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DEDICATION

This thesis is dedicated to the teachers who taught me to be curious and who gave me the
tools to begin answering all my questions.

“Every major national science academy in the world has
reported that global warming is real, caused mostly by humans,
and requires urgent action. The cost of acting goes far higher
the longer we wait — we can’t wait any longer to avoid the

worst and be judged immoral by coming generations.”

– James Hansen
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ABSTRACT OF THE DISSERTATION

Fossil Fuel Emissions of Carbon Dioxide: Feedbacks and Forecasting

By

Dawn L. Woodard

Doctor of Philosophy in Earth System Science

University of California, Irvine, 2020

Professor James T. Randerson, Chair
Professor Steven J. Davis, Co-chair

The key role that atmospheric carbon dioxide plays in climate warming makes it particularly

relevant to understand the human and natural processes that increase or decrease carbon

in the atmosphere. Contributing fluxes from the ocean, land, and various anthropogenic

sources have been estimated by previous research but large uncertainties remain. As the

only component directly under our control, the human contribution is critical to understand

for policy decisions seeking to mitigate and prevent climate impacts. In this dissertation I

have focused on a few aspects of understanding future fossil fuel emissions on both short and

long timescales.

I started with the long term, exploring carbon feedbacks on fossil fuel emissions.

In my first research chapter I conceptualize and estimate the size of several economic mech-

anisms that generate a carbon-climate feedback, using the Kaya Identity to separate a net

economic feedback into components associated with population, GDP, heating and cooling,

and the carbon intensity of energy. In a fossil fuel intensive future scenario, I found that

such decreases in economic activity due to warming reduced fossil fuel emissions by 13% this

century, lowering atmospheric CO2 by over 100 ppm in 2100. The natural carbon-climate

feedback, in contrast, increased atmospheric CO2 over this period by a similar amount, and

thus the net effect including both feedbacks was nearly zero. Importantly, although these

xii



impacts of climate warming on the economy may offset weakening land and ocean carbon

sinks, a loss of economic productivity will have high societal costs, potentially increasing

wealth inequity and limiting resources available for effective adaptation.

The uncertainty in my estimation of a potential economic carbon feedback effect

is high, however, motivating a need for improved understanding of these feedbacks within

more sophisticated models. To that end, in my second study I have extended a framework

previously developed for calculating natural carbon feedback parameters to include anthro-

pogenic feedback effects, so it can be used to compare a larger set of carbon feedbacks

across models as more human-driven mechanisms are incorporated. I then illustrate some

of these calculations using a the model from the previous chapter and a modified version

of the Dynamic Integrated Climate-Economy (DICE) model. This work demonstrates a

framework that can be applied to evaluate model representation of both anthropogenic and

natural feedbacks in integrated assessment models, aiding further model development and

improving policy-relevant model outputs.

In my final research chapter I turn to a shorter-term analysis of fossil fuel emissions,

exploring the use of autoregression models to make forecasts of emissions in the United States

over intervals of a few months to a few years. I focus on freely available and frequently

updated predictors including climatic and socioeconomic variables and test several different

modeling approaches across all subsets of the predictors. The approach with the most

predictive power for out-of-sample forecasts of up to a few months was a vector autoregression

(VAR) model, which had a mean absolute percent error of 3.2% for an out-of-sample forecast

one month ahead and was able to outperform an existing annual forecast from the EIA by an

average of 20%. The model demonstrates the potential of simpler statistical models for short

term emissions forecasts and provides a foundation for producing similar global forecasts.

The combined results from these analyses help support improved modeling efforts

on short and long timescales of a critical climate driver: carbon dioxide emissions from fossil

fuels.
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Chapter 1

Introduction

1.1 Climate and the carbon cycle

Climate change is currently a key topic of concern among science communities, policymakers,

public health officials, disaster relief organizations, and in news headlines around the world.

And this is a subject that at its core is centered around carbon. There are many species of

gases that absorb infrared radiation and warm the planet, but gaseous carbon compounds

make up the largest fraction. Atmospheric carbon is found in two forms: methane and carbon

dioxide (CO2). While both are important, I have focused this dissertation on carbon dioxide

as it is still today the most significant greenhouse gas in the atmosphere contributing to

climate change (Myhre et al., 2013). This gas is cycled to and from the atmosphere through

other carbon pools on Earth in a process known as the carbon cycle.

The majority of carbon is stored beneath the Earth’s crust, but on centennial

timescales the most significant of stores of carbon are marine and terrestrial biota, organic

material in soils, and dissolved and particulate matter in the ocean (Suarez et al., 2019).

The rate of exchange between these carbon pools determines the amount of carbon left in

the atmosphere to affect global climate, as well as the amount in the ocean contributing

to acidification. The exchanges between pools are affected by various factors, including

the amount and type of biomass on the planet, soil types and levels of disturbance, and,

importantly, air temperature and atmospheric carbon concentrations (Ciais et al. (2014),

Figure 1.1).
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Figure 1.1: Global carbon cycle fluxes from 1850 to 2010, adapted from Friedlingstein
et al. (2019) (a). The difference between the sum of the fluxes (black dashed line) and
the atmospheric carbon line represents the budget imbalance and the limitations of current
understanding of the carbon cycle. Panel b shows a corresponding diagram of the various
carbon pools, the fluxes between them, and their driving mechanisms.

These last two factors set up two different types of feedback mechanisms. The first

operates through changing carbon concentrations in the atmosphere which directly change

the rate of uptake of carbon into the land or ocean pools, and then in turn change the

amount of carbon in the atmosphere. This is called a carbon-concentration or carbon-

carbon feedback in the literature, though I will be using the former nomenclature. Examples

of mechanisms that drive this feedback include higher uptake of carbon into plants at higher

CO2 concentrations, an effect known as ‘CO2 fertilization,’ and increased carbon uptake in

the ocean due to higher partial pressure of carbon at the air-sea interface. In both cases, an

increase in atmospheric carbon results in increased carbon storage in these two carbon pools,

consequently decreasing carbon in the atmosphere. Because the net effect of this complete

cycle is self-dampening and acts to reduce the initial increase in atmospheric CO2, this

cycle is called a ‘negative’ feedback. Not all carbon-concentration feedbacks are necessarily

negative, but the primary examples of these feedbacks on land and in the ocean do fit into

that category (Ciais et al., 2014).

The second feedback mechanism, called a carbon-climate feedback, refers mecha-

2



nisms affecting the exchange of carbon between various pools and the atmosphere that are

not directly driven by a change in atmospheric CO2, but instead are driven by changes in

temperature. For example, carbon solubility in the ocean decreases at higher temperatures

resulting in lower uptake. So when an increase in atmospheric carbon raises temperatures,

carbon solubility in the ocean decreases, and as a result more carbon ends up in the atmo-

sphere on top of the initial increase. With this mechanism, and with many other marine and

terrestrial carbon-climate feedbacks, it acts to amplify any change in atmospheric carbon,

whether an increase or a decrease. Feedbacks that have this self-reinforcing effect are referred

to as ‘positive’ feedbacks.

The importance of the carbon cycle to Earth’s climate and to the life living here

cannot be overstated. Four of the five largest mass extinction events on the planet are thought

to have been caused by large perturbations to the carbon cycle from geologic events known

as large igneous provinces (LIPs) (Suarez et al., 2019) and carbon cycle feedbacks are likely

important drivers of Earth’s glacial-interglacial cycles (Montañez et al., 2016; Torres et al.,

2017). One need only look to the scorching surface temperatures of Venus to understand

just how consequential changes in a planet’s carbon cycle can be (Bullock and Grinspoon,

1999).

1.2 Fossil fuel emissions of carbon dioxide

Historically, humans primarily affected the carbon cycle through deforestation and agricul-

ture, but today fossil fuel emissions represent the most rapid large-scale perturbation to the

carbon cycle in human history. Prior to the industrial revolution and the increasing use of

fossil fuels to power growing economies, atmospheric carbon dioxide concentrations oscillated

between around 200 to 280 ppm for hundreds of thousands of years as the Earth moved be-

tween glacial and interglacial periods (Friedlingstein and Prentice, 2010; Siegenthaler et al.,

2005). In fact atmospheric CO2 has never exceeded 300 ppm over the past 800,000 years

of available data (Lüthi et al., 2008). Ice core records reveal increases in atmospheric CO2

3



of around 80 to 100 ppm between each of the past four glacial to interglacial transitions

(Monnin et al., 2001), and these past carbon changes coincided with a temperature change

during the last glacial maximum of around 4.9 °C below the interglacial average (Shakun

and Carlson, 2010). However over the last century and a half atmospheric CO2 has risen to

over 400 ppm, more than 100 ppm above its maximum over the past quarter million years,

and global temperatures have increased nearly 1 °C as a result.

This massive perturbation to the carbon cycle is thanks to the more than 400 Pg C

that humans have put into the atmosphere over the same time period from burning fossil fuels

(Boden et al., 2017; Friedlingstein et al., 2019). By 2018, total global fossil fuel emissions

had increased to a rate of around 10 Pg C · yr−1, up from less than 7 Pg C · yr−1 in 2000

(Friedlingstein et al., 2019). For comparison, during LIPs, carbon emissions averaged up to

only around 3 Pg C yr−1, and the increase in atmospheric CO2 of 76 ppm following the last

glacial maximum occurred over 6000 years (Monnin et al., 2001). It has taken humanity

since only 1975 to raise atmospheric CO2 by that same amount (Friedlingstein et al., 2019).

Humanity’s fossil fuel consumption is driven by a variety of sources. The primary

source globally is from energy uses including electricity generation from coal, oil, and natu-

ral gas fired power plants, non-electric heat generation in private homes and manufacturing

industries, as well as cargo and personal transportation. Emissions from non-energy sources

include CO2 released during cement production and natural gas flaring (Krey et al., 2014).

Despite growing international concern about the effects of climate change and multiple in-

ternational agreements to reduce carbon emissions, global emissions are continuing to rise.

As with marine and terrestrial carbon fluxes, there are climate-driven mechanisms

that may also generate feedbacks on fossil fuel emissions. These include climate effects on

various drivers of emissions such as energy demand, population growth, economic growth,

development and adoption of energy efficient technologies, climate policies and individual be-

havior, and society’s dependence on carbon-emitting versus zero-carbon energy generation.

To the extent that any of these and other drivers of emissions are affected by a changing

4



climate, they become mechanisms that generate carbon-climate feedbacks on the fossil fuel

CO2 flux to the atmosphere. Such feedbacks have received almost no attention in the liter-

ature, however, so little is known about their potential significance or impacts on climate.

I should also note that while there may be a small carbon-concentration driven feedback as

well through CO2 fertilization of agriculture, this is likely to have only a minimal net effect

on emissions and climate and as such I neglect it in the following chapters.

1.3 Modeling the carbon cycle

While our understanding of the carbon cycle can be greatly advanced by analyses of cur-

rent and historical data, modeling is a critical tool in furthering knowledge of this system,

particularly for making projections of its future evolution under the current perturbation

from fossil fuels. Various models of different degrees of complexity have been developed

to represent the behavior of the climate and carbon cycle, particularly the effect of fossil

fuel emissions on natural systems, as well as to provide diagnostic information about the

functioning of key components.

Earth system models (ESMs) combine a physical climate model with representa-

tions of land and ocean biogeochemical processes, importantly including the natural carbon

cycle fluxes and key carbon cycle feedbacks. These models perturb their climate with exoge-

nous fossil fuel emissions trajectories and calculate the effects of that ongoing perturbation

on the physical climate system and on marine and terrestrial biogeochemistry (Flato, 2011;

Dunne et al., 2012). It is these models that have provided the public and policymakers with

estimates of future physical and biogeochemical changes to the climate under different policy

scenarios by the end of the century.

Integrated assessment models (IAMs) are the models responsible for generating

the fossil fuel emissions trajectories that are used as inputs to ESMs. These economic and

energy-system models give researchers tools to project future impacts of climate change on

the economy, evaluate the effectiveness of future climate policies, and estimate future green-
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house gas emissions based on assumptions about future growth and development. IAMs vary

in structure depending on their intended purpose, ranging from technologically driven models

with explicit representations of a variety of technologies to models focusing on macroeco-

nomic feedbacks. These models can be run with different policy options and are fed assump-

tions about future quantities such as population, economic growth, or technological progress

(Kriegler et al., 2015).

Both classes of models serve important roles in understanding past, current, and

future climate conditions, but they still have many limitations in their ability to represent

key carbon cycle processes. Most integrated assessment models have only very rudimentary

climate modules and do not include two-way coupling between these modules and their eco-

nomic and energy components, so carbon-climate feedbacks on emissions are not considered

and the natural carbon cycle in these models is missing many critical mechanisms (Weyant,

2017). While earth system models do have a much more sophisticated representation of

the natural carbon cycle, many are still lacking representation of certain natural feedback

components, such as fires and permafrost, and none have the ability to include policy and

economic responses to climate change (Arora et al., 2019). Model intercomparison projects

have been used extensively by the earth system modeling community to aid in development

and compare representation of processes between models, but the integrated assessment

modeling community has been less active in pursuing this type of analysis and what has

been done has been focused on economic and emissions outcomes rather than carbon and

climate behavior (Kriegler et al., 2015).

1.4 Organization of research

The goal of this work is to further understanding of the fossil fuel carbon flux and its dynam-

ics. This research supports modeling efforts of fossil fuel emissions by laying a foundation

for improved representation of feedbacks on fossil fuel emissions and exploring the use of

simple statistical techniques combined with up-to-date data to forecast near-term fossil fuel
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emissions. The rest of this dissertation is organized into an additional four chapters and an

appendix of supplementary methods for Chapter 2.

In Chapter 2 I share results exploring the relative magnitude of anthropogenic and

natural carbon-climate feedbacks in a carbon cycle box model I developed. I also introduce

a simple approach to the representation of anthropogenic feedbacks in this model. In this

analysis I sought to understand the potential drivers of a carbon-climate feedback on fossil

fuel emissions and to estimate the relative magnitude of the net economic feedback compared

to the net natural feedback. This work has been published in PNAS as

“Woodard, D. L., Davis, S. J., & Randerson, J. T. (2019). Economic carbon cycle

feedbacks may offset additional warming from natural feedbacks. Proceedings of the National

Academy of Sciences, 116(3), 759-764.”

In Chapter 3 I describe a mathematical framework that had previously been de-

veloped for estimating natural carbon cycle feedbacks in models, but which I here extend

to include anthropogenic feedbacks such as those on fossil fuel emissions. I provide con-

crete examples to support the application of this framework to carbon cycle analysis within

integrated assessment models and demonstrate its application to estimate feedbacks in a

modified version of the Dynamic Integrated Climate Economy (DICE) model and in the

model from Chapter 2. The goals of this research were to support model development and

representation of carbon cycle processes by building out a more comprehensive framework

for comparing carbon cycle feedbacks between models that includes both natural and an-

thropogenic mechanisms.

Chapter 4 describes a forecasting system I developed for near term fossil fuel emis-

sions using a vector autoregression (VAR) model, addresses forecasting with data on different

temporal availability, and demonstrates that this statistically simple model can outperform

more complex emissions forecasting systems for U.S. fossil fuel emissions, at least on short

timescales. Finally, in Chapter 5 I discuss the overall implications and future directions of

this work.
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Chapter 2

Economic carbon cycle feedbacks may offset

additional warming from natural feedbacks

2.1 Introduction

Changes in the Earth system as the planet warms are likely to make it progressively more

difficult to stabilize the climate (Field et al., 2014). For example, decreases in carbon uptake

by terrestrial and marine ecosystems could reduce cumulative CO2 emissions allowable under

a 2 °C climate target by 6-29% (Jones et al., 2013; Ciais et al., 2014). On land, climate

models show a positive carbon-climate feedback primarily from decreases in net primary

production in response to warming and drying in the tropics, along with enhanced carbon

losses from soils (Arora et al., 2013; Friedlingstein et al., 2006; Davidson and Janssens, 2006).

In the oceans, increasing stratification weakens anthropogenic carbon flow into the ocean

interior, while rising temperatures simultaneously reduce CO2 solubility (Schwinger et al.,

2014). Previous studies have quantified the relative importance of different natural feedback

processes by using Earth system models to isolate and estimate the gain of the carbon-

climate feedback as a function of the models’ climate sensitivity, the sensitivity of ocean

and land carbon reservoirs to warming, and the sensitivity of these same reservoirs to rising

atmospheric CO2 (Gregory et al., 2009). Yet although there are a number of mechanisms

by which fossil fuel emissions may be affected by temperature (see, for example, Roson

and van der Mensbrugghe 2012), emissions remain an exogenous, temperature-insensitive
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input to most Earth system models (Arora et al., 2013; Friedlingstein et al., 2006). Though

some integrated assessment models have explored the connection between temperature and

emissions (Roson and van der Mensbrugghe, 2012; Zhou et al., 2014; Nordhaus, 2017; Beckage

et al., 2018), the feedback effect from this relationship has not been systematically assessed.

As a result, the magnitude of the carbon cycle feedback related to human systems is not

well-understood.

Climate change will affect human activity, different sectors of the economy, and

types of energy infrastructure in different ways, each with the potential to alter fossil fuel

CO2 emissions (Figure 2.1). Each of these impacts has been analyzed separately to varying

degrees by previous studies. Rising temperatures will have direct effects on human mortality

through various avenues including heat exposure, disease spread, extreme weather events,

and food and water scarcity (McMichael et al., 2006). Climate change will also alter economic

productivity through direct impacts on labor productivity from heat stress, infrastructure

damage, and resource diversion and losses (Libecap and Steckel, 2011). These effects on

population and economic output overall tend to indirectly decrease energy use and thus

fossil CO2 emissions. Increased temperatures will also change energy use more directly by

influencing heating and cooling demands in residential and commercial sectors, the balance

of which determines the overall sign of this effect (Santamouris et al., 2015). Additionally,

rising temperatures will impact thermoelectric power production, electricity distribution,

and transportation systems by decreasing energy efficiency and thereby increasing emissions

from fossil fuel-burning infrastructure (Aivalioti, 2015; Sathaye et al., 2011; Mideksa and

Kallbekken, 2010).

