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Abstract

INTRODUCTION: There is pressing need for non-invasive, cost-effective tools for early 

detection of Alzheimer’s disease.

METHODS: Using data from the Alzheimer’s Disease Neuroimaging Initiative, Cox proportional 

models were conducted to develop a multimodal hazard score (MHS) combining age, a polygenic 

hazard score (PHS), brain atrophy, and memory to predict conversion from mild cognitive 

impairment to dementia. Power calculations estimated required clinical trial sample sizes after 
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hypothetical enrichment using the MHS. Cox regression determined predicted age of onset for 

Alzheimer’s disease pathology from the PHS.

RESULTS: The MHS predicted conversion from mild cognitive impairment to dementia (hazards 

ratio for 80th versus 20th percentile: 27.03). Models suggest that application of the MHS could 

reduce clinical trial sample sizes by 67%. The PHS alone predicted age of onset of amyloid and 

tau.

DISCUSSION: The MHS may improve early detection of Alzheimer’s disease for use in memory 

clinics or for clinical trial enrichment.

Keywords

Alzheimer’s disease; Multimodal prediction; genetics; MRI; memory; amyloid; tau; mild cognitive 
impairment

1. Background

Alzheimer’s disease (AD) is an age-dependent neurodegenerative disease hallmarked by the 

accumulation of extracellular amyloid-β plaques and intracellular neurofibrillary tau tangles 

that emerge decades before symptom onset [1]. This preclinical period is followed by a 

prodromal stage during which a diagnosis of amnestic mild cognitive impairment (MCI) 

indicates high probability of conversion to dementia within several years [2]. Because AD 

has a complex, multifactorial etiology with genetic and modifiable risk factors, diagnostic 

accuracy in preclinical periods is limited, which poses a particular challenge for clinical trial 

enrollment in which pre-screening precision is critical to minimize cost and subject burden. 

Thus, there is outstanding need to develop tools that can identify individuals with high 

probability of converting to AD for timely diagnosis and streamlined clinical trial screening.

Cerebrospinal fluid (CSF) or positron emission tomography (PET) measures of amyloid 

and tau pose obstacles to routine clinical use due to their cost, invasiveness, and 

radiation exposure. Inexpensive, non-invasive, and widely available approaches to quantify 

personalized AD risk will improve clinicians’ ability to select patients with the greatest 

potential for therapeutic benefit, and to guide clinical trial enrichment to minimize trial 

cost and patient burden. To this end, accurate longitudinal prediction of disease progression 

in preclinical or prodromal stages, during which therapeutic interventions will be most 

effective [3], is urgently needed.

Late-onset AD has high genetic susceptibility, with APOE4 conferring the strongest risk 

of any single gene [4]. Genome-wide association studies have identified a diversity of 

additional AD risk variants beyond APOE [5], which have been combined into polygenic 

risk scores (PRS) that estimate an individual’s lifetime genetic risk. However, PRS models 

do not provide critical information about age of dementia onset, are limited in prognostic 

utility, and carry mixed accuracy at predicting amyloid and tau [6]. Using age-dependent 

survival analysis, we previously integrated common genetic variants into a polygenic 

hazard score (PHS) that accurately estimates age of AD onset, even among APOE ε3/ε3 

individuals, who constitute the majority of AD cases [7, 8]. The Desikan AD PHS 

predicts CSF, PET, or post-mortem measures of neuropathological burden, rates of cognitive 
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decline, and conversion to AD [9–11], and may be useful for clinical trial enrichment [12]. 

Considering the time-sensitive nature of AD interventions, AD risk models using polygenic 

estimates such as the Desikan AD PHS will be of greatest clinical utility if they can 

precisely track the clinical time-course.

Because of the multi-etiological pathways that synergistically contribute to AD [13–15] 

and variable disease manifestations, multimodal tools for AD detection [16] and prognosis 

[17] are superior to single-modality methods. Thus, the sensitivity of genetic risk estimates 

may be maximized by integrating complementary markers of disease progression, such as 

neurodegeneration and memory decline, which are more proximal to clinical progression 

than amyloid or tau [18–20]. Our group developed a composite AD atrophy score that 

distinguishes individuals with MCI who convert to AD or demonstrate clinical decline from 

those who remain stable [21]. The ease of acquiring neuropsychological measures enhances 

their practical value in clinical and research settings. Whereas both AD atrophy scores 

and global cognition predict conversion from MCI to AD, combining the PHS with either 

measure improves prediction [10], suggesting that their integration may optimize prediction 

of AD progression.

