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- ABSTRACT

‘A technique for the solufioﬁ»of the Helmholtz equation together
with associated boundary conditions‘is described. This.method is based
on a generalization of that used for the solutionvof the Dirichlet
problem of potential theory, in which a dipole distribution is

introduced on the boundary of a region to generate”the potential

inside. lnvorder that the boundary conditions be satisfied, the

distribution must be found as the solution of an‘integral equation.
If the bOunﬁary:is smooth, the equation is’of.Ffedholm type, but if it
has a corner the equation is singular.

The method is 1llustrated by applying it to'a circular boundary,
in which'ease the treatment can be given analytically. Then the
problem of a sharp corner‘is enalyzed, and properties of the solution
are developed using the theory of singular integral equations. A few

results are given for the numerical evaluatlon of elgenvalues of the

Laplacian for some polygonsvwhich can also be solved analytically.
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I. INTRODUCTION
.Ip dealing with a wide variety of physicalvwave phenomena, one
is often faced with the problem of finding a wave motion in a mediﬁm
which is inhomogeneous overall, or has finite boundaries, but in which ) - .
thé medium is localiy homogeneous and has finite disébntinuities
across various boundaries. In such cases one mﬁs£ typically find a

solution to the equation
2 >y '
(F +6°) V@) = o, (1)

where Ky will be a different constant in eacﬁ region, i, togéther
with certain matching conditions for ¥ at the boundaries of the
‘region. |
Aside from a fevlr special cases which can be trea?r‘.éd analyt-
ically,‘sﬁch problems mﬁst be solved numerically, uéually with the aid
of avhigh-speed computer. Commonly applied techniques Qf wide
applicability in such calculations are the finife'difference and finite
element techniques. The former directly épproximates the derivatives
in Eq. (1) by finite differences, and the latter is best based on a
Lagrahgian ﬁariational principle from Whiéh Eq.v(l) can be deduced.
These techniques ére generally applicable, independently of whether
subregions are homogeneoﬁs or ﬁot. On the other hand, although boundary
conditions at finite distances are'easily tréated, boundary conditions S
"at infinity" which arise in scattering problems are difficult to |
impose.
In this paper we consider a different method for the solution

of such problems which is closely related to the classical solution of

the Neumann and Dirichlet problems of potential theory. In this
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technique, the solution of Eq; (1).in a given region is achieved by
the introduction of a dipole distribution on the beundary of.that
region. The boundary conditions can then be determined iﬁ terms'of
that‘distribution and one ie led to integral equations for ﬁhe boundary
condition which must be solved. The method has two immediate adven-
tages over the previousl& noted methods: 1. boundary conditions "at
infinity" are easily introduced; and, 2. it is only necessary to |
consider points on the boundary to obtain the solution, thereby
reducing the dimensionality of the problem by one. The storage
requirements for a computer can thereby be reduced signif{cantly.. On
the other hand, the method does have the disadvantzge that the matrices
which are generated have relatiyely few nonzero elemeﬁts as compared
to the former techniques which can have a small "band-width," and the
elements of the matrices typically require calculation of more
complicated functions. It is also true, of-course, that the boundary
distribution method can only be applied if individuai regions_are
homogeneous. Thus for differing problemsvdifferent techniques may be
most efficacious. Although we believe that the method can be developed
for use in three-dimensional problems, in this paper we will only
consider the two-dimensional case, so that we will deal with a one-
dimensienal distribution on the boundary.

In Section Ii of this paper we will develop the general
integral equation to which the boundary method leads; In Section III,
we'apply the technique to a simple but illuminating example which can
be treated analytically. This eese, in which:the boundary is a circle,
leads to an integral equation in which the kernel is completely

continuous. On the other hand, we would like to apply the method to
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" boundaries which have sharp corners, and in this,case the_integral
equation is singular. Thus in Sectibn IV we develop the necessary
mathematical analysis for dealing with such cases. Finally, in |
Section V to illustrate the method we give results for the numerical
determination of eigenmodes for a few two-dimensidnal polygons which
have aﬁalytically khown eigenfunctions, though the bouhdary dis-
tributions are not so known. From these results, it is easily seen
thét application of the method is quite feasible.gnd can give good

resultsf

IT. .THE DIPOLE DISTRIBUTION INTEGRALYEQUATION
The famous Dirichlet problem of potentialutheory is the
determination of a solution of Laplace'é‘equation in a region in which
the potential takes a given value on the boundary. This problem has
been solved for the inside of a closed region by the introduction of
a Green’s_fﬁnction and a continuous dipole distfibution on the'boundary.

