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ABSTRACT OF THE DISSERTATION

Experiments, analysis and modeling in fluid stretching

by

Diego Tapia Silva
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Professor Bin Liu, Chair

In this thesis, we investigate mixing and transport mechanisms within complex

flows, with a particular interest on stretching. Stretching, driven by localized de-

formation within the fluid domain, provides insight into the underlying dynamics

that drive the formation of coherent structures across a wide range of spatial scales.

By measuring particle separation rates, we can quantify the extent of deformation

in the fluid. Regions that experience significant stretching reveal coherent struc-

tures that remain stable over finite time intervals. Understanding how stretching

operates within fluid domains is essential for comprehending the flow dynamics of

both experimental and simulated systems. To investigate these mechanisms, we

introduce a novel high-speed imaging technique to directly capture the fluid dy-

namics of complex flows. Additionally, we develop robust computational methods

to analyze and process the inherently noisy data, enabling accurate insights into

the deformation and structure formation in the fluid domain. Finally, we demon-

strate the application of our high-speed imaging system and computational tools

by studying a bio-inspired system, the flows generated by a pulsing soft robotic

coral.
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Chapter 1

Introduction

Fluid dynamics has long captured the interest of scientists across disciplines

due to its relevance in extensive and diverse range of systems, from bacterial lo-

comotion [2, 3] to the behavior of galaxies [4, 5]. For experimentalists, imaging

techniques play a central role in directly capturing the flow dynamics [6, 7, 8],

while computational work often focuses on simulating flow velocity and pressure

[9, 10, 11]. In this thesis, we introduce and utilize innovative experimental and

computational techniques to investigate fundamental properties of complex fluid

flows. We focus on two main themes: 1) developing versatile imaging and analysis

methods to process noisy experimental particle tracking data sets which enables us

to study 2) fundamental flow properties such as vorticity, stretching, and mixing

dynamics. Our contributions lie in advancing high speed volumetric imaging for

experiments, and applying robust numerical tools to analyze both experimental

and simulated flows.

Progress in experimental fluid mechanics is often limited by techniques for

measuring flow fields and the resulting dynamics[12]. This is especially true for

chaotic flows – such as turbulence – which necessitate single shot 3D measurements

[13, 14]. In recent decades, high-speed imaging has been made possible through the

development of low light high-speed cameras, high-speed scanning mirrors and the

development of mass data processing techniques [15]. The development of the dig-

ital camera resulted in experimental two-dimensional imaging techniques such as

planar laser-induced fluorescence (PLIF), particle imaging velocimetry (PIV), and

1



Chapter 1. Introduction

particle tracking velocimetry (PTV). PLIF works by shining a laser sheet through

a fluid sample that is embedded with a fluorescent tracer [16, 17]. The fluores-

cent signal that arises from the laser sheet exciting the tracer is then captured by

a camera. PIV and PTV rely on imaging a fluid sample that is embedded with

particle tracers [18, 19, 20, 21].

In PIV, the fluid domain is divided into grid cells. This allows for measuring

the average displacement of particles between consecutive frames, resulting in a

resolved Eulerian velocity field across the grid cells [7, 22]. In PTV, individual

tracer particles are tracked over a finite time, resulting in a Lagrangian velocity

field computed directly at each particle’s position [23, 24]. In Chapter 2 we present

a novel high speed two-color volumetric imaging technique. We showcase the capa-

bilities of the imaging system by imaging deep cubic volumes for a test experiment,

flow past a sphere. Direct flow visualization is provided through the use of fluores-

cent dye and particle tracking velocity data is collected simultaneously by tracking

fluorescent labeled particles.

In addition to being able to compute velocity fields, an essential aspect of

fluid dynamics involves understanding vorticity. Helmholtz theorem states that

for inviscid, incompressible flows, the vorticity is transported with the fluid. This

allows the flow to be visualized as a bundle of vortex lines that move with the fluid.

The stability and dynamics of vortex lines have been studied in both computational

and experimental work [25, 26, 27], notably showing that simple vortex structures,

e.g., circular vortex rings, exhibit stability as they get advected over in time [28,

29]. In chapter 3 we explore the stability of more complex vortex configurations,

knotted vortices and linked rings. These complex vortices exhibit inherent unstable

behavior undergoing stretching and reconnection events [30], mirroring turbulent

behavior where energy cascades to smaller scales until it dissipates. To simplify the

complexity of the problem, we use ‘frozen’ flow fields generated by static vortex

configurations and seed a material line in the fluid domain. We quantify the

stretching behavior of material lines under the velocity field generated by complex

vortices, providing insights into to why, where and when these vortices stretch.

The areas where material lines experience the greatest stretching is analogous to
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where the fluid domain itself is undergoing significant deformation.

Finite time Lyapnunov exponents (FTLEs) fields provide important informa-

tion on mixing and transport processes [31, 32]. To resolve these fields, we need

to have access to particle data, either in the form of Eulerian velocity fields or

Lagrangian particle trajectories [33]. Particle data is used to construct a flow map

which indicates the final positions of particles after a finite time, based on their

initial locations. The flow map deforms as it is advected over time, and this defor-

mation is quantified by the Cauchy strain tensor. By extracting the eigenvalues of

the Cauchy deformation tensor, which correspond to the rate of separation between

neighboring particles, the FTLE field can be computed. Regions characterized by

maximum particle separation, often depicted as narrow ridges of high FTLE values

[34], indicate areas of significant stretching within the fluid domain. In chapter 4

we present the flow map compilation (FMC) method [35, 36] for the time efficient

and accurate computation of FTLE fields. The need for accurate characterization

of flow properties from noisy and irregular particle distributions that are inherent

to experimental particle tracking data sets, motivates the development of a poly-

nomial interpolator that outperforms, both in speed and accuracy, standard radial

basis function interpolation.

Xeniid corals display intriguing behavior characterized by the pulsing of their

tentacles. Unlike most animals, these corals exhibit active motion for purposes

other than locomotion [37, 1]. Inspired by these animals, we fabricate a soft-

robotic coral that mimics the behavior of the corals. In chapter 5 we study the

flow dynamics generated by the robot using the novel methods developed in the

previous chapters. Particle tracking data sets are collected via our novel high-speed

imaging technique and apply the numerical tools, developed throughout this work,

to compute the velocity, vorticity fields and the associated FTLE fields at different

stages of the robots pulsing period. Our study of bio-inspired flows, generated by

the robotic coral, highlights the versatility of our experimental and analysis tools,

enabling the exploration of fundamental fluid flow phenomena with a particular

focus on fluid stretching.
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Chapter 2

High speed volumetric imaging

Traditionally, imaging of fluid dynamics has been restricted to planar inves-

tigations. However, fluids flows are intrinsically three-dimensional, and hence to

experimentally capture the full dynamics volumetric imaging is necessary. For

example, planar imaging techniques have been widely applied to study the flow

dynamics of animals [38, 39, 1]. In one study, volumetric PIV imaging was applied

to study hydrodynamics of a shark tail [40], leading to qualitatively different re-

sults than previous work using planar PIV on the wake structures [41, 42]. In this

particular case a dual-ring vortex structure shed from the tails could not be fully

resolved from the planar measurements alone, leading to an incorrect interpretation

of the overall flow structure. Similarly, in the study of turbulence intrinsically 3D

mechanisms like vortex stretching can not be resolved from planar measurements

alone [43].

PIV, PTV and PLIF can be extended to three-dimensional imaging. One ap-

proach is to integrate a system of multiple cameras, or stereoscopes, to capture

unique viewing angles enabling the reconstruction of volumes from the various

viewing perspectives. This approach is implemented in tomographic particle im-

age velocimetry (TPIV) [44], tomographic particle tracking velocimetry (TPTV)

[45] and tomographic laser-induced fluorescence (TLIF) [46]. An alternative is to

image volumes of the fluid by sectioning slices of the sample with a laser sheet that

is scanned in time [47]. This approach is used in scanning volumetric laser induced

fluorescence (SVLIF); it has the benefit of simpler hardware (i.e. a single camera)
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Chapter 2. High speed volumetric imaging

and much simpler post-processing of the resulting data. Recent technological de-

velopments – e.g. imaging hardware and mass data processing techniques – now

make it possible to achieve high spatial and temporal resolutions in volumetric

imaging [48, 49].

Here, we present a novel high-speed two-color scanning volumetric laser-induced

fluorescence (H2C-SVLIF) technique. The core equipment of the imaging system

consists of a single high-speed camera and a scanning laser sheet produced by pair

of pulsed ND: YAG lasers which enable two-color imaging. The system is designed

such that it can be easily adaptable to a diverse array of experimental set-ups by

readily tuning its temporal and spatial resolutions. Notably, our implementation

includes open source software which corrects for perspective and other distortion

effects when the recorded volumes are displayed or analyzed, removing the need for

telecentric lenses or other complicated optical systems. As a result, the system is

incredibly versatile, able to adapt to a wide range of scales and image deep (cubic)

volumes if desired. This system operates at the limit of fundamental and practical

limits to volumetric imaging in terms of both speed and resolution.

Although other volumetric two-color techniques have been showcased, e.g, [50]

and [51], these approaches have been constrained to small volume of interests

(VOIs) with dimensions 14 × 14 × 24 mm3 and 5× 5× 50 mm3, respectively. The

method presented here is not subject to these limitations; for example, in section

2.6 we present volumetric imaging with dimensions of 159 × 159 × 168 mm3. We

conduct measurements with data throughput of 1.7× 1010 voxels/second, which is

of order 10–104 times more data throughput than previous two-color volumetric

imaging approaches.

The apparatus described here is also the first to demonstrate high-speed two-

color scans for the simultaneous acquisition of LIF and PTV data. Moreover, our

technique operates at video rates or faster – greater than 60 Hz – with the use

of a single high-speed camera which operates at frame rates greater than 70 kHz.

Our imaging demonstrates a notable advancement over existing techniques due

to its enhanced imaging capabilities, flexibility and adaptability, rendering it well

suited to a wide range of problems in fluids that necessitate high speed single-shot
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Figure 2.1: A schematic of the H2C-SVLIF control system. The entire setup
is synchronized using a custom designed board controlled through a GUI in the
visualization workstation. The synchronization board generates signals which are
sent to the lasers triggering them on alternating frames (purple and green), the
galvanometer (blue), and high-speed camera (yellow and red). Details of the laser
sheet generator are given in fig. 2.2.

volumetric imaging.

As a proof of concept, we conduct H2C-SVLIF measurements for flow past a

sphere. We use two separate fluorescent dyes excited by a pair of pulsed lasers

to simultaneously track small tracer particles and dyed volumes of fluid. While

the focus of this paper is primarily the imaging system itself, we also provide the

demonstrated data processing and visualization techniques that are easily expe-

dited using our own novel custom open source software [52]. This software has the

ability to correct for spatial distortion defects in real time while simultaneously

overlaying arbitrary 3D data (e.g. the location of tracked particle or dyed lines).

Moreover, non-uniform illumination defects, present in the volumes acquired, are

also corrected for in the pre-processing stage.

The outline of this chapter is as follows: section 2.1 presents the basic de-

sign and experimental hardware used in our imaging system, section 2.2 discusses

the fundamental and practical limits to H2C-SVLIF, section 2.3 addresses chal-

lenges posed by processing large data sets and how our open source in-house view-

ing software is adapted to handle these data sets. In section 2.4, we discuss the

post-processing for distortion correction, calibration for the captured volumes, and
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Figure 2.2: A schematic of the laser sheet generator. The laser sheet is produced
via a pair of pulsed ND: YAG lasers of wavelengths 355 nm and 532 nm. The
laser beams pass through a pair of beam expanders (BE). The beams then travel
to a dichroic mirror (DM) which combines the beams. From there, the beams get
deflected up to a scanning-head platform and pass through a beam de-expander
(BD). The scanning-head platform can be manually translated to adjust to a va-
riety of sample heights. Finally, the beams get deflected into the Powell lens (PL)
and into the scanning mirror (SM). The resulting laser sheet is then swept across
a sample.

correction of illumination defects. In section 2.5, we discuss the process for the

tracking of the particles and the interpolation method for the reconstruction of a

Eulerian velocity field. In section 2.6 we present results from our example system,

followed up by the conclusion in section 2.7. The collection of particle tracking

data allows us to compute FTLE fields, and by building upon this imaging tech-

nique, we develop analytical tools to study stretching and mixing mechanisms from

these data sets. As demonstrated in chapter 4, these tools enable the analysis and

processing of particle tracking data.

2.1 Imaging hardware

The H2C-SVLIF system includes a laser sheet generator, a high-speed camera

(Phantom V2512), and a custom-designed synchronization board. This board –

which is controlled through a visualization workstation – synchronizes the camera

7
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and laser sheet generator (fig. 2.1). To image in three dimensions, the laser sheet

is swept across the sample while the high-speed camera records the fluorescent

emission slices of the sample. The system is designed to be highly adjustable: the

scan width and height are adjustable to image systems at a variety of scales. The

scanning laser sheet is generated by a mobile integrated platform, allowing the

position and height of the laser sheet to be easily adjusted (fig. 2.2). The laser

sources for the sheet are a pair of diode-pumped lasers (Spectra Physics Explorer

Explorer One XP 355-2 and One XP 532-5). The beams are first expanded to 3

mm, and then combined on a dichroic mirror and directed upwards to the scanning

head platform. The head has a manually adjustable height; the 3 mm width of

the lasers in the vertical beam section ensures that the divergence of the beams is

small enough that this does not significantly affect the beam size over the range of

accessible heights. The beams are then de-expanded to the appropriate diameter

for the Powell lens (1 mm), which spreads the laser into a uniform vertical sheet.

(If needed, the collimation adjustment on the final beam expander can be used to

adjust the focus of the final sheet.) Finally, the laser is reflected off a galvonometer

mirror (Thorlabs GVS002) and directed to the sample.

The high-speed camera, galvanometer, and the lasers are synchronized using

the custom designed synchronization board; schematics for this board are publicly

available on GitHub [53]. This board sends an analog sawtooth signal to the

galvanometer controller to define the scanned volume; this can be adjusted in

software as needed. Two digital pulse signals are dispatched to the pulsed lasers,

inducing fluorescence at distinct wavelengths during alternate frames. This allows

a monochrome camera to be used, improving both effective resolution and signal

to noise ratio as compared to cameras with color chips. A digital frame sync signal

is sent to the camera to trigger synchronized acquisition. A second trigger signal

is sent to the camera to designate the start of the first recorded volume. This

entire setup is controlled through a visualization workstation connected to the

synchronization board through a USB connection. The camera is also connected

to the workstation through a 10 Gb ethernet port, allowing for fast download of

large data sets.
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Figure 2.3: Schematic of the focusing optics of the camera. The defocused spot
size occurs for distances outside the depth of field, dfield. The permissible circle of
confusion, c, occurs at the rear and at the front depth of field. The maximum lens
aperture size, a, depends on the sample angle, θ. Here, do and di are the distance
to object and distance to image respectively.

2.2 Fundamental and practical limits to high-

speed volumetric imaging

Volumetric imaging systems are subject to constraints in resolution, speed and

signal to noise ratio. These limits may either be fundamental physical constraints

(diffraction and shot noise) or practical hardware limitations (camera speed, sen-

sitivity, and data storage). We discuss each of these below, and arrive at practical

limits for high-speed volumetric imaging with the currently available hardware.

This discussion is tailored to guide those involved in high-speed volumetric imag-

ing techniques as the same constraints are applicable to their systems.

2.2.1 Image resolution

Ideally, the laser sheet would maintain the same thickness throughout the sam-

ple, but in practice this is limited by diffraction. Although we are only focusing the

laser sheet along a single axis, the beam parameters can still be computed with

standard Gaussian optics [54], assuming the source laser has a Gaussian profile

(as is the case for the lasers used in our sheet generator). A reasonable balance

between the thickness of the sheet and the distance over which it is focused can be

obtained by setting the Rayleigh length, zR =
nsπw2

0

λ
, to be half of the sample size

in the direction of laser travel, Lx (fig. 2.2), where ns is the index of refraction of

9
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the sample, w0 is the waist of the Gaussian beam, and λ is the vacuum wavelength

of the laser.

To ensure uniform sampling, we set the depth of a single voxel to be equal to the

the full width half maximum (FWHM) of the laser sheet. This results in a voxel

size hz,dl = w0

√
2 ln 2 =

√
λLx ln 2
πns

. This should be regarded as the maximum useful

resolution; higher resolutions would result in a negligible increase in information in

the measured volume. Although the resolution limits above were based on the laser

sheet, the same fundamental limits apply to the camera system and corresponding

lens, i.e. hx,dl = hy,dl =
√

λLz ln 2
πns

. Table 2.1 shows the diffraction limited resolutions

as a function of sample size.

