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ABSTRACT OF THE DISSERTATION

Computational Studies of Hoogsteen Base Pairs in Nucleic Acids and Developments in
Enhanced Sampling Simulation Techniques

By

James McSally

Doctor of Philosophy in Chemistry

University of California, Irvine, 2019

Professor Ioan Andricioaei, Chair

The further study of the fundamental physical properties of nucleic acids, can have far

reaching impacts. These highly dynamic biological macromolecules can be difficult to study

as their behavior can be dictated by processes that act on timescales that range over several

orders of magnitude. Certain experiments of nucleic acids in solution can scratch the surface

of the sub millisecond regime, but experiments that probe processes much faster than that

can become difficult, and often do not contain significant atomistic detail, with the notable

exception of site-specific liquid-state NMR. From the nanosecond to microsecond, biological

macromolecules can be readily studied by simulation. Through the use of molecular dynamics

I’ve studied an exciting feature of nucleic acids, the Hoogsteen base pair. In recent years

support for its biological relevance has increased. Understanding the mechanics of how this

base pair forms and it’s energetic comparison to the Watson-Crick base pair, can lead to

developing a greater understanding of it’s role in biology. Often comparing to experiments

I have seen a stark contrast in the abilities of DNA and RNA to maintain this base pair.

In an attempt to explain this difference, I have seen how cooperative shifts in the sugar

puckers of DNA, that are necessary for the Hoogsteen base pair to form, are unobtainable in

more rigid RNA sugars. I have also been able to observe how the dynamic equilibrium that

exists between Watson-Crick and Hoogsteen base pairs within DNA can be influenced by

xii



the binding of intercalating drugs, such as echinomycin. Finally, I have combined previous

computational techniques to develop a novel way of obtaining time correlation functions from

accelerated milestoning techniques, with potential application to biological systems such as

the Watson-Crick Hoogsteen base pair transition.
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Chapter 1

Introduction

It is very possible that all life on earth was based on nucleic acids at one point [1, 2, 3, 4].

This idea is known as the RNA world hypothesis. Cells are more sophisticated today and

consist of many types of biological macromolecules. The primary actors within the cell are

proteins and nucleic acids. Within every cell is a type of nucleic acid known as DNA. It acts

as the storage vessel of genetic information. This information contains the blueprints for

constructing all the proteins the cell shall use. Partnered with this process is another type

of nucleic acid, RNA. While performing many roles in the cell, RNA most notably is used as

a messenger between DNA and proteins bringing everything together[5]. The differences in

their function and fundamental characteristics are still being explored today. With tasks so

vital as keeping and facilitating the use of genetic information, nucleic acids play a pivotal

role in the study of life, and likely have since life has existed. Studying nucleic acids at

their fundamental level, can have wide reaching impacts and is an important goal of many

scientists today[6].

This integral role nucleic acids have in all walks of life gives the study of nucleic acids broadly

reaching impacts in the field of medicine. Cancer is wildly understood to be heavily related to
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genetic material. The use of cancer therapeutic techniques centered around the manipulation

of DNA directly is a promising area built on the foundation of a strong understanding of how

DNA works in the human body [7]. Studying nucleic acids, can lead to not only improving

the understanding of, but combating pathogens. Viruses, such as HIV, work using RNA

to hijack a cells natural nucleic acid machinery, which can lead to developing autoimmune

diseases such as AIDS [8]. And even health problems such as aging, are associated with

breakdowns in the maintenance of the information stored in DNA [9]. In all of these areas

of medicine and more, building a strong fundamental understanding of the inner workings

of nucleic acids is necessary in the guidance of developing novel medicinal therapies.

While the study of nucleic acids is an important goal, this can be a difficult task. The

original work by Watson, Crick, and Franklin, was a landmark step in determining the

structure of DNA [10], but this really only showed a static image. Structural and sequential

information gained about RNA and DNA, give great insight into the roles those particular

sequences may play in a cell. However, in their participation in the cycles of life, these

biological macromolecules are highly dynamic. The time scales of these dynamics can vary

greatly from motions at the femtosecond scale to full seconds and longer[11]. Information

on these dynamics can rarely be associated directly to sequence and structural data alone.

