
UC Berkeley
CUDARE Working Papers

Title
Empirical Evidence Concerning the Finite Sample Performance of EL-Type Structural 
Equation Estimation and Inference Methods

Permalink
https://escholarship.org/uc/item/2xm0n02g

Authors
Mittelhammer, Ron C
Judge, George G.
Schoenberg, Ron

Publication Date
2003

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2xm0n02g
https://escholarship.org
http://www.cdlib.org/


Empirical Evidence Concerning the Finite Sample Performance  

of EL-Type Structural Equation Estimation and Inference Methods  
 

 

Ron C. Mittelhammer1, George G. Judge2, and Ron Schoenberg3 
Washington State University, University of California, Berkeley,  

and Aptech Systems, Inc. 

Abstract 

 This paper presents empirical evidence concerning the finite sample performance of 

conventional and generalized empirical likelihood-type estimators that utilize instruments 

in the context of linear structural models characterized by endogenous explanatory 

variables.  There are suggestions in the literature that traditional and non-traditional 

asymptotically efficient estimators based on moment equations may, for the relatively 

small sample sizes usually encountered in econometric practice, have relatively large 

biases and/or variances and provide an inadequate basis for estimation and inference.  

Given this uncertainty we use a range of data sampling processes and Monte Carlo 

sampling procedures to accumulate finite sample empirical evidence concerning these 

questions for a family of generalized empirical likelihood-type estimators in comparison 

to conventional 2SLS and GMM estimators. Solutions to EL-type empirical moment-

constrained optimization problems present formidable numerical challenges. We identify 

effective optimization algorithms for meeting these challenges. 
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Empirical Evidence Concerning the Finite Sample Performance 

of EL-Type Structural Equation Estimation and Inference Methods 

 

1. Introduction 

 It is known in the literature that a number of moment-based estimators for the 

linear structural model are asymptotically normally distributed and mutually 

asymptotically equivalent.  There is also a growing body of evidence (see for example 

Newey and Smith (2000) and the references therein) that traditional asymptotically 

efficient moment-based estimators may exhibit large biases and/or variances when 

applied to the relatively small samples usually encountered in applied economic research.   

Econometric models that specify a set of moment-orthogonality conditions 

relating to the underlying data sampling process, and involving parameters, data 

outcomes, and model noise, lead to a corresponding set of unbiased empirical estimating 

functions. These estimating functions often involve instrumental variables (IV) whose 

number exceeds the number of unknown parameters of interest, and overdetermines the 

model parameters.  In some instances the instrumental variables may be only moderately 

or weakly correlated with the endogenous variables in the model.  In this situation it is 

generally recognized that significant bias and/or variability problems may arise and that 

large sample normal approximations may provide a poor basis for evaluating finite 

sample performance (see for example Nelson and Startz (1990), Maddala and Jeong 

(1992), Bound, Jaeger and Baker (1995), and Stock and Wright 2000).  

 In an effort to avoid an explicit likelihood function specification, semi-parametric 

empirical likelihood (EL) type estimators have been proposed as moment based 



 2

estimation and inference alternatives to classical maximum likelihood methods (Owen, 

1988, 1991; Qin and Lawless, 1994; Imbens, et al. 1998; Corcoran, 2000 and 

Mittelhammer, Judge and Miller, 2000).  Given this new class of estimators, and in line 

with the ongoing search for efficient linear structural equation estimators having small 

finite sample bias, and associated inference procedures with accurate size, good power, 

and short confidence intervals with proper coverage, we provide some empirical evidence 

relating to the finite sample performance of a trio of empirical likelihood-type estimators 

when estimating functions overdetermine the model parameters and parameters are 

moderately well-identified. The results are based on Monte Carlo sampling experiments 

applied to a range of underlying data sampling processes and to estimators that include 

the optimal estimating function (OptEF) and two stage least squares (2SLS) estimator, 

the generalized method of moments (GMM) estimator based on an identity weight 

matrix, as well as the empirical likelihood (EL), exponential empirical likelihood (EEL) 

and log Euclidean likelihood (LEL) estimators. As noted by Imbens, et. al. (1998), the 

computation of solutions to EL type moment-constrained optimization problems can 

present formidable numerical challenges. From both a theoretical and practical 

standpoint, reliable and efficient solution algorithms are critically needed. Toward this 

end, we suggest an algorithm that performs well. 

In the context of finite sample situations where the instrumental variables (IV) are 

moderately well-correlated with the endogenous variables in question and the 

orthogonality condition between the IV and the structural equation noise holds, we seek 

information relative to the following questions: 



 3

i) Do empirical likelihood (EL) type estimators offer reductions in either small 
sample bias or variance relative to traditional OptEF-2SLS and non-optimal 
GMM estimators? 
 
ii) In terms of a mean square measure of estimator performance, are any of the 
EL-type estimators superior to the traditional semiparametric estimators? 
 
iii) In terms of inference in small samples, do EL-type testing procedures have, 
relative to traditional testing procedures, more accurate coverage, shorter 
confidence intervals, and/or test sizes that are closer to nominal target size? 
 
iv) What is the relative small sample performance of the traditional and EL-type 
inference procedures relative to testing the moment restrictions? 
 
v) What is the basis for a reliable and efficient solution algorithm for EL-type 
moment-constrained estimation problems? 
 

 The format of the paper is as follows: In Section 2 the linear structural model is 

defined and the competing semiparametric estimators and inference procedures are 

specified.  In Section 3 the design of the sampling experiment is presented and the 

alternative data sampling processes are defined. Monte Carlo estimation results are 

presented and discussed in section 4.  Conclusions, implications, and speculations are 

presented in section 5. 