Integrating various economic effects across different sectors, empirical modeling

has recently suggested that temperature may have a strong influence on economic activity,

reducing gross domestic production (GDP) by as much as 20% worldwide by 2100 (Burke

et al., 2015). Such large economic impacts would in turn decrease energy use and fossil fuel

CO2 emissions. Although other estimates of economic damages under climate change are
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much smaller ranging from -1.5% to +2.3% change in GDP per °C (Nordhaus, 2017; Tol,

2009), such estimates often rely on theoretical and sometimes arbitrary damage functions

(Ackerman et al., 2009; Burke et al., 2016; Ackerman and Stanton, 2012; Weitzman, 2012)

rather than historical observations.

Atmospheric CO2

Land Carbon Uptake
- Increased soil respiration

- Decreased NPP

+

-

-

-

-
Air Temperature

+

+

-

-

+

Population
- Climate-induced mortality due to heat,
 droughts, extreme weather events,
 disease spread, con!ict, etc.

Fossil Fuel
Emissions

+

Ocean Carbon Uptake
- Increased strati"cation
- Decreased solubility

Carbon Intensity of Energy
- Loss in thermoelectric power plant and
 grid distribution e#ciency

- Increase in transportation e#ciency

GDP per Capita
- Labor productivity losses
- Infrastructure damage
- Resource losses
- Resource diversion to counter
 impacts of climate change

Energy Intensity of GDP
- Decreased heating and increased
 air conditioning use

- Balance depends on distribution of
 temperature changes & population
 and GDP growth

Figure 2.1: Diagram of the relationship between the economic and natural carbon cycle
processes considered in this analysis. In our model, we included carbon-climate feedbacks
on the natural carbon cycle from ocean stratification, soil decomposition, and NPP. We then
used this base model to explore effects from global temperatures on the economic carbon cycle
through population, GDP, the energy intensity of GDP, and the carbon intensity of energy.
These effects translate into a temperature-driven impact on fossil fuel emissions through the
Kaya Identity (Eqn. 2.1) in our model, which then has consequences for atmospheric CO2

and land and ocean uptake of carbon, as well as temperature. The signs shown indicate a
net direct (+) or inverse (-) relationship between each upstream and downstream process in
our model. Further discussion of the uncertainty of the signs of the economic relationship is
given in the appendix.

The combination of temperature-driven effects on population, energy, and GDP

generates an economic carbon-climate feedback because of the direct connection between
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economic activity and fossil fuel emissions. This feedback is an economically-driven parallel

to the natural carbon-climate feedback operating through land and ocean processes. Through

its influence on atmospheric carbon dioxide, the economic carbon-climate feedback may

subsequently modify processes regulating natural carbon-concentration and climate-carbon

feedbacks, including, for example, changes in photosynthesis and air-sea gas exchange that

are sensitive to rising CO2 and climate warming.

Here, we systematically compare economic and natural carbon cycle feedbacks in

order to estimate the carbon cycle implications of human responses to climate change, and

especially the recent estimates of climate-related economic damages (Burke et al., 2015). We

conceptualize drivers of the economic carbon-climate feedback through the Kaya Identity,

using a set of scenarios to isolate feedbacks on population (hereafter referred to as our

Population scenario), GDP per capita (GDP scenario), the energy intensity of GDP (Energy

Intensity), and the carbon intensity of energy (Carbon Intensity) individually, as well as a

scenario combining GDP and carbon intensity processes (Net Economic). We also include

a baseline scenario (No Feedbacks), which allows natural carbon fluxes in our model to

respond to rising CO2, but not to rising temperatures, and a scenario which includes only

natural carbon-climate feedback processes (Net Natural). Previous work has referred to this

latter scenario as a ”fully-coupled” scenario (for example, Arora et al. 2013; Friedlingstein

et al. 2006), but we reserve the term Fully Coupled here for our final scenario, which is the

combination of the Net Natural and Net Economic scenarios (see Table A.1 for more detail

on our simulation design).

For our baseline data, we use historical socioeconomic data and assume future fossil

fuel CO2 emissions and energy and population projections from the Global Change Assess-

ment Model (GCAM) simulation for Representative Concentration Pathway 8.5 (RCP8.5)

(Moss et al., 2008, 2010). Relationships between temperature and each economic component

are derived from a literature synthesis, whereas for the natural carbon cycle we optimize a

box model to match the mean carbon cycle behavior of fully coupled Earth system models
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(Arora et al., 2013; Friedlingstein et al., 2013).

2.2 Materials and methods

Details of our analytic method are available in the appendix. All data and code used

to generate the results are available on Github (https://github.com/dawnlwoodard/econ-

feedbacks.git). Briefly, we represent the natural carbon cycle, including key carbon-climate

and carbon-concentration feedbacks using a global box model of the atmosphere, land, and

ocean carbon system (see Appendix). We tuned the model to within one standard deviation

of the mean behavior of Earth system models from the 5th Phase of the Coupled Model

Intercomparison Project (CMIP5) (Tables A.4 and A.5) and it reasonably reproduces ob-

servations of the carbon cycle and temperature over the past two centuries (Figure A.1).

Economic feedback effects are explicitly incorporated in the model as impacts on different

factors of the Kaya identity:

F = P · G
P
· E
G
· F
E

(2.1)

where F represents global fossil fuel CO2 emissions, P is population, G is world

GDP or gross world product, E is global energy consumption, and E/G and F/E are the

energy intensity of GDP and the carbon intensity of energy, respectively. As a baseline, we

use historical socioeconomic data (Table A.6; Figure A.2) and assume future fossil fuel CO2

emissions and energy and population projections from the Global Change Assessment Model

(GCAM) simulation for Representative Concentration Pathway 8.5 (RCP8.5) (Moss et al.,

2008, 2010). Relationships with temperature for each economic component are derived from

previous studies (see Appendix, Figure A.3).

We isolate and estimate the magnitude of carbon cycle feedbacks by restricting in

turn the various components of the coupled model following methodology established for

natural carbon cycle analysis (Friedlingstein et al., 2006; Gregory et al., 2009). All scenarios
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include natural carbon-concentration feedback processes, but carbon-climate feedbacks are

isolated in different scenarios as summarized in Table A.1. The No Feedbacks scenario is

our baseline for comparison and includes only natural carbon cycle responses to rising atmo-

spheric CO2, neglecting both human responses as well as land and ocean climate sensitivity.

The Net Natural scenario corresponds to the fully-coupled scenario in previous analyses of

the natural carbon cycle (Arora et al., 2013; Friedlingstein et al., 2013) in which all natural

feedbacks are allowed to operate, but all economic responses to warming are excluded. The

Population scenario adds estimates of climate-related deaths (but no other human responses)

(World Health Organization, 2014) onto the baseline scenario. The Energy Intensity sce-

nario includes only modeled changes in energy demand for heating and cooling of residential

and commercial buildings (following Isaac and van Vuuren (2009)) on top of the baseline.

The Carbon Intensity scenario includes only temperature-related changes in the efficiency of

electricity production, electricity distribution, and transportation (Aivalioti, 2015; Sathaye

et al., 2011; Basha et al., 2012; Burnard and Bhattacharya, 2011) (see Appendix, Figure

A.4 and Table A.7 for details) in addition to the baseline. The GDP scenario incorporates

economic damages due to climate change, using using the non-linear relationship found by

Burke et al. (2015) as a best estimate. The Net Economic scenario is the economic paral-

lel to the ”Net Natural” and includes carbon intensity responses and GDP responses (i.e.,

effects on the Kaya factors G/P and F/E, which influence emissions in opposite directions

as temperature increases) but excludes our independent estimates of population and energy

intensity responses because these may be subsumed into GDP damages. Finally, our Fully

Coupled scenario combines the Net Natural and Net Economic scenarios to include both

economic and natural carbon-climate feedbacks on top of the baseline scenario.
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Figure 2.2: Net effects of including only natural, only economic, or both sets of feed-
backs in our model compared to the baseline, No Feedbacks, scenario. All values shown are
given as the difference between the baseline and that scenario. Panels A and B show air
temperature and atmospheric CO2 over the 21st century with uncertainty bounds on the
Fully Coupled and Net Economic scenarios. Natural carbon-climate feedbacks (Net Natu-
ral) increased atmospheric CO2 and temperature, while economic feedback processes (Net
Economic) decreased them. The net economic effect more than offset the net natural, so the
Fully Coupled scenario showed an overall negative effect on temperature and atmospheric
CO2. Panels C and D show the change in temperature and atmospheric CO2 from 1800 -
2100 for these scenarios along with decompositions of the contributions to each net effect.
For the natural carbon cycle, effects from the land and ocean in our model were similar in
magnitude. Temperature effects on GDP drove the net economic effect strongly down, and
while the carbon intensity of energy (Carbon Intensity) feedback caused a slight increase,
the overall effect was dominated by GDP. Both net natural and net economic results also
had some non-linear interaction effects that were not captured by our decoupled scenarios.
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2.3 Results

2.3.1 Climate and carbon cycle impacts

Relative to our baseline scenario, the natural carbon-climate feedback (Net Natural) in-

creased atmospheric CO2 by 92 ppm (56 - 152 ppm), or about 15%, and temperature by

0.30 °C (0.19 °C - 0.44 °C) from 1800 to 2100, while the economic feedback (Net Economic)

decreased them by 85 ppm (ranging from an increase of 3.3 ppm to a decrease of 204 ppm),

or 14%, and 0.29 °C (ranging from an increase of 0.01 °C to a decrease of 0.76 °C) over the

same period. The combination of these two sets of effects in our Fully Coupled scenario re-

duced CO2 by about 12 ppm (ranging from an increase of 156 ppm to a decrease of 179 ppm)

and had only a minor effect on temperature (Figure 2.2; Table A.3). Here, the response of

economic processes to climate warming has not only compensated for the positive feedback

from natural carbon-climate interactions but has driven the entire system toward a small

negative feedback.

For both economic and carbon cycle parameters we derived upper and lower uncer-

tainty bounds and propagated them through our model. Our upper bound on the relationship

between GDP and temperature comes from the highest impact scenario in Burke et al. 2015,

and our lower bound is the damage function from the Dynamic Integrated Climate-Economy

(DICE) model (Nordhaus, 2017). For uncertainty related to climate effects on carbon in-

tensity, we derived upper and lower bounds from estimates reported in the literature (see

Appendix for details). For our population and energy intensity scenarios we assumed up-

per and lower uncertainty bounds of ± 50% as significant uncertainties exist in the current

understanding of these relationships in the literature.

Natural carbon cycle uncertainty estimates were derived from fitting to ± one

standard deviation of the CMIP5 multi-model mean ocean and land carbon storage by 2100.

A more detailed description of uncertainty in each scenario is available in the appendix.

Our results demonstrate the potentially comparable magnitude of an economic
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carbon-climate feedback and indicate that this may act to substantially counter warming

from the natural carbon-climate feedback. Importantly, this apparent benefit to the climate

is driven by large economic losses, so while we find that economic feedback processes do have

the capacity to balance the additional warming from the natural carbon-climate feedback,

this is achieved only through damages to the global economy.

Carbon fluxes, atmospheric CO2 levels, and global mean surface temperatures in our

Fully Coupled scenario were lower than the Net Natural values, particularly as temperatures

increased more rapidly after 2050 (Figure 2.3A-C). By 2100 economic damages from climate

warming reduced GDP by 22% (5.9 - 61% ) (Table A.2), which in turn lowered cumulative

fossil fuel emissions by 298 Pg C (ranging from a decrease of 764 Pg C to an increase of

8 Pg C) or 14% in the GDP scenario (Figure 2.3D). Temperature-driven decreases in the

efficiency of energy production from fossil fuels increased the carbon intensity of energy in

our model by 2.4% (ranging from a decrease of 0.51% to a decrease of 6.6%), which alone

(in the Carbon Intensity scenario) drove a 24 Pg C increase (ranging from a 6 Pg C decrease

to a 58 Pg C increase) in cumulative emissions (1%) relative to the baseline by the end

of the century. This positive influence on emissions associated with temperature effects on

the carbon intensity of energy was more than offset by the negative effect of temperature on

GDP, so that together economic processes in our Fully Coupled scenario reduced atmospheric

CO2 by 104 ppm (ranging from a decrease of 235 ppm to an increase of 3 ppm), or 15% ,

and global mean air temperature by about 0.32 °C (ranging from a decrease of 0.82 °C to an

increase of 0.01 °C) from 1800 to 2100 relative to the Net Natural scenario (Figure 2.3). This

impact on the carbon cycle is comparable in magnitude, but opposite in sign, to potential

losses in permafrost over the next century (Schuur et al., 2015).

In two other decoupled economic scenarios, we examined how climate change im-

pacts on energy demand and population may influence carbon cycle processes. In our analy-

sis, the contribution of each of these two components to economic effects on the carbon cycle

was only very slight (Figure 2.3D-F).
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Figure 2.3: Model results compared across all scenarios from 1800-2100. Panels A-C show
the effect on the carbon cycle of including economic feedback effects over the 21st century.
Our Fully Coupled scenario (solid), which includes both natural and economic carbon-climate
feedbacks, has lower emissions, atmospheric CO2, and temperature than our Net Natural
scenario (dashed), which includes no temperature effects on fossil fuel emissions. These
effects are seen most strongly in the latter half of the century when temperature increases are
higher. Panels D-F show changes in cumulative fluxes, atmospheric CO2 concentration, and
temperature for each scenario from 1800 to 2100. The Net Natural carbon-climate feedback
drives atmospheric CO2 and temperature above the No Feedbacks scenario baseline, while
the Net Economic lowers these values below baseline. Our GDP and Population scenarios
both result in negative effects on emissions, though the GDP effect is considerably more
pronounced, while our Energy Intensity and Carbon Intensity scenarios contribute to slight
increases in fossil fuel emissions.

17



2.3.2 Feedback effects

Integrating economic processes into our model changed the sign and magnitude of the gain

of the carbon-climate feedback because of the relatively strong temperature sensitivity of

fossil fuel emissions. We illustrate this sensitivity in Figure 2.4. In our model, a 1% decline

in fossil fuel emissions per °C of climate warming corresponded to a decrease in the gain

of the carbon-climate feedback of about 0.05, a decrease in atmospheric CO2 of 28 ppm

compared to our Net Natural scenario, and a feedback-driven temperature decline of 0.1 °C

by 2100. Although the sensitivity function was non-linear, we fit a linear model through

our upper and lower bounds from our Fully Coupled scenario to estimate this unit effect.

Because our Fully Coupled scenario had an average emissions sensitivity of about -3% per

°C, this reduced the gain of the carbon-climate feedback from a positive value in our Net

Natural scenario (+0.13) to slightly below zero in our Fully Coupled scenario (-0.02) (Figure

2.4, Table A.3).

2.4 Discussion

Our results indicate that the economic feedback has the potential to reverse the sign of the

overall carbon-climate feedback, but the significance of the impact is highly sensitive to the

relationship between climate and GDP. If the effect of climate on GDP is large and dominates

the feedback, the economic carbon feedback counteracts the response of the natural carbon

cycle. However, if this temperature-GDP effect is more in line with estimates like those

in the 2016 version of DICE model (Nordhaus, 2017), we can expect that the economic

contribution to the carbon-climate feedback will instead add slightly to the natural positive

gain (Figure 2.4), somewhat increasing future temperatures and atmospheric carbon dioxide

(Figure 2.3A).

Our estimate of climate impacts on fossil emissions is substantially higher than a

previous analysis from the ENVISAGE model, which found a reduction in CO2 emissions
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of 4.7% from their economic feedbacks by 2100 (Roson and van der Mensbrugghe, 2012).

This is likely driven by the choice of economic damage function. The damages found by

Burke et al. 2015 are larger than that used in ENVISAGE as well as those used in many

other models, as Burke’s analysis broadly includes any climate-driven impacts that would be

reflected in GDP over the past half century. The sum of the effects considered in ENVISAGE

we expect to be lower as only certain economic sectors were included. For example, both

extreme weather and catastrophic events are not included in the ENVISAGE results (van der

Mensbrugghe, 2010), whereas the GDP damages from Burke et al. 2015 are general enough

to include such effects.

By propagating upper and lower uncertainty bounds for each term in the Kaya

identity through our model, we have attempted to illustrate the spread of potential outcomes.

Additionally, while we have made every effort to use reasonable values, it was necessary to

make several major assumptions in order to maintain the simplicity of our model and not

attempt to replicate a full integrated assessment model, as that is beyond the scope of

this work. A key future challenge is to quantify economic carbon-climate feedbacks within

and across integrated assessment models that account for more complex interactions among

different sectors and processes.

Improving estimates of the economic carbon-climate feedback is particularly rele-

vant because important tradeoffs exist with respect to the societal impacts of strong versus

weak economic damage functions. While a stronger damage function in response to rising

temperature appears to imply that it may be easier to match emissions reductions targets,

this comes at an economic cost that would likely make it more difficult for vulnerable regions

to respond to climate change impacts (Rose, 2004). Moreover, such economic and social costs

entailed by stronger damage functions are likely to be large and inequitably distributed, as

climate change is expected to worsen already existing economic vulnerabilities (Otto et al.,

2017). Natural disasters, for example, have higher death tolls in lower income areas and in

countries without democratic institutions (Kahn, 2005). In our globally averaged model, the
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Figure 2.4: Generalized comparison of the carbon cycle response to economic damages in
our model under RCP8.5. The black curve was derived from inputting a range of potential
emissions damages per degree (shown along the x-axis) into our model and computing the
resultant cumulative carbon-climate feedback gain over the period from 1800-2100 for each.
The steep slope of the curve suggests that even small changes in the temperature-sensitivity
of fossil fuel emissions may have significant consequences for the carbon cycle. Overlaid
on the curve are points showing specific results from our Fully Coupled and Net Natural
scenarios. Comparing these scenarios shows the overall effect on the carbon cycle of including
an economic carbon-climate feedback in our model. The Fully Coupled scenario has an
approximate fossil fuel temperature sensitivity of -3.1% per °C, resulting in a decrease in the
gain of 0.15 from the Net Natural scenario.

Burke et al. relationship led to GDP losses of 22% by 2100 (Table A.2). In just the United

States by the end of the century, the poorest third of counties are predicted to experience

losses of 2% to 20% of income while the richest third may experience losses of only 7% up

through potential benefits of 1.2% of income (Hsiang et al., 2017). Any potential benefit

in terms of lower emissions from a negative economic feedback only exists because nations

necessarily lose so much productivity, in the form of human lives, agriculture, infrastructure,

and labor, that this reduction in economic activity lowers their fossil fuel emissions.

