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Professor Jiun-Shyan Chen, Chair 

 

 

Hydro-mechanical damage processes occur in numerous geological hazards and 

engineering applications. Despite considerable effort made in the past years, reliable numerical 

prediction of failure processes in multiphase porous media remains challenging. This is mainly 

due to the complexity of the involved multi-physical phenomena, as well as the ineffectiveness 

of conventional mesh-based methods (e.g., FEM) which suffer from large deformation-induced 

mesh distortion issues and exhibit non-convergent solutions for damage and fracture problems. 

The objective of this work is to develop a robust meshfree computational framework for 

effective modeling of hydro-mechanical damage processes. To this end, a fluid pressure 

projection method is employed in conjunction with the stabilized conforming nodal integration to 



 

xvii 

achieve a stable reproducing kernel mixed formulation for poromechanics. Moreover, a damage 

particle method is developed for fracture modeling, where a smeared description of cracks is 

adopted to circumvent the burden associated with modeling complex crack patterns. To eliminate 

the pathological discretization size sensitivity, a scaling law is introduced in the damage model 

to ensure that the bulk damage energy dissipation over the nodal representative volume is 

consistent with the surface fracture energy of the crack segment. In addition, the smeared strain 

is computed as the boundary integral of displacements in each nodal representative domain, 

which avoids the ambiguity of taking direct derivatives of non-smooth displacements in the 

cracking region. As such, the computation of field and state variables along with the 

regularization procedure are all performed at nodal points, without any interpolation commonly 

needed in FEM. By incorporating the hydro-mechanical coupling, the damage particle method is 

capable of capturing the growth of fluid-driven cracks without tedious treatments of moving 

discontinuities. The effectiveness of the developed meshfree formulation is demonstrated in the 

modeling of hydraulic fracturing and landslides, which involves extreme deformation 

phenomena and interactions between solid, water and air phases. 



 

1 

Chapter 1 

Introduction 

 

In this chapter, the motivation for the present research work is introduced in Section 1.1, 

followed by the objectives of the research in Section 1.2. An outline of this dissertation is given 

in Secrion 1.3. 

1.1   Motivation 

Damage processes in multiphase porous media occur in numerous geological hazards and 

engineering applications. Typical examples are the rainfall-induced landslides which have 

caused significant casualties and economic losses worldwide [Petley (2012); Haque et al. (2017)]. 

Although extensive slope stability models have been developed, reliable numerical prediction of 

the failure process and its impact on the surroundings is still lacking because of the complexity 

of the involved multi-physics [McDougall (2016)]. On the application side of the damage 

processes in porous media, the hydraulic fracturing [Smith and Montgomery (2015)] has been 

utillized in the petroleum industry as a key technology to enhance the oil and gas productivity, 

even though the knowledge of the actual fracturing process remains mostly empirical [Bazant et 

al. (2014)]. 

To achieve reliable and efficient modeling of the abovementioned hydro-mechanical 



 

2 

damage processes, various computational formulations have been proposed over the years. 

However, the complex material failure mechanisms, extreme deformation and the interactions 

between the fluid and solid constitutions in the porous media still pose significant challenges to 

conventional numerical methods. For instance, as the ultimate impact of landslides depends not 

only on the failure initiation stage but also the post-failure process, the run-out analysis is of 

great importance in landside risk assessment and mitigation design, especially in cases involving 

extremely rapid, flow-like landslides, such as debris flows and rock avalanches [McDougall 

(2016)]. However, in these scenarios, the conventional mesh-based methods (e.g., FEM) often 

become ineffective due to mesh distortion issues which appear in large deformation problems. 

Meshfree methods (e.g., the Reproducing Kernel Particle Method [Liu et al. (1995); Chen et al. 

(1996)]), on the other hand, are well suited for capturing extreme deformation behaviors, because 

they naturally avoid computational difficulties associated with distorted or low-quality meshes 

[Chen et al. (1996); Chen, Hillman, Chi (2017)]. Nevertheless, current research on the 

development of robust meshfree methods for coupled hydro-mechanical analysis of porous 

media is still rare and deserves investigation. 

Moreover, although fracture modeling has been of interest to the engineering community 

for decades, it remains tedious to capture a large set of evolving fractures using conventional 

approaches. For the discrete crack approaches, explicit tracking and modeling of discontinuous 

surfaces cause a number of non-trivial treatments, such as subdivision of quadrature cells, 

modification of mesh topology or nodal neighbor list, addition of extra nodal degrees of freedom, 

etc. These treatments greatly increase the computational complexity, especially when crack 

patterns are complicated (e.g., crack joining and branching) and hydro-mechanical couplings 

need to be considered. The smeared crack approaches, on the other hand, offer the advantage of 
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modeling fractures in a simple manner, where the sharp discontinuities are smeared over a finite 

domain and cracking effects are captured through a softened stress-strain law. Nonetheless, 

numerical methods based on smeared crack models often show mesh sensitive behaviors and 

yield non-convergent solutions upon model refinement. Although various regularization 

techniques, such as non-local damage models, have been developed to ensure convergent 

solutions in the smeared crack modeling, they are often computationally quite expensive for 

solving large-scale geotechnical engineering problems. Therefore, the development of an 

efficient and robust numerical modeling approach for the simulation of hydro-mechanically 

coupled fracturing processes is essential. 

1.2   Objective 

The objective of this work is to develop a meshfree method for the effective numerical 

simulation of hydro-mechanical damage processes in multiphase porous media. The specific 

developments are summarized as follows: 

1) Development of a stable reproducing kernel mixed formulation for fully coupled 

hydro-mechanical analysis of porous media. Numerical modeling of reservoirs with low 

permeability or under nearly undrained conditions suffers from spurious fluid pressure 

oscillations due to the improper construction of approximation spaces. To address this 

issue, a fully coupled, stabilized meshfree formulation is developed based on a fluid 

pressure projection method, in which an additional stabilization term is added to the 

variational equation to correct the deficiency of the equal-order u-p reproducing kernel 

approximation. The projection scheme is formulated under the SCNI (Stabilized 
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Conforming Nodal Integration) framework which enables a significant enhancement of 

the computational efficiency and accuracy, and the spurious low-energy modes of nodal 

integration are also eliminated. The effectiveness of the proposed meshfree method is 

demonstrated by solving several hydro-mechanically coupled problems. 

2) Development of a damage particle method for smeared modeling of brittle fracture. In 

this approach, the smeared strain is defined by the divergence operation with a boundary 

integral of displacements in each nodal representative domain, thus the ambiguity of 

taking direct derivatives of non-smooth displacements in the smeared cracking region is 

avoided. To address the discretization size sensitivity issue, a scaling law is introduced to 

the damage model based on the equivalence between the bulk damage energy dissipation 

and the surface fracture energy of the associated crack segment over the nodal 

representative domain. This approach is formulated under the SCNI framework, which 

allows the field and state variables to be calculated and stored at the same set of particles, 

avoiding interpolation of variables between nodal points and Gauss points in the 

conventional finite elements. Several numerical examples are presented to examine the 

effectiveness of the proposed method for fracture modeling. 

3) Development of a hydro-mechanically coupled damage particle method for hydraulic 

fracturing modeling. The damage particle method is extended under the reproducing 

kernel mixed formulation, where the regularized smeared crack model is introduced to 

capture the fluid pressure-driven crack growth in fluid-saturated porous media. Moreover, 

convergent approximation of the COD (Crack Opening Displacement) is obtained based 

on the damage particle representation of fractures, and the extracted COD measure is 
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employed to define an anisotropic permeability model which can describe the enhanced 

fluid flow along fracture path. The resulting hydro-mechanically coupled damage particle 

method is shown to be effective in hydraulic fracture modeling. 

4) Development of a stabilized semi-Lagrangian reproducing kernel mixed formulation for 

nonlinear modeling of multiphase porous media with application to landslide simulation. 

The semi-Lagrangian framework enables a robust approach to modeling extreme large 

deformation phenomena involving material flow and separation, and hydro-mechanical 

coupling of solid, water and air phases. To achieve a stable and accelerated solution to 

the coupled poromechanical problem, the naturally stabilized nodal integration scheme is 

employed, where implicit gradient-based stabilization terms associated with the strain 

and fluid pressure fields are introduced. The capability of the semi-Lagrangian 

formulation is demonstrated in several numerical examples, including post-failure 

modeling of a partially saturated levee. 

1.3   Outline 

The remainder of this dissertation is organized as follows. In the next chapter, an 

overview on fracture modeling approaches and meshfree methods for modeling multiphase 

porous media is given, along with discussions on the advantages and limitations of current 

computational methods. In Chapter 3, the reproducing kernel mixed formulation for 

hydro-mechanical analysis of saturated porous media is presented, where the fluid pressure 

projection method is formulated under the SCNI (Stabilized Conforming Nodal Integration) 

framework. Next, the damage particle method for smeared modeling of brittle fracture is 
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presented in Chapter 4, which is further extended for hydraulic fracture simulation by the 

incorporation of hydro-mechanical coupling effects in Chapter 5. Furthermore, the naturally 

stabilized nodal integration is employed in the semi-Lagrangian reproducing kernel mixed 

formulation for modeling partially saturated deformable porous media with application to 

run-out analysis of landslides in Chapter 6. Finally, conclusions and discussions on future 

research directions are given in Chapter 7. 
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Chapter 2 

Literature Review 

 

In this chapter, a general overview of poromechanics and associated numerical methods 

are reviewed in Section 2.1 and Section 2.2, respectively. Next, progress and challenges in 

modeling hydro-mechanical damge processes are discussed in Section 2.3. 

2.1   Poromechanics for Multiphase Geomaterials 

Geomaterials (e.g., soils and rocks) are naturally-occurring mixture of mineral, organic 

ingredients, cracks and open pores, which are filled with one or several types of fluids, and the 

interaction between the solid deformation and the fluid flow often have a significant effect on the 

material behaviors as well as associated failure processes. For instance, settlement of building 

structures on saturated soils can occur as the fluid is squeezed out slowly. During heavy rainfall, 

the negative water pressure (often called ‘suction’) in unsaturated soils can be significantly 

altered, which leads to reduced effective stress and shear strength of the solid skeleton, and 

ultimately induces landslides and debris flows. Similarly, a saturated or partially saturated soil 

can substantially lose strength and behave like a liquid (often referred to as ‘soil liquefaction’) in 

response to a rapid earthquake loading. In the process of hydraulic fracturing, cracks are formed 

in rocks due to the high pressure of injected fracking fluid. Meanwhile, hydraulic properties of 

rocks are altered and an enhanced fluid flow network is created by the interaction between the 
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hydraulic fractures and the natural fractures (faults, joints, bedding planes, etc.), which lead to 

the increased oil and gas production in low-permeable reservoirs. 

Obviously, understanding the multi-physical response in porous geomateirals is important 

for a wide spectrum of engineering applications. To this end, the poromechanics theories as an 

extension of solid mechanics have been continuously developed since the classical contributions 

of Terzaghi (1925) to consolidation analysis. [Biot (1941)] first presented the theory of 

poroelasticity for isothermal, quasi-static phenomena in fluid-saturated porous media, which was 

later reformulated in [Rice and Cleary (1976)]. Dynamic effects were incorporated in [Biot 

(1956ab)], and non-isothermal effects were considered in [Palciauskas and Domenico (1982)], 

among many other developments. In general, the description of multiphase systems is today 

based either on averaging theories with a classical view point on Biot’s theory, or on the mixture 

theory integrated by the concept of volume fractions [Coussy (2004)]. Under appropriate 

assumptions, the averaging theory yields exactly the same governing equations as the classical 

mixture theory [Lewis and Schrefler (1998)]. 

2.2   Overview of Numerical Methods for Poromechanics 

2.2.1  Mesh-based methods 

In the last few decades, a considerable progress has been made for developing 

computational poromechanical formulations to analyze problems for which conventional 

analytical approaches are ineffective. In the pioneering work of [Zienkiewicz et al. (1984)], 

various formulations were proposed based upon Biot’s theory with different simplifications and 

choices of primary variables, among which the so-called u-p formulation (where solid 
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displacement u and pore fluid pressure p are chosen as primary variables) becomes the most 

popular theory in geotechnical engineering applications because of its simplicity and 

effectiveness. A nonlinear FEM (Finite Element Method) u-p formulation was then developed in 

[Zienkiewicz (1990ab)] for modeling static and dynamic behavior of soils, which shows the 

effectiveness of numerical computation by reproducing many of the phenomena for which 

previously only rough rules of thumb were available, such as an approximate yet satisfactory 

reconstruction of the failure of the lower San Fernando dam during the 1971 earthquake. The FE 

formulation of [Zienkiewicz (1990b)] for partially saturated porous media was further extended 

to account for finite strain effects in [Meroi, Schrefler, Zienkiewicz (1995)]. A FE formulation 

for modeling slow transient phenomena involving coupled heat, water and gas flow in deforming 

porous media was developed in [Gawin, Baggio, Schrefler (1995)], where the heat transfer 

through conduction and convection as well as the latent heat transfer is taken into account. Later, 

fully coupled FE models are developed to simulate the consolidation involving flow of water and 

air in deforming porous media in [Schrefler and Zhan (1993)] under quasi-static conditions, and 

in [Schrefler and Scotta (2001)] under dynamic conditions, where the pore gas pressure is treated 

as an additional primary variable. [Uzuoka and Borja (2012)] presented s dynamic formulation 

for unsaturated poroelastic solids at finite strain based on a neo-Hookean hyperelastic model. 

The effect of hydraulic hysteresis is taken into account in the formulations developed in 

[Shahbodagh-Khan, Khalili, Esgandani (2015)] and [Pedroso (2015)] for unsaturated porous 

media. Dynamic strain localisation in saturated and partially saturated porous media was 

analyzed in [Zhang and Schrefler (2000)] with the use of a gradient plasticity model. 

Comparative studies on different plasticity models within the FE u-p formulation were 

performed in [Khoei, Azami, Haeri (2004)], and it was shown that, if a properly calibrated 
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constitutive model is employed, the numerical simulation can reproduce quantitatively the 

behavior of geomaterials and predict the mechanism of failure and the motion along the failure 

surfaces.  

In addition to the abovementioned FEM-based formulations, attempts have also been 

made in applying other numerical techniques to model the multi-physical processes of porous 

media. For instance, [Prevost (2014)] developed a procedure to couple geomechanical models 

based on FEM to reservoir models based on FVM (Finite Volume Method), motivated by the 

fact that most existing reservoir simulators are based on a FVM implementation of the pressure 

equation. A formulation based on FDM (Finite Difference Method) is also developed recently in 

[Zhang, Pedroso, Li, Ehlers (2017)] for porous media modeling, where high computational 

efficiency is achieved, but the numerical scheme is restricted to regular mesh/grids. 

2.2.2  Meshfree methods 

Meshfree methods [Belytschko, Lu, Gu (1994); Liu, Jun, Zhang (1995); Chen, Pan, Wu, 

Liu (1996); Li, Liu (2004); Chen and Belytschko (2015); Chen, Hillman, Chi (2017a); Chen, Liu, 

et al (2017b)] can overcome several drawbacks that are inherently associated with FEM. For 

instance, the time-consuming mesh generation process and the computational errors induced by 

distorted or low quality meshes in FEM can be avoided in meshfree methods [Chen, Pan, Wu, 

Liu (1996)]. Additionally, with the flexibility of controlling the order of smoothness, continuity 

and locality, the meshfree approximation offers exceptional benefits for solving problems with 

moving discontinuities such as crack propagation [Belytschko, Lu, Gu, Tabbara (1995); Krysl, 

Belytschko (1999); Bordas, Rabczuk, Zi (2008)] and problems with high order differentiation 

such as shear band formation via gradient plasticity or damage material models [Chen, Wu, 
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Belytschko (2000); Chen, Zhang, Belytschko (2004)]. The attributes of meshfree methods make 

them very attractive in engineering practice, and therefore meshfree methods have been 

successfully applied to a range of engineering mechanics problems for which the use of 

conventional mesh-based methods present significant difficulties. 

Several coupled meshfree formulations have been proposed for the porous media 

modeling, including the Element-Free Galerkin (EFG) method [Murakami, Kawabata, Aoyama 

(2000); Karim, Nogami, Wang (2002); Oliaei, Soga, Pak (2009); Shibata and Murakami (2011); 

Hua (2011); Samimi and Pak (2012)], the Radial Point Interpolation Method (RPIM) [Wang, Liu, 

Wu (2001); Wang, Liu, Lin (2002);  Khoshghalb, Khalili (2010)] and the Smoothed Particle 

Hydrodynamics (SPH) method [Bui, Fukagawa, Sako, Ohno (2008)], which have shown the 

advantages of meshfree methods in producing more accurate solutions for coupled problems over 

the standard FEM. Recently, the Reproducing Kernel Particle Method (RKPM) has been 

extended to solve the poromechanics problems based on a sequentially coupled scheme with a 

stabilized staggered iteration procedure used in between different solvers [Xie and Wang (2014)]. 

Despite the abovementioned development, the amount of research work on meshfree methods for 

multiphase porous media modeling remains limited, and further exploration of the unique 

features of meshfree methods is deserved in order to develop a robust computational 

poromechanical formulation. 

2.3   Challenges in Modeling Hydro-Mechanical Damage Processes 

The hydro-mechanical damage phenomena in multiphase porous media occur in a 

number of geotechnical engineering applications from the safety analysis of slopes and dams to 
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the design of underground storage of toxic or radioactive waste, as well as the stimulation in 

low-permeable gas and oil reservoirs, to name a few. Therefore, a reliable and efficient method 

for simulating these damage processes is of great importance. However, despite the progress 

made in computational method development, several numerical issues still exist, which need to 

be addressed. 

2.3.1  Inf-Sup stability constraint 

When the u-p form of the poromechanics theory is employed, there is an additional 

requirement on the approximation space in the mixed formulation. In the low permeable or 

nearly undrained limit, a nearly incompressibility constraint on the solid deformation is yielded, 

and if the approximation spaces for the solid displacement and the fluid pressure are not chosen 

properly, poor numerical results in the form of spurious pressure oscillations will appear 

[Zienkiewicz, Chan, Pastor, Schrefler, Shiomi (1999)]. This spatial instability is caused by the 

violation of the Ladyzhenskaya-Babuška-Brezzi (LBB) condition (also called the inf-sup 

condition) [Babuska (1973); Brezzi (1974); Haga, Osnes, Langtangen (2012)].  

To address this issue, finite elements with a stable approximation pair are often employed. 

For instance, [Zienkiewicz, Chan, Pastor, Schrefler, Shiomi (1999)] used quadratic basis 

functions for displacement and linear basis functions for pore pressure to satisfy inf-sup 

condition and maintain numerical stability for isothermal hydromechanics problems. [Jha and 

Juanes (2007)] have shown that linear displacement combined and piecewise constant pore 

pressure may also lead to stable solutions for isothermal poromechanics problems. Nevertheless, 

these mixed-order interpolations complicate the implementation and are usually computationally 

expensive due to the requirement of extra degrees of freedom and high order domain integration 
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schemes. On the other hand, the equal-order approximation is in practice quite attractive because 

of its simplicity and efficiency for solving large-scale problems, especially for modeling 

fractured reservoirs [de Borst, Rethore, Abellan (2006)]. To this end, various stabilization 

strategies have been proposed to achieve oscillation-free solutions with an equal-order u-p 

approximation, including the fractional step algorithm [Pastor, Li, Liu, Zienkiewicz, Quecedo 

(2000), Li, Han, Pastor (2003)], the Galerkin Least Squares formulation [Wan Durlofsky, 

Hughes, Aziz (2003)], the fluid pressure Laplacian method [Truty and Zimmermann (2006)], and 

the fluid pressure projection method [White, Borja (2008); Sun, Ostien, Salinger (2013); Sun 

(2015); Choo, Borja (2015)], etc. Among these different stabilization approaches, the pressure 

projection based method has been proposed for nearly incompressible finite elasticity [Chen and 

Pan (1996); Chen, Wu, Pan (1996); Chen, Yoon, Wang, Liu (2000)], stokes flow [Dohrmann and 

Bochev (2004); Bochev, Dohrmann, Gunzburger (2006)] and poromechanics [White, Borja 

(2008); Sun, Ostien, Salinger (2013); Sun (2015); Choo, Borja (2015)]. Compared to other 

stabilization techniques, the pressure projection method has several appealing features such as 

the avoidance of stress-recovery techniques or high-order derivatives of shape functions 

commonly used in the Petrov-Galerkin type methods [Wan, Durlofsky, Hughes, Aziz (2003)], 

and also the stability property of the time-integration scheme is not affected, unlike the fractional 

step algorithm [Pastor, Li, Liu, Zienkiewicz, Quecedo (2000), Li, Han, Pastor (2003)]. 

While most of the research work on stabilization for poromechanics problems has been 

focused on FEM, very few attempts have been made to address this issue in the context of 

meshfree methods. The work by Hua [Hua (2011)] showed that the fluid pressure oscillation can 

be avoided by adjusting the numbers of u and p field nodes in the EFG method, but it is not clear 

how an optimal distribution of the nodes can be designed for general cases. The stabilized 
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Petrov-Galerkin formulation has been employed by Xie et al. [Xie and Wang (2014)] to 

eliminate the pressure oscillation in the RKPM method; however, this method results in a 

non-symmetric system matrix and requires calculation of high-order derivatives of meshfree 

shape functions which is time consuming. 

