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ABSTRACT OF THE THESIS 
 

 

Assessment of the phenotypic effects of Platelet Rich Fibrin on Mesenchymal Stem Cells 

 

derived from Minced Pulp 
 
 
 
 

 

by 
 
 
 
 

Gautam Mahendra Shirodkar 

 

Master of Science in Oral Biology 

 

University of California, Los Angeles, 2020 

 

Professor Mo K. Kang, Chair 
 
 
 
 
 

 

Abstract: 

 

Our aim is to investigate the effects of autologous platelet-rich fibrin (PRF) on Mesenchymal 

Stem cell derived from Minced Pulp (MP-MSCs). We first developed a mouse model of PRF to 

study the phenotypic effects of PRF in cultured cells. We obtained PRF from the blood and 

prepared PRF-enriched culture media. The phenotypic effects of PRF on MP-MSCs were 

determined by assessing the changes in cell proliferation, differentiation and immunophenotypic 

profiling. The mRNA levels of ALP, OCN, DMP1 and DSPP were determined by qRT-PCR. It 

was found that PRF increased the proliferation capacity of MP-MSCs and reduced the cell 

doubling time. With PRF exposure, the MP-MSCs were able to retain their immunophenotypic 

characteristics defining them as MSCs, as the cells expressing surface markers CD105, CD146 
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and CD73 were higher. MP-MSCs were able to undergo osteogenic differentiation in the 

presence of PRF and the mRNA levels of OCN was significantly increased in the presence of 

PRF. To assess the odontogenic differentiation of cells in response to PRF, we prepared dentin-

slice model in which we cultured MP-MSCs embedded in PRF. Histological sections of the 

dentin slice model revealed that there was increase in the cellularity of the pulp tissue along the 

edges of the pulp tissue. Based on our findings, PRF can act as a source of growth factors cell 

proliferation, migration and differentiation. 
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1. Introduction 
 

Dental caries, trauma are common causes of the dental pulp exposure, infection or 

necrosis. Depending of the extent of carious involvement or fracture of a tooth, different 

treatment approaches are employed. Typically, if caries or trauma involves the dental pulp and if 

the tooth is restorable, endodontic treatment is commonly done. Persistent research in improving 

treatment outcomes from endodontic therapy has increased the success rate, yet few drawbacks 

still exist. One potential problem is that the teeth receiving the root canal therapy lose their 

vitality and there is lack of nutrition from the dental pulp. In the case of a developing tooth with 

immature apices, the physiological growth and development of root is arrested. Furthermore, 

during the process of a root canal treatment, dentin is lost during the preparation of the root 

canal; this leads to thinning of the root canal wall and thus reduces its fracture resistance. The 

regeneration or replacement of the dental pulp tissues affected by caries, trauma, or infectious 

diseases is expected to solve many dental problems. Newer scientific advances emerging from 

regenerative techniques aim at improving the treatment modalities in the current endodontic 

techniques, thereby improving the treatment options for the very patients we serve. 

 
According to the glossary of Endodontic terms, regenerative endodontics is defined as - 

Biologically-based procedures designed to physiologically replace damaged tooth structures, 

including dentin and root structures, as well as cells of the pulp-dentin complex. Regenerative 

procedures aim at regeneration of the pulp-dentin complex, regenerate the lost coronal dentin and 

continue the physiological growth of the developing root apices and maintain the tooth in its 

healthy state. 

 
Regenerative endodontics applies the concept of the of tissue engineering - stem cells, 

scaffold and bioactive growth factors in the canal space to regenerate the pulp tissue damaged by 
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infection, trauma or developmental anomalies1. The concept of tissue engineering technology 

has proven to be an effective method in the pulp/dentin regeneration. The stem-cell-based 

approach has demonstrated that pulp/dentin tissues can be regenerated in the emptied root canal 

space with blood supply2,3,4,5. To identify a suitable cell population for this goal, many 

odontogenic stem cells, including dental pulp stem cells(DPSCs)6, periodontal ligament stem 

cells(PDLSCs)7, stem cells from human exfoliated deciduous teeth (SHED) 8 , and stem cells 

from apical papilla (SCAP)9, and some non-odontogenic stem cells, including adipose-derived 

stem cells (ADSCs)10, bone marrow mesenchymal stem cells (BMSCs)10,11, embryonic stem 

cells (ESCs)12, neural crest cells (NCCs)13 have been selected for screening. Studies have 

demonstrated that all odontogenic stem cells have a certain degree of multipotency in vitro and 

form pulp-dentin complexes combined with scaffold materials, in vivo. Among these cell types, 

postnatal DPSCs have the most potential as stem cells for endodontic tissue regeneration14,15,16. 