Thus, one writes

p(r) =

D(Z') Vo, B )-aar. 2)

In this expression D(¥) is the dipole distribution at 1,6(%,7') is the
potenti;l at _; owing to a unit charge at ;', and do' is the surface
element directed along the outward normal. The integfal is carried
over the surface SV which encloses the wvolume V; and ¢(;) is

thereby determined throughout V. In the two-dimensional case, in which

we shall be interested in this paper, ' .

o, F') = Z1og -7, (3)
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and of course V becomes an area, and- SV .its bounding contour. The
‘solution of the Dirichlet problem 1s then reduced to finding the

solution of an integral equation for D(T).

If we introduce the G(;, ;') of Eq. (3) into Eq. (2), we

find:
e - A b ey Eofas
en oo ;!2
SV

This expreésion woul@ be useful for determining the potential at
internal.points of the region V , but if one wishes f(r) on the
boundary the 1limit must be taken from the inside, since the ¢(;)
obtained from this expression isrdiscontinuous across the boﬁndary.

In the 1limit in which ; approaches a point on the boundary where it

is smooth, one can write

: - plr - r' - 1)-dd"
w @ - 2B .p o) Loox)d
r—+S QnH’—rf
v | 5
\

In this relation, the integrand is in general singular as ' - T but
the integral can be defined as a principal value integral. If the side
containing ; is straight, the contribution from ﬁhat side will vanish
and the integral is then regular, but in any case, if the boundary

satisfies a Liapunov smoothness condition, it can then be shown that

the integral is in fact well-defined as a principal value integral
1

-

as r' -~ ;.
Thus, for a smooth boundary, a solution of the Dirichlet

problem is obtained if one can solve the integral equation



@) = Moy p p@Ery &l-or)dol
e v ' 2ﬂl;' - ;'2
Sy

. It can be shown2 that this equation does in fact have a unique solution
.and so the problem is solved.
In our approach we use an extension of the preceding technique

to the Helmholtz equation:
(F ) vE) = 0. | (%)

In this case, we must choose G(¥, »') to be a solution of Eq. (L),

with the result that:

6(z, ?') - Jolelr =7 ) + By (xlr - 2,

where JO and YO are the usual regular and irfegular Bessel functions
of order zero, and, A and B must be determiped using'the limiting
condition as © - ;', and, if applicable, the condition as - 0.

If r-»1r', G will approach the same limit as for « = O, and so,
since Yo(x) ~ (2/x) log x, as x =+ 0, we fihd that B = 1/k. Oh
the other hand, A will be determined for the specific problem
considered: If one is dealing with the interior of a closed region,

A can be chosen as zero. If, however, the region is open and ; can
approach infinity, A will then be chbsen in such a way as to satisfy
‘the asymptotic condition on ¥(r).

In order to find the asymptotic condition, it is helpful to

consider the time-dependent equation from which the Helmholtz equation
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typicaily arises. Since we are considering wave propagation, we would

~have »
| (v? 1 §_2_> 8E t) = o (5) .
- @ 3t? ’ ) ’

where c¢ 1s the propagation velocity for waves in the region. If we
assume ¢(;; t) =¥ (7) exp(-iwt) , we get Eq. (4), where & = w/c .
For a scattering situation, we consider as a typical case that a plane

wave 1s incident on the scattering region, and write

Ly 1K-7 =+
V(r) = e + wsc(r).

Here, Wsc(;) is the scattered wave and we require that it must have
only "outgoing' parts. Further, we introduce the distribution _D(}')
on the boundaries where P is finite and they will then be used to

- generate Wsc only.

A simple way of determining A so that only "outgoing"

scattered waves occur, with the assumed time dependence, is to require

that

6@ 7)) = -E g W -3, (6)
where

ﬁb(l)(x) = JO(X)& f iy,

is the usual Hankel function.3 This clearly gives the correct B, and
if T > oo:
i (3_)1/2 Jiler - x/h)

: s

G{x, r') ~ "L\
r - oo

which clearly represents outgoing waves, since asymptotically
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ésc(;’ t) o~ expli(kr - wt)].
r* o
An alternative more complete derivati.on of this form for G can be
vbased on ,ab,requirement that time-dependent wave propagation be causal,
that is, that the wave amplitude be zero at a péint before the wave can
get to that point with the given velocity, c¢ . |
- If we now introduce Eq (6) for G(;, r'), into Eq. (2), we

have:

RC R R T2 L A A Y L PR
SV
or, since Ho(l) (x)' = '-I-a(l)(x) ?
o Lo Wl S FDE - Deao
Voolr) = F J T
)

(7)

Clearly the scattered wave given by Eq. (7) automatically gives only

outgoing waves, and in fact we have

_geliler - 3u/4) L. -ikE.d

V() o~
s¢ r - o (8nr )l/2

A - .
where €, Er/r .