Sophisticated experimental techniques have come a long way in recent years for helping to

elucidate the dynamics of nucleic acids[12, 13]. Often in tandem with these experiments,

models used in computer simulations have been growing for some time [14]. These computer

simulations can allow for insights currently unattainable by experimental means alone. Here

I present my work in using these computer simulation techniques to help give insight at the

atomic level on Hoogsteen base pairs in nucleic acids. In addition I have worked on improving

techniques that can be applied to studying biological macromolecules, such as nucleic acids.
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Figure 1.1: A) Side and top view of A-form RNA B) Side and top view of B-form DNA

1.1 Nucleic acids studies

1.1.1 RNA vs DNA

Nucleic acids consist of two majors parts: a backbone consisting of repeating units of a

phosphate and furanose sugar, and nitrogenous bases bonded to each sugar. The fundamental

difference between RNA (ribonucleic acid) and DNA (deoxyribonucleic acid) is the sugar.

In addition, the bases each will contain are slightly different. In DNA, typically one of

four bases are seen: adenine, cytosine, guanine, or thymine. In RNA, the first three will

be the same, but in place of thymine, will be uracil. These molecular differences result in

fairly significant conformational differences when a double helix is formed in either RNA or

DNA[15].
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Figure 1.2: A) C3’ endo Sugar pucker, predominant conformation of A-form helical nucleic
acids B) C2’ end Sugar pucker, predominant conformation of B-form helical nucleic acids

Though primarily seen as a single strand, RNA can sometimes can fold in on itself forming a

helical hairpin loop. The shape of the helix that is formed in this case is known as an A-form

helix, seen in Fig 1.1 part A. The predominant helical structure of DNA is a B-form helix Fig

1.1 part B. These distinctions contribute to the respective abilities to interact with proteins

and small molecules. Both contain a major or minor, with the A form having a deeper major

groove and wider minor groove. The distance between successive base pairs is narrower in

A-from as well. Looking from above one can see the looser radius of the A-form[15]. All of

these properties allow for significantly different access to the bases within the helix.

In addition to these global helical differences in conformation, there are internal differences

as well, primarily seen and related to the sugar. The distance between the C1’ on each

sugar (the carbon bonded to the nucleobase) is slightly larger in the case of A form. This is

related heavily to the tendency of the A-form RNA sugar to adopt a pucker conformation in

the C3’ endo state (Fig. 1.2 A). The primary sugar pucker conformation for B-form DNA

results in the C2’ endo state (Fig. 1.2 B). This favoritism is a direct consequence of the

ribose having an additional oxygen on the C2’ carbon. The C3’ endo position gives a larger

distance between the O4’ oxygen and this ribose specific oxygen, alleviating energetically

disfavorable van der waals interactions[16]. The C2’ endo state allows for the greater inter

4



Figure 1.3: Top) Watson-Crick base pairs for A-T (left) and G-C (right) Bottom) Hoogsteen
base pairs for A-T (left) and G-C+ (right)

base pair distance, as well as the closer C1’ distance between nucleotides of the same base

pair. Though these are the primary states for each respective helix, there are 10 states that

they tend to cycle through dynamically while in equilibrium. The distribution among these

sugar pucker states, tends to be greater in B-form helices.

1.1.2 Watson Crick vs Hoogsteen

Beyond the global conformations of A and B forms for the nucleic acids, and the various

sugar puckers of the individual nucleotides, each base pair can adopt various conformations.

The primary base pair conformations considered here will be the Watson-Crick (WC) and

Hoogsteen (HG) base pairs.

The Watson-Crick base pair is named so by the famous scientists that originally solved the

double helix structure of DNA, and predicted that the nucleobases of each strand would

5



interact with one another in a particular manner[10]. Adenine will pair with thymine (or

uracil in RNA) while guanine pairs with cytosine. Watson and Crick also suggested a very

specific hydrogen bond network between each (Fig 1.3 top). For A-T pairs, two hydrogen

bonds are formed, only one of which is unique to the WC base pair. This is between nitrogen

1 (blue) of adenine and a nitrogen on thymine. In the case of G-C pairs, there are three

hydrogen bonds in total, with two uniquely suggested by Watson and Crick. A similar

hydrogen bond to the WC characteristic H-bond, from nitrogen 1 (blue) of guanine and

a nitrogen on cytosine. In addition there is a hydrogen bond between nitrogen 2 (green)

of guanine and an oxygen on cytosine. These particular hydrogen bonds help to stabilize

the base pairs to form in this particular conformation and ultimately the double helical

structures.

