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Climate-driven changes in the predictability
of seasonal precipitation

Phong V. V. Le 1,2,3 , James T. Randerson 2,4, Rebecca Willett5,6,
Stephen Wright7, Padhraic Smyth8,9, Clément Guilloteau2,
Antonios Mamalakis 10 & Efi Foufoula-Georgiou 2,4

Climate-driven changes in precipitation amounts and their seasonal variability
are expected in many continental-scale regions during the remainder of the
21st century. However, much less is known about future changes in the pre-
dictability of seasonal precipitation, an important earth system property
relevant for climate adaptation. Here, on the basis of CMIP6 models that
capture the present-day teleconnections between seasonal precipitation and
previous-season sea surface temperature (SST), we show that climate change is
expected to alter the SST-precipitation relationships and thus our ability to
predict seasonal precipitation by 2100. Specifically, in the tropics, seasonal
precipitation predictability from SSTs is projected to increase throughout the
year, except the northern Amazonia during boreal winter. Concurrently, in the
extra-tropics predictability is likely to increase in central Asia during boreal
spring and winter. The altered predictability, together with enhanced inter-
annual variability of seasonal precipitation, poses new opportunities and
challenges for regional water management.

Precipitation is a critical component of thehydrologic cycle andplays a
significant role in shaping the biodiversity of terrestrial ecosystems1,2.
It also structures socio-economic systems through influence on agri-
cultural production3,4 and water resources5. Over the past several
decades as a result of improvements in earth system models (ESMs)
and the availability of high-quality climate observations, seasonal
predictionof precipitation6 has becomean increasingly important tool
managers use to improve water and food security7–10 and support
ecological restoration11. The predictability of precipitation at seasonal
timescales is typically associated with large-scale variability of sea
surface temperature (SST)12,13, a principal forcing driver of global
atmospheric circulation. A number of studies, for example, have
identified that the patterns of SST anomalies occurring over the Indian
Ocean influence seasonal precipitation variability in Australia14,15,

Africa16–19, and parts of Asia20–22. Similarly, precipitation anomalies in
Amazonia are found to be associated with Atlantic and Pacific SST
anomalies in the tropics23–25. The patterns of SST anomalies and SST-
derived indices in the Pacific are also used for predicting winter pre-
cipitation over southern regions of the United States26–29.

Multiple lines of evidence indicate that modes of climate varia-
bility and associated teleconnections may change by the end of the
21st century30,31. For instance, recent studies have shown that the
variability of El Niño-Southern Oscillation (ENSO)-driven precipitation
is likely to be enhanced over the central-eastern Pacific owing to sur-
facewarming, even though change in the strength of ENSO-related SST
variability remains uncertain32–34. In addition, wintertime ENSO tele-
connections to Pacific North America are found to change more
strongly and consistently in models where the ENSO amplitude
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increases with future climate warming35,36. Precipitation-related tele-
connections of ENSO also exhibit considerable changes by the end of
the 21st century in other regions, including Australia, central Africa,
and thewest coast of SouthAmerica30,36.While pastworkhas evaluated
how climate modes and related teleconnections may evolve with
future climate, little is known about the consequences of these chan-
ges for seasonal precipitation predictability.

In this study, we examine future changes of seasonal precipitation
predictability over global land in response to climate change during
the 21st century. Predictability, being an intrinsic property of a system
and the theoretical upper limit to prediction, cannot itself be
evaluated37,38; however, it is typically estimated by the predictive skill
of a predictive model (what is referred to as “practical predictability”;
see “Methods” section). Here, seasonal precipitation predictability at
each location during each of the four seasons (boreal spring - MAM,
boreal summer - JJA, boreal autumn - SON, and boreal winter - DJF) is
assessed by the predictive skill of the best linear predictive model
using as predictors the leading modes of global SSTs in the 3-month
preceding season. We quantify changes in seasonal precipitation pre-
dictability as the difference between future (2049–2099) and histor-
ical (1964–2014) prediction skill using simulations from ESMs that
contributed to the 6th Phase of the Coupled Model Intercomparison
Project (CMIP6; see Methods). We provide evidence that ESMs exhibit
consensus regarding future changes in the spatial patterns of seasonal
precipitation predictability. These changes are likely to have sig-
nificant effects on sustainablewater resourcesmanagement, especially
in regions where limited water availability requires apportionment
between agriculture and natural ecosystems (e.g., southwestern Uni-
ted States and southern Africa).