If we let ; approach the boundary, the resulting equation
has the same small (r' - ) behavior as in the Dirichlet case, so that

we may write:



o) W 22 S
£(r) - Dér 9@ ! ’rfn_lr =D D(F")(F" - r)-as'.. |
| (8)
The same considerations as in the Dirichlet case with regard to the
singular nature of the equation apply. It is this integral equation
which we propose to investigate.
There is one important difference between the potential probiem
and the Helmholtz problem that should be mentioned. Although the
interior Dirichlet problem has a unique solution, the exterior problem

does not, and in fact will only have a solution at all if

£(r) lao'| = o.
This-follows from the fact that the homogeneous form of the exterior

integral equation (in which T approaches the boundary from outside),

| has a solution. (It is easily seen that a constant satisfies the
homogeneous equation.) Consequently, as follows from the Fredholm
theory of this self;adjoint equation, only if f(;). is orthogonal to
the solution of the homogeneous equation is there a solution of the
inhomogeneous equation. In the Helmholtz case, the homogeneous equation '
will not generally ha?e a solution, so both the innef and outer problems

have a unique solution.
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III. CASE OF A CIRCULAR BOUNDARY
‘Although the boundary integral equation, Eq. (8), must
general}y be solved numerically, in the case of é circular boundary
the equation can be treated analytiéally, and some insight céﬁ thereby
be obtained. Before going on to more complicated cases, we will thus

explore this caée first.

If the radius of the circular boundary is R, Eq. (8) can be

written as:

B : :
_ D(8) _ iR (1) e' - © T
£(e) = > T IH (EKR sin | 5 ,)D(Q')Sln' > de' .
0
If D(e) is expanded in a Fourier series,
00
ino
D(8) = § a e s (9)
n=-co
we then ha#e the integral, In’ to evaluate:
, . 2n ) . L -
Y - (1 .9 -8 ) @' - 9 in® :
I_(kR) = H (énR sin[=—5—=[) sin|=——| e e

0
This integral may be evalua’cedl‘L to give

I (kR) = -x ET%§7 [Hh(l)(ng) 3 (xR) ] eing..

Thus we find:
,

(o 0] . .
j{: a {1 - 3%?£-[H (1) (r) 7 (xR) } . R

n n |

noj =

£(8) =

n=-00
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(1)

'and,.bn making use of the Wromskian relation between~_Hh and Jn »
we get:
o0} ,
- imkR ' (1) ' in®
£(e) = - =5 § a, J (kR) H (kR) e .
n=-00

This result can be used to solve specific problems. For
_ example, if one wishes the eigenmodes for the interior of a circular
region in which @(r, ©) is zero on the boundary, one immediately

obtains the relation:
(1) v
Jn(KR) H (KR) = 0.

The modes éssociated with Jn(nR) are well known, but the apparent
modes for» Hh(l) (KR)' are not,5 and we will now démonstrate that for
such k's, even though the dipole distributidn does not vanish, the
associated W(?) is zero everywhere inside the circle, so such
solutions of the integral equation in this’caseiare not useful.v On
the other.hand, such solutions could arise in a numerical calculation
of the integral equation, and one must be careful not to confuse them
‘with nontrivial solutions. The distinction between solutiens V¥ would
" only be noticeable away from the boundary.

To find V¥(r, 6) once D(r) 1is known, we can use

o . .

¥(r, 0) = %f;\ Hi(lzﬂ‘W) D(6') cos X a6’
where 0 '

w o= [r2 + R2 -v2rR cos(e - ')

]1/2 ,

and X 1is the angle between the vector (r' - r) and @r.
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(See Fig. 1.) We again express. D(8) in a Fourier series, Eq. (9),
'and, for r <R, we use Graf's addition theorem for Bessel f‘unctions-6

to give:

Hi(l)(nw) cos X = ;{: Hﬁ(l)(KR) J (Nr) cos m(6 - ' )

m=-~00

Thus one easily finds:

/

(s o]

b(r, 0) = B o (2 D(r) 5_(wR)

n

n==-00

+ H(l) L(R) T_ (k) Rl

Using the relations:7 -

7 (2) = (Do),  EYG) - (12 Me), e

i) - wHe) - . g M),

n+l

we find:

Thus, for the eigenmodes, we see that

y(r, 8) = - iZFR _(an iné a_ e'ine) Jn(nr)‘Hh(l)(nR)'