An alternative to this conformation of base pairs, was first proposed by Hoogsteen (HG)

just a few years after Watson and Crick proposed theirs (Fig 1.3 bottom)[17]. The HG

conformation is mostly distinguished by a 180o rotation of the glycosidic bond that links

the purine nucleobase to it’s sugar. Consequence of this rotation result in the breaking of

the WC characteristic and forming of hydrogen bonds unique to the HG arrangement. The

A-T HG base pair now has the nitrogen 7 (red) of the adenine now paicipates in hydrogen

bonding with a nitrogen on thymine. While in G-C HG base pairs, there is now only a

total of 2 hydrogen bonds, with the unique one to HG being the nitrogen 7 (red) of the

guanine with a now protonated nitrogen on cytosine. This rotation results in some rather

large consequences for the nucleic acid’s ability to interact with other macromolecules of

biological importance.

Almost immediately it becomes apparent of the change in potential hydrogen binding sites of

the bases to other potential hydrogen binding molecules. The hydrogen bonding availability

in the minor groove is completely removed in both A-T and G-C pairs, while the number

of potential sites increase in the major groove. Further the slight difference in affinity for

6



hydrogen bond formation between newly exposed hydrogen bond donors and acceptors may

be relevant.

Though proposed more than 50 years ago, the biological relevance of Hoogsteen base pairs

is still not completely understood. Evidence for the importance of HG base pairs has been

mounting in the for some time in areas of DNA replication, damaged DNA, and DNA-Protein

interactions [18]. According to structural surveys of the Protein Data Bank, HG base pairing

is likely often overlooked in structure determination and many HG base pairs are perhaps

currently mislabeled as WC [19]. However until the past decade, they’ve primarily been seen

only in rare binding events.

Hoogsteen base pairs were seen readily in unique cases of protein bound DNA[20, 21], as

well as in DNA-small molecule complexes[22]. However, evidence for Hoogsteen base pairs

in naked DNA in solution was first seen by Nikolova et al in 2011 [23]. It was observed that

WC and HG base pairs are in dynamic equilibrium with one another in some base pairs, and

most prevalent in sequences with moderately long stretches of A-T pairs combined with 5’3’

CA steps.

1.1.3 Molecular Dynamics

Molecular dynamics (MD) simulation techniques center around a classical approximation of

molecular structure. To evaluate the dynamics of a particular system one needs not only

some starting configuration, but the ability to evaluate the classical equations of motion. In

MD this is done by determining the acceleration of some configuration of an atom ~Ra by

7



relating it to the force on that atom ~Fa through Newton’s second law of motion:

~Fa = ma ·
d2 ~Ra

d2t
(1.1)

By using one of various numerical methods to solve this differential equation one can map

out the positions of each individual atom as a function of time and generate a trajectory.

Though this sounds simple enough, the accuracy of this model is highly dependent on the

ability of generating the forces. The forces on each atom can be determined from the negative

gradient of a potential energy surface (eq 1.2) that models the interactions of each atom with

all the other atoms in the system. This is often referred to as a force field.

~F = −∇V (1.2)

To do generate a molecular mechanics force field, typically a collection of harmonic approxi-

mations are used to simplify, what would otherwise need quantum mechanical treatments of

covalent bonds, angles, and dihedral angles. In addition to these harmonic models of bonds,

a collection of pairwise interactions between individual atoms are considered, to model elec-

trostatics and van der waal forces. The combination of these models together creates what

is known as the potential energy surface of molecular mechanics:

V =
∑
bonds

Kb(b− b0)2 +
∑
angles

Kθ(θ − θ0)2
∑

dihedrals

+Kφ(1 + cos(n ∗ φ− δ))2 (1.3)
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+
∑

impropers

Kω(ω − ω0)2 +
∑
LJ

(
rminij

rij

)12

− 2

(
rminij

rij

)6

+
∑
elec

qij
εrij

These are the primary terms of the CHARMM potential energy function, or force field[24].