Strong versus weak economic damage functions also may have implications for the
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distribution of climate impacts across natural and human systems. A weaker economic

damage function, for example, would allow more CO2 to accumulate in the atmosphere,

causing higher surface air temperatures. Accelerated warming, in turn, would cause greater

damages in terrestrial and marine ecosystems, including losses of net primary production

and biodiversity on land (Diffenbaugh and Field, 2013) and the disruption of critical nutrient

supply pathways in the ocean (Moore et al., 2018). Thus, although natural and economic

feedbacks are likely opposite in sign, carbon-climate feedbacks driven by higher temperatures

have net damaging effects on both natural and human systems.

The strength of both economic and natural feedbacks varies significantly over the

globe, so regional carbon cycle impacts may be considerably stronger or weaker than the

global mean (Burke et al., 2015; Boer and Arora, 2010). Economic activities driving the

carbon-climate feedback at the local level will include changes in tourism revenue, damages

from sea level rise and wildfires, and locally varying patterns of energy use. For example,

Isaac and van Vuuren 2009 found that India showed a very strong impact of temperature

on energy demand, in contrast to their finding of a much less significant effect globally. The

economic climate feedback from energy use would overall be expected to be higher in areas

with quickly increasing GDP and population as well as larger predicted climate impacts.

In the model used here, we have considered a limited number of both natural and

economic processes. We tuned our simple natural carbon cycle model to match the mean

behavior of the CMIP5 models, but these models are missing key natural processes such

as the permafrost carbon reservoir and its sensitivity to thaw (Schuur et al., 2015) and

are weak in their representation of other drivers of the carbon-climate feedback including

the representation of ecological tipping points within the Amazon (Cox et al., 2013). On

the economic-driven side, we do not include any feedbacks associated with climate effects

on land use. Recent work indicates these would be expected to contribute to a positive

economic carbon-climate feedback (Thornton et al., 2017), mitigating slightly the negative

effects of the GDP feedback described here. It is also worth acknowledging that there are
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other human-driven feedbacks that fall outside of the carbon-climate feedback. One example

is an economic carbon-concentration feedback associated with the benefits of increasing at-

mospheric CO2 on crops. There are also potential economic impacts associated with climate-

driven human migration, which could have varied impacts on climate through both carbon

and non-carbon pathways. Beyond carbon feedbacks entirely, there may be policy-driven

feedbacks that influence aerosols and albedo.

Our results provide a baseline effort to assess the economic carbon-climate feedback

and compare it to the natural feedback by unifying the different contributing mechanisms

and processes within a single framework. More broadly, we show how methodology for car-

bon cycle feedback analysis can be extended to the economic sector, for future assessment

of integrated assessment models. Our model results have demonstrated that an economic

carbon-climate feedback has the potential to significantly counteract the warming contribu-

tion of land and ocean feedbacks; however, the benefits of this negative economic feedback

in terms of the carbon cycle are heavily balanced by substantial economic costs. Earth sys-

tem models that neglect these economic feedback processes may significantly overestimate

the carbon-climate feedback. Future research to better characterize the nature and scale of

economic disruptions from climate change will reduce uncertainty and allow this feedback to

be better incorporated into integrated assessment and Earth system models.
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Chapter 3

Estimating Carbon Cycle Feedbacks on Fossil

Fuel Emissions

3.1 Introduction

Cycling of carbon between the land, ocean, and atmospheric carbon pools is a critical driver

of future climate change, and the processes that regulate flows between these reservoirs

have been the subject of considerable experimental investigation and model analysis. By

and large that work has been focused on the sign and magnitude of naturally occurring

fluxes from terrestrial and marine carbon pools through mechanisms such as carbon and

climate effects on photosynthesis (Dı́az et al., 1993; Zaehle et al., 2014; Zhu et al., 2017),

disturbance and decomposition (Arora and Melton, 2018; Crowther et al., 2016; Davidson

and Janssens, 2006; Lasslop et al., 2019; Lombardozzi et al., 2015; Ruppel and Kessler,

2017; Schuur et al., 2015; Zhou et al., 2009), ocean biogeochemistry (Behrenfeld et al., 2006;

Bopp et al., 2005; Boyd and Doney, 2003; Kemp and Villareal, 2013), and changes in ocean

circulation (Lopes et al., 2015; Toggweiler and Russell, 2008). Experimental results have

provided a better understanding of temperature and atmospheric CO2 controls on uptake

and emissions of carbon from important Earth system components, while models have given

estimates of the resulting feedbacks and the relative sensitivities of these components to

changes in temperature and atmospheric CO2.

However, human-driven feedback mechanisms have been largely absent from these
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analyses. Recent work has shown that such a feedback may play a significant role in the

future carbon cycle, but further study is necessary. A feedback on land use change emissions

has been explored in previous work linking the Global Change Assessment Model (GCAM)

to the Community Earth System Model (CESM) (Jones et al., 2018; Thornton et al., 2017).

Analysis of a potential feedback on fossil fuel emissions is still relatively limited, but some

papers reporting results from integrated assessment models have mentioned such effects

(Roson and van der Mensbrugghe, 2012), and a recent study used a simple global scale

model to explore the potential mechanisms and magnitude of this feedback (Woodard et al.,

2019). The influence of climate on fossil fuel emissions may operate through a variety of

mechanisms including impacts on population, economic productivity, energy use, and the

efficacy of energy production and delivery systems. Additionally significant drivers of an

anthropogenic feedback may also include human behavioral responses to climate change

caused by changes in perceived risk (Beckage et al., 2018).

These examples suggest potential mechanisms for a human-driven feedback that

may be more or less predictable largely depending on the human agency involved. For

example, climate effects on crop yields or hurricane damages in coastal areas may in theory

be directly understood based on analysis of current and historical data, including the impacts

of such effects on the economy and fossil fuel emissions. On the other hand, policy responses

to climate change are subject to unpredictable human decision making across a range of scales

and may therefore be best assessed in the future by comparing over a range of scenarios.

As a conceptual starting point for integrating these anthropogenic feedbacks in car-

bon cycle analyses, we consider the carbon cycle in terms of exchange of carbon between

the atmosphere and four carbon pools: two natural carbon pools, natural land and ocean

carbon, and two human carbon pools, managed land and fossil fuels. Each pool has uptake

from and emissions to the atmosphere, though the flux of atmospheric carbon to fossil fuels

operates on such long timescales that it can reasonably be neglected with respect to contem-

porary climate change. Carbon-climate and carbon-concentration feedbacks influence both
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directions of carbon fluxes between these pools and the atmosphere (Figure 3.1). Although

human activity also affects lateral carbon flows among these pools, as suggested in Figure

3.1, in the rest of this chapter we will neglect these lateral flows due to current lack of suffi-

cient representation in models, focusing instead on atmospheric fluxes, as a direct extension

of previous carbon cycle feedback analyses.

Figure 3.1: Carbon-climate and carbon-concentration feedbacks on both human and nat-
ural carbon fluxes between the atmosphere and each of four carbon pools: ocean, natural
land, managed land, and fossil fuel. The returning flux from the atmosphere to the fossil
fuel carbon pool is negligible on relevant timescales so we do not consider feedbacks on this
term. While most feedback effects are fall into either the carbon-climate (red outline) or
carbon-concentration (gray outline) category, some fall into both, indicated by a double out-
line. We additionally show carbon and climate feedback factors affecting the partitioning of
land use and natural land carbon pools and feedbacks affecting the dissolved organic carbon
flux from land to the ocean. While the feedbacks shown are not an exhaustive list, they
cover the broad categories considered to date in carbon feedback analyses in the literature.
We omit a carbon-concentration feedback on fossil fuel emissions, as the effect on emissions
due to carbon-dioxide fertilization of agriculture is relatively insignificant compared to the
land storage consequences from this feedback process.

In the natural land carbon pool, there are both carbon-concentration and carbon-
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climate feedbacks on net primary productivity (NPP) through CO2 fertilization and climate-

induced stress, respectively, influencing the net flow of carbon into this pool (Devaraju et al.,

2016; Zhu et al., 2017). In both simple box models of the carbon cycle and fully-coupled Earth

system models (ESMs), loss of carbon from this pool is regulated primarily by the effects

of temperature and moisture availability heterotrophic respiration from soil decomposition

processes as well as climate effects on disturbance, both of which increase carbon losses

from soils and land biomass (Arora and Melton, 2018; Crowther et al., 2016; Davidson and

Janssens, 2006; Lasslop et al., 2019; O’Connor et al., 2010; Schuur et al., 2015; Zhou et al.,

2009). Disturbance processes also have influence on carbon uptake through changing biomass

in carbon stocks (Arora and Melton, 2018; Lu et al., 2015).

The ocean-atmosphere carbon flux is primarily affected by atmospheric CO2 con-

centration, which influences the rate of air-sea gas exchange, and by rising temperatures,

which drive increases in ocean stratification and a reduction in CO2 solubility. Additionally,

carbon uptake in the ocean responds to changing export rates of carbon from the surface

through climate and carbon impacts on marine biological productivity, an effect known as

the biological pump (Boyd and Doney, 2003; Tréguer et al., 2018). Climate warming may

also increase the ocean carbon flux to the atmosphere through the destabilization of methane

hydrates (Ruppel and Kessler, 2017), although recent work tracking the plume from the Deep

Horizon spill suggests rapid microbial responses may limit these methane sources (Valentine

et al., 2010; YvonLewis et al., 2011). There are also potential feedback effects on the flux of

carbon from land to the ocean in the form of dissolved organic carbon (DOC) transported

by freshwater to the ocean and impacted by the condition of coastal ecosystems such as

mangroves (Pendleton et al., 2012; Raymond et al., 2016; Tian et al., 2015). The DOC flux

is affected by the same feedback mechanisms changing the productivity and decomposition

of biomass on land, as well as by changes in factors controlling runoff including precipitation,

erosion, and disturbance (Raymond et al., 2016).

Managed land carbon also responds to changes in atmospheric composition and
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climate by means of mechanisms similar to those that affect the natural land pool, but

the magnitude of the effects is different and is mediated by human decisions regarding, for

example, fertilizer use, crop type, irrigation, and disturbance prevention measures (Thornton

et al., 2017; Mahowald et al., 2017). Human land use may even determine the sign of the

net feedback on a given parcel of land (Fleischer et al., 2016). Importantly, the fraction

of land carbon that is managed is also affected by carbon and climate feedbacks. Climate

impacts on crop yield may drive the abandonment of agricultural areas in some parts of the

world and deforestation in others, as regional and global trade adjusts to new optima for

production. The carbon cycle implications of deforestation are particularly large because

they include both immediate losses of carbon and limits on potential carbon storage of the

deforested land over longer timescales (Mahowald et al., 2017).

There has been relatively little work assessing the combined climate feedbacks of

both land use and land cover change, but a recent study estimated both the net carbon-

climate and carbon-concentration feedback effects from these processes (Jones et al., 2018).

Although that analysis found a very small carbon-concentration feedback related to land use

and land cover change, the carbon-climate feedback from these processes in their model was

slightly over 25% of the magnitude of the natural terrestrial carbon-climate feedback but

opposite in sign, thus significantly offsetting the natural feedback. The authors found that

this negative feedback effect was driven by increasing carbon storage due to reductions in

agricultural area from climate change (Jones et al., 2018).

Finally, we consider fossil fuels as a fourth carbon pool. We only include feed-

backs operating on carbon emissions from fossil fuels, since carbon uptake into this pool

does not operate on timescales relevant for current modeling efforts. This emissions term

can be impacted by climate-driven changes in economic productivity, policy, energy use,

and behavioral choices (Beckage et al., 2018; Burke et al., 2015, 2018; Isaac and van Vu-

uren, 2009; Kjellstrom et al., 2009). A 2019 study estimated that the net carbon-climate

feedback on fossil fuel emissions has the potential to have a magnitude similar to that of
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the natural carbon-climate feedback but opposite in sign, such that the two net feedback

effects substantially offset each other when both are active (Woodard et al.). In this analy-

sis, losses of economic productivity from future climate warming considerably reduces fossil

fuel consumption for a fossil fuel intensive future scenario (RCP8.5). Other feedbacks in-

volving population and the carbon efficiency of energy infrastructure were predicted to have

much smaller impacts at a global scale, with climate change impacts on energy demand for

heating and cooling largely canceling one another. However, the limitations of the model

used in Woodard et al. (2019) highlight a need for improved estimates of this feedback from

integrated assessment models that are able to represent more complex economic dynamics

including potential effects from policy and human behavior.

Both the natural and human carbon cycle feedback processes outlined in Figure

3.1 have been considered to varying degrees in the literature, but not all are integrated

within individual models and no model we are aware of at the time of this publication has a

representation of feedback mechanisms in all four carbon pools shown. We also acknowledge

that some may never be found to be significant enough to dedicate computational resources

to including, but as models continue to improve the representation of key processes, it will be

increasingly important to expand the discussion of carbon cycle feedback analysis to include

a broader array of feedback processes from both human and natural systems.

For the past decade and a half, the Coupled Climate-Carbon Cycle Model Intercom-

parison Project (C4MIP) framework has provided a standardized approach for comparing

carbon cycle feedbacks across Earth system models (Arora et al., 2013; Friedlingstein et al.,

2006). This framework involves using coupled and decoupled simulations to isolate carbon-

climate and carbon-concentration feedback components and estimate the magnitude and sign

of these processes. There are limitations in using a linearized set of equations to represent

these nonlinear processes, but the linear estimation has been found to be a reasonable as-

sumption sufficient for the purpose of making comparisons between models (Boer and Arora,

2012; Gregory et al., 2009; Zickfeld et al., 2011). This framework has also been previously
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applied to understand causes of uncertainty in model output derived from different modeling

centers.

Since the C4MIP protocol is focused on feedbacks on land and ocean carbon fluxes,

fossil fuel emissions and land use change have been considered non-interactive components of

the Earth system. Recently, this framework has been expanded to incorporate climate and

carbon-concentration sensitivity of land use and land cover change emissions (Jones et al.,

2018) but to date has not been updated to include a carbon cycle feedback on fossil fuel

emissions. Here we extend it a step further to include a fossil fuel climate sensitivity and

demonstrate how the integrated assessment modeling community can use this framework to

diagnose the various human-driven feedback components in these models. As an example,

we compare carbon-climate feedback parameters in a simple integrated assessment model

commonly used for climate policy to the feedback effects in Woodard et al. (2019).

3.2 An extension of the feedback framework

Analysis using the C4MIP framework has provided useful estimates of natural carbon cycle

feedback mechanisms but the framework is limited by the assumption that anthropogenic

carbon dioxide emissions and land use and land cover change emissions are insensitive to

temperature or atmospheric CO2. Removing these assumptions generalizes this carbon cycle

feedback estimation methodology to include feedback effects on fossil fuel and land use and

land cover change emissions, so it can be extended to models that are considering these

additional linkages.

Building on the work of Friedlingstein et al. (2006) for the natural carbon cycle, here

we add the human contribution to both carbon-concentration and carbon-climate feedbacks.

While Friedlingstein et al. consider three carbon pools: land, ocean, and atmospheric carbon,

we include fossil fuels as a fourth carbon pool that exchanges with the atmosphere (2006).

We also subdivide the land into components with natural and managed land pools, to allow

for the separate consideration of land use and land cover change emissions following Jones
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et al. (2018) (Figure 3.1).

To estimate the strength of the carbon-climate feedback in a model, decoupled sim-

ulations need to be generated that systematically exclude key feedback mechanisms. In past

work on the natural carbon cycle, this set has included a biogeochemically-coupled simu-

lation and a fully coupled simulation. The biogeochemically-coupled scenario attempts to

isolate the carbon-concentration feedback on carbon fluxes from the ocean and land by elim-

inating the radiative effects of carbon dioxide so that only rising atmospheric CO2 influences

land and ocean submodels. The fully-coupled simulation, in contrast, involves no decoupling

of the model. These scenarios have been generated by models under both emissions-driven

and concentration-driven simulations. For emissions-forced simulations of the natural car-

bon cycle, atmospheric CO2 dynamically evolves in response to prescribed emissions, while

in concentration-forced simulations, responses in land and ocean carbon fluxes are driven by

prescribed changes in atmospheric CO2.

The relative magnitude and sign of a carbon-climate feedback is commonly esti-

mated by the feedback gain, g, which, for this set of simulations, can be calculated directly

from the difference in atmospheric CO2 between the fully-coupled and biogeochemically-

coupled simulations (Friedlingstein et al., 2006):

g = 1− ∆CUC
A

∆CFC
A

(3.1)

where ∆CUC
A is the change in atmospheric CO2 from the biogeochemically-coupled simula-

tion, and ∆CFC
A is the change in atmospheric CO2 from the fully-coupled simulation. A

positive gain corresponds to a positive feedback and vice versa, and the magnitude of the

gain corresponds to the relative strength of the feedback in terms of amplifying or damp-

ening the influence of a perturbation. Equation 3.1 can also be used to estimate the gain

of the carbon-climate feedback for the anthropogenic system alone as well as the combined

natural and anthropogenic system. For the combined gain, the fully coupled simulation

would include the coupling between climate and land use as well as between climate and
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the processes regulating fossil fuel emissions, in addition to natural couplings. For the an-

thropogenic gain alone, the fully-coupled simulation in Equation 3.1 would exclude natural

carbon-climate feedback mechanisms. There are different pathways for generating this de-

coupling in a model that includes processes representing both natural and human systems,

and these options will be described below in further detail.

We note that for the natural carbon cycle, concentration-forced simulations have

also been used to estimate the gain of the carbon-climate feedback. For this class of simula-

tions, the gain can be estimated directly from differences in compatible fossil fuel emissions

from fully-coupled and biogeochemically-coupled simulations (Arora et al., 2013). Compat-

ible fossil fuel emissions for these simulations are deduced as the flux necessary to balance

the carbon accumulation rate in the atmosphere, ocean, and land reservoirs (Jones et al.,

2013). When fossil fuel and land use emissions also are sensitive to atmospheric CO2 and

climate, as may be typical for next generation integrated assessment models, the utility

of concentration-forced simulations may be limited. For this reason, here we focus on the

conceptual extension and analysis of simulations in which emissions dynamically respond to

atmospheric forcing.