Here, we evaluate the prognostic utility of the Desikan AD PHS in prodromal AD by 

integrating it with brain atrophy and cognitive scores into a Multimodal Hazard Score 

(MHS) to optimize precision of predicting time to conversion from MCI to dementia. 

By leveraging relatively cost-effective and non-invasive genetic, imaging, and cognitive 

biomarkers, multivariate predictive models such as the MHS could streamline clinical 

trial screening by reducing the number of participants required to undergo costly and 

burdensome pre-screening PET scans. The MHS may also be useful in memory clinics 

to target individuals with highest risk of progressing to AD and potential for therapeutic 

benefits, while minimizing concern among those experiencing memory complaints with low 

risk of developing AD.

2. Methods

2.1 Participants

Data were included from participants of the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI; adni.loni.usc.edu), a multicenter longitudinal observational study established in 

2004 to validate clinical, imaging, genetic, and biospecimen barkers for prediction of 

progression to AD [22]. The present study analyzed data from 849 ADNI participants 

with a diagnosis of MCI or subjective memory complaints (SMC) at baseline and available 

genetic, MRI, and cognitive data. Follow-up assessments were conducted annually for up to 

36 months. ADNI study procedures were approved by local institutional review boards, and 

all participants or their guardians provided written informed consent prior to participation.

2.2 Genotyping

Genotyping was conducted according to standard assays by Illumina and raw genetic data 

were downloaded from the ADNI website (https://adni.loni.usc.edu/). The Desikan AD 

PHS was computed based on a Cox proportional hazard regression model combining 31 
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AD‐associated single nucleotide polymorphisms (SNPs) with two APOE variants (ε2/ε4), 

trained with genetic data from an independent cohort [7].

2.3 Magnetic resonance imaging

Details of image acquisition and analysis have been described previously [21]. Briefly, 

structural MRI data were acquired following strict standardization protocols, and 

raw baseline DICOM MRI data were downloaded from the ADNI web site (http://

adni.loni.usc.edu/data-samples/mri/). Cortical thickness and subcortical volumes were 

measured from baseline structural T1 data using FreeSurfer v5.0 [23] to calculate 

quantitative morphometric measures from regions of interest (ROIs) for survival analysis. 

Automated volumetric segmentation and cortical surface reconstruction underwent quality 

review by trained technicians as described [24] and data with significant artifact were 

excluded from analysis. A previously validated brain atrophy score was computed as the 

sum of weighted measures from ROIs averaged across hemispheres, derived using linear 

discrimination analysis to distinguish AD patients from healthy controls [21]. Component 

measures of this atrophy score included volume of the hippocampus, and thickness of 

entorhinal cortex, middle temporal gyrus, bank of the superior temporal sulcus, isthmus 

cingulate (retrosplenial cortex), superior temporal gyrus, and medial and lateral orbitofrontal 

gyri.

2.4 Cognitive assessment

Memory performance was assessed at baseline using the learning (sum of trials 1–5) 

measure of the Rey Auditory Verbal Learning Test (RAVLT), a test of verbal episodic 

memory [25].

2.5 Measurement of amyloid-β and tau

Lumbar puncture was conducted as detailed in the ADNI manual (http://www.adni-

info.org/). Amyloid-β 1–42 (Aβ42) and phosphorylated tau (p-tau) were measured from 

CSF samples using the Elecsys β-amyloid(1–42) CSF, and the Elecsys phosphotau (181P) 

CSF immunoassays at the Biomarker Research Laboratory, University of Pennsylvania, 

USA, as previously described [26]. Cutoffs for amyloid and tau positivity were Aβ42<977 

pg/mL and p-tau>24 pg/mL, as deemed optimal for performance against visual PET read 

[26].