 

2. Statistical Models, Estimators, and Inference Procedures 

Consider a single structural equation that is contained within a system of structural 

equations and that has the semiparametric linear statistical model form =Y Xβ + εεεε . We 

observe a vector of sample outcomes ( )1 2, , , ny y y ′=y �  associated with this linear 

model, where Χ  is a ( )n k×  matrix of stochastic explanatory variables, εεεε  is an 

unobservable random noise vector with mean vector 0 and covariance matrix 2
nσ I , and 

∈β B  is a ( )1k ×  vector of unknown parameters.  If one or more of the regressors is 
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correlated with the equation noise, then E 1n− ′� � ≠� �X 0εεεε  or plim 1n− ′� � ≠� �X 0εεεε  and 

traditional Gauss-Markov based procedures such as the least squares (LS) estimator, or 

equivalently the method of moments (MOM)-extremum estimator defined by 

mom
ˆ =ββββ ( )1arg n−

∈Β ′� �− =� �X Y Xβ 0ββββ , are biased and inconsistent, with unconditional 

expectation and probability limit given by ˆ� �Ε ≠� �β β  and plim ˆ� � ≠� �β β . 

2.1 Traditional Instrument-Based Estimators 

Given a sampling process characterized by nonorthogonality of X and εεεε , in order to 

avoid the use of strong distributional assumptions it is conventional to introduce 

additional information in the form of a ( ) ,n m m k× ≥ , random matrix Ζ  of instrumental 

variables whose elements are correlated with Χ  but uncorrelated with εεεε .  This 

information is introduced into the statistical model by specifying the sample analog 

moment condition  

 ( ) ( )
p

1, , ; n− ′= − →� �� �h Y Χ Ζ Ζ Y Χ 0β ββ ββ ββ β , (2.1) 

relating to the underlying population moment condition derived from the orthogonality of 

instruments and model noise defined by 

 ( )E ′ − =� �� �Ζ Y Χ 0ββββ   . (2.2) 

If m k= , the vector of moment conditions just-determine the model parameters, and the 

sample moments (2.1) can be solved for the basic instrumental variable (IV) estimator 

( ) 1
iv .ˆ −′ ′= Ζ Χ Ζ Yββββ  When the usual regularity conditions are fulfilled, this IV estimator is 

consistent, asymptotically normal distributed, and is an optimal estimating function 



 5

(OptEF) estimator (Godambe 1960; Heyde 1989; Mittelhammer, Judge, and Miller 

2000).  

For m k> , the vector of moment conditions overdetermine the model parameters 

and other IV-like estimation procedures are available, such as the well known two stage 

least squares (2SLS) estimator, � �
1

2 ,sls z zβ X P X X P Y�

� � �  where � �
1

zP Z Z Z Z�

� � �  is the 

projection matrix for .Z  This estimator is equivalent to the estimator formed by applying 

the optimal estimating function (OptEF) transformation � �� � � �
-1-1 -1n X Z Z Z Z X X Z Z Z� � � � �  

to the moment conditions in (2.2) (Godambe, 1960; Judge, et. al., 1985; Heyde and 

Morton, 1998). 

The GMM estimator (Hansen, 1982) is another estimator that makes use of the 

information in (2.2).  The GMM estimators minimize a quadratic form in the sample 

moment information 

 
( ) ( ) ( )( ) ( )( )

( ) ( )

1 1
nB B

2

B

ˆ arg min Q arg min n n

arg min n

− −

∈ ∈

−

∈

� �′′ ′= =� �� � � �� �

� �′ ′=
� �� �

β W β Ζ Y -Χβ W Ζ Y -Χβ

Y -Χβ ΖWΖ Y -Χβ

β ββ ββ ββ β

ββββ

. (2.3) 

The GMM estimator can be shown to have optimal asymptotic properties if the weighting 

matrix W is appropriately defined. The optimal choice of W in the context of moment 

conditions (2.2) leads back to the definition of the 2SLS-OptEF estimator. 

2.2 Empirical Likelihood (EL) Type Estimators 

 In contrast to traditional instrument-moment based estimators, the empirical 

likelihood approach (Owen, 1988, 1991, 2001; Qin and Lawless, 1994, Imbens, et. al. 

(1998), Corcoran, 2000, and Mittelhammer, Judge and Miller, 2000) allows the 

investigator to employ likelihood methods for model estimation and inference without 
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having to choose a specific parametric family of probability densities on which to base 

the likelihood function. Under the EL concept, empirical likelihood weights supported on 

a sample of observed data outcomes are used to reduce the infinite dimensional problem 

of nonparametric likelihood estimation to a finite dimensional one.   

2.2.1 Estimation 

 The constrained estimation problem underlying the EL approach is in many ways 

analogous to allocating probabilities in a contingency table where jw  and jq  are 

observed and expected probabilities.  A solution is achieved by minimizing the 

divergence between the two sets of probabilities by optimizing a goodness-of-fit criterion 

subject to the moment constraints.  One possible set of divergence measures is the power 

divergence family of statistics (Cressie and Read,1984; Read and Cressie,1988) 

 ( ) ( )

λ

=1

2, ,λ   1
λ λ+1

n
i

i
i i

wI w
q

� �� �
� �= −� �
� �	 
� �

�w q , (2.4) 

where λ  is an arbitrary unspecified parameter. In the limit as λ  ranges from -1 to 1, 

several estimation and inference procedures emerge.  

If in an instrumental variable context for the linear structural equation we use (2.4) 

as the goodness-of-fit criterion and (2.1) as the moment-estimating function information, 

the EL estimation problem can be formulated as the following extremum- type estimator: 

( ) ( ) ( )
n n

E i i . i i. i ii 1 i 1
ˆ arg max max I , , | w y , w 1, w 0 i,

= =

� �� �′= = − λ Σ − = Σ = ≥ ∀ ∈� �� �
	 
� �w

β β w q z x β β Bββββ 0000�

  (2.5) 

Three main variants of ( )I , ,λw q  have received explicit attention in the literature.  

Letting 0→λ  leads to the traditional empirical log-likelihood objective function, 
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( )1
i1

ln wn

i
n−

=� , and the maximum empirical likelihood (MEL) estimate of β .  When 

1λ → − , the empirical exponential likelihood objective function, ( )i i1
w ln wn

i=
−� , is 

defined and the Maximum Empirical Exponential Likelihood (MEEL) estimate of 

β results.  Finally, when 1λ = , the log Euclidean likelihood function 

� �� �1 2 2
1

1
n

ii
n n w�

�

� ��  is implied and leads to the Maximum Log Euclidean Likelihood 

(MLEL) estimate of β .   