The various constants (Kb,b0,Kθ,θ0, etc.) are parameters determined by fitting to various

combinations of experimental data and quantum mechanics calculations. In this simplest

form, this is sometimes referred to as the ”ball and spring” model, from the significant use of

the harmonic approximations. This approximation is just that and is often the limiting case

on the accuracy of the results obtained from simulation. However, this is well understood

within the community and parameterization is improved upon constantly to achieve the most

accurate results possible [25].

In general this force field allows us to simulate biological molecules in solution efficiently

with reasonable accuracy. Most simulations demonstrated in this thesis will be variations

of molecular dynamics, the results of which offer insight onto the physical behavior of the

Hoogsteen base pair.

1.2 Enhanced Path Sampling

1.2.1 Langevin Dynamics

While molecular dynamics is a useful technique, it does have its limitations. Often biological

timescales can be far beyond those capable of molecular dynamics, especially in systems with

a large number of atoms. Proteins in particular can have systems on the order or beyond

1,000,000 atoms. For an MD simulation this would require evaluation of forces on each atom

for each timestep in the simulation. But often there are particular portions of a system that

is the focal point of the study. In these cases, further approximations can be incorporated,
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one such approximation results in Langevin dynamics.

Langevin dynamics creates a single particle whose dimensionality is determined by number

of degrees of freedom deemed relevant to the system [26]. The other degrees of freedom are

model by a stochastic term, often referred to as white noise, or a random kick. This addition

of a random kick is not sufficient however, for modeling molecular systems. An additional

term, that accounts for the friction that this high dimensional particle would necessarily

experience, to further account for the difference from the molecular mechanics model. This

combination results in the Langevin equation, written here in 1-d for simplicity:

Fr = −γmṙ(t)−∇V (r(t)) + ξ(t) (1.4)

Where the first term, is the frictional component, with the coefficient of friction γ to dampen

the momentum of the particle mṙ(t). The second term is the negative gradient of the

potential energy surface V (r(t)) the particle evolves on. Finally the stochastic, random noise,

term ξ(t) introduces random motion to, what would otherwise be a completely deterministic

system[26]. This then becomes a stochastic differential equation, requiring some unique

means of integration, to ultimately obtain the equations of motion of the Langevin particle.

Though having various colloquial uses, the ”white noise” term in the Langevin equation has

a very specific meaning. This noise ξ(t) obeys the fluctuation dissipation relation which gives

it the following properties:

< ξ(t) >= 0 ; < ξ(t)ξ(t′) >= 2kBTmγδ(t− t′) (1.5)
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The traditional example of the utility of this approximation is to use the coefficient of friction

and the stochastic term to model the effects of solvent on a molecule[26]. The degrees

of freedom of the molecule then become the dimensions in which the Langevin particle

evolves, which allows the molecule to move according to the equations of motion described

by the potential energy surface. All though this is of course sacrifices some accuracy with

the increased number of approximation, the primary advantage here is the reduction in

calculation time, as the solvent is typically the largest component of a molecular dynamics

simulation.

As mentioned before, this recasts the problem from a deterministic one to a stochastic one.

This allows for some other interesting advantages. Namely the fact that the dynamics are

now influenced by Gaussian white noise, allow for the unique manipulations of trajectories

generated in this way. Precisely, the probability a trajectory occurring under one set of

conditions, can be determined when a trajectory is actually generated under a completely

different set of conditions [27]. This leads to ways of accelerating dynamics, but returning

natural kinetics which will be described in detail in the tail end of this thesis.

1.2.2 The Liouville and Fokker-Planck Operators

In particular when dealing with stochastic dynamics, and often in deterministic cases, it

can be useful to assesses not individual trajectories, or coordinates evolving with time, but

probability distributions with time. This section follows heavily the derivations of both the

Liouville and Fokker-Planck operators from those in reference [28].

