic scene in order to reconstruct images without motion artifacts.

A dynamic, super-resolved scene can be modeled using neural representations, which are
a class of methods that encode high-dimensional information into an untrained deep neural
network and store the information compressively in the neural network’s weights [107]. A
coordinate-based neural network is a type of neural representation which maps a matrix
coordinate to its corresponding value on the matrix, usually via a multi-layer perceptron

This chapter covers the research I presented or published in [25, 22, 29].
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(MLP) [164]. Coordinate-based MLPs were first demonstrated to model for 3D scenes [115]
or 3D geometries [159, 134]. The spatio-temporal relationship can be similarly represented
using coordinate-based MLPs by adding a time coordinate [135, 144].

In this chapter, we develop a new SIM method, called Speckle Flow SIM, that spatially
super-resolves a dynamic scene using a neural space-time model. In Speckle Flow SIM,
we modulate the scene with speckle illumination to encode high-frequency information into
diffraction-limited images. Unlike previous speckle SIM systems that change the speckle
to acquire sufficiently diversified information for a well-posed reconstruction, we maintain
the speckle illumination unchanged but rely on the scene dynamics for the measurement
diversity (see Fig. 4.1(a)). We model the spatio-temporal relationship of the dynamic scene
using a neural space-time model with coordinate-based MLPs [164] and jointly recover the
motion dynamics and the super-resolved scene. This allows Speckle Flow SIM to spatially
super-resolve a dynamic scene with deformation motion. We validated Speckle Flow SIM
for coherent imaging in simulation and experimentally demonstrated it using a simple, inex-
pensive setup.

4.1 Related Work

Sinusoidal SIM is widely used to achieve up to two times better than diffraction-limited reso-
lution [67]. Saturated SIM exploits the nonlinear response of saturated fluorescence and has
unlimited theoretical resolution in the noise-free case and typically 5× super-resolution in
experiments [66]. SIM is compatible with both coherent [34] and fluorescence systems [67],
but saturated SIM only works for fluorescence systems. Speckle illumination is an alternative
implementation of sinusoidal structured illumination, which also modulates high-frequency
information into the diffraction-limited system [120, 110, 202, 201, 203]. Unlike sinusoidal
illumination, speckle illumination is random and requires either additional prior statistical
information [120, 202] or joint speckle calibration [201, 203] for a super-resolved image re-
construction. Speckle SIM has been experimentally demonstrated with a 1.6× resolution
gain in a high-NA system [120] and a 5× resolution gain in a low-NA system [201].

SIM collects information beyond the diffraction limit by acquiring multiple raw images
with varying illumination, which reduces the temporal resolution by an order-of-magnitude
or more (depending on the number of raw images required for each super-resolved recon-
struction). Previous study achieved video rate (10-20 Hz) SIM using a ferroelectric liquid
crystal spatial light modulator (SLM) for a rapid update of structured light and a electron-
multiplying charge coupled device (EMCCD) for a high-frame rate acquisition [91, 185].
Mangeat et al. similarly demonstrated a high-frame rate version of speckle SIM using a SLM
and a scientific CMOS camera [110]. While these methods improved the overall frame rate
of the system, the scene is still assumed to be static for each of the raw images taken at
different timepoints. To improve the SIM reconstruction by accounting for the motion of
the scene, Shroff et al. estimated the phase shift of the sinusoidal illumination to correct for
a small global translational motion of the sample [157]. Turcotte et al. achieved dynamic
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Figure 4.1: Overview of Speckle Flow Structured Illumination Microscopy (SIM). (a) A plane
wave passes through a thin scattering layer to generate speckle-structured illumination at the
sample. The microscope, a 4f system with an objective lens and a tube lens, then magnifies
the image and the intensity is captured at the image plane by a CMOS sensor. The speckle
illumination pattern is calibrated in advance and remains fixed while an image sequence of
the dynamic scene is captured. The dynamic scene is modeled and simultaneously recovered
with resolution beyond the diffraction limit. (b) The neural space-time model represents a
dynamic scene using a motion multi-layer perceptron (MLP) and a scene MLP. The motion
MLP takes a space-time coordinate, (r, t) = (x, y, t), corresponding to a pixel measured at
a particular timepoint and estimates its displacement at t relative to the time-independent
scene stored in the scene MLP, δrt = (δxt, δyt). The motion-accounted spatial coordinate,
r+ δrt, is then fed into the scene MLP to query the corresponding value for the coordinate.
This process is repeated for each coordinate to build up the entire scene replicated by the
neural space-time model. During the reconstruction, the weights of the two MLPs are
updated to minimize the difference (loss) between the acquired images and simulated images
from the forward model.
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in-vivo SIM imaging in the mouse brain by setting up a short exposure time and register-
ing raw images to digitally remove motion artifacts [181]. However, these studies assume a
simple motion (e.g., rigid global motion) and do not aim to retain the motion dynamics as
a final product of the reconstruction. In this chapter, we improve the temporal resolution
by embedding the spatio-temporal relationship into the forward model to account for and
recover the dynamics for each raw image, including non rigid-body motion.

Space-time model is a lasting theme in the computational imaging community. This
modeling is especially useful when a multi-shot system is used to image a dynamic scene,
such that the raw images acquired at different timepoints capture the scene at different states
of the dynamics. A common strategy is to meter the motion and co-register acquired images
for a static image reconstruction unaffected by the motion. For example, to improve the
noise performance in low-light, smartphone cameras take a burst of frames and align them to
compensate for motion during the image signal processing pipeline [70]. Motion differential
phase contrast (DPC) microscopy used a navigation color channel to detect motion and
wraps raw images into a single reference frame for the recovery of quantitative phase [84].
However, the raw images of speckle SIM do not provide enough information to estimate the
motion without reconstructing the object. We instead opt to model the motion dynamics of
the scene in a compressive way and simultaneously recover the scene and the motion in our
reconstruction. Pnevmatikakis, et al. expressed the fluorescence images of neural activity
as a product of a spatial matrix and a temporal matrix to represent calcium imaging [141].
Instead of the matrix decomposition, we use neural representations to disentangle the spatio-
temporal relationship.

Neural representations use untrained artificial neural networks to reproduce a high-
dimensional matrix or tensor in a compressive way for image reconstruction [107]. The
coordinate-based MLP [164] has been used successfully in recent years in novel view synthe-
sis for static [115] and dynamic scenes[135, 144], 3D geometry representation [159, 160, 111,
134], and partial differential equation solution [146]. Coordinate-based MLP maps a coordi-
nate to its corresponding value, and it is suitable to represent a smooth, continuous object.
Recent works improve the coordinate-based MLP’s capacity for high-frequency information
with sinusoidal Fourier features [115, 172] or periodic activation functions [160, 111]. The
coordinate-based MLP has also demonstrated an improved 3D reconstruction in the settings
of computed tomography [169] and optical diffraction tomography [104].

4.2 Theory on Structured Illumination Microscopy

In this section, we review the theory of sinusoidal and speckle structured illumination for
super-resolution in a coherent imaging system. In a diffraction-limited system with the
incident illumination field Uin and the scene o, the measured output field, Uout, can be
expressed as

Uout (r) = F−1 [F (Uin (r) · o (r)) · P (u)] , (4.1)
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Figure 4.2: Illustrations of spatial frequency information for (a) brightfield microscopy, (b)
sinusoidal structured illumination microscopy (SIM), (c) speckle SIM, and (d) Speckle Flow
SIM. The first column shows the illumination intensity at the sample. The second column is
the amplitude of the illumination in Fourier space. The third column illustrates the spatial
frequency information of a sample scene we want to image (note that this scene is sparse
in Fourier space only for simplicity of visualization). The last column shows the measured
spatial frequency bandwidth in Fourier space after passing through a diffraction-limited
microscope (the grayed-out areas cannot be measured). More details in Sec. 4.2.
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where F denotes 2D Fourier transform, and r and u are spatial coordinates in real and
frequency space. The magnification is assumed to be 1 for simplicity. The pupil function,
P , is a circular binary mask defined as P (u) = 1 for |u| ≤ NAobj/λ, P (u) = 0 if otherwise,
where λ is the wavelength of the illumination and NAobj is the NA of the objective lens.
In the case of brightfield illumination, Uin is uniform and the pupil function directly low-
pass filters the high-frequency information of the scene (Fig. 4.2(a)). The diffraction-limited
resolution is set by the reciprocal of the pupil function bandwidth, i.e., λ/NAobj.

In sinusoidal SIM, the incident illumination is sinusoidal such that Uin (r) = cos (2πv0 · r),
where v0 is the spatial frequency of the illumination pattern. This frequency shifts the spec-
trum of the scene such that higher spatial frequencies can be measured (Fig. 4.2(b)), enabling
super-resolution. The raw measurement of SIM can be expressed as

USIM (r) = F−1

[
õ (u− v0) + õ (u+ v0)

2
· P (u)

]
, (4.2)

where ·̃ denotes the quantity in 2D Fourier transform space. The frequency of the sinusoidal
pattern, v0, is also diffraction-limited in the far field such that |v0| ≤ NAillu/λ. The final
resolution is λ/ (NAobj +NAillu) which gives a 2× resolution gain when NAobj ≈ NAillu. As
each measurement USIM is band-limited by the pupil function P and only observes a fraction
of the super-resolved scene õ, multiple measurements are needed to recover a single image.

Speckle SIM uses random speckle illumination, Usp, instead of sinusoidal illumination.
The random speckle in Fourier transform space, Ũsp, also contains features from higher
spatial frequencies, so super-resolved information can be encoded into a diffraction-limited
measurement as in sinusoidal SIM (Fig. 4.2(c)). A speckle SIM measurement can be ex-
pressed mathematically as

USpeckleSIM (r) = F−1 [F (Usp (r) · o (r)) · P (u)]

= F−1
[(
Ũsp (u) ∗ õ (u)

)
· P (u)

]
,

(4.3)

where ∗ denotes convolution operation. The speckle SIM can encode a frequency bandwidth
of (NAobj +NAspeckle) /λ, where NAspeckle is the effective NA of the speckle illumination.
Similar to sinusoidal SIM, each raw measurement of speckle SIM is also band-limited by P ,
and multiple raw measurements are needed to decode the super-resolved information. In
practice, a varying speckle illumination is often needed to collect raw measurements for a
well-conditioned super-resolution reconstruction [120, 202].

In Speckle Flow SIM, we use a single static speckle illumination pattern and instead
rely on the inherent motion dynamics of the scene to diversify the measured information
(Fig. 4.2(d)). We acquire a sequence of frames for a dynamic scene that can be represented
as o (r, t) = motion (o (r) ,µ (r, t)). motion (·, ·) is a motion function transforming a time-
independent scene, o (r), to a timepoint by its spatially-varying motion kernel, µ (r, t).
Speckle Flow SIM can be formally expressed as

USpeckleFlow (r, t)

= F−1 [F (Usp (r) ·motion (o (r) ,µ (r, t))) · P (u)] .
(4.4)
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Figure 4.3: Condition number analysis for Speckle Flow SIM in 1D with increasing numbers
of raw measurements. This suggests that Speckle Flow SIM becomes well-posed with a
sufficient number of raw measurements.

It is difficult to analyze the well-posedness of the Speckle Flow SIM inverse problem
for deformable motion. Hence, we show here only a simplified analysis for the case of
translational motion, and assume the result will be similar for deformable motion. In the
translational motion case, motion (o (r) ,µ (r, t)) = o (r + δrt), where δrt is the relative
displacement at timepoint t, and thus Eq. 4.4 can be written as a linear system:

USpeckleFlow (r, t) = F−1 [F (Usp (r) · o (r + δrt)) · P (u)]

= F−1
[(
Ũsp (u) ∗

(
õ (u) · e−2πiδrt·u

))
· P (u)

]
.

(4.5)

Because of the translation property of Fourier transforms, the motion kernel in Fourier space
can be expressed as e−2πiδrt·u. If we rewrite this linear forward model into a transformation
matrix, the transformation matrix changes at different timepoints as the scene moves. We
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then perform a condition number analysis for using this forward model to solve for 2× super-
resolution. In order to make the singular value decomposition (SVD) of the condition number
calculation computationally feasible, we only consider the 1D case, where the scene and the
measurement are both one-dimensional. The results (Fig. 4.3) show that the condition
number of Speckle Flow SIM is dependent on the number of raw measurements captured,
and the problem is better posed as more raw measurements are added, as expected. Beyond
having a sufficient number of measurements, the super-resolution reconstruction is well-posed
and the condition number becomes asymptotic.

4.3 Neural Space-Time Model

Coordinate-based Neural Networks

The coordinate-based neural network is an alternative representation of a grid-based matrix
using a MLP. The coordinate-based neural network takes an arbitrary coordinate of the
matrix as the input and outputs the corresponding matrix value. To represent a 2D scene,
a coordinate r = (x, y) within the domain of interest is used as the input coordinate. The
weight, θ, of the MLP, f , is optimized to fit into the given matrix [160, 111], such that

argmin
θ

∑
r∈domain(o)

|f (r; θ)− o (r)|2 . (4.6)

Compared with a matrix representation, the coordinate-based MLP has a continuous form
without the matrix grid, such that any off-grid coordinate values can be queried without
additional rounding or interpolation. Once the MLP weights are optimized, we can retrieve
a matrix with an arbitrary sampling grid by querying all the corresponding coordinates from
the MLP. The coordinate-based MLP also tends to have a smoothing effect on the retrieved
matrix because of the linearity of its fully-connected layers [172].