 In the sense of objective function analogies, the Owen MEL approach is the closest 

to the classical maximum likelihood approach.  The MEEL criterion of maximizing 

( )i i1
w ln wn

i=
−�  is equivalent to defining an estimator by minimizing the Kullback-

Leibler (KL) information criterion ( )1
i i1

w ln w /n

i
n−

=�  (Kullback, 1959; Golan, Judge, 

and Miller, 1996). Interpreted in the KL context, the MEEL estimation objective finds the 

feasible weights ŵ  that define the minimum value of all possible expected log-likelihood 

ratios consistent with the structural moment constraints. The MLEL solution seeks 

feasible weights ŵ that minimize the Euclidean distance of w from the uniform 

probability distribution, the square of this Euclidean distance being 

� � � �1 1
n nn nw 1 w 1� ��

� � , where n1  denotes an 1n×  vector of unit values. All of the 

preceding estimation objective functions achieve unconstrained (by moment constraints) 

optima when the empirical probability distribution is given by 1
n n−=w 1 .  

If the optimization problem is cast in Lagrangian form, where αααα  and η  are 

Lagrange multipliers for the moment and adding up conditions respectively, then the 

constrained optimal 'iw s  for the MEL estimator can be expressed as 
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 � � � �� �
1

. ., 1i i i iw n yβ α α z x β
�

� �� � �� �� � , (2.6) 

and the constrained optimal iw ’s for the MEEL estimator can be expressed as

 � �
� �� �

� �� �

. .

. .
1

exp
,

exp

i i i
i n

j j j
j

y
w

y

α z x β
β

α z x β
αααα

�

�� �
�

�� ��
. (2.7) 

In the case of the MLEL estimator, the constrained optimal iw ’s can be expressed as 

� � � � � �� �
1

. ., , 2i i i iw n yβ α α z x βh h�

� � �� � . The Lagrange multiplier η  can be eliminated by 

solving the adding up condition � �n , , 11 w β α h ��  for η , yielding the expression 

� � � �� �1
. .1

, 2 �

�

� � �� �� α z x βn
i i ii

n yh α βα βα βα β , and then substitution into � �, ,iw β α h  yields 

 � � � � � � � �� �1 1
. . . .1

, 2 2
n

i i i i i i ii
w n y n yβ α α z x β α z x β�

�

�

� � � � �� � � �� . (2.8) 

 Under the usual regularity conditions assumed when establishing the asymptotics 

of traditional structural equation estimators, all of the preceding EL-type estimators of ββββ  

obtained by optimizing the iw ’s in (2.6), (2.7), or (2.8) with respect to ββββ , αααα , and/or η  

are, given the set of estimating equations under consideration, consistent, asymptotically 

normally distributed, and asymptotically efficient relative to the optimal estimating 

function (OptEF) estimator.  Calculating the solution to the MEL, MEEL, or MLEL 

estimation problem will generally require that a computer-driven optimization algorithm 

be employed.  When ,�m k  the solutions to all of the EL-type extremum problems lead 

back to the standard IV estimator 1ˆ with .iv iw nβ �

�  When ,�m k  the estimating 

equations overdetermine the unknown parameter values to be recovered and a nontrivial 

EL solution results. The solution to the constrained optimization problem (2.5) based on 
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any of the members of the Cressie-Read family of estimation objective functions yields 

an optimal estimate, ŵ  and β̂βββ , that cannot, in general, be expressed in closed form and 

thus must be obtained using numerical methods.  

2.2.2 Inference 

 EL-type inference methods, including hypothesis testing and confidence region 

estimation, bear a strong analogy to inference methods used in traditional ML and GMM 

approaches. Owen (1988, 1991) showed that an analog of Wilks’ Theorem for likelihood 

ratios, -2ln(LR) ~
a

2
jχ , hold for the empirical likelihood (MEL) approach, where j denotes 

the number of functionally independent restrictions on the parameter space. Baggerly 

(1998) demonstrated that this calibration remains applicable when the likelihood is 

replaced with any properly scaled member of the Cressie-Read family of power 

divergence statistics (2.4).  In this context, the empirical likelihood ratio (LR) for testing 

the linear hypothesis c rββββ �  when ( )rank j=c , is given for the MEL case by  

 � �
� �

� �

max . .
max

E
EL

E

s t
LR

β c r
y

β
ββββ

ββββ

ββββ�

�

� ��� ��  (2.9) 

where � �� � � �2ln ,0� Y �

a

ELLR Chisquare j  under Ho when .�m k  An analogous pseudo-

LR approach can be applied, mutatis mutandis, to other members of the Cressie-Read 

family.   One can also base tests of c rββββ �  on the Wald Criterion in the usual way by 

utilizing the inverse of the asymptotic covariance matrix of EL
ˆcββββ as the weight matrix of a 

quadratic form in the vector EL
ˆc rββββ � , or construct tests based on the Lagrange 

multipliers associated with the constraints c rββββ � imposed on the EL-type optimization 

problem. Confidence region estimates can be obtained from hypothesis test outcomes in 
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the usual way based on duality. The validity of the moment conditions (2.1)-(2.2) can be 

assessed via a variation of the preceding testing methodology. We provide further details 

ahead regarding the empirical implementation of inference methods. 

2.3.  Test Statistics   

Two different types of inference contexts are examined in this paper, including testing the 

validity of the moment constraints, and testing hypotheses and generating confidence 

intervals for parameters of the structural model.  

2.3.1 Moment Validity Tests 

Regarding the validity of the moment restrictions, Wald-type quadratic form tests, often 

referred to as Average Moment Tests, are calculated for all five estimators. The Wald test 

statistics are specified as 

� �� �� � � �� � � �� � � �� �� �n n

1
ˆ ˆ ˆ ˆWald

�

� �
� �� � � � �

� �
� �� �

1 Z Y X Z Y X Z Y X 1 Z Y Xβ β β ββ β β ββ β β ββ β β β� � � �  (2.10) 

where β̂βββ  is any one of the five different estimators of theββββ  vector, and �  denotes the 

generalized Hadamard (elementwise) product operator. Under the null hypothesis of 

moment validity, the Wald statistic has an asymptotic Chisquare distribution with degrees 

of freedom equal to the degree of overidentification of the parameter vector, i.e., m-k.  