Table 2.1: The diffraction limited res-
olutions for cubic volumes, for the 355
nm wavelength laser and the 532 nm
wavelength laser, and an index of re-
fraction of the sample, ns = 1.33, for
water.

λ (nm) Lx = Ly = Lz (mm) hz,dl (mm) Nz,dl

355 500 0.172 2910
250 0.120 2060
100 0.077 1300
50 0.054 920

532 500 0.148 2380
250 0.115 1680
100 0.094 1060
50 0.067 750

For large volume sizes, Lz ⪆ 100 mm, the diffraction limited resolution, Nx,dl,

exceeds the image resolutions of commonly available high-speed cameras. As a

result, it is sometimes desirable to under-resolve the image. This brings additional

benefits as it allows for an increase in the physical size of the aperture in the

camera, which corresponds to a brighter image for the same amount of laser power.

Provided our desired image resolution, Nx, is lower than the diffracted limited

resolution Nx,dl, we can approximate the defocusing with a ray optics approach
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[55]. Here we define an F-number for the lens aperture: F = f/a, where a is the

aperture diameter and f is the focal length. (Note that per our definition, F = 8

corresponds to ‘f/8’, as it is usually specified on camera lenses.) To compute the

acceptable lens aperture, we will set the ‘circle of confusion’ (the size of a defocused

spot at the edge of the volume) to c = 2p, where p is the pixel pitch on the camera

sensor (p = 28 µm for the Phantom V2512). If we then require that the depth of

field be equal to Lz, we can obtain:

F =
M2Lz

2nsc
=

pLz

4nsh2
(2.1)

where M = p/h is the image magnification, and h is the size of a voxel along the

x or y axis at the center of the imaged volume. The correction due to the sample

index of refraction, ns, can be computed using a ray transfer matrix [56].

2.2.2 Image intensity

In order to obtain an image with good signal to noise ratio, we need to ensure

a sufficient amount of light reaches the image sensor. Electronic camera sensors

work by converting incoming photons to electrons, which are then amplified and

digitized. The number of electrons per pixel read by the sensor is given by ne = ηnγ,

where η is the quantum efficiency (η ≈ 0.4 − 0.95 for modern sensors [57] and nγ

is the number of photons which reach a single pixel in each image exposure. In

practice the two relevant sources of noise are technical readout noise and shot noise

which comes from the fact that electrons are quantized. The technical readout

noise is typically referred to as the dark noise and measured in terms of number of

electrons, nd, and the quantum mechanical shot noise is due to relative fluctations

of photons hitting the sensor and has an amplitude of
√
ne [57]. Assuming these are

the only sources of noise, the signal to noise ratio is given by SNR = ne/
√
n2
d + ne.

Although nd can be as low as 1 electron for high sensitivity SCMOS or CCD

cameras, it is approximately of order nd ≈ 10−20 electrons for high-speed cameras

[58]. If we assume η = 0.5 and nγ = 1000 photons/pixel, SNR ≈ 20. Note that

this is primarily limited by quantum efficiency and shot noise, and so a lower noise

camera would produce only marginally better results (a perfect camera with η = 1
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and no excess noise would produce SNR ≈ 30). In the following discussion we will

use nγ = 1000 photons/pixel as the reference level of intensity; in practice this

produces satisfactory images for later analysis.

We image samples by seeding them with a fluorescent dye which is excited by

the laser sheet. If we wish to produce nγ photons per pixel, the required energy in

a single laser pulse, assuming the small angle approximation, is given by,

Epulse =
NynγEγ

γηopt

(
4π

πθ2

)
=
NynγEγ

γηopt

(
4nsF

M

)2

, (2.2)

where Epulse is the laser pulse energy, Eγ = hpc/λ ≈ 4 × 10−19 J is the energy of

a single photon (hp is the Planck constant, c is the speed of light, and we have

computed the energy for λ = 500 nm), ηopt ≈ 0.5 is the overall optical efficiency of

the system (including the quantum yield of the dye and any other optical sources of

loss), θ = M
2nsF

is the sample half-angle (see fig. 2.3), γ is the extinction coefficient

of a single voxel which is fully dyed, and Ny is the image resolution in the vertical

direction. The term in parentheses is the fractional solid angle of light collected

by the camera lens. For situations where the majority of the sample is dyed, we

require γ ≪ 1/Nx to prevent significant shadowing effects.

Let us consider a reference case, where we are imaging a cubic volume of size

Lx = Ly = Lz = 100 mm, filled with water (ns = 1.33), and pumped with a

532 nm laser. If we use the diffraction limited resolution (Ndl = 1060) for the

image resolution and have a pixel size of p = 28 µm, we obtain M = 0.297. The

corresponding aperture size per (2.1) is F ≈ 59 (assuming n = 1.33). If we assume

an extinction coefficient of γ = 0.1/Nx ≈ 10−4, and a peak imaging brightness of

nγ ≈ 1000, the required pulse energy is ≈ 10 mJ, which is around 100 times more

power than is produced by common pulsed lasers with a sufficiently high repetition

rate of ≈ 104 − 105 Hz [59].

This reference case suggests a practical limitation: when imaging macro-scale

objects, the resulting large F-number and small magnification will necessitate a

large energy per pulse. In this case, a significant improvement can be made by

under-resolving the image, and increasing the camera aperture so that the resolu-

tion is limited by the depth-of-field of the lens, as described in section 2.2.1. A
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decrease in the resolution will result in bigger spot sizes of the permissible circle of

confusion, and will in turn correspond to a larger half-angle of the imaging sample,

scaling as θ ∝ 1/Nz.

As an example, suppose we reduce the resolution to Nx = Ny = Nz = 500. In

this case we can decrease the magnification toM = 0.140, and increase the aperture

size so that F ≈ 15. Furthermore, let us assume that only a small fraction of the

sample is dyed, then we can increase the dye density so that γ = 1/Nx. Taking

into account all of these modifications, the resulting energy required per pulse is

Epulse ≈ 65 µJ. If we are recording volumes at a rate of 60 Hz, this is an average

power of 2 W, which is achievable with commonly available lasers.

2.2.3 Volumetric recording rate

The volumetric acquisition rate of our H2C-SVLIF imaging system is limited

by the sweeping rate of the galvanometer and the resolution of the high-speed

camera. At low resolutions, the volumetric acquisition rate will approach the

maximum sweeping rate of the galvanometer motor. For a sawtooth signal the

maximum sweeping rate at full scale bandwidth for our galvanometer is 175 Hz.

Our volumetric acquisition rates, ≈ 60 Hz (see Table 2.2), are the fastest for

deep (cubic) volumetric imaging, faster than reported two-color volumetric imaging

techniques, e.g. [50, 51].

At high resolutions, the volumetric acquisition rate is limited by the throughput

of the high-speed camera. Due to the finite speed of the galvanometer, it will

produce a smooth linear ramp during a fraction of the total scan time, known as

the duty cycle, ηd. The duty cycle depends on the volume scan rate and the speed

at which the galvanometer can reset and stabilize. The camera recording signal is

synchronized with the effective scan period to only record during this period. The

following equation is used to compute the volume rate of the system when limited

by the throughput of the camera,

rv =
rfηd
NcNz

(2.3)

where rv is the volumetric acquisition rate, rf is the frame rate of the camera,
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and Nz is the resolution in the scanning depth direction, and Nc is the number of

channels.

Table 2.2: The maximum volumetric
acquisition rate, rv for H2C-SVLIF as-
suming an νd =85% duty cycle and
using the maximum frame rates for a
Phantom V2512 camera at the speci-
fied resolutions.

volumetric spatial resolution rf (Hz) rv (Hz)

384 × 384 × 384 117,117 129
512 × 512 × 512 75,669 62
640 × 640 × 640 52,974 35
768 × 768 × 768 39,180 21
1024 × 768 × 768 31,815 17
1280 × 800 × 800 25,722 13

2.3 File formats and viewing software

One of the challenges presented by volumetric imaging is the large data sets

produced by the method. For example, 10 seconds of 5123 volumes recorded at 100

vol/s results in a 134 GB of data (assuming 8-bit data storage). This data can be

compressed, though for scientific analysis it should be done using a lossless method.

Also, ideally the data would be capable of being decompressed fast enough for real-

time viewing. This is a difficult constraint: playback at 30 volumes per second

would require a decompression speed of 4 GB/s (as measured in the decompressed

data).

In a typical experiment a large fraction of the image volume is empty (i.e. con-

taining no dye). In practice, this can range from 50 – 95% of the image voxels. In

order to facilitate compression, we clip all pixel values below a certain threshold,

chosen to eliminate the dark noise but have minimal impact on the collected data.

After this clipping, the image volumes contain large contiguous regions of zeros

which can be easily compressed using an LZ4 algorithm, supported by the widely
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used VTK data format [60]. Using this data format, we are also able to include

perspective correction metadata in these files. This allows for acquired videos, cor-

rected for volume distortions, to be played back at high rates by our open source

multi-scale ultra-fast volumetric imaging (MUVI) software [52] on standard desk-

top or laptop computers. This software is also capable of dynamically displaying

other 3D data, including derived flow fields (see for example fig. 2.9).
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Figure 2.4: Schematic of imaged volume. The purple area indicates the raw dis-
torted volume, the square black line shows the corrected volume. Note that the
signs of dz and dx depend on the direction of the scan, and on the location of the
scanner relative to the camera, respectively.

2.4 Post-processing

The volume imaged by the high-speed camera and scanning system is sub-

ject to distortion due to the viewing angle of the camera and the scan as seen in

fig. 2.1. Thus, the raw data obtained by our 3D imaging system includes distor-

tion and non-uniform illumination due to the varying angle of the laser sheet and

perspective foreshortening from the imaging system. Since we employ the use of

prime lenses (Mikro-Nikkor AF 105 mm f/2.8 D), distortion effects are negligible

15



Chapter 2. High speed volumetric imaging

as these prime lenses have extremely low distortion [61]. Although in principle

the perspective effects could be eliminated optically (i.e. using a telecentric lens),

this significantly complicates the experimental design and, in practice, limits the

volume size. Moreover, non-uniformity in the illumination provide additional vari-

ations of order 10 – 20%. We have developed methods for correcting the resulting

distortion in real-time display of the volumes, and for correcting the non-uniform

illumination in the pre-processing. This is enabled through our customized viewing

software (MUVI) presented in section 2.3.

By employing the use of a single high-speed camera and imaging directly in 3D,

the post-processing task for the reconstruction of volumes is streamlined when com-

pared to tomographic imaging techniques such as TPIV and TPTV. Tomographic

imaging techniques necessitate multiple distinct viewing angles typically achieved

through camera systems or reflecting mirrors [44, 50]. These techniques result in

intricate imaging system designs, complex volume reconstruction algorithms and

distortion correction procedures particularly when imaging deeper volumes. As a

result, these techniques are often constrained to VOIs which are shallow in at least

one dimension, e.g, [13, 62, 63]. In contrast, our technique utilizes a straightforward

geometric approach that directly maps raw space coordinates (the position of each

voxel in the recorded data) to physical space coordinates. The implementation of

single-camera H2C-SVLIF also enables the imaging of complete 3D structures and

deep VOIs (see Table 2.4), extending beyond particle imaging. This kind of imag-

ing is not readily achievable with systems reliant on only a few distinct viewing

angles or cameras.

2.4.1 Distortion correction

To correct the perspective, we use the following coordinate systems and trans-

formations between them (fig. 2.4):

• Raw space coordinates: Each point is assigned a coordinate (u′, v′, and

w′) in the range of 0 – 1, based on the relative position of each voxel along

each axis in the raw recorded data. These voxels will be subject to distortion
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due to the scan angle of the laser sheet and the viewing angle of the high-

speed camera.

• Slope space coordinates: Due to the nature of the imaging system, u′,

v′, and w′ correspond to slopes (mx, my and mz) in physical space, rather

than displacements. Note that, in the case of the laser scanner this ‘slope’

actually refers to an angle, but the difference is negligible (less than 1%) if

the maximum angle is less than ≈ 10◦. At the maximum scan angle of our

scanner (12.5◦), voxels will appear ≈ 20% larger at the edges but in practice

we maintain the scan angle relatively low (≈ 8◦) to mitigate this effect. The

relationship between raw coordinates and the slopes is given by:

u′ =

(
dz
Lx

mx +
1

2

)
(2.4)

v′ =

(
dz
Ly

my +
1

2

)
(2.5)

w′ =

(
dx
Lz

mz +
1

2

)
. (2.6)

• Physical space coordinates: We can compute the slope space coordinates

in relation to physical space coordinates (x, y, and z) using the equations:

mx =
x

dz − z
(2.7)

my =
y

dz − z
(2.8)

tan(mz) ≈ mz =
z

dx − x
. (2.9)

• Idealized image coordinates: It is also useful to define idealized image

coordinates (u, v, and w) in an undistorted space:

x =

(
u− 1

2

)
Lx (2.10)

y =

(
v − 1

2

)
Ly (2.11)

z =

(
w − 1

2

)
Lz. (2.12)
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The limits of these coordinates extend slightly beyond the range 0 to 1 be-

cause of the mismatch between the non-rectilinear imaged space and the

rectilinear idealized space (i.e. the extent to which the purple box in fig. 2.4

extends beyond the black outline).

From these definitions, we can relate the raw image coordinates to the idealized

image coordinates:

u′ =
u+ ϵz
1 + 2ϵz

(2.13)

v′ =
v + ϵz
1 + 2ϵz

(2.14)

w′ =
w + ϵx
1 + 2ϵx

(2.15)

where:

ϵz ≡
Lz

4dz
(1− 2w) (2.16)

ϵx ≡ Lx

4dx
(1− 2u) . (2.17)

It is also possible to reverse this transformation:

u =
u′ + ϵ′z(2u

′ − 1− 2ϵ′x)

1− 4ϵ′xϵ
′
z

(2.18)

v =
v′ + ϵ′z(2v

′ − 1− 2ϵ′x)

1− 4ϵ′xϵ
′
z

(2.19)

w =
w′ + ϵ′x(2w

′ − 1− 2ϵ′z)

1− 4ϵ′xϵ
′
z

(2.20)

where:

ϵ′x ≡ Lx

4dx
(1− 2u′) (2.21)

ϵ′z ≡
Lz

4dz
(1− 2w′) (2.22)

Although in principle the volumes could be perspective corrected before viewing

and analysis, this would either result in image degradation or require up-scaling

of the data. Both are highly undesirable. As a result, we have developed viewing

software which corrects the perspective as it is being displayed. This works by

converting the raw image coordinates into the idealized image coordinates using
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m1
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Sample 
Center

Scanner

xy

z

Camera

dz

m3

nglass
nair

nwater

dx

Figure 2.5: Schematic depicting the effective distances, dx and dz. The effective
distance is given by the distance from the center of sample to where the rays in
the sample would converge in the absence of refraction.

the equations above. As the transformation is relatively simple, this can be done

at a low level in the display pipeline with minimal impact on performance.

The distortion also needs to be corrected for any features extracted from the

raw volume data. For example, consider the problem of particle tracking: if the raw

volumes are sent to particle identification software, it will return their positions in

the raw image space. These positions can then be converted to the idealized image

space after the particle identification. The software library also provides built-in

functions for this coordinate transformation.

2.4.2 Effective distance

The distortion correction discussed in the previous section assumes that the

imaged volume has the same index of refraction as medium surrounding the scan-

ning head and camera. For typical experiments, however, the imaged volume will

be in a fluid, and so the deflection of the light rays by the dielectric interfaces need

to be accounted for. In practice, this means that the distances, dx and dz, from

the sample center to the scanner head and from the sample center to the camera
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needs to be replaced with an effective distance, deff, accounting for the changing

index of refraction, see fig. 2.5.

The relationship between the maximum ray slopes, mi, in different layers (e.g.,

air, glass, and water) is given by Snell’s law, and applying the small angle approx-

imation results in,

mi =
nj

ni

mj, (2.23)

where ni is the index of each layer. This relationship can be derived from Snell’s

law assuming the light rays are nearly perpendicular to all surfaces.