Positional encoding maps a coordinate into a vector of sinusoidal features at different
frequencies before feeding into the network. This helps avoid over-smoothing and enables
the representation of high-frequency details [172]. Positional encoding, γ, can be formally
written as

γ (r) =
(
r, cos

(
2iπr

)
, sin

(
2iπr

)
, ...
)
, for i = 0, ..., l − 1. (4.7)

l is the order of positional encoding, which is a tunable parameter. As a result, positional
encoding maps r ∈ R2 to γ (r) ∈ R4l+2 as the input for the coordinate-based MLP.

The neural space-time model is a compressive representation of a dynamic scene. The
dynamic scene is split into two parts under the neural space-time model: motion kernels cor-
responding to different timepoints stored in the motion MLP, fmotion, and a time-independent
scene represented by the scene MLP, fscene. Both MLPs are coordinate-based.

The motion MLP acts as the motion kernel in Eq. 4.4, which transforms a dynamic
scene into a time-independent scene. For any space-time coordinate, (r, t), the motion MLP
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estimates the relative displacement with respect to the scene captured by the scene MLP,
δrt. The dynamic scene can be expressed using the motion MLP, namely,

o (r, t) = o (r + δrt) = o (r + fmotion (r, t; θmotion)) , (4.8)

where θmotion is the weights of the motion MLP. Since the relative displacement returned
from the motion MLP can vary spatially, the motion MLP can represent both global motion
and locally deformable motion dynamics. When the motion MLP is queried for every spatial
coordinate at a given timepoint, the obtained motion kernel can be used to map the current
scene to the time-independent scene.

The scene MLP captures a time-independent, super-resolved scene. I.e., we can feed in
any spatial coordinate to the scene MLP and obtain its corresponding value from the MLP
output, ô (r) = fscene (r; θscene), where θscene is the weights of the scene MLP. The scene MLP
does not take the timepoint as an input, as the time-dependency is already account in the
motion MLP. We use ô here since the scene MLP output is an approximated value from the
coordinate-based MLP network, which might not be exact.

Combining these two parts together, as shown in Fig. 4.1(b), we can obtain the pixel
value at any spatial and temporal coordinate by querying the estimated motion from the
motion MLP first and then using the motion-accounted spatial coordinates to retrieve the
super-resolved scene from the scene MLP. The positional encoding is applied to the motion-
accounted coordinate before feeding into the time-independent scene MLP. The final approx-
imated scene can be expressed as

ô (r, t; θmotion, θscene) = fscene (γ (r + fmotion (r, t; θmotion)) ; θscene) . (4.9)

We repeat this process for each pixel of our sampling frame to retrieve a scene at a given
timepoint, ô (t; θmotion, θscene). We can input the retrieved scene into the forward model as
Eq. 4.4 to simulate the raw image captured by the camera.

Dynamic Scene Reconstruction

The neural space-time model recovers a dynamic scene from the weights of the motion and
the scene MLPs. During the reconstruction, the model weights are optimized to minimize
the loss function, which is the difference between the acquired intensity image at timepoint
t, It, and the simulated intensity image using the forward model described in Sec. 4.3. This
optimization can be formulated as

argmin
θmotion,θscene

∑
t

∥∥∥√It −
∣∣F−1 [F (Usp · ô (t; θmotion, θscene)) · P ]

∣∣∥∥∥2 . (4.10)

We drop the spatial coordinates, r and u, in this expression for simplicity. The complex-
field of the speckle illumination, Usp, is predetermined in a separate calibration process
(described in Sec. 4.4) before the reconstruction. As both the forward model and the MLPs
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Figure 4.4: Simulation results for Speckle Flow SIM dynamic scene reconstruction of hydra
with deformable motion. (a) The first frame of intensity measurements. (b) Recovered
deformable motion trajectories for selected points are drawn as color gradient lines, where a
point’s color indicates its corresponding timepoint and the first (red) and last frame (grey)
of the reconstruction are overlaid. (c) The reconstructed phase at the first timepoint of the
dynamic scene. (d) Diffraction-limited phase obtained by low-pass filtering from (e) the true
phase.

are differentiable, the gradients for those two MLPs’ weights can be computed through back-
propagation, and we then update the weights, θmotion and θscene, using gradient descent. We
also note that It can be replaced by the measured complex-field using an interferometric-
based system, such as in [34].

While the reconstruction does not require any regularization terms, common regularizers
for matrix-based inverse problem solution (e.g., L1, Tikhonov, total variation, etc.) are also
available for our reconstruction. However, unlike in the matrix representation, applying a
spatial filter directly to update the weights of a coordinate-based MLP is difficult. The ex-
perimental data reconstruction often generates some very high-frequency signals caused by
imaging noise. To filter out these from the model weights, we have a high-frequency sup-
pression term, Lhigh-freq, to penalize the reconstruction of the signals beyond the theoretical
super-resolution limit of Speckle Flow SIM. I.e., Lhigh-freq = ∥F (o (t)) (1− P ′)∥1, where P ′

is the pupil function for the effective NA of Speckle SIM, NAspeckle +NAobj.

4.4 Implementation Details

Neural Space-Time Model Setup

The dynamic scene reconstruction is computation and memory intensive. As the scene
is stored in the coordinate-based neural networks, obtaining the value for each pixel of
the scene takes a query to the neural space-time model with its coordinate. Since the
forward model requires the full matrix of a scene to perform a Fourier transform, we need
to repeat this query for an entire scene (usually at the scale of a million pixels) to simulate
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a measured image. Besides, the model’s intermediate output values for each query are
stored in the memory for an efficient gradient computation, and thus numerous copies of
the intermediate output need to fit into the memory for the reconstruction in Eq. 4.10. To
make this computationally feasible, we use a compact network configuration for the motion
and scene MLPs. The motion MLP has the network depth of 4 and width of 32. While the
spatial coordinates are fed into the motion MLP directly, the time coordinate is encoded
with a positional encoding order of 4 for the motion MLP’s input as in [135]. The scene
MLP has a network depth of 8 and width of 64, which is larger than the motion MLP as we
expect the scene to contain more information than the motion. The scene MLP uses a skip
connect to concatenate the input to the fifth layer’s output as in [115]. As the MLP outputs
real values, the scene MLP has two output channels for phase and absorption of the scene
respectively. Both MLPs use ReLU activation function after each fully-connected layer. The
reconstruction using our network configuration can be performed in a single Titan Xp GPU
(Nvidia) with 12 GB memory. Without an exhaustive testing of other configurations due
to our limited computational resources, we also find our configuration robust for different
scenes or dynamics. Nevertheless, having larger MLPs might still help to represent a more
complex scene and motion as suggested in the universal function approximator theory [75].

Reconstruction Procedure

We implement the neural space-time model and the reconstruction using Jax library (Google) [15]
and in-house developed computational imaging toolbox1. We use ADAM, a fast version of
the stochastic gradient descent, for the optimization of the neural space-time model. The
motion and scene MLPs are updated concurrently under the same setting. The learning rate
is set to 5×10−4 for simulation and 5×10−5 for experimental data, with a exponential delay
to 0.1 of the starting value at the end. The reconstruction process takes 200k update steps for
simulation data and 500k steps for experimental data. We only optimize for the data fidelity
term as in Eq. 4.10 without the high-frequency suppression or other regularization terms
for simulation data. For experimental data, we tried three different settings: vanilla recon-
struction (no regularization), the reconstruction with high-frequency suppression, and the
reconstruction with high-frequency suppression and speckle update (described in Sec. 4.4).
The high-frequency suppression has a weighting factor of 1× 10−5 when included.

Simulation Setup

We first perform a simulation study to validate Speckle Flow SIM. A speckle illumination
is generated by a plane wave passing through a thin, random phase mask, and we low-pass
filter the phase mask such that NAspeckle = NAobj. The field of the speckle illumination is
known during the reconstruction of the simulation data. We use two phase phantoms in the
simulation: the Shepp-Logan phantom with a rigid motion we define using translation and

1Code will be released upon publication.



CHAPTER 4. SPECKLE FLOW SIM: DYNAMIC SPECKLE STRUCTURED
ILLUMINATION MICROSCOPY 36

Figure 4.5: Dynamic scene reconstructions for Shepp-Logan phantom and hydra phantom
with different positional encoding orders. The phase reconstruction at the first timepoint
of the sequence is shown. The peak signal-to-noise ratio (PSNR) is calculated for each
reconstructed sequence. The red arrows indicate the distortions caused by the inexact motion
estimation.

rotation (40 frames total), and a video of hydra with a deformable motion (20 frames total).
Then, we simulate a sequence of measurements frame-by-frame using the forward model of
speckle SIM as in Eq. 4.3. The simulated sequence of intensity images is used as the input
for the Speckle Flow SIM reconstruction.

Experiment Setup

We build a custom microscope system as Fig. 4.1(a). A 532 nm green laser light (Thorlabs
CPS532, 4.5 mW) outcoming from a single-mode fiber is collimated into a plane wave which
then shines on a random diffuser for the speckle illumination. We use four layers of Scotch
tape (3M 810 Scotch Tape, S-9783) as the random diffuser [201]. The layered Scotch tape
is attached on a clear microscope slide for enhanced stability. After propagating through
the sample, the transmitted light is magnified by a 4f system composed of a 10× 0.25NA
objective lens (Nikon) and a single lens (250 mm focal length) as the tube lens, resulting
in an effective magnification of 12.5. The magnified image is captured by a monochromatic
CMOS sensor (FLIR, BFS-U3-200S6M-C) placed at the back focal plane of the tube lens.
The exposure time is set to maximize the dynamic range of the sensor.
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Speckle Calibration

We need to calibrate for the complex field of the speckle illumination in advance before the
experimental data reconstruction. The calibration can be performed by simply imaging the
background in a holographic setup. In our intensity-only system, however, we retrieve the
phase of the speckle illumination by taking intensity images at different defocus planes [2].
The intensity image at each defocus plane, Izi , is modeled as the in-focus speckle field
propagating by a distance of zi using the angular spectrum method [61], such that

Izi (r) =

∣∣∣∣F−1

(
Ũsp (u) · P (u) · exp

(
j
2πzi

√
1− u2

λ

))∣∣∣∣2 . (4.11)

We then solve for Usp from the acquired defocused images Izi .
In the experimental setup, we place the CMOS sensor on a 1-axis motorized stage (Thor-

labs Z825) toward the z direction. To retrieve the phase of the speckle illumination, we
acquire intensity images at 10 z-planes in the image space with a step size of 200 µm, which
is equivalent to 1.28 µm in the sample space. This defocus calibration process is performed
on the background field-of-view without the scene. After the acquisition, the complex field of
the speckle illumination is iteratively updated to minimize Eq. 4.11 using gradient descent.

The speckle field retrieved from this calibration process may not perfectly match the
actual speckle illumination in the dynamic scene acquisition for experimental reasons, such
as mechanical instability. Thus, the complex field of the speckle can also be jointly updated
to minimize the objective function defined in Eq. 4.10 during the reconstruction of a dynamic
scene. As the speckle update affects the scene reconstruction, the speckle update is performed
only in the fine-tuning stage of the dynamic scene reconstruction, which is after the first 10k
update steps in our case.

4.5 Simulation and Experimental Results

Simulation Results

We first validate the reconstruction of the hydra phantom with deformable motion in sim-
ulation. As the hydra phantom in our simulation is phase-only, the simulated intensity
measurement in Fig. 4.4(a) looks similar to the speckle image without the sample and does
not contain much discernible contrast without the reconstruction. After the reconstruction,
the motion trajectories recovered by the neural space-time model are a good fit for the ac-
tual scene dynamics as in Fig. 4.4(b), which demonstrates the motion MLP’s capacity of
representing deformable motion. The phase reconstruction for the first frame of the scene
is shown in Fig. 4.4(c). Compared with the diffraction-limited reference scene in Fig. 4.4(d)
(low-pass filtered from the true scene), the reconstruction recovers those finer features on
both the hydra’s gastrovascular cavity and tentacles, matching well to the original ground
truth phantom. It is worth noting that the space-time model here successfully reconstructs
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Figure 4.6: The phase reconstructed using the first 1, 5, 10, 20, 40 frames of the input
intensity image sequence. The reconstructed phase at the first timepoint is shown here. The
peak signal-to-noise ratio (PSNR) is calculated for the reconstruction over all timepoints.
Based on the PSNR, the reconstruction quality is optimal using 10 frames.

the discontinuous and non-smooth features from the scene MLP, e.g. fine features on the
tentacles, which can be credited to the non-linearity from the activation function and the
high-frequency mapping from positional encoding.

We further analyze the effect of positional encoding on the reconstruction performance.
By its definition in Eq. 4.7, the order of positional encoding, l, regulates the highest fre-
quency of the positional encoding mapping, which in turn affects the reconstruction of high-
frequency signal [172]. With the same set of input raw measurements and reconstruction
settings, we reconstruct the dynamic scene with different orders of positional encoding of the
spatial coordinates in the scene MLP, as shown in Fig. 4.5. When the positional encoding is
turned off or the order is low (order of 4), the reconstructions are under-fitted and also have
distortions as indicated by red arrows. The distortions are caused by the inexact motion
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estimation for some small features. The positional encoding order of 6 gives the optimal
reconstruction in terms of its peak signal-to-noise ratio (PSNR) and visual quality for both
phantoms. When the order is set to 10, the reconstructed phase contains a considerable
scene distortion and high-frequency artifacts. This suggests that while a high order of posi-
tional encoding gives the scene MLP extra degrees-of-freedom for the scene representation,
it hinders the convergence of the motion MLP at the same time. The scene MLP with a high
order of positional encoding tends to over-fit high-frequency content, before a good motion
estimation is obtained by the motion MLP.