In our analysis, we first analyze the spatial patterns of seasonal
precipitation predictability in observations and identify the main
sources of predictability during the historical period. In particular, we
use empirical orthogonal function (EOF) analysis to extract the prin-
cipal spatial variability patterns (EOFs) and principal component time
series (PCs) from global seasonal SST anomalies and apply multiple
linear regression of one-season lagged precipitation anomaly series
onto these PCs to developpredictivemodels of seasonal precipitation.
We examine a combination of PCs as predictors and identify the best
predictive model using the Nash-Sutcliffe Efficiency39 (NSE) as a skill
metric (see “Methods” section). Second, we select the CMIP6models40

that best capture the spatial patterns of the predictive skill in obser-
vations during the historical period and then use these models to
project future changes of seasonal precipitation predictability for
shared socio-economic pathways SSP2-4.5 (middle-of-the-road devel-
opment) and SSP3-7.0 (regional rivalry). SSP2-4.5 represents an inter-
mediate scenario of future emissions and is closest to the current CO2

emission track41–43. In contrast, SSP3-7.0 represents medium-to-high
scenario of emissions and has a higher signal-to-noise ratio than
moderate emission scenarios, making it easier to discern the climate
change signal from internal variability44.

Results
Spatial patterns and drivers of predictability of seasonal
precipitation
Seasonal precipitation predictability and the climate modes that
enable this predictability are season-dependent and spatially variable.
To assess predictability in the historical period, we examined different
subsets of predictors selected from the first 4 PCs of observed global
seasonal SST anomalies. For each subset of the predictors, the model
predictive skill (measured by theNSE)was computed at each 1°×1° grid
cell of the land surface, excluding arid areas whose long-term mean
total seasonal precipitationwas <50mm in each threemonth season45.
This low precipitation threshold was applied to avoid developing
predictive models in areas with well-defined dry seasons and in desert
areas where measurement uncertainties are higher. We compare in

Fig. 1 the fraction of the land surface with predictability of seasonal
precipitation for observations at or above a specific NSE value. Areas
with NSE >0 indicate predictive skill above using the seasonal mean
climatology (i.e., climatology alone corresponds to NSE =0). To avoid
overfitting and extract the most significant predictors for each region,
we examined two classes of predictive models. The first class of pre-
dictive models used the same first n-leading PCs (n≤4) as the pre-
dictor(s) for multiple linear regression (called “first n-leading-PCs”
models) in all grid cells. For this set of models, we observe an over-
fitting effect46whenmore than 2PCs areused, as revealedby a reduced
NSE computed from an out-of-sample 5-fold cross validation, except
during boreal summer ( JJA) where the best performance is achieved
with 3 PCs. The second class of predictive models used as predictors
only the subset of any of the 4 PCs of SSTs that provided the highest
level of model performance for each grid cell (called “best-n-PCs”
models, n ≤4). For this second class ofmodel, analysis of NSE from the
cross validation reveals that the best-2-PCs model (black dashed lines
in Fig. 1) is globally optimal for all seasons. The added flexibility of
combining 2 different PCs for each land grid also provides consider-
able improvement in model performance compared to the first n-
leading-PCs class of models (Fig. 1), and we therefore used this model
as the predictive model for all subsequent analyses, i.e., for the
assessment of predictability in CMIP6models during the historical era
and future periods from both the SSP2-4.5 and SSP3-7.0 scenarios.

Our analysis of the observations reveals strong seasonal variations
in the degree of precipitation predictability, providing a useful
benchmark for evaluating CMIP6 models. Boreal winter (DJF) pre-
cipitation is most predictable with about 58% of land surface area
showing NSE >0 and a larger fraction of land area showing predict-
ability at or above any other NSE value, compared to precipitation in
other seasons (Fig. 1). In contrast, precipitation in boreal spring (MAM)
is the least predictablewith about 49%of the global land area having an
NSE >0, and most of the regions showing NSE <0.25.

Figure 2 shows the spatial patterns of seasonal precipitation
predictability and the associated PCs (predictors) used at each grid
cell for the best-2-PCs model applied to the observations from the
historical period. Seasonal precipitation predictability varies con-
siderably by region and season (Fig. 2a–d). Much of the Amazonia
region shows high predictability during boreal winter (Fig. 2d) that is
consistent with past work identifying high levels of SST-driven pre-
dictability in the northern South America during this season24. Rela-
tively high values of seasonal precipitation predictability are also
found in the northwestern and southern parts of the United States
during boreal winter where precipitation is known to have tele-
connections with Pacific SSTs27,28. In contrast, northern Australia has
the highest predictability during boreal autumn (Fig. 2c). Predict-
ability across the Maritime Continent is relatively high in all seasons,
with a peak in boreal autumn. This pattern is in good agreement with
past work identifying that the predictability of precipitation in the
Maritime Continent is higher than in most other places because of
the strong and robust influence of ENSO (and its onset) near the
tropical warm pool47. As a function of latitude, seasonal precipitation
predictability is higher in the tropics than in the extra-tropics (Sup-
plementary Fig. 1). This pattern appears consistent with the fact that
tropical precipitation is more predictable than extratropical pre-
cipitation at time scales of months to a year48,49, and reflects the fact
that tropical predictability is mostly derived from the response of
moist convection to slowly varying forcing from SST50.