Thus, for a total of K interfaces,

L

2
=

K∑
i=1

midi = nKmK

K∑
i=1

di
ni

, (2.24)

and therefore,

deff =
L

2mK

= nK

K∑
1

di
ni

, (2.25)

where nK is the index of the final layer (i.e. nK = ns is the index of the imaged

volume). This effective distance can be used if layers are measured directly. Note,

this correction is applied to both the distance from the scanner to the sample

center, dx, and the distance from the camera to the sample center, dz, for both the

spatial calibration and intensity correction.

2.4.3 Spatial calibration

We have also developed a process for automating the determination of param-

eters, Lx, Ly, Lz and dx, dz, using a calibration target. The determination of

these parameters allow us to map the raw distorted space coordinates to physical

space coordinates. The target is composed of a regular grid of fluorescent spots,

spaced by 5 mm, on a flat sheet of acrylic. The target is created from a sheet of 6

mm thick orange fluorescent acrylic, painted black on one side. A laser engraving

system is used to engrave a rectangular grid of 1 mm spots, removing the black

paint in these areas and exposing the fluorescent plastic underneath.
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(a)

(b)

Top View

Front View

Top View

Front View

Figure 2.6: Calibration target displayed in MUVI software. (a) Raw image data
capture by the camera, without correction for perspective. (b) The same data
after perspective correction.
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The distortion correction parameters, Lx, Ly, Lz and dx, dz, can be obtained

directly from the raw distorted volumes of the grid captured by the camera. The

process of obtaining the distortion correction parameters is as follows:

1. Image the target in the sample fluid, placed at an approximately 45◦ angle

with respect to the camera so that the laser scanner can illuminate it entirely

while also being fully visible to the camera.

2. Locate the centers of each spot in raw space coordinates using a particle

tracking algorithm (see section 2.5).

3. Construct a model which transforms from the positions on the target to the

raw space coordinates, including distortion corrections. This model incorpo-

rates Lx, Ly, Lz and dx, dz as well as arbitrary displacements and rotations of

the target (modeled as Euler angles). Eqns. 2.18 - 2.22 return the idealized

image coordinates (u, v and w) from the raw distorted space coordinates (u′,

v′, and w′). Then, we transform the idealized image coordinates to physical

space coordinates (x, y and z) by applying Eqns. 2.10 - 2.12. Finally, the

calibration target is rotated and displaced to lie flat and centered on the Z =

0 plane. The model first takes a 3 × 3 grid near the center of the volume and

fits the grid onto the plane by optimizing the distortion parameters discussed

in the next step.

4. Optimize the parameters of this model using the Broyden–Fletcher–Goldfarb–Shanno

algorithm [64]. We minimize the following egg-crate fitness function:

U = − cos2
(
πx′

s

)
cos2

(
πy′

s

)
+

(
πz′

s

)2

, (2.26)

where s = 5 mm is the known distance between target points, and x′, y′,

and z′ are physical space coordinates of the tracked points after applying

the transformation model in the previous step. The optimizer returns the

distortion parameters, displacements and rotations.

5. The entire image target is calibrated by repeating Step 3 and Step 4 and using

initial guesses, returned by Step 4, the approximate distortion parameters,

displacements and rotations.
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Fig. 2.6 shows an actual captured image of a calibration target before and after

the perspective correction. We compute the RMS between the tracked points and

the reconstructed points of our model, and find it to be within subvoxel accuracy,

RMS ≈ 0.23 voxels.

Sample 
Center

Scanner

xy

z

Camera

dz

dx
tz

tx

ℓx

Figure 2.7: Schematic showing the intra-tank distances, ℓx, tx and tz used for the
LIF reference model, eqn. 2.27.

2.4.4 LIF calibration

For many LIF applications it is necessary to produce a signal which is pro-

portional to the local dye density. In the weak excitation limit, the fluorescence

intensity of the dye is proportional to the local dye concentration [47], and in turn

the digital signal recorded on the camera is also proportional to the fluorescence

intensity [65]. However, due to the optical configuration of our laser scanning sys-

tem, the intensity of the laser sheet systematically varies by 10% or more across

the volume. To correct this, we obtain a correction field which compensates for

several experimental imperfections using a solution of uniform dye intensity. We

image the uniform dye with the 3D scanning system to obtain an intensity field,

cu, measured in units of digital counts on the camera sensor. We then fit this to a

reference model:
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cr(x, y, z) = b+ fy(sy)fz(ℓz)
dx

dx − x
exp(−ηℓx) (2.27)

sy =
y

dx − x
(2.28)

ℓx = (tx − x)

√
1 +

y2 + z2

(dx + x)2
(2.29)

ℓz = (tz − z)

√
1 +

x2 + y2

(dz + z)2
, (2.30)

where b is the black level of the camera. fy is a piece-wise cubic spline correction

function in sy fitted with 20 points. fz is also a piece-wise cubic spline correction

function in lz fitted with 5 points. ℓx and ℓz are the lengths of light ray from the

inside of the tank to a point in the imaged volume (see fig. 2.7), and sy corresponds

to the slope along the laser sheet (used to correct the non-uniform sheet profile).

η is a decay constant with units of 1/m, used to model the absorption of the

excitation by the uniform dye.

This complete model is fit using a least squares minimization routine, which

obtains optimal values for η and the parameters defining the cubic splines for fy and

fz. All other values are have been obtained previously using the volume calibration

procedure (see section 2.4.3). A corrected digital signal value, c′, proportional to

the dye intensity is then given by:

c′(x, y, z) = [c(x, y, z)− b]

[
fy(sy)fz(ℓz)

dx
dx − x

]−1

, (2.31)

where c is an experimentally recorded intensity field. Note that the exponential

decay of the illumination is not included, as this is only relevant for the uniformly

dyed reference sample, cu. In other words, this neglects dye shadowing effects in

experimentally relevant samples [66]. The performance of this correction is limited

by camera readout noise, shot noise, and intensity noise of the laser sheet (stated

by the manufacturer to be 4% for 355 nm excitation and 3% for 532 nm), each

of which produces random fluctuations that cannot be corrected. To reduce the

impact of these sources of noise on the reference intensity, cr, we optimize our

correction parameters using a temporal average of 19 volumes, c̄u =
∑
ti

cu
T
.
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The magnitude of uncorrectable noise can be obtained directly from fluctua-

tions in cu for different volumes: σ2
u = ⟨(c̄u − cu)2⟩, where ⟨·⟩ represents a spatial

average, e.g, ⟨c⟩ =
∑

xi,yi,zi
c

NxNyNz
. In practice the fit of cr will always have some

noise; this can be characterized by σ2
r = ⟨(c̄u − cr)

2⟩. Experimentally, we obtain

σr ≈ 1
2
σu. Thus, variations in the corrected intensity for experimental data sets

are dominated by random fluctuations rather than imperfections in the reference

model. In practice, we obtain signal-to-noise ratios of ≈ 17 dB for the UV channel

and ≈ 30 dB for the Green channel. Note, for the Green channel, the noise is

obtained after initially cropping 10% of the volume from the edges before analysis.

Table 2.3: The reported mean signal, computed noise levels, and signal-to-noise
ratio for the two different excitation sources. Reported values are for the experi-
ments described in section 2.6. The SNR for the 355 nm laser was calculated for
the regions on the x-axis where ⟨c̄u⟩ > 1

4
max(c̄u).

λ (nm) ⟨c̄u⟩ (counts) σu (counts) σr (counts) SNR = 20 log10

[
⟨c̄u⟩
σu

]
(dB)

355 40.4 5.7 2.5 17.0
532 279.2 9.3 4.7 29.5

2.5 Velocity measurements

In order to measure the velocity of the fluid, we use a particle tracking velocime-

try (PTV) approach which locates individual tracer particles in the 3D volumes

and links them into tracks over time. We then use a resampling algorithm to

interpolate these tracks into smooth particle velocities, and a second algorithm

to interpolate these discrete velocities onto an arbitrary regular grid, giving an

effective velocity resolution on the order of particle spacing. We note that if de-

sired, it would also be possible to perform 3D PIV to obtain a velocity field (for

example using OpenPIV; [67]). However, for the example cases presented below,

it is possible to resolve individual tracer particles, so a particle tracking method is

preferred.
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We use an open-source library, Trackpy [68] for particle identification and track-

ing from volume to volume. Trackpy is an implementation of the Crocker-Grier

algorithm [69], which works by finding local peak intensities in the volumes. After

localizing the peak intensities, the algorithm finds the positions of the particles by

taking the average position of the pixels for which the particles spans and weights

them by the brightness to locate their center of mass. After recovering the posi-

tions of the particles, we update the image coordinates of the particles to physical

space coordinates using the distortion parameters, as discussed in section 2.4.3.

More advanced Lagrangian particle tracking (LPT) methods are discussed in [70]

and [71] for high number of particle identification and the corresponding tracking

of particles over extensive periods of time.

Figure 2.8: A photograph of the experimental setup. In view are the imaging
apparatus consisting of a high-speed camera (left), the experiment (center), and
the laser sheet generator (right).

Under optimal scenarios the Crocker-Grier algorithm can return particle loca-

tions with sub-voxel accuracy, although in practice this is not always the case.

Sub-voxel tracking requires that the tracer particles are well resolved, in other

words that they span at least several pixels in the recorded image. Tracking a

large number of particles would require a much high resolution data set, with a

correspondingly lower recording rate. Given the inherent data rate limitations of

volumetric imaging with current technology (as opposed to 2D imaging), in most

cases it will be preferable to use sub-voxel tracer particles at high density.

To smooth out the resulting trajectories, we implement a modified Savitzky-

Golay (SG) filter [72]. An average of ≈ 22,000 - 70,000 particles were present

in each frame for the experiments outlined in section 2.6. The filter requires a
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minimum track length and fits a 15 point window around each measurement to a

second order polynomial. After the fit, ≈ 20,000 - 55,000 trajectories are yielded,

which allows us to resolve ≈ 4 times as many trajectories than in other studies

[73, 47], depending on the experimental configuration. The “modified” part of

the filter includes the ability to smooth trajectories of particle tracks with a small

number of missing frames. This filter returns a new list of particle locations and

velocities, giving us a randomly-spaced velocity field measurement of the fluid.

The complete implementation of this method is included in the MUVI software

[52].

Given the inherent resolution limits of H2C-SVLIF – and the desire to minimize

the Stokes number of the tracer particles – it is typically the case that the tracer

particles are smaller than an individual voxel. As a result, sub-pixel tracking

is typically not feasible, and the resulting discretization of the particle position

provides the largest source of noise in the velocity reconstruction. To estimate

the noise in the worst case scenario, we implement our SG filter on 5,000 virtual

particles moving at assigned random velocities, with positions discretized onto a

grid. The error between assigned velocities and the ones computed using the filter

was found to have an uncertainty (standard deviation) of σt = 0.016 hrv, where h

is the voxel size along the specified axis and rv is the volumetric acquisition rate.

The exact Stokes number in our example data in section 2.6 depend on the water

temperature and particle size used, but is of order 10−3.

To resample the velocity obtained at our randomly seeded particle locations

to a regular grid, we implement a second order windowed polynomial fit in three

spatial coordinates [74]. One advantage of this method is one can also compute the

strain tensor or vorticity from the derivatives of the polynomial fit [75]. In practice,

we select a radial cosine window as the weight function, w(r) = 1
2
(1 + cos πr

a0
), and

apply a least squares fit for smoothing [76]. The size of the interrogation window

is set to a0 = 3r, where r is the median particle spacing; r̄ = 3 – 5 mm. Higher

particle concentrations are achievable in order to increase the resolution, however,

attenuation effects and shadowing effects due to high particle concentration must

be considered. To resolve features in our flow field we seed particles resulting in
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concentrations of ≈ 12 – 20 particles per cm3 which is ≈ 28 times higher than in

the study by [24], for the case of our highest seeded particle concentration. The

window size is selected such that, on average, there are 3.6 times more measured

particle velocities than fit parameters. If desired, this size can be reduced to im-

prove the spatial resolution of the results at the expense of an increase in noise

sensitivity. The noise associated with the resampler, σp, will be less than the noise

for individual particle trajectories due to the inherent smoothing associated with

the interpolation method. The resampler noise depends on the size of the interro-

gation window and the uncertainty of the trajectories. For an interrogation window

of size a0 = 3r̄ the noise was found to be σp = 0.005 hrv. This was determined by

calculating the standard deviation from a resampled volume containing randomly

seeded trajectories of standard deviation σt.

To eliminate the effect of spurious trajectories that sometimes result from errors

in the linking stage, we first implement the windowed polynomial interpolation

scheme on the sparse grid and interpolate the data back onto itself. This allows

us to calculate the relative error between the interpolated velocities and the data;

we then discard the worst 5% of particles. From the remaining trajectories, we

reapply the windowed polynomial interpolation scheme to compute the velocity

and vorticity on a regular grid.

Without modification, the effectiveness of this interpolation scheme is dimin-

ished near physical boundaries which reduces the number of measured particles in

the fit window. In situations where these boundaries are at known locations and

speeds – as in the experimental examples described below – this can be mitigated

by inserting artificial tracer particles on the boundary which move at the bound-

ary speed. In order to avoid biasing the resampling algorithm, we set the spacing

of particles on the surface equal to the mean particle spacing. This scheme sig-

nificantly improves the quality of the velocity measurements near the boundaries.
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(c)(a)

(b)

Figure 2.9: Raw and processed data for flow past a sphere, taken at Re = 400,
visualized in the MUVI software. (a) A volume of the UV dye channel, showing the
sphere and the fluid shed from the dye injection points which lie along the equator
of the sphere. (b) An overlay of the 3D tracer particle data (teal, obtained from
the green excited dye channel). (c) An overlay of some of the velocities measured
from tracer particles (purple to yellow arrows).

2.6 Results

To validate our novel H2C-SVLIF technique, we designed a validation experi-

ment consisting of a 50 mm sphere pulled through a tank of water using a linear

actuator (see fig. 2.8 and table 2.4) for two different derivatives of Coumarin

dye (Thermo Scientific Chemicals Coumarin 2 and Thermo Scientific Chemicals

Coumarin 120). The solute of the dyes is water and the resulting molarity of the

solutions are 25 µmol/L – 140 µmol/L. The fluid is randomly seeded with neutrally

buoyant tracer particles (Cospheric Orange Polyethylene Micro-spheres with 106

– 125 µm diameter); the number density is chosen so that they have an average

spacing of r̄ = 3 – 5 mm. Their fluorescent absorption is well matched to the 532

nm laser (peak absorption: 525 nm, peak emission: 548 nm). A 532 nm dielectric

laser notch filter is placed in front of the camera lens to block any light directly

reflected from the sphere or other parts of the apparatus (i.e. so that we only image

the fluorescent light).

The sphere is accelerated from rest and is suspended vertically by a 9 mm
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Figure 2.10: (a) The in-plane velocity field and (b) out-of-plane vorticity field are
plotted for a vertical slice of the volume at Ly = −1.8 mm, and rotated about the
y-axis by -40°. Measurements are taken at Re = 950. Streamlines are plotted to
reveal flow patterns near the sphere.

diameter stainless steel tube which also acts as a feeding channel for the dye. The

dye is then ejected from a system of escape channels that lie along the equator of

the sphere. We conduct measurements at Re = 400 and 950 for the respective UV

dyes. The absorption maxima of the dyes are well matched to the 355 nm laser.

Coumarin 2, while commonly available, exhibits lower water solubility compared

to Coumarin 120. Additionally, its absorption peak is slightly further from the

UV laser pulse, making Coumarin 120 a preferable choice for achieving a better

signal-to-noise ratio. We implement the intensity correction method outlined in
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section 2.4.4 for datasets acquired using Coumarin 120 as the dye for ejection. Note

that to further improve the SNR of the UV excited dyes we use a larger aperture

of f/2.8. Although this sacrifices some resolution near the edges of the sample,

these regions primarily contain only tracer particles. Fortunately, spreading the

intensity of a single tracer particle over several pixels should actually improve the

particle tracking accuracy [69].

The reconstructed 3D images illustrate dye shedding from the sphere alongside

the PTV velocities are shown in fig. 2.9. The intensity shown in fig. 2.9 is corrected

as described in section 2.4.4 so one can retrieve quantitative concentration data

from the images shown here, if needed. Our study aligns with previous research

[11, 77], which predict the emergence of vortex rings within the range of 400 ≤
Re ≤ 950. The presence of these rings is visualized through the circulation of

dye around them (see to fig. 2.9). Moreover, our analysis identifies a boundary

layer near the sphere where vorticity flips sign, and the core of the vortex rings,

as evidenced in fig. 2.10 and fig. 2.11. In a similar experimental investigation

conducted by [62], these features were absent. They reported an error estimate

of 1% to 2% for their reconstructed velocities after applying a 3 × 3 smoothing

Gaussian filter, and report a velocity field of size 32 × 32 × 5. Our investigation

yields a comparable noise estimate, utilizing the Savitzky-Golay filter outlined in

section 2.5, of approximately 1.4% and a velocity field of size ≈ 40 × 40 × 40 for

deep VOIs.