Rather than beginning with a starting configuration, one begins with the probability distri-
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bution over all possible configurations:

f(x, t)t=0 = f(x, 0) (1.6)

As this by definition contains all the possible configurations, as time progresses, naturally

at any given time, t, the probability distribution should be normalized:

1 =

∫
dxf(x, t) (1.7)

This implies a conservation law that relates the changes in configurations with respect to

time and the changes in the probability density with respect to time. For a completely

deterministic system one has:

∂f(x, t)

∂t
= − ∂

∂x

∂x

∂t
f(x, t) (1.8)

By defining the Liouville operator, one is able to rewrite the conservation law in eq (1.8)

and thus achieve the Liouville equation:

L̂ ≡ − ∂

∂x

∂x

∂t
;

∂f(x, t)

∂t
= −L̂f(x, t) (1.9)
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This differential equation can then be solved in terms of it’s initial conditions, giving the

time dependent probability distribution for a deterministic system[28]:

f(x, t) = e−tL̂f(x, 0) (1.10)

With the inclusion of a stochastic term into equation (1.8) a similar treatment allows one

to determine the time dependent probability distribution for systems described by Langevin

dynamics.

∂f(x, t)

∂t
= − ∂

∂x

(
∂x

∂t
f(x, t) + ξ(t)f(x, t)

)
= −L̂f(x, t)− ∂

∂x
(ξ(t)f(x, t)) (1.11)

This differential equation will have a similar solution as before, the first term in fact is

identical, but now the time dependent probability distribution f(x, t) must also be dependent

on previous random kicks from the stochastic term, as well as the initial distribution f(x, 0)

f(x, t) = e−tL̂f(x, 0)−
∫ t

0

dt′e−(t−t′)L̂ ∂

∂x
ξ(t′)f(x, t′) (1.12)

Subsequently this solution can be substituted back in to the conservation in equation (1.11)

to further discern the impacts of the stochastic integral term.

∂f(x, t)

∂t
= −L̂f(x, t)− ∂

∂x
(ξ(t)f(x, 0)) +

∂

∂x

(
ξ(t)

∫ t

0

dt′e−(t−t′)L̂ ∂

∂x
ξ(t′)f(x, t′)

)
(1.13)
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The iterative nature of this problem begins, to become apparent. In order to combat this,

the average over the noise must be taken. Keeping in mind that ξ(t) has zero mean and

obeys the fluctuation dissipation relation in eq (1.5). This means the second term must go

to 0, under averaging with respect to the noise and the remaining stochastic terms can be

combined. This results in a Fokker-Planck equation:

∂f(x, t)

∂t
= −L̂f(x, t) +

∂

∂x
2kBTmγ

∂

∂x
f(x, t) (1.14)

Which allows for a definition of a Fokker-Planck operator:

D ≡ ∂

∂x

∂x

∂t
+ 2kBTmγ

∂2

∂2x
(1.15)

This operator allows for the evaluation of the time dependent probability distribution of

dynamical observables, that can be described by stochastic diffusive processes.

1.2.3 First passage times

When studying the transitions of a molecular system, it is often useful to frame the problem

in a similar manner to the Kramer’s problem[29]. This involves a particle leaving a potential

energy well and crossing a potential barrier. Naturally for discussion on dynamics, one might

ask how long such a process might take. This is often referred to as the notion of a first

passage time. This treatment again will follow heavily the discussion by Zwanzig on the

matter of first passage times [28].
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If a particle following Langevin dynamics is trapped in a volume V , the first passage time τ ,

would be the amount it takes for the particle to be absorbed at a boundary ∂V . The location

of this particle could be described by the configuration x, who’s starting configuration would

be x0. The corresponding time dependent probability distribution, f(x, t) would necessarily

have some specific properties, when being evaluated Fokker-Planck operator D:

∂f(x, t)

∂t
= Df(x, t) (1.16)

The solution of course being:

f(x, t) = e−tDf(x, 0) (1.17)

This initial distribution,f(x, 0), would be perfectly described by the delta function: δ(x −

x0). If no time has been able to pass then the current configuration must be the starting

configuration. Second, the limit of the time dependent distribution is known as well, for

given an infinite amount of time, the particle must be absorbed by the boundary.