The different PCs used in the best-2-PCs model at each location
are shown in Fig. 2e–h. PC1 has the spatial structure (Supplementary
Fig. 2a1–d1) and year-to-year variability (Supplementary Fig. 3) of ENSO
and is the singlemost important PC during boreal autumn, winter, and
spring in the best-2-PCsmodel. Depending on the season, PC1 explains
18.6% (JJA) to 31.8% (SON) of the variance of global SST anomalies.
Meanwhile, PC2 appears to resemble the Pacific Decadal Oscillation51
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(PDO) pattern, which has an ENSO character but is stronger at high
northern latitudes and weaker in the tropics (Supplementary
Fig. 2a2–d2). PC3 and PC4 seem to be associated with the Atlantic
Multidecadal Oscillation (AMO)52 and North Pacific Gyre Oscillation
(NPGO)53 patterns, respectively (Supplementary Fig. 2a3–d4). Overall,
theprincipal spatial variability patterns are relatively consistent among
seasons in Supplementary Fig. 2, except PC4, suggesting that domi-
nant teleconnections often persist across multiple seasons. These
spatial patterns are also consistent with those shown in a previous
study54. However, as the variances explained by PC2 to PC4 are com-
paratively close to each other, their underlying physical modes of
variability are likely to be mixed. This mixing may lead to low corre-
lations between high order PCs and corresponding climate indices in
some seasons. One could use an unmixing mechanism, such as rota-
tion of PCs55, to possibly increase the physical interpretability of these
modes. This would however not affect the predictability results dra-
matically, as linearly re-combining the PCswouldnot change their total
information content and would likely result in the same predictive
power through a linear predictive model.

During boreal winter, PC1 (ENSO) contributes as a predictor of
seasonal precipitation in over 42%of the global landwith predictability
above climatology (i.e., summing the land surface area of all 1° × 1° land
grid cells with NSE >0; see “Methods” section) and plays an evenmore
dominant role in places with higher levels of predictability, including
northeastern Amazonia, southern United States, southern Africa, and
the Maritime Continent. This pattern of influence is consistent with
past analyses56–58 evaluating the impacts of ENSO teleconnections on
boreal winter precipitation. However, the dominant PC regulating
predictability also varies by season. For instance, PC3 emerges as the

primary driver of boreal summer precipitation for about 37% of the
land surface area (see Fig. 2f).

Future changes in seasonal precipitation predictability
Selection of climate models. To evaluate future changes in seasonal
precipitation predictability, we first identify from 26 ESMs (including
154 ensemble members, Supplementary Table 2) the subset of ESMs
which best reproduce in the historical period the spatial patterns of
precipitation predictability compared to observations (Fig. 3; see
“Methods” section). The selected best 10 performing CMIP6 models
show that they predict well for the right reasons, i.e., they also accu-
rately reproduce the first EOF of SST variability (Supplementary Fig. 4
shows EOF1 during winter), giving further confidence in the selection
of these models. The multi-model ensemble (MME) means of the
seasonal precipitation predictability (i.e., the grid-wise average NSE
values across the different models and model ensembles; see “Meth-
ods” section) for the 10 selected climate models (including 32
ensemble members) demonstrate the ability of these models on
average to capture the spatial and seasonal predictability patterns of
the observations (Supplementary Fig. 5). Similar to the observations,
the selected models show higher levels of seasonal precipitation pre-
dictability during boreal winter than other seasons (Supplementary
Fig. 5d). Detailed comparisons of boreal winter precipitation predict-
ability between each model and observations are further shown in
Supplementary Fig. 6.