 Pseudo Likelihood Ratio (LR) -type tests of moment validity, referred to as 

Criterion Function Tests by Imbens, Spady, and Johnson (1998, p.342), are also 

calculated for the three EL-type procedures. The respective test statistics for the MEEL 

and MEL procedures are � �2 'ln( ) ln( )� �w wEELLR n n  and � �2 'ln( ) ln( )� � �1 wEL nLR n n .  
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In the case of MLEL, the pseudo-likelihood ratio statistic is derived as a special case of 

the generalized empirical likelihood (GEL) class of procedures identified by Newey and   

Smith (2000, p. 8) given by   

 � �� �1 2
n 1

2 2
21 1

n
LEL ii

LR n n n n w1 Z Y - X ααααββββ�
h h

�

�

� � � �� �� � � �
� � � ��� 	 � 	
 �� 	 � 	� 
 � 
� 	� � � 
� 


�  (2.11) 

Since LEL LELLR Wald≡ , we later report on the performance of only one version of this 

particular test. The w weights, ββββ  vector, and Lagrange multipliers αααα  and η  appearing in 

the LR test statistics are replaced by the respective EL-type estimates. All of the pseudo 

LR -type test statistics follow the same asymptotic Chisquare distribution as for the Wald 

statistics of moment validity. 

 The final set of moment validity tests are based on the Lagrange multipliers of the 

moment constraints. In the case of the EEL-type test statistic, we examine the following 

quadratic form in the Lagrange multiplier vector that incorporates a robust estimator of 

the covariance matrix of the moment constraints,  

� �� � � � � �� � � �� � � �� � � �
1

EELLM n h w h h w h w h w hα β β β β β β αα β β β β β β αα β β β β β β αα β β β β β β α� � � �

�

� � � � � �� � �� � � � � � � �� � � � � �
  (2.12) 

where � � � �� �� �h Z Y X�β ββ ββ ββ β  and w, αααα  and ββββ  are estimated on the basis of the MEEL 

method. In the case of the MEL and MLEL methods, we instead utilize LM tests that are 

based on equivalences with GEL tests implied by the asymptotic results of Newey and 

Smith(2000, p. 8). Both of these LM tests are based on the statistic 

( )LM n ′ ′= −
-

G VG−1 −1 −1−1 −1 −1−1 −1 −1−1 −1 −1α Ω Ω Ω αα Ω Ω Ω αα Ω Ω Ω αα Ω Ω Ω α       (2.13) 
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where ( )( ) ( )( )1n− ′≡ − −Z Y X Z Y XΩ β βΩ β βΩ β βΩ β β� � ,  1 ,n− ′≡G X Z   ( ) 11 −− ′≡V G GΩΩΩΩ and the 

values of ββββ  and αααα  are replaced by either MEEL or MLEL estimates. Under the null 

hypothesis, all of the LM tests are asymptotically Chisquare distributed with degrees of 

freedom equal to m-k. 

2.3.2  Tests of Parameter Restrictions 

A test of the significance of the parameters of the structural model is conducted based on 

the usual asymptotic normally distributed Z-statistic and concomitantly, by duality, the 

accuracy of confidence region coverage of the parameters is examined. The test statistic 

for all of the estimation procedures examined has the familiar form 

  
� � �

0

ˆ
~ (0,1) : 0ˆ� �

a
i

i

i

Z N under H
std

b b
b

,    (2.14) 

and the associated confidence interval estimate is � � � � � �� �ˆ ˆ ˆ ˆ,� �i i i iz std z stdt tb b b b   

where zt  denotes the 100t % quantile of the standard normal distribution. In (2.14) 

� � �ˆ ˆ
i iand stdb b are the appropriate estimates of the parameter and the estimated standard 

error of the estimate based on one of the five alternative estimation procedures. The 

respective estimates of the standard errors used in the test and confidence interval 

procedures were obtained as the square roots of the appropriate diagonal elements of the 

asymptotic covariance matrices of the B2SLS-OptEF, GMM(I), and the EL-type 

estimators defined respectively as  

� �� �
1-12

2
ˆ ˆ( )slsAsyCov X Z Z Z Z XΒΒΒΒ s

�

� � � � ,     (2.15) 

  � � � �� �� �
1 12

( )
ˆ ˆ( ) � �

� � � � � � � �X ZZ X X Z Z Z Z X X ZZ XGMM IAsyCov sΒΒΒΒ ,  (2.16) 
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and  

� �� � � �� �� � � �� � � �

11

ˆ ˆ ˆˆ ˆ ˆ( )EL typeAsyCov X Z w Z Y X w Z Y X Z w XΒ Β ΒΒ Β ΒΒ Β ΒΒ Β Β� � � � �
�

�

�� �� �� � ��� �� 	 	� � � 
 �� �� �� 
� 

 
           (2.17) 
 

where 2ŝ is the usual consistent estimate of the equation noise variance, and  ŵ and Β̂ΒΒΒ  

are the appropriate estimates obtained from applications of the MEEL, MEL, or MLEL 

estimation procedure. 

2.4 Computational Issues and Approach 

As noted by Imbens, Spady, and Johnson (1998), the computation of solutions to EL-type 

constrained optimization problems can present formidable numerical challenges 

especially because, in the neighborhood of the solution to such problems, the gradient 

matrix associated with the moment constraints will approach an ill-conditioned state. This 

occurs by design in these types of problems because the fundamental method by which 

EL-type methods resolve the overdetermined nature of the empirical moment conditions, 

( )
n

i i . i i.i 1
w y

=
′Σ − =z x β 0000 , is to choose sample weights that ultimately transform the m 

moment equations into a functionally dependent, lower rank (k< m) system of equations 

capable of being solved uniquely for the parameters. This creates instability in gradient-

based constrained optimization algorithms regarding the representation of the feasible 

spaces and feasible directions for such problems. Moreover, attempting to solve the 

optimization problems in primal form is complicated by the dimensionality of the 

problem, where there are as many iw  sample weights as there are sample observations, 
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and requires that explicit constrained optimization methods be used to enforce the 

moment conditions and the convexity properties of the sample weights. 