We also compare the reconstructions with different numbers of input intensity images,
such that we reconstruct using the first 1, 5, 10, 20, 40 images of the simulated measurement
sequence for the Shepp-Logan phantom. With more input images, the neural space-time
model receives more encoded information of the scene, while it is also responsible for re-
covering the motion dynamics at more timepoints. As in Fig. 4.6, despite being ill-posed,
the phase can be reconstructed from a single frame due to the implicit network smoothness
prior from the scene MLP. The reconstruction improves with more raw images and reaches
the optimal quality using 10 frames. If even more frames are used, the reconstruction slowly
degrades as the motion MLP has to recover an extended scene dynamic from an increasing
number of timepoints. The optimality of 10 raw images roughly coincide with the number
of raw images required for sinusoidal SIM.

Experimental Results

As a proof-of-concept experiment for Speckle Flow SIM, we create a dynamic scene by placing
an amplitude USAF-1951 resolution target (Benchmark Technologies) on a 1-axis motorized
stage (Thorlabs Z812) that travels laterally (xy-direction). A sequence of 40 intensity images
is acquired while the resolution target moves continuously. The defocus images for speckle
calibration are captured before the actual image acquisition. As the speckle evolves with a
different optical path length, we calibrate the speckle using a background field-of-view on the
resolution target slide to minimize the potential mismatch. A diffraction-limited brightfield
image is also acquired using the same system without the scattering layer as a reference.

The reconstruction is performed with three different settings detailed in Sec. 4.4. The
reconstruction is shown in Fig. 4.7(a)-(c). The brightfield image is shown in Fig. 4.7(e) for
comparison. The vanilla reconstruction recovers the high-frequency information well despite
being noisy, as demonstrated on the zoom-in and the line plot in Fig. 4.7(f). The noisy re-
construction is due to the mismatch between the calibrated speckle and the actual speckle for
practical reasons, such as, subtle differences in optical path length, mechanical vibration and
instability. Adding a joint speckle update reduces the noise in the reconstruction while still
maintaining good contrast for fine features (Fig. 4.7(b)). When we add the high-frequency
suppression regularization term, described in Sec. 4.3, to the reconstruction loss, the recon-
struction in Fig. 4.7(c) becomes much smoother and less noisy at the cost of slightly reduced
contrast.
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Figure 4.7: The experimental reconstruction of an amplitude USAF-1951 resolution target
in continuous motion. (a)-(c) The reconstructed absorption coefficient at the first timepoint
under different reconstruction settings described in Sec. 4.4. (d) The corresponding raw
intensity image. (e) The diffraction-limited brightfield image as a reference. (f) Line plot for
the red dotted lines in (a)-(c).

The diffraction-limited image has a theoretical Rayleigh resolution of 1.22 · λ/NA =
2.60 µm, which corresponds to Group 8 Element 5 of the USAF resolution target (2.46 µm)
and matches our observation in Fig. 4.7(e). In Speckle Flow SIM, our reconstruction resolves
up to group 9 element 4 (1.38 µm), which is 1.88× of the diffraction-limited resolution. Since
the speckle calibration is performed with the same objective lens such that NAspeckle ≤ NAobj,
we expect a theoretical resolution gain of 2×, very close to our experimental demonstration.
This experimental resolution improvement is similar to the reported gain from previous study
of sinusoidal SIM [67] and speckle SIM [120] which are both close to 2×.

Similar to Sec. 4.5, we compare the reconstructions using different numbers of acquired
intensity images. Fig. 4.8 shows the reconstruction using the first 8, 16, 24, 32, 40 acquired
frames. The reconstruction is visually identical using 24, 32, 40 acquired frames, while some
regions of the scene are missed when reconstructing with 8 or 16 frames. This is caused by
the joint speckle update, such that the static speckle background becomes indistinguishable
from the dynamic scene foreground when the number of raw frames is limited.
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Figure 4.8: The experimental reconstruction of the moving USAF-1951 target using the
first 8, 16, 24, 32, 40 frames of the acquired intensity image sequence. The reconstructed
absorption coefficient at the first timepoint is shown here.

Beyond 2× Super-resolution

Speckle SIM can achieve more than 2× better than diffraction-limited resolution when
the illumination NA is higher than the objective NA, such that the final resolution is

λ
NAobj+NAspeckle

> 2 · λ
NAobj

, as in Sec. 4.2. This setting can be useful for high-content imag-

ing [201, 203] or for total internal reflection-based SIM settings [36]. Speckle Flow SIM can
also similarly recover a dynamic scene with beyond 2× diffraction-limited resolution using a
low-NA system and a fine speckle illumination.

We validate this in simulation, for an objective lens of 0.1 NA and known speckle illu-
mination of 0.3 NA. The amplitude USAF-1951 resolution target with a constant-velocity
translational motion is imaged, and we acquire the intensity images at 100 equally-spaced
timepoints. The reconstruction is performed under the same optimization procedure as in
Sec. 4.4. The reconstructed absorption coefficient as well as a few reference targets are
shown in Fig. 4.9. The reference targets are obtained by directly low-pass filtering from
the groundtruth target with the bandwidth of 2×, 3×, and 4× the diffraction limit. The
reconstruction is able to resolve the second from the top element on the right group, which
is close to the 4× diffraction-limited reference in Fig. 4.9, matching well with the theoretical
limit in Sec. 4.2.

4.6 Discussion

Limitations

Speckle Flow SIM has several limitations. First, the reconstruction process is computa-
tionally expensive and memory intensive as discussed in Sec. 4.4. The 500k iterations of
experimental data reconstruction in Fig. 4.7 (matrix size: 400× 540) takes around 13 hours
on a Nvidia Titan Xp GPU using our current implementation. This reconstruction time is
very long compared with other SIM methods for static scenes. E.g., the reconstruction of
sinusoidal SIM takes 30s using one CPU core [67]); speckle SIM takes 5 hours using one CPU
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Figure 4.9: The reconstructed absorption coefficient for an amplitude USAF-1951 resolution
target in motion achieves more than 2× better resolution than the diffraction limit in simu-
lation. The numerical aperture (NA) of the speckle is 3× the NA of the objective lens. The
target with 2×, 3×, and 4× the diffraction-limited resolution are shown as references. The
reconstruction is close to 4× the diffraction-limited resolution.
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Figure 4.10: The reconstructed absorption coefficient for an amplitude USAF-1951 resolution
target with four different types of motion in simulation. The performance of Speckle Flow
SIM is motion-dependent and degrades with highly-deformable motion.

core [120] and 15 minutes on a GPU [201]). The main bottleneck for the reconstruction time
is the coordinate-based MLPs in the neural space-time model, which requires one MLP’s
forward pass to know the corresponding value for each pixel coordinate. Speckle Flow SIM
may benefit from two very recent studies suggesting a potential 100x speed-up with a more
efficient sparse voxel representation and GPU programming [205, 122].

Second, the neural space-time model assumes that the scene at all timepoints can be
wrapped into the time-independent frame represented by the scene MLP. This assumption
is necessary to exploit the smoothness of motion using the motion MLP for a joint motion-
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scene optimization and improve the SIM frame rate by an order of magnitude. However, this
assumption also limits the applicability of Speckle Flow SIM, such that dynamics must be
related by motion estimations, e.g., cells moving a microfluidic chamber. Speckle Flow SIM
will fail to capture dynamics that are not smooth over time, e.g., random firing of neurons.
Besides, the overall performance of Speckle Flow SIM is also motion-dependent. In Fig. 4.10,
we reconstruct the USAF-1951 resolution target with four different types of motion dynamics
(i.e., translation, rotation, shearing, and swirl) in simulation. The forward simulation and
reconstruction settings are the same as in Sec. 4.4. As in Fig. 4.10, the reconstruction of
the swirl motion contains more noise or artifacts than those of affine motion. This suggests
that the performance of our method degrades for complex motion dynamics (e.g., highly
deformable motion), presumably due to the inexact motion estimation from the motion MLP.
As also discussed in Sec. 4.5 and Fig. 4.6, the representation capacity of a motion MLP is
finite and limited, and thus a motion MLP with a compact network architecture may fail to
fit into dramatic or highly deformable motion dynamics. A larger network architecture may
help accommodate the estimation for more complex motion dynamics [75].

Third, Speckle Flow SIM requires a calibration process of the speckle illumination before
the reconstruction, which is unlike previous speckle SIM methods. Previous methods either
assumed a statistical prior on the speckle [120, 202, 110] or jointly resolved the speckle
without any prior assumption [201, 203]. Having the full knowledge of the random speckle
illumination allows Speckle Flow SIM to super-resolve a scene using much fewer raw images
than other methods. Our current calibration process, however, limits Speckle Flow SIM
to 2× the diffraction-limited resolution, as the calibration images are also captured in the
same optical system and objective lens. A joint update of the speckle illumination during
the reconstruction [201] could help to achieve more resolution gain with a low-NA objective
for high-content imaging. Additionally, the calibrated speckle does not always match the
actual illumination, making the reconstruction noisy as in Sec. 4.5. This mismatch can be
prominent when the speckle contains features beyond the diffraction-limit of the system.
Any changes between the calibration and the actual acquisition (e.g., phase shift on the
illumination path) unaccounted for may also contribute to the speckle mismatch.

Conclusion and Future Work

We demonstrate a super-resolution method for dynamic scenes, called Speckle Flow SIM,
which illuminates the sample with speckle-structured illumination to observe high frequency
information beyond the diffraction limit. Speckle Flow SIM does not change its illumi-
nation but relies on the dynamics of the scene to acquire diversified measurements. This
enables a simple, inexpensive experimental setup. Without loss of generality, we model the
spatio-temporal relationship of the dynamic scene using the neural space-time model with
coordinate-based multi-layer perceptrons, which jointly recover the motion dynamics and
the super-resolved scene from a temporal sequence of raw images. We validate the Speckle
Flow SIM in simulation and experiment. We show that Speckle Flow SIM can reconstruct a
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scene with deformable motion. We also experimentally demonstrate 1.88× of the diffraction-
limited resolution for a dynamic scene.

Future work may extend Speckle Flow SIM into the fluorescence channel where super-
resolution microscopy methods are more commonly used by biologists and neuroscienists. A
high-NA system is also needed for ∼100 nm spatial resolution. Another future direction is
to enable the dynamic imaging (i.e., improve the temporal resolution) for other multi-shot
computational imaging systems using the neural space-time model. By plugging in different
forward models, the space-time model may jointly estimate the scene and the motion dynam-
ics when the motion is relatively smooth. Besides, the neural space-time model itself can be
further optimized for better computational efficiency and less network-induced reconstruc-
tion artifacts. Even though our space-time model has a great flexibility in its model selection,
it is not exploited in this chapter, and our model was determined ad-hoc from limited tries.
A systematic search of the neural network architecture [47] and hyperparameters [52] may
be beneficial.
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Chapter 5

Neural space-time model for dynamic
multi-shot imaging

Multi-shot computational imaging systems capture multiple raw measurements sequentially
and combine them through computational algorithms to reconstruct a final image that
enhances the capabilities of the imaging system (e.g., super-resolution [79, 68], phase re-
trieval [136], hyperspectral imaging [106]). Each raw measurement is captured under a
different condition (e.g., illumination coding, pupil coding) and hence encodes a different
subset of the information. The reconstruction algorithm must then decode this information
to generate the final reconstruction.

If the sample is moving during the multi-shot capture sequence, the reconstruction may
be blurry or suffer artifacts [54] since the system effectively encodes information from slightly
different scenes at each timepoint. Thus, most methods require that the sample be static
during the full acquisition time, which limits the types of samples that can be imaged.
Approaches for imaging dynamic samples aim to reduce acquisition time by multiplexing
measurements via hardware modifications [184, 138, 204], developing more data-efficient
reconstruction algorithms [93, 69, 41], or deploying additional data priors with deep learning
techniques [124, 198, 145, 192, 58, 163, 30, 143]. However, these methods may be impractical
to implement, and usually are only applicable for a specific imaging system. Data priors,
for example, are non-trivial to generate (e.g., due to the lack of access to groundtruth data)
and may fail with out-of-distribution samples [9].

Here we take another approach for imaging moving samples, where we model the sample
dynamics in order to account for it during the image reconstruction. Modeling sample
dynamics in multi-shot methods is challenging for two reasons: First, each measurement has
a different encoding, so we cannot simply register the raw images to solve for the motion.
Second, the motion can be highly complex and deformable, necessitating a pixel-level motion
kernel. Our approach is to use deep learning methods to develop flexible motion models that
would be very difficult to express analytically. For example, recent work successfully used a

This chapter covers the research I presented or published in [26].
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Figure 5.1: a, Multi-shot computational imaging systems capture a series of images under
different conditions and then computationally reconstruct the final image. For example, dif-
ferential phase contrast microscopy (DPC) captures four images with different illumination
source patterns, and then uses them to reconstruct quantitative phase. Sequential capture of
the raw data results in motion artifacts for dynamic samples, since the reconstruction algo-
rithm assumes a static scene. Our proposed neural space-time model (NSTM) extends such
methods to dynamic scenes, by modeling and reconstructing the motion at each timepoint.
b, NSTM consists of two coordinate-based neural networks, one for the motion and one for
the scene. Once the networks have been trained using the dataset of raw measurements, we
can give the NSTM any timepoint as the input, and it will generate the reconstruction at
that timepoint. The network weights of NSTM are trained to match the forward model-
rendered measurement with the actual raw measurement at each timepoint.
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Figure 5.2: a, The coarse-to-fine process for the reconstruction of a live C. elegans worm
imaged by DPC. b, Zoom-ins for NSTM reconstruction at different timepoints with the
recovered motion kernel overlaid, along with a comparison to conventional reconstruction.

deep learning approach (with a robust data prior) to model dynamics in the case of single
molecule localization microscopy [151].