Future change. By the end of the century for the medium-to-high
emission (SSP3-7.0) scenario, the selected CMIP6 models project sev-
eral consistent continental-scale changes in seasonal precipitation

Fig. 1 | Percent of land area with predictability above a given threshold.
a–d Percent of land area whose predictability, as measured by the Nash-Sutcliffe
Efficiency (NSE), exceeds a given value in a boreal spring, b boreal summer,
cboreal autumn, anddborealwinter, using aspredictorsdifferent combinationsof
the first 4 principal components (PCs) of the previous season sea surface tem-
perature (SST). These relationships were derived using an out-of-sample 5-fold
cross validation approach with 1964-2014 observations of SSTs and precipitation

(see “Methods” section for details). Note that the best-4-PCmodels are identical to
the 4-leading PCsmodels (red solid lines) and not shown. The percent of land area
is computedover all grid cells for whichNSE≥0 (NSE =0 implies no predictive skill
beyond climatology), excluding arid areas where the corresponding long-term
mean seasonal precipitation is less than 50mm. Grey shading indicates NSE values
that are not significant at a 95% confidence level (see “Methods” section).
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predictability (Fig. 4). In particular, seasonal precipitation predict-
ability is likely to increase in the tropics between 23oN and 23oS, except
for northern South America and eastern India.Models show the largest
and most consistent increases of predictability in the Maritime Con-
tinent during boreal summer and central Africa during boreal winter.
In the extra-tropics, seasonal precipitation predictability is projected
to increase significantly in central Asia (including Iran, Afghanistan,
and Turkmenistan) during boreal winter and boreal spring. The pro-
portion of models that show an increase (P+

ΔNSE) or decrease (P�
ΔNSE) in

predictability of more than 0.05 in NSE, representing a consensus
among selected models, is further shown in Supplementary Fig. 7. In
general, the CMIP6 models used in our study agree on the sign of the
projected changes in predictability for a number of regions, including
central Africa, central Asia, Amazonia, and Maritime Continent. For
SSP2-4.5, the selected CMIP6models project similar spatial patterns of
changes in seasonal precipitation predictability (Supplementary Fig. 8)

but at smaller magnitudes compared to SSP3-7.0, owing to the slower
warming rate of future climate in SSP2-4.5. This consistency among
models and experiments provides confidence in our finding that sea-
sonal precipitation predictability is robust within the CMIP6 models,
and this change is likely driven by global warming. While the MME
mean estimate of predictability also changes in several other regions,
the high level of variability among differentmodel estimates limits our
ability to draw a robust conclusion regarding the possible sign and
magnitude of potential change.

We hypothesize that changing SST variability and total seasonal
precipitation variability over land contribute to the alteration in sea-
sonal precipitation predictability during the latter half of the 21st
century. To investigate this hypothesis, we examined changes in SST
and precipitation variability between the future (SSP3-7.0 scenario)
andhistorical periods. For SST, dependingon the season, an averageof
7 of 10 selected climate models (70%) show an increase in both the

Fig. 2 | Predictability of seasonal precipitation and associated sources of pre-
dictability based on observations. a–d, Predictability of seasonal precipitation
measured by the Nash-Sutcliffe Efficiency (NSE) in a boreal spring, b boreal sum-
mer, c boreal autumn, and d boreal winter obtained from the best-2-PCs model,
with principal components (PCs) extracted from the previous season sea surface
temperature (SST) over the 1964-2014 period using observations. e–f, Sources of

predictability of seasonal precipitation (the best-2-PCs used in the predictive
model) in e boreal spring, f boreal summer, g boreal autumn, and h boreal winter.
Inset bar plots in e, f show the fraction of land area (FLA) associated with the PCs as
sources of predictability. Grey dashed regions in a–h indicate arid areas whose
long-termmean total seasonal precipitation is <50mm, which were excluded from
the analyses.
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total variance explained by the first PC (Supplementary Fig. 9) and the
magnitude of Niño3.4 SST variability (Supplementary Fig. 10), repre-
senting a future increase in the dominance of ENSO dynamics as a
driver of global interannual SST variability, with the MME mean
variability explained by PC1 increasing the most in boreal autumn
(2:3 ± 4:8%). The change in SST was further supported by a compar-
ison between EOF1 patterns over the two periods, that is
ΔEOF1 = EOF1future � EOF1historical

� �
where the angular brackets denote

the ensemble average over the 10 selectedmodels, showing a coherent
structure, weakened over the equatorial central and eastern Pacific
during boreal spring, but enhanced during boreal autumn and boreal
winter (Supplementary Fig. 11). This projected amplification of ENSO

may create favorable conditions for strengthening the ENSO tele-
connections overmany land regions driving increased interannual and
seasonal variability in regional temperature and precipitation30,59.