2.3.2  Fracture modeling 

Despite considerable advances made in fracture modeling methods, computational 

difficulties remain arising when growing fractures with complicated patterns need to be modeled, 

e.g., in hydraulic fracturing where many fractures exist and interact in a multiphase porous 

medium. In general, two main approaches exist for fracture modeling, namely the discrete crack 

approaches and the smeared crack approaches. The first class of methods includes adaptive 

re-meshing [Swenson and Ingraffea (1988); Rangarajan et al. (2014)], interface element insertion 

[Xu and Needleman (1994); Truster (2016)], embedded strong discontinuity [Belytschko et al. 

(1988); Simo et al. (1993); Jirásek (2000); Oliver et al. (2014)], partition of unity-based 

enrichment [Belytschko and Black (1999); Moës et al. (1999); Bordas et al. (2008)], and 

visibility/diffraction criterion [Organ et al. (1996); Krysl and Belytschko (1999)]. The second 

class of methods are formulated upon the smeared crack approaches using fixed and rotated 

crack models [Jirásek and Zimmermann (1998a); Weihe et al. (1998)], continuum damage 

models [Pijaudier-Cabot and Bažant (1987); Peerlings et al. (1996); de Borst (2002); Cervera and 

Chiumenti (2006a); Cervera and Chiumenti (2006b); Jirásek and Bauer (2012); de Borst and 

Verhoosel (2016)], and phase field models [Miehe et al. (2010); Borden et al. (2014); Ambati et 

al. (2015)], to name a few. 
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2.3.2.1  Discrete crack approaches 

The discrete crack approaches usually consider continuous crack surfaces, and represent 

crack path by using level sets [Moës et al. (2002); Gravouil et al. (2002)] or other surface 

tracking techniques [Oliver et al. (2014); Jäger et al. (2008); Parvaneh and Foster (2016)]. 

However, fracture surfaces in quasi-brittle geomaterials are typically discrete and non-smooth, 

and they can evolve into irregular patterns such as crack branching and merging, making surface 

tracking techniques ineffective. By relaxing the crack path continuity requirement, alternative 

methods have been developed with the goal to model complicated fracture phenomena in a 

simplified way. For instance, the inter-element separation and cohesive interface element 

methods [Xu and Needleman (1994)] offer the flexibility in modeling crack growth along 

arbitrary finite element edges without any surface tracking procedures. However, the predicted 

crack patterns of these methods can be sensitive to the shape and orientation of the adopted finite 

element mesh. In the Cracking Particle Method (CPM) [Rabczuk and Belytschko (2004)], a set 

of crack segments located at nodal positions are used to describe the overall fracture surfaces. 

The simplicity and effectiveness of this idea has been studied in both Finite Element Method 

(FEM) [Remmers et al. (2003); de Borst et al. (2004); de Borst et al. (2006); Song and 

Belytschko (2009)] and Element Free Galerkin (EFG) method [Rabczuk and Belytschko (2004); 

Rabczuk and Belytschko (2007); Rabczuk et al. (2010); Rabczuk (2013)], although the latter 

meshfree discretization is more natural for the particle-based crack models. Nevertheless, similar 

to other discrete crack models, the strong discontinuities introduced at the cracked particles 

require subdividing quadrature cells associated with crack segments, modifying mesh topology 

or nodal neighbor list, or adding additional nodal degrees of freedom, leading to a greater degree 

of computational complexity. 
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2.3.2.2  Smeared crack approaches 

Another type of fracture modeling introduces smearing of the sharp discontinuities over a 

finite domain, and the cracking effects are represented through a softening stress-strain law, 

which are in general called the smeared crack models [Weihe et al. (1998); de Borst (2002); de 

Borst et al. (2004); Jirásek (2011)]. Compared to the discrete crack models, the smeared crack 

models offer the possibility of capturing a large set of complicated cracks in a simplified manner 

without dealing with many strong discontinuities. However, it has been observed that, when 

strain softening is considered in a continuum model, numerical results can become highly 

sensitive to the discretization (i.e., element size in FEM or nodal distance in meshfree methods). 

To restore the objectivity of numerical solutions, various regularization methods have been 

proposed. For instance, the nonlocal regularization methods [Pijaudier-Cabot and Bažant (1987); 

Peerlings et al. (1996); Miehe et al. (2010); Ambati et al. (2015); de Borst and Verhoosel (2016)] 

show promising performance, but these methods require fine meshes in cracking regions 

resulting in high computational cost [Heister et al. (2015)]. Besides, when the gradient type 

damage models [Peerlings et al. (1996); de Borst et al. (2016)] or the phase field models [Miehe 

et al. (2010); Borden et al. (2014); Ambati et al. (2015)] are adopted, an additional global 

equation coupled with the momentum equation needs to be solved for the nonlocal field variables 

at every time step. Chen et al. [Chen et al. (2004)] proposed a meshfree formulation to 

approximate the high order strain gradients by using the implicit gradient reproducing kernel 

conditions, but high order basis functions are required. Other issues with nonlocal models, which 

deserve further investigation, include the spurious initiation and growth of damage [Simone et al. 

(2004); Giry et al. (2011); Triantafyllou et al. (2014); Desmorat et al. (2015); Poh and Sun 

(2017)] and physically unjustified wave dispersion and localization properties of some nonlocal 
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models [Di Luzio and Bažant (2005); Bažant et al. (2016)]. 

A different remedy to the mesh dependency issue of smeared crack models is based on an 

appropriate adjustment of the local constitutive law without using nonlocal operators. For 

example, the crack band approach [Bažant and Oh (1983); Cervera and Chiumenti (2006a); 

Cervera and Chiumenti (2006b); Jirásek and Bauer (2012)] rescales the post-peak part of the 

stress-strain law to adjust the bulk energy dissipation of finite elements to be consistent with the 

fracture energy dissipated during the fracturing process. A major advantage of this approach is 

that the adopted constitutive model remains local (versus the ‘nonlocal theories’), which allows 

the employment of many well-developed constitutive models in a unified manner. Nevertheless, 

it is found that the numerical solutions of standard crack band FEM can still show pathological 

mesh sensitivity when the mesh is not aligned with the crack propagation direction [Bažant and 

Lin (1988); Cervera and Chiumenti (2006a); Cervera and Chiumenti (2006b)]. In addition, the 

effectiveness of the regularization can be affected by both the finite element shape and domain 

integration schemes, thus it is not always straightforward to ensure objective energy dissipation 

[Jirásek and Bauer (2012)]. 

2.3.2.3  Methods for hydraulic fracture simulation 

There have been a number of numerical methods developed for the simulation of the 

hydraulic fracturing process. [Boone and Ingraffea (1990)] proposed one of the earliest 

computational scheme that enables staggered data transferring between a finite difference fluid 

flow solver and an FEM geo-mechanical solver, where crack propagation is modeled with 

interface elements along finite elment edges. [Segura and Carol (2008); Carrier and Granet 

(2012)] developed a zero-thickness interface elements that have additional degrees of freedom to 
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take into account the hydro-mechanical coupling effects on crack propagation. These cohesive 

elements can be used to mesh the predicted fracture path, while usual volumetric elements can be 

used to mesh the neighboring porous medium; however, the fracture path has to be postulated a 

priori, which is a limitation of these approaches.  

The re-meshing technique in conjunction with interface elements has been introduced by 

some researchers [Schrefler et al. (2006); Secchi et al. (2012); Fu et al. (2013)] to model the 

advancing cohesive cracks in a porous medium, which alleviates the restriction of fixed crack 

paths but at the expense of high computational cost and errors due to data projection between 

successive meshes.  

Within the X-FEM (Extended Finite Element Method) framework, [de Borst, Réthoré,  

& Abellan (2006b); Réthoré, de Borst, & Abellan (2007); Réthoré, de Borst & Abellan (2008)] 

developed a hydro-mechanical coupled X-FEM formulation for the fluid flow in fractured porous 

media, which allows for the modeling of fluid filled cracks in arbitrary locations, irrespective of 

the structure of the underlying finite element mesh. Recently, the hydro-mechanical coupled 

X-FEM was further extended to consider finite strain effects [Irzal et al. (2013)], cohesive crack 

propagation [Mohammadnejad and Khoei (2013); Khoei et al. (2014)]. In addition, [Gupta and 

Duarte (2014)] developed an h-adaptive version of X-FEM formulation that can effectively 

refine the mesh near crack fronts for three-dimensional modeling of pressurized fracture 

propagation, while the hydro-mechanical coupling in porous geo-mateials are neglected. 

The aforementioned approaches all fall within the discrete crack modeling category, 

which represents cracks as strong discontinuities in the kinetic field and thus an approximation 

field that can dynamically align with moving discontinuities is required, which is achieved either 
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by continuously re-constructing the spatial discretization (‘re-meshing’ for finite element 

methods or ‘visibility criterion’ for meshfree methods), or by enriching the approximating space 

with discontinuous basis functions (e.g., X-FEM or enriched meshfree methods). Although the 

enrichment method enables the simulation of crack propagation on a fixed spatial discretization, 

the number of degrees of freedom increase during the simulation, and accordingly the domain 

integration cells crossed by cracks also need to be cut into sub-cells that are conforming to the 

crack surface. Therefore, the discrete crack model-based methods can become highly 

cumbersome for problems involving a large number of growing cracks, and additional 

difficulties may arise when crack branching and intersection needs to be considered. For instance, 

the standard Heaviside function commonly adopted in the enrichment scheme cannot be used 

directly for situations where cracks branch or intersect.  

Therefore, recently there is an increasing trend to simulate hydraulic fracturing via the 

smeared crack models. The is due to the fact that smeared crack models circumvent the 

numerical difficulties related to moving discontinuities and allow effective handling of complex 

fracture patterns, and thus it has the potential to enable a large scale 3-D simulation. A coupled 

hydro-mechanical finite element model is developed by [Li et al. (2012)], where a damage 

mechanics model is used for the strength and stiffness degradation, and a stress and deformation 

dependent permeability is used for the fractured saturated porous materials. With this numerical 

scheme, progressive failure and associated fluid flow in rocks are modeled, as well as the 

complex cracking patterns such as branching, turning, and twisting of 3D fracture surfaces. 

However, the damage models adopted in [Li et al. (2012)] suffer from mesh sensitivity and thus 

the numerical solution may not converge as the discretization is refined. Some recent attempts 

have been made to simulate hydraulic fractures using the phase-field method [Wheeler et al. 



 

20 

(2014); Lee, Wheeler, Wick. (2016); Miehe, Mauthe, Teichtmeister (2015); Mauthe and Miehe 

(2017); Ehlers and Luo (2017)], which shares similarities with non-local gradient damage 

models. These methods are based on non-local type regularization technique and are quite 

effective in eliminating mesh dependency issues. However, these methods require solving a 

global phase field evolution equation coupled with the momentum/mass conservation equations. 

Moreover, the length scale parameters of phase field/non-local damage models still need further 

physical justification and calibration, and meanwhile they require very fine meshes to resolve the 

length scale parameters in the computation, thus the resulting numerical scheme is quite 

expensive especially for large-scale, hydro-mechanically coupled engineering problems. 

2.3.3  Post-failure analysis of landslides 

2.3.3.1  Mesh distortion issues in mesh-based methods 

The ultimate impact of landslides depends not only on the failure initiation stage but also 

the post-failure process, so the run-out analysis is of great importance in landside risk assessment 

and mitigation design [McDougall (2016)]. However, despite the successful application of finite 

element/finite difference methods in predicting the onset of slope failures [Griffiths and Lane 

(1999); Huang and Jia (2009); Wei, Cheng, Li (2009); Wei and Cheng (2010)], these mesh-based 

methods often become ineffective for post-failure analysis due to mesh dependency limitations. 

Even if the initial mesh is carefully constructed to ensure every element is well-shaped, severe 

mesh distortions may eventually arise in the simulation of large deformation process. 

Unfortunately, the finite element approximation can no longer be built with the low-quality mesh, 

and the simulation has to be either terminated or continued with tedious re-meshing procedures 

[Belytschko, Liu, Moran, Elkhodary (2013)]. Therefore, the mesh distortion issue severely limits 
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the applicability of conventional numerical methods in post-failure analysis of multiphase porous 

media. 

2.3.3.2  Meshfree methods for landslide modeling 

Unlike conventional mesh-based methods, the meshfree methods have been proven to be 

well suited for modeling large deformation of solids, including the material separation and 

flow-like behavior occurred in the landslide processes, as they can naturally avoid computational 

difficulties associated with distorted or low-quality meshes [Chen, Pan, Wu, Liu (1996); Chen, 

Hillman, Chi (2017a)]. 

Recently, [Abe, Soga, Bandara 2013] and [Bandara and Soga 2015] developed a 

numerical procedure based on material point method (MPM) to solve coupled hydro-mechanical 

problems that undergo large deformation in saturated soils, where one single 2D Eulerian 

background mesh consisted of quadrilateral finite elements is adopted in conjunction with two 

sets of Lagrangian material points representing the soil skeleton and pore water, respectively. 

Later, [Bandara, Ferrari, Laloui (2016)] implemented the partially saturated condition in the 

hydro-mechanical MPM formulation, and proposed a special boundary treatment that switches 

the surface boundary conditions between Dirichlet and Neumann boundary conditions, 

depending on the saturation levels of the slopes subjected to rainfall infiltration. A 

comprehensive review of recent developments of MPM for landslide simulation can be found in 

[Soga et al. (2015)] and [Alonso, Yerro, Pinyol (2015)]. The smoothed particle hydrodynamics 

(SPH) method, on the other hand, has also been applied to investigate the failure mechanisms of 

saturated soil slopes [Bui and Fukagawa (2013)], earthquake-induced landslides [Huang et al. 

(2012); Dai et al. (2014); Huang and Dai (2014)], and rainfall-induced landslides [Zhang and 
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Maeda (2014)]. Despite of the simplicity of the SPH formulation, a number of numerical 

difficulties exist [Swegle et al. (1996); Monaghan (2000)], such as lack of linear consistency, 

tensile instability and inaccurate gradient estimate for stress calculation, which all require further 

improvements. 

2.3.3.3  Domain integration techniques in meshfree methods 

Despite the promising capabilities of meshfree methods for post-failure analysis of 

landslides, some critical numerical issues remain. One of such challenges is the domain 

integration technique. While Gauss quadrature rule has been commonly used in meshfree 

methods for the domain integration of weak form, considerable integration errors could be 

generated since the meshfree approximation functions are in general of rational type with often 

complicated overlapping support structures [Dolbow and Belytschko (1999)], and a very high 

order quadrature rule has to be adopted to achieve integration accuracy, which is computationally 

expensive. Methods such as direct nodal integration (DNI), on the other hand, could lead to 

instability due to rank deficiency, and also yields poor accuracy and low convergence rates 

[Beissel and Belytschko (1996)]. To simultaneously attain efficiency, accuracy and also stability 

in nodal integration, the stabilized conforming nodal integration (SCNI) method has been 

proposed by Chen et al. [Chen, Wu, Yoon, You (2001); Chen, Yoon, Wu (2002)] which achieves 

high accuracy and optimal convergence associated with approximation spaces with linear 

completeness. The generalization of SCNI for 2
nd

 order bases [Duan, Li, Zhang, Wang, Gao 

(2012)] and for arbitrary order bases by a variational consistency condition [Chen, Hillman, 

Rüter (2013)] have also been proposed. 

Although superior performance of SCNI has been shown in a wide range of applications, 
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it could become a prohibitively expensive scheme for problems involving extremely large 

deformation, for which conforming nodal integration zones have to be re-constructed as the 

semi-Lagrangian meshfree shape functions are re-evaluated when material damage and 

separation occurs. One way to circumvent this inconvenience is to relax the conforming 

condition on the smoothing zones, but the resulting quadrature scheme called stabilized 

non-conforming nodal integration (SNNI) violates the integration constraints [Chen, Wu, Yoon, 

You (2001); Chen, Hillman, Rüter (2013)]. To enhance the accuracy of SNNI and other 

integration schemes, the variationally consistent integration correction method has been 

proposed by [Chen, Hillman, Rüter (2013)], of which the key idea is to enforce arbitrary order 

consistency conditions to be met by modifying test functions. Nevertheless, it was found that 

low-energy modes can appear in SCNI or variationally consistent SNNI (VC-SNNI) based 

solutions, so additional stabilization is required. To this end, the modified stabilized conforming 

nodal integration (MSCNI) and modified stabilized non-conforming nodal integration (MSNNI) 

methods [Puso, Chen, Zywick, Elmer (2008)] have been developed, for which a penalty-type 

stabilization term involving shape function gradients evaluated at sub-cells of nodal integration 

zones is added to the discrete equations. As a number of additional shape function evaluation 

points in nodal sub-cells are needed to provide the necessary stabilization in MSNNI, the 

associated computational cost is very high when the semi-Lagrangian meshfree approximation 

[Chen and Wu (2007)] is adopted, which requires the shape functions to be re-evaluated at all the 

evaluation points frequently. [Hillman and Chen (2016)] introduced the naturally stabilized nodal 

integration method (NSNI) into the semi-Lagrangian reproducing kernel formulation, which can 

significantly speed up the computation by employment of implicit reproducing kernel gradients, 

minimal number of stabilization points and the avoidance of MSNNI type sub-cells. Although 
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integration techniques have been studied intensively, research on proper integration techniques 

for mixed formulations is rare and therefore deserves investigation. 
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Chapter 3 

A Stabilized Nodally Integrated Meshfree Formulation for 

Hydro-Mechanical Analysis of Saturated Porous Media 

 

The arrangement of this chapter is as follows. After a brief description of the 

poromechanics theory in Section 3.1, the reproducing kernel mixed formulation is given in 

Section 3.2. The fluid pressure projection based RKPM formulation is then introduced under the 

SCNI framework in Section 3.3, and several benchmark problems are analyzed in Section 3.4 to 

demonstrate the effectiveness of the proposed stabilized meshfree formulation.  

3.1   Governing Equations of Fluid-Saturated Porous Media 

3.1.1  Strong form 

 

Figure 3.1 A fluid saturated porous medium occupying the domain   with boundary   
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Consider a porous medium occupying a domain   with boundary   as shown in 

Figure 3.1. According to the poromechanics theory [Biot (1941), Coussy (2004)], all phases are 

present at every point at the same time. As a result, the equations governing the deformation of a 

porous solid saturated with fluid can be derived from the principles of momentum and mass 

conservation of the mixture, which can be expressed as 

 p    σ I g 0                            (3.1) 

1 p
0f

t Q t


 
    
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u
q                           (3.2) 

along with the following boundary conditions: 

uu           on u                        (3.3) 

  tIσn  p          on t                        (3.4) 

pp           on p                        (3.5) 

 pf f f      n k g n q         on q                        (3.6) 

and the initial conditions at time 0t : 

0uu  ,   0pp                             (3.7) 

where u  and p  represent the solid displacement and the fluid pressure, respectively; σ   is 
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the effective stress, with the sign convention for tensile effective stress σ   and compressive 

fluid pressure p  as positive, and the term  pσ I  represents the total stress in the porous 

media; I  is a second-order identity tensor;   sfff nn   1  is the averaged mass density, 

in which fn  is the volume fraction of the fluid phase, often referred to as porosity, and s  and 

f  are the mass densities of the solid and fluid phases, respectively; g  is the gravity 

acceleration; the fluid storage coefficient is defined as   ffsf KnKnQ  1 , in which 

Q  is the Biot compressibility modulus,  sKK1  is the Biot coefficient, sK  and fK  

are the averaged bulk modulus of the solid grains and fluid, respectively, and   213  EK  

is the drained bulk modulus of the overall solid skeleton, where E  and   are Young’s 

modulus and Poisson’s ratio of the dry porous matrix, respectively; fq  is the fluid flow flux 

relative to the solid skeleton; 
n  is the unit outer normal vector of the boundary  , u  and 

p  are the essential boundaries with imposed solid displacement and fluid pressure, respectively, 

and t  and q  are the natural boundaries with imposed traction and fluid outflow flux, 

respectively, where  qptu   and  qptu  ; and the effective stress 

σ   can be defined through the constitutive relationship as follows 

εCσ :                                  (3.8) 

where C  is the drained elastic modulus tensor of the solid skeleton, and ε  is the strain 

tensor, defined as the symmetric part of the solid displacement gradient: 

 T1

2

s  ε u u u                             (3.9) 
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The barotropic fluid characterized by the fluid pressure field p  is considered in the 

following discussions, and the fluid flow fq  is then defined by the Darcy’s law: 

  pf f f   q k g                           (3.10) 

where fhf kk   is the permeability tensor, in which hk  is the hydraulic conductivity 

tensor and f  is the specific weight of the fluid. Note that the permeability tensor can be 

alternatively expressed as the ratio of the so-called intrinsic permeability tensor to the dynamic 

viscosity, and in general it can evolve with the change of void ratio, micro-cracks density and 

distribution, etc. For simplicity, here fk  is considered to be constant and isotropic, i.e., 

Ik ff k . Substituting equation (3.10) into equation (3.2), and combining with equation (3.1), 

the classical u-p form of the poromechanics governing equations can be obtained, which are 

employed in the present study. 