We propose a neural space-time model (NSTM) that can recover a dynamic scene by mod-
eling its spatiotemporal relationship in multi-shot imaging reconstruction. NSTM exploits
the temporal redundancy of dynamic scenes. This concept, widely used in video compres-
sion, assumes that a dynamic scene evolves smoothly over adjacent timepoints. Specifically,
NSTM models a dynamic scene using two coordinate-based neural networks; these networks
store the multi-dimensional signal through their network weights, and are used for novel
view-synthesis [116, 135], 3D object representation [160], and image registration [197, 19].
As illustrated in Fig. 5.1b, one network of NSTM represents the motion, and the other
network represents the scene. The motion network outputs a motion kernel for a given time-
point, which estimates the motion displacement for each pixel of the scene. Subsequently,
the scene network generates a scene using spatial coordinates that have been adjusted for
motion by the motion network. Then, the generated scene is passed into the system’s for-
ward model to produce a rendered measurement. To train the weights of the two networks
(which store the scene and its motion dynamics), we use gradient descent optimization to
minimize the difference between the rendered measurements and the acquired measurements
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(details in Section 5.1).
The motion and scene networks in NSTM are interdependent, and failing to synchronize

their updates leads to poor convergence of the model. This poor convergence typically
happens when the scene network overfits to the measurements before the motion is recovered,
a situation common for scenes involving more complex motion (Fig. 5.3 & 5.4). To mitigate
this issue, we developed a coarse-to-fine process (detailed in Section 5.1), which controls the
granularity of the outputs from both networks. Specifically, the reconstruction starts by
recovering only the low-frequency features and motion, and then gradually refines higher-
frequency details and local deformable motion as illustrated in Fig. 5.2a.

NSTM is a general model for motion dynamics and can be plugged into any multi-shot
system with a differentiable and deterministic forward model. It does not involve any pre-
training or data priors; the learned network weights describe the final reconstructed video
for each dataset individually, so it can be considered a type of ’self-supervised learning’.
We demonstrate NSTM here for three different computational imaging systems: differential
phase contrast microscopy (DPC) [175], 3D structured illumination microscopy (SIM) [68]
and rolling-shutter DiffuserCam [4]. In future, we hope it will find use in other applications
as well.

5.1 Implementation of Neural Space-Time Model

Construction of NSTM

The motion and the scene network of NSTM are both coordinate-based neural networks [164,
160, 116], a type of multi-layer perceptrons that learn a mapping from coordinates to signals.
A coordinate-based neural network can represent a multi-dimensional signal, e.g., an image,
a 3D scene, etc., through its network weights. To enhance the capacity and efficiency of the
coordinate-based networks, we use hash embedding [122] to store multiple grids of features at
different resolutions and transform a coordinate vector to a multi-resolution hash-embedded
feature vector, h = [h0, h1, · · · , hN−1], before passing it into the network (details below). As
the input coordinate varies, a fine resolution feature (e.g., hN−1) changes more rapidly than a
coarse resolution feature (e.g., h0). During the coarse-to-fine process, we re-weight the output
features of the hash embedding using a granularity value, α, to control the granularity of
the network. α is set by the ratio of the current epoch to the end epoch of the coarse-to-fine
process, which is set to 80% of the total number of reconstruction epochs in practice. As
in [135], each feature fi is weighted by 1

2
− 1

2
cos (π · trunc (α ·N − i)), where trunc truncates

a value to [0, 1]. In this way, finer features will be weighted to 0 until α gets larger, as
illustrated in Fig. 5.2a.

In the forward process of NSTM (Fig. 5.1b), every spatial coordinate of the scene, x,
is concatenated with the temporal coordinate t, and the hash-embedded features of the
spatiotemporal coordinate, hash (x, t), are fed into the motion network. The motion net-
work, f (· |θmotion), produces the estimated motion displacement vector, δx, for each input
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Figure 5.3: Simulations of differential phase contrast microscopy (DPC) using a phase-only
USAF-1951 resolution target with various types of motion: a, no motion, b, rigid motion
- translation, c, rigid motion - rotation, d, non-rigid global motion - shearing, and e, local
deformable motion - swirl. We reconstruct the quantitative phase of the dynamic scene using
NSTM with the set of four simulated DPC images. Two reconstruction quality metrics are
calculated: peak signal-to-noise ratio (PSNR) and the structural similarity index measure
(SSIM). The NSTM does well with all types of motion. However, without using our coarse-
to-fine process (‘NSTM w/o coarse-to-fine’), it is likely to fail as the motion gets complicated,
due to poor convergence of the joint optimization of motion and scene.
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Figure 5.4: Simulations of structured illumination microscopy (SIM) using fluorescent USAF-
1951 resolution target with various types of motion: a, no motion, b, rigid motion - transla-
tion, c, rigid motion - rotation, d, non-rigid global motion - shearing, and e, local deformable
motion - swirl. The forward model of single-plane three-beam SIM is assumed for the simu-
lation.
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spatiotemporal coordinate:
δx = f (hash (x, t) |θmotion) . (5.1)

The motion-adjusted spatial coordinate, (x+ δx) is then transformed into hash-embedded
features and fed into the scene network, f (· |θscene) for the reconstruction value, o, such that

o (x, t) = f (hash (x+ δx) |θscene) . (5.2)

This process is repeated for all spatial coordinates to obtain the reconstructed scene at time
t. As the scene network does not take the time as an input, it relies on the motion network
to generate a dynamic scene. In our demonstrations, the scene network outputs a single
channel as the fluorescent density for 3D SIM, two channels as the amplitude and phase for
DPC, and three channels as RGB intensity for DiffuserCam. Since the hash embedding is
always applied to the network input coordinate, we consider it a part of the network, f , and
drop it from our expression for readability.

NSTM reconstruction

To update the network weights of NSTM, the reconstructed scene is passed into the imaging
system’s forward model for a rendered measurement. Comparing the rendered measurement
with the actual measurement acquired in the experiment, we compute the mean square error
(MSE) loss and minimize it by back-propagating its gradient to update the network weights.
Mathematically, the optimization becomes

argmin
θmotion,θscene

∑
i∈{0,··· ,T−1}

(forwardi (f (x+ f (x, ti) |θmotion) |θscene)− Ii)
2 , (5.3)

where forwardi is the forward model to render the ith measurement given the temporal
coordinate ti. The actual measurement captured at timepoint ti is denoted as Ii. Adapting
NSTM to new computational imaging modalities thus amounts to simply dropping in the
appropriate forward model.

In our implementation, the motion network has two hidden layers with a width of 32,
and the scene network has two hidden layers with a width of 128. The gradient update is
performed with Adam optimizer [90]. The initial learning rate is set to 1× 10−5 for motion
network (5 × 10−5 for rolling-shutter DiffuserCam reconstruction) and 1 × 10−3 for scene
network, with a exponential decay schedule to a tenth of the initial learning rate at the
end of the reconstruction. For the conventional reconstruction of NSTM without motion
update (in Fig. 5.6a, Fig. 5.8c, and Fig. 5.11b), we keep all settings the same as the NSTM
reconstruction except that the motion network is not updated and the input timepoints are
set to zero.

Hash embedding

Hash embedding store all features vector in its weights, i.e., a list of feature storage array,
[ψ0, ψ1, · · · , ψN−1]. The hash embedding transforms a coordinate vector to a multi-resolution
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feature vector, h = [h0, h1, · · · , hN−1]. Starting from the basic case, when the coordinate
vector (x) is 1 -D. To obtain the feature at a particular resolution hi, we first identify the
nearest coordinate values on the resolution grid that are just greater or smaller than x, which
are denoted as ⌈x⌉ and ⌊x⌋. Then, we define a fixed hash function to obtain the hash values
for ⌈x⌉ and ⌊x⌋, and the hash values are used to retrieve the features corresponding to ⌈x⌉
and ⌊x⌋ from the ψi. Lastly, we linearly interpolate these retrieved features for the feature
for x. Putting this mathematically,

hi (x) = (x− ⌊x⌋) · ψ (hash (⌈x⌉)) + (⌈x⌉ − x) · ψ (hash (⌊x⌋)) . (5.4)

Generalizing this into N -D, we will find 2N nearest coordinate vectors and perform N -D
interpolation based on 2N of the retrieved features. By repeating this process for each
resolution, we concatenate features from all resolutions for the hash embedded features as
the input of the coordinate-based neural network. In our notation, the hash embedding
weights, ψ, are considered as a part of the network weights, θ, and thus ψ is not written out
in Eqs. 5.1-5.3. They are updated together using the same learning setting the during the
reconstruction.

5.2 Differential phase contrast microscopy

Our first multi-shot computational imaging system, differential phase contrast microscopy
(DPC), captures four raw images, from which it reconstructs the amplitude and phase of a
sample [175]. The images are captured with four different illumination source patterns, which
are generated by an LED array microscope in which the traditional brightfield illumination
unit is replaced by a programmable LED array [139].

The raw images of DPC are normalized by the background intensity, and then passed
through the linear transfer functions derived in [175] as the forward model:

forwardi (ou, op) = F−1
2D

[
H i

u · F2D (ou) +H i
p · F2D (op)

]
, (5.5)

where F2D is 2D Fourier transform, H i
u, H

i
p denote the absorption and phase transfer func-

tions for the ith measurement, and ou, op are the absorption and quantitative phase of the
scene. The conventional reconstruction is obtained by solving a Tikhonov regularization
with a regularization weight of 10−4 for both amplitude and phase terms [175]. For ease
of comparison, we add the same Tikhonov regularization to the loss term for NSTM recon-
struction.

In Fig. 5.1a, we show the system and raw images captured for a live, moving C. elegans
sample. The conventional reconstruction algorithm assumes a static scene over these four raw
images. Consequently, unaccounted sample motion leads to artifacts in the reconstruction
(Fig. 5.2b). Through the coarse-to-fine process (Fig. 5.2a), the NSTM recovers the motion of
the C. elegans at each timepoint, giving both a clean reconstruction without motion artifacts
and an estimate of the sample dynamics.
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Figure 5.5: Structured illumination microscopy (SIM) of a dense microbead sample with
vibrating motion. a, The diffraction-limited widefield image cannot resolve individual beads.
b, The conventional SIM reconstruction algorithm (fairSIM [121]) assumes a static scene,
so suffers from motion blur. c, Our NSTM reconstruction resolves all of the sub-resolution
sized beads and gives a similar quality reconstruction as d, the groundtruth case, in which we
collected the data without sample motion. Bottom right of each image shows the frequency
spectra (with gamma correction power = 0.7).

Data acquisition

The DPC images were obtained from [84] with a commercial inverted microscope (Nikon
TE300) with 10× 0.25NA objective (Nikon) and an effective pixel size of 0.454µm. A LED-
array [139] (SCI Microscopy) was attached to the microscope in place of the Köhler illumi-
nation unit. Four half circular illumination patterns, with the maximum illumination NA
equal to the objective NA, were sequentially displayed on the LED array to capture four raw
images as in [175]. Exposure time was 25ms.

5.3 3D structured illumination microscopy

Our second multi-shot system is 3D structured illumination microscopy (3D SIM) [68] which
captures 15 raw measurements at each z plane (three illumination orientations, five phase
shifts for each orientation). The conventional 3D SIM reconstruction assumes there is no
motion during the acquisition; thus, it is limited to fixed samples. Previous work in extending
3D SIM to live cells focuses on accelerating the acquisition through faster hardware [204,
185, 53] or assumes translation-only motion [68]. NSTM provides a strategy to recover and
account for deformable motion. Because we model motion during the acquisition of a single
volume, we can reconstruct both the super-resolved image and the dynamics.

Implementation

The conventional 3D SIM reconstruction uses five measurements of different sinusoidal phase
shifts to separate the complex spectra of three frequency bands and then shifts each band
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Figure 5.6: Additional results for the dense microbead sample from Fig. 5.5: a, Recon-
struction using NSTM without the motion update results in motion blurring similar to the
conventional reconstruction in Fig. 5.5b, since dynamics are not accounted for. b, NSTM re-
construction with color-coded time. c, The raw images with color-coded time. In the images
with color-coded time, each timepoint of raw images or reconstruction is drawn in a distinct
color as indicated by the color bar. The ‘color dispersion’ in the zoom-in reconstruction
suggests that subtle motion is recovered by NSTM. d, The recovered motion trajectory of a
pixel on the vibrating microbeads from NSTM reconstruction. Each arrow shows the motion
displacement vector with respect to the previous timepoint as indicated by the color code
(color bar in b).

accordingly based on its corresponding modulation frequency. The band separation process
necessitates the assumption of a static scene over those five measurements. To avoid this
static assumption and preserve the temporal information, we implement the 3D SIM forward
model in real space without band separation, rendering each measurement independently
from NSTM’s reconstruction at the timepoint that the actual measurement is taken.

This forward model can be expressed mathematically as

forwardi (o) =
∑

j∈{0,1,2}

F−1
3D [OTFj · F3D (illumi,j · o)] , (5.6)

where F3D denotes 3D Fourier transform. The super-resolved 3D fluorescent density, o, is
first modulated by the corresponding illumination pattern, illumi,j, at the ith measurement
and band j. Then, the modulated signal is filtered by the optical transfer function, OTFj,
for each band j, and the resulted signals for the three bands are summed to render the ith
intensity measurement.

In the naive implementation, we need to feed the 3D fluorescent density, o, at hundreds
of different timepoints1 to the forward model to render a set of measurements, which is
computationally inefficient. To improve the efficiency, we group together measurements with
identical orientation and phase captured at different depth planes, and render them in one

1For example, a dataset with 20 depth planes has 20 planes×3 orientations×5 phases = 300 raw images,
so 300 distinct timepoints.
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forward model pass as if they were acquired at the same timepoint. This simple modification
allows us to feed o at only 15 timepoints to get the full set of raw images, regardless of the
number of depth planes.