Next, it is unimportant, how the particle leaves V , but simply that it does. So the focus

must be on the time dependent probability not over the configurations at time t but the

total probability over the entire volume:

S(t, x0) =

∫
V

dxf(x, t) (1.18)
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This of course is still dependent on the initial configuration. This distribution contains all

possible probabilities for the particle to leave the volume at some time. The time derivative

of this therefore tells us how likely a given time τ is to be the time for how long it took

for the particle starting in x0 to be absorbed by the boundary. In other words, it gives the

distribution of first passage times for a given starting configuration :

K(t, x0) =
dS(t, x0)

dt
(1.19)

This distribution of first passage times will be one of the central quantities obtained in the

enhanced sampling methods shown in this thesis.

1.2.4 Markov Chains and Random walks

A Markov Chain process, is one in which there are specific states that are able to be obtained,

and that the current state is what dictates evolution in to the next [26]. In other words if

rather than a continuous configuration x, a system is described by a collection of n discrete

states one has:

Xn = {X1, X2, ..Xn} (1.20)

In this scheme states in between X1 and X2 are not allowed, but all defined states are

accessible. There can be transitions between any two states, that have a non zero transition

probability. For the second condition of a markov chain to remain true, these transition

probabilities must be solely dependent on the currently occupied state. The collection of all
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pairwise transition probabilities Kij results in the transition matrix:

K =



K11 K12 . . . K1n

K21 K22 . . . K2n

...
...

. . .
...

Kn1 Kn2 . . . Knn


(1.21)

With the construction of this matrix for a given markov chain one is able to then con-

duct random walks, using tools such as rejection sampling or other Monte Carlo based

methods[26].The matrix contains the probability of any step in a walk from the Xi config-

uration to the Xj configuration, which would be Kij. With this knowledge an appropriate

step can be chosen, and each individual step is only dependent on its’ current configuration

Xi.

With enough information to construct the transition matrix, and appropriately selected

states to construct the markov chain, random walks can be extremely fast and efficient

tools.

1.2.5 Time Correlation functions

Time correlation functions are invaluable quantities often calculated in biophysics[30, 31, 32].

They can lead to significant insights on dynamical information, often seen as rate constants

or order parameters for various processes [28]. Through simulation of biological molecules,

trajectory data can be used to determine these time correlation functions [33].
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The general form of a time correlation function of a dynamical observable A(x, t) would be:

C(t) = 〈A(x0, 0)A(x, t)〉 =

∫
dxA(x0, 0)A(x, t)f(x,∞) (1.22)

This gives the relationship between the variable at time t, and what it was when it was at

the beginning, weighted by the probability density at equilibrium of it being in configuration

x, f(x,∞). At t = 0 this is simply the variance C(0) =< A2 >. In the long time limit C(t)

should converge to the mean squared, < A >2. In other words, when the two measurements

of A are so far apart in time that they are no longer correlated, on average, you would expect

to see two measurements of the mean.

If from simulation, one can obtain the solution to the Fokker-Planck equation, f(x, t), there

are alternative means to calculating the time correlation function [34]. Specifically, first one

calculates the expected value of arriving observing A(x, t), given that is started at x0 at time

t = 0, with this extra condition added, the time dependent probability distribution will be

denoted as g for distinction from f which has no such requirement:

〈A(x, t;x0, 0)〉 =

∫
dxA(x)g(x, t;x0, 0) (1.23)

Replacing this expression in to eq. (1.22) for A(x, t), accounts for the various initial condi-

tions, limiting g, ultimately resolving the restriction and returning the true time correlation
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function.

C(t) =

∫
dxA(x0, 0)

(∫
dxA(x)g(x, t;x0, 0)

)
f(x,∞) (1.24)

Exploiting this feature allows for the unique means of calculation of time correlation func-

tions, shown in this thesis.
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Chapter 2

Biased and Equilibrium Molecular

Dynamics studies of the Hoogsteen

Base Pair in A6 DNA and RNA

2.1 Introduction

This section serves to illustrate my contributions to a journal article published in Nature

Structural and Molecular Biology in 2016 by Zhou et al. entitled ”m1A and m1G disrupt

A-RNA structure through the intrinsic instability of Hoogsteen base pairs[35].”