In addition, most CMIP6 models project an increase in year-to-
year variability of seasonal SST in the north Atlantic, tropical central
Pacific, and near the Maritime Continent region (Supplementary
Fig. 12). Potential consequences of increases in both the mean state
and variability of tropical SSTs include an increased frequency of
extreme El Niño events due to promoting atmospheric convection and
an eastward shift of ENSO precipitation teleconnections60. For pre-
cipitation, projected changes in the seasonal precipitation amounts
differ by region and season (Supplementary Fig. 13a–d). Overall,

Fig. 3 | Comparison of spatial patterns of predictability scores between
observations and CMIP6 models. Pattern correlation coefficients of the map of
predictability score (PCCNSE) between observations and 26 CMIP6models for each
season. In eachmodel, themapof predictability score for eachensemblemember is
obtained from the linear model that uses the best 2 principal components (PCs) as

predictors for each grid point. The bars and numbers on top represent the multi-
ensemble mean (PCCNSE) and the number of ensemble members (ne) of each
model, respectively. For models that ne ≥ 3, vertical lines indicate one standard
deviation of PCCNSE. Grey shading indicates the best 10 performing models
(boldface, marked in boxes) that were selected for analyses of future changes.

Fig. 4 | Projected changes in the predictability of seasonal precipitation under
global warming scenario SSP3-7.0. a–d, Multi-model ensemble (MME) mean
changes in seasonal precipitation predictability (ΔNSE) between historical
(1964–2014) and future (2049–2099) periods from 32 ensemble members of the
best 10 performing CMIP6models (see Fig. 3) for a boreal spring, b boreal summer,

cboreal autumn, anddborealwinter. Stippling indicates regionswhereat least 80%
of the models show the same sign of change. Grey dashed regions indicate arid
areas whose long-term mean total seasonal precipitation is <50mm, which were
excluded from the analyses.
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seasonal precipitation is projected to increase in the Northern Hemi-
sphere temperate and boreal zones, but to decrease at varying degrees
inCentral andSouthAmericas and southernAfrica inmost seasons61–63.
However, models consistently project an increase in interannual pre-
cipitation variability in all seasons and in many regions, except a
modest decrease in southern Africa and eastern South America during
boreal autumn (Supplementary Fig. 13e–h). Previous studies have
shown that changes in SST variability may potentially affect atmo-
spheric teleconnection patterns64,65, which subsequently influence the
precipitation predictability from SST. The atmosphere may also
become less efficient at propagating dynamical signals from tropical
climate modes into the extra tropics as a consequence of more rapid
eddy expansion and dissipation from climate warming66. This may
explain some of the structure of predictability changes we see in the
northern extratropics, although future research is needed to identify
interactions between this mechanism and the intensification of ENSO
SST variability observed in many of the models (Supplementary
Figs. S9 and 10).

From a wildfire and drought stress perspective, northern South
America appears particularly vulnerable based on the results of our
analysis. Specifically, precipitation during the dry season (in boreal
winter) is projected to decline, interannual variability is projected to
increase, and seasonal predictability is expected to decline, increasing
the risk of fire ignition in tropical forest ecosystems, the likelihood that
fires will grow to larger sizes67,68. At the same time, interannual varia-
bility is projected to increase, potentially contributing to more
extreme periods of drought and fire activity. Finally, seasonal pre-
dictability is expected to decline, limiting options for seasonal fire
prediction69 and risk mitigation.

In contrast, the increase of predictability in central and northern
Africa and across the Maritime Continent could be attributed to the
increase of ENSO SST variability and changes in the tropical SST-
precipitation relationship, and may strengthen resilience with respect
to peat and ecosystem management. Further evaluation of the
mechanisms responsible for the projected changes in precipitation
predictability identified here will require use of idealized model
experiments70 or climate network analysis that can depict causality71,72.

We note that seasonal precipitation predictability, as defined here
based on the predictive skill of the best linear model that uses as
predictors previous-season SSTs, cannot be directly compared to the
“potential precipitation predictability” (PPP) concept, which was
reported in a recent study70 to decrease under global warming. PPP
was defined based on the multiscale dynamics of precipitation alone
and not considering changes in the sources of predictability (i.e., SSTs)
or atmospheric teleconnections under warming. SST persistence or
oceanmemory, a major source of predictability in the climate system,
is projected to increase at week-to-week73 but decrease at year-to-
year74 time scales. These opposite trends in SST persistence are likely
to have different effects on precipitation variability at different time
scales and on the lead times at which SST predicts precipitation. While
these findings have implications for changes in persistence-based
predictions of sea surface thermal conditions at corresponding time-
scales, the effect of changes in ocean memory on the relationships
between SST and (lagged) precipitation at a seasonal timescale
remains unknown and is an important topic for future study. Further
examination of the changes in the persistence of SST at seasonal time
scale may be helpful for understanding the mechanisms responsible
for future changes in seasonal precipitation predictability.