2.6 Statistical approach

2.6.1 Development of the MHS—The MHS was calculated to estimate age-specific 

risk of conversion from MCI to AD, based upon the combined contributions of genetics, 

brain morphometry, and memory performance. The Desikan AD PHS was used as an 

estimate of polygenic risk and RAVLT learning score was used as a measure of episodic 

memory. To quantify AD-specific atrophy patterns, sixty-four ROI volumetric measures 

[21] were combined into the imaging hazard score (HIS) by applying Cox regression to 

a training set of cross-sectional ADNI data. Age-specific proportional hazard scores were 

computed by applying time-invariant Cox proportion hazards regression with PHS, IHS and 

RAVLT scores as predictors, using the exponential baseline hazard function of [27]. Thus, 
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the PHS, IHS and RAVLT measures served as intermediaries to an aggregate risk estimate 

of conversion to AD, integrating complementary markers of genetic susceptibility, regional 

brain atrophy, and memory impairment.

2.6.2 Predicting conversion from MCI to AD using the MHS—All 849 

participants with diagnoses of MCI or SMC at baseline were included for MHS model 

development, and time to first diagnosis to AD dementia was used at the outcome. The 

composite MHS model included predictors of age, the PHS, IHS, and RAVLT score. Model 

performance at predicting conversion from SMC or MCI to AD over a five-year period 

was assessed using age alone; age and the PHS; age with the PHS and IHS; and the 

aggregate MHS (age with PHS, IHS, and RAVLT) by testing on hold-out longitudinal data 

from the ADNI sample. All participants without an AD diagnosis at baseline were included 

for analysis. The outcome of interest was a diagnosis of AD five years after baseline. 

To evaluate model performance according to risk stratification, hazard scores were ranked 

according to population percentile. Low and high-risk groups were identified as the lowest 

(20%) or highest (80%) of the population distribution. Hazard ratios (HRs) were computed 

between the lowest and highest risk groups (20% versus 80%; HR80/20) for conversion 

from MCI to AD over the five-year follow-up, with higher HRs indicative of better model 

performance. To compare survival curves across risk groups and to obtain expected ages 

of onset from absolute hazards, we combined Cox proportional hazard scores with the 

exponential baseline hazard [28].

2.6.3 Optimizing clinical trial enrichment with the MHS—To assess the utility 

of the MHS at improving clinical trial enrichment strategies, power calculations were 

conducted to estimate sample sizes required for a hypothetical longitudinal clinical trial 

study. As the hypothetical trial outcome, models used annual percent rate (APR) of 

change on the Clinical Dementia Rating Scale - sum of boxes (CDR-SB), a measure of 

disease progression commonly used in AD clinical trials, computed per subject using linear 

regression across timepoints. To first assess the sensitivity of the MHS to longitudinal 

disease progression, Pearson’s correlations were computed between each set of predictors in 

the MHS and CDR-SB change. Next, for each predictive model, participants were classified 

as high or low risk using a 50th percentile cutoff, and the high-risk group was selected as 

the hypothetical trial enrichment group. Applying methods described by Fitzmaurice et al. 

[29], for each predictive model the necessary sample size to detect CDR-SB change, with 

β=0.80 and α=0.05, was computed using the full sample (both low and high risk groups) 

and within the high-risk subgroup. The difference in required sample size after enrichment 

with the MHS risk prescreening versus no enrichment was calculated as (N MHS high risk / N 

low+high risk).

2.6.4 Prediction of AD pathology—Using a partially overlapping dataset including 

401 ADNI subjects (238 cognitively normal, 28 SMC, 109 MCI, 25 dementia, 1 unknown) 

with available CSF Aβ42 and p-tau data, Cox regression models were implemented to 

predict age of onset of CSF markers of AD pathology acquired from longitudinal ADNI 

data. Participants were followed up to over 8 years, with an average of 1.2±0.6 CSF 

measurements. Models used the Desikan AD PHS to determine age-dependent probabilities 
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of reaching threshold levels of Aβ42 and p-tau [26]. From the resulting model, we identified 

predicted age of onset for amyloid- and p-tau-positivity according to PHS risk stratification.

3. Results

3.1 Participant characteristics

Participant demographics and baseline diagnoses and cognitive data for the sample used in 

computation of the MHS are presented in Table 1. Subjects were diagnosed at baseline with 

either early or late MCI or SMC. Over the course of the five-year follow-up, 35% of subjects 

converted to AD dementia, including 1% (N=1) of SMC, 13% (N=36) of early MCI, and 

54% (N=260) of late MCI.