The a, &_ are arbitrary, and, as stated earlier, we see that if
v Jn(nR) =0 we get the well-known eigenmodes, whereas if

Hﬁ(l)(KR)' =0, VY(r, 8) =0 forall r .
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We can also use the circular case to illustrate the application
of the integral equation to a wave scattering problem. We consider the
scattering of a plaﬁe wave incident on a circular scatterer for which

¥(r, 8) =0 ‘on the boundary, r = R. We now set

¥(r, 8) = ¥ (r, 8) + v_ (r, 6)

as in Section II, where Winc is the incident plane wave, and WSC is

the outgoing scattered wave. In this case the wave amplitude is given

as:
1
ez n Ve E-FD L
¥(r, ©) = e + 3 D(r')(xr' - r)*do ,
: r -1
2
= M7 %F Hi(l)(nw) D(6') cos X do . (10)
-0

In the limit r = o0, the scattered wave is given explicitly

as: )
1
1/2 _ .el _

Ilfsc(r, e) ~ i(K/BTfI‘) eiKr ? iKRCOS( 6)

r > @

x cos(6' - 8)D(e') ae' ,

since X, the angle in the (r, R, w) triangle opposite r , is
. _
n - (8 -86), as in Fig. 2.
Equation (10) for D(8) can be solved similarly to the

previous case. Here we require that:
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0,

KZ
¥(R, 8) = e + v  (R,0)

and since

ikz

we require as

()

The boundary integral equation, Eq. (8), must be modified'becguse
r > R. This requires that the sign of the term, D(;)/2 must be
reversed. If we again use Eq.v(9) to express D(©), we find for the

coefficients an:

s
. a 1
n _ n ikR (1) .18 -8
A% (RR) = -2 o+ A2 H 7 (2nR sin| =52 )
20
1 . 1 |
x a ein(e -6) sin | 9—-:—9-l ae'

n : 2

The integral is the same as in the previous prbbiem, and we get:

l

(kR) Jn(KR) ' a

MO =

-i® Jn(KR) =\ - -j-‘%f—{ {Hn(l) N

Once more using the Wronskian relation, we find
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5401 Jn(KR)
REEE Jn(KR)'Hh(l)(KR) ’
- and
- 2 %1 5 (kR)
D) = 2 j{: ? ; 1n®
s i kR . ! 1 ’
K L Jn(nR) H 7 (kR)
21 Io(rR) =1 Jh(nR5
= —= - ) + D) cos no).
KA JO(KR) Hy "’ (xR) J («R) 1" (xR)
Intr 0

n=1

Having obtained D(©) we can calculate wsc(r, 8) by
integration over the boundary. Thus, as in the interior problem, we
have:

. 4
. ikR (1) - J '
wsc(r, ) = 5 H (kw) cos X D(6 ) a6 .

0

As before; we can use Graf's addition theorem, but since the angle which
enters that theorem is the angle opposite the sméiler 6f'the sides r
and R we must first express cos X = cos 1 cos(®' - ©)

- sin 71 sin (8' - 8), where n is the angle needed for Graf's theorem
(see Fig. 2). (In the interior problem, since r <R, X was the
correct angle.) If we now choose a particular térm in D(®) ~ cos né s

we find
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1

Hl(l)(nw) [cos N cos(®' - 8) - sin 1 sin (8 - 8)

[3a]

B
[}

N
o

X COS nef_de'

= - imkR Hh(l)(nr) Jn(nR)'cos nd .

If this is combined with the result for a s we obtain

. . . JO(KR) . (1)( ) © 4B Jn(nR) (1)( )
r, = R G PN kY ) - 2 ———(—7——— H kI Jcos nb,
sc¢ Ho 1 (KR) 0 5—_- ,'Hn 1 (KR) n
; n=1

a result which is easily obtained by using the Helmholtz equation

directly in the usual fashion.

Iv; ANALYSIS OF THE PROBLEM OF BOUNDARY WITH SHARP CORNERS

Although the boundary distribution technique can be épplied
direcﬁly to cases in which the boundary is smooth, i.e., satisfies a
Liapunof condition, some additional analysis must be given if the
boundary has sharp corners. In the former éase, the kernel of the
equatibn can be shown to be completely continuous and so the usual
Fredholm theorems apply. On the other hand, if there are.corners the
kernel is singular.

To deal with this situation, we will consider a corner in é
boundary and for simplicity we will assume that the sides of the corner
are straight. The angle between these two sides will be called «.
Further, since the singular ngture of the equation comes about because

of the small-distance behavior of the kernel, we divide the kernel
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into a leading term which includes the most singular part, and a

remainder which is completely continuous. Thus we write:

nx

Hl(l)(x) = -zg'i-)' + R(x), . ‘ : (11)

and we will focus attention prihcipally on the first term.