Discussion
Climate warming is expected to modify primary climate modes of
variability across scales and also their teleconnections with precipita-
tion over land75,76. In this study, we examine projected future changes
of seasonal precipitation predictability from previous-season SSTs

caused by anthropogenic forcing of the climate system. We show that
climate warming may increase the interannual variability of SSTs and
precipitation leading to changes in seasonal precipitation predict-
ability in both the tropics andextra-tropics. Precipitation predictability
is projected to increase in the tropics throughout most of the year
except in northern South America. In the extra-tropics, precipitation
predictability is likely to increase in central Asia during wintertime.

Changes in seasonal precipitation amounts and their interannual
variability under global warming pose acute challenges for regional
water resources management. These challenges will be further ampli-
fied by a decrease in our ability to perform seasonal forecasts with
several months lead time, especially in “hotspots” where precipitation
is critical for agriculture and ecosystems or areas where base-state
precipitation is veryhighor low.Collectively, the results fromourwork
identify several high-risk regions and highlight the importance of
understanding the causal SST-seasonal precipitation relationships in
state-of-the art climate models for improving seasonal prediction of
precipitation, a necessary condition for sustainable management of
water resources during a period of rapid climate change.

Methods
Observations
Seasonal average sea surface temperature (SST) at 1° × 1° spatial
resolution was derived from the COBE-SST2 datasets. Seasonal total
precipitation over land was derived from two data sets: the Global
Precipitation Climatology Project (GPCP; 2.5° × 2.5° resolution) and
Global PrecipitationClimatology Center (GPCC; 1° × 1° resolution). The
GPCP integrates analyses from satellite and gauge measurements but
is only available since 1979. The GPCC is based on gauge analysis only
and available since 1948. We used GPCP as the main precipitation
dataset and combined GPCP (bilinearly interpolated to 1° × 1° resolu-
tion) and GPCC to extract observations of seasonal total precipitation
(at 1° × 1° resolution) over land from 1964 to 2014, resulting in 50 years
for each season. Specifically, at each location and season, using the
overlapping period 1979–2014, the differences in the mean and
variability of the two datasets were evaluated. A linear adjustment was
then applied to GPCC data for the period 1964–1979 to correct for the
potential differences of the two datasets before combining with GPCP.

Seasonal anomalies of precipitation and SST referenced to the
climatological mean of each season were constructed and detrended
prior to analyses. Detrendingwasperformedby subtracting a centered
moving average from the original anomaly time series, where the
centeredmoving average was calculated over a timewindow of length
τ = 11 years. In this study, the 4 seasons were defined as: boreal spring -
MAM (March–April–May); boreal summer - JJA (June–July–August);
boreal autumn - SON (September–October–November); and boreal
winter - DJF (December–January–February).

Climate Models
We examined a total of 26 CMIP6models in our analysis (including 154
ensemble members for each experiment; Supplementary Tables 1 and
2). The criteria for including a given model were whether it had
simulations available for the historical (1964-2014, recent past climate)
and SSP3-7.0 and SSP2-4.5 (2049-2099, future climate) experiments at
the time the data were downloaded (October 2022). For each model,
we used only initial condition ensemble members that are available in
all experiments for consistency. For the historical experiment, all
simulations were forced by common datasets using the observed
greenhouse gas (GHG) concentrations and aerosol emissions77,78. For
the SSP3-7.0 experiment, all simulations were prescribed with the
same future emissions and land use changes that follow the regional
rivalry SSP3 pathway with a global mean forcing of 7.0Wm−2 by 2100
relative to the pre-industrial period44,79,80. Similarly, for SSP2-4.5, all the
simulations followed the SSP2 pathway (middle of the road
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development) with a global mean forcing of 4.5Wm−2 by 2100 relative
to the pre-industrial period. All model outputs and observations were
resampled to a common 1° × 1° spatial resolution by using bilinear
interpolation. Similar to the observations, seasonal anomalies of each
field referenced to the climatological mean of each season were con-
structed and detrended using the moving average method prior to all
analyses. Some climate models do not reasonably capture the
observed patterns of seasonal precipitation predictability (as shown in
Fig. 2), and these models were excluded from the analysis for evalu-
ating future changes of predictability (see details in Climate Model
Selection for Future Projections section). We also repeated the ana-
lyses using linearly detrended anomalies, which yield similar results to
the moving average detrending method (See Supplementary Figs. 14
and 15), although the changes of seasonal precipitation predictability
were found to be slightly smaller.