The transplantation of DPSCs with tooth slices or scaffold materials in vivo has demonstrated 

that DPSCs can differentiate into odontoblasts and further form the structure of pulp-dentin 

complexes14,3. As one of the key components required for pulp regeneration is an ideal scaffold 

which provides space for cells to grow, proliferate and differentiate. An ideal scaffold should be 

biocompatible, non-allergic, biodegradable and should not produce toxic byproducts. Various 

types of synthetic scaffolds are being used in regenerative procedures which includes 

hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic powder6,14, Hydrogels17,18 

Polydioxanone II19, Collagen20, Poly(L-Lactic acid) PLLA21. These materials have been shown 

to promote growth and differentiation of mesenchymal stem cells, however, these are non-

autologous and have certain limitation when it comes to availability, technique sensitivity, 

physical and chemical properties, and biodegradability. 
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Platelet Rich Fibrin (PRF) was first reported by Choukron et al. in 2001. It is a three-

dimensional protein gel obtained by the direct centrifugation of autologous peripheral blood and 

is thus considered an autologous graft22. The main advantages of PRF is that it contains host 

immune defense cells (leukocytes) which act to fight infection. Furthermore, PRF was initially 

developed with high centrifugation speeds allowing a fibrin clot to form which may be utilized 

as a three-dimensional scaffold to further speed the healing of bone and gingival tissues22. 

 
PRF is reported to be non-toxic or non-allergic, it is easy and inexpensive to prepare and carries 

no risk of cross-infection or associated ethical issues23. In addition, as a scaffold material, PRF 

can release cytokines and growth factors that promote tissue regeneration. PRF can therefore not 

only utilize its mechanical effects to postpone platelets, but can also chemically associate with 

small molecules, such as various cytokines present in the circulation and glucose 

glycosaminoglycans, resulting in slow and sustained cytokine release during PRF degradation24. 

Together, this suggests that PRF may be the ideal material for tissue regeneration. The PRF 

matrix can also promote endothelial cell proliferation and angiogenesis, promoting healing at 

wound sites25. 

 
Previous studies from our lab have proposed pulp tissue grafting for regeneration of the 

dental pulp. Direct transplantation of the minced dental pulp allows us to bypass the in vitro cell 

expansion of DPSCs. We demonstrated that human minced pulp tissue can yield MSCs and these 

cells retained the odontogenic and osteogenic differentiation capacities. In the pulp tissue 

grafting model, pulp tissue and MP-MSCs will be a part of the recipient tooth and might undergo 

time-dependent changes26. 

 
In the present study we hypothesize that Platelet Rich Fibrin (PRF) acts a reservoir of 

growth factors and can provide the necessary framework for the MP-MSCs to proliferate and 
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differentiate so as to regenerate the pulp-dentin complex. The main objective of the study is to 

understand the effects of PRF on proliferation and differentiation of MP-MSCs. 

 

2. Materials and Methods 
 

2.1 Sample collection and primary culture of MP-MSCs 
 

Freshly extracted human mature non-carious teeth were collected from the Oral Surgery 

Clinic at UCLA School of Dentistry. The age of the patient ranged between 12-21 years. After 

extraction, the teeth were stored in sterile Falcon tubes containing a-MEM medium (Invitrogen, 

Carlsbad, CA), 3% Antibiotic-Antimycotic (Life Technologies, CA). The sterile tubes were kept 

on ice until being transferred to the biosafety cabinet for dental pulp isolation, which was 

completed on the same day of extraction. 

 
After thoroughly washing the teeth with Phosphate Buffered Saline, the attached gingival 

tissue was removed. The teeth were inspected to check for closed apices, fractures, caries or 

external resorption. Once the teeth were confirmed healthy, then they were used for experimental 

purposes. With the help of a wire cutter, the teeth were cracked open at the cemento-enamel 

junction. With sterile tweezer, the pulp was carefully retrieved and placed onto a 60mm petri 

dish with primary culture medium for at least 30 minutes. Using sterile micro-scissors, the pulp 

was minced into fine pieces (<1 mm3) and transferred to a new 48 well plate with fresh primary 

culture medium. The primary culture medium was made using a-MEM medium containing 20% 

fetal bovine serum (FBS) (Invitrogen), 15 mg/mL gentamicin sulfate (Gemini Bio-Products, 

West Sacramento, CA), and 20 mmol/L L-glutamine (Invitrogen). Dishes were incubated in 80% 

humidity, 5% carbon dioxide atmosphere at 37 degrees Celsius. When 80% confluency was 

reached, the finely minced dental pulp tissues were transferred to new dish with fresh primary 

culture medium. MP-MSCs were then maintained in basal medium, α-MEM (Invitrogen, 
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Carlsbad, CA) with 10% FBS (Invitrogen) and 5 μg/mL gentamicin sulfate (Gemini Bio- 

 

Products, West Sacramento, CA). 
 