3.2 MHS predicts conversion from MCI to AD

Prediction accuracy for conversion from MCI to AD dementia over the five-year follow-up 

period was computed for each combination of the four model components (age, PHS, IHS, 

and RAVLT, Supplemental Figure 1). Survival curves for models of interest are shown 

in Figure 1 with groups stratified by population risk from the 1st percentile to 99th 

risk percentile. Histograms of bootstrapped odds ratios80/20 for each model are presented 

in Supplemental Figure 2 with 95% confidence intervals showing acceptable accuracy. 

There was a modestly increased likelihood of conversion to AD dementia with older age, 

with a HR80/20 = 1.42 (95% confidence interval = 1.12, 1.97, Supplemental Figure 1). 

Adding PHS to the model significantly improved prediction (Figure 1A), evidenced by 

a greater separation of AD risk across PHS percentiles, with an HR80/20 = 3.57 (2.63, 

4.03). Model performance improved with addition of the IHS (Figure 1B), with HR80/20 = 

13.16 (8.93, 20.43). Finally, incorporating RAVLT scores into the MHS further improved 

model performance (Figure 1C), with HR80/20 = 27.03 (17.46, 48.96), reflected by low 

conversion rates (10%) among those with a 20th percentile MHS risk in contrast to the high 

conversion rates (77%) among those in the 80th percentile risk group. The expected time 

to AD dementia onset significantly decreases with higher MHS; for example, as illustrated 

in Figure 1C, the time difference from baseline to a given probability of conversion to AD 

dementia can be five years or greater between the 80th and 20th percentile MHS groups.

3.3 Clinical trial enrichment with the MHS

To evaluate correspondence between predictive multivariate models and longitudinal disease 

progression, correlations were computed between each predictive model score and the CDR-

SB APR. As shown in Table 2, correlations increased with each added predictor. The most 

pronounced improvement occurred with addition of the PHS to age, and again with addition 

of the IHS, whereas adding memory into the model marginally improved prediction. The 

strongest correlation with disease progression was observed for the full MHS (r=0.55 (0.50, 

0.61)).

Given these findings that the MHS predicts time to conversion from MCI to dementia and 

correlates with clinical measures of AD progression, we next sought to evaluate the utility 

of the MHS for clinical trial enrichment. Table 2 illustrates the difference in required sample 

size after screening with each multivariate predictive model compared to no screening, 
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using change in the CDR-SB as the hypothetical trial outcome. Limiting trial enrollment 

to participants with the top 50% of MHS risk scores is expected to reduce the sample size 

necessary to detect significant clinical decline by 67%.

3.4 Predicting AD pathology with the PHS

Finally, to assess the use of the Desikan AD PHS at predicting age of onset of AD 

pathology, survival curves for Aβ42 positivity and p-tau positivity by age according to mean 

PHS risk are presented in Supplemental Figure 3. As expected, age strongly predicted the 

onset of pathology, with the probability of abnormal amyloid or p-tau increasing from zero 

at age 55 to greater than 90% by age 90 among those with a median PHS. PHS strongly 

modified survival curves, such that for a given probability, PHS shifted the age of onset for 

abnormal pathology by several years. For instance, an individual in the 1st PHS percentile 

has a 50% probability of amyloid positivity at age 82, whereas an individual in the 99th PHS 

percentile is predicted to reach 50% probability eight years prior, at age 74. Similarly, age 

for 50% probability of p-tau positivity for individuals in the 1st and 99th PHS percentiles is 

predicted at ages 83 and 75, respectively, again highlighting an eight-year shift in risk for 

p-tau abnormality related to PHS.

4. Discussion

In this study we demonstrate the utility of the Desikan AD PHS, both independently and 

integrated with complementary imaging and cognitive data, at predicting time to conversion 

from MCI to AD dementia and for enrichment of AD clinical trials. First, we leverage a 

multimodal approach to show that predicted time to conversion from MCI to AD can be 

optimized by integrating the PHS with an individual’s brain atrophy signature and memory 

performance. Next, we demonstrate that this MHS predicts rates of disease progression 

and can thus be implemented to enrich clinical trials for participants who are most likely 

to exhibit clinical decline and demonstrate treatment effects. Thus, the MHS represents a 

conceptual advance in precision medicine over prior multimodal models by predicting age of 

disease onset, presenting a novel approach that could be extended to other disorders beyond 

AD.