3.3 Decomposing the gain of the carbon-climate feed-

back

To diagnose drivers of the gain of the carbon-climate feedback (Equation 3.1), the gain has

been linearly decomposed into terms representing sensitivity of carbon storage to chang-

ing CO2 (β), a term representing the sensitivity of carbon storage to climate (γ), and the

sensitivity of climate to atmospheric CO2 (α). Here we extend this framework to include

interactive human system terms.

For example, equations 2-5 below describe how a climate-decoupled (denoted with

‘UC’ for ‘uncoupled’) natural and anthropogenic simulation can be used to estimate the

relevant β sensitivity terms:
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∆CUC
O = βO∆CUC

A (3.2)

∆CUC
L,N = βL,N∆CUC

A (3.3)

∆CUC
L,H = βL,H∆CUC

A − ELUC (3.4)

∆CUC
F = βF∆CUC

A − EF ; βF = 0 (3.5)

For equations 2-5, the ocean carbon reservoir is denoted with an ‘O’ subscript, land

with an ‘L’, fossil fuels with an ‘F’. Natural and human managed components of the terres-

trial biosphere are further separated with an ‘N’ (for natural) or ‘H’ (for human-managed),

following Figure 3.1 and the notation in Jones et al. (2018). We assume above in equation

3.5 that the sensitivity of the fossil reservoir to rising atmospheric CO2 is negligible, given

the likely minimal effect of CO2 fertilization on emissions and our exclusion of any flux into

the fossil fuel carbon pool on these timescales.

While with natural land and ocean carbon it may be reasonable to assume that

changes in the flux from these pools to the atmosphere are largely driven by sensitivities

to atmospheric CO2 and climate (Boer and Arora, 2009), the same is not true of fossil fuel

emissions and managed land both of which are influenced by climate but driven primarily

by other factors, namely, human behavior. We include the term EF in equation 3.5 to

account for this portion of fossil fuel emissions not driven by carbon feedbacks, as well as an

equivalent term, ELUC , in equation 3.4.

Once the β terms have been estimated from the climate-uncoupled simulation, the

γ terms can be estimated from this information and an equivalent, fully-coupled simulation

with the same model by rearranging the following equations:
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∆CFC
O = βO∆CFC

A + γO∆T FC (3.6)

∆CFC
L,N = βL,N∆CFC

A + γL,N∆T FC (3.7)

∆CFC
L, H = βL,H∆T FC + γL,H∆T FC − ELUC (3.8)

∆CFC
F = γF∆T FC − EF (3.9)

This approach can also be used to estimate the net effects on atmospheric carbon

from the different feedback components where the atmosphere change is defined as:

∆CFC
A = −(∆CFC

O + ∆CFC
L,N + ∆CFC

L, H + ∆CFC
F ) (3.10)

Substituting equations 6-9 into 10, we get:

∆CFC
A = −((βO∆CFC

A + γO∆T FC + βL,N∆CFC
A + γL,N∆T FC)+

(βL,H∆T FC + γL,H∆T FC − ELUC) + (γF∆T FC − EF ))

(3.11)

which can then be reorganized to derive an expression for βFC
A and γFC

A in terms of the land,

ocean, and fossil fuel components for a model scenario with all natural and anthropogenic

feedbacks active. We also combine the insensitive emissions components into the term E.

∆CFC
A = −(βL,N + βL,H + βO + βF ) ·∆CFC

A − (γL,N + γL,H + γO + γF ) ·∆T FC + E

(3.12)

∆CFC
A = βA∆CFC

A + γA∆T FC + E (3.13)

γFC
A = −(γFC

L,N + γFC
L,H + γFC

O + γFC
F ) (3.14)

βFC
A = −(βFC

L,H + βFC
L,H + βFC

O ) (3.15)

A final parameter necessary for decomposing the gain is the sensitivity of climate to atmo-

spheric carbon dioxide (α). This parameter, which is closely related to the transient climate
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sensitivity, can be computed from the following equation:

α =
∆T FC

∆CFC
A

(3.16)

Equation 3.1, the approach for directly computing the gain, can then be expressed as a

combination of the α, β, and g parameters,

g =
α · γA

(m− βA)
(3.17)

where m is the conversion between Pg C and ppm (2.1 Pg C/ppm). In practice there may

be differences in the gain estimated from equation 3.1 from that computed from equation

3.18 due to non-linearity, with the former providing a direct measure of feedback strength

and the latter providing mechanistic insight about the drivers (Friedlingstein et al., 2006).

In simpler models like Woodard et al. (2019) they are nearly equivalent.

3.4 Decoupling models

There are many ways to decouple models to estimate the feedback effects of interest, and we

have laid out several that we consider to be the most directly useful in Table 3.1, based on a

hypothetical model with active feedbacks on carbon fluxes from ocean, managed and natural

land, and fossil fuel emissions. For ease of reference, we will describe biogeochemically-

coupled scenarios as ‘carbon’ and radiatively-coupled scenarios as ‘climate’ in the rest of this

text. Both involve carbon-driven effects, but this nomenclature refers to the type of feedback

(carbon-carbon or carbon-climate) that is primarily influencing effects on atmospheric carbon

in each.
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Table 3.1: A set of scenarios to estimate carbon feedbacks that extends the three scenarios
described by the natural carbon cycle literature. The Natural Carbon, Natural Climate,
and Natural Fully Coupled correspond to the biogeochemical, radiative, and fully coupled
runs from previous analyses (Arora et al., 2013). Additional scenarios are necessary for the
separate estimation of land use and fossil fuel carbon cycle feedbacks in models. Columns
2-5 indicate whether a component has the potential for active feedback processes driven by
biogeochemical responses to atmospheric CO2 concentration changes (BGC) or by radiative
effects of atmospheric CO2 (RAD). If neither set of feedback processes were active, this is
indicated by ‘—’. Not all models include all sensitivities on all components, but for each
scenario the table indicates the effects that could be active in the model based on where the
decoupling is done. Column 7 indicates the connections (numbered from Figure 3.2) that
need to be decoupled to create each scenario.

Scenario
Number Scenario

Natural
Carbon Fluxes

Human
Carbon Fluxes

Active Feedbacks
Pathways for
Decoupling

from Fig. 3.2
Land
(FL,N)

Ocean
(FO)

Land
Use

(FL,H)

Fossil
Fuel
(FF )

1 Natural
Carbon

BGC BGC — — Ocean and land
carbon-concentration

3 & 5 or 3, 6, 8,
& 10

2 Natural
Climate

RAD RAD — — Ocean and land
carbon-climate

1, 3, 8, & 10

3 Natural Fully
Coupled RAD,

BGC

RAD,
BGC

— — Ocean and land
carbon-concentration
and carbon-climate

3, 8, & 10

4 Natural +
Anthro Carbon

BGC BGC BGC — all carbon-
concentration

5 or 6, 8, & 10

5 Land Use
Climate Only

BGC BGC RAD,
BGC

— all carbon-
concentration + land
use carbon-climate

6, 12

6 Land Use
Climate

Decoupled
RAD,
BGC

RAD,
BGC

BGC RAD All active except
land use

carbon-climate

3

7 Fossil Climate
Only

BGC BGC BGC RAD Natural + Anthro
Carbon and fossil

carbon-climate

6, 8, 11

8 Fossil Climate
Decoupled RAD,

BGC

RAD,
BGC

RAD,
BGC

— All except those
affecting fossil fuel

emissions

12

9 Natural
Climate

Decoupled

BGC BGC RAD,
BGC

RAD All except land and
ocean carbon-

climate

6

10 Natural +
Anthro Fully

Coupled
RAD,
BGC

RAD,
BGC

RAD,
BGC

RAD all carbon-
concentration and

carbon-climate

none
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The linkages between atmospheric carbon, temperature, and each carbon pool from

Figure 3.1, in a model with active feedbacks on each, is shown in Figure 3.2. The natural and

managed land carbon-concentration feedback pathways on land are described by {1, 2} and

{3, 4}, respectively, while the natural, land use, and fossil carbon-climate feedback pathways

are described by {5, 6, 7}, {5, 8, 9, 11} + {5, 10, 11, 9}, and {5, 10, 12, 13}. Decoupling

models requires cutting off one or more of these pathways. For example, to estimate a natural

fully-coupled scenario (Table 3.1 - 3) in a model with active anthropogenic feedbacks, the

model would need to be decoupled at linkages 3, 8, and 10 to isolate the natural feedbacks.

Different scenarios may be more or less helpful depending on the model structure

and the ease of decoupling certain mechanisms, as well as which parameters are of interest.

We will focus here on fossil fuel and combined anthropogenic and natural feedback parameters

as examples, but net natural, net anthropogenic, and managed land parameters may also be

relevant to separately isolate.

The combined Natural + Anthropogenic carbon-climate gain can be best estimated

from equation 3.1 with the Natural + Anthropogenic Carbon scenario (Table 3.1 - 4) and

Natural + Anthropogenic Fully Coupled scenario (Table 3.1 - 10) as the uncoupled and fully-

coupled scenarios, respectively. For the fossil fuel carbon-climate feedback gain, we consider

using scenarios 8 and 10 from Table 3.1 to be likely the simplest approach to estimate this

in most models, where scenario 8 is considered the uncoupled and 10 is the fully-coupled.

Scenario 8 requires decoupling only the fossil fuel feedback, for example by feeding constant

temperature values to relevant economic modules or setting any temperature-sensitive pa-

rameters to zero, while scenario 10 includes all feedback processes and needs no decoupling.

This approach to estimation of a feedback effect by decoupling only the feedback

of interest and comparing to a fully-coupled baseline is in contrast to feedback estimation

based on comparison to a decoupled baseline, where the desired feedback effect is isolated

by decoupling all or most other feedbacks. For example, to calculate a fossil carbon-climate

feedback gain with a decoupled baseline, a carbon-only run (scenario 4) can be used as the
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uncoupled run in Equation 3.1, and a scenario that adds only the fossil fuel coupling on

top of this baseline (scenario 7) would then be the fully-coupled run. While both typically

produce similar results, these two approaches are not necessarily equivalent. A 2014 anal-

ysis found that the net natural carbon-climate feedback parameter, γA, calculated from a

radiatively coupled scenario (Table 3.1 - 2) against a decoupled baseline may be underes-

timating the decrease in ocean carbon uptake from higher carbon dioxide combined with

warming, compared to using the difference between the natural fully-coupled baseline and

the biogeochemically-coupled scenario (Table 3.1 - 1 and 3). This is because having only the

natural carbon-climate feedback active necessarily neglects the effects of ocean stratification

on the carbon flux into the ocean (Schwinger et al., 2014).

To estimate the decomposed parameters for the gain, additional scenarios are

needed. The feedback-insensitive fossil fuel flux, E, can be estimated from equation 3.9

with any scenario that does not include a fossil fuel feedback coupling, e.g., scenarios 1-5

and 8 in Table 3.1 because γF is zero in each. Using this value of E, the combined carbon-

concentration effect on the atmosphere, βFC
A (defined in equation 3.16), can be estimated

from the Natural + Anthropogenic Carbon scenario (Table 3.1 - 4) and equation 3.14, where

γFC
A = 0 . There is no carbon-concentration feedback on fossil fuel emissions, so βF = 0 in

this case.

The fossil fuel carbon-climate feedback parameter, γF , can be estimated using equa-

tion 3.9 directly from the Natural + Anthropogenic Fully Coupled scenario (scenario 10) or

any scenario that includes a fossil fuel coupling, as well as an uncoupled scenario necessary to

estimate E. Equation 3.14 then gives the combined natural and anthropogenic carbon-climate

feedback parameter (γFC
A ) from scenario 10, once βFC

A is known.

To calculate the full set of parameters described here, models would need to be

able to generate a Natural + Anthropogenic Carbon scenario, a Fossil Climate Decoupled

scenario, and a Natural + Anthropogenic Fully Coupled scenario (Table 3.1 - 4, 8, and 10),

but others may be desired to isolate other feedback effects.
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Figure 3.2: Diagram showing the pathways of carbon-climate and carbon-concentration
feedbacks on the various carbon pools. Arrows represent the influence of one box on another
such that pathways of influence can be traced through the diagram, but do not directly
represent a carbon flux. Red arrows correspond to pathways of carbon-climate feedbacks,
while all light blue arrows correspond to carbon-concentration feedbacks. For simplicity we
only show arrows to and from the entire natural carbon pool, although most models do
handle carbon feedbacks separately in marine and terrestrial systems. While there is some
potential for a carbon-concentration feedback through CO2 fertilization to affect fossil fuel
emissions, it is likely small and thus is also not shown here. In the Woodard et al. model,
land use change is an exogenous term, so 3, 8, and 9 are inactive, but all other pathways
shown are active. In DICE-Burke, the only pathways that exist are {1, 2} and {5, 10,
12, 13} as there is no responsive land use term, nor any natural carbon-climate feedbacks.
Additionally, there is no land carbon pool in DICE-Burke so {1, 2} only affects ocean carbon.

An important note is that we define the scenarios referenced in this analysis based

on the potential feedback effects that could be active based on where the model is decoupled,

rather than on which feedbacks are necessarily included in the model. In practice this means

that for a given model, a Natural Fully Coupled scenario, for example, might only include

carbon feedbacks on ocean but not land fluxes, and would still be considered ‘fully-coupled’

because the only decouplings needed to generate it would be between temperature and
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atmospheric CO2 and the anthropogenic carbon fluxes.

3.5 Estimates from simple models

We investigated feedbacks on fossil fuels and land use change in two simple models: the

Kaya-based model described in Woodard et al. (2019) and a modified version of the Dynamic

Integrated Climate-Economy (DICE) model we refer to as DICE-Burke.

The Woodard et al. model has carbon-climate feedbacks on land, ocean, and fossil

fuel carbon fluxes, and carbon-concentration feedbacks on land and ocean carbon fluxes and

does not include any land use change effects. For consistency we used the same climate-driven

damage function on fossil fuel emissions for this analysis as the one reported in Woodard

et al. (2019) but our conclusions are not affected by this choice and the resulting magnitudes

are only illustrative.

The DICE-Burke version of the DICE model includes the default DICE2016 cli-

mate damages, which are represented as direct losses of Gross World Product (GWP) at

each timestep based on a quadratic relationship with temperature (Nordhaus, 2017) but

additionally includes a separate scenario that affects economic growth through total factor

productivity and the capital depreciation rate parameterized Burke et al. (2015) relationship

between temperature and GDP. We used the latter relationship for more direct comparison

to the Woodard et al. results.

Fossil fuel emissions in the DICE-Burke model are estimated as a function of eco-

nomic output so that climate damages have direct consequences for the level of emissions.

The model’s natural carbon cycle is simple, including only deep and mixed layer ocean com-

ponents and no land carbon pool. The ocean carbon flux is a function of atmospheric carbon

and exchange between the two ocean boxes. Without a land pool at all, and without any

carbon-climate feedbacks in the ocean, the model has only one carbon-climate feedback com-

ponent, that of fossil fuel emissions, and only one carbon-concentration feedback component,

that of ocean carbon uptake.
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Figure 3.3: Fossil fuel feedback effect on model output in DICE-Burke (orange) and
Woodard et al. (red). Each line is the difference between a Natural + Anthropogenic
Fully Coupled scenario and a Fossil Climate Only scenario in the model and represents the
isolated effect of the coupling of fossil fuel emissions to climate on each component.

We compared the net effect of the fossil fuel carbon-climate feedback on several

variables across these two models, estimated as the difference between the Natural + An-

thropogenic Fully Coupled scenario and the Fossil Climate Only scenario. In both models

this feedback mechanism was driven by rising temperatures, which reduced fossil fuel emis-

sions due to economic damages, generating a net negative feedback effect. This translated

to reductions in temperature, GDP per capita, fossil fuel emissions, and atmospheric CO2
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compared to a Fossil Climate Only scenario in both models (Figure 3.3). In DICE-Burke,

the fossil fuel feedback was responsible for reducing temperature by nearly 0.7 °C, GDP by

over US$16,000 per capita, cumulative fossil fuel emissions by more than 450 Pg C, and

atmospheric CO2 by over 120 ppm. In the Woodard et al. model, the effects were consid-

erably smaller on all but CO2, as the effect on DICE-Burke atmospheric CO2 leveled off by

the end of the century. The fossil fuel feedback effect in the Woodard et al. model reduced

temperatures by a little over a third of a degree Celsius, GDP by nearly US$8000 per capita,

fossil fuel emissions by over 300 Pg C, and atmospheric CO2 by 112 ppm. Relative to other

feedbacks in the Woodard et al. this cooling from the fossil fuel feedback was around

15% the strength of the net carbon-concentration feedback, and entirely counteracted the

warming from the natural carbon-climate feedbacks (Figure 3.4, Table 3.2).

As a more direct metric of feedback strength, we estimated the gain and carbon-

climate and carbon-concentration feedback parameters in both models (Figure 3.5). While

the magnitudes of the carbon cycle feedback parameters are not directly comparable be-

tween the two sets of model results due to differences in the emissions scenario, they display

significantly different dynamics, which raises important questions about the role of model

structure in the size of carbon feedbacks on fossil fuel emissions.

The beta parameters across the models both decrease steadily over the century,

but the carbon-climate feedback parameters follow very different paths. While the Woodard

et al. model has an anthropogenic gain and gamma that decrease through the end of the

century, proportional to the rise in temperature, these same parameters in the DICE-Burke

model reach a minimum near the end of the century before beginning to increase (Figure

3.5). This behavior suggests that damages from rising climate change reach a threshold

beyond which the model optimization routine begins to limit emissions, thus reducing the

sensitivity of the carbon cycle to temperatures. In theory various other mechanisms could

similarly dampen the response of the human carbon cycle to climate change. A few possible

examples include policy measures to curb emissions, human behavior changes in response
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to perceived climate risk, and technological innovations that reduce the carbon intensity

of GDP. Human behavioral responses have been found to potentially affect future climate

change projections by a degree or more but are not well-constrained (Beckage et al., 2018).
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Figure 3.4: A comparison of carbon-climate and carbon-concentration feedback effects in
the Woodard et al. model. Blue bars represent negative contributions to the net feedback
effect, while red represent positive. These sum to the net effect of all active feedbacks in
the model (purple). The carbon-concentration feedback is estimated relative to a control
run with no active carbon feedbacks, while the carbon-climate feedbacks are estimated with
relative to a fully-coupled baseline.