 
 
 

2.2 Primary culture of mouse Gingival Mesenchymal Stem Cells (mGMSCs) 

 

The palatal gingiva of the mice was harvested using standard aseptic protocol. After 

separation of the gingiva, the tissue was washed with PBS and was minced into fine pieces. The 

tissue was digested with a solution of 3 mg/ml collagenase (type I) supplemented with 4 mg/ml 

dispase (both from Sigma-Aldrich) in 2 ml α-minimum essential medium (Invitrogen, Carlsbad, 

CA) for 60 min in a cell incubator. Then, the cells were passed through a 70-μm strainer to 

obtain single-cell suspensions. The cells were plated into 60-mm plates and cultured in α-MEM 

(Invitrogen, Carlsbad, CA) with 10% FBS (Invitrogen) and 5 μg/mL gentamicin sulfate 

(Gemini Bio-Products, West Sacramento, CA) at 37°C in a humidified atmosphere of 5% CO2 

and 95% air to obtain passage 0 (P0) single-cell-derived clones. Cell cultures at P3 were used 

for the following in vitro study. 

 
 

2.3 Obtaining Platelet Rich Fibrin 

 

The mice were deeply anesthetized using Isoflurane prior to blood sample collection 

procedure. The mice will be placed in dorsal recumbency once the animal has reached an appropriate 

plane of anesthesia. An appropriately 27-gauge needle attached to a syringe was insert beveled up at 

a 30-40° angle through the diaphragm, with syringe parallel to the midline of the mouse. The 

insertion of the needle was slightly left of and under the sternum, directed toward the mice head. 

After retraction of the plunger to create a vacuum inside the syringe, the needle was advanced until 

blood flash appears in needle hub until a sufficient amount of blood was collected. Approximately 

1ml of blood was collected from each mouse and was collected in an 
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Eppendorf tube. The mice will be euthanized immediately upon completion of blood collection 

by Cervical dislocation. 

 
Immediately after blood collection, it was centrifuged at 2700g for 12 mins at 4°C. PRF 

was separated from the tube carefully using cotton pliers and was soaked on a sterile gauze. It 

was used to make PRF-enriched media containing α-MEM (Intvitrogen, Carlsbad, CA) with 5% 

FBS (Invitrogen) and 5 μg/mL gentamicin sulfate (Gemini Bio-Products, West Sacramento, CA). 

We standardized the PRF-enriched media was incubating PRF obtained from 1ml of blood with 

1ml of media. 

 

2.4 MTT Cell Proliferation assay 
 

1x104 MP-MSCs from P3 were seeded in 96-well plates; the cells in the experimental 

group were treated with PRF-enriched media and the control group was treated with basal media. 

The MTT assay was used to investigate cells proliferation assay, (3-(4, 5-dimethylthiazolyl-2)-2, 

5-diphenyltetrazolium bromide) on Day 3, Day 5 and Day 7. The MTT Reagent (ATCC) was 

then added following manufacturer instructions. After incubation for 2-4 hours, the Detergent 

Reagent (ATCC) was added and mixed gently. Following incubation for 4-24 hours, the 

absorbance was measured with Synergy TM Microplate Reader at 570 nm. The results were later 

analyzed statistically. The experiment was performed in triplicates and repeated 3 times. 

 

2.5 Immunophenotypic Characterization of MP-MSCs in the presence of PRF 
 

Cells were pelleted and resuspended in flow buffer which consists of PBS with and 1% BSA. 

The Cells were incubated with different concentrations of antibody according to the 

manufacturer's method. The antibodies against CD105, CD146, CD73 were used for the 

experiment. 
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2.6 Cell Migration assay 

 

Cells were seeded in transwell inserts with 8 μm pores (Corning, NY) and the well of the 

cell culture plate were filled with a-MEM with 1% FBS. After 24 hours and 48 hours, the non-

migrated cells inside the insert were removed with a cotton swab and cells migrated outside the 

insert were stained with 1% crystal violet. 