If Eq. (11) is now introduced into Eq. (8), we find:

LDE") (r' - 7)-ac’

21 ,;' - ;!2

ik R(KZ ;' - ;,) ~>y —>1 - -,
+ P ra— D(r ) (r - r)«dac' .
r - r|
Let us now introduce the notation that Dl(s) is’ D(*) on the side 1
of fhe corner, where s 1is the distance ffom the corner, ahd D2(s)

is D(?) on side 2. With this notation, the equation is divided into

pieces, and we find

S ! s
£ (s) = Dl(“) , Ssina Eb(s ) ds
1 -2 2n

(s'2 -2s' scosa+ 52)
0

L . o1
. {2 R[n(s'2 - 2s' s cos O + 52)2}
+ s sina ‘!

0 (sf2 - 2s' s cos o + se)

o (1) K o ;,) ‘
+ iﬁ [ ! l*( ,r_, D(*') (#' - ¥)-ao'
-

4 ]
% D2(s ) ds

r|
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where fl(s) is the boundary value on side 1. TFor a straight side
there is no contribution from the distribution Dl(s) to the potential
on that side excepé for the term Dl(s)/2, because the vector ;' - ;
is perpendicular to the surface element. The lengﬁh of side 2 is 52.
The iptegral over C‘ is the contribution from the distribution other
than the part on sides 1 and 2. This last integral is analytic as a
function of s, since it is a finite integral and -IF' - ;I > (0 for

r' on C' and r on side 1. |

Similarly, for side 2 we have:
1 1
DE(S) s sin Dl(s )ds

f£f.(s) = + +oeee
e 2 en (s’2 - 2s' s cos o + 52)

0

where the °°° indicates terms similar to the R, C' terms for fl.

To analyze the corner singularity, we introduce

D,(s) = Dl(s) * Dg(s), and we then obtain

D,(s) s sin o Di(s')ds'

— * o) = Fi(S) g
(s -2s'" scosa+ s

0

where Lm is the lesser of £, and ¢y, and F,(s) includes the

1
contributions of fi(s) and the remainder.of the equations coming

from R,C', and the integral for the larger Li beyond &m'

Obvioﬁsly, these integral equations have a singular kernel as s,s' = 0,
and so some care must be used in dealing with theﬁ,'either for analytic
or numerical purposes.

To proceed, we make a Mellin transformation of the equations

to obtain
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( c+ioco 5m .

a,(¢) : '

BN —_331—29—— at' a (') (s1)"% as'

2 (en)” i 2
c-ioo 0
@®
sg ds
- x A

2 2
s' ~2s s' cosa + s' o=

j;o D(s)sg'l ds. To obtain Eg. (12),

In this equation, A(&)
' 0
we have made the direct Mellin integration and have used the inverse

relations:
c+ioco

D(s). = (Eﬂi)-l A(g)s“g ds.
-ico

The choice of the constant c¢ will be discussed later. The transform
of the function F+(s) is 15;(5) . In arriving at this equation we have
interchanged the order of integrations, but this can be justified

a posteriori.. Next we can evaluate9 thé right-most integral in Eq.(12):

L (s sinl(x - a)el

& - 25 s' cos o + 512 sin o sin(ne)

where 0 <o <2x, and -1 <Re ¢ <1. Theﬁ we can carry out the next

integral:
2{.
m - g-¢'
. , (¢ )
(s tasr - B,
0 £ - &'

where we require that Re(¢ - ¢') > 0. Thus the equations become:
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c+ioo

A(E)  r(E) " (¢ )58 A(en)aer
4=t S TR - 5,6, 1)
c-ioo

where

sin n ¢

f(gj = sin(n - @)t

This equation is in standard singular integral equation form,
and thus may‘be dealt with using known techniques{lo We begin by
considering the homogeneous equation, and introduce a function

c+ico '
- 0

H(E) = Sni ' s

| (¢ -¢")

c-im

where A(O) is a solution of the homogeneous equation. Clearly H(E)
is an analytic function in the finite half-planes defined by

Re(t) 2 ¢ » and it has a discontinuity in crossing the contour of
integration. If we define H(t)(g) to be the functions obtained from
the integral in which Re(¢) 2 c, respectively, together with.their

analytic continuations, we then easily find that
20y = 1) -1y,

and so

%‘-{Ht“)(&) ] Ht(')m 0 Ht(*)@)] - 0. (14)