Given these complications, Imbens, Spady and Johnson found it advantageous in 

their EEL and EL simulations to utilize a dual penalty function method for enforcing the 

moment constraints, whereby a penalty-augmented objective function is optimized within 

the context of an unconstrained optimization problem. While their penalty-function 

approach appeared to perform well for the range of applications that were examined in 

their work, the algorithm failed (non-convergence) too frequently when applied to the IV-

based moment constrained problems examined in this paper.  

 The computational approach utilized in this work for solving the EL-type 

problems consisted of concentrating out the Lagrange multiplier vector and scalar, αααα  and 

η , from the EL-type optimization problems, expressing αααα  and η  as a function of the ββββ  

vector (in the case of MEEL and MEL, the optimal η  is simply the scalar 1). The actual 

process of concentrating out the Lagrange multipliers cannot be accomplished in closed 

form, requiring a numerical nonlinear equation solving procedure, but solving the system 

of equations proved to be quite stable and efficient .  Then the resulting concentrated 

Lagrange representations of the EL-type estimation problems were optimized with 

respect to the choice of ββββ , leading to the parameter estimates. 

 More specifically, in the first step of the computational procedure the Lagrange 

multiplier vector αααα  was expressed as a function of ββββ  by utilizing the empirical moment 

conditions and the weight representation (2.6)-(2.8) for the vector ( ),w β αβ αβ αβ α  as 

 ( ) ( )( ) ( )arg ,� �′≡ =� �� �
Z Y - X w 0ααααα β β β αα β β β αα β β β αα β β β α� .     (2.18) 
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The solution to (2.18) was determined numerically using the NLSYS nonlinear equation 

solver in the GAUSS mathematical programming language (Aptech Systems, Maple 

Valley, Washington, Version 3.6). Regarding the Lagrange multiplier h , the first order 

conditions for either the MEL or MEEL estimation problems imply that � � 1ββββh � . In the 

case of the MLEL problem, � �ββββh  can be defined by substituting the value of � �α βα βα βα β  

obtained from (2.18) into the definition of � �,h α βα βα βα β  that precedes (2.8), yielding 

� � � � � �1
. .1

2
n

i i ii
n yα z x ββ ββ ββ ββ βh �

�

� ��� � ��� �� .     (2.19) 

In the second step relating to optimization, the concentrated Lagrange function 

can be represented as 

� � � �� � � � � �� �

� �� �� � � � � �� � � � � � � �� �

*

. .
1 1

, ,

1
� �

�

� ��� � � � �� � �� 	� �

w α α

w α α α z x β α

β β, β β, β ββ β, β β, β ββ β, β β, β ββ β, β β, β β

β, β β β, β β β, ββ, β β β, β β β, ββ, β β β, β β β, ββ, β β β, β β β, β
n n

i i i i i
i i

L L

w y w

h

f h
 

           (2.20) 

The value of � �*L ββββ  is then optimized (maximized for MEL, minimized for MEEL and 

MLEL) with respect to the choice of ββββ , where ( )φ �  can also denote any of the estimation 

objective functions in the Cressie-Read family. The algorithm used to accomplish the 

optimization step was based on a Nelder-Meade polytope-type direct search procedure 

written by the authors and implemented in the GAUSS programming language (Nelder 

and Mead,1965; Jacoby, Kowalik, and Pizzo,1972; and Bertsekas,1995) using the values 

.5, .5, and 1.1, respectively, for the reflection, contraction, and expansion coefficients. 

The Nelder-Meade approach is especially well-suited for this problem because it requires 

only that the function itself be evaluated at trial values of the ββββ  vector, and does not 
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require calculation of the numerical derivatives of the first or second order used by 

gradient-based search algorithms, which were inaccurate and unstable in the current 

context. 

 
3.  Design of Sampling Experiments  

The finite sample properties of the EL-type estimators and associated inference 

procedures delineated in section 2 cannot be derived from a direct evaluation of closed 

functional forms applied to distributions of random variables. Moreover, the finite sample 

probability distributions of the traditional 2SLS and GMM estimators are also generally 

intractable. Consequently, we use Monte Carlo sampling experiments to examine and 

compare the finite sample performance of competing estimators and inference methods. 

While these results are specific to the collection of particular Monte Carlo experiments 

analyzed, the wide ranging sampling evidence reported does provide an indication of the 

types of relative performance that can occur over a range of scenarios for which the 

unknown parameters of a model are moderately well-identified.  

3.1 Experimental Sampling Design 

Consider a data sampling process of the following form: 

 1 1 1 2 2 . εX βi i i i i iY Z Y eβ β= + + = +  (3.1) 

 5
2 .1i j ij i i ij

Y Z v vπ
=

= + =� Z π +π +π +π +  (3.2) 

where ( )i. 1 2, ,i iZ Y=X  and 1, 2,...,i n= .  In the sampling experiment, the two-dimensional 

vector of unknown parameters, β , in (3.1) is arbitrarily set equal to the vector [ ]1, 2 .′−  

The outcomes of the ( )6 1×  random vector [ ]2 1 2 3 4,ε , , , ,i i i i i iY Z Z Z Z  are generated iid from 
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a multivariate normal distribution with a zero mean vector and standard deviations 

uniformly set to 5 for the first two random variables, and 2 for the remaining random 

variables and 5 1, .iZ i≡ ∀  Also various other conditions relating to the correlations among 

the six scalar random variables were assumed.  The values of the π j ’s in (3.2) are 

determined by the regression function between 2iY  and [ ]1 2 3 4 5, , , ,i i i i iZ Z Z Z Z , which is 

itself a function of the covariance specification relating to the marginal normal 

distribution associated with the ( )5 1×  random vector 2, 1 2 3 4, , , .i i i i iY Z Z Z Z� �� �  Thus the jπ ’s 

generally change as the scenario postulated for the correlation matrix of the sampling 

process changes.  In this sampling design, the outcomes of [ ]1,i iY V  are then calculated by 

applying the equations (3.1-3.2) to the outcomes of 2, 1 2 3 4 5, , , , .i i i i i iY Z Z Z Z Z� �� �  