Given the heterogeneity of MCI and the prognostic uncertainty of the diagnosis, tools for 

precision modeling of clinical trajectories from the MCI stage are needed. Because of the 

complexity of disease presentation in prodromal stages, multimodal tools that integrate 

complementary AD biomarkers demonstrate superior performance to single modality 

methods. Here, we present the MHS as an optimized predictive model that leverages 

economical and non-invasive biomarkers of genetics, neurodegeneration, and episodic 

memory impairment. This multifactorial tool provides a clinically meaningful separation 

of AD conversion risk, with a greater than five-year distance in predicted conversion 

time between those in the 20th versus 80th MHS percentiles. Prior integrative models 

that combine measures of pathology, neurodegeneration, cognition, or genetics, have also 

shown promise for cross-sectional discrimination of AD [16, 30] or prediction of cognitive 

decline or disease progression [17, 31, 32]. Whereas these multimodal tools relied upon 

either costly (e.g., PET) or invasive (e.g., CSF) biomarkers, measures used in computation 
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of the MHS would require relatively convenient and cost-effective tests that are readily 

accessible in clinical settings. Furthermore, in contrast to prior models of AD classification 

[30] or disease conversion [32] that included APOE genotype, the MHS captures a more 

comprehensive genetic risk profile with the PHS.

Recent advances in the development of disease-modifying therapies for AD indicate 

that novel pharmaceutical agents may soon be readily available in clinical settings [33]. 

Nevertheless, several critical issues remain to be addressed to maximize clinical utility, 

including heterogeneity of treatment efficacy according to genetics, sex, and ethnicity, 

potential for serious adverse events, and establishing long-term slowing of disease 

progression. Thus, the race for an effective treatment continues, with unprecedented failure 

rates of past trials partially attributed to imprecise selection of trial candidates [34]. Due 

to the high financial cost, participant burden, and risk of side effects of clinical trials, 

there has been an urgent call for strategies to reduce required sample sizes by enrichment 

with precision selection tools, particularly with multivariate measures that optimize power 

estimates [35]. Whereas PET-based amyloid-positivity is commonly used for pre-screening, 

alternative cost-effective methods that do not require radiation exposure will help to 

streamline enrollment pipelines. Here, we present the MHS as a candidate trial enrichment 

approach that, by integrating genetic, MRI, and cognitive data, obviates the need for invasive 

lumbar puncture for measurement of CSF biomarkers, or prohibitive cost and radiation 

exposure from PET scans. Our results suggest that incorporating the MHS for trial screening 

could lower required sample sizes to a third of those needed without pre-screening. Even a 

simpler model combining the Desikan AD PHS with age, requiring only a blood or saliva 

sample, would reduce target sample sizes by nearly half. The MHS provides a framework 

for minimizing clinical trial cost and participant exposure to drug side effects through 

multimodal enrichment strategies, warranting further investigation to both replicate our 

findings and optimize pre-screening predictive models. Finally, our results provide novel 

evidence that the Desikan AD PHS, a key component of the MHS, is a sensitive measure 

of accumulating AD pathology. Although cross-sectional studies have reported that PRS 

are associated with CSF tau but are only weakly associated with amyloid [36, 37], we 

previously observed strong associations of the Desikan AD PHS with both amyloid and tau 

[9]. Here, we extend these findings to demonstrate that the PHS can predict the age at which 

clinically significant amyloid and p-tau appear, with onset of pathology at increasingly 

younger ages for those with higher PHS. This pronounced separation of pathology risk 

by PHS stratification highlights its correspondence with the defining pathological features 

of AD, further supporting its potential value for enriching clinical trials with individuals 

carrying a specified burden of the neuropathological target, or in clinical settings to identify 

patients who are ideal candidates for disease-modifying therapies. While an effective clinical 

screening tool should at minimum be sensitive to the underlying pathological target of 

interest, pathological burden does not perfectly correspond with disease course, as has 

been highlighted by the disappointing effects on clinical progression by otherwise effective 

disease-modifying agents. Furthermore, the extended preclinical period of AD during which 

pathology may present below abnormality thresholds, argues for alternative predictive tools 

that are independent of current pathological burden. The MHS could fulfill this need by 

providing a biomarker-agnostic indicator of likely time to disease onset that is sensitive 
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to core AD pathologies but can be implemented during an earlier window of opportunity 

during which material pathological burden has yet to manifest.