This equation can be used to deduce the analytic structure of

At<°)(e) :
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We eventually wish to deduce the analytic strucﬁure of D(s) »
which willvrequire uéing the inverse transform on -A(&). For the
latter sfep, in the limit s - 0, the contour in the inverse transform
can be closed on the left, and so the behavior of D(s) 1is determined
by singﬁlarities on the left of the contour. In this region H(—)(é)
is analytic, and so we.can solve for H(+)(§) in terms of. H(-)(E)
using Eq. (ih) to analyticélly continue H(+)(§) to the left of the

contour. Thus we find:

) -t orenT r )

A solution of this equation can be obtained by taking the logarithm of
the equation and then noting that log H(&) 4is a function with a given
discontinuity on the contour. The solution of this problem (the

: L . 11
"Hilbert problem") then can be written:

c+imo

1tr(e)] e

- L
Hi'(g) - exp 2ni I

c-1ioo
We then see that H(-)(g) is analytic and nonzero on the left of the
contour, and if we use Eq. (14) to analytically continue H, (+ )(g),

it is evident that H ( )(g) will also be analytic unless

At such points, -Ht(+)(§) will generally have poles;; Thus A+(O)(§)

also has poles at such points.

The solution of Ed. (13) may now be obtained by introducing
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' T e
: 1
M) = a / Ne ’

to get
+ H (+) - H (-) - '
(L Er(e)) ¥ 20(e) - A7) = 25,(e) . - (1)

Using _
(1 r(e)) = Ht(-)<§)/H£(+)(§) ,

this equation can be written:

¥ ) _ N, 24,0
RO TR

t

Again we have a discontinuity equé,tion to satisfy and we obtain as the

solution:
( ) c+ioo ﬁ ( ) .
: H § g' 1
W) - 4 T T
- H7/(g")
c-im t '

~ Hence J#t.(')(g) is analytic on the left of the contour, and if we use
Eq. (15) to obtain the analytic continuation of 33[+(+)'(§), we finally
find that |

£ (o) B, 70 v 2 )

1% r(e)

NOEE

Thus, we can generally expect poles in A(é) in the left half plane
~ wherever 1 ¥ r(¢) = 0 on the left of the contour.
To complete the discussion, it is necessary to specify the

contour; i.e., to determine c¢ . In the first place, from the
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restrietion on Re(t), we require-thatv «1 <c <.1. In addition, the
preceding dévelopment will only give a meaningful expression for H(¢)
if ¢nll tr(e)l >0 as |Im &| » w. It is easily seen that

r(t) ~ expl(|x - o] - #)|Im ¢]] as lIm‘gl *'do, so r(¢) - 0.

Thus thé logarithm will approach zero at o, unless it has an imaginary
part of thé form imn . To guarantee that this does not happen, we can
choose ¢J= 0, since r(¢) is real and nonzero on the imaginary axis.
Any other ¢ satisfying the limit restriction is equally acceptable

as long as the contour ﬁould not thereby be distorted from the
'imaginary axis by going past a zero of 1t r(t), since in such a case

the logarithm would acquire an imaginary part at .
. -t

b3

We now can conclude that D(s) will behave as ~ s = as

s + 0, where én is a pole in the transform, A(¢). Such poles will

appear if
sin(n - a)¢
1.= % 2
- sin = & ’
, n
or
sinn g = ¥ sin(x - a)én

if ¢ % 0. In the case of A#, the solutions of this equation are

: (+) _ _f{en - l)n" 2nn |

n a "2 -’

and in the case of A_ s

‘ (-) __emx _(en - L)

n T a ’ 21 - ?

where n 1is any positive integer.
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_ In addition to thése poles, we must coﬁsidér other possible
singularities in A(g). . Singe .N(')(g) is analytic, the only other
.possibility would be singularities in pJ(¢). In fact, _§<§) in part
comes from contributions to f(s) arising from distributions on the
other boundaries, C', and since these contributions will be analytic
near s = 0, this bart of Jﬁt(é) - will be the transform of functions
which have power series expansions; i.e., they have poles at the
negative int_egers.l2 There will also be.a pole’in _ﬁ+(§) at £ =0,
but because f_(O) = 0, J5_(§) has no such'pole._ Thﬁs, to the poles
already‘given; we have additional_poies at the integers.