3.2 Sample Characteristics and Outcome Basis 

Regarding the details of the sampling scenarios simulated for these Monte Carlo 

experiments, sample sizes of n  = 50, 100 and 250 were examined. The outcomes of εi  

were generated independently of the vector [ ]1 2 3 4, , ,i i i iZ Z Z Z  so that the correlations 

between εi  and the 'ijZ s  were zero, thus fulfilling a fundamental condition for 

[ ]1 2 3 4, , ,i i i iZ Z Z Z  to be considered a set of valid instrumental variables for estimating the 

unknown parameters in (3.1).  Regarding the degree of nonorthogonality and 

identifiability in (3.1), correlations of .25, .50, and .75 between the random variables 2iY  

and εi  were utilized to simulate moderately, to relatively strongly correlated-

nonorthogonality relationships between the explanatory variable 2iY and the equation 

noise εi .   
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For each sample size, alternative scenarios were examined relating to both the 

degree of correlation existing between each of the random instruments in the matrix Z 

and the Y2 variable, and the levels of collinearity existing among the instrumental 

variables themselves. By varying the degrees of intercorrelation among the variables, the 

overall correlation of the instrumental variables with Y2 is effected, and contributes to 

determining the overall effectiveness of the set of instruments in predicting values of the 

endogenous Y2.  The joint correlation between Y2 and the set of instruments range from a 

relatively low .25 to a relatively strong .68.  

The major characteristics of each sampling scenario are delineated in Table 3.1.  

Table 3.1  Monte Carlo Experiment Definitions, with [ ]′β = −1, 2β = −1, 2β = −1, 2β = −1, 2 , 

i 2i ijY Z5, 2,ε =σ = σ σ = ∀and i and j = 1,...,5 . 
Experiment 

Number 2i iy ,ερ
2i i,1y ,zρ  

2i ij ; j 1y ,z >ρ
ij ikz ,zρ

1 1

2
ˆY ,YR  

2 2

2
ˆY ,YR  

1 .25 .25 .25 0 .84 .25 
2 .25 -.25 .25 .5 .86 .40 
3 .50 .25 .25 0 .89 .25 
4 .50 -.25 .25 .5 .90 .40 
5 .75 .25 .25 0 .95 .25 
6 .75 -.25 .25 .5 .94 .40 
7 .50 .1 .5 .25 .89 .53 
8 .50 .1 .5 .5 .89 .50 
9 .50 .1 .5 .75 .89 .68 
10 .50 .5 .1 .75 .89 .53 

Note: 
2i iy ,ερ denotes the correlation between Y2i and ei, and measures the degree of nonorthogonality; 

2i ijy ,zρ denotes the common correlation between Y2i and each of the four random instrumental variables, 

the Zij’s; 
ij ikz ,zρ denotes the common correlation between the four random instrumental variables; 

1 1

2
ˆY ,YR denotes the population squared correlation between 1Y and 1

ˆ =Y Xββββ ; and 
2 2

2
ˆY ,YR  denotes the 

population squared correlation between 2Y and 2
ˆ =Y Zππππ . 

 
In general, the scenarios range from relatively weak but independent instruments to 

stronger but more highly multicollinear instruments. All models have a relatively strong 
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signal component in the sense that the squared correlation between the dependent 

variable Y1 and the explanatory variables � �.1 2,Z Y ranges between .84 and .95. In total 

there are 10 different MC experimental designs in combination with the three different 

sample sizes, resulting in 30 different sampling scenarios in which to observe estimator 

and inference behavior.   

 The sampling results, reported in section 4, are based on 5000 Monte Carlo repetitions, 

which was sufficient to produce stable estimates of the empirical mean squared error 

(MSE), expressed in terms of the mean of the empirical squared Euclidean distance 

between the true parameter vector β  and β̂  (measuring parameter estimation risk), the 

MSE between y with ŷ  (measuring predictive risk), the average estimated bias in the 

estimates, Bias ( )β̂  ˆE[ ]- ,= β β  and the average estimated variances, ( )i
ˆVar β . 

Regarding inference performance, we:  i) compare the empirical size of ten 

alternative tests of moment equation validity with the typical nominal target size of .05,  

ii) examine the empirical coverage probability of confidence interval estimators based on 

a target coverage probability of .99,  iii) compare the empirical expected lengths of 

confidence intervals, and iv) examine power of significance tests associated with the 

different estimation methods. 

 

4.  Monte Carlo Sampling Results 

The results of the estimation and inference simulations are presented in this section. We 

report MSE results for the entire parameter vector ββββ , but limit our reporting of bias, 

variance, hypothesis tests and confidence region estimation performance to the structural 
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parameter 2�  and note that the results for the remaining structural parameter were 

qualitatively similar. Tables containing the detailed simulation results are available from 

the authors. 

4.1   Estimator MSE Performance 

The simulated mean squared errors associated with estimating the ββββ  vector are 

presented in Figure 1, where results are expressed relative to the MSE of the 2SLS 

estimator and scenarios are numbered sequentially to repeatedly represent the 10 

sampling scenarios in Table 3.1 for each of the sample sizes 50, 100, and 250. A number 

of general patterns are evident from the MC results.  First of all, the 2SLS estimator 

Figure 1. Parameter Vector Relative MSE
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dominates the other four estimators in terms of parameter MSE, with the exception of the 

smallest sample size and scenario 5, in which case the MEEL estimator is marginally 

superior to all others. Second, the MSEs of the GMM(I) estimator are very close to the 
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MEEL estimator  across all scenarios, but MEEL is actually MSE superior to GMM(I) in  

only a few cases.  Third, there is a general order ranking of the MSEs of  the EL-type 

estimators whereby generally MSE(MEEL) < MSE(MEL)< MSE(MLEL). However, 

differences in MSE performance among these estimators is small at n = 100 and 

practically indistinguishable at n = 250. Fourth, the MSE differences between all of the 

estimators dissipate as the sample size increases, with the differences being negligible at 

the largest sample size (n = 250).  