X mm

V
el

oc
it
y 

m
m

/s

60-60 -40 400

Z
 m

m

Out-of-Plane Velocity

0

5

10

15

20

2540

0

-40

20-20

60

20

-20

-60

X mm

V
el

oc
it
y 

m
m

/s

60-60 -40 400

Z
 m

m

In-Plane Velocity

0

0.7

1.4

2.1

2.9

3.6(b)40

0

-40

20-20

60

20

-20

-60

X mm

V
or

ti
ci

ty
 s

-1

60-60 -40 400

Z
 m

m

In-Plane Vorticity

0
0.5

1.0

1.5

2.0

2.5(c)40

0

-40

20-20

60

20

-20

-60

(a)

Figure 2.11: (a) The out-of-plane velocity field, (b) the in-plane-velocity field, and
(c) the in-plane vorticity field are plotted for a horizontal slice near the bottom
of the sphere at Ly = −18 mm. Measurements are taken at Re = 950. The in-
plane velocity field reveals the core of a vortex ring, and the in-plane vorticity field
reveals the corresponding vortex ring that is shed from the surface of the sphere.
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Values Definitions
25 – 140 µmol/L Coumarin 2 and Coumarin 120

dye concentrations
r̄ = 3 – 5 mm Mean tracer particle spacing

ρ = 0.0003 – 0.0005 particles/voxel Mean tracer density
14.5 mL/min Dye injection rate

u = 7.1 – 18.8 mm/s Sphere final velocity
D = 50 mm Sphere diameter

Re = uD
ν

= 400 – 950 Reynolds number
F = 2.8 (f/2.8) Lens aperture

Lx = Ly = 159.3 – 175.6 mm Imaged volume size in x and y
Lz = 143.3 – 168.5 mm Imaged volume size in z
dx = 1278 – 1291.5 mm Effective distance from camera

nodal point to center of volume
dz = 1445.5 – 1822.1 mm Effective distance from

scanning-head-platform to
center of volume

rv = 62.3 – 65.1 Hz Volumetric acquisition rate
Nx ×Ny ×Nz = 512× 512× 512 Volumetric spatial resolution

Table 2.4: The parameters used for flow past a sphere and conducting measure-
ments using H2C-SVLIF.

2.7 Conclusion

We have presented a novel H2C-SVLIF imaging technique which permits flex-

ible high-speed volumetric imaging of multiple data channels in a fluid flow. This

system is considerably faster than existing multi-channel volumetric imaging tech-

niques; is capable of two channel speeds of up to 65 volumes per second at a

resolution of 512 × 512 × 512. We provide a comprehensive discussion of the

practical limits of the technique, including laser intensity, sample size/resolution,

and camera and scanning speed. We have also described fundamental limits to

volumetric imaging, including both diffraction limits to resolution and the effects

of shot noise to the SNR of the resulting images. All of these limits should ap-

ply not only to our experiments, but to any high-speed volumetric imaging using

similar techniques.

Our system also includes open source software and hardware which simplifies

and automates much of the data gathering, imaging, and processing. This includes
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automated correction of perspective distortion effects using a calibration target,

correction of non-uniform illumination, and real time playback and manipulation of

the resulting data which incorporates these corrections. By integrating the ability

to correct for distortion effects we considerably simplify the experiment setup,

which would otherwise require large and complicated optics to produce rectilinear

imaging.

The test experiment presented in this chapter demonstrates simultaneous vi-

sualization of reconstructed velocity tracks and dyed fluid regions, showcasing the

capability to obtain multiple high-speed 3D data streams from a single experiment

using two-channel imaging. Building on this imaging technique, we develop a cus-

tom built interpolator suitable for noisy experimental data sets. This interpolator

is designed to effectively approximate derivatives and smooth out noise, enabling

the computation of accurate fields from the experimental data. The detail of this

interpolator are outlined in chapter 4, and we implement this interpolation method

to study FTLE fields, demonstrating its suitability for processing particle tracking

data. In chapter 5, we demonstrate the versatility of the imaging and interpolation

method by applying them to analyze bio-inspired flows, specifically visualizing and

quantifying the active flows generated by a robotic coral.
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Stretching behavior of knotted

vortex generated flow fields

In this chapter, we investigate the stretching mechanics of simulated flow fields

through the lens of vorticity. Our goal is to develop a foundational understanding

of why and how stretching occurs in flow fields, particularly those that exhibit

exponential stretching—a key feature when visualizing FTLE fields [33]. By ex-

amining flow fields that generate exponential stretching, we gain insights into the

mechanisms underlying deformation and stretching of the fluid domain. We extend

this analysis, later on in this thesis, to experimental data collected by our novel

imaging system. In chapter 4 and chapter 5, we develop and apply numerical tools

to handle noisy data sets and to study stretching mechanics in bio-inspired flows.

There are many examples of flows with concentrated vortex lines, including

tornadoes [78], smoke rings [79], flows inside the heart, and turbulence [80, 25].

Indeed any incompressible flow can be regarded as a collection of vortex lines by

the Helmholtz Theorem, and so understanding their behavior provides a complete

description of such flows. As a result, there has been considerable theoretical,

numerical and experimental research focused on understanding the behavior of

concentrated vortex filaments (e.g. [81, 82, 27, 26, 83, 84]).

While a simple circular vortex ring is known to be quite stable [28, 29]–even if

distorted–knotted and tangled vortices have been observed to be highly unstable

in simulations [30, 85, 86] and experiments [87, 88]. In particular, tangled vortex
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lines are observed to rapidly stretch, leading to vortex reconnection events which

ultimately untie and/or dissipate the flow. This behavior is quite reminiscent of

the features of turbulent flows [89, 90], and has both enstrophy production (vortex

stretching) and transport of energy to small scales, where is is dissipated (vortex

reconnection events).

The connection between vortex stretching and vortex reconnection can be un-

derstood in terms of energy conservation: in order to stretch the vortex lines

without increasing energy, it is necessary to create regions of closely space counter-

rotating vortices [30, 91]. As the vortices continue to stretch, these counter-rotating

vortices get closer together, ultimately resulting in reconnections which continue

until a non-stretching vortex state is reached [30, 87]. Moreover, vortex stretching

(i.e., enstrophy production) is a key feature of turbulence; it can be regarded as

the key feature which separates 2D from 3D turbulence [43]. As a result, vortex

stretching is intimately connected to the stability of flows, motivating research in

to how and why collections of vortex lines self-stretch.

Previous work has modeled this stretching using either vortex filament models

[92, 93] or direct simulations of Newtonian super-fluids using the Navier-Stokes

[27] or Gross-Pitaevskii equations [94]. Additionally, related work has modeled

the stretching of material lines in various flows, including simulated turbulence

[95, 96, 97]. In all cases, the non-linearity of fluid flows makes these models difficult

to simulate accurately, and complicates the interpretation of the results.

Here we take a different approach: ‘freezing’ vortex generated flow fields, and

investigate how material lines stretch when advected in these flows. Given that

vortex lines themselves are transported by the flow [98], it follows that a flow field

which stretches material lines will also stretch vortices. In this manuscript we in-

vestigate if this stretching can be understood in terms of the properties of the field

at a single instant in time, rather than as a consequence of the non-linear evolu-

tion of the flow. Using this approach, we find that simple unlinked and unknotted

vortices have a flow field which produces linear stretching, while the flow field of

linked and knotted vortices produces regions of exponential stretching. Moreover,

this stretching can be attributed to the generation of ‘bights’ in the material lines
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Figure 3.1: (a) The time evolution of a circular material loop (initial radius
a = 1/3 and centered at ρ0 = 1) advected in the flow field of an infinite line vortex
with circulation Γ = 2π, oriented along the z-axis. As the initially circular loop
evolves, it develops compact ‘bights’ at the leading and trailing edges. (b) A bight
in a physical piece of rope, as used in knot tying. (c) The stretching rate of the
material line, dL/dt. This rate quickly settles to a constant value, which can be
predicted using only the velocity field calculated at the locations of the two ‘bights’
which form as the loop is stretched.

(see fig. 3.1), and that exponential stretching is only possible if these bights are

continually produced. This result offers a potential connection to existing results

in two-dimensional topological mixing [99], and appears to explain why knotted

vortices themselves are unstable. Moreover, qualitatively, and quantitatively sim-

ilar results have previously been observed in material line stretching in simulated

turbulent flows [96, 100]. The concept of bights provides a simple mechanism for

understanding how lines in vortex dominated flow fields should stretch over time,

with potential applications to a variety of fields.
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3.1 Stretching from a line vortex

Let us consider a simple case, the stretching of a material line subject to an

infinite vortex which lies along the z-axis:

u =
Γ

2πρ
ϕ̂, (3.1)

where Γ is the circulation, ρ and ϕ are the cylindrical coordinates. The time

evolution of small circular line displaced from the vortex core is shown in fig.

3.1. We use the dimensionless spatial and time coordinates, and a dimensionless

circulation of Γ = 2π. A material line will only stretch along the direction of the

flow field when the tangential component of the material line, T̂ , is aligned with

the flow field.

Consider a small perturbation, ϵ, in a generalized flow field:

u(r + ϵ) = u(r) + T̂ · ∇ ⊗ u(r) · ϵ+O(ϵ2), (3.2)

the stretching is attributed to the tangential component of the strain tensor,

T̂ · ∇ ⊗ u(r) (see appendix A for standard tensor notation). Hence the stretch-

ing rate of a closed material line, and integrating along the material line, is given

by:

L̇ =

∮
T̂ · (∇⊗ u)︸ ︷︷ ︸

∂u[r(s)]
∂s

·T̂ ds (3.3)

= −
∮

u · κN̂ ds, (3.4)

where r(s) is the material line displacement as a function of arc length coordinate,

s. T̂ , N̂ , and κ are the Frenet-Serret tangent vector, normal vector, and curvature,

respectively, which obey the relationships T̂ = ∂r
∂s

and κN̂ = ∂̂T
∂s
. Eqn. 3.4 is

obtained using integration by parts.

Over time, for an infinite line vortex, any section of the material line will tend

to align or anti-align itself with u as t → ∞, such that u · N̂ = 0. To see this,

consider a short material line embedded in the flow field given of the infinite line

vortex from eqn. 3.1. The transport of a single point subject to the flow field in
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eqn. 3.1 is governed by:

dϕ

dt
=

v · ϕ̂
ρ

(3.5)

leading to:

ϕ(t) = ϕ(0) +
t

ρ2
(3.6)

while the other components remain constant (uρ̂ and uẑ). If our short material

line segment is described by the tangential vector, T (where |T | is identified with

the infinitesimal length), we can derive its time evolution:

T (t) = Tρ(0)ρ̂+

[
Tϕ(0)−

2tTρ(0)

ρ(0)2

]
ϕ̂+ Tz(0)ẑ. (3.7)

These unit vectors are specified at the location of the moving point. From this,

we can see that the material line tangent vector will simply increase or decrease in

the ϕ direction, depending on the sign of Tρ(0). Thus, segments pointing out from

the z-axis will asymptotically align with −u, and segments pointing in will align

with +u as t→ ∞.

For a closed material line, the material line must change direction with respect

to u. The material line bends in on itself, resulting in compact regions of 180◦

bends that we denote as ‘bights’. We define a ‘bight’ at the point at which u · T̂
changes sign along a material line. Near the bight, u · N̂ ̸= 0, and so from eqn.

3.4 we would predict that these bights will result in stretching or contraction of

the material line, depending on whether they are ‘leading’ bights (N̂ · û < 0) or

‘trailing’ bights (N̂ · û > 0).

If we assume that all the stretching can be attributed to bights – each of which

is assumed to be a compact 180◦ bend – we obtain a simple expression for the

stretching rate:

L̇(t→ ∞) ≈ −2
∑
bights

N̂ · u, (3.8)

where u and N̂ are computed at the bights and an overall factor of 2 is obtained

by integrating u · κN̂ around the 180◦ bend.
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As an example, consider a material line which is a circle displaced from a single

vortex line fig. 3.1. If this circle has center displacement, ρ0, and radius, a, it

will form a leading bight near the location closest to the vortex, at ρ = ρ0 − a,

and a trailing bight near the spot furthest from the vortex, at ρ = ρ0 + a. Under

the assumption that each bight is a 180◦ bend in the material line, we predict a

stretching rate of:

L̇(t→ ∞) =
Γ

π

[
1

ρ0 − a
− 1

ρ0 + a

]
. (3.9)

As seen in fig. 3.1c, the stretching rate approaches this result after a relatively

short period of time.

3.2 Numerical model

It is unclear whether such a formulation should apply to more complicated

geometries (e.g., vortex rings and vortex knots), for which we cannot assume that

the material lines will always align with u. The flow field of more complex vortex

shapes is given by the Biot-Savart law:

u(r) =
Γ

4π

∮
T̂ ′ × (r − r′)

|r − r′|3
ds′, (3.10)

where r′(s′), T ′, and s′ refer to the vortex path (rather than a material line), and

we set Γ = 2π. In practice, the vortex path(s) are represented using a piecewise

linear approximation to the the vortex path with a total of 100 points, in which

case an exact expression can be obtained for the flow field [101]:

u(r) =
∑
j

Γ

4π

2ϵj
1− ϵ2j

∆̂j ×Rj

RjRj+1

(3.11)

Rj = r′
−r; (3.12)

Rj ≡ |Rj|; (3.13)

∆j = r′
j − r′

j+1; (3.14)

∆̂j ≡
∆j

|∆j|
; (3.15)

ϵj =
|r′

j − r′
j+1|

Rj +Rj+1

(3.16)
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where the sum is over all line segments. Because we are considering frozen flow

fields, we do not advect the vortex paths in time – as would happen in flows

described by the Navier-Stokes equation – but rather treat them as fixed.

The strain rate tensor of this field (∇⊗ u) can be explicitly computed:

∇v ⊗ u(r) =
∑
j

Γ

4π

2ϵj
1− ϵ2j

∆̂j

RjRj+1

×[
v −Rj

(
v ·

[
R̂j

Rj

+
R̂j+1

Rj+1

+
R̂j + R̂j+1

RjRj+1

+
1 + ϵ2j
1− ϵ2j

])]
, (3.17)

which allows for the advection of infinitesimal vectors attached to each point on

the material line. Points are advected in the flow field:

dri

dt
= u(ri(t)) (3.18)

dV i,n

dt
= V i,n ·∇⊗ u(ri(t)). (3.19)

The material lines are represented as a series of cubic Bézier curves. The material

line is represented as a series of points along the curve, xi, with a single attached

tangent vector, V i, which evolve in accordance to eqn. 3.18 and eqn. 3.19. Each

point has an attached segment, length, si, which is constant in time expecting

period resampling of the curve. The cubic Bézier curve is given by:

ri(z) = (1− z)3P⃗0 + 3(1− z)2zP⃗1 + 3(1− z)z2P⃗2 + z3P⃗3. (3.20)

where z ∈ [0, 1] is the position along each curved segment. The control points are

defined as:

P⃗0 = ri (3.21)

P⃗1 = ri +
si
3
V i (3.22)

P⃗2 = ri+1 −
si
3
V i+1 (3.23)

P⃗3 = ri+1, (3.24)

initially, si corresponds to the arc length of the segment, and the tangent vectors,

V i, are all unit length. The end points and vectors are numerically integrated
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in time using the Dormand-Prince method [102, 103] with an absolute velocity

tolerance of 10−8.

As the curve is advected, V i will change length to compensate for stretching

(rather than including it in si). This is done to ensure that ∂ri
∂s
(z = 0) = V i and

∂ri
∂s
(z = 1) = V i+1. At regular intervals, the path is resampled: si are replaced

with the estimated length of each Bézier segment and the tangent vectors are re-

normalized. The actual length of each curve is estimated by sampling each curve

at 100 points and computing |∂ri/∂z|. To predict the stretching rate from bights,

we identify the location on the material line where T̂ · u changes sign to compute

the normal vector from the implicit Bézier curve. This allows us to compare the

actual stretching rate from the derivative of the length of the material line to the

predicted one (see eqn. 3.8).