Finally, we must consider singularities related to fhe

(l)(

_remainder from Hi x), aside from the most singular part which
has already been treated. For this we assume that D(s) ~ sg, and

then.deduce the form of

: » (l) w.
Ig(s) - iKShSin al/r Hi - ( ) (S')g ds' ,

where, as in Sec. III, W = (3'2 - 2s' s cos O + se)%'. This integral
can be evaluated using Gegenbauer's addition theoremilB__
_Q .
' ! (1), (1),
Ig(s) = 2 sin a ZLU (m + 1) Cp (cos a) Hﬁ+1(”s)
-~ | (¢ ,
j' 1 E-1 1 t ) { t g-1 (l) ' '
x i (s.) Jm+l(ns )ds + Jm+l(ns) (s') Hm+l(ns )as') ,
A0 s

where Cm(l)(cos @) 1is a Gegenbauer polynomial. The Hankel function

can be divided into two parts:
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(1), Loei . -
Hh+l(Ks) = 7 logs - Jm+l(Ks) * Wm+l(s)’
where
0o

-m-1+2n
Wm+l(s) - EE; ?n 5 .
n= »

If the series for wﬁ+l(s) and Jm+l(ns) are introduced into the

. expression for Ié(s), it is ﬁhen easily found that log s ' does not

occur in Ig(s),_ and that the'powers of s which occur are ¢ % 2n,
and n + 1, where n 1is an integer 20 . Thus each of the poles,
gi, generaﬁes a series of poles spaced at even integers from §i
This completes the determination of the analytic form of the solutions
of the boundary integral equation at a sharp corner.

A few écmments are appropriate at this point: In deducing the
analytic form of the solution, we have assumed.that the unknown |
functions on the remainder of the boundary away from the corner of

interest can be treated as if they were known. The legitimacy of this

" approach can be rigorously established following the complete treatment

of singular equations; but we did not feedl that such an approach, which .
mainly only increases the complexity of notation énd_the bulk of the
equations, was particularly illuminating and so we have chosen the more
heuristicvapproach given above. We refer the interested reader to the
rigorous treatments for a full discussion.lO

In the above analysis, we héﬁe assumed also that the poles
whiéh appear are simplé. Whilé this is generally ﬁhe case, in special

cases, poles may come together. For example, if « = 2n/5 ‘we find
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3

that two poles occur at € = - 5 for A(+). In such a situation, the

s-gspace function then has a term of the form s-g log s as well as

-E-

the usual s

V. NUMERICAL EXAMPLES

To illustrate the effectiveness of the boundary distribution
methodg we have uséd it to find approximate eigenvalues for a number
of polygons in which the eigensolutions for w(;) and K are known.
Thus we look for solutions of the integral eqﬁation in which f(;) = 0.
To our knowledge, the corresponding distributions, D(;), cannot be
obtained analytically in these cases so a direct éomparison of the
numerical results for them cannot be made.

At the outset, it should be noted that we do not feel that the
boundary method is necessarily the best choice for finding such eigen-
values, and it is not for such problems that we ultimately wish to use
it. A distinct disadvantage as compared with the fiﬁite element method,
for example, is that if QOes ﬁot seem to satisfy an extremum condition,
énd, for the lowest eigenvalue, a minimum principle. Thus, by changing
certain parameters in the calculation it is possible to find values for
k which change from below the analytic value to above it, and for a
suitablé choice one can get as accurate a‘result aé'desired. In the
calculations fo be described, this happens as the balance befween the
corner regions and the central regions is varied, even with the total
number of points fixed. Thus the accuracy of the calculated k 1is not
completeiy satisfying as an indicator of the overall accuracy of the
calculation.

Another disadvantage of the method for finding eigenvalués is

that Kk occurs in the kernel of the integral equation so that the
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approximatihg matrix must be recalculated for each choice of « . In
the finite element method, such iterative complexity is pot necessary.
In addifion, the kernel is a complicated function, and the ensuing
matrix has few, if any, zero elements. Thus, althoﬁgh fewer points
need be used in the boundary method, it is ndt clear that overall
efficiency is-obtained. There is generally a trade-off between storage
requirements and the complexity involved. On the other hand, for
scattering problems it is not necessary to iterate the maﬁrices, and
the automatic safisfying of the outgoing scaﬁtefed ﬁave boundary
condition seems to us a gréat advantage.

We have uéed the method of this paper to obtain the éigen-,
solutiohs for a square, for an equilateral triangle, for a MSO isosceles
triangle, and for a 300-600-900 triangle. In each case the
eigensolution for « and ¥(T) can be obtained analytically.