3.1.2  Weak form 

To arrive at the weak form, two spaces of trial functions for both solid displacement and 

fluid pressure fields in d-dimension are defined as 

 1

u u: H , on
d

dS       u u u u                  (3.11) 

 1

p pp : p H , p p onS                         (3.12) 

The corresponding spaces of test functions are  
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 1

u u: H , on
d

dV       η η η 0                  (3.13) 

 1

p pψ: ψ H , ψ 0 onV                         (3.14) 

The weak form statement of the problem in Section 3.1.1 is then to find   u p, p S S u  

such that for all   u p,ψ V V η ,  

   
t

1 ; , p : p d d d 0sL  
  

           η u η σ η η t η g           (3.15) 

 

 

q

2

1 p
ψ; ,p ψ d ψ d

ψ pd ψ d ψ d 0f f f f

L
t Q t





 


  

 
   

 

         

 

  

u
u

k n q k g



  

      (3.16) 
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3.2   Reproducing Kernel Mixed Formulation 

3.2.1  Reproducing kernel approximation 

 

Figure 3.2 Illustration of a domain   discretized by meshfree particles and the reproducing 

kernel shape function  xIN  associated with node I 

Let  NP

III 1
,


xx  be a set of nodes in the domain, 

Ix  is the position vector of node I, 

and NP is the total number of nodes. The discrete reproducing kernel approximation [Liu, Jun, 

Zhang (1995); Chen, Pan, Wu, Liu (1996)] of a function  xf  in the domain   is as follows: 

   



NP

I

II

h fNf
1

xx                              (3.17) 

where 
If  is the coefficient, and  xIN  is the n

th
 order reproducing kernel shape function 

expressed as 

     IaII CN xxxxxx  ;                         (3.18) 
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in the above equation,  IC xxx ;  is a correction function, and  Ia xx   is the kernel 

function that controls the locality and smoothness of the approximation, which is chosen to be 

the cubic spline function in the present study: 

 

2 3

2 3

2 3 4 4 for 0 1 2

4 3 4 4 4 3 for 1 2 1

0 for 1

I I I

a I I I I I

I

s s s

s s s s

s

    


       
 

x x             (3.19) 

where III as xx  , and Ia  is the support size of node I . The correction function is 

defined as: 

     IIC xxHxbxxx  T;                       (3.20) 

in which  IxxH   is a vector consisting of n
th

 order monomial basis functions: 

      n

IIIIII zzxxzzyyxx  ,,,,,,1
2T xxH        (3.21) 

and  xb  is the coefficient vector to be determined from the following n
th

 order discrete 

reproducing conditions: 

     xHxHx
T

1

T 


NP

I

IIN    or        0HxxHx
T

1

T 


NP

I

IIN          (3.22) 

which leads to  xb  of the following form: 

     T T 1b x H 0 A x                           (3.23) 
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where the moment matrix is defined as 

       T

1

NP

I I a I

I

    A x H x x H x x x x                  (3.24) 

Combining equations (3.18), (3.20) and (3.23), the reproducing kernel shape function is 

obtained as 

         T 1

I I a IN    x H 0 A x H x x x x                 (3.25) 

3.2.2  Reproducing kernel u-p approximation and discretization 

Applying the reproducing kernel approximation to both the trial and test functions for the 

solid displacement and fluid pressure, we have 

1

NP
h u

I I

I

N


 u N U U ,    
1

p
NP

h p

I I

I

N P


 N P                 (3.26) 

1

NP
h u u u

I I

I

N


 η N c c ,    
1

ψ
NP

h p p p

I I

I

N c


 N c                 (3.27) 

where u
N  and pN  are the matrices of reproducing kernel shape functions IN  using linear 

basis for displacement and pressure fields, respectively, and U , P , u
c  and p

c  are vectors 

containing the corresponding nodal coefficients. Substituting the approximation functions into 

equations (3.15) and (3.16), the following semi-discrete equations are obtained: 

   
t

1 ; , p : p d d d 0h h h s h h h h hL  
  

           η u η σ η η t η g        (3.28) 
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 

q

2

1 p
ψ ; ,p ψ d ψ d

ψ p d ψ d ψ d 0

h h
h h h h h

h h h h

f f f f

L
t Q t





 


  

 
   

 

         

 

  

u
u

k n q k g



  

    (3.29) 

which leads to the following system of coupled matrix equations: 

0FPKUK  ext

upuu                           (3.30) 

   
0QPK

P
K

U
K 








 extH

pp

S

ppup
tt

T                     (3.31) 

where the matrices and vectors can be expressed as follows: 

Solid stiffness matrix    T du u

uu


 K B DB                       (3.32) 

Coupling matrix    T du p

up 


 K B mN ,                    (3.33) 

Compressibility matrix    T 1 d
S p p

pp Q


 K N N                     (3.34) 

Permeability matrix     T d
H p p

pp f


 K B k B                      (3.35) 

External force vector    
t

T Td dext u u 
 

   F N t N g               (3.36) 

External flow flux vector   
q

T Td dext p p

f f f
 

     Q N n q B k g    (3.37) 

In the above equations, u
B  and p

B  are the standard gradient matrices associated with the 
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displacement and pressure approximation fields, respectively, D  is the matrix form of elastic 

material constants in the constitutive tensor C , and  T011m  in equation (3.33). 

3.2.3  Discrete equations 

The backward Euler method is employed which ensures unconditional stability in the 

temporal discretization. If the problem is to be solved between an initial time 0t  and a final 

time ft , a partition of the time interval is considered, resulting in a series of time increments 

nnn ttt   11 . Evaluating the semi-discrete equations (3.30) and (3.31) at time 1nt  and 

applying the following time marching scheme: 

 
       

1

1

1

1

1























n

nn

n

n

t
ttt

n

                   (3.38) 

then the full discrete equations can be expressed as 

0FPKUK  

ext

nnupnuu 111                        (3.39) 

   
0QPKPKUK  

ext

nn

H

ppn

S

ppnup tt 1111

T
             (3.40) 

Finally, we obtain the following system of equations to solve at every time step: 

111   nnn RXJ                                (3.41) 

where 
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




















1

1

1

n

n

n
P

U
X                                (3.42) 

    















 H

ppn

S

ppup

upuu

n t KKK

KK
J

1

T1                       (3.43) 

  












































 ext

n

ext

n

n

n

S

ppup

n
t 1

1

T1
Q

F

P

U

KK

00
R                   (3.44) 

In the present study, the monolithic solution strategy is adopted by which the primary 

unknowns of the fully coupled equations are solved simultaneously. Alternatively, a staggered or 

sequential coupling scheme can be used, and then a relatively small system of equations is solved 

at each time before sharing its information with other solvers through iteration. However, unlike 

the monolithic scheme, it is non-trivial to fully capture the coupling effects by using staggered 

solvers and also stability and convergence difficulties may be encountered unless appropriate 

techniques are utilized [Xie and Wang (2014); Kim, Tchelepi, Juanes (2011)]. 

3.3   Fluid Pressure Projection for Meshfree Method with Nodal Integration 

3.3.1  Pressure projection 

When an equal-order approximation pair is adopted in the Bubnov-Galerkin 

approximation of the coupled problem described in previous sections, non-physical spatial 

oscillations can occur in the fluid pressure field when the porous medium is under nearly 

impermeable or undrained conditions. This problem is due to violation of the following discrete 

inf-sup condition [Babuska (1973); Brezzi (1974); Haga, Osnes, Langtangen (2012)]: 
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0 p0

1

p dsup
p p

h h

h h h

h h h
u

C S
S


 

  


 u

u u


                 (3.45) 

where 0C  is a positive constant independent of the numerical discretization. However, it has 

been found that equal-order approximation pairs indeed satisfy a weaker inf-sup condition 

[White and Borja (2008); Sun, Ostien, Salinger (2013)] expressed by 

1 2 p0, 0

1

p dsup
p p p p

I
I

h h

h h h h h

h h h
u

C C S
S




 

 
    






u

u u


        (3.46) 

where 
1C  and 

2C  are positive constants independent of the numerical discretization; 
I  is a 

sub-domain associated with the spatial discretization, for example, it can be represented by an 

element domain in the finite element context; 
hp  is the L2 projection of the fluid pressure 

approximation field onto a lower-order space by minimizing the following functional: 

 
 

2

2

ppp
II L

hhh


                        (3.47) 

For a linear approximation of the fluid pressure, we perform the projection to a constant 

field to yield 

      
1

p p d
I I

h h

IV 
                             (3.48) 

where 
IV  refers to the volume of the domain 

I  in 3D or the area in 2D. Comparing equation 

(3.45) and (3.46), it can be observed that the term 
I

hhC



,0

1 pp can remedy the inherent 
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deficiency in the equal-order approximation pair. Based on this analogy, White and Borja [White, 

Borja (2008)] proposed to include a stabilization term to the bilinear finite element formulation 

in order to eliminate the spurious fluid pressure oscillation modes. Later, the finite element 

formulation using this fluid pressure projection method was further developed for large 

deformation poromechanical simulations [Sun, Ostien, Salinger (2013)], 

thermo-hydro-mechanical simulations [Sun (2015)] and the modeling of porous media with 

double porosity [Choo, Borja (2015)]. Similar schemes have previously been developed for 

stabilizing the numerical solutions of the Stokes equations [Dohrmann, Bochev (2004); Bochev, 

Dohrmann, Gunzburger (2006)], and for nearly incompressible elasticity problems [Chen and 

Pan (1996); Chen, Wu, Pan (1996); Chen, Yoon, Wang, Liu (2000)]. Along this line, the fluid 

pressure projection method is employed in the present study for the meshfree formulation for 

coupled poromechanics problems within the stabilized conforming nodal integration framework. 

As mentioned, an additional stabilization term is added to the variational equation (3.29) to 

correct the deficiency of the equal-order u-p approximation, leading to the following stabilized 

variational equation 

      2 2ψ ; ,p ψ ; ,p ψ ψ p p d 0h h h h h h h h h h

fL L 


     u u        (3.49) 

Since the reproducing kernel approximation is purely based on nodal information, i.e., 

there is no element domain as in the FEM context, a suitable L2 projection operator needs to be 

defined. To be compatible with the stabilized conforming nodal integration (SCNI) framework to 

be described in the next section, we choose the SCNI nodal representative integration domain as 

the sub-domain 
I  used for the operator  . Following the same discretization procedure as 

introduced in previous sections, we can obtain the stabilized system of discrete equations at time 
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step n : 

111   nnn RXJ                             (3.50) 

where 

   1 T

1 1

uu up

n S H

up pp n pp nt t


 

 
  

     

K K
J

K K K S
                   (3.51) 

T

dp p p p

f


         S N N N N                    (3.52) 

As can be seen, the fluid pressure projection based stabilization only requires 

modification of the p-p block of the Jacobian with a symmetric matrix S , and no stress-recovery 

techniques or second-order derivatives of the shape functions are needed as in the 

Petrov-Galerkin based stabilization approaches [Xie and Wang (2014); Wan, Durlofsky, Hughes, 

Aziz (2003)], and also the stability property of the time-integration scheme is not affected, unlike 

the fractional step algorithm [Pastor, Li, Liu, Zienkiewicz, Quecedo (2000); Li, Han, Pastor 

(2003)]. An estimation of the stabilization parameter f  following Sun et al. [Sun, Ostien, 

Salinger (2013)] is given as follows: 
















 








22
122tanh131

1

h

tc

h

tc

M

vv
f                  (3.53) 

where  
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 

  2

4 3

4 3

f

v f

k K G
c k M

K G Q 


 

 
                     (3.54) 

in which   is the Macaulay bracket, and the Biot modulus is defined as 

 s f f f s fQ K K K n K n   
 

, fk  is the permeability parameter,   is Biot’s coefficient, 

fn  is the porosity, G  is the shear modulus, K , sK  and fK  are the averaged bulk modulus 

of the solid skeleton, solid grains and fluid, respectively, as defined in Section 2.1, and h  is a 

characteristic length depending on the numerical discretization, for which we adopt a simple 

definition as IAh   for two dimensional problem, where 
IA  is the area of the representative 

domain of node I  as discussed in next section. It can be seen from equation (3.53), as the 

permeability becomes high, the parameter f  will approach to zero by construction, therefore 

over diffusion due to stabilization would be avoided automatically. This property of the adopted 

stabilization parameter makes the projection method suitable for solving problems under 

different drainage conditions, as to be shown in the numerical examples in Section 3.4. 

3.3.2  Stabilized conforming nodal integration for pressure projection 

The domain integration for the discrete equations introduced previously can be performed 

by using the Gauss integration method. However, in order to obtain accurate, convergent 

solutions, expensive high order Gauss integration is required. Stabilized conforming nodal 

integration method, on the other hand, achieves high accuracy and optimal convergence, and is 

also computationally efficient [Chen, Wu, Yoon, You (2001); Chen, Yoon, Wu (2002)]. In this 

method, shape function gradients are smoothed over conforming nodal representative domains, 
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and domain integration is performed at each node. The smoothed gradient of the shape functions 

are defined as 

   

   

   
1

1
d

1
d

1

L

L

I L I

L

I

L

NG
G G

I L L G
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N N
A

N
A

N l
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





 

 









x x

x n x

x n x

 

                      (3.55) 

where   is the smoothed gradient operator and  I LN x  denotes the smoothed  IN x  

associated with nodal point 
Lx , 

L  and G  refer to the whole boundary and the G
th

 boundary 

segment of the nodal representative domain 
L , respectively, d

L
LA


  , d

G
Gl


  ,  xn  

is the outer unit normal to 
L , and NG is the total number of gradient smoothing evaluation 

points 
G

Lx  which rest at the centroids of the boundary segments. The nodal representative 

domains can be constructed by Delaunay triangulation or Voronoi diagram, as shown in Figure 

3.3. 
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Figure 3.3 Nodal representative domain for stabilized conforming nodal integration (SCNI) and 

fluid pressure projection (FPP) 

SCNI avoids rank deficiency in direct nodal integration, however spurious low-energy 

modes may still appear in the solution. Puso et al. [Puso, Chen, Zywick, Elmer (2008)] proposed 

to use more ‘stress points’ for stabilization which leads to the following expressions of equations 

(3.32)-(3.35) and (3.52) as a stabilized nodal integration: 
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where 
u

IB
~

 and 
p

IB
~

 are the smoothed gradient matrices associated with IN , 
LT  is the set of 

subcells C associated with each node L, CA  is the area of the C
th

 subcell which satisfies 





LTC

CL AA , and the stabilization points ˆ C

Lx  rest at the centroids of the subcells as shown in 

Figure 3.3. The expressions in equations (3.56)-(3.60) are considered to be of the nodal 

integration type since material parameters and state variables are calculated and stored at the 

nodal points Lx  only. Compared to direct nodal integration, the minor extra effort required in 

SCNI is to compute the shape functions and their smoothed gradients at a few stabilization points. 

The stabilization parameter 1p , as suggested by [Puso, Chen, Zywick, Elmer (2008)], is 
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used in all the numerical examples in the present study. 

Furthermore, recalling the L2 projection operator   defined in equation (3.48), we can 

see that all the pressure projection terms appearing in equation (3.60) indeed can be computed 

within the same nodal integration framework in a straightforward way: 
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which shows that shape functions evaluated at stabilization points can be used for both the fluid 

pressure projection and the stabilized nodal integration, saving computational cost. Since the 

evaluation of the pressure projection terms in equations (3.61) and (3.62) already provides most 

of the matrices required for the evaluation of direct shape function derivatives, the smoothed 

gradients at the stabilization points in equations (3.56) and (3.59) can be replaced with the direct 

gradients to reduce the number of gradient smoothing points. Consider that if a rectangular nodal 

integration domain is used for 2D problems, with SCNI the shape functions need to be evaluated 

at only 9 points, including the node itself, 4 stabilization points, and 4 gradient smoothing 

evaluation points. On the other hand, in order to achieve comparable accuracy with Gauss 

quadrature, both shape functions and their direct derivatives are required to be evaluated at 25 

integration points at least [Chen, Hillman, Rüter (2013)]. The advantage of SCNI is more 

obvious in 3D applications, where 125 evaluation points are needed for Gauss quadrature using 

the commonly adopted hexahedron zones, while in the proposed nodal integration scheme the 

shape function evaluation is required at only 13 points, including the node itself, 6 stabilization 
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points, and 6 gradient smoothing evaluation points. Clearly, the stabilized nodally integrated 

meshfree method is quite attractive for solving large-scale, coupled problems because of its high 

efficiency and accuracy. 

3.4   Numerical Examples 

To verify the proposed formulation, several hydro-mechanical coupled problems are 

analyzed. For simplicity, the effect of gravity force is neglected, and as commonly adopted in 

soil mechanics the bulk modulus of the porous matrix is assumed to be much smaller than the 

bulk modulus of the grains, which is not a restriction of the present formulation. Linear basis is 

used for both the solid displacement and the fluid pressure fields, and the support size of the 

meshfree shape function is set to be 1.5 times the average nodal distance. Although meshfree 

shape functions do not have the Kronecker delta property, efficient treatments are available for 

the imposition of essential boundary conditions, such as Nistche’s method, Lagrange multipliers, 

penalty method, the singular kernel method and transformation method, etc [Chen and Wang 

(2000); Fernández-Méndez and Huerta (2004)]. In solving the following problems, both the 

penalty method and the transformation method have been tested and no noticeable difference in 

their results was found. 

In the following, the fluid pressure projection approach is denoted as FPP, and NI refers 

to the direct nodal integration method, whereas SCNI denotes the stabilized conforming nodal 

integration method. 
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3.4.1  Terzaghi’s problem 

 

Figure 3.4 Description of Terzaghi’s problem 

In the first numerical test, the classical Terzaghi’s consolidation problem [Verruijt, van 

Baars (2007)] is analyzed. As shown in Figure 3.4, a soil layer of thickness 0.10yL m is 

considered to be infinitely long in the horizontal direction. At initial time, a distributed load of 

constant intensity q  is suddenly applied which expels the pore water from the top surface. A 

two dimensional numerical model for the domain size 0.100.3  m
2
 is used, where the 

horizontal displacement at the boundary is fixed. The adopted time step is 0.1t s and the 

material parameters are chosen as follows: Young’s modulus 0.1E kPa, Poisson’s ratio 

0.0 , hydraulic conductivity 
5100.1 hk m/s, specific weight of fluid 0.10f kN/m

3
, 

and fluid bulk modulus 2.2fK GPa. 
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Figure 3.5 Normalized fluid pressure profile for Terzaghi’s problem 

The fluid pressure profile after the initial time step is shown in Figure 3.5, where 217  

nodes are used for the different numerical formulations. It can be seen that formulations using 

only SCNI or NI yield severe oscillations in fluid pressure field since the requirement of inf-sup 

condition is not satisfied. Although this spurious oscillation can be partially alleviated by adding 

FPP to the NI formulation, unphysical pressure modes are still observable due to the instability 

caused by the direct nodal integration method. On the other hand, a stable and accurate solution 

is obtained by employing FPP in conjunction with SCNI, achieving a good agreement with the 

analytical solution. Minor overshoot using the SCNI + FPP formulation appears near the 

drainage boundary, which is caused by the extremely sharp pressure gradient. This phenomenon 

is also observed in stable finite elements and would not affect the solution in the rest of the 

domain as discussed in [Haga, Osnes, Langtangen (2012); White and Borja (2008)]. Numerical 
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results using 21, 41, and 81 nodes along the vertical direction are plotted in Figure 3.6, showing 

that convergence can be achieved when the spatial discretization is refined. 

 

Figure 3.6 Normalized fluid pressure profile near the drainage boundary 

 

3.4.2  Mandel’s problem 

 

Figure 3.7 Description of Mandel’s problem 
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As shown in Figure 3.7, a pair of vertical loads of constant magnitude F2  is applied to 

a poroelastic soil sample through rigid and frictionless plates. The length and height of the 

rectangular soil sample are xL2  and yL2 , respectively. While the two sides in lateral direction 

are fully drained, other boundaries are impermeable. Analytical expressions for the pressure and 

the vertical displacement fields are respectively derived in [Mandel (1953)] and [Abousleiman, 

Cheng, Cui, Detournay, Roegiers (1996)] as follows: 
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where 
2

xfD LtcT   is the dimensionless time, fc  is the fluid diffusivity coefficient, G  is the 

shear modulus, n  are the positive solutions to the nonlinear equation 

     tan 1n n u       , in which 5.0u  for incompressible fluid, and the fluid 

pressure distribution at the instant of loading plimp
00 


t

 depends on both the average force 

density xLF and material parameters, for which an analytical expression can be found in 

[Abousleiman, Cheng, Cui, Detournay, Roegiers (1996); Phillips and Wheeler (2007)]. 

Considering the symmetries, only one quarter of the slab (i.e. the colored part in Figure 

3.7) is modeled with 0.20xL  and 0.2yL . Symmetric conditions are enforced on the left 

and the bottom boundaries, whereas vertical displacement on the top is controlled by applying 

the analytical solution using xLF 2 . Initial conditions are set as zero for both displacement 
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and fluid pressure fields. Incompressible fluid is assumed and material parameters are chosen 

from the reference [Preisig and Prevost (2011)] as 4100.1 E , 0.0 , 5.0u , 

4100.1 fk , which results in 0.1fc  and 0.1p
0
 . 