Because some sections of the material line will stretch more rapidly than others,

new points will be added dynamically to interpolated positions as to ensure a more

accurate sampling of the path. An error is computed using:

Ni = max

(
|V̂ i × ∆̂i|+ |V̂ i × ∆̂i+1|

ϵa
,
|∆i|
ϵℓ

,
|∆i|

ϵn|∆sn|

)
(3.25)

where ∆i = xi+1 − xi is the segment displacement vector (∆̂i is the normalized

equivalent), |∆̂sn| is the length of the shortest neighboring segment, ϵa = 0.1 is

the angular tolerance parameter, ϵℓ = 0.1 is the length tolerance parameter, and

ϵn = 2.5 is the neighbor length tolerance parameter. The first term ensures that

curves are adequately sampled with a minimum of 2π/ϵa ≈ 63 points for a circle.

The second term ensures that no segments get longer than 0.1 spatial units. The

last term forces no segment to be longer than 2.5 times the length of the neighboring

segments.

The addition or removal of points happens at the same interval as the resam-

pling described above. If Ni > 1 for any segment, new points are inserted between

the ends of the segment using the Bezier approximation; the number of inserted

points is ceil[Ni]− 1. To remove redundant points, we consider pairs of segments

with even and odd indices; if the sum of Ni for these neighboring segments is < 0.9,

the midpoint is removed. Finally, to prevent numerical precision problems we do
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not insert any new points into segments whose length is less than 10−8 spatial units.

(If this is not enforced, the very sharp tips of distorted bights will have points so

close together that double floating point precision is not enough to resolve them.)

3.3 Simulation details

To understand how shape and topology affect the stretching behavior of 3D

vortices, we consider several vortex shapes: pairs of circular or distorted rings, and

trefoil knots of varying aspect ratio. The vortex path used in the simulations are

defined on the surface of a torus; the conversion between torroidal (R, a, ϕ and α,

cylindrical (ρ, ϕ, and z), and cartesian (x, y, and z) coordinates is as follows:

ρ = R + a cosα (3.26)

x = ρ cosϕ (3.27)

y = ρ sinϕ (3.28)

z = ρ cosα (3.29)

where R/a corresponds to the major/minor radius of the torus, ϕ is the azimuthal

angle and α is the polloidal angle. The major radius is set to R = 1 so that the

aspect ratio is given by a.

The parameters for the vortex knots are given by:

Trefoil knot: ϕ ∈ [0− 4π] (3.30)

α =
3

2
ϕ (3.31)

R = 1, (3.32)

where a = r/R is the aspect ratio. For the simulations a = 0.1, 0.2, 0.3, 0.4. Note

that this knotted solution wraps around the torus twice in the azimuthal direction;

we desire for our unknotted cases to do the same for a more direct comparison.

The three unknotted cases are each composed of two separated vortices which each

wrap once a torus.
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The parameters for ‘stacked’, ‘twisted’ and ‘linked’ rings are given by:

R1/2 = 1, (3.33)

a1/2 = 0.3 (3.34)

ϕ1/2 = (0− 2π) (3.35)

Stacked Rings: α1 = −π/2 (3.36)

α2 = π/2 (3.37)

Twisted Rings: α1 = π sinϕ1 (3.38)

α2 = π sinϕ2 + π (3.39)

Linked rings: α1 = ϕ1 − π/2 (3.40)

α2 = ϕ2 + π/2. (3.41)

The tilted rings are formed by taking a pair of rings in the z = 0 plane. The first

has a radius of R1 = 0.7 and is rotated by 0.3 radians about the y-axis. The second

has a radius of R2 = 1.3 and is rotated by −0.3 radians about the y-axis. Note

that in each case we chosen the aspect ratios and separation between vortices to

match the a = 0.3 torus knot case.

3.4 Results

We investigate the stretching rates of material lines for varying vortex geome-

tries and topologies. As mentioned previously, knotted vortices have been observed

to be highly unstable and to rapidly stretch in dynamical models (vortices evolve

subject to the flow). This rapid stretching leads to reconnection events and the

life of the vortices are short lived. To mitigate this, we freeze the flow field and

seed a material line around the vortex. It follows that the stretching rate of the

material line (subject to the flow produced by the frozen vortex) is analogous to

the stretching experienced by the vortex itself in a dynamical model. In cases

where exponential stretching is observed, we use FTLEs to quantify the stretching

rate of material lines and compare it to the rate predicted by eqn. 3.8.
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3.4.1 Role of geometry and topology in stretching of ma-

terial lines

To quantify the stretching rate, a material line is initially seeded around the

torus. The material line is a perfect cicle oriented either toroidally (wrapping

around the major axis and threaded through the center of the torus), or poloidally

(wrapping around the minor axis of the torus with radius rp = 1.5a). As the

material line is advected by the flow field of the vortex, the material will stretch.

The evolving length of the material lines, for each vortex, is shown in fig. 3.2.

The simplest case we consider is a pair of stacked circular vortices which pro-

duce linear stretching (see fig. 3.2(a-b)). More dramatic cases of stretching are

observed for trefoil knots; in each case, the material line stretches at an exponential

rate which depends primarily on the aspect ratio. We fit the last 1.5 time units of

each simulation to the equation:

L(t) = Aekt, (3.42)

where k is the stretching rate. The values of k obtained for each simulation are

shown in Table 3.1.

Intermediate stretching results are obtained for pairs of vortex rings which are

tilted or twisted around one another, but which are not topologically linked. In

these cases, the stretching often appears exponentially for short periods of time,

only to eventually settle down into a linear stretching trend. Interestingly, however,

sustained exponential growth of the material line is observed when when the rings

are linked with one another. This suggests that the long term stretching behavior

of the material line is primarily determined by vortex topology.

In all cases, it can be seen that the evolving material line rapidly forms new

bights when regions of it pass between vortices. These bights can be used to

estimate the stretching rate (see eqn. 3.8 and fig. 3.2(c-d)). This provides a

good estimate of the stretching rate, although it is not as accurate as the case of

the infinite straight line vortex. The slight loss of accuracy can be explained by

noting –unlike in the case of an infinite straight line – new bights are continuously

produced for the linked and knotted vortices. These newly formed bights are yet
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to reach the long time limit of sharp tips.

We find that the key distinction between the unknotted and knotted (or linked)

vortices is the ability to produce new bights even in the long time limit. Indeed,

for trefoil knots and linked rings, the number of bights is observed to grow expo-

nentially, along with the length of the material line. As for the case of the knotted

vortices, the aspect ratio affects the speed of stretching, but not the qualitative

appearance of the material line. The increase in rate can be explained by the fact

that the time it takes for a point to be transported around the vortices will be

much reduced for smaller aspect ratio.

One might expect that the stretching rate could be modified by changing the

radius of the initially seeded poloidal material line, rp. We conducted an additional

5 simulations for a torus knot with aspect ratio a = 0.3 and material line radius

ranging from rp = 0.35 − 0.75. The stretching behavior is show in fig. 3.3. We

observe that the exponential stretching rate for rp = 0.35−0.65 is nearly the same,

ranging from k = 2.17 − 2.37. As for rp = 0.75, we observe no bight production

and linear growth of the material line. Evidently, if we are sufficiently far from the

vortex the bight production will be suppressed. This can be explained by noting

that the material line no longer crosses an unstable manifold, as discussed in the

next section.

3.4.2 Finite time Lyapunov exponents

An alternative method to probe for exponential stretching is to compute FTLE

fields [104]. FTLE fields characterize the exponential separation rates of neighbor-

ing parcels of fluid in the direction of maximum strain, and can be used to identify

stable and unstable manifolds of a flow.

We compute the FTLE using the Cauchy deformation tensor; for an initial

point, x(t = 0) = X, this is given by:

Cij =
3∑

ℓ=1

∂xℓ
∂Xi

∂xℓ
∂Xj

, (3.43)

where x(T ) is the point X advected to final time T . In practice, the time deriva-

tives are computed by attaching three infinitesimal vectors, V n(t) to the advected
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Figure 3.2: The stretching of material lines by vortices of varying shape and
topology. For all plots the left plots show initial toroidal material lines, and the
right side shows poloidal material lines where rp = 1.5a. (a-b) The total length
as a function of time. Dotted lines show exponential fits; note that in the cases
of unknotted vortices it can be seen that the trend is not exponential, while it is
for the trefoil knots. (c-d) The stretching rate as a function of time. The solid
lines are computed from the numerical derivative of the length, with a Gaussian
smoothing of width σt = 0.05 applied to remove high frequency noise. The dashed
lines shows an estimate of the stretch rate, obtained from eqn. 3.8. (e-f) The
bight count, obtained by locating the number of points on the material line where
u · T̂ changes sign.
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Vortex Shape Aspect Ratio Tor. Rate Pol. ML Radius Pol. Rate
a = 0.1 kt = 31.5 rp = 0.15 kp = 27.9
a = 0.2 kt = 5.30 rp = 0.3 kp = 5.08

rp = 0.35 kp = 2.16
rp = 0.45 kp = 2.36

Trefoil Knots a = 0.3 kt = 2.48 rp = 0.55 kp = 2.37
rp = 0.65 kp = 2.25
rp = 0.75 (kp = 0.237)†

a = 0.4 kt = 1.41 rp = 0.6 kp = 1.41

Table 3.1: Measured exponential stretching rates for torus knots. In each case, an
exponential stretching rate, k, is determined by a least squares fit of lnL(t) = a+kt.
To eliminate initial transients, the fit is over only the last 1.5 time units of each
simulation. Fits are shown for initial material lines that are both toroidally (tor.)
and poloidally oriented (pol.). In the latter case the radius of the initial material
line, rp is indicated. † indicates data sets which do not fit well to exponential
growth curves; see fig. 3.2 and 3.3.
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Figure 3.3: Stretching of poloidal material lines of varying radius, rp for a trefoil
knot of aspect ratio a = 0.3. For rp = 0.75 new bights are never formed and the
material line has a limited stretching rate; in all other cases new bights are formed
and exponential stretching is reached with approximately the same growth rate.
See 3.4c for an overlay of the poloidal material lines with the FTLE values.
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point, x(t). Each vector is initialized such that V n(t = 0) = ên, where ên are the

Cartesian unit vectors. In this representation the strain tensor and Cauchy strain

tensor are given by:

Gij = êi · V j (3.44)

Cij =
∑
ℓ

(V i · êℓ)(V j · êℓ). (3.45)

The FTLE field is then given by:

Λfield =
1

|T |
ln
√
λmax, (3.46)

where λmax is the largest eigenvalue extracted from the deformation tensor, Cij.

The theory for FTLE fields, particularly for particle tracking data, is discussed in

more detail in chapter 4.

FTLE fields for knotted vortices of varying aspect ratio are shown in fig. 3.4.

In each case, the regions of highest exponential growth appear in regions between

the vortices. This is despite the fact that the regions of highest instantaneous

shear are immediately adjacent to the vortices; these regions do not produce new

bights, and so produce only linear stretching in the long time limit. In practice,

the stretching can be so rapid that numerical precision can limit the maximum

observed FTLE value. We show that the FTLE values computed for a finite time

when the relative stretching of all vectors is less than 1010.

Most notably, the FTLE fields reveal ridges of high stretching – unstable man-

ifolds – which connect sections of the vortex. These can be seen clearly in the

center of fig. 3.4(e-f). The narrow regions where the ridges appear, seem to be

the regions responsible for producing new bights. We note that if the material

line does not cross one of these ridges we do not observe exponential stretching.

For example, for a = 0.3, rp = 0.75, we observe only linear growth (see fig. 3.3).

This material line lies just outside the FTLE ridge. For a slightly smaller value of

rp = 0.65 (which does cross the ridge) exponential stretching is indeed observed

(the location of the material lines are shown in fig. 3.3(c)). Finally, we note

that the quantitative rate of exponential stretching observed for both toroidal and

poloidal material lines has roughly the same time constant as the peak value on the
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ridges of high stretching (observed in the FTLE plots); this indicates that these

regions are responsible for the exponential stretching.

3.5 Conclusion

We have compared stretching of arbitrary material lines subject to vortical

flow fields of varying topology and geometry. In particular we have shown that the

flow fields of linked and knotted vortices produce exponential stretching of mate-

rial lines (in certain regions), which is not seen in the stretching of flow fields of

unknotted vortices. This change in the qualitative character is confirmed by com-

puting the corresponding FTLE fields. The FTLE results demonstrate that narrow

regions that appear as ridges between the vortices are the regions responsible for

the exponential stretching. Intuitively, this can be explained by the production of

‘bights’ in these regions. Conversely, when region of flow is dominated by a single

vortex the rapid strain prevents the formation of new bights, ultimately producing

less stretching over the long term even though the local strain rate may be much

higher.

These results suggest previously unknown connections between previous results

in the physics of mixing and vortex dominated fluid flows. In 2D flows, it is well

known that the topology of a time-dependent flow field is connected to long term

exponential stretching [99, 105]. In this case, exponential stretching is produced by

a ‘stretching’ and ‘folding’ action reminiscent of a taffy puller. Our work suggests

that topology in space alone can play a similar role in 3D flows; in our case the

‘folding’ of the material lines is indicated by the production of bights. (Note that

in the 2D case the folding action will produce new bights.)

Our results may also offer an explanation of the apparent instability of knotted

vortices. In both experiments and simulations, linked and knotted vortices have

been observed to be highly unstable to self-stretching [30, 85, 86]. Although our

results do not model the self-stretching of vortex lines, they do demonstrate that

vortex topology has a dramatic effect on the stretching behavior of the flow field.

As previously noted, one can model the stretching produced by vortices whose
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Figure 3.4: A map of finite time Lyapunov exponents, computed for trefoil torus
knots of varying aspect ratio. The exponents are computed for a time interval of
T = 30, and values are shown for a slice in the y = 0 plane. The white (dashed)
lines show the location of the vortex lines in front of (or behind) the plotted plane.
The first four panels (a-d) show both sides of the vortex for aspect ratios from
a =0.1–0.4, while (e-f) shows a zoomed in portion of two cases. (The zoomed in
regions are indicated with green boxes in (a) and (d)) The FTLE isn’t computed
for points within a radius of r = 0.02 of the vortex cores (black circles) to prevent
numerical precision issues. Poloidal material line locations for rp = 0.65, 0.75
are indicated in (c). Note that the rp = 0.75 line lies just outside the unstable
manifold; as shown in fig. 3.3 this material line has only linear stretching.
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shape evolves in time, however, knotted vortices will rapidly approach reconnec-

tion events. Thus, a dynamical model is limited in the total amount of time for

which the vortices remain knotted, making it difficult or impossible to separate ex-

ponential from non-exponential stretching. Interestingly, our results suggest that

a more complex model is not required: the stretching dynamics of ‘frozen’ flow

fields may be sufficient to indicate their long term stability. This also suggests

that the non-linearities present in the full Navier-Stokes equation are not required

to explain the difference in stability between knotted and unknotted vortices. Al-

though future work is needed to show that these results hold for a wider variety of

flow configurations –e.g. multiple vortices of different circulation, those with finite

core size, etc.

Our work offers clues as to why, when, and where vortex stretching occurs.

Stretching arises from the local deformation of the fluid domain, driven by veloc-

ity gradients produced by vortex-generated flow fields. The continual formation of

bights indicates when significant (in this case, exponential) stretching is expected

to occur. We observe that ridges in the FTLE fields correspond to narrow regions

where the fluid experiences substantial stretching, particularly near the vortices.

In the next chapter, we build on this analysis of FTLE fields and introduce ac-

curate, time-efficient methods for computing these fields for both simulated and

experimental datasets.
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FTLE fields for Lagrangian

particle tracking data

Finite time Lyapunov exponents (FTLES) measure the separation rate between

neighboring particles over a finite time, providing a measure of local deformation

and stretching of the fluid domain [33]. Regions of high deformation appear as

ridges in FTLE fields which are candidates for Lagrangian coherent structures

(LCSs). LCSs are material structures in the flow which act as barriers to fluid

transport and are considered stable or unstable manifolds over a finite time. In two-

dimensional flows, LCS appear as material lines [106], and for three-dimensional

flows they appear as material surfaces [107]. Although ridges may appear in the

FTLE field, not all ridges constitute LCSs. This is because LCSs require the rate

of strain to be zero along the ridge [31]. Extracting LCSs from the FTLE field

poses a further challenge. Nonetheless, by identifying these ridges in the FTLE

field we can get insights into mixing and transport mechanisms that govern the

fluid domain.