 

2.7 Odontogenic differentiation assay 

 

MP-MSCs from different tissue passages were seeded in 6-well plates at 3x105 per well. 

Before they reached 80% confluency, odontogenic differentiation was induced using 

odontogenic induction medium, which is basal medium conditioned with 100 μmol/L L-ascorbic 

acid 2-phosphate (Sigma, St Louis, MO), 9mmol/L KH2PO4, 10 mmol/L β-glycerolphosphate, 

and 9.8 nmol/L dexamethasone (Sigma, St Louis, MO). Control group cells were maintained in 

basal medium. The medium was changed every two days. 

 
At day 3, 7 and 14, the cells were stained with Alkaline Phostphatase (ALP) Staining Kit 

(Sigma, St. Louis, MO). Cells were first washed with Dulbecco's phosphate buffered saline 

(DPBS) (ThermoFisher), they were then fixed with 1:2.5 acetone/citrate for 30 seconds. 

 
Following fixation, cells were washed with distilled water for three times. Mixed 1 mL of Fast 

Violet B Salt with 1 mL of sodium nitrite solution for 2 minutes. Then, 1 mL of Naphtol AS-MX 

phosphatase alkaline solution was added with 48 mL of distilled water. Then, 2 mL of the 

mixture was added to each well. The cells were incubated for 10 minutes in the dark. Each group 

was seeded in triplicates and the experiment was repeated 5 times. The results are then observed 

under the microscope and photographs or the wells are taken. 
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Equivalent number of cells were seeded in a 6-well plate for Alizarin Red Staining. Triplicate 

of each cell passage were seeded for control group that were maintained in basal medium. 

Odontogenic induction medium was used to maintain the induction group for 14 days. Both 

medias were changed every two days. At day 14, cells were washed with DPBS and fixed using 

10% naturally buffered formalin for 30 minutes. The samples were later washed with sterile 

water before staining with 40 mM Alizarin red (pH 4.2) for 45 minutes at room temperature with 

gentle rotation. To remove Alizarin Red staining, cells were rinsed for five times with distilled 

water. The results are then observed under the microscope and photographs or the wells are 

taken. Each group was seeded in triplicates and the experiment was repeated 3 times. 

 
 

2.8 Reverse transcription and quantitative real-time PCR (qPCR) 
 

One group of MP-MSCs from P3 treated with PRF-enriched media and the other group was 

treated with basal media were allowed to reach 70-80% confluency before total RNA was isolated 

using TRIzol reagents (Invitrogen). Chloroform was added and the samples were centrifuged for 15 

minutes. The aqueous layer containing RNA was preserved. Isopropanol was added to allow 

formation of RNA precipitate. Total RNA samples were then washed with ethanol twice. NanoDrop 

Spectrophotometer (ThermoFisher Scientific) was used to measure total RNA and assess its quality. 

Amplification of cDNA was then completed with SYBR Green I Master Mix (Roche), utilizing the 

LightCycler 480 II real-time PCR system (Roche), following 

 
manufacturer’s instructions. Thermal conditions were set at 95°C at 10 minutes (initial 

denaturation), followed by 45 cycles of 95°C for 10 seconds. Lastly, 58°C for 45 seconds and 

 
72°C for 10 seconds (denaturation). The internal control used was GAPDH and all samples were 

triplicated. Second derivative of the Cq value was determined by comparing the gene of interest 
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to GAPDH for fold-differences of amplification as recommended by manufacturer’s protocol 

(Roche). The experiment was repeated twice. 

 

2.9 Dentin Slice Model 

 

The cemento-enamel junction of the tooth was cut horizontally with diamond bur to 

obtain dentin slices with 1 mm thickness. The dentin slices were left in 70% alcohol overnight 

and autoclaved before use. The pulp space of the tooth was filled with PRF gel and minced 

pulp tissue was place in the PRF gel and in contact with the tooth. These dentin slices were 

placed in primary media for 3 weeks. No minced pulp tissue was placed in the control group. 

 
The dentin slices were washed with PBS before fixation with 10% natural buffered formalin for 

24 hours. Tissues were further washed with sterile water and embedded in paraffin. Five 

nanometer sections were made with a microtome and tissue were mounted onto slides. 