In our comparisons, we use the same illumination parameters estimated from measure-
ments [68, 185] for both conventional reconstruction algorithms and NSTM. For the conven-
tional reconstructions shown in Fig. 5.10b, we use the moving window approach to select
a set of raw images around a certain timepoint to feed into the reconstruction algorithm,
and we repeat this process to get the conventional reconstruction at every illumination ori-
entation. For example, the conventional reconstruction at timepoint 3 in Fig. 5.10b uses
raw images from illumination orientation 2 & 3 from the current acquisition2 and also the
illumination orientation 1 from the next acquisition, where there is no delay between two
acquisitions.

Results

Figure 5.5 shows results for a single-layer dense microbead sample in which we introduced
motion by gently pushing and releasing the optical table during the acquisition. Using a con-
ventional reconstruction algorithm (fairSIM [121]) results in a motion blurred image in which
the individual beads cannot be resolved. In contrast, our NSTM reconstruction resolves in-
dividual beads with a quality comparable to the groundtruth reconstruction. In addition,
we also recover the motion map (Fig. 5.6b and d). In this experiment, the groundtruth was
reconstructed from a separate set of raw measurements captured without motion (Fig. 5.5d).

Applying this technique to live-cell imaging, Fig. 5.7 and Fig. 5.8 show 3D SIM reconstruc-
tions for a live RPE-1 cell expressing StayGold-tagged [73] mitochondrial matrix protein. In
Fig. 5.7b, the conventional reconstruction appears to show a mitochondrion with a tubule
branch (red arrow); however, our NSTM result recovers the sample dynamics (see Fig. 5.8b)
and thus recognizes that it is actually a single tubule which is moving during the acquisi-
tion time. This can be further verified by the low-resolution widefield images (Fig. 5.7e)
and by running our NSTM algorithm without the motion update (Fig. 5.8c). In addition
to resolving motion, NSTM removes motion blur, recovering features that were blurred in
the conventional reconstruction (blue arrows in Fig. 5.7b-c), and thus NSTM preserves more
high-frequency content compared with conventional reconstructions (Fig. 5.9).

In another 3D SIM experiment, we imaged a live RPE-1 cell expressing StayGold-tagged
endoplasmic reticulum (ER) (Fig. 5.10). The conventional reconstruction struggles to resolve
clear ER network structures, likely due to their fast dynamics (see red arrows). Additionally,
the motion artifacts in the conventional reconstruction are changing over time, making it
difficult to visually track different features to see the ER dynamics. NSTM, on the other
hand, recovers the motion kernels and the dynamic scene from the same set of raw images
for a single volume reconstruction, and the ER structures it resolves are consistent over

2We use the term ‘acquisition’ to refer to ‘timepoint’ in a regular context of time-series acquisition, since
‘timepoint’ is already heavily used for time within a single acquisition of a scene.
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Figure 5.7: 3D SIM reconstruction of a live RPE-1 cell expressing StayGold-tagged mito-
chondrial matrix protein. a, Maximum projection of the volume with color-coded depth.
b-c, Zoom-in of a slice from the 3D reconstruction, comparing the conventional 3D SIM al-
gorithm (CUDA-accelerated three-beam SIM reconstruction software [68]) with our NSTM
algorithm. The NSTM reconstruction disambiguates the artifacts induced by tubular motion
(as indicated by the arrows). d-e, The NSTM reconstructions and widefield images at three
timepoints coded by colors. Widefield images are obtained by summing the raw images from
five phase shifts.

time. The recovered motion kernels reveal the dynamics happening at different timepoints
within a single 3D SIM acquisition as shown in Fig. 5.10c. We also imaged a live RPE-1 cell
tagged with F-Actin Halo-JF585 or MitoTracker Green to show NSTM’s capability on dense
subcellular structures (Fig. 5.12 and Fig. 5.13).

Cell line generation

The RPE-1 cell lines used in 3D SIM experiments were cultured using Dulbecco’s Modi-
fied Eagle Medium/Nutrient Mixture F-12 (Thermo Scientific 11320033) supplemented with
10% FBS (VWR Life Science 100% Mexico Origin 156B19), 2mM L-Glutamine, 100 Unit-
s/mL penicillin, and 100mg/mL streptomycin (Fisher Scientific 10378016). Trypsin-EDTA
(0.25%) phenol red (Fisher Scientific 25200114) was used to detach cells for passaging.
To generate the cell lines, we obtained the pCSII-EF/mt-(n1)StayGold (Addgene plasmid
#185823) and pcDNA3/er-(n2)oxStayGold(c4)v2.0 (Addgene plasmid #186296) from At-
sushi Miyawaki [73] to tag the mitochondrial matrix and the endoplasmic reticulum, re-
spectively. We obtained the LifeAct-HaloTag from Dorus Gadella (Addgene #176105) to
tag F-Actin. The er-(n2)oxStayGold(cr)v2.0, mt-(n1)StayGold, and the LifeAct-HaloTag
sequences were PCR amplified and cloned into a lentiviral vector containing an EF1 alpha
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Figure 5.8: Additional 3D SIM results for the mitochondria-labeled RPE-1 cell from Fig. 5.7.
a, Maximum projection of NSTM reconstruction volume, with three colors denoting the
three timepoints that correspond to the three illumination orientations. b, Zoom-ins of a
slice of NSTM 3D reconstruction, with color-coded time. The overlaid vector fields show the
motion displacement recovered by NSTM, with their colors to indicate their corresponding
timepoints. c, Zoom-in comparisons, from left to right: conventional reconstructions [68],
NSTM without motion update, NSTM reconstruction, NSTM reconstruction with color-
coded time (three colors for three illumination orientations), and widefield images with
color-coded time.
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Figure 5.9: A comparison of the spatial frequency spectra for each method. The two dashed
circles indicate the diffraction-limited bandwidth and SIM super-resolved bandwidth, respec-
tively. Gamma correction with power of 0.5 is applied to all frequency spectra for better
contrast.

promoter. The vector is a derivative of Addgene #60955 with the sgRNA sequence removed.
Lentiviral particles containing each plasmid were produced by transfecting standard pack-
aging vectors along with the plasmids into HEK293T cells using TransIT-LT1 Transfection
Reagent (Mirus, MIR2306). Media was changed at 24 hours post-transfection, without dis-
turbing the adhered cells, and the viral supernatant was harvested approximately 50 hours
post transfection. The supernatant was filtered through 0.45 mm PVDF syringe filter and
about 1 mL was used to directly seed a 10 cm plate of hTERT RPE-1 cells (ATCC CRL-
4000). Two days post-infection, cells were analyzed on BD FACSAria Fusion Sorter and
BDFACSDiva Software. The highest 5% of StayGold/GFP (FITC) fluorescence cells were
sorted for the StayGold tagged- ER and mitochondrial matrix lines (gating strategy illus-
trated in Fig. 5.14). To prepare F-Actin Halo-tagged RPE-1 cells for sorting, Janelia Fluor
HaloTag Ligand 503 was diluted at 1:20,000 from a 1mM stock in supplemented DMEM-F12.
Then the original media was carefully aspirated off the cells, and replaced with DMEM-F12
media containing the ligand. The ligand and cells were incubated at 37 degree for 15 mins,
then washed three times with PBS before trypsinization and subsequent sorting. For the
LifeAct-Halo tagged RPE-1 line, the same gating strategy was used as described above for
StayGold cells wherein highest 5% of Halo fluorescence cells were sorted (gating strategy
illustrated in Fig. 5.15). All sorted cells were expanded for imaging experiments.

Sample preparation

Janelia Fluor JF585 dye was used to label the F-Actin on the LifeAct-Halo tagged RPE-1
cells prior to imaging. The dense microbead sample was made with 0.19µm dyed microbeads
(Bangs Laboratories, FC02F). The stock solution was diluted 1:100 with distilled water
and placed on a glass-bottom 35mm dish coated by Poly-L-lysine solution (Sigma Aldrich,
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Figure 5.10: 3D SIM experimental results for a RPE-1 cell expressing StayGold-tagged endo-
plasmic reticulum (ER). aMaximum projection of the reconstructed volume with color-coded
depth. b, Zoom-ins at three timepoints, each of which corresponds to a different illumination
orientation, for the widefield, conventional and NSTM reconstructions. A moving window
approach (see Methods) is used to compute the conventional reconstruction [68] at differ-
ent timepoints. The NSTM reconstructions are overlaid with the recovered motion kernels
which show the sample’s motion displacements from the previous timepoint. The colors
of the motion kernel indicate motion directions, according to colorwheel in c. c, Zoom-in
NSTM reconstructions at three timepoints and the combined view with color-coded time.
The motion kernels on the second and third timepoints show the structure’s motion displace-
ments from the previous timepoint, with color-coding to indicate motion directions.
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Figure 5.11: Additional 3D SIM results for the live endoplasmic reticulum-labeled RPE-1
cell. a, Maximum z-projection of NSTM reconstruction volume, with three colors denoting
the three timepoints that correspond to the three illumination orientations. b, Zoom-in
comparisons, from left to right: conventional reconstructions [68], NSTM without motion
update, NSTM reconstruction, NSTM reconstruction with color-coded time (three colors for
three illumination orientations), and widefield images with color-coded time.

P8920).

Data acquisition

The 3D SIM datasets were acquired on a commercial three-beam SIM system (Zeiss Elyra
PS.1) using an oil immersion objective (Zeiss, 100× 1.46 NA) and 1.6× tube lens. The
effective pixel size was 40.6nm. The system captures 15 images at each depth plane, with 3
illumination orientations and 5 phase shifts for each orientation. A single image plane was
acquired for the dense microbead sample. 20 planes with a step size of 150nm were captured
for the RPE-1 cell expressing StayGold-tagged mitochondrial matrix protein, LifeAct-Halo
tagged RPE-1 cell stained with Janelia Fluor JF585, and 12 planes with a step size of 150nm
were captured for the RPE-1 cell expressing StayGold-tagged endoplasmic reticulum. 488
nm laser was used for all but the F-Actin Halo-JF585 tagged cell, for which we used a 561nm
laser. The SIM system has a illumination update delay of around 20ms for each phase shift
or z -position shift, and a delay of 300ms for each illumination orientation change. We set
the exposure time to 20ms for the dense microbeads and 5ms for all cell experiments.

5.4 Rolling-shutter DiffuserCam lensless imaging

Our third multi-shot computational imaging example is rolling-shutter DiffuserCam [4], a
lensless camera that compressively encodes a high-speed video into a single captured image.
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Figure 5.12: 3D SIM reconstruction of a live F-Actin labeled RPE-1 cell. a, Maximum
z-projection of the reconstructed volume with color-coded depth. b, Zoom-in comparisons,
from left to right: conventional reconstruction [68], NSTM reconstruction, NSTM reconstruc-
tion with color-coded time (three colors for three illumination orientations), and widefield
images with color-coded time. The second row of each zoom-in assumes raw images with
longer delay between orientations, ∆t(ori.), and thus more motion (i.e., the raw images of
orientation 1 are from acquisition timepoint 1, orientation 2 from acquisition timepoint 2,
and orientation 3 from timepoint 3 from a time-series measurement).

This method leverages the fact that each row of the image, captured sequentially by the
rolling shutter, contains information about the whole scene at that timepoint, due to the
system’s large point-spread-function (PSF).

Each row of the raw image captured by rolling-shutter DiffuserCam is the time integral of
the dynamic scene convolved with the caustic point-spread-function (PSF) over the rolling
shutter exposure. Thus, its forward model can be written in a discrete-time sum of T
timepoints [4],

forward (o) =
T−1∑
t=0

(o (t) ∗ PSF) · S (t) , (5.7)

where o is the dynamic scene, S is a binary map of the shutter on/off state, and ∗ denotes
2D convolution operation. However, rendering the entire image at once requires obtaining
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Figure 5.13: 3D SIM reconstruction of a live RPE-1 cell tagged with MitoTracker Green. a,
Maximum z-projection of the NSTM reconstructed volume with color-coded depth. b, Zoom-
in comparisons, from left to right: conventional reconstruction [68], NSTM reconstruction,
NSTM reconstruction with color-coded time (three colors for three illumination orientations),
and widefield images with color-coded time.

NSTM’s reconstructed scenes at all timepoints, which will be intensive on GPU memory.
To make this feasible on common GPUs, during each step of the reconstruction we render a
subset of image rows by only obtaining the reconstructed scenes at timepoints which have
contributed signal to these rows. The forward model for the ith row of the raw image can
be written as

forwardi (o) =
∑

t∈{t|S(i,t)=1}

(o (t) ∗ PSF) · S (t) . (5.8)

In practice, to improve the efficiency, we render 20 consecutive rows in each forward pass.
To enable video reconstruction from the single raw image, the original algorithm [4]

uses total variation (TV) regularization to promote smoothness. In contrast, by modeling
for the motion explicitly, NSTM produces cleaner reconstructions without over-smoothing
(Fig. 5.16b). As a byproduct of NSTM, the motion trajectory for any point can be queried
directly from the motion network (Fig. 5.16c).