The early time response of Mandel’s problem has been analyzed in [Preisig and Prevost 

(2011)] using stabilized FE formulation, for which three different dimensionless time increments 

2htct fD   of 0.01, 0.1 and 1.0 are adopted, respectively, and their study shows that the 

undrained behavior could lead to spurious pressure oscillations in the numerical solution when 

small time increment is used and thus stabilization procedure is required. To assess the 

performance of the present meshfree formulation, the same dimensionless time increments are 

also chosen here. The meshfree computation results of the normalized fluid pressure distribution 

along horizontal direction using 101x11 nodes are given in Figure 3.8 together with the 

analytical solutions and the stabilized finite element results from [Preisig and Prevost (2011)] 

denoted as FEM + FPL, where FPL denotes the fluid pressure Laplacian (FPL) stabilization 

method. It can be seen that oscillations appear for direct nodally integrated (NI) formulation even 

when FPP is applied, while the stable SCNI + FPP formulation can offer much satisfactory 

results compared with the reference solutions. 
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Figure 3.8 Normalized fluid pressure distribution at time 
5100.2 DT  using 01.0 Dt  

with 20 time steps (top); at 
4100.2 DT  using 1.0 Dt  with 20 time steps (middle) and 

using 0.1 Dt  with 2 time steps (bottom) 

Next, the distribution of the fluid pressure for various time instants is plotted in Figure 

3.9. Again, good agreement is achieved between the analytical solutions and the SCNI + FPP 

meshfree formulation. An important aspect of Mandel’s problem is that near the center of the 
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sample the pressure initially increases beyond the instantaneous response 0
p  at time of loading, 

and it dissipates later, which is known as the Mandel-Cryer effect [Mandel (1953) ; Cryer (1963)] 

due to the strong hydro-mechanical coupling and is confirmed by experiments [Gibson, Knight, 

Taylor (1963)]. As shown in Figure 3.9, this coupling effect is well captured by the proposed 

stabilized meshfree formulation. 

 

Figure 3.9 Normalized fluid pressure distribution for Mandel’s problem at various dimensionless 

time 
DT  
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3.4.3  Strip load on elastic half space 

 

Figure 3.10 Description of the footing problem (left) and its meshfree numerical model with the 

Voronoi diagram (right) 

A constant surface pressure of intensity 0.10q kPa is distributed over a width of 

4.02 b m on the draining surface of the semi-infinite soil ground. The material parameters are 

as follows: Young’s modulus 4100.1 E kPa, Poisson’s ratio 0.0 , hydraulic conductivity 

8100.5 hk m/s, specific weight of fluid 8.9f kN/m
3
, and the pore fluid is assumed to be 

incompressible. Due to symmetry, only one half of the domain is modeled, as shown in Figure 

3.10, where the height bLx 25  and width bLy 25  can be considered to be large enough to 

minimize the boundary effect in order to properly represent the infinite space.  

This problem has been analyzed by [Xie and Wang (2014)] using standard RKPM via a 

staggered strategy for solving the system of coupled equations, while here the same coupled 

equations are solved in a monolithic manner by applying the proposed stabilized, nodally 
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integrated RKPM formulation. The same spatial discretization as that used in [Xie and Wang 

(2014)] is employed in this study, which consists of 3131  non-uniformly distributed nodes. 

The adopted discretization is shown in Figure 3.10 along with the nodal representative 

integration zones. For convenience, the dimensionless time is defined as   21 bTEkT fhD  , 

and the time step size 6.19t s is chosen such that the dimensionless time increment 

  21 btEkt fhD  is equal to 0.025. 

 

Figure 3.11 Normalized fluid pressure distribution along the central vertical line at time 

1.0DT  

The numerical results of pore fluid pressure at 0.0x m along the height at 1.0DT  

are plotted in Figure 3.11, along with the analytical solution from [Chen (1966); Schiffman, 

Chen, Jordan (1969)]. As can be seen, good agreement between all the three results are obtained, 

which verifies the accuracy of the present approach. It should be noted that for the considered 

case no spurious pressure oscillations would appear even without FPP stabilization. The time 

history of the fluid pressure at location 0.0x m, 2.0y m is also plotted in Figure 3.12 and 

again the proposed meshfree formulation gives satisfactory result. 
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Figure 3.12 Time history of fluid pressure at location 0.0x m, 2.0y m 

To further demonstrate the robustness of the stabilized meshfree formulation, we analyze 

a low permeable case for which 
13100.5 hk m/s is chosen and the surface boundary is treated 

as undrained. The spatial and temporal discretization is kept the same as before, and the 

numerical results using different formulations for the contours of fluid pressure and displacement 

fields are shown in Figure 3.13. Clearly, severe oscillations appear in the fluid pressure field 

without using SCNI or FPP, which would also affect the horizontal displacement field although 

the vertical displacement field seems not to be influenced much. On the other hand, the proposed 

formulation (SCNI + FPP) gives a stable solution as expected. 
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Figure 3.13 Numerical results of the fluid pressure, horizontal displacement, and vertical 

displacement distribution (from top to bottom) for the low permeable case, using the NI 

formulation (left) and the SCNI+FPP formulation (right) 
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Chapter 4 

A Damage Particle Method for Smeared Modeling of Brittle 

Fracture 

 

This chapter is organized as follows. In Section 4.1, the continuum damage model and its 

relation to the cohesive crack model is reviewed and used as the basis for the smeared modeling 

of brittle fracture. In Section 4.2, the damage particle method is introduced under a nodally 

integrated meshfree computational framework, where the smeared strain is defined as the 

boundary integral of the reproducing kernel approximated displacement field. Furthermore, the 

scaling of damage laws based on equivalent damage energy and fracture energy dissipations is 

presented. Numerical examples of benchmark problems are given in Section 4.3 to examine the 

effectiveness of this approach. 

4.1   Continuum Damage Model 

In quasi-brittle materials, the growth and coalescence of a large number of cracks are 

difficult to capture by the discrete crack models. Alternatively, the cracked solids can be 

approximated as damaged continua based on the Continuum Damage Model (CDM) that 

assumes the following form of the stress-strain relationship: 

   : σ D σ  (4.1) 
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where D  is the damage tensor,  is the fourth rank identity tensor, and σ  is the undamaged 

effective stress tensor. In the present smeared crack approach, the undamaged effective stress is 

defined as   :eσ C  , where e
C  is the elastic material moduli, and   is the smeared strain 

to be discussed in Section 4.2. For illustration purpose, an isotropic damage model with 

 D D  is considered, where the scalar damage variable D  is defined as 
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where 0  is the limit elastic strain under uniaxial tension, and c  is the critical equivalent 

strain that controls the slope of the stress-strain softening response,   is an irreversible internal 

state variable which satisfies the following Kuhn-Tucker conditions:  

 0   (4.3) 

 0eq    (4.4) 

   0eq     (4.5) 

Here 
eq  is the equivalent strain [Mazars (1986)] 
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where  denotes the Macaulay bracket and P

I  is the I
th

 principal strain. 

While the present work focuses on the smeared fracture modeling, a comparison between 

the continuum damage and the discrete crack models is essential [Jirásek (2011); Xu and Waas 

(2016)]. For demonstration purposes, let us consider a model problem that involves the 

fracturing process of a bar with Young’s modulus E, length L  and cross-section area A  

stretched under a displacement control as shown in Figure 4.1. The body force and the Poisson 

effects are neglected, and the failure process is triggered by a line of weakened material in the 

middle of the bar.  

  

Figure 4.1   (a-c) Illustration of the failure process of a bar with weakened material at the 

middle cross-section and (d) the expected load-displacement response 

Consider a cohesive zone model to describe the failure process corresponding to the 

post-peak stage of the load-displacement response ( 1t t  in Figure 4.1 (d)), the following linear 

cohesive traction-separation law is introduced on the cohesive crack surface: 
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 (4.7) 

where F A   is the uniaxial stress, 
   2 2x L x L

w u u 
 

   is the crack opening displacement 

at 2x L ,  2C F tw G f  is the critical crack opening displacement, FG  is the fracture 

energy and tf  is the tensile strength.  

 

Figure 4.2 Illustration of adopting (a) the discrete cohesive zone model (CZM) and (b) the 

continuum damage model (CDM) for the cracked bar problem 

The relation between the cohesive zone model and the continuum damage model is 

discussed below, which follows the analogy given in [Jirásek (2011)]. With the cohesive law in 

(4.7), the total displacement Tu  at the loading end of the softening bar is expressed as 

 T Eu u w   (4.8) 

where  E Eu L E L    denotes the total elastic deformation of the bar, in which E  

denotes the elastic strain. The above two equations yield the following relationship between the 
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total displacement Tu  and the load F  during the failure process 
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 (4.9) 

 

Figure 4.3 Illustration of the 1-D stress-strain relationship based on the continuum damage 

model, where the tensile strength is reached at point A, the complete failure occurs at point C, 

and point B refers to an arbitrary state at the softening stage. 

Next, consider the continuum damage model described in (4.1), which can be written in 

the following 1-D form 

     E1 D E E D E          (4.10) 

From the continuum damage model representation given above, an inelastic strain C  

can be defined based on an additive decomposition of the total strain   (see the illustration in 

Figure 4.3): 

 E C     (4.11) 

where C D  . Let the damage zone size be SL  as shown in Figure 4.2 (b). The total 
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displacement Tu  of the bar with length L  can be expressed as  

    T E S E C S E Su L L L L D L           (4.12) 

Comparing equations (4.8) and (4.12), it is seen that the damage model can yield the 

same load-displacement response as that of the cohesive zone model if the following relationship 

holds: 

 Sw D L  (4.13) 

In this connection, the displacement jump w  in the discrete cohesive fracture model has 

been “smeared” over the zone with width SL  in the damage model.  

Furthermore, by equalizing the stress generated by the cohesive traction-separation law in 

(4.7) and the damage constitutive law in (4.10), and considering equation (4.13), the following 

expression for the damage evolution can be obtained. 
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 (4.14) 

where 0 tf E   as defined in (4.2). The above equation exactly recovers the damage law 

defined previously in (4.2), if the following condition is satisfied: 

 c C Sw L   (4.15) 
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where c  is the critical threshold strain. Since  2C F tw G f  represents the critical crack 

opening, the above equation implies that c  is indeed a model parameter dependent on the 

smeared zone size SL . Clearly, treating c  as a constant parameter independent on the smeared 

zone size SL will lead to unphysical prediction for this model problem. Computationally, the 

smeared zone size SL  is related to the adopted discretization grid size, thus a conventional 

numerical implementation of continuum damage models results in discretization size dependent, 

non-convergent solutions. Another computational issue with continuum damage models for 

fracture modeling is the spurious prediction of fracture patterns, which tends to appear when the 

crack propagation path is not aligned with the distribution of the discretization grid. To address 

the above issues, a damage particle method is proposed in the next section, where a dissipation 

energy scaling method is employed in conjunction with the smeared strain formulated under the 

stabilized conforming nodal integration framework to achieve a regularized smeared description 

of fractures. 

4.2   The Damage Particle Method  

4.2.1  Variational equation 

Let us consider a body initially occupying the domain 0  with the boundary 0 , and 

for a material point 0X ,  ,tx x X  is the position of X  in the deformed body   with 

the boundary   at time t . The variational equation of linear momentum conservation with 

reference to the current configuration is 
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 d : d d d
h

   
   

          u u ε σ u b u t  (4.16) 

where u  is the displacement vector, ε  is the strain tensor, u  is the acceleration vector,   is 

the mass density, σ  is the Cauchy stress tensor, b  is the body force vector, t  is the 

prescribed traction on the natural boundary h , and   denotes the variation. The spatial 

discretization of equation (4.16) is carried out by the reproducing kernel approximation [Liu et al. 

(1995); Chen et al. (1996)] which is constructed based on a set of NP points  
1

|
NP

I I I
x x . 

The reproducing kernel approximation of the displacement field is 

      
1

,
NP

h

I I

I

t N t


u x x d  (4.17) 

where  I td  is the nodal coefficient vector, and  IN x  is the reproducing kernel shape 

function introduced in the previous chapter. In the following, the effects of cracking will be 

treated with the continuum damage model introduced in Section 4.1, in conjunction with a 

regularization scheme to be described in subsequent sections. 

4.2.2  Approximation of fracture surfaces by damaged particles  

In the present study, the fracture is approximated by a set of discrete crack segments as 

shown in Figure 4.4 so as to circumvent the burden associated with modeling complex crack 

patterns such as crack branching and coalescence [Remmers et al. (2003); de Borst et al. (2004); 

de Borst et al. (2006); Song and Belytschko (2009); Rabczuk and Belytschko (2004); Rabczuk 

and Belytschko (2007); Rabczuk et al. (2010); Rabczuk (2013)]. In contrast to the above 

mentioned studies, we do not model the crack segments with discrete crack models which 
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require explicit treatment of discontinuities and singularities. Instead, an attempt is made here to 

introduce a regularized smeared crack model based on a node-based discretization, where the 

associated nodal representative domains can be generated by the Voronoi diagram as shown in 

Figure 4.4. 

 
(a)                       (b) 

Figure 4.4 Illustration of the fracture path (green line) and its approximation based on a set of 

crack segments passing the nodal points of the meshfree model, where red lines in (a) represent 

the discrete crack segments and are modeled in a smeared manner over the representative 

domains in grey color associated with damaged particles in (b). 

In each nodal representative domain L  associated with Lx  (Figure 4.5), a smeared 

strain  Lx  at Lx  is defined as  

    
1

d
L

L

LV 
 x x   (4.18) 

where d
L

LV


   is the volume of the nodal representative domain (or area of the nodal 

representative domain in two dimensions).  

Further taking divergence operation of the smeared strain, we have 
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      , ,

1 1 1
d d

2 2L L L
ij L ij i j j i i j j i

L L L

u u u n u n d
V V V

 
  

         x  (4.19) 

where L  is the boundary of the nodal representative domain L , and in  is the i
th

 component 

of the outward unit normal to L  as shown in Figure 4.5.  

 
Figure 4.5 Illustration of the nodal representative domain and boundary integral for 

smeared strain computation 

In the present approach, the smeared strain computed at each nodal representative domain is 

employed to determine the damage and stress states. For instance, if the continuum damage 

model in (1) is considered, the Cauchy stress  Lσ x  at node Lx  is computed as 

         :L L L σ x D x σ x   (4.20) 

where   LD x  is the damage tensor and   Lσ x  is the undamaged effective stress tensor 

computed based on the smeared strain. 

Introducing the reproducing kernel approximation of displacements defined in (4.17) into 

(4.19), the following approximated smeared strain  h

ij L x  is obtained: 
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 (4.21) 

where   | 0L I LG I N x  is the set of particles whose associated reproducing kernel shape 

functions cover particle Lx . The resulting form of the smeared strain naturally avoids taking 

direct derivatives of the displacement field, which is not well-defined near the boundary of the 

smeared cracking zone. In this work, the boundary integral in (4.21) is carried out by one-point 

integration over the Voronoi cell boundary as shown in Figure 4.5, but higher order quadrature 

can be employed if better accuracy is desired. 

To capture fracture propagation, we follow the Rankin criterion which postulates the 

crack growth direction to be perpendicular to the maximum principal stress direction. To this end, 

the following criterion [Rabczuk and Belytschko (2004); Song and Belytschko (2009)] is 

adopted to identify the candidate damage particles near the predicted crack growth path: 

 cos
2

D DI L
L IL

I L

tol



  

    
  

x x
n

x x
 for I Lx  (4.22) 

where Lx  is the position vector of damaged particle L, L  is the set containing the 

neighboring particles of Lx , which can be determined by the Voronoi cells, and D

Ln  is the unit 

normal vector of the crack segment associated with the damaged particle L, which is defined 

along the maximum principal stress direction at Lx , D

IL  is the relative angle between the 

position vector I Lx x  and the crack segment at the damaged particle L, and tol  denotes a 
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small tolerance. The criterion (4.22) is checked at the end of every time step. For example, in the 

neighbor list of the damaged particle L shown in Figure 4.6, only particle P satisfies this criterion 

and will be considered as the candidate damage particle for the next time step. 

 

Figure 4.6 Illustration of the potential cracking zone and the crack prevention zone associated 

with the damaged particle L, where the red line represents the discrete crack segment located at 

the damaged particle L, and the representative domains associated with damaged particles are 

shown in dark grey color. 

For each candidate damage particle, damage initiation occurs when certain measure of 

the smeared strain in their nodal representative domain L  exceeds a threshold. For example, 

  0

h

eq   for the damage law given in (4.2)-(4.6) corresponds to the formation of a crack 

segment. At the damage initiation, the unit normal vector D

Ln  corresponding to the crack 

segment surface is calculated based on the maximum principal stress direction at particle L as 

illustrated in Figure 4.6, and is fixed in the subsequent loading process. 

4.2.3  Dissipation energy-based regularization 

Since a set of crack segments is employed to approximate the fracture, the total energy 

dissipation due to all crack segments is required to satisfy the following condition 



 

69 

  
D

eff

F L F F

L S

G A G A


  (4.23) 

where FG  is the fracture energy dissipated per surface area, 
FA  is the fracture surface area (the 

total length of the green line in Figure 4.4), eff

LA  is the “effective” surface area of the crack 

segment associated with the damaged particle L, and 
DS  is the node set that contains all the 

damaged particles. As the fracture processes are induced due to the deformation of materials on 

both sides of the fracture surface as shown in Figure 4.4, the geometric relation gives 

2
D

L F

L S

A A


 , where LA  is the area of the intersection plane between the Voronoi cell and the 

surface perpendicular to the crack normal D

Ln  at particle L, as shown in Figure 4.7. As such, the 

effective surface area of the crack segment takes the following relation 

 2eff

L LA A  (4.24) 

 

Figure 4.7 Illustration of the Voronoi cell associated with the damaged particle L, where LV  is 

the volume of the nodal representative domain, D

Ln  is the unit normal vector of the crack 

segment, and LA  is the area of the intersection plane between the Voronoi cell and the surface 

perpendicular to the vector D

Ln  at particle L 

Hence, given the geometry of the Voronoi cell and the orientation of the crack segment, 
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the effective surface area eff

LA  can be calculated and adopted as a geometric approximation to 

the fracture surface.  

To ensure objective energy dissipation in smeared crack modeling, a regularization 

approach based on the crack band theory [Bažant and Oh (1983); Cervera and Chiumenti (2006a); 

Cervera and Chiumenti (2006b); Jirásek and Bauer (2012)] is introduced herein. With the 

continuum damage model, the bulk damage energy dissipation associated with all damaged 

particles is related to the total surface fracture energy by the following global energy 

equivalence: 

 

D

L L F F

L S

g V G A


  (4.25) 

where Lg  is the specific bulk energy dissipation associated with the damaged particle L. To 

meet the above requirement, the bulk energy dissipation associated with each damaged particle is 

made equal to the surface energy required to form a discrete crack segment within the nodal 

representative domain, that is 

 eff

L L F Lg V G A  (4.26) 

With the damage model described in Figure 4.3 in Section 4.1, the specific bulk energy 

dissipation is expressed as 

 
1

2
L t cg f   (4.27) 
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where t of E  is the tensile strength. Substituting equation (4.27) into equation (4.26), the 

following expression for c  is obtained 

 
2 eff

F L F L
c

t L t L

G A G A

f V f V


   
    

   
 (4.28) 

When equation (4.28) is adopted to scale the parameter c , the corresponding 

stress-strain softening curve in Figure 4.3 is adjusted to ensure energy dissipation equivalence 

between each damaged particle and the associated crack segment in (4.26). 

4.2.4  Meshfree discrete equations 

In the present smeared modeling approach, the domain integration of the variational 

equation (16) is performed by the Stabilized Conforming Nodal Integration (SCNI) [Chen et al. 

(2001); Chen et al. (2002)] for the following reasons. As has been studied earlier, SCNI meets 

the integration constraints [Chen et al. (2001); Chen et al. (2013)] in the Galerkin meshfree 

approximation of second order partial differential equations with linear consistency. Moreover, 

under the SCNI framework, the domain is partitioned into conforming nodal representative 

volumes (e.g., Voronoi cells), which provides a node-based domain partitioning for 1) 

computation of the smeared strain in (4.21) without taking direct derivatives of the displacement 

field which are not well-defined in the smeared cracking region; 2) obtaining the effective crack 

surface area in the smeared crack model to transform the fracture energy into the damage energy 

with the aforementioned energy scaling law; and 3) allowing the displacement and damage 

variables to be computed at the same nodal points without the need to interpolate between 

variables computed at Gauss points and nodal points in the conventional finite element 
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approaches. 