The identification of HG base pairs in naked DNA was in part through the use of site spe-

cific methylation[23]. The methylation of adenine bases in DNA, at the N1 site inhibits the

formation of the N1-N3 hydrogen bond unique to A-T WC base pairs, which in turn encour-

ages the formation of HG base pairs[36]. This particular base modification was indicated

to be extremely prevalent in the RNA transcriptome of eukaryotes [37]. It raises, therefore,

interesting questions about the possibility of RNA to form HG base pairs in its primarily
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A-form helical structures. While DNA has been shown to transiently adopt HG base pairs

in unbound double helix structures, little has been seen with regards to the formation of

HG base pairs in RNA duplexes. Though it typically adopts an A form helix in contrast

with DNA’s B-form, nothing on it’s face should suggest RNA has a more difficult time to

adopt the HG conformation over DNA. Exploring the possibility of RNA adoption the HG

conformation was the focus of this work.

Highly sensitive NMR relaxation dispersion experiments were used to assess the viability of

Hoogsteen (HG) base pairs in A-form RNA[38, 39, 40]. In contrast to B form DNA, which

has been shown through the same methods to have a limited exchange between WC and HG

states [23], the equivalent signal indicative of the transfer between the two states is not seen

for A-RNA. Though this signal is weak, even in the context of B-DNA, it was concluded that

this transition signal was outside the scope of the measurements, by varying temperature

and pH conditions associated with heavily modulating the WC to HG relationship in DNA.

Further NMR experiments were attempted with the use of methylated forms of adenine and

guanine. When purines are methylated at the N1 site it is seen to induce the HG state in

DNA by preventing the hydrogen bond scheme formed in the WC state [41]. When these

methylated purines were introduced to A-RNA, not only was melting of the methylated base

pair site observed, but disruption of the neighboring WC base pairs were also observed.

With the experimental data suggesting heavily that A-RNA lacks the ability to maintain the

HG state, molecular dynamics simulations were used to try and elucidate why this inability

was seen. To make this assessment both biased molecular dynamics that induce transitions

between WC and HG states, and separate simulations sampling the WC and HG states.
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Figure 2.1: The mean interaction energy of the A16-U9 (T9 for DNA) base pair with sur-
rounding base pairs (above, below) as a function of the glycosidic torsion angle (χ) for
A6-DNA(red), A6-RNA(purple). Data points have been fitted with a polynomial function
to guide the eye for each data set.

2.2 Results

2.2.1 Biased Molecular Dynamics

Biased Molecular Dynamics(bMD) were used to evaluate transitions of A16 in A6 DNA and

A6 RNA between the WC and HG states [42]. In this context the reaction coordinate was

defined by the distances between the hydrogen bonding atoms for the intended transition

ie (WC to HG or HG to WC). As each state has a unique hydrogen bond, minimizing this

distance encourages a flip.

The interaction energy of the base pair with the flipping base(U/T9-A16) as well the base

pairs above and below the flipping base(U/T8-A17 and G10-C15) was calculated through out

the trajectories of successful flips. After pairing the interaction energy with its corresponding

value of the glycosidic torsion angle, the (χ,IE) pairs were grouped into 50 bins. Plotting
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the (χ,IE) pairs for A6-RNA against A6-DNA allows for the comparison for each flipping

environment (Figure 2.1)[35].

It can be seen in Figure 2.1 that A6-DNA (red) exhibits a clear two well system along the

glycosidic angle. This is to be expected given previous experimental and computational

studies demonstrating the stability of the HG state in the syn region (positive) in DNA[23].

In significant agreement with the NMR studies A6-RNA (purple) shows a significantly higher

energy in the syn region than seen in A6-DNA[35]. Furthermore, when the transitions are

induced in A6-RNA there’s appreciable steric interactions with neighboring base pairs, in

order to accommodate the flipping base.