We additionally used the Woodard et al. model to assess the equivalence of esti-

mating natural and anthropogenic carbon-climate feedback parameters using a fully-coupled

or a decoupled baseline, and we found the results to be nearly identical in this simple model

(Figure 3.6). We first compared the difference in our model between two approaches to es-

timating the natural carbon-climate gain. In models that include anthropogenic feedbacks,
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Table 3.2: Results across carbon and climate variables in the model as well as feedback
parameters for the DICE-Burke model and the Woodard et al. model. The numerical
columns are estimated over the entire model period (2010-2100 for DICE-Burke, 1800-2100
for Woodard et al.). All scenarios are fully coupled within each system indicated, although
carbon-concentration feedback parameters were calculated using decoupled scenarios. The
beta values are estimated from the biogeochemically-coupled versions of each scenario, the
gammas and carbon-climate feedback gain from the fully-coupled.

Model Scenario ∆T
(°C)

∆GDP
(US$1000/
person)

∆FF
(Pg C)

∆Catm

(ppm)
α

(°C/
ppm)

γ
(Pg C/

°C)

β
(Pg C/
ppm)

Gain
(g)

DICE-
Burke

Natural 2.89 66.6 1246 305
0.0045

— -0.85 —

DICE-
Burke

Natural
+Anthro

2.21 50.4 787 182
0.0057

-119 -0.85 -0.21

Woodard
Natural 4.55 28.2 2238 1506

0.0030
63.7 -1.02 0.13

Woodard
Natural
+Anthro

4.21 25.7 1921 1271
0.0033

-14.0 -1.02 -0.03

what we here describe as estimating the natural carbon-climate gain against a decoupled

baseline is the equivalent of what in previous natural carbon cycle analyses was effectively

estimating against a fully-coupled baseline. For this approach the gain is estimated from

equation 3.1, using atmospheric carbon changes in the Natural Fully Coupled scenario (Ta-

ble 3.1 - 3; previously, ‘fully-coupled’) and the Natural Carbon scenario (Table 3.1 - 1;

previously, ‘biogeochemically-coupled’) (Friedlingstein et al., 2006; Arora et al., 2013). How-

ever, in a model that includes anthropogenic feedback effects as ours does, this estimation

requires separate decoupling of the anthropogenic feedbacks and the natural carbon-climate

to get both of the necessary model runs. In past analyses on Earth system models that

only include natural feedbacks, the only decoupling that has been required for the same

calculation is on the radiative effects of temperature in order to isolate the biogeochemical

feedbacks in the Natural Carbon scenario. This means in practice that with a model that

includes carbon cycle feedbacks on human systems, it requires less decoupling of the model

to estimate the feedback gain compared to a fully-coupled baseline. To do this, the natural

carbon-climate gain is estimated from the difference between a Natural + Anthropogenic
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Figure 3.5: A comparison of feedback responses and dynamics between the Woodard et
al. model (A-C) and the DICE-Burke model (D-F). Panels A and D show the carbon-
concentration feedback parameter, beta, over the 21st century. Panels B and E show the
carbon-climate feedback parameter, gamma, and panels C and F show the change in the
carbon-climate feedback gain over the over the same time period. The gain results include
three different net feedback effects: natural, anthropogenic, and natural + anthropogenic.
The results from the DICE-Burke model include only one time series for each parameter
as there is only a natural beta effect and anthropogenic gamma effect and thus only a
single carbon-climate gain. The Woodard et al. results include all three feedback effects for
everything except beta, as there are only natural carbon-concentration feedbacks active in
this model, so beta does not change between scenarios.

Fully Coupled scenario (Table 3.1 - 10) and a Natural Climate Decoupled scenario (Table

3.1 - 9), which only requires decoupling the radiative effects of temperature on the natural
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carbon cycle to create the latter scenario. Both approaches gave very similar results (Figure

3.6a), though the gain estimated against a decoupled baseline is slightly larger because it

does not include the dampening effect of the negative carbon-climate feedback on fossil fuel

emissions.

Comparing the anthropogenic carbon-climate gain between these same methods

(from Table 3.1, decoupled baseline: 7 - 4; fully-coupled baseline: 10 - 8) showed similarly

equivalent results (Figure 3.6b), although estimating from a decoupled baseline in this case

produced a smaller magnitude gain due to the lack of an amplifying effect from the natural

carbon-climate feedbacks which increases the difference between Scenarios 8 and 10. Finally,

we made the same comparison for fossil fuel carbon-climate feedback parameter (γF ), where

the difference between the different approaches reflected the same pattern as we found with

the anthropogenic gain (Figure 3.6c). From Scenario 4 we estimated the climate-independent

fossil fuel emissions flux, EF , from equation 3.5, and this was used in equation 3.9 to di-

rectly calculate γF . Estimating γF against a fully-coupled baseline still requires a decoupled

scenario such as 4 or 8 to get EF and then Scenario 10 can be used to estimate γF using

equation 3.9.

3.6 Discussion

The evaluation of carbon cycle feedbacks becomes more complex with the addition of an-

thropogenic feedback mechanisms, requiring additional steps to decouple the models and

compute the same feedback parameters that have been previously estimated by the Earth

system modeling community. The extended mathematical framework presented here provides

a practical approach to these calculations that can be used to compare feedback strengths

between models and isolate individual contributions to net feedback effects.
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Figure 3.6: Output from the Woodard et al. model showing the natural (a) and an-
thropogenic (b) carbon-climate feedback gains and the fossil fuel carbon-climate feedback
parameter (c) estimated based on a decoupled (solid line) or fully-coupled (dashed line) base-
line. The small differences show the effect of the interaction between the different feedbacks
active in the model in the two approaches.

We have demonstrated two different approaches to calculating feedback parameters

in models, which may be useful in different cases. Estimating the carbon-climate feedback

parameter from a decoupled baseline may be simpler if a carbon-only scenario is needed any-

way to estimate the carbon-concentration feedback parameter, but in general this approach

requires more decoupling of the model and will miss interactive feedback effects. Estimating

parameters against a fully-coupled baseline, on the other hand, requires only decoupling the

feedback of interest and is sufficient estimate the gain and carbon-climate feedback param-

eter of each feedback and the net feedback effect on various model outputs. This approach

also provides a more accurate representation of the effect of a particular feedback in the

context of others in the model since only the feedback mechanism of interest is turned off.

An important future step will be systematic intermodel comparisons of carbon cycle

feedbacks within integrated assessment models. One goal of such comparisons is to evaluate

the size of the net anthropogenic carbon feedback in models that include this mechanism and

to push forward development of the relevant climate-economic relationships to reduce uncer-
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tainty on this term. Not only is the magnitude of the carbon feedback on fossil fuel emissions

highly dependent on the choice of economic damage function, which is still a much-debated

quantity in the literature, but is also dependent on the relationship between the economy

and emissions. Using the Kaya Identity to translate changes in GDP directly into changes

in fossil fuel emissions (Woodard et al., 2019), or, similarly, combining output with a carbon

intensity factor, as in the default DICE parameterization, relies on the assumption that any

change in GDP affects emissions in the same way, regardless of the sector of the economy

affected by climate. More complex integrated assessment models may be able to remove this

assumption and shed light on more of the underlying dynamics of this relationship in the

future.

Another goal is to assess the effect of natural carbon cycle feedbacks on model

results and support improved representation of this significant component. In DICE-Burke,

the model has a strongly net negative carbon-climate feedback effect, which acts to somewhat

mitigate climate change, while that of the Woodard et al. model was near neutral due to the

inclusion of positive natural carbon-climate feedbacks (Table 3.2). The net natural carbon-

climate feedback is generally expected to contribute to a net increase in atmospheric CO2

for a given amount of emissions and would likely reduce the magnitude of the net negative

gain in a fully-coupled scenario in a model like DICE, by offsetting some of the negative

feedback effects. This has important consequences for policy-relevant outputs from this and

similar models such as the social cost of carbon. The stronger moderation of climate change

in DICE-Burke due to lack of natural positive carbon-climate feedbacks would be expected

to lead to a lower estimated social cost of carbon than would be predicted in a model that

included a more complete set of key feedback effects. This translates to reduced incentives

for climate mitigation policy and other economic and social preventative efforts.

Integrated assessment model intercomparisons will be additionally important to

understand the impact of specific policies and different future development scenarios on an-

thropogenic carbon feedbacks, to better define the potential range of these feedback effects.
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Policies penalizing carbon emissions can encourage economies to decarbonize, reducing the

impact of changes in GDP on emissions by reducing the carbon intensity of economic pro-

ductivity. Depending on which sectors reduce their dependence on fossil fuels, the effects of

those changes on carbon feedbacks may vary. For example, deep decarbonization of energy

systems would leave feedbacks related to land use as the predominant human-driven feed-

back effect, while resource-intensive future development may increase the strength of both

land use and fossil fuel feedback mechanisms.

As previous work has indicated, anthropogenic carbon feedbacks have not only po-

tentially large consequences for climate and the carbon cycle but also come at high economic

costs, so reducing uncertainty around their magnitude and understanding their interactions

with policy are important goals moving forward. Here we have laid out a standardized ap-

proach to make comparisons of carbon cycle feedback components across models that include

more than just natural carbon cycle feedback mechanisms and illustrated its application to

evaluate carbon cycle feedbacks in a simple integrated assessment model commonly used for

climate policy. Hopefully further comparisons of these feedbacks within integrated assess-

ment models can facilitate future development and understanding of anthropogenic feedback

mechanisms and advance their consideration in new generations of models.
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Chapter 4

Near Term Forecasts of US Fossil Fuel

Emissions with a Vector Autoregression

Model

4.1 Introduction

As the world wrestles with policy decisions and mitigation strategies in the face of climate

change, a lot rests on scientific understanding of how the rate of anthropogenic fossil fuel

emissions will change in the future and how that trajectory can be influenced. Different

aspects of this question have been addressed in the literature, including analysis breaking

down key drivers of emissions (Peters et al., 2017; Raupach et al., 2007), creating detailed

emissions inventories (e.g. Gurney et al. 2009; Boden et al. 2017; Oda et al. 2018), looking

at feedbacks on emissions (Beckage et al., 2018; Woodard et al., 2019), generating future

emissions scenarios (van Vuuren et al., 2011; Riahi et al., 2017), and a variety of near and

long term forecasting over different regions (see, for example, Köne and Büke 2010; Pao et al.

2012; Wu et al. 2015). Forecasting emissions can be used to aid in near real time estimation

and short term forecasting of net carbon cycle changes, as well as supporting national and

regional efforts to curb fossil fuel emissions through climate policy. As of 2017, the United

States still has the highest per capita carbon dioxide (CO2) emissions of any nation in the

world and the second highest total CO2 emissions behind only China as of 2018 (Le Quéré

et al., 2018), so accurate prediction of US emissions is a critical step toward a global forecast.
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The availability of US emissions data also has a three month delay, a gap that any forecast

must first fill before estimating future values.

Fossil fuel CO2 emissions in the US come primarily from energy, with around two

percent from non-energy sources such as cement manufacturing, limestone consumption,

natural gas production, and other industrial processes (Figure 4.1D) (Conti and Holtberg,

2011). While oil-based energy continues to dominate the energy sector, in the past decade

declines in the use of coal and a rise in natural gas have combined to allow natural gas to

replace coal as the second largest source of energy-related fossil fuel emissions in the United

States (Figures 4.1A, 4.1B). This shift has lead to an overall decline in the carbon intensity

of the US energy sector over the past decade and a half, since the average carbon intensity of

coal in the US (95 Mt CO2 per EJ) is much higher than that of natural gas (65 Mt CO2 per

EJ). Oil has an even lower mean carbon intensity (52 Mt CO2 per EJ) but has contributed

to a relatively constant fraction of US fossil fuel emissions over recent history (Figure 4.1C)

(Conti and Holtberg, 2011). Despite sharp declines in the carbon intensity of the US energy

sector, concurrent increases in energy demand have resulted in only weak declines in US

monthly fossil fuel emissions over the same time period (Figure 4.1D).

Notwithstanding its plan to withdraw from the Paris Climate Agreement in 2020,

the US remains a substantial contributor to global carbon emissions and reductions in the

US will be important to meet global mitigation goals. As of 2019, 23 US states have set their

own greenhouse gas reduction targets, and hundreds of US cities have also set similar goals

(Krause, 2011; Lutsey and Sperling, 2008; Deetjen et al., 2018). Forecasting US emissions

over short timescales, from a few months to a few years, may provide insight into such policy

decisions surrounding emissions mitigation. The model structure behind these forecasts

additionally provides relevant information about the key drivers of emissions and thus the

most influential levers available to politicians seeking climate remedies.
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Figure 4.1: Panels A and B show the relative percent of primary energy consumption (A)
and energy-related fossil fuel emissions (B) from oil, coal, and natural gas in the United
States from 1987 to 2017 (EIA 2018). Panel C shows the decline in the carbon intensity of
energy over the same period. It should be noted that this calculation only includes carbon
dioxide emissions from energy. Inset into this panel is the mean carbon intensity of energy
values for each fuel type over this period. Panel D shows total carbon dioxide emissions from
energy compared with carbon dioxide emissions from non-energy sources such as cement and
limestone manufacturing. Carbon emissions from energy make up approximately 98% of US
annual carbon dioxide emissions (Conti and Holtberg, 2011).

Despite the global significance of US emissions, there are limited US-specific fore-

casts in the literature. The US Energy Information Administration (EIA) publishes annual

forecasts out to two years ahead in their Monthly Energy Outlook publication based on pro-

jections of fossil fuel use from the energy and economic model. Emmanuel Silva improved

on these results by combining the EIA forecast with a singular spectrum analysis model

51



(Silva, 2013). The Global Carbon Project also publishes US-specific emissions forecasts out

to the end of the current year as part its overall estimation of the annual global carbon

budget. However, these forecasting approaches are relatively complex, and they have not

been systematically evaluated with respect to input variables or model form. Further, most

past work has focused on annual predictions, making it more different to capture covariances

between climate or socioeconomic driver variables that may emerge on shorter timescales.

Here we explore the usefulness of a set of readily-available predictors in a vector

autoregression (VAR) model for making out-of-sample forecasts of monthly US carbon diox-

ide emissions over time scales of up to two years. VAR models have been widely used in

time series forecasting including forecasting climate and weather variables (Hassani et al.,

2018; Liu et al., 2018; Shahin et al., 2014), and a variety of economic outcomes (Kumar,

2010; Patnaik, 2010; Adomavicius et al., 2012; Kolodzeij and Kaufmann, 2014). They have

also previously been used to forecast CO2 emissions in other regions as well as understand

structural drivers of emissions trends (Magazzino, 2016; Wen and Zhang, 2018; Xiumei et al.,

2011; Xu and Lin, 2016a,b), however to our knowledge no previous analyses have applied

this technique to emissions in the United States, nor has previous autoregression forecasting

work addressed the complexities around different time delays in data availability for relevant

predictors.

The rest of this chapter is organized as follows. In Section 2 we describe our data

sources and processing as well as model development, selection, and validation approach. In

Section 3 we evaluate the performance of the best model on out-of-sample forecasts during

our test period at monthly and annual temporal resolutions. Finally, in Section 4 we compare

our model to existing forecasts and discuss broader implications of this work, and in Section

5 we summarize our overall conclusions from this analysis.
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4.2 Methods

4.2.1 Data selection and processing

We focused our forecasting efforts on carbon dioxide emissions from energy since these make

up the vast majority of fossil fuel emissions in the United States and are also the most variable

(Figure 4.1D). We selected potential predictors based on data that were frequently updated,

freely available, and provided at a monthly resolution or better, so forecasts following this

approach can be continually updated and can include sub-annual predictions. This allowed

us to generate rolling forecasts using ever more recent data, despite delays in emissions data

availability.

Figure 4.2: Monthly US data for the nine predictors used in this analysis, shown over the
period from 1986-2016. Data is shown with the seasonal cycle removed from energy, degree
days, population, the natural gas to coal ratio, and the renewable and nuclear energy fraction
to be consistent with the data used for model fitting and forecasting.

Using this criteria we chose a set of nine predictors that are all readily available
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online through the EIA and U.S. Federal Reserve (Table 4.1): monthly energy consumption,

oil price, natural gas price, degree days, industrial production index, consumer price index,

the natural gas to coal energy ratio, the fraction of energy from non-fossil fuel sources

(hereafter, non-fossil), and population. Fossil fuel emissions data we also retrieved the EIA.

To aid in forecasting we then removed a mean annual seasonal cycle in our analysis (Figure

4.2). Of all the predictors, energy was the most strongly correlated with contemporary

emissions, followed by the industrial production index and natural gas price (Figure 4.3).

Figure 4.3: Contemporary correlations between US carbon dioxide emissions from energy
and the set of nine predictors assessed in this study over the period from 1986-2016. We
removed the seasonal cycle to better correspond with our subsequent analysis.

Also important for their forecasting relevance were the time delays in availability

of each predictor. While the latest fossil fuel emissions data in the United States lags

the present by around three months, as does energy data, economic variables such as the
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Table 4.1: Data availability and temporal lags for emissions data and economic, climate,
and energy predictor data. The column ‘Temporal Lag’ corresponds to the time in months
that the latest data available lags the present day. For example, the latest energy data
available in January 2019 was from September 2018. Population data is shown with an
asterisk as the available data is actually also forecasted data from the US Census Bureau.

Predictor Timespan Temporal
lag

Data source

Fossil Fuel Emissions 1973-2019 3 months Energy Information
Administration (Repice, 2019)

Industrial Productivity Index 1919-2019 2 months The St. Louis Federal
Reserve (Board of Governors

of the US Federal Reserve
System, 2019)

Consumer Price Index 1960-2019 1 month The St. Louis Federal
Reserve (Organization for

Economic Co-operation and
Development, 2019)

Oil Price 1946-2019 1 month Energy Information
Administration (Federal

Reserve Bank of St. Louis,
2019)

Natural Gas Price 1984-2019 1 month Energy Information
Administration (2019)

Population∗ 1959-2019 0 months The St. Louis Federal Reserve
(U.S. Census Bureau, 2019)

Energy Consumption 1973-2019 3 months Energy Information
Administration (Repice, 2019)

Non-Fossil Fraction 1973-2019 3 months Energy Information
Administration (Repice, 2019)

Degree Days 1973-2019 0 months Energy Information
Administration (Repice, 2019)

industrial production index are available with only a one or two month delay, and climate

variables like degree days can be calculated up to the present (Table 4.1).