Since the internal energy : d


 ε σ  in the variational equation (6.16) is related to the 

fracture process of the materials, the nodally integrated discrete form of this internal energy term 

by the reproducing kernel approximation is discussed in the following. By introducing a nodal 

integration, the internal energy : d


 ε σ  is approximated as follows: 

     
1

: d :
NP

L L L

L

V 




  ε σ ε x σ ε x  (4.29) 

Here,  Lε x  is the smeared strain defined in (4.19), and LV  is the volume (or area in 

two dimensions) of L . Taking into account the reproducing kernel approximation of the 

smeared strain in (4.21), we have the following approximated smeared stress at Lx  for the 

nodal representative domain L : 

           :h h h e h

L L L Lσ x σ ε x D ε x C ε x    (4.30) 

where the damage state D  within L  is determined by the smeared strain  h

Lε x  along 

with the scaled parameter c  based on (4.28), which ensures the energy equivalence imposed 

by (4.26) within a nodal representative domain. Note that the nodal volume LV  and the surface 

area LA  used in the dissipation energy-based scaling procedure are associated with the same 

Voronoi cell used for the smeared strain calculation. For convenience, the smeared stress tensor 

 h

Lσ x  can be represented in Voigt notation as a vector 
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       11 22 12

T
h h h

L L L L     Σ x x x x  for two dimensional problems. Similarly, the vector 

form of the approximated smeared strain in (4.21) can be expressed as follows 

        11 22 122
L

T
h h h

L L L I L I

I G

  


    x x x B x d  (4.31) 

where  1 2I I Id dd , and  I LB x  is the associated smeared gradient matrix: 
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L L
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L L

b N N n
V V 

    x  (4.33) 

By introducing the reproducing kernel approximation of the smeared strain and the 

smeared stress, the internal force vector int

If  for node I is computed as follows: 

    int

1

NP
T

I I L L L

L

V


f B x Σ x  (4.34) 

Consequently, the final matrix equations are obtained as: 

 ext int Md f f  (4.35) 

where M and ext
f are the mass matrix and the external force vector, respectively, obtained from 

the variational equation (4.16) by standard procedures [Chen et al. (1996)]. 
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Remark 4.2.1 In the proposed method, the computation of displacement, strain, stress, 

and damage variables along with the regularization procedure in (4.26)-(4.28) are performed at 

the nodal points. Therefore, this approach avoids the interpolation of state and field variables 

between Gauss points and nodal points commonly needed in the conventional finite elements, for 

which the smeared cracking zone size can be affected by the number of Gauss integration points 

within each element domain and requires additional treatments [Jirásek and Bauer (2012)]. 

Remark 4.2.2 The proposed smeared fracture modeling approach naturally fits into the 

SCNI framework, as the proposed smeared strain and the associated nodal integration of internal 

energy turn out to be equivalent to the SCNI for Galerkin meshfree methods. As a result, the 

strain, stress, and variational equation in the undamaged and damaged zones are computed with a 

unified formulation, where the SCNI strain smoothing ensures the accuracy and convergence of 

meshfree solutions as analyzed in [Chen et al. (2001); Chen et al. (2013)]. 

 

4.3   Numerical Examples 

To validate the effectiveness of the proposed formulation, several benchmark fracture 

problems are analyzed. Linear basis and cubic B-spline kernel with circular nodal support size of 

1.5 times the average nodal distance are adopted for constructing the reproducing kernel shape 

functions. The singular kernel method is used for the imposition of essential boundary conditions 

[Chen and Wang (2000)]. The diffraction method [Organ et al. (1996)] is employed for modeling 

pre-existing cracks in example problems 4.2 and 4.3 by modifying the support domain of the 

nodes which cover the initial cracks. An implicit incremental-iterative procedure is used for the 
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quasi-static problem in Example 4.1, and the explicit central difference method is adopted for 

time integration in the other example problems. 

4.3.1  A cracked bar under tension 

Smeared crack approaches provide convenience for fracture modeling as they avoid the 

complexities associated with explicit modeling of moving strong discontinuities. However, such 

methods can be ill-posed and lead to discretization sensitive numerical results, unless effective 

regularization techniques are employed. To examine the regularization performance of the 

proposed smeared fracture modeling approach, a fundamental localization test of a bar under 

uniaxial tension [Jirásek and Bauer (2012); Xu and Waas (2016)] is analyzed. The damage 

particle method is employed and the results are compared to that of the cohesive zone model as 

well as the unregularized particle-based damage formulation. Here, the unregularized 

particle-based damage formulation refers to the damage analysis based on nodally integrated 

reproducing kernel discretization but without adopting the regularization procedures given in 

(4.26)-(4.28), that is, the parameter c  is kept constant throughout the damage process. 

A description of this model problem has been given in Section 4.1 (see Figure 4.1). In the 

following, the length of the bar is taken as 21.0 10L    with the cross-section area 10.0A  

(dimensionless unit is used). In addition, the bar is considered to be homogeneous with Young’s 

modulus 62.0 10E   , fracture energy 1.885FG  , and tensile strength 22.0 10tf    (i.e., the 

limit elastic strain of the damage model 4

0 1.0 10tf E     ), except for the weakened 

material plane at the middle cross-section where tensile fracture occurs. To achieve a smeared 

modeling of the fracture process, a slightly lower limit elastic strain of 99.9% 0  is used for 
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particles whose nodal representative domains intersect with the pre-defined weak plane, so that 

these particles are damaged once this reduced damage threshold is met. To investigate the 

solution sensitivity with respect to the discretization size, we adopt four models consisting of 16, 

32, 64 and 128 nodes along the rod axis. Accordingly, the fracture at the middle cross-section 

will be captured via damage localization over the nodal representative domains containing the 

weak plane.  

 
(a)                          (b) 

Figure 4.8 Load-displacement curve obtained from (a) unregularized particle-based damage 

formulation, (b) the proposed damage particle method 

In Figure 4.8, the curves of the axial force versus the displacement at the loading end are 

plotted. It can be seen from Figure 4.8 (a) that the unregularized particle-based damage 

formulation suffers from discretization size dependency, i.e., the global energy dissipation (the 

area under the load-displacement curve) decreases spuriously as the numerical model is refined. 

This is expected since the specific bulk energy dissipation Ig  is assigned a constant value (i.e., 

c  is treated as a constant parameter) in the un-regularized model, while the volume of the 

smeared cracking zone (the total nodal representative volume associated with the two damaged 
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particles in this model problem) shrinks as the discretization is refined. The spurious and 

non-convergent energy dissipation behavior of the unregularized particle-based damage 

formulation is effectively corrected in the damage particle method [Figure 4.8 (b)], which 

ensures that the global energy dissipation is always equivalent to the total fracture energy FG A  

dissipated during the fracturing process through appropriate scaling of the damage law. 

According to the cohesive zone model in equation (4.7), when the load F  reduces to zero, the 

total displacement achieves its maximum magnitude  max max2T Fu G A F  according to (4.9), 

where max

tF f A  is the maximum magnitude of the total force (at the peak of the 

load-displacement curve). For the adopted parameters, max 21.8850 10Tu    is the expected 

value, which agrees well with the numerical prediction of max 21.8858 10Tu    by the damage 

particle method
 
shown in Figure 4.8 (b). 

 
(a)                          (b) 

Figure 4.9 Evolution of crack opening displacement (COD) versus the displacement at the 

loading end of the bar, obtained from (a) unregularized particle-based damage formulation, (b) 

the proposed damage particle method, and CZM refers to the reference solution based on the 

cohesive zone model. 
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Furthermore, the crack opening 
 

  2

2

S

S

L L

L L
w D dx




   [(4.13)] computed from the meshfree 

simulation is compared to the evolution of the displacement jump w  from the cohesive zone 

model-based analysis in Figure 4.9. As expected, the prediction of the damage particle method is 

consistent with the discrete surface-based cohesive model, while the unregularized formulation 

suffers from discretization size sensitivity. 

 
(a)                          (b) 

Figure 4.10 The smeared cracking zone (in terms of non-zero damage distribution along the bar) 

at tip displacement of max

Tu , obtained from (a) unregularized particle-based damage formulation, 

(b) proposed damage particle method 

At the end of the loading process (i.e., when the displacement at the loading end equals to 

max

Tu ), the predicted maximum magnitude of the damage variable changes as the discretization is 

refined in the unregularized particle-based damage formulation, as can be seen from Figure 4.10 

(a). For the proposed approach, the damage variable always reaches the maximum value of one 

as shown in Figure 4.10 (b), which indicates the full opening of the cohesive fracture for all 

discretizations. Note that the width SL  of the smeared cracking zone (region with non-zero 

damage distribution), defined as the ratio of the nodal representative volume associated with 
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damaged particles to the effective surface area eff

LA  of the crack segment, decreases with 

discretization refinement since 2eff

LA A  is constant in this model problem. Similar behavior 

is observed in the crack band finite element method when the element size is reduced. However, 

as discussed in [Jirásek and Bauer (2012)], the smeared cracking zone width of the crack band 

finite element method can be affected not only by the element size and shape, but also by the 

integration scheme. This is because softening can localize into only some of the quadrature 

points within an element, which makes it cumbersome to obtain a reliable estimate of the 

smeared cracking zone size, especially for multi-dimensional problems. In contrast, since the 

damage particle method is formulated under the SCNI framework, the smeared zone size can be 

estimated within each nodal representative domain in a straightforward manner, allowing an 

effective energy scaling procedure as described in Section 4.2.  

 
(a)                          (b) 

Figure 4.11 Distribution of axial stress along the bar, predicted by adopting (a) 8-Point Gauss 

quadrature using the direct gradient of the displacement field for strain calculation, and (b) SCNI 

scheme using the smeared strain 

Next, the advantage of employing the smeared strain defined in (4.21) in conjunction 

with SCNI as the domain integration scheme is examined herein. At a time step after damage 
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initiation, the stress distributions obtained from 8-point Gauss quadrature and SCNI are plotted 

in Figure 4.11 (a) and Figure 4.11 (b), respectively. As shown in Figure 4.11 (a), when the Gauss 

quadrature scheme is used, severe stress oscillations appear and they cannot be eliminated with 

discretization refinement. This stress prediction could yield spurious damage growth in the 

subsequent loading steps and cause divergence in the algorithm. Similar stress oscillations have 

also been observed in [Jirásek (1998b)] when the Element-Free Galerkin method is adopted for 

solving a similar strain localization problem. The proposed damage particle method, on the other 

hand, not only enhances the computational efficiency due to the nodal quadrature nature, but also 

reproduces the constant stress distribution in Figure 4.11 (b) as expected, and thus it is 

well-suited for solving smeared crack problems where localized strain exists. The effectiveness 

of the proposed damage particle method is attributed to the employment of the smeared strain 

formulated under the SCNI framework for predicting the stress and damage states, whereas the 

stress state yielded by the Gauss quadrature scheme is instead based on the direct derivatives of 

the non-smooth displacement field which is not well-defined near the smeared cracking region 

and thus results in spurious oscillations. 
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4.3.2  Kalthoff’s impact problem 

 
Figure 4.12 Illustration of Kalthoff’s impact problem (the red lines represent initial cracks) 

In this example, the fracture behavior of an edge-cracked plate under impulse loading is 

modeled. At a relatively low impact velocity, brittle failure with a crack propagation angle of 

about 70o  was observed in the experiment as reported in [Kalthoff and Winkler (1987)]. Due to 

symmetry, only the upper half of the plate shown in Figure 4.12 is considered with edge length 

0.1x yL L  m, and the vertical displacement is restrained on the plane of symmetry. The initial 

crack length is 
1 0.05a  m, and the distance from the initial crack to the symmetry plane is 

2 0.025a  m. An initial velocity of 16.5 m/s in the horizontal direction is introduced on the plate 

surface where the projectile impacts. The material parameters are as follows: fracture energy 

42.0 10FG   N/m, tensile strength 89.5 10tf   Pa, Young’s modulus 111.9 10E   Pa, 

Poisson’s ratio 0.3  , and mass density 
38.0 10    kN/m

3
 .  
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Figure 4.13 Distribution of the damage state, obtained from the damage particle method using (a) 

22500 nodes, (b) 62500 nodes, (c) 122500 nodes, and (d) 202500 nodes. 

To study the influence of the numerical discretization on the simulation results, models 

with different levels of discretization refinement are employed. The tolerance in the particle 

tracking criterion (4.22) is set as 0.3tol  . This restricts the relative angle D

IL  in (4.22) 

between the vector I Lx x  and the crack segment direction to be approximately less than 20o , 

where Lx  is position of the damaged particle and Ix  is the position of a candidate damage 

particle.  
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Figure 4.14 Comparison of the crack growth paths between the Kalthoff’s experimental result 

and different numerical simulation, where XFEM, PNM, CNM and CPM denote the Extended 

Finite Element Method [Rethore et al. (2005)], Phantom Node Method [Song et al. (2006)], 

Cracking Node Method [Song and Belytschko (2009)] and Cracking Particle Method [Rabczuk 

et al. (2010)], respectively. 

The results of predicted crack paths (shown as damage distribution) are plotted in Figure 

4.13. It can be seen that consistent crack growth paths are obtained with different refinement 

levels of the models. Moreover, the predicted crack paths agree well with the reported results 

using XFEM [Rethore et al. (2005)], Phantom Node Method [Song et al. (2006)], Cracking Node 

Method [Song and Belytschko (2009)] and Cracking Particle Method [Rabczuk et al. (2010)], as 

shown in Figure 4.14.  
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(a)                                   (b) 

Figure 4.15 Evolution of global fracture energy dissipation, obtained from (a) unregularized 

particle-based damage formulation, (b) CNM (Cracking Node Method) from [Song and 

Belytschko (2009)] and the proposed damage particle method, where the models 1-5 consist of 

10000, 22500, 62500, 122500 and 202500 nodes, respectively. 

In addition to the predicted crack path, the discretization insensitive property of the 

proposed approach also manifests in the global energy dissipation during the crack growth 

process. In Figure 4.15, the time history of the global energy dissipation of the structure is 

plotted. Similar to the previous example analyzed in Section 4.3.1, if the damage evolution law is 

not scaled properly, the total energy dissipation during the structural failure process decreases as 

the numerical discretization is refined, as shown in Fig. 15 (a). On the other hand, objective 

energy dissipation is achieved by using the present damage particle method, as shown in Figure 

4.15 (b). The energy dissipation predicted by the Cracking Node Method (CNM) in [Song and 

Belytschko (2009)] is also plotted in Figure 4.15 (b) as a reference. In the CNM, discrete crack 

segments are modeled with the cohesive zone model implemented with a partition of unity-based 

enrichment scheme. Although small discrepancies are observed in the energy dissipation time 

histories, the overall behaviors predicted by the proposed damage particle method and CNM 

agree well. 
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It is noted that the crack band type scaling procedure alone is insufficient to fully 

regularize the solution, as the crack path cannot always be predicted correctly without a proper 

physics-based control. If the particle tracking procedure introduced in Section 4.2.2 is not 

employed, the crack pattern in Figure 4.16 is obtained. Clearly, spurious damage initiation 

occurs at locations away from the physical fracture front, and the final crack path prediction is 

far from satisfactory. Therefore, both the energy scaling and the particle tracking procedures are 

important to achieve objective fracture modeling. 

 

Figure 4.16 Distribution of the damage state, obtained when the damage particle tracking 

procedure is deactivated, using (a) 22500 nodes, (b) 62500 nodes. 
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4.3.3  Dynamic crack branching problem 

 
Figure 4.17 Illustration of the dynamic crack branching problem (the red line represents an 

initial crack) 

A dynamic crack branching problem is analyzed herein, which remains challenging in 

finite element-based approaches [Song et al. (2008)]. As shown in Figure 4.17, a plate containing 

an initial edge crack is subjected to uniform tensile tractions of 61.0 10 Pa on its top and bottom 

surfaces. The length and width of the plate are 0.1xL  m and 0.04yL  m, respectively. The 

initial crack length is 
1 0.05a  m, and the distance from the initial crack to the bottom edge of 

the plate is 
2 0.02a  m. The material parameters are as follows: fracture energy 3.0FG  N/m, 

tensile strength 62.72 10tf   Pa, Young’s modulus 103.2 10E   Pa, Poisson’s ratio 0.2  , 

mass density 
32.45 10    kN/m

3
. 
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Figure 4.18 Distribution of the damage state, obtained from the damage particle method using 

different discretizations with the nodal distance (a) 48 10h   m, (b) 44 10h   m, and (c) 
42 10h   m, respectively. 

To capture the crack branching phenomena, a relatively large tolerance 0.5tol   is 

adopted for the search of potential damage particles, and thus a threshold of 30o  for the relative 

angle D

IL  in (4.22) is introduced. Three levels of refinement with nodal distance 48 10h   m, 

44 10 m, and 42 10 m are adopted in the reproducing kernel discretizations, and the predicted 

crack paths are shown in Figure 4.18. Due to dynamic instability, the crack branches into two 

major branches, and then a few minor branches also appear along the main branches. Similar 

crack branching patterns are obtained upon model refinement, and the simulation results agree 

well with the reported numerical results using the Cracking Particle Method [Rabczuk and 

Belytschko (2004); Rabczuk and Belytschko (2007)].  
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(a)                                   (b) 

Figure 4.19 Evolution of global fracture energy dissipation, obtained from (a) unregularized 

particle-based damage formulation, (b) proposed damage particle method with different levels of 

discretization. 

Time histories of the global dissipated energy are plotted in Figure 4.19. For the damage 

particle method, convergence in the total energy dissipation is observed when the model is 

refined as shown in Figure 4.19 (b), where lower energy dissipation with a relatively short crack 

path (see Figure 4.18 (a)) appears in the coarsest discretization. The total energy dissipation 

predicted by the unregularized particle-based damage formulation in Figure 4.19 (a), however, 

do not show a convergent behavior upon refinement of the numerical model.  
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Chapter 5 

Application of the Damage Particle Method for Hydraulic 

Fracturing Simulation 

 

 This chapter is arranged as follows. Firstly, a smeared crack model that incorporates 

hydro-mechanical coupling effects is described in Section 5.1. Numerical implementation of the 

damage particle method under reproducing kernel mixed discretization is then presented in 

Section 5.2. In Section 5.3, several numerical problems are analyzed to demonstrate the 

effectiveness of the proposed method in hydraulic fracture modeling. 

5.1   Smeared Crack Model for Fractured Saturated Porous Media 

5.1.1 Balance equations 

In this chapter, the damage particle method is introduced under the hydro-mechanically 

coupled modeling framework to simulate the hydraulic fracturing process. Based on the 

assumptions of isothermal single-phase flow and small deformation, the basic equations 

describing the mechanical behavior of saturated porous media consist of the momentum balance 

equation 

      σ u g 0                              (5.1) 

and the mass conservation equation 
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  1 0w Q p   u q                         (5.2) 

In the above equations,   sfff nn   1  is the averaged mass density, fn  is the porosity, 

and s  and f  are the mass densities of the solid and fluid phases, respectively, g  is the 

gravitational acceleration, 
w

q  is the fluid flux vector,   is the Biot coefficient, Q  is the Biot 

compressibility modulus, u  is the displacement of solid, σ  is the total Cauchy stress. On the 

outer surface   of the porous media, solid displacement u u  and fluid pressure p pw w  

can be prescribed on the essential boundaries u  and p , respectively, and traction   n σ t

and fluid outflow flux w

f   n q n q  can be imposed on the natural boundaries t  and q , 

respectively, where n  is the outward unit normal vector to  ,  qptu   and 

 qptu  . At time 0t  , initial conditions for the fluid pressure 
0p pw w  and 

stress 0σ σ  are imposed, which satisfy the equilibrium condition in the reference state and 

reflect the loading and seepage history. In the present study, the fluid-filled cracks are 

represented in a smeared manner, and thus the effects of cracking on fluid flow and solid 

deformation are captured through the use of appropriate continuum constitutive models to be 

described in subsequent sections. 

5.1.2 Continuum damage model for fluid-filled cracks 

The constitutive law for the solid phase is introduced based upon the concept of total and 

effective stresses: 

 p σ σ I                              (5.3) 
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where σ  is the total Cauchy stress, σ  is the effective stress, p  is the fluid pressure, and I  

is the 2
nd

 order identity tensor. We have used the sign convention that tensile stress in solids and 

compressive pressure in fluids are positive. To capture the cracking effects on the mechanical 

behavior, the effective stress is expressed by a continuum damage model: 

   :  σ D σ                              (5.4) 

where D  is the damage tensor,  is the 4
th

 rank identity tensor, σ is the undamaged effective 

stress governed by a linearly elastic constitutive law: 

  :e σ C                                (5.5) 

where   is the smeared strain described in Chapter 4, and 
e

C  is the drained elasticity tensor. 

In the following, the isotropic damage model described in Chapter 4 is employed, i.e., DD . 

As the material stiffness of cracked region is reduced by the damage model, a modified Biot 

coefficient  1 1 sD K K     is adopted in (5.2). 

5.1.3 Cracking-enhanced permeability model 

The distribution of fluid pressure p  is governed by the mass conservation equation in 

(5.2), where the influence of cracking on fluid flow needs to be appropriately considered. Given 

the fluid pressure gradient p , fluid flow in saturated porous media can be described by 

Darcy’s law: 

 w

f p  q k                               (5.6) 
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where 
fk  is the permeability tensor, which can be written in the following form for intact and 

isotropic porous materials: 

 
0f fkk I                                 (5.7) 

where 
0f h fk k  , hk  is the hydraulic conductivity and 

f  is the specific weight of the 

fluid.  