Despite their wide application [32, 108, 109], the visualization of FTLE fields

is limited by the high computational cost required to compute these fields. Par-

ticularly, the standard method, velocity field integration (VFI), involves advecting

either a dense uniform grid or randomly distributed particles to construct a flow

map. The flow map indicates the final positions of the grid points or particles

based on their initial conditions. VFI is computationally expensive, as it relies on
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extensive numerical integration, with accuracy being highly dependent on the time

step. The method becomes increasingly costly at high particle densities or for long

integration times.

In this chapter, we validate an existing method for FTLE calculation using flow

map compilation (FMC) [35], specifically designed for Lagrangian particle tracking

data. Unlike the infinitesimal vector approach discussed in section 3.4.2, where vec-

tors are attached to points on a uniform grid to track their evolution and construct

the Cauchy strain tensor needed for FTLE field computation, FMC directly utilizes

the particle trajectories to construct the flow map and, subsequently, the Cauchy

strain tensor. This approach is particularly well-suited for experimental data, as

it leverages the particle tracks—directly obtained from experiments—without re-

quiring any integration steps (in contrast to the infinitesimal vector approach and

in VFI).

We pair FMC with a custom windowed polynomial (WP) interpolator tai-

lored for Lagrangian particle data sets. We demonstrate that WP interpolation

yields accurate interpolated fields even when working with noisy experimental data.

Moreover, we highlight, that our custom interpolator outperforms standard radial

basis function (RBF) interpolation particularly when computing derivatives of the

interpolated fields for both noisy and non-noisy data sets. This work presents

a framework for efficient and accurate field interpolation and derivative computa-

tion, enabling novel applications in experimental fluid dynamics where precise field

measurements are needed. We specifically use this approach for the computation

and visualization of FTLE fields.

4.1 Interpolation schemes

The aim of this section is to demonstrate the benefit of using windowed polyno-

mial fitting over standard RBF interpolation when computing smooth derivative

fields from Lagrangian particle data. This is particularly of interest because FTLE

field computation relies on using gradients of the flow map. Another practical

example of where it is necessary to compute smooth accurate derivatives from the
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interpolated field is the vorticity field.

As a simple test case in this chapter, we consider the Lamb-Oseen vortex [110],

a quasi-3D viscous vortex that has a single nonzero velocity component and a

single nonzero vorticity component, for which both depend on the radial distance

r from the vortex core. The nonzero components, in cylindrical coordinates, are

given by:

vϕ(r) =
Γ

2πr

[
1− exp

(
− r2

σ2

)]
(4.1)

wz(r) =
Γ

πσ2
exp

(
− r2

σ2

)
(4.2)

where vϕ is the velocity component in the azimuthal direction, wz is the vorticity

in the axial direction, Γ is the circulation strength of the vortex and σ =
√
4νt is

the core size. Cylindrical coordinates are related to Cartesian coordinates via:

x = r cosϕ (4.3)

y = r sinϕ (4.4)

z = z. (4.5)

We set Γ = 2π and fix the core size to σ = 0.5 and initialize 2000 randomly

spaced particles within the domain x, y, z ∈ [−3, 3] and compute their analytical

velocities and analytical vorticities. The velocity field is then interpolated onto a

dense grid using RBF interpolation, and the vorticity field is computed from the

interpolated field using discrete differentiation as wz = ∂xvy − ∂yvx.

4.1.1 Radial basis function theory

Radial basis functions (RBFs) are a standard tool for approximations and in-

terpolation in high-dimensional spaces, particularly effective for mesh-free datasets

[111, 112, 113]. These functions are radially symmetric, which depend solely on

the Euclidean distance, | · |, and are rotationally invariant. The construction of an

RBF-based approximant starts by defining the source points xi where i = 1, . . . , N

with corresponding function values y = [y1, y2, . . . yN ]
⊤ and x ∈ Rd, with d repre-
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(a)

(b)

Figure 4.1: RBF interpolated fields using a (a) cubic and a (b) thin-plate-spline
kernel, , with the vorticity computed discretely from the interpolated velocity field.
From left to right: the interpolated x-component of the velocity field component,
the relative error between the exact and interpolated velocity fields, the interpo-
lated z-component of the vorticity, and the relative error between the exact and
interpolated z-component of the vorticity.

senting the number of dimensions. The approximant, ỹ, is constructed as follows:

ỹ(x) =
N∑
i=1

βiϕ(|x− xi|) (4.6)

where βi are the unknown coefficients.

The approximant is enforced to exactly match the function values at the source

points (e.g., ỹ(xj) = yj):

N∑
i=1

βiϕ(|xj − xi|) = yj j = 1, . . . , N (4.7)

which can be written in matrix form:
X11 X12 . . . X1N

X21 X22 . . . X2N

...
...

. . .
...

XN1 XN2 . . . XNN




β1

β2
...

βN

 =


y1

y2
...

yN

 (4.8)

where

Xij = ϕ(|xj − xi|) i = 1, . . . , N and j = 1, . . . , N, (4.9)
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or in compact form:

Xβ = y. (4.10)

A unique solution is guaranteed for the symmetric N × N design matrix X if

the column vectors of matrix are linearly independent. In practice, it is gener-

ally expensive to compute the invertible matrix X−1, to be able to solve for the

coefficients via:

β = X−1y. (4.11)

From here, we can use the recovered coefficients β = [β1, β2, . . . , βN ]
⊤ to interpolate

to the arbitrary target point r:

ỹ(r) = β · ϕ(|r − xi|). (4.12)

Common kernels for the RBFs (see fig. 4.2) include:

Gaussian: ϕ(x) = e−ϵx2

(4.13)

Polyharmonic spline: ϕ(x) =

xp, p = 1, 3, 5, . . .

xp ln(x), p = 2, 4, 6, . . .
(4.14)

Multiquadratic: ϕ(x) =
√
x2 + ϵ2 (4.15)

Inverse multiquadratic: ϕ(x) =
1√

1 + (ϵx2)
(4.16)

where ϵ controls the spread of the RBF.

Fig. 4.1 visualizes the interpolated results using RBF interpolation with cubic

(polyharmonic with p = 3) and a thin-plate-spline (polyharmonic with p = 2)

kernels. Although RBF interpolation produces smooth interpolated velocity fields,

the resulting vorticity fields–computed using the derivatives of the interpolated

velocity–are non-smooth, exhibiting significant noise. This motivates the devel-

opment of our windowed polynomial (WP) interpolator, which we demonstrate

to outperform RBF interpolation in both accuracy, particularly when computing

derivative fields from noisy data, and computational speed.
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(a) Gaussian basis functions (b) Polyharmonic basis functions

(c) Multiquadratic basis functions (d) Inverse multiquadratic basis functions

Figure 4.2: Radial basis functions
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4.1.2 Polynomial fitting with Hann window weights and

QR theory

The construction of our weighted linear regression model begins by model-

ing the function using polynomials as our basis functions. For a 2nd-order 2-

dimensional function we have:

y(x) = β1 + β2x1 + β3x2 + β4x1x2 + β5x
2
1 + β6x

2
2 + ϵ (4.17)

where x1 and x2 represent vector components.

For N -number of source points:

yi = β · ϕ(xi) i = 1, . . . , N (4.18)

(4.19)

where β = [β1, β2, ..., βM ]⊤ containing the unknown polynomial coefficients, ϕ(xi)

is the vector of polynomial basis functions evaluated at the ith source point xi.

Our goal is to find an approximant, ỹ, using weighted least squares such that:

ỹi =
M∑
j=1

βjϕ(xi) (4.20)

and minimizing the over determined system with N > M (generally there will

always be more source points than unknown coefficients) so that we are minimizing

the error:

argmin
β

N∑
i=1

wi|yi − ỹi| (4.21)

leading to the normal equations:

X⊤WXβ = X⊤Wy (4.22)
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where:

X =


X11 X12 . . . X1M

X21 X22 . . . X2M

...
...

. . .
...

XN1 XN2 . . . XNM

 β =


β1

β2
...

βM



y =


y1

y2
...

yN



(4.23)

where each element Xij is defined as follows:

Xij = ϕj−1(xi) (4.24)

and Xij corresponds to the evaluation of the polynomial basis function ϕj−1 at the

source point xi. In one dimension, the polynomial basis functions are given by:

ϕ0(x) = xM−1, (4.25)

... (4.26)

ϕM−2(x) = x (4.27)

ϕM−1(x) = 1. (4.28)

The weight matrix W is a diagonal matrix where the diagonal elements repre-

sent the weights assigned to the source points. Scaled weights, wi, can be computed

as:

wi =
√
Wii, (4.29)

where Wii are the entries on the diagonal of W. This allows for the normal

equations to be written in the same form as ordinary least squares:(
X′⊤X′) β = X′⊤y′, (4.30)

where we define the scaled matrix and vector as:

X′ = W′X, y′ = W′y, (4.31)
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where W′ is the diagonal matrix:

W′ =


w1 0 . . . 0

0 w2 . . . 0
...

...
. . .

...

0 0 . . . wN

 . (4.32)

For rectangular matrices with N > M we are guaranteed a unique solution for β

if the columns of the design matrix X′ are orthogonal to each other.

To find a unique solution, we use QR-decomposition and let X′ = QR, making

this substitution into eqn. 4.30 leading to:

Rβ = Q⊤y′ (4.33)

where Q is the matrix (N ×M):

Q =
[
q̂1 q̂2 . . . q̂M

]
(4.34)

where q̂ are the orthonormal column vectors of the matrix X′, obtained via Gram-

Schmidt process (see appendix B) and given by:

q̂j =


Q1j

Q2j

...

QNj

 (4.35)

and R is the diagonal matrix:

R =


q̂1 ·X ′

1 q̂1 ·X ′
2 · · · q̂1 · w

0 q̂2 ·X ′
2 · · · q̂2 · w

0 0
. . .

...

0 0 · · · q̂M · w

 (4.36)

where w is the weight vector and X ′
j are the column vectors of X′ (the rescaled

column vectors of X):

w =


w1

w2

...

wN

 , X ′
j =


w1X1j

w2X2j

...

wNX2N

 . (4.37)
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We can write eqn. 4.33 as:
q̂1 ·X ′

1 q̂w ·X ′
2 · · · q̂1 · w

0 q̂2 ·X ′
2 · · · q̂2 · w

0 0
. . .

...

0 0 · · · q̂M · w




β1

β2
...

βM

 =


q̂1 · y′

q̂2 · y′
...

q̂M · y′

 (4.38)

which gives:

βM =
q̂M · y′

(q̂M · w)
=

∑N
i=1wiQiMyi∑N
i=1wiQiM

. (4.39)

(4.40)

It is useful to shift our coordinates and center the polynomial fit locally around

our target points, such that x′ = x − r. From here, we can readily recover the

coefficients by evaluating the polynomial basis functions at the origin x′ = 0 (all

column vectors of R will yield 0 except the last column vector). Our interpolating

approximant is then given by:

ỹ(r) = β · ϕ(x′). (4.41)

Similarily, as we did for RBF interpolation, we compute the analytical velocities

and vorticies for the Lamb-Oseen vortex. Using a square window and a Hann

window for WP interpolation, we resolve the interpolated velocity field, and the

resulting vorticity fields using the derivative of the interpolated velocity (see fig.

4.3).

The Hann window is given by:

w(xi) =
1

2

(
1 + cos

(
π|xi − r|

a

))
(4.42)

where a is the cutoff radius. The square window can be thought as a uniform weight

function within the same cutoff radius (see fig. 4.4). Every point xi is assigned a

weight based off its relative distance from the target point r. If the square window

is used the influence of distance-based weighting is turned off. In practice, in WP

interpolation, only points lying within the cutoff radius are considered.
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4.1.3 RBF vs WP Interpolation

WP interpolation with a Hann window generally produces smoother derivative

fields compared to using a square window or standard RBF interpolation with

different kernels. This smoothness, as seen in fig. 4.3, is due to the Hann window

assigning weights based on the proximity of the source points to the target point

(assumed to be the center of the window). Source points that are close to the target

point are assigned larger weights. This dynamic weighting enables the interpolator

to capture local features more accurately. Moreover, points entering or exiting the

window have their weights smoothly adjusted, leading to gradual transitions that

reduce abrupt changes in the interpolated field and its derivatives.

For datasets with relatively low noise, RBF interpolation outperforms WP in-

terpolation when computing interpolated fields (see fig. 4.5(a)). This is because

RBF interpolation performs an exact fit, which is advantageous for non-noisy data

where smoothing is unnecessary and often results in introducing error. When

noise is present, WP interpolation is shown to outperform RBF because of the

adaptive weighting, which effectively smooths out noise leading to more accurate

interpolated fields and derivative fields. Interestingly, WP interpolation with a

square window—which is effectively larger than the Hann window, as the Hann

window assigns minimal weight to edge points—appears to be more accurate than

the Hann window at relatively low noise levels. In such case, distributing the in-

fluence equally across all source points, as seen with the square window and with

RBF interpolation, seems to mitigate this effect. Nonetheless, fig. 4.5(b) sug-

gests that when computing derivatives of the interpolated fields, WP interpolation

with a Hann window outperforms in accuracy both the square window and RBF

interpolation, effectively reducing inherent noise from the interpolation process.

4.2 Computing FTLE fields

Typical process of computing the FTLE field starts off by first generating a

uniform grid of points and advecting these points. A flow map F T
0 (X) is defined

on a grid and constructed from initial time t = 0 to final time t = T . However,

62



Chapter 4. FTLE fields for Lagrangian particle tracking data

(a)

(b)

Figure 4.3: WP interpolated fields using a (a) square and a (b) Hann window,
with the vorticity computed discretely from the interpolated velocity field. From
left to right: the interpolated x-component of the velocity field component, the
relative error between the exact and interpolated velocity fields, the interpolated
z-component of the vorticity, and the relative error between the exact and inter-
polated z-component of the vorticity.

Figure 4.4: Hann window with a hard cutoff radius visualized by the red circle.
Source points lying inside the cutoff window are used for WP interpolation. Note,
visually, the interpolation target point is assumed to be in the center of the window.
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(a) (b)

Figure 4.5: RMS error for the Lamb-Oseen vortex across a range of noise levels–(a)
for the velocity field and (b) for the vorticity field–computed using RBF interpo-
lation with cubic and thin-plate spline (TPS) kernels, as well as WP interpolation
with square and Hann windows.

for noisy Lagrangian particle tracking data, this process is more complicated since

particle trajectories are randomly distributed at each frame. Here we will discuss

the process of computing FTLE fields via the standard velocity integration (VFI)

method and via flow map compilation (FMC). FMC was first proposed by [35] and

it eliminates the need for velocity tracks, and the integration step present in VFI

(see fig. 4.6).

4.2.1 Velocity field integration

To compute an FTLE field via VFI for randomly distributed Lagrangian parti-

cle tracks, consider a velocity field u and a particle trajectory x(t) which satisfies:

ẋ = u(x, t) (4.43)

where □̇ = ∂□
∂t
. The flow map F T

0 (X), with X = x(t = 0), is computed by

advecting particles in time:

F T
0 (X) = X +

∫ T

0

u(x(t′), t′)dt′. (4.44)
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(d)(b)

(a)

Integration Flow map FTLE fieldRaw PT data PTV

Flow map compilation

Figure 4.6: Work flow to compute FTLE fields using FMC method. FMC bypasses
the need to compute PTV trajectories that would be used for standard VFI method
to compile the flow map. Adjacent frames are used to filter particle trajectories to
construct the flow map in FMC.

The flow map, however, is defined on a discrete grid, thus F T
0 must be interpolated

on an initial dense grid to capture its deformation over time. At each time step,

the flow map F (x(t)) is interpolated, and the interpolator operator ξ acts on F

such that:

ξF (x(t)) : Rd → Rd. (4.45)

lies on the uniform grid. As particles are advected forward in time, the interpolated

flow map ξF serves as the updated grid for which the flow map for the next time

step. Thus, this results in the effectively smoothly deformed flow map F T
0 (X).

We compute the gradient of of the flow map (see appendix A for notation):

G(X, t) = ∇⊗ F (4.46)

=


∂x1

∂X1

∂x2

∂X1

∂x3

∂X1

∂x1

∂X2

∂x2

∂X2

∂x3

∂X2

∂x1

∂X3

∂x2

∂X3

∂x3

∂X3

 (4.47)

(4.48)
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where Xi denotes the initial coordinates on the uniform grid, and xi the final

coordinates on the deformed grid. This allows us to compute the Cauchy-Green

deformation tensor, C, which provides the local stretching rates given:

C = G⊤ ·G, (4.49)

or equivalently using summation notation as expressed in eqn. 3.43. The largest

eigenvalues, λmax, which correspond to the maximum separation rate of neighboring

trajectories, are extracted from the Cauchy deformation tensor to compute the

forward FTLE field, which is given by:

ΛFTLE =
1

|T |
ln
(√

λmax

)
, (4.50)

similarly, the backward FTLE field is yielded by using the smallest eigenvalues

[34], λmin, which measure the convergence of neighboring trajectories.