4.2.2 Model selection and design

The variable availability of each predictor created data gaps which needed to be filled up to

the present day before forecasting emissions forward in time (Figure 4.4). For example, on

January 1, 2020, to forecast the total carbon dioxide emissions for the rest of that January,
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the model would be able to use emissions and energy data from up through September

2019, degree day data up through December 2020, and industrial production index values

up through November 2020. To handle these varied lags in availability, we first hindcasted

over the CO2 emissions data lag using the other variables as they remained available and

the gaps in data were filled with modeled values. This provided a full set of predictor data

up until the forecast start date. Then fully out-of-sample forecasts were made using this

hindcasted set (Figure 4.4).

Figure 4.4: Theoretical timeline of US data availability (top) and modeling approaches
(bottom) for making forecasts and hindcasts from Jan. 1, 2020. Economic data is shown
lagging the present by two months, although some data, such as the consumer price index,
is available on only a 1-month lag.

Model training and selection was done over a training period from 1986 to 2006,

while data from our test period (2007-2016) was reserved for forecast evaluation. The best

predictor set for the vector autoregression model was selected based on the out-of-sample

mean absolute percent error (MAPE), root mean squared error (RMSE), and the R2 value

across eight years of hindcasted data over the last part of our training period. We compared
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these metrics across out-of-sample monthly and annual hindcasts using all combinations of

our nine predictors. Several sets of predictors we evaluated performed similarly well based

on these three metrics, but the model with the best values across all three used only degree

days and the industrial production index with six months of lagged values for each. This

VAR(6) system is shown below:

Vt = β1 · Vt−1 + ...+ β6 · Vt−6 + ε · νt (4.1)

where Vt = (emissionst, deg. dayst, ind. prod. indext), β1 through β6 are coefficient

matrices, and ε · νt is the vector of white noise residuals. The number of lags was selected

automatically using Aikaike’s Information Criterion (AIC).

We evaluated the predictive ability of this model against several simpler benchmark

models: a univariate autoregression model, simple univariate and multivariate linear regres-

sion models using a mean of the most recent available values of each variable as predictors,

and, finally, a baseline persistence model. For all models which used the mean of recent

values as a predictor, we used the mean of the past six months of available monthly data.

So, for example, the forecasted persistence value for April 2020 emissions made in January

2020, would be the mean of the CO2 emissions values from April-September 2019. The linear

regression model used a mean of six months of recent emissions data as a predictor, and the

multiple linear regression model added the means of six months of recent degree days and

industrial production index values on top of past emissions data to that model.

We also evaluated the performance of different sets of predictors on longer timescales.

Over the training period several vector autoregression models were able to beat the perfor-

mance of our autoregression and persistence models on out-of-sample forecasts of up to nine

months, but this result was inconsistent and did not carry through into the test period.
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4.2.3 Model evaluation

We used a rolling window cross-validation approach to compare the performance of our mod-

els over the ten successive years of our test period (2007-2016) (Bergmeir and Beńıtez, 2012).

This best simulates real use of this forecasting system while maintaining equal sized training

sets for comparison between forecasts. To assess forecast accuracy, our data was trained on

twenty-year periods, and then we computed test forecasts over various time horizons using

the last point of the training set as the forecast origin. In practice his meant that for a

one-month forecast, we hindcasted over the three months of the fossil fuel emissions data

lag from the last month of the training data to reach a theoretical ‘current month’ and from

there we forecasted ahead the desired one month. So in total four months of emissions val-

ues were estimated, but three of those months were computed using current data from other

predictors, and only the final month was forecasted using purely lagged values.

We also evaluated the model performance on annual timescales for which we focused

on three time periods: end-of-year hindcasts, and forecasts with one year and two years lead

times. The end-of-year prediction was generated by making a hindcast as described in the

previous section up through the end of the current year and aggregating these monthly results

with the monthly emissions data as available during the earlier part of the year. Annual

and two-year forecasts were made as 12 and 24-month forecasts and the final 12 months of

forecast results from each were then summed to an annual total. Our complete model and

code is available at: https://github.com/dawnlwoodard/fossil_forecast.

4.3 Results

Our best fit VAR model using degree days and the industrial production index (Eqn. 4.1)

was able to outperform persistence and univariate autoregression models up through a four-

month forecast. Plotted monthly results from a one-month forecast over the test period

show that the forecast closely follows the non-seasonal data, though the model overshoots
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during periods of sharp decline, such as the 2008 economic crash (Figure 4.5). The best

performance of this model relative to our autoregression and persistence models was with

hindcasted predictions, where both degree days and the industrial production index were

available more recently than emissions and this contemporary information improved model

accuracy (Table 4.2).

Figure 4.5: One-month forecast results for both the data with the seasonal cycle removed
(a) and the full time series with the seasonal cycle added back (b) and the corresponding
residuals for this forecast (c). The model forecast is from a vector autoregression model with
degree days and the industrial production index as exogenous predictors.

There were also a few other sets of predictors with which our VAR model could
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Table 4.2: Out-of-sample statistics and characteristics for a one-month forecast over the
model test period from a subset of the models evaluated The first set of statistics (columns
3-5) are from a one-month ahead forecast, while the final three columns give annual statistics
from a year where the last three months are hindcasted with the given model.

Predictors 1-Month Forecast End-of-Year Hindcast

Lags MAPE

(% )

RMSE R2 MAPE

(% )

RMSE R2

Persistence

Emissions — 3.46 19.08 0.70 0.60 44.03 0.96

Linear Regression

Emissions — 3.43 18.80 0.70 0.56 40.04 0.96

Multiple Linear Regression

Emissions, degree days — 3.42 18.78 0.70 0.56 40.04 0.96

Emissions,

industrial production index

— 3.39 18.61 0.71 0.56 40.04 0.96

Emissions, degree days,

industrial production index

— 3.37 18.54 0.71 0.56 40.04 0.96

Univariate Autoregression

Emissions 17 3.40 19.00 0.71 0.58 40.85 0.96

Vector Autoregression

Emissions, degree days 13 3.22 17.58 0.74 0.33 26.61 0.98

Emissions,

industrial production index

11 3.21 18.13 0.72 0.70 43.84 0.94

Emissions, degree days,

industrial production index

6 3.19 17.13 0.75 0.38 28.60 0.99

outperform the baseline persistence model, but only up through a few months at most, and

we found that univariate autoregression did either worse or no better than persistence over

all time periods (Figure 4.6, Table 4.2). Multivariate and univariate linear regression models

without multiple autoregression terms were similar in accuracy to persistence up through

monthly forecasts of a year or more. We found that long term forecasts with our VAR model

were too variable to have high accuracy, and the best performing model beyond four month

forecasts (eight months from available emissions data) was our benchmark persistence model

(Figure 4.6).

Annual VAR results were consistent with these findings from our monthly analysis.

While over the training period several VAR models were able to beat our benchmark models
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Figure 4.6: Forecast error across models by length of forecast. Panel a) shows the vector
autoregression model accuracy over the test period across a range of forecast lengths given
by the mean absolute percent error (solid blue line) ± one standard deviation (lighter blue
shading). The persistence model is shown for comparison (dashed blue line). Panel b) shows
the MAPE for a 1-month forecast using vector autoregression, multiple linear regression,
persistence, linear regression, and autoregression. The VAR and MLR models used CO2

emissions, degree days, and industrial production index as predictors, while the others used
only emissions.

over annual out-of-sample forecasts, this did not hold true in the test period, and forecast

accuracy was only high (and an improvement over persistence) for our end-of-year annual

forecast, but declined substantially for the one and two-year forecasts (Figure 4.7).

4.4 Discussion

4.4.1 Lessons for prediction

This approach demonstrates that fossil fuel emissions can be predicted over the short term

with similar or better accuracy than more data-intensive existing forecasts using relatively

little data and a simple statistical approach. Using several combinations of predictors, we

found our vector autoregression was able to improve on a univariate autoregression model

up through a four-month forecast, when the additional predictors became less relevant.
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Figure 4.7: Out-of-sample annual forecasts over three time intervals: hindcasting over
the last three months of each year (October-December), forecasting over the following year
(a 12-month forecast plus a 3-month hindcast), and finally out to a second year ahead.
Monthly results were aggregated to annual values for each forecast interval. Panel A shows
these annual results over the test period from 2006-2016 and the corresponding mean annual
residuals are given in B.

Several predictors stood out as most significant for this forecasting task: degree

days, non-fossil energy fraction, and the industrial production index. These appeared in all

or nearly all of the top 10 percent of models based on out-of-sample mean absolute percent

error (Table 4.3), and the relationship of these particular predictors to fossil fuel emissions has

also been supported by some previous analyses, for example, Meng et al. (2018); Aliprandi

et al. (2016); Considine (2000).

We compared the performance of separate vector autoregression models using emis-

sions and these three predictors, with the addition of oil price, across individual years to bet-

ter understand their relative contributions to emissions forecasts (Figure 4.8). We selected

four recent years where our autoregression model struggled to fully capture the dynamics

of the emissions data and took our one-month ahead forecasts from each those years from

each different model to evaluate. Different predictors were each able to improve accuracy in
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Table 4.4: Frequency of occurrence of each predictor in the best 25 VAR models. All
combinations of all predictors were compared over 1-month ahead forecast intervals based
on the mean absolute percent error over 10 years of out-of-sample forecasts.

Predictor Frequency in top 25 best models

Non-fossil fraction 25
Degree days 25
Industrial production index 19
Natural gas: coal 9
Oil price 8
Population 8
Consumer price index 5
Natural gas price 5
Energy 4

different years. The only variable that improved model performance over the final months of

the Great Recession in 2009 was the industrial production index, while over the same time

period a univariate model significantly overshot the data. In 2010 our autoregression model

underpredicted the data, and the non-fossil fraction was the only predictor successful at

closing the mid-year gap. In 2011, oil price was singularly useful in improving performance

over the spring and fall where the autoregression model was somewhat overshooting the

data. Finally, in 2015, the industrial production index was again the most useful variable at

reducing the overshoot in the autoregression model toward the end of the year. This analysis

is not causal but does point to the relevance of different predictors over different timeframes.

4.4.2 Comparison with other modeling approaches

Our methodology is relatively simple and involves far fewer data streams than other current

approaches, but we were able to match or beat the performance of the EIA model annual

end-of-year forecasts in most of the years available for comparison (Figure 4.9). Our best

fit model from our training period had a mean absolute error of 0.59 percentage points

from 2009 to 2015, compared to the EIA mean absolute error of 0.74 percentage points

over the same period. Not only could our best fit model hit this benchmark, but so could

vector autoregression models using any other combinations of predictors, as long as the
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Figure 4.8: One-month ahead monthly forecasts compared against data for five different
models over four recent years, selected based on years when our univariate autoregression
model had relatively lower accuracy. Panels a-d show 12 one-month ahead forecasts (a year
each) of the autoregression model for comparison, and the following rows show different
VAR models using degree days (e-h), non-fossil energy fraction (i-l), oil price (m-p), and the
industrial production index (q-t) as additional predictors for fossil fuel emissions. Finally,
the bottom row (u-x) is the best-fit VAR model used in this analysis.

set of predictors included up-to-date degree day data. However, the high variability in the

long-range forecast results of our vector autoregression models decreased the model accuracy

compared to the smoother EIA forecast results at one and two-year timescales. To make

this comparison as accurate as possible our predictions were made over the same timeframe

as the EIA and with the same data availability that the EIA would have access to at the

time of their forecast.

The Global Carbon Project also produces estimates of US fossil fuel emissions out

to the end of the year from mid-year. In 2015 their Global Carbon Budget report estimated

a decrease in fossil fuel emissions of 1.5% from 2014 (Friedlingstein et al., 2019), compared
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Figure 4.9: Best model (dashed) end-of-year annual forecast compared to the US Energy
Information Administrations (dotted) end-of-year forecast. EIA predictions are from the
Short Term Energy Outlook and made in January of each year. Our model predictions
are from our best-fit VAR model with degree days and industrial production index values,
made by hindcasting over October, November, and December of each year. Baseline annual
percent emissions change is shown in black.

to the actual decrease of 2.8%, while our model estimated a decrease of 1.8%, though due

to the high variability of the accuracy of our model as well as the models from the Global

Carbon Project and the EIA, comparison over a single year gives little idea of the relative

forecasting power of either model. Additionally, the methodology and timescale of the GCP

model is somewhat less comparable to ours.

4.4.3 Lessons for global predictability

Although our focus was on only United States emissions, our findings have additional rele-

vance for predicting global emissions on short time scales. Globally, the challenge of emissions

data lagging the present is much more pronounced than in the US, increasing the relevance

of substantially more up-to-date predictors such as degree days and various economic indi-
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cators. While emissions data globally lags the present by a year or more, economic data

is available with only a few months delay. Additionally, while in the United States energy

data is available on the same time lag as fossil fuel data, energy data from several other

major emitters is far more up-to-date than the CO2 emissions data. These two predictors

are strongly correlated, meaning that in our US model their equivalent temporal availability

made energy data much less relevant (Table 4.3), since emissions data could always be used

over the same timeframe, but globally this more recent energy data from certain countries

may be an important asset to making accurate global predictions.

4.5 Conclusions

Modern climate policy necessitates a high level of understanding of the drivers of fossil fuel

emissions and can be aided by accurate emissions forecasts. While more complex data-driven

models outperformed our results in the long term, there is potential for more rapidly deployed

hindcasts and forecasts using readily-available predictors to improve emissions forecasts over

shorter timescales. This is particularly relevant globally as data lags are significantly longer

in other countries and the hindcasting power of the approach discussed here may be able to

help fill these gaps ahead of actual emissions data releases.

Using freely available and frequently updated monthly predictor variables we were

able to produce forecasts over several months that could outperform more complex existing

forecast systems as well as our benchmark univariate models, despite worse performance

over longer timescales. This forecasting approach can be employed to support more rapid

estimation of near-term emissions for use in carbon-cycle analyses and climate policy and

can be extended globally to reduce much longer lags in emissions reporting.
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Chapter 5

Conclusions

In this dissertation I set out to advance understanding of fossil fuel emissions in the near

and long term in order to improve integrated assessment modeling efforts and projections

of climate change from Earth system models. On long timescales I was interested in ex-

ploring the interconnected relationship between fossil fuel emissions and climate and how

these relationships could be represented in models. I also sought to bridge the gap between

the natural carbon cycle community, which has done extensive work evaluating carbon cycle

feedbacks on land and in the ocean but lacks the ability to represent similar feedbacks in

human systems, and the integrated assessment modeling community, which has made impor-

tant progress representing economic and energy systems and producing fossil fuel emissions

trajectories, but has almost no discussion in the literature of feedbacks in their models. On

shorter timescales, I was interested in exploring the predictability of fossil fuel emissions

which can be used to provide more up-to-date estimates and near-term forecasts to help

close the carbon cycle budget and to inform climate policy.

In Chapter 2 my findings demonstrated the relevance of economically-driven car-

bon cycle feedbacks, showing that compared to natural carbon-climate feedbacks, these

anthropogenic feedbacks on carbon dioxide emissions are potentially equally important to

consider in terms of their magnitude and climate impacts. This analysis also found that the

most significant feedback mechanism was the relationship between climate and the economy,

which drove an overall negative net feedback on fossil fuel emissions, in contrast to natural

carbon-climate feedbacks, which are net positive. However, the damage function behind this
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climate-economic relationship also had the highest uncertainty of any of the components of

the model, and the range has significant implications for future climate.

My hope is that the work from this chapter will prompt further discussion of the as-

of-yet very limited representation of economic carbon cycle feedbacks in models and will be

motivation for more models to intentionally consider where economic feedbacks may impact

their findings. From conversations with several integrated assessment modeling groups I

know that efforts are underway to include more such couplings in models. The other critical

next step from this work is reducing the uncertainty in the climate-economy relationship

through further empirical analyses, including efforts reconcile the disparity between small-

scale local and regional economic damage estimates and national and global scale statistical

findings such as from Burke et al. (2015).

In Chapter 3 I have developed an inclusive framework for estimating carbon cycle

feedbacks in models, including both fossil fuel and land use anthropogenic feedbacks, which

have previously been excluded from analyses. I applied this framework to evaluate carbon

feedbacks in two different simple models, providing concrete examples of estimating feedback

parameters of interest. The results from this analysis also demonstrated the importance

of model structure in representing economic feedbacks, as I found that the ability of the

economy to dynamically respond to climate impacts weakened the climate feedback on fossil

fuel emissions. Additionally, through a carbon cycle feedback analysis on the DICE-Burke

model, I illustrated the limitations of the model’s very simplified carbon cycle, which has

important consequences in light of the frequent use of this model and other similar models

in climate policy.

This work has laid out the additional steps needed to apply a carbon cycle feed-

back analysis framework to models that include carbon feedbacks outside of the natural

carbon cycle. As integrated assessment models continue to add couplings between climate

and economic systems, and some researchers are even coupling Earth system models with in-

tegrated assessment models, this framework structure can facilitate inter-model comparisons
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of anthropogenic carbon feedbacks to assist in model development and reduce uncertainties.

Additionally, it can be applied to evaluate the existing representation of natural carbon

cycle feedbacks in these models and compare this to previous results from Earth system

model feedback analyses to improve understanding of the impact of the typically simplified

representation of natural carbon feedbacks in IAMs.

Finally, in Chapter 4 I built a model to forecast fossil fuel emissions in the U.S. using

fewer data sources and a simpler model than existing forecasts over similar timescales. I found

that using up-to-date predictors to fill in the data lag that exists for fossil fuel emissions data

was able to substantially increase accuracy over models without these predictors, and allowed

me to improve on the performance of more complex existing forecasts for U.S. emissions. This

work suggests that for near-term carbon cycle hindcasts and forecasts out to a few months,

a relatively simple statistical approach using a few predictors may be a useful tool to provide

more accessible estimates of emissions compared to other current forecasting approaches for

the U.S. These results also provide a stepping stone to building a hopefully more nimble

global emissions forecasting system.
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Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn,
T. (2019). Carbon-concentration and carbon-climate feedbacks in CMIP6 models, and
their comparison to CMIP5 models. Biogeosciences Discussions, pages 1–124.

Arora, V. K. and Melton, J. R. (2018). Reduction in global area burned and wildfire emissions
since 1930s enhances carbon uptake by land. Nature Communications, 9(1):1326.