In fractured porous media, however, an anisotropic permeability model is essential to 

account for the increase of fluid flow along the opened cracks under the smeared crack modeling 

framework [Pijaudier-Cabot et al. (2009); Miehe et al. (2015); Ma (2015)]. Along this line, the 

following permeability model is employed to describe the hydraulic behavior of the fractured 

porous media: 

  0 0f fC f C C fk k k   k t t I                       (5.8) 

where 
fCk  represents the cracking-induced permeability along the crack path direction. In the 

present study, 
fCk  is derived based upon the equivalence between the fluid fluxes within the 

discrete fracture and over the smeared crack zone (illustrated in Figure 5.1), as described in the 

following. 
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Figure 5.1 Illustration of (a) the fluid flux 
Cq  along a discrete fracture with crack opening w 

and (b) the fluid flux 
Sq  over the smeared crack zone with width 

SL , where a constant fluid 

pressure gradient  Cp  t  exists along the crack path direction. 

Firstly, as the crack opening displacement is much smaller than the other length scales of 

a fracture, the fluid flow inside a discrete fracture can be approximated as laminar flow between 

two parallel plates which correspond to the opposite surfaces of a fracture. Assuming that the 

fluid is Newtonian, the total fluid flux 
Cq  across the fracture opening can be obtained as 

  
3

12
C C

f

w
q p


    t                           (5.9) 

where w  is the distance between the plates (i.e., the crack opening displacement), 
f  is the 

dynamic viscosity of the fluid, Ct  is a unit vector along the crack path direction. 

Next, under the smeared crack modeling framework, the fluid flux 
Sq  along the crack 

path direction over the smeared crack zone can be expressed as 



 

94 

 S fC C Sq k p L    t                           (5.10) 

where 
SL  represents the smeared crack zone’s width (along the direction perpendicular to the 

crack path) as illustrated in Figure 5.1. Under the damage particle-based meshfree discretization, 

SL  can be evaluated as the ratio between the nodal representative volume IV  and the effective 

surface area eff

IA  of the crack segment associated with damaged particle I, as defined 

previously in Chapter 4. 

Considering (5.7) and (5.8) and further enforcing the flow flux equivalence: 

S Cq q                               (5.11) 

the following permeability parameter which describes the hydraulic behaviors of the porous 

media along the crack path direction is yielded: 

3

12
fC

f S

w
k

L
                                (5.12) 

The above expression for 
fCk  is then employed in the anisotropic permeability model in (5.8), 

which ensures the total fluid flux conservation within the fracture. 

In the numerical simulation, the anisotropic permeability model in (5.8) is employed at 

each damaged particle, where the storage and computation of state and field variables are also 

performed. For smeared description of fractures, a direct derivation of the crack opening 

displacement based on the damage distribution is in general not available. Nevertheless, 
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following the work of [Miehe et al (2015); Mauthe and Miehe (2017)] on phase field methods 

along with our previous analysis on the damage particle method in Chapter 4, a smeared 

strain-based measure for estimating the crack aperture at damage particle I can be defined as: 

     D D

I S I I Iw DL  x n ε x n                      (5.13) 

where  Iε x  is the smeared strain at particle I, D

In  is the unit normal vector to the crack 

segment at particle I. The validity of this formulation in one-dimension has actually been 

demonstrated in Section 4.3.1, and its effectiveness in multi-dimensions will be further examined 

in Example 5.2.1. Algorithms for updating the damage state D  in conjunction with the 

dissipation energy-based regularization follow closely the formulations introduced in Chapter 4. 

5.2 Reproducing Kernel Mixed Formulation 

5.2.1 Variational equations 

Following a similar procedure as described in previous chapters, the variational equations 

can be derived for the momentum and mass balance equations in (5.1)-(5.2). By partitioning the 

domain   into conforming nodal representative domains associated with a set of points, 

1

NP

I I  , where NP  is the number of meshfree nodes, and introducing the reproducing 

kernel approximation to both the trial and test functions, the following semi-discrete form of the 

fluid pressure projection-based variational equations are obtained 

  
t

: : p d d d d 0s h h h h h h h  
   

              η D σ η η u η t η g    (5.14) 
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  
q

1
ψ d ψ p d ψ p d ψ d

ψ d ψ ψ p p d 0

h h h h h h h

f f f

h h h h h

f f

Q
 



   


 

        

       

   

 

u k k g

n q

   

     (5.15) 

in which 

1

NP
h u

I I

I

N


 u N U U ,      
1

NP
h u u u

I I

I

N


 η N c c               (5.16) 

are the reproducing kernel approximated trial and test functions for the solid displacement, 

respectively, and 

1

p
NP

h p

I I

I

N P


 N P ,      
1

ψ
NP

h p p p

I I

I

N c


 N c              (5.17) 

are the reproducing kernel approximated trial and test functions for fluid pressure, respectively, 

where 
u

N  and 
pN  are the matrices of reproducing kernel shape functions, and U , P , 

u
c  

and 
p

c  are vectors of the corresponding nodal coefficients;     in (5.15) denotes the L2 

projection operator for the fluid pressure approximation field, which is employed in the pressure 

projection-based stabilization scheme to ensure stable equal-order reproducing kernel 

approximation, as discussed in Chapter 3. 

5.2.2 Discrete equations 

For time discretization, the generalized Newmark scheme is applied to the solid motion 

fields: 
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1 12

2 2 2

1 1 1
1

2

h h h h

n n n n
t t  

 

 
     

   
u u u u                (5.18) 

1 1 1
1 1

2 2 2

1 1
2

h h h h

n n n nt
t

  

  
 

   
         

    
u u u u            (5.19) 

1 1

h h h

n n n  u u u                                       (5.20) 

and the generalized trapezoidal rule is applied to the fluid pressure field: 

1

1 1
p p 1 ph h h

n n n
t 



 
    

  
                            (5.21) 

1p p ph h h

n n n                                         (5.22) 

where t  denotes the time step size. In the present study, the trapezoidal rule with integration 

parameters 
1 1 2  , 

2 1 4  , 1 2   is adopted. Substituting (5.18)-(5.22) into the spatial 

discrete equations (5.14)-(5.15), we obtain the following system of discrete equations: 

     
1 1 1 1 1 12

2 2 2

1 1 1
1

2

E U Cu

n n n n n n n n
t t  

     

  
          

    
R F F M U U U K P 0   (5.23) 

        

 

22 2 2
1 1 1 1 1 1 1

1 1 1 1

T
22 2

1 1

1 1

1

1
1

2

E H Sp

n n n n n n n n

UP

n n n n

tt t

t t

   

     

 

 

      

 

    
        
   

    
                

    

R Q K S P K P P

K U U U 0

  (5.24) 
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in which the internal force vector  
1

U

nF  is dependent on the damage state  1 1n nD  ε  and the 

undamaged effective stress vector 
1n

Σ  as 

   T

1 1 1 11 d
U u

n n n nD   


    F B ε Σ                     (5.25) 

where u
B  is the matrix consisting of the shape function gradients. In addition, the mass matrix 

1nM , coupling matrix  
1

C

nK , permeability matrix  
1

H

nK , compressibility matrix  
1

S

nK , 

stabilization matrix S , and the external force vectors  
1

E

nF  and  
1

E

nQ  are expressed as follows 

T

1 1 du u

n n 


 M N N ,                            (5.26) 

  T

1 1 d
C u p

n n 


 K B mN ,                           (5.27) 

   T

1 1
d

H p p

n f n 
 K B k B                           (5.28) 

    T

1 11 d
S p p

n nQ 


 K N N                          (5.29) 

 
T

1 1
dp p p p

n f n
 

         S N N N N            (5.30) 

 

t

T T

1 1 1d d
E u u

n n n  
 

   F N t N g                     (5.31) 

     
q

T T

1 1 1
d d

E p p

n f f fn n
    

     Q N n q B k g         (5.32) 

In (5.30), the parameter f  for the pressure projection-based stabilization follows Sun et al. 
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[Sun, Ostien, Salinger (2013)], which is chosen to avoid spurious pressure oscillations in 

uncracked and low-permeable region, as described in (3.53) and (3.54) of Section 3.3; in other 

region represented by damaged particles, however, the cracking-enhanced permeability is 

sufficiently high, and thus this parameter is locally set to zero to avoid numerical 

stabilization-induced over diffusion. 

Finally, the incremental solid displacement 
1nU  and fluid pressure 

1nP  as the 

primary nodal unknowns can be obtained by an iterative algorithm to solve the non-linear 

equations (5.23)-(5.24). For the i
th

 iteration of the (n+1)
th

 time step, the final system of equations 

are as follows 

 

 

1
1

1

1
1

i
u

i
n

i n

n i i
p

n
n









 
   

   
   

 

RU
J

P R

                          (5.33) 

in which the residual vectors    1 1 1 1,
i

u u i i

n n n n   R R U P  and    1 1 1 1,
i

p p i i

n n n n   R R U P  are 

calculated based upon (5.23) and (5.24), where the superscript i  is the iteration counter. The 

Jacobian matrix 
1

i

nJ  by consistent linearization is expressed as 
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   

   
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 
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1 1 12

2

12 2 2
1 1 1 1

1 1 1 1

1

i i
u u

n n

i i

n ni

n i i
p p

n n

i i

n n

U Ci i i

n n n

H i
C H SiT i i in

n n n ni

n

t

t t



  

   

 

 



 

 

  


   



  
 
  

  
  
 

   

 
  

 
  
     

 

R R

U P
J

R R

U P

M K K

K
K K S K

U

    (5.33) 

where the sub-matrix of the tangent stiffness  
1

U i

nK  for the solid phase is expressed as 

   T

1 1
d

iU i p d p

n n 
 K B C B                        (5.34) 

with the following material tangent stiffness matrix: 

     1 11
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IJ n IJ IK K nn
eq J

n

D
D




 



  
         

C C C 


         (5.35) 

For different damage laws, analytical expression of  
1

i

T n
C  are readily available based upon 

the procedure described in [Jirásek and Patzák (2002)], and the derivation details are omitted 

here for the sake of simplicity. 

As can be seen from (5.33), the Jacobian matrix is non-symmetric due to the sub-matrix 

 
12

1 1

H i

n

i

n

t










K

U
 located at the left bottom ‘p-u’ block. This sub-matrix is resulted from the 

nonlinear dependence of the anisotropic permeability matrix  H

ppK  (defined in (5.8) and (5.12)) 
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on the crack opening displacement w , which further depends on the damage state D  and the 

smeared strain ε , according to (5.13). Note that this sub-matrix is non-zero only in a very small 

portion of the overall Jacobian matrix 
1

i

nJ  associated with damaged particles, whereas it has 

zero value elsewhere since a constant permeability model in (5.7) is employed for undamaged 

regions. In order to restore the symmetry of the Jacobian matrix, this sub-matrix is omitted in the 

subsequent computation. By doing so, a significant amount of computer storage is saved, and 

high computational efficiency in solving large-scale systems of equations is achieved. Similar 

symmetrization treatments have been employed in previous studies [Réthoré de Borst, Abellan 

(2007); Segura, Carol (2008); Khoei, Vahab, Haghighat, Moallemi (2014)] for coupled 

hydro-mechanical modeling of fractured porous media, where the contribution of the additional 

coupling term due to the cracking-enhanced fluid low is shown to be negligible to achieve 

convergence, although slightly higher number of iterations are needed. With this simplification, 

the Jacobian matrix 
1

i

nJ  adopted in the present study is expressed as 

   

      
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       (5.36) 

To enhance computational accuracy and efficiency, the stabilized conforming nodal 

integration (SCNI) scheme is applied for the domain integration of the Jacobian matrix and 

residual force vectors. As discussed in previous chapters, the employment of SCNI also allows 

the effective implementation of the dissipation energy-based regularization scheme for the 

computation of damage state  1 1n nD  ε , which avoids the discretization size sensitivity issues. 



 

102 

5.3   Numerical Examples 

5.3.1  Sneddon’s pressurized crack problem 

  

(a)                       (b) 

Figure 5.2 Distribution of the imposed (a) fluid pressure and (b) damage state, which indicates 

the location of the pre-existing crack 

The first example analyzes the opening of a pre-existing crack subjected to a uniform 

internal pressure. A 2-D squared domain of length 4 is considered, where a straight crack with 

length 2 1c   is centered at the origin and aligned with the x-axis of the Cartesian coordinate 

system. The elastic material properties are: Young’s modulus 1E  , Poisson’s ratio 0.25  , 

and a uniform pressure 
410p   is applied along the crack surface. 

In the present study, the displacement field is restrained at the outer boundary of the 

square domain as an approximated boundary condition for an infinite domain problem, and the 

pre-existing crack is approximated by specifying the damage state 1D   for the particles whose 
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supports cover the crack location. Although the fluid flow is not considered in this example, the 

hydro-mechanical coupled simulation framework is still adopted, which allows the impositon of 

non-zero fluid pressure as the driving force to open the pre-existing crack. Specifically, we 

impose the fluid pressure p p  at these damaged particles and 0p   elsewhere in the 

domain [refer to Figure 5.2].  

 

Figure 5.3 COD (Crack Opening Displacement) distribution along the crack surface, where h 

corresponds to the nodal distance. 

Theoreticcal analysis of a similar pressuarized crack problem has been performed in 

[Sneddon (1946)], and the following expression for the crack opening displacement (COD) 

under the plane strain condition has been obtained: 

 
 2

2 2
4 1 p

COD c x
E


                       (5.37) 

The above equation has been adopted to examine the validity of smeared numerical models for 
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hydraulic fractures, e.g., in [Wheeler, Wick & Wollner (2014); Santillán, Juanes & 

Cueto-Felgueroso (2018)]. In Figure 5.3, the predicted crack opening displacement based on the 

equation (5.11) is plotted, using four different discretizations. As can be seen, the absolute values 

of the numerical solutions differ slightly from the analytical solution, which is expected as the 

adopted smeared crack model does not incorporate the singular stress field at the crack tips, and 

a low residual strength is kept in the damage model to ensure numerical convergence. 

Nevertheless, the damage particle method shows converge upon discretization refinement, and 

overall speaking, the results are in good agreement with Sneddon’s analytical solution. In 

addition, the distribution of the predicted displacement and stress fields plotted in Figure 5.4 (a-b) 

clearly demonstrates the capability of the proposed smeared approach to modeling cracks under 

the action of internal pressure, which is the key feature of hydraulic fractures. 

  
(a)                       (b) 

Figure 5.4 Distribution of the predicted (a) displacement in the y direction, and (b) stress 

component normal to the crack surface direction 
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5.3.2  Fluid injection-induced crack propagation in porous media 

 

Figure 5.5 Illustration of a fluid-saturated plate with a pre-existing crack (denoted by the red 

line) 

This example simulates hydraulic fracturing of a fluid-saturated plate subjected to fluid 

injection. The problem set-up follows [Ehlers and Luo (2017)] and differs from the previous 

Example 5.2.1 in the following aspects: (1) Instead of a single phase solid, the bulk material is 

treated here as fluid-saturated and permeable, and the hydro-mechanical coupling effects are 

incorporated in the analysis; (2) The crack is allowed to grow under the increasing pressure of 

the fluid injected at the central notch of the plate. The geometry and boundary conditions are 

displayed in Figure 5.5, where the edge length is 1.0x yL L  m and the initial crack has length 

2 0.2c  m. The loading in the notch is imposed by prescribing a uniform fluid pressure of 

45.5 10p t   (Pa), where t  denotes time (with ‘second’ as the unit). The material properties 

are as follows: Young’s modulus 112.1 10E   Pa, Poisson’s ratio 0.3  , solid mass density 
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3000s  kg/m
3
, fluid mass density 1000w  kg/m

3
, porosity 0.2fn  , hydraulic 

conductivity 81 10hk   m/s, specific weight of the fluid 
410w  Pa/m, fluid bulk modulus 

92 10wK   Pa, solid grain bulk modulus 111 10 Pa, fracture energy 32.7 10FG   N/m, and 

tensile strength 72.1 10tf   Pa. 

The predicted evolution of the fluid pressure and the damage state distribution is 

displayed in Figure 5.6. As can be seen, the fluid pressure causes the propagation of the fracture, 

and meanwhile the fluid pressure increases around the cracking region due to hydro-mechanical 

coupling which reduces the flow resistance along the fracture. These simulation results 

qualitatively agree well with the numerical study in [Ehlers and Luo (2017)], where the finite 

element-based phase field formulation (with quadratic and linear approximations for solid 

displacement and fluid pressure/phase field, respectively) is adopted. 
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Figure 5.6 Progressive evolution of (left) the fluid pressure and (right) the damage state at time 

t= 1000s, 2000s, 3000s, 4000s in (a)–(d) respectively. 
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Furthermore, Figure 5.7 displays the fluid pressure field (as the background color), along 

with the corresponding Darcy velocity field (as the vector plot), obtained with different levels of 

discretizations. It clearly shows that the fluid flows from the fracture towards the permeable 

boundaries. Moreover, high fluid velocities are observed in the cracking region with enhanced 

permeability and high pressure gradients, which is in line with the numerical results in [Ehlers 

and Luo (2017)]. The different levels of model refinement yield nearly identical prediction 

shown in Figure 5.7(a) and Figure 5.7(b), which demonstrates the convergent behavior of the 

proposed meshfree method for modelling hydraulic fracturing in saturated porous media. 

 
(a)                                (b) 

Figure 5.7 Fluid pressure and the associated Darcy velocity distribution at the end of the 

simulation using (a) coarse (nodal distance 35 10h   m) and (b) refined ( 32.5 10h   m) 

discretizations. 
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5.3.3  Blanton’s hydraulic fracturing tests 

Hydraulic fractures are expected to cross and connect the natural fracture system to form 

a permeable fracture network. However, fracture arrest, diversion, or offset could occur due to 

the interaction between hydraulically induced and pre-existing fractures, thus the fracture growth 

and proppant placement can be inhibited. Therefore, prediction of these various types of fracture 

behaviors is important in designing an effective hydraulic fracture treatment. Over the years, a 

number of experimental studies have been carried out to investigate the formation of complex 

fracture networks due to the interaction between hydraulically induced and pre-existing fractures. 

For instance, the laboratory experiments in [Blanton (1982)] reveal that hydraulic fractures tend 

to cross pre-existing fractures only under high differential stresses and high angles of approach, 

while in other test cases the hydraulic fractures can be arrested by pre-existing fractures. As 

pointed out by [Weng (2015)], once fluid pressure exceeds the closure stress of the natural 

fractures, the natural fractures can open up and become a part of the hydraulic fracture network, 

and a pre-existing fracture can turn itself to align with the preferred crack growth direction and 

form a T-shaped branch when the fluid pressure flows into its crack tip. [Zhou et al. (2008)] 

analyzed different interaction types between hydraulic and pre-existing fractures through a series 

of tri-axial fracturing experiments, and concluded that the shear strength of pre-fractures is 

another key factor that influences the fracture propagation behavior. 
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Figure 5.8 Illustration of hydraulic fracture and pre-fracture location 

In the present study, the proposed meshfree formulation is applied for modeling the 

interaction between hydraulically induced fractures and pre-existing fractures, following the 

experimental work in [Blanton (1982)]. As depicted in Figure 5.8, Blanton’s hydraulic fracturing 

experiments were run in hydrostone blocks of 0.305 0.305 0.381  m
3
, where pre-existing 

fractures with a specified orientation were created. In addition, a central borehole was drilled for 

fluid injection. On the surfaces of each block, a vertical confining stress of 20 MPa was applied 

in all tests (along the out-of-plane direction of the 2D illustrative in Figure 5.7), while confining 

stresses in the horizontal directions were varied as listed in Table 5.1. As can be seen from the 

table, the two blocks had two tests run in each of them. This was done by switching the 

maximum and minimum horizontal stresses after the first test so that the second hydraulic 

fracture can propagate at a right angle to the first. 
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Table 5.1 Experimental Conditions in [Blanton (1982)] 

Block # Test # Pre-fracture 

orientation   

Maximum 

Horizontal 

Traction (MPa) 

Minimum 

Horizontal 

Traction (MPa) 

Observed 

Fracture 

Interaction 

Mode 

1 CT-4 60
o
 12 10 Arrest 

1 CT-7 30
o
 19 10 Arrest 

2 CT-8 60
o
 20 5 Cross 

2 CT-9 30
o
 20 5 Arrest 

Under the plain strain assumption, a 2-D numerical model for the horizontal cross section 

of the hydrostone blocks is developed in the present study. A constant fluid pressure of 17 MPa 

and 15 MPa are imposed at the central location of the block for CT-4/CT-7 and CT-8/CT-9 tests, 

respectively. The horizontal tractions listed in Table 5.1 are applied on the boundary surface to 

generate the initial in-situ stress state. Following the experimental procedure in [Blanton (1982)], 

after the first hydraulic fracture grows to a desired distance, the traction boundary condition and 

the associated in-situ stress is modified so that another hydraulic fracture is allowed to grow in a 

direction perpendicular to the previous hydraulic fracture. The adopted material properties are as 

follows: Young’s modulus 101.0 10E   Pa, Poisson’s ratio 0.22  , solid mass density 

31.9 10s   kg/m
3
, fluid mass density 31.0 10w   kg/m

3
, porosity 0.2fn  , hydraulic 

conductivity 81.0 10hk   m/s, specific weight of the fluid 
41.0 10w   Pa/m, fluid bulk 

modulus 92.2 10wK   Pa, solid grain bulk modulus 111.0 10 Pa, fracture energy 35.0FG 

N/m, tensile strength 65.0 10tf   Pa. 
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To incorporate the pre-existing fracture (shown as the red line in Figure 5.8) in the 

simulation domain, the diffraction method [Organ et al. (1996)] is introduced, which modifies 

the nodal support in order to capture the displacement discontinuities    u x  across the 

pre-fracture surface C . When the pre-fracture surface is in contact (i.e., 0Ng  , where 

     N Cg    x u x n x  ( Cx ) denotes the aperture of the pre-fracture with outward unit 

normal vector Cn ), a penalty method [Liu and Borja (2008); Prevost and Sukumar (2016)] is 

adopted to impose the following frictional contact constraints: 

 N N Nt p k g                                        (5.38) 
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   
 

 
       (5.39) 

in which Nt  and Tt  are the normal and tangential components of the total traction vector 

applied on the pre-fracture surface C , Ng  and Tg  are the normal and tangential components 

of the displacement jump across the pre-fracture surface, Nk  and Tk  are the penalty 

parameters associated with normal and tangential contact, p is the fluid pressure in porous 

media, and C  is the frictional coefficient taken to be 0.7 in the present study. Following the 

geomechanics convention, a positive sign of p and Nt  denotes a compressive pressure. When 

the pre-fracture is opened (i.e., 0Ng  ), its surface C  is subjected to the fluid pressure p

only. In addition, the hydraulic behavior of an opened pre-fracture is described by the anisotropic 

permeability model defined in equation (5.8), where the fracture opening displacement Ng  . 