This study has some limitations. AD research has suffered from limited representation of 

minority groups, some of whom are at elevated risk for dementia, which is particularly 

problematic for genome-wide association studies requiring exceptionally large datasets. The 

PHS and MHS are not immune to this deficiency and may not generalize to non-white 

populations, as they were developed using a sample of predominantly white participants of 

European ancestry. Thus, the multimodal predictive framework reported here should serve as 

a foundation for developing population-specific AD models as data from underrepresented 

groups become increasingly available. Despite their elevated risk for AD, women were also 

underrepresented in this sample. Furthermore, the data presented here reflect models that 

require validation in an independent sample. While polygenic tools are expected to provide 

substantial benefit in terms of cost and patient burden by reducing need for PET scanning 

and lumbar puncture, evaluation of these models in clinical trial settings will be critical to 

validate potential savings. This proof-of-concept study illustrates the potential of the MHS 

but warrants further investigation to establish clinical relevance, which we are pursuing in 

studies of real-world clinical samples to guide implementation in clinical practice. Finally, 

inclusion of AD biomarkers that are currently under development, such as plasma p-tau or 

other blood-based measures [38], may improve prognostic accuracy of the MHS as these 

measures become clinically available.

5. Conclusion

In conclusion, the PHS and the MHS are promising predictive tools for identifying 

individuals with high probability of transitioning from MCI to AD dementia and of 

demonstrating significant clinical decline. In memory clinic settings, these tools may 

improve precision medicine approaches to personalized risk assessment of AD and to 

identify candidates for therapeutic interventions. They may further minimize clinical trial 

expense and subject burden by providing cost-effective screening tools for targeted selection 

of patients at precise stages along the AD continuum.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Multimodal prediction of conversion from MCI to AD dementia by PHS, brain 
atrophy, and memory.
Survival curves illustrate predicted probability of remaining free of AD dementia according 

to stratification by PHS models. Curves are shown for models using A) Age + PHS, B) 

Age + PHS + IHS, C) MHS (Age + PHS + IHS + RAVLT). IHS, imaging hazard score; 

MHS, multimodal hazard score; PHS, polygenic hazard score; RAVLT, Rey auditory verbal 

learning test
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Table 1.

Baseline characteristics for all participants (N=849) used in computation of the MHS.

Characteristic SMC
N=90

Early MCI
N=276

Late MCI
N=483

All Subjects
N=849

Age (mean, SD) 72.3 (5.8) 71.5 (7.3) 74.0 (7.5) 73.0 (7.4)

Women N (%) 55 (61.1%) 121 (43.8%) 182 (37.7%) 358 (42.2%)

MMSE score (mean, SD) 29.0 (1.2) 28.3 (1.6) 27.3 (1.8) 27.8 (1.8)

RAVLT score (scaled; mean, SD) 33.4 (37.1) 55.5 (34.2) 81.7 (29.5) 68.0 (36.2)

APOE4 carrier N (%) 30 (33.3%) 116 (42.0%) 259 (53.6%) 405 (47.7%)

MCI, mild cognitive impairment; MMSE, mini mental state exam; RAVLT, Rey auditory verbal learning test; SMC, subjective memory complaints
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Table 2.

Pearson’s correlation coefficients (95% confidence interval, CI) between scores from each predictive model 

and Clinical Dementia Rating – Sum of Boxes (CDR-SB) annual percent rate (APR) of change, and relative 

sample sizes needed for a hypothetical clinical trial after enrichment using the highest 50% risk from 

multivariate predictive models, with CDR-SB APR as the trial outcome.

Model Correlation with CDR-SB APR
(95% CI)

Relative sample size
(95% CI)

Age 0.20 (0.12, 0.26) 0.71 (0.50, 0.72)

Age + PHS 0.35 (0.29, 0.41) 0.52 (0.42, 0.59)

Age + PHS + IHS 0.53 (0.48, 0.59) 0.36 (0.29, 0.38)

MHS: Age + PHS + IHS + RAVLT 0.55 (0.50, 0.61) 0.33 (0.29, 0.38)

IHS, imaging hazard score; MHS, multimodal hazard score; PHS, polygenic hazard score; RAVLT, Rey auditory verbal learning test
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