Data acquisition

The rolling shutter DiffuserCam data is from the original work on the technique [4]. The
raw image was taken by a color sCMOS (PCO Edge 5.5) in slow-scan rolling shutter mode
(27.52µs readout time for each row) with dual shutter readout and 1320µs exposure time.
The acquisition of the raw image took 31.0ms.
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Figure 5.14: Gating strategy for sorting the StayGold tagged- ER and mitochondrial matrix
lines. a, Wild-type RPE-1 cells were used to gate for Live Cells (Gate 1) and the StayGold
negative cells were used to gate for the StayGold positive population (Gate 2). b, To sort
samples that were transduced with StayGold expressing plasmids, Gate 1 (Live cells) was
applied followed by Gate 2 (StayGold positive), and then top 5% of the StayGold positive
cell population (Gate 3) was sorted using BDFACS Aria Fusion Sorter and expanded using
DMEM-F12 for subsequent imaging experiments.
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Figure 5.15: Gating strategy for sorting the LifeAct-Halo tagged RPE-1 line. a, Wild-type
RPE-1 cells were used to gate for Live Cells (Gate 1) and the Halo negative cells were used to
gate for the Halo positive population (Gate 2). b, To sort samples that were transduced with
Halo expressing plasmids, Gate 1 (Live cells) was applied followed by Gate 2 (Halo positive),
and then top 5% of the Halo positive cell population (Gate 3) was sorted using BDFACS
Aria Fusion Sorter and expanded using DMEM-F12 for subsequent imaging experiments.
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Figure 5.16: Results for rolling-shutter DiffuserCam. a, The raw image measurement. b,
Comparisons of the reconstruction using basic deconvolution (assumes a static scene), FISTA
with anisotropic 3D Total Variation regularization (TV) [4] (the original reconstruction
method), and our NSTM algorithm. c, NSTM reconstruction at different timepoints, with
their corresponding measurement rows indicated by colored boxes on the raw image. The
colored curves show some selected motion trajectories recovered by the motion network.

5.5 Discussion

We demonstrated our neural space-time model (NSTM) for recovering motion dynamics and
removing motion-induced artifacts in three different multi-shot imaging systems; however,
the models are general and should find use in other multi-shot computational imaging meth-
ods. Notably, NSTM does not use any data priors or pre-training, such that the network
weights are trained from scratch for each set of raw measurements. Hence, it is compatible
with any multi-shot system with a differentiable and deterministic forward model. For multi-
shot imaging systems like 3D SIM, which do not use gradient-based reconstruction, we can
alternatively implement a forward model as part of the NSTM reconstruction as discussed
in Section 5.3.

While NSTM is a powerful technique to resolve dynamic scenes from multiple raw images,
it relies on temporal redundancy, i.e., the smoothness of motion and correlatable scenes over
adjacent timepoints, to jointly recover the motion and the scene. As a consequence, this
strategy tends to degrade or fail when the motion is less smooth. To demonstrate some
failure modes, we provide several simulation examples. First, we simulate different amounts
(magnitudes) of motion, showing that NSTM does well with large magnitudes of rigid-body
or linear motion, presumably due to the effectiveness of coarse-to-fine process, but begins to
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Figure 5.17: SIM simulations with various types and magnitudes of motion. From left to
right: a, rigid motion - translation, b, rigid motion - rotation, c, non-rigid global motion
- shearing, and d, local deformable motion - swirl. The first four rows show the NSTM
reconstructions from simulated images with increasing magnitude of motion between frames,
and the last row shows the groundtruth scenes. The reconstruction of local deformable
motion is more likely to fail when the motion magnitude increases.
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Figure 5.18: Simulations of SIM with local deformable vibration motion. The deformable
swirl motion for each frame is generated using the swirl factor shown in the last row. The
frequency of the swirl factor increases from left to right. As the frequency increases, there
will be less temporal redundancy between adjacent frames, and hence NSTM will be more
likely to fail.
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degrade with large magnitudes of local deformable motion (Fig. 5.17). Second, we simulate
periodic local deformable motion with different vibration frequencies (Fig. 5.18). We find
that since NSTM does not explicitly account for periodic motion, it cannot capture high-
frequency vibrations when the motion is no longer smooth between adjacent frames. Third,
we simulate additive Gaussian noise to the raw measurements (Fig. 5.19) to show how noise
degrades the NSTM reconstruction.

One limitation of our method is that its two-network construction cannot accommodate
for certain dynamics. Despite that this construction allows an explicit motion model and
ensures reconstruction fidelity, it also introduces an additional constraint: since the scene
network does not depend on the temporal coordinate, any frame of a dynamic scene has to
be obtained by deforming a static reconstruction (from the scene network) with a motion
kernel (from the motion network). As a result, NSTM is unable to recover dynamic scenes
with appearing/disappearing features or switching on/off dynamics (such as neuron firing,
or fluorescence photoactivation), which cannot be reproduced by a time-independent scene
network. To overcome this limit, future work could modify the NSTM architecture to account
for the different types of non-smooth dynamics and/or incorporate the time-dependency to
the scene network.

Another limitation is that our NSTM reconstructions generally require more computation
than conventional methods. For example, the dense microbead reconstruction using NSTM
took about three minutes on a NVIDIA RTX 3090 GPU, in contrast to the conventional
algorithm (fairSIM) which completed in less than 10 seconds on a CPU. The live cell 3D
reconstructions (volume size 20 × 512 × 512 with 15 timepoints) using NSTM took 40.5
minutes on a NVIDIA A6000 GPU (Table 5.5. Future work could improve the computational
efficiency of NSTM by better initialization of network weights [173], hyper-parameter search
for a faster convergence [206], using lower precision arithmetic, and data-driven methods to
optimize a part of the model in a single pass [178].

One interesting advantage of using coordinate-based neural networks like NSTM is that
it can accommodate arbitrary coordinates that may not be on a rectilinear grid. This
is especially advantageous for modeling spatiotemporal relationships, as it can intuitively
handle sub-pixel motion shifts and non-uniformly sampled measurements in both space and
time, without requiring interpolation of a uniformly sampled matrix. For example, one
can output a temporally interpolated video with any desired temporal resolution simply by
querying the network at intermediate timepoints between actual measurement timepoints to
render the corresponding frames. The resulting reconstructions are clean (no motion blur)
and can faithfully represent the scene at those timepoints, provided that the dynamics are
accurately modeled by the NSTM. We should not, however, expect to recover any dynamics
happening at timescales faster than which can be learned from the measurements.

In summary, we showed that our NSTM method can recover motion dynamics and thus
resolve motion artifacts in multi-shot computational imaging systems, using only the typi-
cal datasets used for conventional reconstructions. The ability to recover dynamic samples
within a single multi-shot acquisition seems particularly promising for observing subcellular
systems in live biological samples. By accounting for motion through NSTM’s joint recon-
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struction, NSTM reduces the risk of misinterpretations in the study of living systems caused
by motion artifacts in multi-shot acquisitions. Further, it effectively increases the temporal
resolution of the system when multi-shot data is captured.
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Chapter 6

Noise2Image: Noise-Enabled Static
Scene Recovery for Event Cameras

While event cameras can operate beyond conventional framerates, they are designed to be
blind to the stationary components of a scene, which induce no brightness changes over time.
This issue is especially prevalent when the camera is not moving and therefore provides no
information about the static background. Even though event cameras are not designed to
capture an intensity image, it is often needed for downstream applications such as initial-
izing motion tracking algorithms [3]. To mitigate this issue, some event cameras include
a conventional frame-based sensor in the pixel circuit to simultaneously image both events
and traditional intensity images [18, 11]. Alternatively, when circuit-level modification of the
event camera is not possible, a frame-based camera can be installed in parallel, using either
a beam splitter [72, 216, 215] or additional view registration [189]. Both of these solutions
introduce additional hardware, increasing cost, complexity, size, and power consumption.

Our work leverages the fact that, even when the scene is static, event cameras still produce
noise events. We focus on low and moderate-brightness regimes (e.g.room light, outdoor sun-
set) [65, 64, 63] in which the dominant source of noise is photon noise — random fluctuations
in the photon arrival process. In contrast, the high-brightness regime (e.g.outdoor daylight)
includes leakage noise events [129], which we do not model here. While the photon noise
is well-studied in the context of frame-based scenes, those events triggered by photon noise
are commonly deemed as part of the general background noise activity of the event-based
sensor, to be filtered out.

In this work we propose a method called Noise2Image that can reconstruct a static scene
from its event noise statistics, with no hardware modifications and negligible computational
overhead. First, we derive a statistical noise model describing how noise event generation
correlates with scene intensity, which shows a good correspondence with our experimental
measurements. Unlike in conventional sensors, where photon noise grows with the signal,
we find that for event cameras, the number of events triggered by photon noise is mostly

This chapter covers the research I presented or published in [27].
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Figure 6.1: Schematic of the Noise2Image pipeline. Recorded events are first separated into
noise events and signal events using an existing event denoiser. Signal events are triggered by
intensity changes of the scene, which can be fed into existing event-to-video reconstruction
methods. The noise events are then used to reconstruct the static scene intensity with our
Noise2Image method. This relies on characterizing the relationship between noise events and
using learned priors to resolve ambiguities. Data in this figure was captured in an outdoor
environment late afternoon.

negatively correlated with the illuminance level due to the logarithmic sensitivity of the
sensor. Imaging the static scene then amounts to inverting this intensity-to-noise process.
However, the mapping is one-to-many, so not directly invertible; thus, we rely on a learned
prior to resolve ambiguities. To train and validate our method, we experimentally collect a
dataset of event recordings on static scenes. We demonstrate that Noise2Image can recover
photo-realistic images from noise events alone, or can be used to recover the static parts of
scenes with dynamics. In addition to testing on in-distribution data, we demonstrate the
robustness of this approach with out-of-distribution testing data and live scenes (Fig. 6.1).

Our contributions are summarized as follows:

• We characterize noise event generation due to photon noise and derive a mathematical
model describing the statistical relationship between noise events and pixel illuminance.

• We propose the Noise2Image method to recover the intensity image of a static scene
from a recording of noise events using a learned prior.

• We collect a noise-events-to-image (NE2I) dataset with recordings of noise events paired
with the corresponding intensity images to train and validate our method.

• We show that Noise2Image is complementary to event-to-video reconstruction methods
(E2VID), enabling recovery of both static and dynamic parts of a scene.
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6.1 Related Work

Event-to-video reconstruction.

Event-to-video reconstruction (E2VID) is a class of methods that recover high frame-rate
video from event recordings. These methods can capture high-speed dynamics without the
motion blur that plagues traditional frame-based cameras. Because event cameras only cap-
ture scene changes, many E2VID approaches include one or two traditional frame-based
images, using events to deblur [152, 82, 132, 186], synthesize adjacent frames [188], or inter-
polate temporally [179, 180, 210, 190].

In contrast, a more challenging class of E2VID reconstruction only uses events for video
reconstruction. Because the initial scene intensity is unknown and only the relative intensity
changes are measured, reconstruction requires either explicit modeling of spatiotemporal
relationships [7] or deep neural networks as a data prior to fill in the missing information [148,
165, 153, 193, 20, 133, 49]. Because it is difficult to collect event recordings paired with the
corresponding frame-based videos at scale, the data prior is obtained through synthetic data
generation [148, 165] using an event camera simulator [147]. While E2VID methods are
effective for recordings with object motion or camera motion, the reconstruction of static
scenes or regions is still out of reach since no events are thought to be triggered without
motion. Our Noise2Image method can be considered complementary to E2VID; one might
use Noise2Image to recover the static parts of the scene and E2VID to recover the dynamic
parts.

Event camera noise characterization.

An event recording often contains a number of events not associated with intensity changes,
which are termed noise events or background activity [38, 64]. Noise events are attributed
to two main sources: photon noise and leakage current [129, 63, 65]. Photon noise is the
dominant source of noise in low-brightness conditions [101, 63], while leakage noise events
dominates in high-brightness conditions [129, 63]. Although the noise model of event cameras
is less studied than traditional sensors, in the lower-light regime, it is generally believed that
noise events become less likely to trigger as intensity increases [42, 77]. In event camera
simulators, the events triggered by photon noise are modeled as a Poisson process, with the
noise event rate linearly decreasing with intensity [77]. The intensity dependency of noise
events has been experimentally measured in [63], and shows a non-monotonic relationship
with intensity in low light. Our experimental results are consistent with this trend, and we
derive a theoretical noise model which explains the relationship between intensity and noise
events.

Event denoising.

While denoising methods for CMOS or CCD sensors often focus on building an accurate
noise model, event camera denoising methods instead emphasize noise detection by iden-
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tifying the “signal” events corresponding to changes in the scene and removing everything
else. Because natural scene changes are inherently spatiotemporal, an event triggered by real
signal should be accompanied by a number of other events at the neighboring spatial and
temporal locations. With this observation, a background activity filter (BAF) (also called
nearest neighbor filter) is used to identify real events by checking the time difference between
a new event and the most recent previous event in its proximate spatial location and rejecting
events when the time difference passes a threshold [39, 37, 131]. Similarly, the noise events
can also be found through spatiotemporal local plane fitting [10]. BAF is simple to compute
and can be implemented in hardware with limited computational resources [103, 8]. Guo and
Delbruck further extended BAF by reducing its memory footprint and incorporating struc-
tural information from a data-driven signal-versus-noise classifier [65]. A recent study points
out that events are often triggered simultaneously by noise and signal and therefore treats
denoising as a regression problem to predict the noise likelihood [5]. Here, we assume access
to a good event denoiser [51, 42] that isolates noise events resulting from static components
of a scene.

Event camera datasets.

Unlike frame-based cameras, the collection and curation of event camera datasets is challeng-
ing, largely due to the inaccessible hardware and the scarcity of online data repositories (e.g.,
flickr, Google Images for framed-based images). Nevertheless, since large datasets are critical
for machine learning [92, 43], there are a handful of recent efforts to systematically generate
large-scale event camera datasets. One common approach is to display images on a monitor
and record them using an event camera [154, 130, 97, 87]. The motion in the scene can then
be generated by either moving the displayed image on the monitor [154, 97] or moving the
camera [130, 87]. Alternatively, event datasets can also be generated from frame-based video
datasets by over-sampling in time and feeding into an event camera simulator [59, 77, 214].
In this work, we generate an NE2I dataset using experimental measurements and synthetic
noise, described in Sec. 6.2.