Histological slides were placed in a conventional oven to for deparaffinization. They were later 

rehydrated with xylene washing for two times, followed by serial-dilution of ethanol (100% 

twice, 95% twice, and 70% once). For hematoxylin and eosin staining, slides were washed with 

running tap water for 5 minutes, stained with hematoxylin for 2.5 minutes. Slides were 

subsequently rinsed with 95% ethanol and stained with eosin for 1 minutes. Moreover, slides 

were washed with running tap water then dehydrated with serially diluted ethanol (70% once, 

95% twice, and 100% three times). They were finally washed with xylene for three times before 

mounting. H&E staining was also performed using Sigma-Aldrich staining kit as the protocol 

recommended. 
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2.10 Statistical analysis 
 

Statistical analyses were performed with an unpaired Student’s t test for 2 groups using 

Prism 6 software (GraphPad Software, La Jolla, CA, USA). A value of p<0.05 was considered as 

a statistically significant difference. The graphs represent mean values and include SD unless 

stated otherwise. 

 

3. Results 
 

3.1 Establishing a mouse model of Platelet Rich Fibrin 

 

Platelet-rich fibrin (PRF) is a new generation of platelet concentrates which can be 

obtained from whole blood and does not involve any biochemical handling, like treatment with 

anti-coagulants. In the current study, we have used mouse blood which was obtained via cardiac 

puncture. 

 
After centrifuging the blood at 3500 rpm for 12 mins at 4°C in an Eppendorf tube, three 

distinct layers were seen (Fig 1): the bottom layer was made up of Red Blood Corpuscles 

(RBCs), the top layer was Acellular plasma and the middle layer was Platelet Rich Fibrin 

(PRF) (Fig 1A). It was a gel like matrix and approximately 0.1 – 0.2 ml of PRF gel was 

obtained for 1ml of blood. After obtaining the gel like matrix, the plasma fluid was squeezed 

out using a sterile gauge and the RBCs were cleaned from the PRF. (Fig 1B) 

 
Hence, using the standard protocol for obtaining PRF from human blood, we were able to obtain 

PRF from mouse blood. We used the PRF enriched media to perform all in vitro experiments. 

 

3.2 Exposure of cultured MP-MSC cells to PRF enhanced the cell proliferation potential 

 

MSCs were obtained from minced dental pulp when the tissues were maintained in primary 

media in 2-3 weeks. The obtained cells were maintained in basal culture media and used 
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for experiments. All experiments were performed with MSCs from early passage cells (P1-3) and 
 

triplicated within each experiment. Also, every experiment was repeated for three times. 

 

The palatal gingiva from mice was harvested aseptically and was subjected to tissue digestion 

using dispase and collagenase. 3 days onwards clusters of cells were seen adherent to the 

culture plate. The cells have spindle-shaped morphology and were plastic adherent. The cells 

were detached and passed so as to disrupt the clusters and provide space for the cells to grow. 

The cells grew after detachments and continued to display growth and proliferation. 

 
The effect of PRF on cell proliferation was assessed using MTT assay. It is a colorimetric 

assay which uses MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and is 

based on the conversion of MTT into formazan crystals by living proliferating cells, which 

determines mitochondrial activity. The cell proliferation rate of MP-MSCs treated with PRF 

enriched media was compared with the proliferation rate of MP-MSCs treated with basal media. 

Statistically significant difference was seen when the proliferation rate of the two groups were 

compared on day 3,5 and 7 (Fig 2A). The MP-MSCs treated with PRF enriched media showed 

higher proliferative capacity on each day. Similar results were obtained from MTT assay when 

GMSCs obtained from the mouse gingiva were treated with PRF. There was statistically 

significant difference in the proliferation rate of the two groups were compared on day 3,5 and 7 

(Fig 2B). 

 
The population doubling is to the total number of times the cells in the population have 

doubled since their primary isolation in vitro. This is an estimate rounded off to the nearest 

whole number. The doubling time required by the MP-MSCs when treated with PRF was lower 

than the time required by MP-MSCs when treated with basal media (Fig 2C). The doubling time 

was steady in the case of PRF, however, it kept fluctuating in the control group. The population 

doubling units were higher when the cells were treated with PRF. This means that cell count was 
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higher in the PRF treated group. This data suggests that PRF lead to an increase in the 

 

proliferation rate of MP-MSCs. 
 
 
 
 
 

 

3.3 Exposure of cells to PRF increased the number of cells expressing mesenchymal stem 

 

cell markers. 