4.2.2 Flow map compilation

For experimental particle tracking data sets, the particles and their positions

are tracked over a finite time, capturing the flow dynamics directly. Thus, we can

approximate the flow map by composing intermediate flow maps between adjacent

time frames without needing to advect the particles through numerical integration

at each time step. The redundant integration step is eliminated and thus provides

an efficient way to compute the flow map with only the raw particle trajectories.

Similarly to VFI, because our particle trajectories are randomly distributed in the

fluid domain, we still have to interpolate onto a continuous grid at each time step

as we did in eqn. 4.45.

In practice, because particles can appear and disappear between successive

frames, only particles that appear in two adjacent frames are used for each inter-

polated flow map step. Hence, an approximate flow map is composed with the

intermediate flow maps:

F T
0 (X) = ξF kh

(k−1)h ◦ · · · ◦ ξF 2h
h ◦ F h

0(X) (4.51)
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where T = kh, and the flow map is broken into k smaller time-h flow maps. From

here, the FTLE field is computed exactly the same as for VFI using eqns. 4.46 -

4.50.

4.3 The double gyre flow and ABC flow

To test VFI and FMC methods, and the RBF andWP interpolator, we generate

the periodic double gyre flow [34]. This field can be thought as two counter rotating

vortices confined within the fluid domain. The double gyre is time periodic and

lies within the closed bounded domain, [0, 2]× [0, 1]. The stream function:

ψ = A sin (πf(x, t)) sin (πy) (4.52)

f(x, t) = ϵ sin (ωt)x2 + x− 2ϵ sin (ωt)x (4.53)

yields the vector field:

ẋ =

(
−πA sin (πf(x, t)) cos (πy)

πA cos (πf(x, t)) sin (πy) df
dx

)
(4.54)

we set A = 0.1, ϵ = 0.25, and ω = π/5.

We initialize a uniform grid of size 512 × 256 and advect it forward in time

using RK4 with fixed time step ∆t = 10−4 to resolve an ‘exact’ FTLE field (see

fig. 4.7). For the interpolated field, we seed 1000 particles in the fluid domain

and advect them forward in time with time steps ∆t ∈ [10−3, 1], and interpolate

the flow map onto a continuous grid of the same size. Depending on whether the

VFI or FMC method is used, the interpolation step follows eqn. 4.45 or eqn. 4.51,

respectively.

We extend the FTLE field computation for 3D flows using the ABC flow which

is aperiodic in time, and has spatially periodic boundary conditions. The vector

field of the ABC flow is given by [35]:

ẋ =


(
A+ 1

2
t sin (πt)

)
sin (z) + C cos (y)

B sin (x) +
(
A+ 1

2
t sin (πt)

)
cos (z)

C sin (y) +B cos (x).

 (4.55)
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FTLE

Figure 4.7: The exact FTLE field computed for the double gyre flow reveals a
narrow ridge in the center. The ridge represents a coherent structure that acts as
a boundary, separating distinct regions in the fluid domain which inhibits mixing.

The FTLE fields are computed on the periodic cube X, Y, Z ∈ [0, 1), where x =

2πX, y = 2πY , z = 2πZ. Fig. 4.8 visualize both the corresponding backward and

forward FTLE fields.

4.4 Results

Table 4.1: RMS error and computation time for FTLE in the double gyre using
the VFI and FMC methods with RBF interpolation and a cubic kernel.

Method ∆t RMS error computation time (s)

VFI 1 0.190 21
0.1 0.118 147
0.01 0.049 1445
0.001 0.038 13714

FMC 1 0.037 11

We begin by quantifying the accuracy and computation time for both VFI and

FMC methods. Since FMC uses particle trajectories as direct measurements of the

flow map, its accuracy is independent of the chosen time step. For VFI, the method

relies on numerical integration, making its accuracy highly sensitive to the size of

the time step. We test the accuracy of VFI and FMC using RBF interpolation

with a cubic kernel with zero noise. The results are illustrated in fig. 4.9 and in

fig. 4.10. Qualitatively, VFI is shown to converge to the exact field as the time
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(a) (b)

FTLE FTLE

Figure 4.8: Exact (a) backward and (b) forward FTLE fields computed for the
ABC flow.

(a) (b)

(c) (d)

FTLE

FTLE FTLE

FTLE

Figure 4.9: The FTLE field computed for the double-gyre flow using RBF
interpolation with a cubic kernel for the VFI method at fixed time steps of
∆t = 1, 10−1, 10−2, 10−3, shown in (a) – (d), respectively.
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Figure 4.10: FTLE RMS error computed between the exact field and the interpo-
lated field using RBF interpolation with a cubic kernel.

step decreases, while the accuracy of FMC remains unaffected by the time step

size. Not shown is the resolved interpolated FTLE field computed using FMC,

but it resembles the VFI result in fig. 4.9(d). FMC outperforms standard VFI,

achieving a speedup factor of over 1000 for equivalent accuracy (as demonstrated

in table 4.1).

To get a qualitative and quantitative understanding on how WP and RBF

interpolation behave under noise conditions when computing the interpolated flow

map, and derivatives, we add moderately fixed noise to the particle trajectories

of 0.51 times of the grid spacing. As seen in fig. 4.11, the FTLE field computed

using WP interpolation with a Hann window has less error to the exact field than

the one produced by RBF with a cubic kernel. Moreover, WP interpolation is also

demonstrated to be 1.6 times faster, when computing the interpolated flow map,

compared to the RBF with an execution time of 10 s and 16 s respectively.

This analysis can also be extended to 3D flows, such as the ABC flow illustrated

in Fig. 4.8. To compute the ‘exact’ field, we use VFI with a fixed time step of

∆t = 10−4 and a uniform volumetric grid of size 256 × 256 × 256. The same

procedure applied to the double gyre can be used to resolve the interpolated FTLE

fields for the ABC flow.
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Figure 4.11: (a) RBF interpolation with a cubic kernel and (b) WP interpolation
with a Hann window. From top to bottom: the FTLE field for a noise level of
0.51 of the grid spacing, the relative error between the exact and interpolated x-
component of the flow map, and the RMS error between the exact gradient of the
flow map and the gradient of the flow map (computed from the interpolated flow
map).
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4.5 Conclusion

In this chapter we have demonstrated the need for accurate interpolation schemes

to compute derivatives of interpolated fields, focusing on two test cases: (1) the

Lamb-Oseen vortex and (2) the double gyre. Our custom built windowed poly-

nomial (WP) interpolation is shown to outperform standard radial basis function

(RBF) interpolation in both accuracy and speed when computing derivatives of

interpolated fields for both noisy and non-noisy data sets. Although, for non-noisy

data sets RBFs yield better accuracy when computing solely the interpolated field.

Our results suggest that local features are more accurately captured through

a Hann window which dynamically assigns weights based off the proximity of the

source points to the interpolation target. However, at low noise levels, this might

lead to over-fitting, in which case a square window is preferred. This effectively

distributes the noise across all source points equally.

We validate that flow map compilation (FMC) method is the preferred method

to compile the flow map used to compute FTLE fields. FMC is demonstrated to

not be sensitive to the size of the time step, and is demonstrated to be significantly

faster than the velocity field integration (VFI) method because of this. Pairing

FMC with WP interpolation using a Hann window yields smooth and accurate

FTLE fields making it the most effective approach to compile the flow map and

the FTLE field from noisy data sets. This allows us to have an efficient and

accurate framework to analyze real-world data in 3D. In the following chapter we

will demonstrate the versatility of the tools that we have developed throughout

this work to capture and analyze inherently noisy experimental flows.
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Chapter 5

Flows generated by a soft robotic

pulsing coral

Rising ocean temperatures and increased acidification, driven by the absorption

of atmospheric carbon dioxide, have lead to widespread coral bleaching and mor-

tality [114, 115, 116]. Xeniidae, soft tissued corals, are unique among other animals

in exhibiting pulsing motion of their tentacles for purposes unrelated to locomo-

tion. Their soft tissued morphology, and perhaps their active motion, may offer

ecological advantages in this changing environment, as they have been observed to

out compete their stony corals in certain regions [117]. Given their small size, one

might think that the energy expenditure of pulsing would outweigh its benefits. It

has been hypothesized that these animals pulse their tentacles to generate feeding

current, but what has been found is that when analyzing their stomach cavities

they are rarely found with food [118]. Their pulsing mechanism, as suggested

in a study [119], is now thought to increase the rates of photosynthesis of their

symbiotic algae, which provides the animals with most of their energy. Studying

the pulsing behavior of Xeniidae corals offers insights in the active flows that they

generate and the role that these flows play in their survival and ecological success.

Although prior experimental and computational work have studied the behav-

ior of live Xeniidae corals and simulated models, experimental work has largely

been limited to two-dimensional flow measurements [37, 1]. The flows generated

by pulsing corals are intrinsically three dimensional, and hence, investigating the
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flows generated by these animals require three dimensional volumetric imaging.

Since biological fluid dynamics of these organisms pose a challenging problem, a

combination of mathematical models, numerical simulations and experiments must

be combined to understand the dynamics that govern these animals.

Inspired by Xeniidae corals, we design and fabricate a robot that mimics the

pulsing behavior of the corals. To capture the flow dynamics generated by the

pulsing, we use our imaging technique H2C-SVLIF and pair it with computational

tools developed throughout this thesis to analyze the acquired experimental parti-

cle tracking data. Particularly, we use our custom built WP interpolator, presented

in section 4.1, to resolve smooth and accurate interpolated fields and derivatives of

such fields. We resolve the velocity, vorticity, and FTLE fields at different stages

of the robot’s pulsing period.

By examining these fields, we can quantify key flow properties resulting from

the robot’s pulsing motion. The velocity field provides insight into the overall

flow structures. Vorticity fields, in turn, reveal regions of concentrated rotational

motion, often appearing near specific features such as the tips of the tentacles.

Additionally, the FTLE fields quantify the local stretching rate of the fluid domain

over a finite time interval. These flow characteristics are critical for understanding

how transport and mixing processes operate during the pulsing cycle. Our work

provides a framework for future studies by constructing a simplified physical model

that replicates key features observed in actual corals, laying the foundation for

further exploration.

5.1 Robot fabrication and actuation

The process of collecting 3D flow measurements begins with designing and

fabricating a soft robot that mimics the pulsing behavior of Xeniidae corals. This

is achieved using an established soft robotic fabrication technique [120] known as

fast pneumatic networks. This technique is readily implemented by designing and

printing 3D molds. Silicone (Zhermack Elite Double 8 and Platsil 73-15) is then

poured into the molds to cast the robot. The tentacles of the robot are designed
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Strain limiting layer

Chamber

Inner wall Outer wall

P

Figure 5.1: Cross-section of the soft robot tentacle using the fast pneumatic fabri-
cation technique. Empty chambers are filled with water through a syringe system.
The water pressurizes the inner walls, and the gaps between the outer walls of the
chambers causes the robot to flex along the transverse direction. A strain limiting
layer is added at the bottom of the tentacle, causing the tentacle to curl.

(a) (b) (c)

Figure 5.2: (a) Photograph of Xeniidae corals (credit: Anna Dias de Almeida
taken at Monterey Bay Aquarium 2024, used with permission) (b) downward and
(c) upward view of robot coral.
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with internal chambers that are hollow. Water is injected using a syringe system,

causing internal pressurization of the inner walls (see fig. 5.1). Gaps between the

outer chamber walls and a strain-limiting layer results in the tentacles elongating

and curling. Unlike the corals, the robot is designed with paddle-like shaped

tentacles (see fig. 5.2) instead of bristles. This design is chosen to simplify the

fabrication process while maintaining functionality. To mimic the pulsing motion,

the water injection rate is driven by a sinusoidal signal with an angular frequency

of ω = 0.051–0.513 Hz. The tentacle motion is modeled as an oscillation described

by:

X(r, t) = A sin (ωt)ê (5.1)

where A is the amplitude of the oscillation, ω is the angular frequency (ω = 2πf)

and ê is the direction of oscillation (along the axis of the tentacle).

5.2 Reynolds number

Xeniidae corals operate within an intermediate Reynolds number regime, ap-

proximately Re ≈ 14. The Reynolds number, Re, is a dimensionless parameter

representing the ratio of inertial to viscous forces in a fluid, defined as:

Re =
ρL2f

µ
(5.2)

where L is the characteristic length (tentacle length in this case), f is the pulsing

frequency, ρ is the fluid density, and µ is the fluid’s dynamic viscosity.

While the tentacles of corals are approximately 0.4 cm in length, our robot’s

tentacles measure 3.7 cm due to fabrication constraints. To maintain operation

within a similar Reynolds number regime, the pulsing frequency of the robot was

adjusted accordingly. This ensures that the robot operates within a similar flow

regime. Table 5.1 provides a summary of the relevant parameters for the biological

corals and the robot prototype. This approach enables us to explore flows in an

intermediate Reynolds regime without requiring strict biological accuracy.
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Table 5.1: Physical parameters of Xeniidae corals [1] and the robotic coral. Note
that ρ and µ are not directly measured but are assumed to be their standard values
at room temperature.

Model L (cm) T = 1/f (s) ρ (kg m−3) µ (kg ms−1)

Xeniidae 0.41 1.89 1.02× 103 1.08× 10−3

Robot 3.7 12.2 1.00× 103 1.00× 10−3

5.3 Results

Values Definitions
r̄ = 3.4 mm Mean tracer particle spacing

ρ = 0.0009 particles/voxel Mean tracer density
Re = 100 Reynolds number

f/5.6 Lens aperture
Lx = Ly = 178 mm Imaged volume size in x and y

Lz = 156 mm Imaged volume size in z
dx = 1170 mm Effective distance from camera

nodal point to center of volume
dz = 1300 mm Effective distance from

scanning-head-platform to
center of volume

rv = 19.5 Hz Volumetric acquisition rate
Nx ×Ny ×Nz = 512× 512× 512 Volumetric spatial resolution

Table 5.2: The parameters used to image flows of the robotic coral using H2C-
SVLIF.

We use the H2C-SVLIF imaging technique described in chapter 2 to image

the robot and capture the flows generated by its pulsing. To visualize the flow,

we seed fluorescent labeled particles (Cospheric Fluorescent Polyethylene Micro

spheres 106 microns – 125 microns) into the fluid domain. A calibration target

is employed and perspective correction is automated as described in section 2.4.3.

Although our imaging system is able to capture two different data streams, we use

a single channel to capture particle tracking data. The fluid injection is driven by

a sinusoidal signal with an angular frequency of ω = 0.051–0.513. Table 5.2 sum-

marizes the experimental parameters for this investigation. Figure 5.3 visualizes

the raw data of the robot at various stages of its pulsing cycle.
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(a)

(d)

(b)

(c)

Figure 5.3: Raw data of the robot at different stages at its pulsing period (a) taken
at t = 0.25T , (b) t = 0.50T (c), t = 0.75T and (d) t = T .
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(a)

(d)

(b)

(c)

Figure 5.4: A vertical slice at Lz = 2 mm, rotated 40◦ about the y-axis, is taken
throughout the pulsing period (t = T ) for a corresponding Reynolds number of
Re = 100. The results show the planar velocity magnitude overlaid with stream-
lines (turquoise color) (a) taken at t = 0.25T , (b) t = 0.50T (c), t = 0.75T and
(d) t = T . Back flow is observed near the end of the pulsing period.

5.3.1 Velocity and vorticity fields

We use our custom-built windowed polynomial (WP) interpolator (see Chapter

4) to reconstruct a dense velocity field from particle tracking velocity trajectories.

Additionally, we compute the analytical derivatives of the velocity field to obtain

the vorticity field, as detailed in Appendix B.

The presence of an upward jet is observed throughout the robot’s contraction

phase as shown in fig. 5.4. We plot the planar velocity magnitude and the pla-

nar vorticity magnitude for a vertical slice at Lz = 2 mm (through the center

of the robot) rotated 40◦ about the y-axis. Significant backflow is observed dur-

ing the expansion phase, as denoted by the streamlines. This suggests, that the

paddle-like tentacles or the kinematics of the robot results in poor fluid advection.