Empirical orthogonal function analysis of SSTs
We performed an empirical orthogonal function (EOF) analysis81 of
global seasonal SSTs to: (i) isolate dominant spatial modes of variability
(EOFs) and (ii) reduce the precipitation predictors to only a smaller
number of principal component (PC) time series. The spatial patterns of
EOFs and the percent variance explained as extracted from the obser-
vations of SST are presented in Supplementary Fig. 2. The leading four
PCs, which collectively explain at least 40% of the global seasonal SST
variance, were retained for predicting seasonal precipitation in the next
season. For each CMIP6model, EOF analysis was applied independently
across experiments for the historical and future periods.

Assessment of predictability
To examine seasonal precipitation predictability, we constructed the
best multiple linear regression model between seasonal precipitation
and the leading modes of global SSTs in the previous season. Specifi-
cally, the predictands ðŷl,sÞ were seasonal precipitation anomalies in
season s (e.g., boreal winter) at each grid point l of the land surface,
and the predictors (xs�1

j ) were the PC time series obtained from EOF
analysis of global SST anomalies in the previous season s � 1 (e.g.,
boreal autumn):

ŷl,s = βl
0 +

X
j

βl
j ×x

s�1
j ð1Þ

where the subscript j indicates the indices of the best 2 predictors
identified for each grid point (see Fig. 1 and Predictability Score
section below). At each land grid point l the combination of any 2
PCs chosen from the first 4 PCs showing the highest predictive skill
was selected as the corresponding predictors of precipitation for
the grid point. The parameters to fit were the intercept βl

0 and the
coefficient βl

j associated with each predictor xs�1
j , which were esti-

mated from the in-sample data by means of a 5-fold cross validation
to mitigate overfitting46 and ensure a rigorous assessment. The
regression model was then evaluated using the remaining out-of-
sample data. Overall, the best-2-PCs predictor model exhibited the
highest predictability score compared to other combinations of
PCs. These best 2 predictors (i.e., PCs) were identified as the two
primary sources of predictability at each grid cell and Fig. 2e–h
(inset bar plots) show the fraction of land area (FLA; latitude-
dependence adjusted) whose predictability is derived from those
PCs, calculated as:

FLAj,s =

PNj,s

l= 1AcosðλlÞPNG
l= 1AcosðλlÞ

ð2Þ

whereA is the area of a land grid cell on a uniform latitude × longitude
grid; λl is the latitude of the land grid cell l; NG is the number of land

grid cells over the entire globe, excluding arid regions; and Nj,s is the
number of land grid cells for which PCj contributes as one of the two
predictors of precipitation for the season s. Since two PCs serve as
sources of predictability for a land grid cell for a season s, we note
that

P4
j = 1 FLAj,s 2 ½0,2�.

For each CMIP6 model, the above analysis was repeated inde-
pendently for each ensemble member to get the model average (and
uncertainty if multiple ensemble members were available), and the
best-2-predictormodelwas applied independently across experiments
for the historical and future periods.

Predictability score
The Nash-Sutcliffe Efficiency (NSE) was used to evaluate the predictive
skill of each fitted model and served as a measure of predictability
(predictability score). For a particular season and at a specific grid
point on the land surface, the NSE is defined as:

NSE = 1�
Pn

i = 1 yi � ŷi
� �2

Pn
i= 1 yi � �y

� �2 ð3Þ

where yi is seasonal precipitation anomaly for the ith year; ŷi is the
predicted seasonal precipitation anomaly for the ith year; �y is the long-
termaverage of seasonal total precipitation anomaly (equal to 0 in this
case); and n is the number of years. NSE < 0 means that the model has
no predictive ability (worse than climatology for which NSE =0).
NSE >0 indicates anacceptable level ofmodel predictive performance,
with NSE = 1 indicating a perfect prediction.

To estimate the 95% confidence level that NSE is not significant
shown in Fig. 1, we used the Monte Carlo simulation approach as
follows: (i) for each land grid cell (excluding arid regions) and each
season, observed seasonal precipitation anomaly time series was
randomly shuffled and linearly regressed against the original time
series of the two corresponding predictors (i.e., PCs) using a 5-fold
cross validation to calculate the NSE values; (ii) repeated the process
1000 times (all land grid cells and 4 seasons for each time) and
identified the 95th percentile of the obtained NSE distribution
is ~0.013.