 

To characterize the immunophenotype of MP-MSCs in the presence of PRF, we 

measured the expression level of cell surface marker by flow cytometry. CD105, also known as 

endoglin, is a type I membrane glycoprotein that functions as an accessory receptor for TGF-beta 

superfamily ligands. CD146 is identified as an endothelial cell marker with a role in cell-matrix 

interaction and angiogenesis. CD73 is also identified as one of the markers of the mesenchymal 

stem cells. We performed flow cytometric analysis on MP-MSCs treated with PRF and analyzed 

the CD146, CD105 and CD73 expression. There was an increase in the expression of these 

markers. This data suggested that PRF led to an increase in the stemness of the cells. (Fig 3) 

 
 

3.4 PRF enhanced the migration capacity MP-MSCs. 

 

MSCs are characterized with their ability to migrate as they are desired to move into 

tissue to perform their roles. Therefore, sufficient migration capability of MG-MSCs is 

important for successful tissue regeneration. Migration ability MP-MSCs in the presence of PRF 

was evaluated by Transwell assay (Fig 4). There was increase in the number of migrated cells in 

the PRF group as compared to the control group. This suggests MP-MSCs can migrate towards 

PRF and can proliferate to further undergo differentiation. 
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3.5 PRF maintains the osteogenic differentiation potential of MP-MSCs. 
 

To investigate the effect of PRF on the osteogenic differentiation capacities of MP-

MSCs, ALP staining was performed as ALP is an early marker for osteoblasts. Staining was 

performed on Day 0, 3, 7 and 14. The staining intensity was higher on Day 14 as compared to 

day 3 and day 7 (Fig 5A). 

 
Alizarin Red Staining is used to measure the mineralization and it stains free calcium and 

certain calcium compounds. The intensity red staining for calcium compounds increased over a 

period of time and was higher on Day 14 (Fig 5B). Quantification ARS absorbance reveled a 

statistically significant difference between the staining intensity on Day 7 between the cells 

treated with PRF and the untreated cells (Fig 5C). This experiment was also performed on mouse 

GMSCs. The mGMSCs were able to undergo osteogenic induction from as reveled for ARS 

staining for Day 3 (Fig 5D). The quantification ARS absorbance reveled a statistically 

significant difference between the staining intensity on Day 7 and 14 between the cells treated 

with PRF and the untreated cells. The absorbance was higher for than the human MP-MSCs (Fig 

5E). Hence, our data suggest that PRF maintains the mineralization potential of MP-MSCs. 

 
 

3.6 mRNA expression patterns of genes with odontogenic differentiation. 
 

To study the odontogenic differentiation capacity, we measured the mRNA expression of 

four well-known genes involved in dentinogenesis. The mRNA expressions of OCN, the markers for 

early stage of dentinogenesis, were significantly higher in the PRF treated group than the basal media 

group (Fig 6B). In particular, mRNA expression of OCN increased significantly from day 7. The 

mRNA expression of DMP1 and DSPP, markers for late stage of dentinogenesis also increased from 

day 7. There was no significant difference between the mRNA expression of ALP, DMP1 and DSPP 

when the cells were treated with PRF, however, the PRF did not alter the 
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expression of these genes. This data suggests that MP-MSCs are capable of undergoing 

 

odontogenic differentiation in the presence of PRF. 
 
 
 
 

3.7 Minced pulp tissue shows evidence of cell migration towards the periphery of the tissue 

 

in the presence of PRF. 
 

We established a dentin slice model using minced pulp tissue and PRF (Fig 7). Primary 

data obtained from these dentin slices after H&E staining revealed PRF tissue which was seen as 

a fibrous meshwork. Increased cellularity was observed in the human dental pulp tissue. 

Increased concentration of cellularity in the periphery of the minced pulp tissue rather than the 

center was noted at serial tissue passages (FIG 8A, B, C, D) However, PRF did not show 

abundant cellularity (FIG 8E). 

 

4. Discussion 
 

The aim of regenerative endodontics is to replace damaged endodontic structures: pulp 

connective tissue with its vascularization, its innervation and its peripheral dentin. The 

modality of conventional endodontic treatment involves removal of all damaged pulp tissues 

from teeth and their replacement by inert material after adequate disinfection. For many years, 

this drastic treatment has been considered as the unique treatment without alternative strategies. 

Stem cells, growth factors and scaffold are important factors for regeneration and hence our 

study aims at understanding the effects on Platelet Rich Fibrin on the stem cells. Previously, it 

was demonstrated that MSCs derived from minced pulp have the potential to regenerate the 

dental pulp tissue.26. 