On the other hand, as closed pre-fractures (i.e., 0Ng  ) are usually poor conduits for fluid 

movement [Prevost and Sukumar (2016)], a permeability which is two orders of magnitude 

lower than the host rock’s permeability is assigned to the meshfree particles whose support cover 
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the pre-fracture. 

 

   (a) Fracture pattern            (b) Fluid pressure              (c) Experimental result 

Figure 5.9 Modeling results of Blanton’s CT-4/CT-7 tests where hydraulic fractures are arrested 

by a pre-fracture. The picture in (c) is taken from [Blanton (1982)]. 

 

(a) Fracture pattern            (b) Fluid pressure              (c) Experimental result 

Figure 5.10 Modeling results of Blanton’s CT-8/CT-9 tests where hydraulic fractures cross and 

arrested by a pre-fracture. The picture in (c) is taken from [Blanton (1982)]. 

The simulation results of the fracture pattern and fluid pressure distribution for the test 

cases CT-4/CT-7 and CT8/CT-9 are plotted in Figure 5.9 and Figure 5.10, respectively. It is 

worth to mention that, although the fractures are all visualized in red color, the hydraulic 

fractures and the pre-existing fractures are respectively modeled by the damaged particles and 

the diffraction method, as described previously. As shown in Figure 5.9, at the time of fracture 

intersection in the tests CT-4/CT-7, the fluid pressure is sufficiently high so that opening of the 

pre-existing fracture occurs, which allows fluid flow along the pre-existing fracture. As a result, 
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the hydraulic fractures cannot transmit to the other side of the pre-existing fracture. On the other 

hand, when the fluid pressure is not high enough to open up the pre-fracture, the hydraulic 

fracture can either be arrested or cross the pre-fracture, depending on the frictional behavior of 

the material interface as analyzed by [Blanton (1982)]. If the friction is high, the material on the 

opposite side of the interface may be fractured due to high tearing stress. As shown in Figure 

5.10, the hydraulic fracture in the test CT-8 approached the pre-existing fracture at a 60
o
 angle 

and crossed it with each wing growing to a nearly equal length, while the hydraulic fracture 

approaching the pre-fracture at a 30
o
 angle in the test CT-9 was arrested and only one of its 

fracture wing kept growing to a greater length. Due to the lack of test procedure details and 

well-calibrated material data, the experimental results cannot be fully reproduced. Nevertheless, 

qualitative comparison between the computational and experimental results clearly demonstrates 

the effectiveness of the present numerical approach in capturing the interaction behaviors 

between hydraulic fractures and pre-fractures. 
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Chapter 6  

Semi-Lagrangian Reproducing Kernel Formulation for Landslide 

Modeling 

 

In this chapter, the nonlinear mathematical model for partially saturated deformable 

porous media is reviewed in Section 6.1. Next, the semi-Lagrangian reproducing kernel 

approximation and implicit gradients are discussed in Section 6.2, followed by the 

semi-Lagrangian meshfree u-p formulation with the naturally stabilized nodal integration in 

Section 6.3. Finally, numerical examples are given in Section 6.4 to show the effectiveness of the 

proposed approach. 

6.1   Review of Nonlinear Poromechanics 

The mathematical description of the physical behavior of fluid-saturated porous media 

was first established for quasi-static phenomena in 1941 by Biot [Biot (1941)] and later extended 

to dynamics [Biot (1956ab)]. Owing to increasing interest in non-linear applications, 

Zienkiewicz et al. [Zienkiewicz et al. (1984)] generalized Biot’s theory and proposed various 

mathematical formulations using different assumptions, among which the so-called u-p 

formulation (where solid displacement and pore fluid pressure are chosen as primary variables) 

becomes the most popular theory because of its simplicity and effectiveness. In the present study, 

the nonlinear u-p formulation introduced by [Zienkiewicz et al. (1990b)] for modeling partially 
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saturated porous media is adopted. The basic assumption of this formulation is that the pore air 

pressure is treated as zero (ambient atmospheric value) at all points of the domain during loading, 

which implies that the resistance to the flow of air is negligibly small [Kim et al (2015)]. This 

simplification allows us to employ a two-field u-p formulation for modeling triphasic porous 

media. Note that the magnitude of pore air pressure could have an important influence under 

certain loading conditions [Khoei & Mohammadnejad (2011); Li & Wei (2015)], but this is out 

of the scope of the present study. In the following, the adopted sign convention defines tensile 

stress of the solid phase and compressive pressure of the fluid phase as positive quantities. 

6.1.1  Kinematics 

Under the partially saturated condition, the voids of the skeleton in the porous media are 

filled with water and air. In a continuum representation of this multiphase porous media, it is 

assumed that the triphasic (solid, water, air) porous body can be treated as an immiscible mixture 

of superimposed and interacting constituents in a spatially averaged sense. This implies that each 

spatial point x  in the current configuration   at time t is simultaneously occupied by material 

points 
sX , 

w
X  and 

aX  (where the superscript s, w and a denote the solid phase, water phase 

and air phase, respectively) as illustrated in Figure 6.1. Meanwhile, each constituent follows its 

own unique Lagrangian motion function: 

 , , , ,t s w a   x χ X                            (6.1) 
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Figure 6.1 Illustration of the motion of a triphasic continuum. 

Similar to single phase solids, the solid phase in the multiphase porous media can be 

conveniently described by a Lagrangian approach via the solid displacement s u x X , 

velocity v u , and acceleration a u , where the superposed single and double dots denote the 

first and second order material time derivatives following the motion of the solid constitute, 

respectively. For the fluid phases, an Eulerian type description is adopted, which describes the 

fluid flow with reference to the moving solid skeleton in the current configuration. Hence, the 

water seepage velocity 
wq , representing the average relative velocity between the pore water 

and the solid, is introduced:  

 w w wn q v v                             (6.2) 

where 
wn  is the volume fraction of the water phase, 

wv  is the water velocity. The water 

seepage velocity 
wq  is chosen as the main kinematic variable for the water phase because of its 
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important role in the solid-fluid interaction, whereas the relative acceleration between the 

different constitutes is very small and can be neglected, as discussed in [Zienkiewicz et al. 

(1999); Meroi, Schrefler, & Zienkiewicz (1995)]. 

6.1.2  Balance equations 

Following [Zienkiewicz et al. (1990); Zienkiewicz et al. (1999)], the governing equations 

for a triphasic mixture include the balance of linear momentum, which can be expressed in the 

current configuration as 

    x σ u g 0                              (6.3) 

and the mass balance of water flow 

1
0w wp

Q
     x xu q                          (6.4) 

In equations (6.3) and (6.4), 
x

  denotes the spatial gradient operator, g  is the 

gravitational acceleration vector,   is the averaged mass density expressed as 

   1 1f s f w w f a a f s f w wn n S n S n n S                       (6.5) 

where f w an n n   is the porosity, in which wn  and an  are the volume fractions of water and 

gas phases, respectively; wS and aS  are the degrees of water and air saturation, respectively, 

1w aS S  , and f wn S  is equivalent to the volume fraction of the water phase 
wn ; s , 

w  
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and a  are the real mass densities of the solid, water and gas constitutes, respectively. In 

equation (6.5), the term of air mass f a an S   has been omitted. The total Cauchy stress tensor 

σ  in equation (6.3) is defined as 

w wS p σ σ I                               (6.6) 

in which σ   is the effective stress, the 
wp  represents the water pressure, I  is a second-order 

identity tensor, 1 sK K    is Biot’s coefficient, K  and sK  are the bulk modulus of the 

solid skeleton and the solid grain, respectively. In addition, Q  in equation (6.4) is the modified 

compressibility modulus defined as: 

  1
w f w s w ff w

s

w s

S n S C p nn S
C

Q K K

  
                 (6.7) 

where s f w wC n S p   , and 
wK  is the bulk modulus of the water constitute. 

6.1.3  Constitutive laws 

Following the definition of the total stress given in equation (6.6) for the mixture, 

separate constitutive equations can be defined for the effective stress and the water pressure, 

respectively. For the solid phase, the Jaumann’s objective rate [Meroi, Schrefler, & Zienkiewicz 

1995] is adopted to take into account the large deformation effects: 

J       σ σ ω σ σ ω                           (6.8) 
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in the above equation, the superscript J  denotes the Jaumann rate, and the spin tensor ω  is 

defined as 

 
1

2

T ω L L                              (6.9) 

in which L  is the velocity gradient tensor: 

 
x

L v                               (6.10) 

The Jaumann rate of the total Cauchy stress can be calculated as follows 

:J

T

 σ C D                               (6.11) 

where TC  is the corotational drained material moduli derived from the adopted material law, 

and D  is the tensor of rate-of-deformation: 

 
1

2

T D L L                               (6.12) 

Considering equations (6.8) and (6.11), the material time derivative of the effective stress 

can be written in the following incremental form: 

:T
      σ C D ω σ σ ω                         (6.13) 

Regarding the fluid phase, Darcy’s law is adopted to define the relationship between the 

water seepage velocity and the pressure gradient 
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 w w w w wp S    xq k g                        (6.14) 

where  w rw w w

ink k k  is the permeability tensor, w

ink  is the intrinsic permeability, 
w  and 

rwk  are the dynamic viscosity and the relative permeability of the water phase, respectively. A 

number of hydraulic conductivity models have been developed to describe the dependence of the 

permeability on the degree of water saturation wS  or soil suction 
a ws p p  . In addition, the 

relationship between the soil suction and water content (in terms of the degree of water 

saturation wS ) can be provided by the soil-water characteristic curve (SWCC). Readers are 

referred to [Lu & Likos (2004)] for more details of different SWCC and hydraulic conductivity 

models for partially saturated porous materials. 

6.1.4  Strong form of the u-p formulation 

Expressing the total stress in equation (6.3) as the effective stress and fluid pressure with 

the help of equation (6.6), the momentum balance equation can be re-written as  

 w wS p      x σ δ u g 0                        (6.15) 

Substituting (6.14) into (6.4), the mass balance equation can now be expressed as 

 
1

0w w w w wp S p
Q

        
 x x xu k g                  (6.16) 

the above two equations form the strong form u-p formulation for a triphasic porous medium 

occupying a domain   with boundary   in its current configuration as shown in Figure 6.1. 
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The governing equations are complemented by the following boundary conditions: 

uu           on u                        (6.17) 

 w wS p
  n σ I t          on t                        (6.18) 

wp p          on p                        (6.19) 

w

   n q n q          on q                        (6.20) 

and the initial conditions at time 0t : 

0u u , 0v v , 0a a , 0

wp p                       (6.21) 

where 
n  is the unit outer normal vector of the boundary  , u  and 

p  are the essential 

boundaries with imposed solid displacement u  and water fluid pressure p , respectively, and 

t  and 
q  are the natural boundaries with imposed traction t  and water inflow flux q , 

respectively, where 
u t p q      and 

u t p q     . 
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6.2   Semi-Lagrangian Reproducing Kernel Mixed Formulation 

6.2.1  Semi-Lagrangian reproducing kernel approximation 

 

Figure 6.2 Illustration of meshfree discretization with different types of kernel functions: (a) 

meshfree particles with circular support in the initial configuration, (b) Lagrangian kernels in the 

current configuration, (c) semi-Lagrangian kernels in the current configuration. 

For problems involving extreme deformation, such as material separation and flow-like 

behavior in the landslide processes, keeping the same set of material points in the nodal neighbor 

list would lead to non-physical description of the material behaviors, and also numerical 

difficulties arise due to the non-invertible deformation gradient. To circumvent these issues, the 

reproducing kernel approximation can be formulated under a semi-Lagrangian framework [Chen, 

& Wu (2007)], where the nodes still follow the motion of material points as a Lagrangian 

description, while the nodal neighbor list is updated by re-defining the kernel support coverage 

in the current configuration, as sketched in Figure 6.2. As a result, the semi-Lagrangian 

reproducing kernel approximation  hf x  of a function  f x  takes the following form 
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   
1

NP
h

I I

I

f N f


X X                              (6.22) 

in which the semi-Lagrangian RK shape function is given as: 

         T 1

I I a IN      x H 0 A x H x x x x                 (6.23) 

which satisfies the following n
th

 order discrete reproducing conditions in the current 

configuration: 

 
1

NP

I I

I

N  



 x x x   ,     n                      (6.24) 

In (6.23),  IH x x  is a vector consisting of n
th

 order monomial basis functions: 

     
2T 1, , , , , ,

n

I I I I I Ix x y y z z x x z z       
 

H x x        (6.25) 

and the moment matrix is defined as follows 

       
1

NP

I I a I

I

     A x H x x H x x x x                  (6.26) 

where  a I x x  is the kernel function constructed in the current configuration. In the present 

study, the following cubic spline function is chosen: 

 

2 3

2 3

2 3 4 4 for 0 1 2

4 3 4 4 4 3 for 1 2 1

0 for 1

I I I

a I I I I I

I

s s s

s s s s

s

    


       
 

x x             (6.27) 
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where I I Is a x x , and Ia  is node I ’s support size treated as a constant throughout the 

simulation. 

Similar to the reproducing conditions in (6.24), one can also reproduce the gradients of 

 f x  by enforcing the following n
th

 order discrete gradient reproducing conditions: 

 
1

NP

I I

I

 



   xN x x x   ,     n                 (6.28) 

which results in the implicit gradient reproducing kernel shape functions: 

       1T

Ii i I a IN      x H A x H x x x x                 (6.29) 

For three dimensions with linear basis, the vector 
iH  takes on the values: 

 0, 1, 0, 0
T

i  H                          (6.30) 

 0, 0, 1, 0
T

i  H                          (6.31) 

 0, 0, 0, 1
T

i  H                          (6.32) 

Comparing the expressions given in equation (6.29) and equation (6.23), it can be seen 

that there is almost no additional cost for computing the implicit gradients, provided that the 

shape functions have already been constructed. Therefore, employment of the implicit gradients 

can significantly save computational cost compared to the expensive explicit gradients based on 

direct differentiation of the meshfree shape functions. Therefore, the implicit gradients are 
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adopted to accelerate the computation in the naturally stabilized nodal integration, to be 

described in Section 6.3. 

6.2.2  Variational equations 

The variational equations of the nonlinear dynamic u-p formulation can be expressed 

with reference to the current configuration as 

   

t

1 ; , d : d

d d 0

h h h h h s h w h h

h h

L p S p 



 

 

      

      

 

 

x xη u η u η σ η

η t η g

 

          (6.33) 

 

  

q

1

2 ψ ; , ψ d ψ d ψ d

ψ d ψ d

ψ ψ d 0

h h h h h h h h w h

h h w w w

h h h h

f

L p Q p p

S

p p









  


 



      

      

    

  

 



x x x

x

u u k

n q k g

  

      (6.34) 

where the reproducing kernel approximations to the trial functions for both solid displacement 

and water pressure fields are as follows 

1

NP
h

I I

I

N


u U ,    
1

NP
h

I I

I

p N P


                        (6.35) 

and the corresponding test functions are 

1

NP
h u

I I

I

N


η η ,     
1

ψ ψ
NP

h p

I I

I

N


                       (6.36) 

in which 
IN  is the reproducing kernel shape function defined in (6.23), and IU , IP , u

Iη  and 
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ψp

I
 are the corresponding nodal coefficients. It is noteworthy to mention that an equal-order 

approximation for both solid displacement and fluid pressure fields is adopted, and thus 

significant computational cost is saved compared to mixed order approximations. However, for 

low permeable materials or nearly undrained conditions, the equal-order approximation pair may 

lead to unstable solutions of the coupled system of equations due to violation of the inf-sup 

condition. To achieve a stable formulation with the equal order approximation, a fluid pressure 

projection-based stabilization (the last domain integral term in equation (6.34)) is added to the 

variational formulation. 

6.2.3  Temporal discretization 

If the problem is to be solved between an initial time 0t  and a final time ft , a partition 

of the time interval is considered, resulting in a series of time increments 1 1n n nt t t    . In this 

study, the Newmark scheme is applied to the solid motion fields: 

1 1

h h h

n n n  u u u                                     (6.37) 

1 1 1 1 1

h h h h

n n n n n nt t        u u u u                        (6.38) 

2 2

1 1 1 2 1 1

1 1

2 2

h h h h h

n n n n n n n nt t t           u u u u u             (6.39) 

and the generalized trapezoidal rule is applied to the water pressure field: 

1 1

h h h

n n np p p                                       (6.40) 
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1 1 1 1

h h h h

n n n n n np p p t p t                                 (6.41) 

Evaluating the semi-discrete equations (6.33) and (6.34) at time 1nt  , and setting the time 

integration parameters as 
1 1 2  , 

2 0  , 0  , the following fully discrete equations are 

yielded: 

1 1 1 1

u ue u

n n n n    M U F F                               (6.42) 

1 1 1 1

p pe p

n n n n    M P F F                                (6.43) 

where 

du

IJ I JN N


 M I                                   (6.44) 

t

d due

I I IN N
 

   F g t                            (6.45) 

   d du uT uT w h

I I I S p
 

     F B τ B m                  (6.46) 

 1 dp

IJ I JM N Q N


                                   (6.47) 

 
q

d dpe pT w w w

I I IF S N 
 

       B k g n q               (6.48) 

  d d dp h pT w h h h

I I I f I IF N p N N p p 
  

          x xu B k    (6.49) 

For simplicity, the subscript 1n  denoting the time step has been omitted in equations 
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(6.44-6.49) and the remainder of this chapter. In these equations, the index variables I, J =1, …, 

NP, and NP is the total number of nodes, τ  is the effective Cauchy stress vector corresponding 

to the stress tensor σ ,  1 1 1 0 0 0
T

m , I  is the second order identity matrix, u

IB  

and p

IB  are the shape function gradient matrices associated with the solid displacement and 

water pressure field of node I.  