6.2 Modeling Noise Event Statistics

First, we develop a model of noise event statistics for later use in our synthetic dataset
generation and image reconstruction steps. An event e is triggered when a pixel (x, y)
detects a change in logarithmic intensity, log(I), greater than the contrast threshold, ϵ, at
the time t. The polarity s = +1 if the change is positive, and s = −1 if the change is
negative. The triggering condition for an event can be written as

(log(I(x, y, t))− log(I(x, y, t0))) · s > ϵ, (6.1)

where t0 is the timestamp for the most recent event at the same pixel. The logarithmic
sensitivity ensures that this triggering condition is adaptive to the brightness level, e.g.a
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tenfold increase from 1 lux to 10 lux would result in a similar response as a tenfold increase
from 100 lux to 1000 lux. As pixels operate asynchronously, we will proceed by considering
events at an arbitrary pixel and drop the (x, y) notation for simplicity.

By design, there should be no events triggered by a static scene, because there will
be no changes in intensity. However, the inherent randomness in the photon arrival process
means that there will be fluctuations in the detected intensity and thus noise events triggered.
Consider a static scene in which a pixel sees n photons over a short period of time. n follows a
Poisson distribution with the average photon count λ ∝ I, which can be further approximated
as a Gaussian distribution for the light levels we work with (λ > 10). We similarly write the

photon count during the last event trigger as n0, and both n, n0
i.i.d.∼ N (λ, λ).
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Figure 6.2: a. Theoretical noise event probability, pe, versus the average photon count, λ,
at different photoreceptor bias values, bpr (ϵ is the contrast threshold). b. Experimentally
measured noise event rate versus illuminance (proportional to λ) matches well with our
theoretical model after fitting parameters ϵ, bpr and N .

To trigger a positive event, we need log (n) − log (n0) > ϵ, which can be re-written as
n − n0e

ϵ > 0. Under the Gaussian approximation, n − n0e
ϵ ∼ N (λ (1− eϵ) , λ (1 + eϵ)).

Thus, we can write the probability of triggering a positive event,

Pr (n− n0e
ϵ > 0) =

1

2
− 1

2
erf

(
λ (eϵ − 1)√
2λ (1 + eϵ)

)
, (6.2)

where erf denotes the error function. The derivation for negative events is similar. This
function is plotted in Fig. 6.2a (cyan curve) and reveals a monotonically decreasing trend
between noise event probability and illuminance. In other words, as the illuminance increases,
it is less likely to find n, n0 that satisfies the triggering condition. This trend matches with
previous literature [42, 63, 64].
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For low-light conditions, where λ is relatively small, the relative signal fluctuation gets
stronger, which can lead to more noise events. Consequently, the analog circuit of an event
pixel is designed to have a photoreceptor bias voltage and source-follower buffer which help
stabilize the photoreceptor’s reading and filter out fluctuations beyond a certain band-
width [38, 64]. To account for this in our model, we approximate the filtering effect by
adding a photoreceptor bias term, bpr, to the photon count before the logarithmic operation.
As a result, the triggering condition of a positive event becomes log(n+bpr)−log(n0+bpr) > ϵ,
which can be re-written as n+ bpr − eϵ (n0 + bpr) > 0. We can similarly write the probability
of triggering an event, pe, as a function of the average photon count (proportional to the
illuminance):

pe (λ) =
1

2
− 1

2
erf

(
(λ+ bpr) (e

ϵ − 1)√
2λ (1 + eϵ)

)
. (6.3)

With the bias term, the model shows fewer noise events at lower illuminance levels (Fig. 6.2a).
As average photon count increases, the number of noise events will increase up to a point
and then decrease. While this model is not monotonic, we will show that we can still recover
illuminance from noise event counts.

To validate our derivation, we acquired experimental measurements of noise events at
different illuminance levels (Fig. 6.2b). The measured positive event rate matches to our
derived noise model after parameter fitting. Note that our formulation is a simplified noise
model for the event circuit, which characterizes the events triggered by photon noise. There
are more controllable bias parameters in the actual analog circuit [38, 64] that are beyond
our formulation.

Figure 6.3: a. Displayed static scene. b-c. Synthetic noise event count sampled from the
Poisson distribution and generalized negative binomial distribution, respectively. d. Noise
event count from a experimental recording. The insets show the histogram for the noise
event count.
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Sampling Noise Events.

Once we know the probability of observing a single noise event, we can simulate the number
of noise events over a fixed time window given the intensity of a scene, I. Viewing each
potential noise event in this window as a Bernoulli trial with probability pe, the noise event
count has a binomial distribution with probability of pe (I) and N trials. With the refractory
period (i.e.minimum time between events) much smaller than the inter-event interval, N will
be large, and the binomial distribution can be approximated by a Poisson distribution with
parameter N · pe (I).

However, we observe that the empirical noise event count (Fig. 6.3d) has a higher variance
than the Poisson distribution (Fig. 6.3b), referred to as overdispersion. The overdispersion
of the experimental data is likely caused by some inter-pixel variabilities, such as the vari-
ation of contrast threshold values [101]. Thus, we instead sample the noise count from a
generalized negative binomial distribution—which is often used in lieu of Poisson when there
is overdispersion—with a mean of N ·pe (I) and an illuminance-dependent variance obtained
empirically from the calibration data. The noise count sampled from the negative binomial
distribution (Fig. 6.3c) resembles the experimental count.

6.3 Reconstructing the Scene

Once we have a model for the mapping between scene intensity and noise event count at
each pixel, we can develop an algorithm for recovering the static scene. We first estimate
the true noise event count N · pe (I) from the empirical noise event count that the camera
measures, and then estimate the intensity I by inverting Eq. (6.3). By doing this for every
pixel, we can form an image for a static scene.

This inverse problem is non-trivial to solve for two reasons. First, the problem is ill-
posed since Eq. (6.3) is one-to-many, as in Fig. 6.2b, for nonzero biases and thus using the
noise count alone is insufficient to solve for exact intensity values. Second, even though
the empirical event count is the maximum likelihood estimator of the true event count, the
estimate from the empirical event counts in a finite time window will have some statistical
error leading to further downstream error after inverting pe(I).

We approach the first challenge by counting the positive and negative polarities of noise
events separately. We found that event cameras often set different contrast threshold values
to trigger positive and negative events, since the leakage current of the event circuit causes
positive events to be triggered more easily [129]. Because of potentially asymmetric behavior
of the two polarities, the correlation between light intensity and noise events is also different
for each polarity. As shown in Fig. 6.4, the corresponding light intensity becomes more
uniquely defined when counting positive and negative events separately.

The second issue — inexact event count estimation — can also be mitigated through the
use of data priors in the inverse problem. This will make the resulting reconstruction robust
to small errors in the event rate. Combining these two, we train a neural network to map the
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Figure 6.4: Noise event counts on positive events versus negative events. The color indicates
the corresponding illuminance level.

estimated event count directly to the corresponding intensity image. The network accepts
inputs with two spatial channels for positive and negative event counts. To further reduce
the variance, we perform pixel binning across blocks of 2× 2 pixels.

Application on Dynamic Scenes

As in Fig. 6.1, the static scene reconstruction can also operate in parallel with the event-to-
video reconstruction (E2VID) pipeline on recordings with both static and dynamic compo-
nents, e.g., scenes with moving foreground and static background. We first separate signal
events triggered by dynamic changes from other recorded events using an event denoising
algorithm [51, 42], and apply an E2VID method to reconstruct the dynamic components.
The remaining events can be considered noise events triggered mostly by photon fluctuation,
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which can be fed into the proposed Noise2Image model for static background reconstruction.
For a variable-length recording, we aggregate noise events using a moving window with a
fixed temporal width. Lastly, we stitch the dynamic and static scene reconstructions together
using a binary motion mask identified from the signal events.

6.4 Experiments

The existing event camera datasets all have a significant amount of scene motion and/or
camera motion. It is not possible to fully distinguish between events triggered by intensity
changes and noise events [5], and thus they are not suitable for our goal of static scene
reconstruction. Hence, we collect our own training/validation dataset, termed noise events-
to-image (NE2I). NE2I contains pairs of high-resolution intensity images and noise event
recordings from both experimental acquisition and synthetic noise based on the model pre-
sented in Sec. 6.2.

We image a 24.5 inch LCD monitor displaying static images. In order to calibrate the
noise model, we display 256 grayscale values on the monitor and capture both their event
response and light intensity. The illuminance of each grayscale value is measured using a
light meter placed next to the camera1. Our event camera is a monochromatic Prophesee
Metavision EVK3-HD. The default bias parameters were used for the camera, and no de-
noising was performed on the raw data. While the event camera has a high pixel count
(1280× 720 pixels), it does not have an active pixel sensor (APS) that records frame-based
intensity images. To register the event camera recording to the screen, we first imaged a
standard checkerboard flashing on the monitor to induce events. The aggregated event count
is used to establish a transformation matrix [17], which is applied to any event recordings to
align it spatially with the monitor.

The full NE2I dataset consists of an in-distribution set and an out-of-distribution test
set. The in-distribution data contains 1004 high-resolution images of artistic human portraits
from Unsplash, split into 754 images for training, 100 for validation, and 150 for testing. The
out-of-distribution test set has 100 high-resolution images from the validation set of DIV2K
image super-resolution dataset [1], aiming to provide a variety of scenes much beyond the
training data distribution. We intentionally chose a confined distribution for training data
and a broad distribution for testing, so that the evaluation can test if the model learns local
correlations instead of an image-level prior.

Given a sequence of noise events, we first aggregate them into a 2D-matrix of event count.
To account for the positive and negative polarities, we separately aggregate them and store
as two channels. We train a U-net to map an event count matrix into the corresponding
intensity image. A modified U-net from [74] is used for enhanced performance. The network
is trained using either experimental training data (described above) or synthetic event counts
generated by the statistical noise model in Sec. 6.2. For experimental data training, we

1Since the light meter has optics different from the lens on the event camera, the measured illuminance
value may not be equal to but is proportional to the actual illuminance level hitting the camera sensor.
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augment the input noise count by choosing a random starting time for the 1-second window
over a 10-second event recording. For synthetic data training, event counts are re-sampled
each time on-the-fly.

We use E2VID as a baseline method for the evaluation of static scene recovery even though
it was not trained by such data. We compare to the pre-trained model implementation [48]
for the original E2VID [148], E2VID+ [165], FireNet [153], FireNet+ [165], ET-Net [193],
SPADE-E2VID [20], SSL-E2VID [133], HyperE2VID [49]. A sequence of events within a
1-second window is fed into each method, and the last frame of predicted video (5 predicted
frames in total) is used for evaluation.

Metrics.

Evaluation of all methods is performed using experimentally-collected testing data, with
the quality of recovered intensity images being calculated for the in-distribution and out-of-
distribution testing datasets using three common quantitative metrics [148]: peak signal-to-
noise ratio (PSNR), structured similarity (SSIM) and perceptual similarity (LPIPS [209]).
LPIPS is computed using pre-trained AlexNet with image intensity values normalized to [-1,
1].

Results

For static-only scenes, the quantitative scores for Noise2Image as well as baseline methods
using NE2I dataset are reported in Table 6.1. As shown in Fig. 6.5, the Noise2Image model
trained by either experimental or synthetic data recovers detailed intensity images from
the count of noise events. Both Noise2Image models generalized well to out-of-distribution
testing data, providing a good level of contrast and details, suggesting that Noise2Image
learns the correlation between noise event and intensity. The Noise2Image model trained
by experimental data out-performed the one trained by the synthetic data by 4.1dB of
PSNR. As the synthetic data-trained model often recovered speckle-like patterns for the
uniform image background, we speculate that this performance margin is caused by the
spatial correlation of the noise events, which is beyond our synthesis model but potentially
captured by the experimental data training. Baseline E2VID methods did not perform well
on static scene reconstruction for two reasons: they were only trained by scenes with various
degrees of motion (not static scenes) and the training data of E2VID was generated without
an intensity-dependent noise model [147].

In addition to testing data, we tested Noise2Image on real-world scenes, both indoor and
outdoor. The Noise2Image model trained by images displayed on a monitor generalizes well
for scenes outside of the laboratory setting, as shown in Fig. 6.1 and Fig. 6.7. We have
implemented a real-time demo running on a laptop computer as well.

2Since E2VID models were trained by synthetic motion data generated from the MS-COCO dataset [102],
both of our testing sets are considered as out-of-distribution.
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Figure 6.5: Comparison between Noise2Image and baseline pre-trained event-to-video
(E2VID) methods on noise event-to-intensity reconstruction. The first row shows the in-
put event count (captured in experiment) aggregated over a 1-second window. Noise2Image
is trained using either synthetic or experimental data as specified. Full comparison with all
baseline methods can be found in Fig. 6.6.
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Figure 6.6: Additional comparison between Noise2Image and all baseline event-to-video
(E2VID) methods on noise event-to-intensity reconstruction. The first row shows the input
event count (captured in experiment) aggregated over a 1-second window.
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Methods
In-distribution test Out-of-distribution test
PSNR SSIM LPIPS PSNR SSIM LPIPS

Original E2VID [148] 7.76 0.043 1.131 10.1 0.055 1.032
E2VID+ [165] 8.72 0.148 0.872 9.26 0.108 0.768
FireNet [153] 9.35 0.089 1.047 10.5 0.098 0.970
FireNet+ [165] 9.78 0.063 0.959 9.77 0.057 0.800
ET-Net [193] 9.13 0.166 0.805 10.1 0.131 0.730
SPADE-E2VID [20] 7.74 0.229 0.856 8.74 0.149 0.870
SSL-E2VID [133] 8.81 0.133 0.764 8.95 0.123 0.720
HyperE2VID [49] 9.09 0.159 0.858 0.89 0.094 0.759
Noise2Image, syn-
thetic

20.9 0.589 0.462 16.3 0.468 0.583

Noise2Image, experi-
mental

25.0 0.742 0.349 19.3 0.552 0.509

Table 6.1: Quantitative results for static scene reconstruction with in-distribution and out-
of-distribution testing data. Our Noise2Image models are trained with either synthetic or
experimental noise data. Pre-trained events-to-video reconstruction (E2VID) methods2are
used as baselines. We report peak signal-to-noise ratio (PSNR), structured similarity (SSIM),
and perceptual similarity (LPIPS [209]).