70



Basha, M., Shaahid, S. M., and Al-Hadhrami, L. (2012). Impact of Fuels on Performance
and Efficiency of Gas Turbine Power Plants. Energy Procedia, 14:558–565.

Beckage, B., Gross, L. J., Lacasse, K., Carr, E., Metcalf, S. S., Winter, J. M., Howe, P. D.,
Fefferman, N., Franck, T., Zia, A., Kinzig, A., and Hoffman, F. M. (2018). Linking models
of human behaviour and climate alters projected climate change. Nature Climate Change,
8(1):79–84.

Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman,
G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S. (2006). Climate-
driven trends in contemporary ocean productivity. Nature, 444(7120):752.
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Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D.,
and et al. (2013). Climate Change 2013: The Physical Science Basis: Working Group I
Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, chapter Anthropogenic and Natural Radiative Forcing. Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA.

Nordhaus, W. D. (2017). Revisiting the social cost of carbon. Proceedings of the National
Academy of Sciences, 114(7):1518–1523.

O’Connor, F. M., Boucher, O., Gedney, N., Jones, C. D., Folberth, G. A., Coppell, R.,
Friedlingstein, P., Collins, W. J., Chappellaz, J., Ridley, J., and Johnson, C. E. (2010).
Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under
future climate change: A review. Reviews of Geophysics, 48(4).

Oda, T., Maksyutov, S., and Andres, R. J. (2018). The Open-source Data Inventory for
Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded
emissions data product for tracer transport simulations and surface flux inversions. Earth
System Science Data, 10(1):87–107.

Oeschger, H., Siegenthaler, U., Schotterer, U., and Gugelmann, A. (1975). A box diffusion
model to study the carbon dioxide exchange in nature. Tellus, 27(2):168–192.

Organization for Economic Co-operation and Development (2019). Consumer Price Index:
Total All Items for the United States.

Otto, I. M., Reckien, D., Reyer, C. P. O., Marcus, R., Masson, V. L., Jones, L., Norton, A.,
and Serdeczny, O. (2017). Social vulnerability to climate change: a review of concepts and
evidence. Regional Environmental Change, 17(6):1651–1662.

78



Pao, H.-T., Fu, H.-C., and Tseng, C.-L. (2012). Forecasting of CO2 emissions, energy
consumption and economic growth in China using an improved grey model. Energy,
40(1):400–409.

Patnaik, A. (2010). Study of Inflation in India: A Cointegrated Vector Autoregression
Approach. Journal of Quantitative Economics, 8(1).

Pedersen, B. P. and Larsen, J. (2009). Modeling of ship propulsion performance. Technical
report, Institute of Marine Engineers, Mumbai, India.

Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft,
C., Fourqurean, J. W., Kauffman, J. B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D.,
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Appendix A

Supplementary Methods for Chapter 2

A.1 Carbon cycle box model

Our analysis was based on a simple box model of the natural carbon cycle, onto which

we added a temperature-sensitivity of fossil fuel emissions to account for economic carbon-

climate dynamics. We constructed this base model using a single land pool, as well as a mixed

layer and a deep ocean pools, and we included important natural carbon-concentration and

carbon-climate feedbacks (Fig. 2.1, Table A.4). To improve accuracy of the natural carbon

cycle, we tuned the model to CMIP5 multi-model mean output from previous analyses

(Table A.5) and found that the tuned model was able to reproduce historical fluxes, though

a weaker ocean uptake resulted in somewhat overestimating the atmospheric CO2 growth

rate (Fig. A.1B). Nevertheless, our cumulative results are within one standard deviation of

the historical data up to 2005 (Friedlingstein et al., 2013). To estimate uncertainty on this

model we tuned a 1% idealized run of our model to the CMIP5 multi-model mean gain found

by Arora et al. (2013) plus one standard deviation and minus one standard deviation for the

upper and lower bounds, respectively.

We modeled the atmosphere as a single, well-mixed carbon reservoir (CA) with

inputs from fossil fuel emissions (FFF ), land use change (FLUC), and net carbon exchange

with the land (FL) and ocean (FO).
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(dCA)

dt
= FFF + FLUC − FL − FO (A.1)

Our land model included only a single carbon pool (CL) with carbon uptake from

net primary productivity (NPP) and losses to the atmosphere from heterotrophic respiration

(Rh) and land use change.

dCL

dt
= FL = NPP −Rh − LUC (A.2)

We initialized NPP and Rh to 60 Pg C y−1 and used an initial turnover time

of 15 years. Our modeled NPP includes both sensitivity to atmospheric CO2 as well as a

temperature coupling.

NPP = NPP0(1 +B · ln CA

CA(0)
) · (1 + aland · (∆Tair)2 + bland ·∆Tair) (A.3)

We estimated the influence of temperature on NPP by fitting a polynomial to

the mean response of NPP from CMIP5 earth system model to global mean surface air

temperature changes from the idealized esmFdbk1 scenario. The esmFdbk1 scenario includes

only temperature-driven effects on the carbon cycle, so this calculation excludes the direct

impact of atmospheric carbon dioxide concentrations on photosynthesis. We used a Q10

function to model the temperature sensitivity of heterotrophic respiration.

Rh =
1

τb
·Q10

Tair−Tair(0)

10 · CL (A.4)

We also added a sensitivity of the turnover time to land use change emissions in

order to better match the dynamics of the observed land sink. For comparison, Erb et al.

(2016) estimated a modern value of 0.51 for this effect of land use change on turnover time,

while our value over the period from 2000 to 2010 is, on average, 0.84.

τb = τb(0) · CL(0)− ΣLUC

CL(0)
(A.5)
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Our ocean carbon cycle separately tracks mixed layer (COM) and deep ocean carbon

(COD) pools and includes fluxes into each deep ocean box FODi and between the mixed layer

and atmosphere (FAO and FFOA) and the mixed layer and deep ocean (FMD and FDM). The

net ocean flux, FO, is the difference between the atmosphere-ocean exchange fluxes, FAO and

FOA.

dCOM

dt
= FAO − FOA + FDM − FMD (A.6)

We used a global mean air-sea gas transfer velocity (kgas) and the partial pressure

difference of CO2 between the atmosphere and the ocean mixed layer to estimate the net

ocean-atmosphere carbon flux.

FAO = kgas ·
CA

2.12
(A.7)

FOA = kgas ·
CA(0)

2.12
· (1 +R · COM − COM(0)

COM(0)
) (A.8)

The model included a Revelle factor (R) that was tuned to 11.5 to estimate the

amount of anthropogenic CO2 equilibrated with dissolved inorganic carbon at each time

step. We represented fluxes in the deep ocean with a box diffusion model following Oeschger

et al. (1975), though we used only 25 total deep ocean boxes and allowed our diffusivity

constant Kdeep to decrease linearly with depth starting from an initial value of 2500 yr−1

and reaching 125 yr−1 in the deepest box. We simulated temperature-driven stratification

impacts on ocean carbon uptake by allowing the diffusivity constant to also vary as a function

of temperature. The flux in box i is equal to the flux exchange between box j and the

surrounding boxes i and k.

FODj = kij · CODi − kji · COD + kkj · COD − kjk · CODj (A.9)
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The deep ocean exchange parameter from any box i to the next lower box j is a

function of the deep ocean diffusivity value Kdeep and the box height h.

kij = Kdeep ·
1

0.5 · (hj + hi) · hi)
(A.10)

The diffusivity value for the shallowest deep ocean box at time t is calculated by

modifying the initial value for that parameter by the change in temperature at the current

time step (Eqn. A.11) such that diffusivity slows with warming. The magnitude of the

temperature effect on diffusivity is controlled by the parameter fmod. Deeper ocean diffusivity

values decrease proportional to the ocean depth down to a fixed lower bound Kmin (Eqn.

A.12).

Kdeep(t) = Kdeep(0) · (1− fmod ·∆T ) (A.11)

Kdeepi = Kdeep(t)−
i · (Kdeep(t)−Kmin

nboxes
(A.12)

In the absence of an economic carbon feedback, the model assumed fossil fuel and

land use change emissions were exogenously defined by the business-as-usual representative

concentration pathway (RCP8.5) (Moss et al., 2008, 2010). We initialized the model at a

pre-industrial base temperature of 15 °C and 283 ppm of atmospheric CO2 and iterated from

1800 to 2100 using a forward Euler integration scheme. The set of tuned parameters used

in this model are given in Table A.4. The model computed radiative forcing at each time

step (Myhre et al., 1998) and used an impulse response function (Hooss et al., 2001) fit to

the mean CMIP5 earth system models 4xCO2 experiment to obtain the consequent global

mean surface air temperature change at each time step.
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A.2 Simulation design

To add an economic carbon feedback to our natural model, we included a sensitivity of

fossil fuel emissions, calculating a temperature-adjusted emissions term at each time step.

Initially, we adjusted emissions from the baseline data by some fraction fFFT in °C-1,

FFF adj = FFF data + fFFT ·∆T · FFF data (A.13)

where FFF data is the baseline RCP8.5 fossil fuel emissions data and FFF adj is the

calculated temperature-adjusted emissions. To derive Figure 2.4, we allowed fFFT to vary

over a wide range of values (shown along the x-axis of Figure 2.4) and calculated the carbon-

climate gain from the model results. We tested both a linear and quadratic relationship

with temperature, but the results were comparable over the range of f-values used in the

simulation.

To analyze the impact on the carbon cycle from specific economic-temperature

relationships from the literature, we designed a set of eight decoupled and coupled scenarios

used in the rest of our analysis (Table A.1). The first two scenarios are similar to those

used in the natural carbon cycle literature (for example Arora et al. 2013 and Friedlingstein

et al. 2006). Our No Feedbacks scenario does not allow the land, ocean, and human modules

to see increasing temperatures, so only carbon-concentration feedbacks are active. Our Net

Natural scenario corresponds to the Fully-coupled scenario from previous literature on the

natural carbon cycle, and all the natural carbon-climate and carbon-concentration feedbacks

included in our model are activated in this scenario. In this case we refer to this scenario

as ‘Net Natural’ because it only includes the natural carbon cycle feedbacks and does not

include a coupling between fossil fuel emissions and temperature. We reserve the label ‘Fully

Coupled’ in our analysis to refer to the scenario which includes both economic and natural

carbon cycle feedbacks.

The four partially-coupled economic feedback scenarios in our model draw upon
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synthesis described in the main text and in the following sections. We used the Kaya Identity

(Eqn. 2.1) to isolate individual economic factors and their contribution to the feedback. Our

‘Net Economic’ scenario is the economic parallel to the ‘Net Natural’ scenario, representing

the net impact of economic carbon-climate feedback drivers. This scenario includes only

temperature effects on per capita GDP and on the carbon intensity of energy as a conservative

estimate, in order to avoid potential double-counting of temperature effects on population

and energy intensity of GDP that are already included in the relationship we used for GDP

and temperature. We focused here only on the carbon-climate feedback, so the impact of an

economic carbon-concentration feedback was not explicitly included in any scenario, though

a carbon concentration feedback with crop yield could have the potential to offset some of

the negative temperature impacts on GDP (Long et al., 2006).

As a baseline for socio-economic development we harmonized data from a combina-

tion of sources over the period from 1800 to 2100 (Fig. A.2, Table A.6). Our baseline future

scenario data used throughout this analysis was from the business-as-usual RCP8.5 scenario

(Moss et al., 2008, 2010). We assumed for simplicity that this baseline data did not already

include any temperature-sensitivity, which is inaccurate for all historical data, but as our

goal was a comparison with natural feedbacks the error introduced from this assumption

should be relatively small. The assumption does hold true for future data since GCAM does

not include any climate-emissions coupling.

It is additionally important to note that there are many more potential interactions

between model terms than are considered here. We have focused in this analysis on isolating

effects from each term to quantify the individual contributions, but in reality, energy, GDP,

and population all may exert mutual influence on each other, and this and other more

complex market dynamics will play a role in determining the overall size of an economic

carbon feedback. The consideration of these effects is best suited for future analysis within

integrated assessment models.
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A.3 Estimating the gain of the climate-carbon feed-

back

We estimated the gain, g, of a carbon-climate feedback using the approach described by

Friedlingstein et al. (2006) who used atmospheric carbon accumulation from an emissions-

forced Fully-coupled (CFC
A ) and an uncoupled simulation (CUC

A ) to calculate this value, so

that

g =
∆CFC

A −∆CUC
A

∆CFC
A

(A.14)

where CUC
A and CFC

A correspond to the change in atmospheric carbon in an emissions-forced

simulation with and without carbon-climate feedbacks, respectively. To calculate the natural

carbon-climate feedback gain we use

g =
∆Cnetnatural

A −∆Cnofeedbacks
A

∆Cnetnatural
A

(A.15)

while to calculate the net economic carbon-climate feedback gain we use

g =
∆Cneteconomic

A −∆Cnofeedbacks
A

∆Cneteconomic
A

(A.16)

The gain values in Figure 2.4 are calculated using a fully coupled scenario with

all-natural carbon-climate feedbacks active and constant, while the strength of the economic

feedback is allowed to vary over a range. When the economic feedback is zero, this is

equivalent to our Net Natural scenario. When the strength of the economic feedback is

at -3.1% change in emissions per °C, this is then equivalent to our Fully Coupled baseline

scenario as used in the rest of the paper. This is calculated as

g =
∆Cfully−coupled

A −∆Cno−feedbacks
A

∆Cfully−coupled
A

(A.17)
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A.4 Climate-economy relationships

A.4.1 Influence of climate on population

Rising future temperatures are expected to increase human mortality due to extreme weather

events, floods, diseases, heat stress, and food and water scarcity (McMichael et al., 2006;

Haines and Patz, 2004). McMichael et al. estimated that from the combined effects of

climate change 154,000 people died in the year 2000 alone, though the impacts vary widely

by region, with southern Africa seeing the highest impacts and Europe, Russia, and most of

North America experiencing the lowest (2006).

The literature indicates strongly that temperature has an inverse relationship with

population, so we assigned this to a negative sign in Figure 2.1. Although some lives are

saved due to relief from cold temperatures, the deaths from heat, drought, extreme weather

events, fires, and other results of a warming planet are expected to dominate this feedback,

keeping the overall sign of this relationship negative.

To model climate-related mortality as a function of climate warming, we used mid-

century estimates of climate-induced mortality and global mean surface air temperature

change. In a recent analysis, the World Health Organization estimated that 250,000 annual

deaths would be attributable to climate change by 2030-2050 based on the future scenario

SRES A1b (World Health Organization, 2014). This finding included deaths from heat ex-

posure, diarrhea, malaria, and childhood undernutrition. We used the corresponding average

temperature change between 2030 and 2050 projected under SRES A1B to calculate a lin-

ear sensitivity scalar, fPT (199,283 deaths yr−1 °C-1), of annual deaths per °C of warming.

This scalar was used in the Population scenario in our model to calculate a temperature-

adjusted population value at each time step by adding the net population change from the

baseline scenario and subtracting the product of the temperature change and the population-

temperature sensitivity scalar, fPT (Fig A.3A). The new population value was then used to

calculate the corresponding temperature-adjusted fossil fuel emissions based on the Kaya
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Identity. All other components of the Kaya Identity were left at baseline values in this

scenario.

A.4.2 Temperature impacts on per capita gross domestic product

We drew from the literature on integrated assessment model damage functions to under-

stand the response of GDP to climate warming. Such damage functions include a variety

of economic impacts including effects on sea level rise, tourism, heat stress, agriculture, hu-

man health, energy systems, and various other sectors. Due to climate change, resources will

have to be diverted from research and development and investment in capital and instead put

towards countering climate change impacts, while other key resources will be permanently

lost including some ecosystems, species, and human lives (McMichael et al., 2006; Libecap

and Steckel, 2011). There are also direct temperature impacts on human productivity, par-

ticularly in climate-exposed sectors of the economy such as construction and agriculture

(Kjellstrom et al., 2009). A study by Roson et al. decomposed these climate impacts,

finding the most significant to be heat stress, sea level rise, and tourism, with substantial

regional variation in the relevance of other factors (2012). Based on the literature we expect

this overall relationship between temperature and GDP to be negative, as no estimates we

are aware of suggest a global net economic benefit from climate change. There may, however,

be some regions that do see a different sign and experience an overall economic boost from

global warming (Tol, 2009).

Our model used the damage function described in Burke et al. (2015) as a baseline

estimate of the temperature sensitivity to climate warming (Fig. A.3B). Damage functions

in many modern integrated assessment models place impacts at around one or two percent

of GDP by the end of the century (Tol, 2009), but there has been little empirical basis

for these estimates (Burke et al., 2016; Weitzman, 2012). The work by Burke et al. (2015)

emerged from an attempt to unify micro and macro-level studies of climate damages and

used historical economic data to develop a non-linear model of climate impacts on GDP. The
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authors found that the sensitivity of GDP to climate warming may be considerably higher

than predicted by other damage functions, estimating a 23% loss in global GDP by 2100.

Although empirical estimates are subject to problems when going out of sample, there are no

temperature changes projected over the next century under RCP8.5 that exceed the highest

values of temperature anomalies already seen locally in various countries over the past half

century (Burke et al., 2015).

We included the DICE2016 damage function as a lower bound in our model, modi-

fying GDP levels at each time step by a loss of 0.236% per degree Celsius squared (Nordhaus,

2017). Our upper bound came from the highest impact scenario in the Burke et al. (2015)

analysis. Because the Burke relationship includes effects of temperature on energy demand

and climate mortality, these terms in the Kaya Identity are not included separately in our

Fully Coupled scenario. However, for the sake of understanding their potential contributions

we did analyze each in their own individual scenarios.

A.4.3 Temperature impact on the energy intensity of GDP

To estimate the impacts of climate warming on energy demand, we assessed changes in heat-

ing and air conditioning use. These two drivers respond in opposite directions to warming,

with their net balance determining whether the overall impact of climate change yields a pos-

itive or negative effect on energy demand. In current integrated assessment models, energy

impacts from climate change are considered primarily for residential heating and cooling.

As with the GDP-climate relationship, there is a wide variety of estimates of this

energy demand-temperature sensitivity in available models. Of a set of IAMs reviewed by

Ciscar and Dowling (2014), the results varied from estimating positive to negative overall

economic effects from climate-driven changes in energy demand. Isaac and Van Vuuren

used the model IMAGE to project future residential energy demand under climate change,

estimating a 34% decrease in heating use and a 72% increase in air conditioning use by

2100, although they found the overall impacts to nearly balance on a global scale (2009).
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Empirical estimates of these damages lean toward overall negative outcomes. For example,

Santamouris et al. (2015) analyzed fifteen studies on the impact of temperature on electricity

consumption, finding an increase of between 0.5% and 8.5% per °C. However, this sign could

be driven positive if climate-driven reductions in heating use dominated over increases in air

conditioning use.