In reducing the integral equation to ah'approximate finite
-form we haﬁe approximated the integrals in the integral equation in
two ways:’ For ' near a corner, we have assumed that D(s) ~can be
expanded in a finité series of terms of the form sg_, in which the
£'s chosen are the lowest values in the set of allowed ¢t's. Then
the kernel was broken into two parts, of which the first included the
most singular terms as Kf;' - ;l -+ 0, and the second was the
remainder. The first part together with the varibus (sg)'s was
integrated analytically using various rapidly convergent series, while
the second part of the kernel was assumed to be approximated by a
quadratic form, and this was then integrated exactly in conjunction
with the factors sg.' The metﬁod used for this part of the kernel was

[y

quite analogous to that used in obtaining Simpson's rule. On the other
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hand, for. T away from a corner the entire kernel times D(s') was
assumed to'bé approximately a quadratic form in s', and theﬁ this
function was integrated exactly, again analogously to Simpson's rule.

In the calculations repérted heré; we are dealing with4a closed
region, and hence in the kernel no asymptotic condition as r > oo 1is
needed. Thus we have chosen the Neumann function Yl instead of the
Hankel function -Hl(l) in the kernel. This has the advantage that
the kernel and D(;) become real. Further, we have chosen to reflect
the distribution about one of the sides. This automatically satisfies
the W(;) = 0 boundary condition on that side, and no distribution is
needed along it. We also find that the results for k depend on which
side is uéed for reflection in the ‘500-600_900, and h5o isosceles
triangles, and so the differences between solutions gives an indicéfion
of the accuracy of the numerical calculations.

A few results are presented ih Table 1}Abut a fuller discussion
of these and other calculations will be published elsewhere. The

15

analytic lowest eigenvalues in the various cases are:

kK (square) = V2 =,
k (equilateral triangle) = kLx/V3 ,

) e
k (45 -isosceles triangle) = \[5 T,
and

k (30°-60°-90° triangle) = UxV7/3,

where in each case the longest side was chosen of unit length. In view

of the lack of some variational principle, it is perhaps surprising

’

that the eigenvalues are found as accurately as they are. This is the
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more surprising when the solutions for V(r) are considered. In the

cases given in the table, we have used the distribution found to

calculate ¥(¥) at points inside the boundary using essentially the
same integration approximations as were used in the'integral equation
itself. At points far from the boundary, the calculéted W(;)’s agree
quite well with the analytic Qalues which are given.in the Appendix. |
On thg other hand, for pdints’ ; near a boundary, the calculated

-k

errors were found to be ~1O-5-10 . These errors varied from point

to point, of course, and decreased as the number of points pervside

was increased, but in all cases the errors in W(;) compared to those

in Kk seemed more what one might expect if « satisfied a variational

principle than if it did not.

At any rate, the results clearly show that it is feasible to
solve probiems numefically by making use of distributions §n the
boundary, énd hénce»an alternative to the finite-element or finite-

difference methods is available.
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APPENDIX
In the numerical analysis we have made comparisons with
various analytic eigensolutions of Helmholtz' equation. The solutions m~
-for the SQuare are well known. For the various triangles they are: .

"Equilateral triangle

¥(x,y) = sinZ= (Vix+y) - sin & (V3 x - y) - sin\j‘éy,
' 3

V3 V3

Isosceles right triangle

V(x,y) = sin mnx sin nny - (-l)ern sin nnx sin mny ,
and

(30°-60°-90°) triangle

V(x,y) = cos 2—3’5 (5x +V3 y) - cos %’1 (5x - 4/3 y)

+ cos %Ti (=x - 33 y) - cos %f- (-x +3V3 y)

+ cos 23_:t (-bx + 2‘\/3‘ y) - cos ?_571 (-kx - e\ﬁ'y).

_J"
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TABLE 1
Case PPS Refl. Side K Error
Square - 26 Any 4, 42853185 -2.9753 x 107
38 L, 4L2881485 -1.453% x 10'6
46 L.442882851 8.7  x 10'8
Equilateral 26 Any 7.255218%567  5.001 x 107
Triangle : 6
36 7.255198910 1.453 x 10
46 7.255197164 2.95 x 107"
66 7.255197276 1.81  x 1077
45°-145°_90° 26 Long side 7.0247T3685  -k.1047 x 10~
26 Short side 7.024231683 -5.83047 x1o'u
46 Long side 7.024815759  1.029 x 1070
46 Short side 7.024783389  -3.1341 x 107
(o} o o ' =4
30 -60"-90 26 Short side 11.08190852 -5.8866 x 10
| 26 Middle side  11.08296905 4. 7187 x 0™
26 Long side 11.08244263  -5.455 x107°
46 Short side 11.08253880 b.162 x10~°
46 . Middle side 11.08245430 -4.288 x10™°
L6 Long side 11.08240105 -9.613 x 107
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FIGURE CAPTIONS

Fig. 1. Illustration of variables used for points inside a circle.

Fig. 2. TIllustration of variables used for points outside a circle.



-35-

Fig, 10
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xBL74T - 3688

Fig. 20
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