For a climate model m with ne ensemble members, the multi-
ensemble mean (i.e., the average across all ne ensemble members of
that model m) of change in seasonal precipitation predictability for a
particular season and for each grid cell is computed as:

ΔNSEm =
1
ne

×
Xne

i= 1

max NSEfuturem,i , 0
� �

�max NSEhistoricalm,i , 0
� �h i

ð4Þ

The above equation implies that the climatology prediction is
used if the best 2-PC linearmodel isworse than climatology. Themulti-
model ensemble (MME) mean (i.e., the average obtained from all
selected climate models) of the change of predictability is calculated
as:

ΔNSE=
1
M

×
XM
m= 1

ΔNSEm ð5Þ

in which M is the number of CMIP6 models selected from the perfor-
mance evaluation (M = 10). Note that, despite differences in the num-
ber of ensemble members ne across models, selected climate models
were given equal weight in the calculation of ΔNSE. The proportion of
models showing an increase in seasonal precipitation predictability, or
P+
ΔNSE (%), is then calculated as:

P+
ΔNSE =

100
M

×
XM
m= 1

Θ ΔNSEm � δ
� � ð6Þ
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and the proportion of models showing significant decrease in pre-
dictability, or P�

ΔNSE (%), is:

P�
ΔNSE =

100
M

×
XM
m= 1

Θ �ΔNSEm � δ
� � ð7Þ

where δ=0.05 is the threshold of significant change, ΘðxÞ is the Hea-
viside theta-function which takes the values Θ xð Þ= 1 for x ≥0 and
Θ xð Þ=0 for x <0.

Selection of Climate Models for Future Projection
To select climate models for assessing future changes in seasonal
precipitation predictability, we examined the ability of each model in
the historical period to reproduce the seasonal precipitation predict-
ability in the observations. In particular, for a model m with ne

ensemble members, we calculated the multi-ensemble mean (the
average of all ensemblemembers of thatmodelm) pattern correlation
coefficient (PCC) of seasonal precipitation predictability scores
(represented by the spatial patterns of NSE) for each season between
the observed data and historical model simulations, defined as:

PCCm,NSE =
1
ne

×
Xne

i= 1

PN
l= 1 NSEo,l � NSEo

� �
NSEim,l � NSE

i
m

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

l= 1 NSEo,l � NSEo
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

l= 1 NSEim,l � NSE
i
m

� �2
r

ð8Þ

where NSEo,l and NSEim,l are the predictability scores of precipitation
at the same land grid point l obtained from observations and

model ensemble member i, respectively; NSEo =
PN

l = 1
NSEo,l
N and

NSE
i
m =

PN

l= 1
NSEim,l

N ; and N is the total number of land grid points with
acceptable predictability in the observations (NSEo,l >0). This means
we ignored areas with no predictive ability in the observations,

meaning that the calculation of PCCm,NSE only includes land grid points
l where NSEo,l>0. For each climate model, we identified the season

with the worst performance (smallest PCCm,NSE among all 4 seasons):

PCC
*
m,NSE =minðPCCMAM

m,NSE,PCC
JJA
m,NSE,PCC

SON
m,NSE,PCC

DJF
m,NSEÞ ð9Þ

We ranked models according to their PCC *
m,NSE (from largest to

smallest) and selected the top 10 best performing models, ensuring
good performance of these models throughout the year, to assess the
future changes of seasonal precipitation predictability. In Fig. 3, for
models that have ne ≥ 3 the vertical lines indicate the ensemble-to-
ensemble (or internal) variability (as measured by the standard
deviation of the PCCm,NSE) that arises from complex interactions
among different components of each specific model. The internal
variability is relatively small in the selected climate models, providing
more confidence in the selectionof thosemodels for futureprojection.
Internal variability for models that have ne <3 is not shown as not
enough realizations to compute a standard deviation.

Changes in precipitation and EOFs
The differences in seasonal total precipitation and EOFs between the
historical and SSP3-7.0 (or SSP2-4.5) runs defined the future changes in
seasonal total precipitation and EOFs, respectively.

Changes in Niño3.4 SST variability
Detrended time series of seasonal SST anomalies were averaged over
the region of Niño3.4 (5oS–5oN, 170oW–120oW) for each season. In
Supplementary Fig. 10, we compared the standard deviation of the

Niño3.4 averaged SST anomalies between the historical (1964–2014)
and future (2049–2099; SSP3-7.0 scenario) periods.

Data availability
The CMIP6 data are available at https://esgf-node.llnl.gov/search/
cmip6/. COBE-SST2 data is available at https://www.esrl.noaa.gov/psd/
data/gridded/data.cobe2.html. GPCP is available at https://psl.noaa.
gov/data/gridded/data.gpcp.html. GPCC data is available at https://
climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-
climatology-centre.

Code availability
The code associated with this paper are freely available for download
in SPP repository, https://doi.org/10.5281/zenodo.8015084.
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