We considered these energy demand effects in our model on the energy intensity of

GDP term in the Kaya Identity (Energy Intensity scenario). We assumed that at a fixed eco-

nomic output level, the energy demand associated with that output may increase or decrease

based on a relationship with temperature. We adapted Isaac and Van Vuuren’s model (2009)

to calculate heating and cooling-driven energy demand in 14 different regions, which we then

aggregated to global estimates of total residential energy demand. Heating energy demand is

calculated based on a population, per capita floor area, population-weighted heating degree

days, and useful energy heating efficiency, combined with a time-dependent parameter for

the efficiency of heating broken down by energy carrier. Air conditioning energy demand is

calculated from the number of households, the penetration of air conditioners in a region,

and the unit energy consumption, combined with a time-dependent parameter for technolog-

ical improvements. We ran this model with and without temperature sensitivity of energy

demand turned on, and the difference of these two runs allowed us to isolate the climate

impacts on residential energy demand from the purely economic and demographic ones. To

account for the commercial sector, which has similar heating and cooling energy use, we

increased this temperature relationship by 56% (U.S. Energy Information Administration,

2016). We then used a polynomial fit with temperature on the difference of these two sce-

nario runs to model the overall sensitivity of energy demand to climate change (Eqn. A.18;

Fig. A.3C).

Eadj(t) = Edata(t)− 0.74∆T (t)3 + 6.77∆T (t)2 − 7.25∆T (t) (A.18)

In our box model, we used this relationship to calculate a temperature-adjusted
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energy demand value at each time step from the baseline data. The subsequent temperature-

adjusted fossil fuel emissions value is then calculated through the Kaya Identity, with all other

terms held to baseline data. As a qualitative estimate of uncertainty, we used high and low

bounds of +50% and -50% of our baseline estimate, recognizing that significant uncertainties

exist in the current understanding of this relationship in the literature.

A.4.4 Temperature impact on carbon intensity of energy

Energy production may be vulnerable to climate change through several avenues. Thermo-

electric power plants are sensitive to increasing air and water temperatures and lose efficiency

as temperature rises (Sathaye et al., 2011; Basha et al., 2012; Burnard and Bhattacharya,

2011; Farouk et al., 2013; Mohanty and Paloso, 1995). Electricity distribution also loses

efficiency due to changes in resistance of power lines (Santamouris et al., 2015), while the

transportation sector may benefit somewhat due to decreased air resistance, despite negative

effects on vehicle tire pressure and air conditioning use (Janssen and Hall, 1980; Lohse-Busch

et al., 2013; Johnson, 2002; Pedersen and Larsen, 2009; Zahabi et al., 2014).

Climate impacts on energy production have consequences for the carbon intensity

of energy in the future. If the same demand needs to be met, the response of energy

production to climate warming leads to changes in the energy supplied per unit of fossil

fuel emissions. Efficiency reductions with warming, for example, would lead to less energy

output per unit of fossil fuel emissions. We assumed in this analysis that transportation and

electricity production are the only temperature-sensitive components of the energy sector,

and this temperature-sensitive fraction of primary energy is increasing over time as access

to electricity and economic well-being increases (Fig. A.4A). As this temperature insensitive

proportion decreases, the potential for a stronger effect of temperature on energy production

increases. This may be offset by technological advances in efficiency, but the model here uses

contemporary production efficiencies. As a result, the relevance of the climate response of

energy production will grow over the next century.
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In our model, we estimated a linear temperature relationship for each component

of transportation and electricity production from the literature (Table A.7). Combining

these impacts, the model reduces energy supply due to changes in power line resistance,

thermoelectric power plant efficiency, and transportation efficiency at higher temperatures.

For each of coal, oil, and natural gas electrical production the baseline portion of energy

produced by that fuel type is adjusted by the production efficiency changes multiplied by

the temperature change from preindustrial. This is then adjusted again by temperature-

sensitive distribution losses. Transportation losses are estimated as the linear combination

of truck, car, train, and boat temperature-sensitive efficiency changes. The upper and lower

ranges from Table A.7 were used as upper and lower bounds for this analysis.

These various effects sum to a small net loss in energy supply, and thus a net increase

in the carbon intensity of energy per degree of warming (Fig. A.3D). This sign of the response

of carbon intensity of energy to temperature could be driven negative if future technological

changes reduced the vulnerability of thermoelectric power plants and electricity distribution

systems to temperature such that transportation efficiency improvements dominated the

overall feedback.

Separating out the electricity component, Fig. A.4B shows the relative contribution

of each to the overall climate-driven losses in electricity production. Coal dominated this

feedback because it is the largest fraction of fossil fuel electricity production, which suggests

that improvements in the cooling efficiency of coal fired power plants would play a significant

role in reducing this impact in the future.

Future changes in water availability and likelihood of extreme weather events are

also potential contributors to climate impacts on energy production in thermoelectric power

plants, but these were ignored in our model for simplicity. The inclusion of this effect would

likely strengthen the carbon intensity of energy feedback. We also did not include any

temperature-related changes to primary energy supply such as oil refining or natural gas

extraction, since these are more directly affected by extreme weather events than by rising
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temperatures, and extreme weather events were not included in our model.

Renewable energy production is likely to see impacts from climate change as well

(Mideksa and Kallbekken, 2010), but these energy sources were not included in our model.

We made the simplifying assumption that temperature-related losses in energy supply were

replaced by increased production of that same energy source, meaning that changes in re-

newable energy production would not significantly impact fossil fuel emissions. If changes

in renewable capacity are replaced by fossil fuels instead this would increase the strength of

the carbon intensity feedback, but if, on the other hand losses, in fossil fuels are replaced by

more renewables, it would be expected to decrease.

Figure A.1: Comparison of historical data to model results. Panel A shows our modeled
temperature curve (solid) against historical data (dashed). Panel B compares model results
(dashed) with all included ocean and land carbon cycle feedbacks against observed fluxes
(solid) over the past two centuries. Observed air temperature anomaly data is from NOAA
(Smith et al., 2008) , atmospheric CO2 data is from the RCP8.5 historical data archives
(Meinshausen et al., 2011), while data for the observed ocean and residual land sink is from
Hoffman et al. (2014).
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Figure A.2: Breakdown of the Kaya Identity and socioeconomic data used to calculate
it. The left column presents the harmonized socioeconomic data used in the model, while
the right shows the three calculated components of the Kaya Identity: per capita GDP,
energy intensity of GDP, and carbon intensity of energy. The data sources for this figure are
described in Table A.6.
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Figure A.3: Temperature relationships for each economic model component. We used the
Net Natural scenario in our model under RCP8.5 to adjust each component by temperature at
each time step without any economic feedback to fossil fuel emissions. Temperature changes
are given from 1800 - 2100 for the RCP8.5 scenario. Overall energy supply decreased with
temperature, causing carbon intensity of energy to increase with temperature, contributing
to a positive feedback effect. Higher temperature increased energy demand, and thus energy
intensity of GDP, which also created a positive feedback in our model. Climate mortality
created a very slight negative relationship between population and temperature, contributing
to a negative feedback effect. Upper and lower bounds are 50% on population and energy
demand effects, for energy supply and GDP upper and lower bounds were taken from the
literature. Climate damages to GDP represent the most significant relationship, but also
the widest spread. The maximum impact shown was calculated using the highest impact
scenario from Burke et al. (2015), while the minimum used the DICE2016 damage function
(Nordhaus, 2017).
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Figure A.4: Change in the future fraction of temperature-sensitive primary energy and
breakdown of electricity production component drivers in our model. Panel A shows frac-
tional change in the proportions of primary energy in GCAM data. We assumed that the two
colored components, transportation and electricity production, were temperature-sensitive
in our model. All other components of primary energy are lumped into the gray ‘Tempera-
ture Insensitive’ portion shown. Panel B shows the individual effects on each component of
the electricity production feedback with temperature under RCP8.5. Coal, oil, and natural
gas thermoelectric power generation were separated from the temperature-driven impacts on
electricity distribution for each component. While the distribution losses per degree are the
same across fuel types, the fraction of energy being distributed by each fuel type differed in
our model. ‘Other distribution’ refers to temperature-related electricity distribution losses
incurred from any other carbon-emitting fuel source. Renewables were not included in this
analysis, because we made the simplifying assumption that losses in fossil fuel-based electric-
ity production were replaced by increasing production of electricity from a fossil fuel source
and similarly, renewable losses were replaced by renewables. In other words, like replaced
like.
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Figure A.5: Cumulative carbon-climate feedback gain over time in the Fully Coupled
and Net Natural scenarios from our model. Also shown are the components from GDP and
Carbon Intensity that contribute to the overall change in the gain from the Net Natural to the
Fully Coupled scenario. Until the mid-21st century the positive gain from the natural carbon
cycle effects dominates, but by the middle of the 21st century economic feedbacks dominate,
pulling the overall gain negative. Background colors show the uncertainty associated with
each scenario.
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Table A.1: Descriptions and coupled components of the seven scenarios used in the model to
calculate carbon feedbacks. The first columns show which components were coupled to which
driver. A value of ‘∆T’ indicates that the carbon-climate feedback indicated by the column
was included, while a value of ‘CO2’ indicates that carbon-concentration feedback processes
were included. A blank value means that the component was treated as an exogenous input
and the original source data was used. All scenarios included land and ocean coupling with
atmospheric carbon dioxide. To calculate the contribution of each economic component
to the total feedback effect we isolated each in its own scenario as well as investigating
their overall effect in the Net Economic scenario. All feedbacks included in our model were
combined in the Fully Coupled scenario.

Scenario Land

Flux

(FL)

Ocean

Flux

(FO)

Human Flux Driver (FH) Description

P G/P E/G F/G

No

Feedbacks

CO2 CO2 — — — — Only ocean and land

carbon-concentration

feedbacks

Net

Natural

∆T,

CO2

∆T,

CO2

— — — — Only ocean and land

carbon-concentration and

carbon-climate feedbacks

Population CO2 CO2 ∆T — — — No Feedbacks + population

carbon-climate feedbacks

GDP CO2 CO2 — ∆T — — No Feedbacks + GDP

carbon-climate feedbacks

Energy

Intensity

CO2 CO2 — — ∆T — No Feedbacks + energy

demand carbon-climate

feedbacks

Carbon

Intensity

CO2 CO2 — — — ∆T No Feedbacks + energy supply

carbon-climate feedbacks

Net

Economic

CO2 CO2 — ∆T — ∆T No Feedbacks + economic

carbon-climate feedbacks

Fully

Coupled

∆T,

CO2

∆T,

CO2

— ∆T — ∆T All carbon-concentration and

carbon-climate feedbacks
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Table A.2: Changes in each component of the Kaya Identity in our Fully Coupled scenario
compared to the baseline projected data in years 2030 and 2100. By 2030 none of the
temperature effects have impacted these components by over 1 percent, but by 2100 we see
a decrease in GDP of 22% percent and an increase in the energy intensity of GDP and the
carbon intensity of energy by less than 3% each.

2030 2100
Kaya

Component
Baseline
Projection

Fully-
coupled

Percent
Difference

Baseline
Projection

Fully-
coupled

Percent
Difference

Population
(billion)

8.4 8.4 -0.03% 8.9 8.9 -0.34%

Per capita GDP
(US$1000)

8.2 7.4 -9.6% 36 28 -22%

Energy intensity
of GDP

(EJ/US$ )

99 99 -0.25% 59 60 1.1%

Carbon intensity
of energy

(Pg C/EJ)

0.02 0.02 0.62% 0.01 0.01 2.4%
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Table A.3: Temperature and carbon cycle results from all scenarios in our model under
RCP8.5. Values are listed as base (min, max), though for the Population scenario the effects
were too small for the differences to be seen at this precision. All values are cumulative
over the period from 1800 to 2100. Including an economic feedback (Fully Coupled scenario)
lowered temperature by over a quarter of a degree and reduced atmospheric carbon by 220
Pg C compared to the Net Natural scenario. The net economic feedback also reduced the
carbon-climate feedback gain (g) in our Fully Coupled scenario to -0.02 from 0.13 in our Net
Natural scenario.

Scenario ∆Tair ∆CA ∆CH ∆CO ∆CL Gain (g)

(C) (Pg C) (Pg C) (Pg C) (Pg C)

No
Feedbacks

4.25 1311 2238 649 278 —

(3.98, 4.54) (1192, 1438) (2238, 2238) (583, 724) (462, 76)

Net
Natural

4.55 1506 2238 566 166 0.1294

(4.17, 4.98) (1311, 1761) (2238, 2238) (556, 518) (372, -41) (0.0903, 0.1836)

Population 4.25 1310 2236 648 277 -0.001

(3.97, 4.54) (1190, 1437) (2234, 2237) (583, 724) (462, 76) (-0.002, -0.001)

GDP 3.94 1119 1934 577 237 -0.172

(3.23, 4.50) (761, 1407) (1507, 2194) (427, 714) (320, 73) (-0.567, -0.022)

Energy
Intensity

4.25 1317 2246 650 279 0.004

(3.99, 4.54) (1201, 1439) (2238, 2252) (586, 723) (465, 76) (0.000, 0.007)

Carbon
Intensity

4.27 1327 2262 654 281 0.012

(3.97, 4.59) (1189, 1478) (2232, 2296) (582, 738) (461, 80) (0.003, 0.027)

Net
Economic

3.96 1130 1952 582 240 -0.160

(3.22, 4.55) (759, 1445) (1505, 2250) (426, 727) (319, 77) (-0.570, 0.005)

Fully
Coupled

4.23 1286 1940 514 140 -0.020

(3.35, 4.99) (813, 1768) (1474, 2246) (407, 519) (253, -41) (-0.466, 0.187)
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Table A.5: List of key model parameter values. Starred values have been tuned to fit
to CMIP5 model results from previous analysis as described in the text. We initialized
atmospheric carbon, net primary productivity, and air temperature to approximate pre-
industrial values: 283 ppm, 60.0 PgC

yr
, and 15.0 °C, respectively.

Parameter Value
Ocean area 3.61e14 m2

Mixed layer depth* 100 m
Ocean depth 3800 m
kgas* 0.06 yr−1

τmd* 7.0 years
fmod 0.15 ◦C−1

τb0* 15.0 years
β* 0.65
aland* -0.002 ◦C−2

bland -0.013 ◦C−1

Revelle factor* 11.5
Q10* 1.1
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Table A.6: Tuned model results compared to previous analysis. The first two rows show
the comparison of the carbon cycle in our model to the analysis by Arora et al. (2013) of
CMIP5 model carbon cycle feedbacks in the run that includes all natural feedbacks under one
percent per year CO2 increase up through a quadrupling of CO2. The final two rows compare
our model to the CMIP5 model carbon cycle results from Friedlingstein et al. (2013) using
the RCP8.5 scenario. Carbon cycle changes under RCP8.5 are calculated from 1850-2100,
and temperature change is calculated as the average from 2081-2099 relative to 1986-2005.
Results over the 1% runs are calculated as the change over the 140-year period. Columns
4 and 5 are the cumulative changes in land and ocean carbon storage, and column 6 is the
change in atmospheric carbon over the period. All our model values have been tuned to
within one standard deviation of the results from each of these analyses.

Scenario Analysis ∆T
(°C)

∆CL

(Pg C)
∆CO

(Pg C)
∆CA

(Pg C)

Idealized
1% run

Arora et al. (2013) 4.76 499±275 613±50 1805

This model 5.02 504 649 1805

RCP8.5 Friedlingstein et al.
(2013)

3.9±0.9 91±218 557±112 985±97

This model 3.2 177 563 994
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Table A.7: Sources of socioeconomic baseline data used for this analysis. For all but fossil
fuel and land use change emissions, three different datasets were used in order to cover the
full period of interest. All datasets were harmonized to the modern data of each using the
ratio of the slopes at the end points of overlap. The future data are projected values by the
Global Change Assessment Model corresponding to the GCAM rendition of business-as-usual
scenario RCP8.5.

Variable Data Source Time span used
Population Maddison Project (Bolt

and van Zanden, 2014)
1800-1960

United Nations (2015) 1960-2014
GCAM (Moss et al., 2008,

2010)
2014-2100

GDP Maddison Project (Bolt
and van Zanden, 2014)

1800-1970

World Bank (2015) 1971-2014
GCAM (Moss et al., 2008,

2010)
2014-2100

Energy Vaclav Smil (2010) 1800-1980
US Energy Information
Administration (2019)

1980-2014

Fossil Fuel
Emissions

GCAM (Moss et al., 2008,
2010)

2014-2100

CDIAC (Boden et al.,
2017)

1800-2014

GCAM (Moss et al., 2008,
2010)

2014-2100

Land Use
Change

Emissions

RCP8.5 Harmonized
Emissions Data

(Meinshausen et al., 2011)

1800-2100
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Table A.8: Individual components of the carbon-climate feedback on the carbon intensity
of energy. For our base model the best estimate of each component was used to adjust
the corresponding fraction of energy at each time step when multiplied by the temperature
change at that time step. The range was used to model upper and lower bounds. For
transportation, we used upper and lower bounds of ± 100% due to the high uncertainty of
this relationship.

Component Best estimate
(% per ◦C )

Range
(% per ◦C )

References

Coal -1.05 (-1.5, -0.6) (Aivalioti, 2015; Sathaye
et al., 2011; Burnard and

Bhattacharya, 2011)
Natural Gas -0.75 (-1, -0.3) (Aivalioti, 2015; Basha

et al., 2012; Farouk et al.,
2013; Mohanty and Paloso,
1995; Kakaras et al., 2006;
Alhazmy and Najjar, 2004;

Ameri and Hejazi, 2004)
Oil -0.75 Same as NG (Basha et al., 2012)

Distribution -0.87 (-1.4, -0.33) (Aivalioti, 2015; Sathaye
et al., 2011)

Transportation 0.0406 (0, 0.08) derived from (Janssen and
Hall, 1980; Lohse-Busch

et al., 2013; Johnson, 2002;
Pedersen and Larsen,

2009; Zahabi et al., 2014)
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