4.2. Bias and Variance  

Empirical bias and variance results for the estimators of 2�  are presented in Figures 2 

and 3. Again some general estimator performance patterns emerge. First of all, the EL-

type estimators, as a group, generally tend to be less biased than either the 2SLS or GMM 

estimators, but the EL estimators also tend to exhibit more variation than the traditional 

estimators. These performance patterns are especially evident for the small sample size (n 

= 50). Second, volatility in bias across MC scenarios is notably more pronounced for 

2SLS and GMM than for the EL estimators, while just the opposite is true regarding 

volatility in variance measures across MC scenarios. Again this performance pattern is 

notably more pronounced at the smallest sample size than for the larger sample sizes. 

Third, regarding comparisons among EL-type estimators, the MEEL estimator tends to be 

the least variable among the three EL alternatives, with the ranking of variability tending 

to be in the order var(MEEL) < var(MEL) < var(MLEL). The ranking of relative bias 

performance among the EL estimators is less distinct, where especially for the smallest 

sample size, each of the EL–type estimators exhibits least bias for at least one MC  
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Figure 2. Bias in Estimating B2 = 2
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Figure 3. Variance in Estimating B2 = 2

0.0000

0.0250

0.0500

0.0750

0.1000

0.1250

0.1500

0.1750

0.2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

MC Scenario

Em
pi

ric
al

 V
ar

ia
nc

e 

EEL EL LEL GMM 2SLS

 



 23

scenario. For larger sample sizes the MEEL estimator more often than not has the 

smallest bias, but again there are exceptions for some scenarios, and in any case the bias 

of all of the EL-type estimators tends to be small, bordering on inconsequential for most 

of the scenarios when sample sizes are n = 100 or larger. Fourth, for the largest sample 

size (n = 250), both bias and variance tends to be quite small for all of the estimators 

considered, although in a relative sense, the traditional estimators continued to have 

notably larger bias for most scenarios than any of the EL-type estimators. 

4.3.  Prediction MSE 

Judged in the context of generating predictions closest in expected Euclidean distance to 

actual dependent variable outcomes, the 2SLS and GMM estimators were notably 

superior to the EL-type estimators across the majority of sampling scenarios, and in any 

case were never worse.  On the other hand, if one intended to use estimated residuals to 

generate an estimate of the model noise variance, the EL-type methods exhibited MSE 

measures that were closer in proximity to the true noise variance of 2 25σ = . Among the 

EL-type methods, the general rank ordering of prediction MSE was MSE(MEEL) < 

MSE(MEL)< MSE(MLEL). 

4.4. Size of Moment Validity Tests 

Figure 4 presents empirical sizes of the 10 different tests of moment validity decribed in 

section 2.3. The target size of the test was set to the typical .05 level, and when n = 250 

all of the test are generally within ± .01 of this level across all MC scenarios. However, a 

number of the test procedures, most notably the LR tests for MEEL and MEL, the LM 

test for MEL, and to a lesser extent the Wald-Average Moment Test for 2SLS and GMM, 

are erratic and notably distant from the target test size when n = 50. The most consistent  
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Figure 4. Size of Moment Validity Test, Target = .05 
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suite of tests in terms of average proximity to the true test size across MC scenarios  were 

the Wald-Average Moment Tests for all three of the EL-type estimators. In addition the 

LM tests in the case of MEEL and MLEL was reasonably accurate when  100n ≥ . As 

noted in the literature, for a subset of the scenarios, the size of the tests based on the 

traditional 2SLS and GMM methods were substantially distant from target size.  

4.5 Confidence Interval Coverage and Expected Length 

 Figure 5 displays results relating to the empirical coverage probability of 

confidence intervals for the 2β  parameter, where target coverage is .99. Except for two 

scenarios involving the 2SLS and GMM methods, all of the confidence intervals are 

generally within .01 of the target coverage for the large sample size of n = 250. Again 

with the preceding two exceptions noted relating to the traditional estimators, coverage is 



 25

Figure 5. Confidence Interval Coverage Probability for B2, Target = .99
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generally within .03 of target for the sample size of n = 100. Coverage degrades 

significantly for the small sample size n = 50, with the traditional estimators generally 

having better coverage, although they also exhibit demonstrably the worst coverage 

performance for two sampling scenarios. Moreover, the traditional methods 

exhibited more volatility across MC scenarios than EL-methods. We note that the 

coverage results observed for the EL-methods is consistent with other observations in the 

literature that the EL-type methods consistently underachieve target coverage probability 

under the asymptotic Chisquare calibration (Baggerly, 2001). In the large majority of 

cases, the traditional inference procedures also underachieved target coverage. 

 In the case of expected confidence interval length, a clearer relative performance 

pattern was apparent. In particular, the general relative ranking of CI length among the 

five alternative estimators was given by the following ordering of empirical average 
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lengths: CI(MEEL) < CI(MEL) < CI(MLEL) < CI(2SLS) < CI(GMM). As expected, 

differences in length were most pronounced at the smallest sample size, in some cases 

exceeding 15%, but differences dissipated to effectively negligible levels when n = 250. 

4.6. Test Power 

All of the test procedures exhibited substantial power in rejecting the false null 

hypothesis 2: 0oH β = , where all rejection probabilities were in the range of .92 or 

higher. Among the EL-type methods, the relative power performance ranking was 

P(MEEL) > P(MEL) > P(MLEL).  When comparing power performance to traditional 

methods, it was generally the case that 2SLS resulted in the most test power, followed by 

either MEEL or GMM, depending on the scenario, although the powers of the latter two 

procedures were in any case always very close to each other. The differences in power 

dissipated substantially for the higher sample sizes, and when n = 250, there was 

effectively no difference in power between any of the procedures, with all procedures 

achieving the ideal power of 1. 