6.3   Naturally Stabilized Nodal Integration 

As mentioned previously, the simplest domain integration scheme is the direct nodal 

integration (DNI), from which the internal force vectors u

IF  in (6.46) and p

IF  in equation 

(6.49) can be evaluated as  

1 L

NP
u uT w h uT

I L I I

L

V S p


     
x

F B τ B m                    (6.50) 

  
1 L

NP
p h pT w h h h

I L I I f I I

L

F V N p N N p p 


        
  x x

x

u B k       (6.51) 

Although the DNI quadrature scheme appears to be attractive due to its simplicity, it can 

cause severe numerical instabilities and non-convergent solutions. To eliminate the spurious low 

energy modes of nodal integration, an assumed gradient matrix ˆ u

IB  is introduced in [Hillman & 

Chen (2016)] based on the first order Taylor expansion of u

IB  as  

   ˆ
L L

u u u

I I L I    xxx x
B B x x B                    (6.52) 
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where the subscripts x  and Lx  represent the location of the evaluation points. Similarly, an 

assumed stress ˆ τ  based on an expansion of the effective Cauchy stress vector τ  is also 

introduced: 

   ˆ
L

L

L
      xx x x
τ τ x x τ                      (6.53) 

Replacing u

IB  and τ  in equation (6.50) with ˆ u

IB  and ˆ τ , respectively, and 

performing the nodal integration, the following naturally stabilized nodal quadrature version of 

the internal force vector u

IF  is obtained 

1

, , , , , ,

1

: : :

L

L

NP
u uT h uT

I L I I

L

NP
uT uT uT

Lx I x x Ly I y y Lz I z z

L

V p

m m m






     

      





x

x

F B τ B m

B τ B τ B τ

           (6.54) 

where 

 
2

d
L

Lx Lm x x


                              (6.55) 

 
2

d
L

Ly Lm y y


                              (6.56) 

 
2

d
L

Lz Lm z z


                              (6.57) 

Note that, in arriving at equation (6.54), the following assumption has been adopted 
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     d d d 0
L L L

L L Lx x y y z z
  

                        (6.58) 

which are generally satisfied when the node L is located at or near the centroid of the quadrature 

zone 
L . Following a similar procedure, an assumed gradient matrix ˆ p

IB  associated with water 

pressure field can be expressed as 

   ˆ
L L

p p p

I I L I    xxx x
B B x x B                     (6.59) 

In addition, an assumed water pressure gradient of the following form is introduced 

   ˆ
L L

h h h

Lp p p    x x x xxx x
x x                      (6.60) 

Taking equations (6.51, 6.55-6.58) into consideration, and replacing the gradient matrix p

IB  and 

the fluid pressure gradient p
x

  in (6.51) with the corresponding expanded version defined in 

(6.59-6.60), we obtain the following internal force p

IF  based on the naturally stabilized nodal 

integration scheme: 

  

     

1

, , ,, , ,
1

L

L

NP
p h pT w h h h

I L I I f I I

L

NP
pT w h pT w h pT w h

Lx I x Ly I y Lz I zx y z
L

F w N p N N p p

m p m p m p

 




        
 

         
  





x x
x

x x x
x

u B k

B k B k B k

 

  

  (6.61) 

As studied in [Chen et al. (2001); Chen, Hillman, & Rüter M (2013)], linear exactness in 

the Galerkin approximation requires: (1) first-order completeness of the trial and test functions; 

and (2) a quadrature scheme that satisfies integration constraints. The former completeness 
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requirement is obviously met by the employed RK shape functions by construction, whereas the 

later integration constraints are often violated by traditional quadrature schemes for meshfree 

methods, including Gauss integration and DNI. Although NSNI introduced in the previous 

section eliminates the low energy modes of under-integration schemes, its discrete version based 

on direct derivatives of shape functions as presented in equations (6.54) and (6.61) still does not 

satisfy the integration constraints, and thus additional treatments are needed to recover the 

integration accuracy. To this end, let us first examine the integration constraints for the mixed 

reproducing kernel formulation. For linear Galerkin exactness, the pressure projection 

stabilization term in (6.34) is not considered here since we want to examine the problem with a 

linear fluid pressure solution. Furthermore, we neglect the terms involving body forces and time 

derivatives in equations (6.33-6.34) and employ the expanded gradients and fluxes defined 

previously, and thus the following naturally stabilized steady state variational equations are 

yielded 

 
t

1
ˆ ˆ ˆ; , : d d 0h h h S h hL p

 
      xη u η σ η t                (6.62) 

 
q

2
ˆ ˆ ˆψ ; , ψ d ψ d 0h h h S h hL p 

 
       xu q n q               (6.63) 

where ˆ ˆ w hS p σ σ δ  and ˆˆ w S hp   xq k   represent the naturally stabilized total Cauchy 

stress tensor and fluid flux vector, respectively, and the symbol of superposed hat denotes the 

first order expanded gradient stabilization. For problems with linear solutions, the associated 

nodal coefficients of trial functions for solid displacement and fluid pressure can be expressed as 

follows 
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3

0

1

u u

Ii i ik Ik

k

U c c x


                             (6.64) 

3

0

1

p p

I k Ik

k

P c c x


                              (6.65) 

where Ikx  denotes the k
th

 component of the coordinates of node I, u

ikc  and p

kc  denote constant 

coefficients for solid displacement and water pressure fields, respectively. Corresponding to the 

above linear solutions, the fluid flux becomes a constant field and the gradient expansion-based 

stabilization terms vanish in equation (6.63). As a result, the 1
st
 order integration constraints on 

the test function of fluid pressure field have the following form: 

I IN N  
x n                            (6.66) 

where 


  and 


  denote the quadrature version of domain integral and boundary integral 

for the functions inside the angle brackets, respectively. Similarly, the integration constraints on 

the test function of the solid displacement field can be obtained from equation (6.62) as 

   I IN N
 

  x σ n σ                      (6.67) 

where 
hp σ σ δ  represents the total stress. If the water pressure 

hp  is considered to be a 

linear function, the total stress σ  also becomes linear, resulting in high-order integration 

constraints. Satisfaction of the high-order integration constraints requires solving three 4 4  

algebraic equations at every nodal point [Chen, Hillman, Rüter (2013)], which would be quite 

expensive in the semi-Lagrangian formulation since the shape functions are frequently 
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re-constructed during the simulation. To save computational time, a relaxed integration 

constraint is considered in the present study, where a constant total stress field σ  is assumed, 

and thus integration constraints of the same form as (6.66) are yielded. Integration constraints of 

the form (6.66) are satisfied straightforwardly by the stabilized conforming nodal integration 

(SCNI) [Chen et al. (2001); Chen, Yoon, & Wu (2002)] through the construction of smoothed 

shape function gradients as follows: 

     
1 1

d d
L L

I L I I

L L

N N N
V V 

    x xx x x n           (6.68) 

in which 
x

  is the smoothed gradient operator, L  denotes the nodal representative domain 

constructed by Voronoi diagram, as illustrated in Figure 6.3(a).  

 

(a)                                       (b) 

Figure 6.3 (a) Conforming nodal smoothing cells in SCNI and (b) non-conforming nodal 

smoothing cells in SNNI. 

For problems involving extremely large deformation, however, it is ineffective to employ 

SCNI under the semi-Lagrangian framework as frequent re-construction of conforming 

subdomains in the current configuration is quite tedious. In this situation, the stabilized 
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non-conforming nodal integration (SNNI), as a simplified version of SCNI, is a viable approach 

for smoothing the gradients within non-conforming integration cells (shown in Figure 6.3(b)). As 

a consequence, the integration constraint (6.66) is often violated and further integration 

correction is needed. To this end, a modified shape function gradient of the test function ψ
h

 is 

defined, following [Chen, Hillman, & Rüter (2013)]:  

c c c

I I I IN N R x x ζ                            (6.69) 

where  

 
 

 

1 if supp

0 if supp

p

Ic

I p

I

N
R

N

 
 



x
x

x
                     (6.70) 

By substitution of (6.69) into the integration constraint (6.66), the constant coefficient c

Iζ  

can be obtained as 

,
, , ,

I j I jc

Ij
c

I

N n N
j x y z

R


  




                   (6.71) 

With the corrected test function gradients in (6.69), the following modified stabilized 

shape function gradient matrices for test functions are yielded 

       ˆ
L

L

c c
u u u

I I L I

    
x

xxx

B B x x B                   (6.72) 

       ˆ
L

L

c c
p p p

I I L I

    
x

xxx

B B x x B                   (6.73) 
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along with the corresponding stabilized shape function gradient matrices for the trial functions 

   ˆ
L L

u u u

I I L I

    x
xx x

B B x x B                      (6.74) 

   ˆ
L L

p p p

I I L I

    x
xx x

B B x x B                      (6.75) 

In (6.72-6.75), 

x  denotes the implicit reproducing kernel gradient operator defined in 

(6.29), which is adopted here to accelerate the computational speed as discussed in Section 6.2.1. 

Accordingly, the stabilized Cauchy stress and water pressure gradient can be expressed as 

   ˆ
L

L

L

      xx x x
τ τ x x τ                      (6.76) 

   ˆ
L L

h h h

Lp p p    x x x x
xx x

x x                      (6.77) 

Consequently, the final nodally integrated discrete form of the internal forces are 

obtained as follows 
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  (6.79) 



 

137 

6.4   Numerical Examples 

6.4.1  Wave propagation in poroelastic media 

 
Figure 6.4 Illustration of the problem set-up of wave propagation in poroelastic media 

The problem of wave propagation in fluid saturated porous media is analyzed to verify 

the proposed meshfree formulation. As depicted in Figure 6.4, a soil layer of height 10yL  m is 

considered to be infinite long in the horizontal x-direction. The top surface of the porous media 

is considered drained and subjected to a uniform step loading with magnitude 3t  kN/m
2
. 

Linear elastic material behavior is assumed, and soil material data from [Soares (2014)] are 

adopted as follows: Young’s modulus 254423076.9 N/m
2
, Poisson’s ratio 0.298, mass density of 

solid phase 2700 kg/m
3
, mass density of fluid phase 1000kg/m

3
, porosity 0.48, permeability 

93.55 10 m
4
/Ns, bulk modulus of solid grains 101.1 10 N/m

2
, and bulk modulus of fluid phase 

93.3 10 N/m
2
. 

Figure 6.5 depicts the time-histories of solid displacement at the top of the column and 
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fluid pressure at the bottom of the column obtained from DNI- and NSNI-based RKPM 

formulations, respectively, as well as the reference solutions from [Soares (2014)]. The FEM 

results presented in [Soares (2014)] have been shown to agree well with the semi-analytical 

solutions of [Schanz & Cheng (2000); Schanz (2009)], except that different over-shoots and 

fluctuations at wave fronts are generated by the numerical Laplace inversion of latter solutions. 

Hence, only the FEM results of [Soares (2014)] are plotted here as the reference solutions. As 

shown in Figure 6.5, NSNI-based RKPM captures the dynamic response of saturated porous 

materials in a satisfactory manner, while DNI-based RKPM results in significant errors in the 

both solid displacement and fluid pressure fields, including a severe fluctuation of fluid pressure 

at the early time steps of the simulation. 

Figure 6.6 shows the convergence behavior of NSNI-RKPM with different model 

refinement levels. It is clearly shown that converged solutions in both solid and fluid fields can 

be obtained upon refinement of the nodal discretization. In addition, the overshoot behavior at 

fluid pressure wave fronts is greatly alleviated in the refined model. 
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(a) 

 

(b) 

Figure 6.5 Time history of (a) the solid displacement at the top and (b) the fluid pressure at the 

bottom of the soil layer obtained from DNI- and NSNI-based RKPM formulations using 241 

nodes along the vertical y-direction, compared with the reference solution from [Soares 2014]. 



 

140 

 

(a) 

 

(b) 

Figure 6.6 Time history of (a) the solid displacement at the top and (b) the fluid pressure at the 

bottom of the soil column obtained from NSNI-based RKPM formulation with different nodal 

discretization refinement. 



 

141 

6.4.2  Liakopoulos’ drainage experiment 

The drainage experiment conducted by Liakopoulos [Liakopoulos (1965)] has been 

considered in many studies [Zienkiewicz et al. (1990); Khoei & Mohammadnejad (2011); 

Bandara et al. (2016)] as a benchmark problem to validate numerical models for unsaturated 

deformable porous media. In the experiment, a vertical column packed uniformly with very fine 

sand is instrumented to measure the water pressure along the height of the column. As shown in 

the schematic diagram of Figure 6.7, the column is initially saturated with a zero water pressure 

gradient along its height due to the uniform water flow condition. This steady water flow state is 

perturbed by suddenly ceasing the water supply at the top surface, and then the water pressure 

has to be redistributed due to the gravity induced flow, accompanied with the sand settlement. 

 

Figure 6.7 Illustration of the set-up for Liakopoulos’ drainage experiment, where 0.1xL  m, 

1.0yL  m, and g  denotes the gravitational acceleration with magnitude 9.806 m/s
2
. 

The adopted material properties taken from [Khoei & Mohammadnejad (2011)] are as 

follows: Young’s modulus 61.3 10 Pa, Poisson’s ratio 0.4, mass density of solid phase 2000 
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kg/m
3
, mass density of water phase 1000kg/m

3
, porosity 0.2975, intrinsic permeability 

134.5 10 m
2
, dynamic viscosity of water 31.0 10 Pa s  , bulk modulus of solid grains 121.0 10  

N/m
2
, and bulk modulus of water 92.0 10 N/m

2
. The degree of water saturation and the relative 

permeability are defined as follows: 

2.4279

1 0.10152w

w

s
S



 
   

 
                           (6.80) 

 1 2.207 1rw wk S                                 (6.81) 

where 
w  is the specific weight of water, 

a ws p p   is the suction, 
ap  and 

wp  are the air 

pressure and water pressure, respectively. For the initial condition, zero water pressure (fully 

saturated) and gravity induced initial effective stress are considered.  

In Figure 6.8, the distribution of the water pressure along the height of the sand column at 

different time is plotted. Although some discrepancies between RKPM solutions and 

Liakopoulos’ experimental data can be observed at the early time, the two results eventually 

approach each other at the later stage of the drainage process. The discrepancies between 

numerical solutions and experimental data at early time have also been reported in many other 

studies, e.g., [Zienkiewicz et al.(1990); Khoei & Mohammadnejad (2011); Bandara et al. (2016)], 

and they are mainly due to the adopted simplified material model. Here, the FEM results given in 

[Bandara et al. (2016)] are plotted in Figure 6.8 for comparison purpose. It can be seen that the 

water pressure distribution predicted by FEM and RKPM agrees quite well with each other. 

Moreover, time histories of the water pressure at the height of 0.625m and 0.975m are presented 

in Figure 6.9 The results of RKPM are quite satisfactory, compared to the FEM solution of [Li, 
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& Wei (2015)] and Liakopoulos’ experimental data. As non-zero air pressure is considered in the 

FEM formulation of [Li & Wei (2015)], a slightly lower FEM prediction of the water pressure is 

obtained, compared to the presented RKPM formulation which assumes zero air pressure. 

Overall speaking, the obtained numerical solutions are satisfactory, and thus the effectiveness of 

RKPM for modeling unsaturated porous media is demonstrated. 

 

Figure 6.8 Distribution of the water pressure along the height of the sand column at different 

time ( 1 5mint  , 2 10mint  , 3 20mint  , 4 30mint  , 5 60mint  , 6 120mint  ), obtained 

from Liakopoulos’ experiment, FEM [Bandara et al. (2016)], and RKPM. 
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Figure 6.9 Time histories of the water pressure at the height of 0.625m and 0.975m obtained 

from Liakopoulos’ experiment, FEM [Li & Wei (2015)], and RKPM. 

 

6.4.3  Seepage-induced levee failure 

In this example, the proposed RKPM formulation is applied for modeling a levee failure 

process following the experiment described in [Iseno et al. (2004); Mori (2008)]. As depicted in 

Figure 6.10, a seepage flow into an initially unsaturated sand levee is generated by continuously 

imposing a steady water pressure at the levee’s back surface, so that the raised water level in the 

levee can induce seepage failure. In the experiment, the levee remained stable for about 13 hours 

during the seepage flow process. Subsequently, the material damage initiated at the levee’s toe 

led to a progressive failure, which lasted for about 30 seconds until the complete levee failure 

occurs. 
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Figure 6.10 Sketch of the levee problem: (a) illustration of the water level at different seepage 

stages; (b) the initial state chosen for the nonlinear dynamic simulation, where the dotted blue 

lines represent the water levels. 

Due to the lack of well documented material data for the loose sandy soil used in this 

experiment, material properties chosen from other literature [Khoei & Mohammadnejad (2011); 

Soga et al. (2015); Bandara & Soga (2015)] are adopted in the present study. This is sufficient 

for the purpose of demonstrating RKPM’s capabilities for landslide modeling, although 

advanced constitutive models with calibrated material data would be essential if one intends to 

reproduce the soil behaviors more accurately. The adopted data are as follows: Young’s modulus 

71.0 10 Pa, Poisson’s ratio 0.3, gravitational acceleration 9.806 m/s
2
, mass density of solid 

phase 2700 kg/m
3
, mass density of water phase 1000kg/m

3
, porosity 0.46, permeability 

45.0 10 m
2
, bulk modulus of solid grains 221.0 10  N/m

2
, and bulk modulus of water 91.0 10

N/m
2
. The effective stress-strain relation is modeled by the Drucker-Prager plasticity model with 

a friction angle of 20o  and cohesion of 23.0 10 Pa. In addition, the van Genuchten model is 

employed to describe the hydraulic properties: 
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in which wS  is degree of water saturation, rwk is the relative permeability, 

   1w rw rw

eS S S S    is the effective water saturation, 0.0842rwS   denotes the irreducible 

water saturation, and the empirical parameters are chosen as 2n  , 1 1m n  , 0.7  m
-1

. 

As the focus here is on the post-failure analysis, the initial condition for the dynamic 

simulation is chosen to be the critical seepage flow state when material failure is about to occur, 

i.e., after 13 hours in the experiment. To this end, a steady state calculation is first performed 

with the imposition of the water level depicted in Figure 6.10(b) as an additional constraint, 

following the procedure described in [Zienkiewicz et al. (1999)]. The pore water pressure and 

effective stress in an equilibrium state obtained from this static analysis step are then used as the 

initial value in the subsequent nonlinear dynamic simulation. 

The simulation results of water pressure and equivalent plastic strain distribution during 

the progressive failure process are shown in Figure 6.11. It can be seen that the main shear bands 

initiate near the toe and then propagate towards the upper surface of the levee, accompanied by a 

few branches. The final collapsed shape of the levee looks similar to that of the experiment. It is 

noteworthy to mention that, for this levee failure problem, more advanced soil constitutive 

models with calibrated material property data are required to further enhance the accuracy of the 

numerical prediction. Nevertheless, it still can be clearly seen from these simulation results that 
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RKPM is capable of modeling the nonlinear hydro-mechanically coupled failure mechanisms, 

including complicated shear band patterns and extremely large formation processes, which pose 

significant challenges for traditional mesh-based numerical methods. 

 

Figure 6.11 The RKPM simulation results of (left) water pressure and (right) equivalent plastic 

strain distribution in the levee during the progressive failure process. 
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Chapter 7 

Conclusions and Future Work 

 

In this chapter, conclusions of the present work are given in Section 7.1, followed by 

recommendations for future reseach in Secrion 7.2. 

7.1   Conclusions 

A stable and efficient meshfree method is proposed to solve the fully coupled 

hydro-mechanical problems. It has been shown that the fluid pressure projection method can be 

naturally integrated within the stabilized conforming nodal integration framework, and thus the 

non-physical fluid pressure oscillation due to violation of the inf-sup condition as well as the 

spurious low-energy modes due to nodal integration can both be eliminated in a cost effective 

way. Several benchmark problems have been analyzed and the results demonstrate the excellent 

performance of the stabilized meshfree formulation.  

Under the semi-Lagrangian framework, the developed reproducing kernel mixed 

formulation is extended for nonlinear modeling of partially saturated porous media with 

application to landslide simulation. The naturally stabilized nodal integration has been employed 

to achieve accelerated, stable and convergent solution. The developed method has been verified 

and validated against benchmark problems, and the post-failure process of a partially saturated 

levee is modelled to demonstrate the method’s capability in handling hydro-mechanically 
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coupled extremely large deformation. 

In addition, a smeared crack approach for fracture modeling under nodally integrated 

reproducing kernel discretization has been presented. The smeared strain in a nodal 

representative domain is defined as the boundary integral of displacements to avoid the 

ambiguity of taking direct derivatives of non-smooth displacements in the cracking region. With 

this definition of smeared strain at the nodal representative domain, the stabilized conforming 

nodal integration previously proposed for optimal convergence in the Galerkin solution of 

second order PDEs with linear consistency can be naturally employed in the damage analysis 

under a unified framework. In the proposed method, the computation of displacement, strain, 

stress, and damage variables along with the regularization procedure are all performed at the 

nodal points. As such, this approach does not require interpolation of state and field variables 

between Gauss points and nodal points commonly needed in the conventional finite elements.  

Under this framework, a scaling law is naturally introduced to ensure that the bulk energy 

dissipated over the nodal representative volume is consistent with the surface fracture energy of 

the crack segment. Since the present approach is free from mesh entanglement, the energy-based 

scaling procedure can be performed in a straightforward manner within each nodal representative 

domain. This is different from the conventional crack band finite element methods, where the 

regularization behavior can be affected by both element shapes and integration schemes.  

Furthermore, the capability of the damage particle method in modelling hydraulical 

fracturing in saturated porous media has been demonstrated. Hydro-mechanical coupling is 

considered by introducing the regularized damage model to describe the effective stress in 

conjunction with a cracking-enhanced anisotropic permeability model. The method has been 
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applied to model several fluid injection-induced fracture problems, and satisfactory performance 

has been obtained. It is anticipated that this smeared crack modeling approach is promising for 

modeling more complicated hydraulic fracturing processes where numerous propagating 

fractures may intersect, because cumbersome treatments (e.g., constantly adding new degrees of 

freedom/cutting quadrature cells, or solving additional global partial differential equations, etc.) 

commonly needed in conventional methods have been effectively avoided in the proposed 

approach. 

7.2   Recommendations for Future Research 

The recommendations for future research are summarized as follows: 

1) The simplicity of the damage particle method makes it suitable for capturing multiple 

propagating fractures. With the unique features of the reproducing kernel approximation, 

the method can be further extended for modeling extreme deformation problems (e.g., the 

impact-fragmentation process). 

2) Further speed-up of the landslide simulation can be achieved by developing seamless 

blending of Lagrangian and semi-Lagrangian approximation [Pasetto, Chen, Wei (2017)] 

in the mixed formulation, which can greatly reduce the computational cost associated 

with frequent re-construction of the shape functions throughout the domain. 

3) To better capture the hydro-mechanically coupled material failure behaviors, advanced 

constitutive models for geomaterals can be implemented under the developed meshfree 

computational framework. 
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