 
PRF is a promising scaffold for endodontics regeneration as it can provide a scaffold and 

source of growth factors for the MP-MSCs to proliferate. We were able to obtain PRF gel from 
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mice blood in a similar pattern like PRF is obtained from human blood although the quantity of 

blood obtained from mice blood was very low. To study the effects of PRF on MP-MSCs, we 

prepared a PRF enriched media as described previously27. We first compared the effects of PRF 

on the proliferation rate of MP-MSCs. Previous studies have shown that PRF induces a more 

gradual and sustained release of growth factors28. It has been shown that within the first 10 min, 

up to 70% of growth factors are released to the surrounding environment with nearly 100% 

released within the first hour28. These growth factors, despite being released at early time points, 

have a significant influence on the cellular behavior of many cell types29,30,31. Our data from 

MTT assay with MP-MSCs reveled that the growth factors present in PRF were able to act upon 

the cells and there was a significant increase in the proliferation rate of MP-MSCs. To 

understand if the effect on human cells from growth factors released from mice PRF was valid, 

we performed MTT assay on gingival MSCs isolated from mouse palatal gingiva. We were able 

to see similar results, and this validated our finding that PRF increased the proliferation rate of 

MP-MSCs. PRF also decreased the time required by the cells to multiple and this could be owed 

to the presence of growth factors from PRF. Higher migratory phenotype is one of the major 

characteristics of MSCs because of the nature of MSCs that must move to wound tissue to 

perform their roles32. Compared to cell-based therapy where cultured MSCs are transplanted, the 

source of MSCs in tissue-based therapy is the migrating cells from the transplanted tissues. 

Therefore, sufficient migration capability of MG-MSCs is important for successful tissue 

regeneration. Our data suggested that MP-MSCs showed higher migration towards PRF and this 

suggests that tissue-based therapy using minced tissue may also have sufficient therapeutic 

efficiency when supplemented with PRF matrix. PRF also led to an increase in the markers 

associated with MSCs. There was an increase in the cells expressing CD73, CD105 and CD146. 
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Osteogenic differentiation capacity of stem cells is more important for pulp regeneration than 

the other types of differentiation capacity because of the similarity between odontoblast and 

osteoblast. Dentin and bone produced by odontoblasts and osteoblasts are very similar in 

composition, and the protein expressions in the process of producing the mineralized matrix are 

also very similar, such as OCN and ALP33. We performed ALP staining and quantified the 

mRNA expression levels of ALP. There was no significant difference in the ALP expression 

when the cells were treated with PRF. After inducing mineralization in MP-MSCs over a period 

of 14 days, there was increase in the mineral deposits in the PRF group. This experiment was 

also performed with mGMSCs and similar results were obtained. 

 
While understanding the limitations of our study where we have used PRF from mice 

blood and used it for experiments with human pulp tissue, we basically tried to establish a new 

experimental model. To further confirm if the effects of mouse PRF were valid, we isolated 

gingival MSCs from mouse and performed few experiments using these cells. We were able to 

find similar results as seen with human MP-MSCs. Further experiments with human PRF are 

necessary to confirm our findings. 

 
Revascularization is a technique by which bleeding is induced in the pulp canal space 

which aids in regeneration of the dental pulp. However, there were numerous drawbacks to this 

procedure. Studies revealed that there was ingrowth of periodontal connective tissue instead of 

pulpal connective tissue34; another study showed cementum and bone-like tissue35,36. It is also 

reported that there is breakdown of the blood clot in the pulp canal space, leaving no scaffold for 

new tissue to grow into the empty canal space37. Histologic studies of revascularized teeth in 

animal showed that the tissue growing in the pulp space was fibrous soft connective tissue38. 

Hence the use of a PRF as a scaffold along with minced pulp tissue graft proves to be a very 

promising treatment approach for regenerative endodontics. PRF can be a source of growth 
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factors and can also be a scaffold for the cells to grow and differentiate. This will limit the 

growth of ectopic tissues like bone, cementum and lead to the growth of tissues required for pulp 

regeneration. 

 
There are still many challenges in the application of Minced pulp for dental pulp 

regeneration. However, for those patients with wisdom teeth or whose teeth have to be extracted 

for orthodontic purposes, autologous pulp could be obtained from the extracted fresh teeth. 

Meanwhile, the use of PRF could reduce the cost of dental pulp regeneration by avoiding the 

application of commercial exogenous growth factors. Thus, the present investigation paves the 

way for further studies to regenerate dental pulp in clinical settings by utilizing autologous or 

allogeneic cells in combination with autologous PRF. 

 
In conclusion, this study provides new insight into dental pulp regeneration using PRF. 