Effect of aggregation duration.

Table 6.2 shows the effect of varying the aggregation window time for training and testing
the Noise2Image method. As the aggregation duration shortens, fewer noise events will
be triggered, and the estimation of the true event count becomes less accurate. Table 6.2
shows that the Noise2Image reconstruction works even with short aggregation duration (0.1
seconds), although longer integration will result in better reconstruction quality.

Aggregation duration
In-distribution test Out-of-distribution test
PSNR SSIM LPIPS PSNR SSIM LPIPS

0.1 s 23.8 0.714 0.391 18.4 0.513 0.586
0.25 s 24.4 0.721 0.377 18.8 0.522 0.564
0.5 s 24.7 0.738 0.358 19.1 0.545 0.537
1 s 25.0 0.742 0.349 19.3 0.552 0.509
2 s 25.4 0.765 0.324 19.5 0.598 0.473

Table 6.2: Noise2Image performance using noise event counts aggregated over different time
windows. For each aggregation duration, the Noise2Image model is trained and evaluated
using the experimental data with identical training setting.
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Figure 6.7: Real-world examples of Noise2Image taken outside of the laboratory setting. The
Noise2Image model trained by synthetic data results in background artifacts on the in-door
scene (second row, second column), presumably caused by the one-to-many relationship of
Eq. 3. In contrast, the Noise2Image trained by experimental data predicts the background
correctly, hinting that there exist spatial correlations in the experimental noise events, be-
yond our derived spatially independent noise event synthesis. The reference images were
taken by an iPhone 12 plus back camera.

Reconstructing scenes with dynamic components.

Finally, we demonstrated that Noise2Image is complementary to E2VID reconstruction when
the scene has both static and dynamic components. We imaged a fan rapidly moving in front
of a static scene, and fed signal events into a pre-trained E2VID model [148]. While the
E2VID method performed well on the moving object, it could not recover the background
static scene (Fig. 6.8c). To incorporate Noise2Image, we first identified a motion mask at
each timepoint (Fig. 6.8b) by thresholding signal events. We then aggregated noise events
and fed the event count at pixels without motion to the Noise2Image model. Stitching
together the moving foreground from E2VID and the static background from Noise2Image,
we obtained the final high-quality reconstruction as in Fig. 6.8d.

6.5 Discussion

Our experiments were done using a single event camera, and there might be differences in the
noise characteristics between different event circuit designs. However, our finding in Sec. 6.2
is based on the photon arrival process, which is generalizable to other event camera hardware.
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t = 0.675s 
(static frame)

a. event count b. motion mask c. E2VID d. Noise2Image + E2VID

t = 1.475s 
(motion frame)

Figure 6.8: Dynamic scene reconstruction of a moving fan in front of a static scene. a.
Aggregated event count. The first row is at a timepoint with no motion and only faint noise,
and the second row has motion. b. Motion mask obtained from thresholding the signal
events as determined by the event denoiser. c. E2VID reconstruction using pre-trained
model from [148]. d. The dynamic foreground reconstructed by E2VID and the static
background reconstructed by Noise2Image are stitched together.

This correlation between noise events and illuminance level was also independently reported
in previous studies using different event cameras [63, 77, 42, 64].

Denoising and camera bias parameters [113] can also affect this illuminance dependency.
Our data was acquired without denoising and using bias parameters default to our event
camera. We also tested different high-pass filtering bias values which affect the correlation
between noise event rate and illuminance (Fig. 6.9). For this reason, the trained Noise2Image
model is bound to the camera model and bias parameters that were used in the training data
collection. We hope that our modeling of noise events can be improved upon by incorporating
the analog nature of event sampling and modeling additional event camera bias parameters,
e.g.using non-parametric models to account for unknown camera behavior.

One practical constraint for our study is that the dynamic range of Noise2Image is limited
by the monitor we used. As a result, the increase in noise events at high illuminance settings
due to leakage current cannot be measured using our setup. This issue can likely be alleviated
by changing to a high-dynamic range and high-brightness monitor or projector for data
collection. We hypothesize that our Noise2Image approach will still be valid for brighter
scenes since the statistics of leakage current-induced noise events is quite distinct [129].

Another future direction is to incorporate the proposed noise event modeling into ex-
isting event camera simulators. This will help synthesize data with realistic noise events,
which can be used for training event-to-video recovery (E2VID) models. Overall, the model
similarities between Noise2Image and E2VID suggest that in the future, Noise2Image can be
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Figure 6.9: Experimentally captured noise event rate vs. illuminance levels using various
sensor high-pass filter bias values which is called “bias hpf” in Prophesee Metavision SDK.
The correlation between illuminance and event rate changes with different bias hpf values.
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incorporated into the E2VID pipeline via more realistic training data, complementing each
other’s goals.

In summary, we demonstrated imaging of static intensity using an event camera with
no additional hardware. This is made possible by the fact that photon-noise triggers events
which are correlated with illuminance. We developed a statistical model of the noise event
generation, and leveraged it to develop a strategy called Noise2Image, which maps noise
events to an intensity image via a neural network that incorporates local priors. We demon-
strate that our approach works well quantitatively and qualitatively on experimental event
recordings, including ones taken in the wild. We also show that our method is compatible
with scenes that have object dynamics. Our hope is that Noise2Image reduces the need for
event cameras to have additional hardware for measuring static scenes.
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Chapter 7

Conclusion

This thesis has explored methods to transform unwanted and unknown motion into useful
information through the joint estimation of motion and scene. We find this concept powerful
and widely applicable. We have applied it to various optical imaging systems for objects
at different scales, ranging from sub-cellular super-resolution imaging to high-speed imaging
of dynamic objects like bouncing tennis balls. We developed a neural space-time model to
resolve dynamic scenes using data from imaging systems originally designed for static scenes.
In Chapter 6, we address a problem opposite to Chapter 5, which is to recover static scenes
using sensors designed exclusively for dynamic observation. We hope both problems have
provided valuable insights for the future development of dynamic imaging systems. In this
last chapter, we will discuss some open challenges and future research directions.

7.1 Challenges and future directions

Computational efficiency

Computational efficiency is a significant challenge for many iterative image reconstruction al-
gorithms. Often, the reconstruction runtime is much longer than the data acquisition time,
even with powerful computing hardware. As a result, not many computational imaging
systems, especially those used in biological or scientific imaging, can achieve real-time re-
constructions. Consequently, biologists often prefer using widefield or confocal microscopes,
even when a more powerful, less phototoxic commercial SIM system is available. This com-
putational inefficiency becomes even more pronounced when we need to reconstruct motion
as well. The joint reconstruction of unknown motion and scene requires either alternating
the update steps (as described in Chapter 2) or coarse-to-fine process to avoid converging to
local minimums (as described in Chapter 5), both of which make the reconstruction process
slower.

Nevertheless, we have seen a lot of progress to improve algorithmic efficiency in recent
years, largely due to the increasing popularity of novel view synthesis in computer graph-



CHAPTER 7. CONCLUSION 90

ics community [116, 122, 55, 86]. We used the hash embedding method [122] to make the
dynamic 3D reconstruction feasible in Chapter 5. We believe there are still numerous algo-
rithmic improvements to be made to accelerate the joint reconstruction of scene and motion.
In addition, the community is moving toward more efficient floating point arithmetic, such
as half-precision or even 8-bit floating point. With the new computing hardware driven
by the rapid development of foundation models, we envision that efficiency can be further
improved by at least an order of magnitude in the next couple of years. This improvement
will hopefully remove the computing barrier for wider applicability.

Data prior for dynamic imaging

Advances in generative learning enable us to build a robust data priors for natural images
using large-scale image datasets like ImageNet [40]. The learned data prior can be used for
imaging reconstructions, such that it can accelerate the iterative optimization process [119,
170, 99] and/or improve the reconstruction quality for ill-posed problems [125, 208, 81].
However, most methods discussed in this thesis (except in Chapter 6) do not involve a data
prior for the following three reasons. Firstly, a large-scale dataset is not always available,
especially for more specialized, non-standardized imaging systems. Secondly, even if we
can obtain many raw measurements, obtaining high-quality groundtruth reconstruction is a
challenge for inverse problems. Thirdly, the amount of data required for a good 2D/3D+time
spatiotemporal data prior will be astronomical, considering it already takes millions of images
to build a data prior for 2D images.

A future direction is to use a 2D/3D data prior combined with a motion model as the
spatiotemporal data prior. The motion model would enhance the existing static data prior to
support dynamic imaging reconstruction. With this data prior, the dynamic reconstruction
(discussed in Chapter 5) can be significantly accelerated, as the scene can be directly inferred
from the prior. Another possible direction is to build a robust motion prior from dynamic
data, which can either depend on or be independent of the scene.

Complex dynamics and time series reconstruction

In Chapter 5, we introduce the neural space-time model to handle deformable motion, en-
abling high-fidelity dynamic imaging reconstruction. In our demonstration, we estimate
the motion within a single acquisition time, and thus the estimated motion is less complex
because of its short duration.

While the recovery of fast, transient dynamics is valuable, especially for multi-shot imag-
ing systems, biologists often want to observe some biological process over a long period of
time. This observation typically involves collecting a time-series dataset with multiple acqui-
sition timepoints and analyzing the dynamics over these reconstructions. This conventional
approach assumes motion artifact-free reconstruction at each timepoint and also robust anal-
ysis tools for the dynamics, e.g., particle or cell tracking. In contrast, the neural space-time
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model offers an alternative solution that bypasses these two assumptions, performing image
reconstruction and dynamic analysis simultaneously.

A logical next step is to extend the neural space-time model to handle longer, more
complex motion using a time-series dataset. A potential challenge is that the modeling
capacity of the neural space-time model might saturate when the dynamics get too long or
complex. A data representation that does not rely on coordinate-based neural networks,
such as those used in [55, 86], may be more scalable and better suited for handling long and
complex dynamics. Another possible pitfall is that the current motion modeling assumes any
frame of a dynamic scene can be mapped to a common reference frame. This assumption
is likely to fail for longer dynamics, like embryonic development, and some tweaks on the
neural space-time model might be necessary to enable the reconstruction of time-dependent
scenes.

Task-driven dynamic imaging

While this thesis advances unknown motion recovery and dynamic imaging formation, the
downstream tasks involving recovered dynamics have not been fully explored. These tasks
can have significant impact in real-world applications. e.g., in Chapter 2, we demonstrate
that it is possible to perform an axial scan of the sample, without relying an expensive,
precision z-stage, by hand defocusing and the estimation of z-depth, which can be quite
practical for low-resource settings. In Chapter 5, we can directly obtain the velocity and
acceleration from the neural space-time model after the dynamic reconstruction, which can
possibly be used to learn more insights and predict the state of intracellular components.
Besides, event cameras are particularly suited for downstream tasks that interpret the dy-
namics, as the event recordings are sparse and only contain dynamic information. If tasks
require contextual information from the static scene, the Noise2Image method in Chapter 6
can recover this information using the statistical properties of noise events.

Another opportunity lies in optimizing the design of imaging systems for specific tasks.
In Chapter 3, we use an end-to-end optimization to design the illumination patterns for 3D
refractive-index tomography. The optimization minimizes the voxel-level discrepancy be-
tween the groundtruth and the recovered refractive indices. If there is a certain downstream
task we hope to achieve using the recovered refractive indices, the performance metric of the
task can be directly set as the optimization objective, and thus the design can be optimized
for the end application. This idea of using metrics other than the pixel intensity discrepancy
can be further extended to general image reconstruction settings. When the pixel intensity
of raw images is affected, e.g., due to strong noise or scattering, task-based metrics may
sometimes get more informative loss and gradient for the reconstruction.

Reliable and accessible software

There is an urgent need of building reliable software tools, in order to make our computa-
tional approaches accessible to actual users who may not be software persons by training.
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From researcher’s perspective, however, making reliable and reusable software from a suc-
cessful research paper still requires a significant amount of effort. This indicates a significant
gap between research code and reliable production software, which could be bridged by de-
veloping more robust software infrastructure. The software infrastructure should include
highly modular tools and functions shared by various computational imaging methods, such
as data pre-processing, iterative optimization methods [21], and data visualization [161]. For
example, during the development of the neural space-time model (in Chapter 5 and 6), I
built a software tool to handle gradient descent-based image reconstructions with better per-
formance and reliability [21]. With more investment in common infrastructure, researchers
will not need to reinvent the wheel each time and can focus on the novel implementations.

To improve the robustness, it is critical to have comprehensive documentations during
the code release. In addition to the information of software installation and usage, it is worth
to also have a in-depth discussion of hyper-parameter tuning and the working boundary or
failure modes of the software. The analysis of failure modes, as discussed in Section 5.5, can
help users better understand the method, ultimately facilitating its adaption.
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