 

5. Some Final Remarks 

 In statistical models consisting of linear structural equations, the 2SLS and GMM 

estimators have long been the estimator of choice when the number of moment 

conditions-IV variables exceeded the number of unknown response parameters in the 

equation in question.  Both the 2SLS and GMM estimators solve the problem of over-

identification by defining particular rank-k linear combinations of the moment 

conditions.  In contrast the nontraditional EL-type estimator transforms the 

overdetermined moments problem into a set of equations that is solvable for the model 
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parameters by imposing a functional dependence on the moment equations through the 

choice of sample observation weights. Although both the traditional and EL-type 

estimators perform well in terms of first order asymptotics, questions persist as to their 

small sample bias and variance performance in estimation, and their coverage, interval 

width and power characteristics in terms of inference.  

 Given these questions and corresponding conjectures that appear in the literature, 

in this paper we provide some empirical evidence concerning the sampling performance 

of 2SLS, GMM and EL-type methods by simulating a range of sampling processes and 

observing empirical sampling behavior of the estimators and associated inference 

procedures. While MC sampling results are never definitive, the base results presented in 

this paper provide insights into the relative sampling performance of different types of 

general moment based estimators for a range of data sampling processes.  Some distinct 

and interesting estimation and inference properties that we observed and did not know 

prior to our study are:  

i)   The EL-type estimators tend to exhibit less bias and more variance than the 

traditional estimators. 

ii)  In terms of MSE the 2SLS estimator wins almost all competitions.  At a 

sample size of 100 or more, the estimators exhibit similar performances. 

iii)  In terms of accurate size of moment tests, the EL-type inference methods are 

superior, based on the average moment (or Wald) statistics, across all sample 

sizes.  For sample sizes of 100 or more the LM tests also do reasonably well, 

especially in the case of MEEL and MLEL, and for a sample size of 250 all of 

the moment tests are in the neighborhood of the correct size. 
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iv)   On confidence interval coverage, the traditional estimators perform 

somewhat erratically across differing data sampling processes until the highest 

sample size is reached.  The EL-type methods are similar to each other in 

interval coverage performance, and exhibit a more orderly convergence to the 

correct coverage. 

v)  Test power for significance tests is very high for a sample size of 100 and is 

essentially 1 and ideal across all significance tests for sample size 250. 

vi) A combination of concentrating out Lagrangian multipliers via numerical 

nonlinear equation solving algorithms, and then optimizing the concentrated 

optimization problem based on a non-gradient driven, direct search polytope 

(Nelder-Meade) type optimization algorithm appears to be a tractable and 

computationally efficient method for calculating solutions to EL-type problems 

in the IV-based moment constraint setting. 

 

Many of the results appear reasonable and consistent with the limited amount of 

previous finite sample results (Mittelhammer and Judge, 2001a,b) and speculations in the 

literature relating to applications of EL-type estimators to structural equation estimation. 

The different pseudo-distance measures optimized by the trio of EL-type methods result 

in differing sampling performances for the varying estimator and test statistics, and those 

preferring a particular pseudo-distance measure will no doubt still be able to rationalize 

why their choice was not superior for a particular estimation or inference comparison. 

However, it is striking that none of the EL-type methods was found to be a compelling 
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alternative to the ubiquitous 2SLS approach for parameter estimation, and there was only 

limited cases where the EL-type methods exhibited competitive inference properties.  

Speculating further about the observed results, both the 2SLS and EL-type 

methods begin with the same ill-posed, over-identified set of moment conditions but 

transform them in differing ways into well-posed systems of equations that are solvable 

for the parameters. The 2SLS approach applies an optimal (in the optimal estimating 

function, OptEF, sense) linear transformation to the moment conditions that has a unique 

solution. This OptEF transformation can be derived analytically, its functional form is 

completely known, and it does not depend on any of the ββββ  or 2σ  to be estimated. Even 

though the unknown variance parameter 2σ  does appear in the explicit OptEF 

transformation, it is a scale factor that is redundant and can be eliminated when the 

optimal transform matrix is applied. On the other hand, the EL-type methods introduce n 

additional unknown parameters in order to resolve the overdetermined nature of the 

moment equations. These parameters must be estimated from the data, and act as slack 

variables that scale the sample observation components of the moment conditions to 

define a functionally dependent set of equations with rank equal to the dimension of the 

ββββ  parameter vector.  The particular set of transformed moment conditions that is solved 

for ββββ  in EL-type methods is, in a sense, arbitrarily determined by an arbitrary choice of 

pseudo-distance measure (some member of the Cressie-Read family), and an optimal 

choice for finite samples, if it exists at all, is a measure zero set. Thus, it is to be expected 

that almost all EL-type methods are suboptimal in the class of estimating function-type 

estimators. 
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Looking towards future research, there are several ways to extend the empirical 

evidence concerning the performance of EL type estimators in recovering unknown 

response parameters in structural equations.  We and others have noted that confidence 

regions generated by EL-type distance measures using 2χ  calibrations consistently under 

cover.  Baggerly (2001) has suggested forming empirical regions through the use of a 

studentization of the moment constraints.  Studentizing permits an escape from the 

convex hull of the moment data observations and may yield more accurate inferences in 

small samples. 

 It would be interesting to extend performance questions to data sampling processes 

that involve non-normal, non-symmetric distributions.  Here the EL methods may exhibit 

improved performance because the moment information obtained from non-symmetric 

and/ or improperly centered distributions may be better accommodated by the flexible 

data weights available within the EL framework   However, the answer is not clear 

because EL may attain smaller levels of bias, but at the expense of increased variance. 

  One interesting alternative data sampling process would be a statistical model in 

which Y is a discrete random variable. Based on preliminary work, we speculate that the 

use of EL- type estimators would perform well relative to semi-parametric alternatives in 

terms of quadratic loss. 

 Finally, in pursuit of achieving finite sample reductions in mean squared error, it is 

useful to consider, in a semi-parametric Stein-type of way, a mixture estimator that 

combines a consistent estimator having questionable finite properties, with an estimator 

that is inconsistent but has small finite sample variability.  Such an estimator, which 
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utilizes an EL-type moment formulation, has been proposed by Mittelhammer and Judge 

(2001c) and is currently under further evaluation. 
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