Our results show that PRF can act as a source of growth factors cell proliferation, migration and 

differentiation. Intracanal transplantation of the minced pulp and PRF constructs could 

effectively promote the regeneration of dentin-pulp-like structures. 
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5. Figures and Legends 
 
 
 
 

Figure 1. Obtaining PRF from mouse blood 
 

(A) Three distinct layers were seen: the bottom layer was made up of RBCs, the top 

layer was acellular plasma and the middle layer was Platelet Rich Fibrin (PRF). 

(B) About 0.1 – 0.2 ml of PRF was obtained from 1ml of blood 

 
(C) Schematic representation of the preparation of PRF-enriched media  
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Figure 2: PRF increased the cell proliferation potential of MP-MSCs. 
 

(A) MTT Assay for cell proliferation comparing the proliferation rate of MP-MSCs in the 

presence and absence of PRF. 

(B) MTT Assay for cell proliferation comparing the proliferation rate of mGMSCs in the 

presence and absence of PRF. 

(C) Comparison of population doubling time and population doubling units of MP-MSCs in the 

presence and absence of PRF. 

* p<0.05, Data are expressed as the means ± SD of 5 determinations. 
 
 
 
 

A B  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

C  
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Figure 3: Immunophenotypic profile of MP-MSCs in the presence of PRF. 
 

Flow cytometry analysis was performed to measure the expression of cell surface markers 

of MP-MSCs in the presence of PRF. 

(A) Negative control FITC and PE; (B) CD73; (C) CD146 and (D) CD105 

Graph pattern of each cell surface marker. 

(B) A graph to compare the expression level of surface markers of each cell line.  
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Figure 4. 
 

Migration capacity of MP-MSCs in the presence of PRF. 

 

The migration capacities of MP-MSCs were measured uding transwell migration assay 

after 1 day and 2 days of cell seeding. 
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Figure 5: Osteogenic/odontogenic differentiation capacity MP-MSCs when treated with 

 

PRF 

 

(A) Alkaline phosphatase (ALP) staining after treatment of osteogenic induction media 

or basal media for 3, 7 and 14 days. 

(B) Alizarin red staining after treatment of osteogenic induction media on Day 0, 3, 7 and 

14 in MP-MSCs in the presence or absence of PRF. 

(C) ARS absorbance measured by spectrophotometer with 405nm wavelength. * 

p<0.05, Data are expressed as the means ± SD of 3 determinations. 

(D) Alizarin red staining after treatment of osteogenic induction media on Day 0, 3, 7 and 14 

in mGMSCs in the presence or absence of PRF. 

(D) ARS absorbance measured by spectrophotometer with 405nm wavelength. * p<0.05, 

Data are expressed as the means ± SD of 3 determinations. 

(E) Magnified microscope view of dense mineralization area of MP-MSCs and mGMSCs. 
 
 
 
 

A  
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Figure 6: mRNA expression patterns of genes associated with osteogenic/odontogenic 

 

differentiation. 

 

(A) Expressions of osteogenic/odontogenic genes: Osteocalcin (OCN) Alkaline Phosphatase 

(ALP) when MP-MSCs were treated with and without PRF. 

* p<0.05, Data are expressed as the means ± SD of 3 determinations. 
 
 
 
 

A B  
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Figure 7: Dentin Slice Model 
 

(A) and (B) Dentin slice about 1 mm in thickness. The pulp space is filled with PRF and 

minced pulp tissue is placed in contact with PRF and dentinal walls. 

(C) Dentin slice with PRF tissue only. 
 
 

 

A 
Minced pulp tissue 

B 
PRF 

 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

PRF 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Minced pulp tissue  
C  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PRF 



Figure 8. Minced pulp tissue shows evidence of cell migration towards the periphery of 

 

the tissue in the presence of PRF. 

 

(A) and (B) H&E sections of dentin slices: A is PRF tissue and B is minced pulp tissue. PRF 

tissue is seen as a fibrous meshwork. Pulp tissue shows increased cellularity at the 

periphery. (10X magnification, Scale: 100 um) 

 
(C) 20X magnified image of the pulp tissue showing increased cellular content at 

the periphery. (Scale: 100 um) 

(D) 20X magnified image of the pulp tissue along the dentin walls. (Scale: 100 um) 

 
(E) and (F) H&E section of dentin slices with PRF tissue only. (Scale: 100 um) 
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Figure 8. Proposed model using Minced pulp and PRF 
 

(A) Regenerative Endodontic treatment - Revascularization procedure. 

 
(B) Regenerative Endodontic treatment using Minced dental pulp and PRF. 

 
A  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

B  
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