79



Chapter 5. Flows generated by a soft robotic pulsing coral

(a)

(d)

(b)

(c)

Figure 5.5: A vertical slice at Lz = 2 mm, rotated 40◦ about the y-axis, is taken
throughout the pulsing period for a corresponding Reynolds number of Re = 100.
The results show z-vorticity component overlaid with streamlines (turquoise color)
(a) taken at t = 0.25T , (b) t = 0.50T (c), t = 0.75T and (d) t = T . The strongest
vorticity is observed at the end of the pulsing period.

Y-velocity component Planar velocity magnitude Planar vorticity magnitude
a) b) c)

Figure 5.6: A horizontal slice at Ly = −50 mm is taken at the end of the pulsing
period (t = T ) for a corresponding Reynolds number of Re = 100. The results
show (a) the y-velocity component, (b) the planar velocity magnitude, and (c) the
planar vorticity magnitude. At the end of the pulsing period, backflow is observed,
as indicated in (a). A vortex ring is shed from the robot’s tentacles, as shown in
(c).
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Figure 5.7: (a) A vertical slice at Lz = 2 mm, rotated 40◦ about the y-axis. (b)
A horizontal slice at Ly = −25 mm. The results show the forward FTLE field for
the expansion phase, from t = 0.5T to t = T .

However, more rigorous experiments are needed to confirm this. We observe that

the strongest z-vorticity component is present during the end of the pulsing period,

t = T (see fig. 5.5), prompting us to investigate this further.

The y-velocity component, planar velocity magnitude, and planar vorticity

magnitude are plotted for a horizontal slice Ly = −50 mm at the end of the

pulsing period t = T (see fig. 5.6). We observe and confirm the presence of strong

backflow and the formation of a coherent vortex ring at the end of the expansion

phase. Interestingly, this coherent vortex shedding is not present in the live corals

[1]. Although, vortex shedding can be advantageous in enhancing fluid mixing its

absence might suggest that the energy required to pulse at high frequencies might

be too costly for the actual animals.

5.3.2 FTLE fields

We plot the forward FTLE field corresponding to the expansion phase of the

robot from t = 0.5T to t = T (see fig. 5.7). In the vertical slice Lz = 2 mm, we

observe the formation of a ridge near the top surface of the robot (see fig. 5.7(a)).

This ridge aligns with the approximate location of the vortex ring. However,

shadowing effects that result from the robot’s opacity prevents us from visualizing

the FTLE field at the exact location of the vortex. We investigate this further
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by taking a horizontal slice Ly = −25 mm (see fig. 5.7(b)). Here, the largest

stretching, indicated by the magnitude of the FTLE field, appears directly above

the location of vortex ring visualized in fig. 5.6(c). This observation aligns with

our analysis from chapter 3, where we demonstrated that the most significant

stretching occurs near the vortex location.

5.4 Conclusion

Inspired by the flows generated by the pulsing of Xeniidae corals, we designed

and fabricated a soft robot that mimics the pulsing motion of these animals. The

experimental and computational tools developed throughout this thesis were em-

ployed to collect and analyze particle tracking data, enabling us to access and

visualize the acquired flow data. To achieve accurate interpolation of the data, we

utilized our custom WP interpolator, which provided smooth and precise velocity

fields and corresponding derivatives of the interpolated fields (e.g., vorticity field

and FTLE field).

The interpolated velocity fields, resolved at different stages of the robot’s puls-

ing period, reveal a strong backflow that appears during the expansion phase.

Additionally, our robot sheds a coherent vortex at the end of its pulsing period,

a feature that is not observed in the actual corals. The strongest vorticity is ob-

served at the end of the expansion phase of the robot, which also is the when we

observe the strongest backflow. A coherent vortex is shed as the robot expands.

Lastly, the FTLE field, plotted for the expansion phase of the robot, reveals that

the largest stretching occurs near the approximate location of the generated vortex

ring.

We have showcased the versatility, applicability, and innovation of our exper-

imental and computational analysis tools for studying a bio-inspired flow. While

our focus has been on a specific system, these tools are broadly applicable across

a wide range of experimental setups. These tools provide access to 3D flow data,

a key characteristic of physical models and real-world flows. While the primary

aim of this work is to demonstrate effective methods for capturing and analyzing
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flow data, our simplified robotic model establishes a foundation for future studies

aimed at improving comparisons between Xeniidae corals and our physical model.

However, refining the robot’s kinematics and morphology will be necessary to en-

hance comparisons with live corals. Nonetheless, our imaging technique, analysis

tools, and simplified physical model offer a valuable framework for investigating

flows generated by rhythmic pulsing.
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Conclusion and future work

In this work, we introduced a novel experimental imaging technique, combined

with robust analysis methods to study the fluid dynamics of complex flows. We

begun by highlighting the importance of volumetric imaging in experimental fluid

dynamics. In chapter 2, we present our high-speed two-color scanning volumet-

ric laser induced fluorescence (H2C-SVLIF) technique which enables direct flow

visualization, and the acquisition of particle tracking data. We discuss the funda-

mental and practical limitations of volumetric imaging to guide researchers that

are interested in developing similar imaging systems. To validate our technique,

we design a test experiment for flow past a sphere, and directly visualize flow pat-

terns by using fluorescent dye, and acquire particle tracking data using fluorescent

labeled particles. The particle tracking data is analyzed and processed to compute

the velocity field and the vorticity field. We pair the technique with custom-built

software for real-time playback of the large datasets that result from volumetric

imaging, and provide calibration scripts to automate the correction of distortion

defects for the spatial distortion and the non uniformity present in the fluorescent

signal captured by the camera. The technique enables us to study fundamental

flow properties at high spatial and temporal resolutions (512×512×512 resolutions

at ∼ 60 Hz) as demonstrated through our validation experiment.

Chapter 3 explores the stretching mechanisms in fluid flows through the lens of

vorticity, focusing on how vortex topology and geometry influence the stretching

rates of material lines. We develop a simplified model by ‘freezing’ vortices. Our
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findings provide insights into experimentally observed phenomena, where vortex

knots tend to stretch and destabilize, leading to unknotting, while vortex rings

remain stable and exhibit linear stretching. Our results show that topology sig-

nificantly impacts stretching dynamics. By visualizing FTLE fields, we show that

the stretching of material lines mirrors the deformation of the flow field itself. Al-

though the short-lived nature of knotted vortices limits our understanding of real

systems, our simplified model captures the underlying mechanisms of when, why,

and how material lines and fluid domains stretch.

Building upon our fundamental understanding of stretching mechanisms of fluid

domains, we develop efficient and accurate analysis methods of particle tracking

data presented in 4. We present and discuss the two methods for the computation

of the flow map, standard velocity field integration (VFI) and flow map compilation

(FMC). We pair FMC with a custom windowed polynomial (WP) for the time-

efficient and accurate computation of FTLE fields. Our interpolator addresses the

limitations of standard radial basis function (RBF) interpolation, which is shown

to produce non-smooth derivatives of interpolated fields even with non-noisy data.

Our method dynamically adjusts the distanced-based weights of the source points

leading to smoother and accurate interpolated fields and derivatives. We validate

our approach on the Lamb-Oseen vortex and the double gyre, demonstrating that

our interpolator outperforms RBF interpolation in both speed and accuracy, par-

ticularly when handling noisy data. Future work could explore incorporating RBF

kernels as the basis functions with our weighting scheme to possible enhance accu-

racy. Preliminary results indicate that computing analytical derivatives of our WP

interpolator could yield even better accuracy, though this requires further evalua-

tion. We apply the methods developed throughout this work to analyze flows in a

bio-inspired system to showcase their practicality in experiments.

In chapter 5 we apply our imaging system and numerical methods to investi-

gate the fluid dynamics of a soft robot designed to mimic the pulsing behavior of

Xeniidae corals. Using our H2C-SVLIF imaging technique, we acquired flow data

to compute the velocity, vorticity and FTLE fields at various stages of the robot’s

pulsing period. The tools developed in this work enables us to handle inherently
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noisy experimental data to resolve smooth and accurate fields. Our analysis reveals

an upward jet during the contraction phase. Strong back flow is observed during

the expansion phase. We observe concentrated vorticity near the top surface of

the robot and at the end of the expansion phase. Further refinement of the robot’s

design is needed, particularly in replicating the kinematics and morphology for a

more accurate comparison to the actual coral.

Our tools facilitate the study and analysis of both simulated and experimen-

tal data sets, addressing two main themes: 1) developing versatile imaging and

analysis methods to process noisy experimental particle tracking data, and 2) in-

vestigating fundamental flow properties. We have advanced high-speed volumetric

imaging and developed computational tools for the time-efficient and accurate

computation of fields derived from these data sets. This work advances the inte-

gration of computational and experimental studies of complex flows, particularly

in understanding stretching in fluid domains.
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Appendix A

Mathematical Definitions

We lay out a consistent notation for tensors and their derivatives (using stan-

dard notation [121]). Note that the most important rule to keep in mind is that

vectors and vector operations (i.e., dot and cross products) never cross the tensor

product symbol, ⊗.

a =


a1

a2
...

an

 (general vector) (A.1)

|a| =
√∑

i

a2i (L2 − norm) (A.2)

a =
∑
i

aiêi =


a1

a2

a3

 (spatial vector, e.g., x,y, z) (A.3)

u̇ =
du

dt
(time derivative) (A.4)

A =
∑
ij

Aij êi ⊗ êj =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 (rank 2 tensor) (A.5)
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=


A⊤

1∗

A⊤
2∗

A⊤
3∗

 (row vectors)

(A.6)

where Ai∗ ≡
∑
i

Aijêi =


Ai1

Ai2

Ai3

 (row vector i)

(A.7)

=
(
A∗1 A∗2 A∗3

)
(col. vectors)

(A.8)

where A∗j ≡
∑
j

Aijêj =


A1j

A2j

A3j

 (column vector j)

(A.9)

∇ =
∑
i

êi∂i =


∂1

∂2

∂3

 (“del”)

(A.10)

∇2v =
∑
i

êi

(
∂21vi + ∂22vi + ∂23vi

)
=


∂21v1 + ∂22v1 + ∂23v1

∂21v2 + ∂22v2 + ∂23v2

∂21v3 + ∂22v3 + ∂23v3

 (Laplacian)

(A.11)

∇ · v =
∑
i

∂ivi = ∂1v1 + ∂2v2 + ∂3v3 (divergence)

(A.12)
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∇× v =
∑
ijk

ϵijk∂ivj êk =


∂2v3 − ∂3v2

∂3v1 − ∂1v3

∂1v2 − ∂2v1

 (curl)

(A.13)

∇⊗ v =
∑
ij

∂ivj êi ⊗ êj =


∂1v1 ∂1v2 ∂1v3

∂2v1 ∂2v2 ∂2v3

∂3v1 ∂3v2 ∂3v3

 (tensor deriv.)

(A.14)

=
(
∇v1 ∇v2 ∇v3

)
(as columns)

(A.15)

=


∂1v

⊤

∂2v
⊤

∂3v
⊤

 (as rows)

(A.16)

A · v =
∑
ij

Aijvjêi (A.17)

=
∑
i

v ·Ai∗êi (A.18)

= Av (matrix mult. form)

(A.19)

=


Atr

1∗

Atr
2∗

Atr
3∗

 · v (A.20)

=


A1∗ · v
A2∗ · v
A3∗ · v

 (i.e. rows ·v)

(A.21)

Note: (∇⊗ a) · b =


(∂1a) · b
(∂2a) · b
(∂3a) · b

 (A.22)
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v ·A =
∑
ij

viAijêj (A.23)

=
∑
j

v ·A∗jêj (A.24)

= A⊤v (matrix mult. form) (A.25)

=


A⊤

∗1

A⊤
∗2

A⊤
∗3

 · v (A.26)

=


v ·A∗1

v ·A∗2

v ·A∗3

 (i.e. v· columns) (A.27)

Note: a · (∇⊗ b) =


a ·∇b1

a ·∇b2

a ·∇b3

 = ∇ab (directional deriv.) (A.28)

We can take the dot product between two tensors, which is equivalent to the result

of a normal matrix multiplication:

A ·B =
∑
ijkℓ

AijBkjêi ⊗ êj · êk︸ ︷︷ ︸
δjk

⊗êℓ (A.29)

= AB (normal matrix mult.) (A.30)

⇒ (A ·B)ij =
∑
k

AikBkj (A.31)
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Appendix B

Analytical derivatives and

Gram-Schmidt process

Analytical derivatives for the windowed polynomial (WP) interpolation can be

explicitly derived to compute the derivatives of the interpolated fields, e.g. vorticity

and FTLE fields. These derivatives include both the polynomial basis functions

and the weighting functions. Additionally, derivatives from the Gram-Schmidt

orthogonalization process are also necessary to compute.

The interpolation function is constructed as:

X ′
nm = wnϕm(rn) (B.1)

(B.2)

Figure B.1: WP interpolated fields using a Hann window, where the vorticity field
is computed using the analytical derivatives of the interpolated velocity field. From
left to right: the interpolated x-component of the velocity field component, the
relative error between the exact and interpolated velocity fields, the z-component
of the vorticity, and the relative error between the exact and the interpolated
z-component of the vorticity.
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where rn = xn − xi is the relative distance between the interpolated target, xn

and the source point, xi. The polynomial basis function is given by:

ϕm(rn) =
∏
j

r
αmj

nj (B.3)

with αmk is the matrix of powers for the polynomial basis. Taking derivatives of

the polynomial basis and the weight function yields:

∂krn = −êk (B.4)

∂krn = −êk · r̂n (B.5)

∂kϕm(rn) = −αnkr
(αmk−1)
nk

∏
j ̸=k

r
αmj

nj (B.6)

∂kwn(rn) = −w′
n(êk · r̂n) (B.7)

where w′ = dw(r)/dr. Combining these, the derivative of the interpolated function

yields:

X ′
nm = [∂kwn]ϕm(rn) + wn[∂kϕm(rn)] (B.8)

Gram-Schmdit process ensures orthogonality of the polynomial basis. Given a

set of linearly independent vectors a we can find a set of orthonormalized vectors

q. We initialize the first orthogonalized vector q
1
= a1. Subsequent vectors are

orthogonalized by subtracting the projections of am onto the previously calculated

orthogonormal vectors. The intermediate vectors q
m
are computed as:

a(0)m = X ′
m (B.9)

a(j)m = a(j−1)
m −

(
q
j
· a(j−1)

m

)
q
j

(note that j < m) (B.10)

q
m
=

a
(m−1)
m

|a(m−1)
m |

(B.11)

(B.12)
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Derivatives are computed as:

∂ka
(0)
m = ∂kX

′
m (B.13)

∂ka
(j)
m = ∂ka

(j−1)
m −

(
∂kqj · a

(j−1)
m + q

j
· ∂ka(j−1)

m

)
q
j
−
(
q
j
· a(j−1)

m

)
∂kqj (B.14)

∂kqm =
∂ka

(m−1)
m

|a(m−1)
m |

−
a
(m−1)
m

(
∂ka

(m−1)
m · a(m−1)

m

)
|a(m−1)

m |3
(B.15)

=
∂ka

(m−1)
m −

(
q
m
· ∂ka(m−1)

m

)
q
m

|a(m−1)
m |

(B.16)

The final interpolant function ỹ is given by:

ỹ =
p · y′

p · w
(B.17)

y′n = wnyn (B.18)

p = q
M
. (B.19)

∂kỹ =
∂kp · y′ + p · ∂ky′ − ỹ

(
∂kp · w + p · ∂kw

)
p · w

(B.20)

(∂wy
′)n = (∂kwn)yn + wn ∂kyn︸︷︷︸

0

(B.21)

In fig B.1 we compute the interpolated velocity field, and use the analytical deriva-

tives of the interpolated field to calculate the vorticity field for the Lamb-Oseen

vortex as we did in chapter 4. The results are consistent with those obtained us-

ing discrete differentiation. More rigorous testing is needed to fully validate the

analytical derivatives.
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[73] Thomas Janke, Rüdiger Schwarze, and Katrin Bauer. Measuring three-

dimensional flow structures in the conductive airways using 3D-PTV. Ex-

periments in Fluids, 58(10):133, October 2017.

[74] Mehdi Parviz and M. Shahram Moin. Multivariate Polynomials Estimation

Based on GradientBoost in Multimodal Biometrics. In Advanced Intelligent

Computing Theories and Applications. With Aspects of Contemporary Intelli-

gent Computing Techniques, Communications in Computer and Information

Science, pages 471–477. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[75] Tsutomu Kambe. Elementary Fluid Mechanics. World Scientific, Hacken-

sack, N.J. ; London, 2007.
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