2.2.2 Equilibrium Molecular Dynamics

Unbiased simulations of the A16-U/T9 HG base pair in various contexts were conducted as

well. Simulations were run for with A16 in either WC or HG in various contexts including:

A6-DNA, A6-RNA-hairpin, an inverted 3′ → 5′ sequence of A6-RNA-hairpin, rA16-A6-

DNA(ribose sugar replaces deoxyribose at A16), m1A-A6-DNA, m1A-A6-RNA. Viewing how

the HG base pair compares to the WC in these various contexts leads to several conclusions

about the most important conditions for the HG state.

Unsurprisingly the WC and HG simulations of A6-DNA remained stable for the duration

of the simulations. In the case of A6-RNA starting in HG, in 2 of 10 trajectories, the

A16 and U9 bases spontaneously swung out into the major groove. This matches well

with the NMR optical melting experiments of methylated RNA. In several simulations of

the inverted sequence A6-RNA, within the short window of simulation time, the HG base

pair spontaneously flipped to WC. The results of the rA16-A6-DNA simulations were also

consistent with the NMR data, in that little to no effect was seen.
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Figure 2.2: The simulation time vs global RMSD for m1A-A6-DNA(red) and m1A-A6-
RNA(purple) has been plotted.

Finally comparison of the m1A HG structures in A6-DNA and A6-RNA resulted in melting,

or disruption of the RNA strands, while the DNA strand remains intact for the duration

of the simulation. Figure 2.2 demonstrates this with monitoring the global RMSD over the

time length of a single trajectory of each nucleic acid. Starting the RNA in the HG state

and essentially blocking its ability to form the WC base pair results in denaturing of the

secondary structure of the A-form RNA, as it does not seem to be able to maintain the HG

state[35].

In an attempt to explain part of the reason for these differences in the various HG state

contexts, the hydrogen bonds specific to HG base pairs were monitored(Table 1). Hydrogen

bonds were considered formed when the appropriate hydrogen bond donor-acceptor distance

and minimum donor-hydrogen-acceptor angle were satisfied; 3.6 Å and 120o respectively,

following specifications from Goldsmith et al[43]. Due to the transient nature of the hydrogen

bonds through out the duration of each trajectory, the percent of trajectory time in which

a hydrogen bond is present, is shown(Table 2.1).
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N7—H-N3 % O4—H-N6 %
B-DNA 87.3 98.4
A-RNA 2.4 99.5
A-RNA* 82.7 37.5
rA16-B-DNA 97.5 98.5
m1A-B-DNA 61.6 99.7
m1A-A-RNA 6.6 37.5

Table 2.1: The presence of the HG specific H-bonds are shown for various simulations.
*Denotes a trajectory in which A16 and U9 flip out into the major groove.

The hydrogen bond presence for single trajectories representing each system gives great

insight into why the various results are observed for each context of HG studied. It is clear

that the characteristic N7-H-N3 formed between A16 and U/T9 of HG base pairs is barely

formed in the case of A-RNA and m1A-RNA[35]. A second A-RNA trajectory is shown to

demonstrate the difference in hydrogen bond schemes when the A16 and U9 flip out into

the major groove. It is only after the O4-H-N6 hydrogen bonds are broken that a hydrogen

bond can be formed for N7-H-N3.

2.3 Discussion

Between the NMR experiments and MD simulations, there is considerable evidence to suggest

that the HG state is difficult to maintain in A-form RNA. This difficulty arises primarily

from the inability of RNA to form the HG characteristic hydrogen bond. This is not limited

to simply the sugar of the flipping base, as demonstrated with the deoxyribose sugar at A16

in RNA. This suggests that the stabilization of HG in DNA may be more closely related to

the B-form helical structure, as opposed to the specific chemical difference in sugars. The

melting of neighboring base pairs when starting RNA simulations in HG paired with the

breathing of neighboring base pairs when transitions between WC and HG, supports the

idea that the A-form RNA is too rigid to accommodate the HG base pair.
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The recognition of the destabilizing effects of the m1A in RNA heavily suggests it’s associa-

tion with its biological relevance. With this additional categorical difference between RNA

and DNA, further understanding on why they perform such different roles within the cell

can be developed. Namely, of particular interest in DNA’s ability to accept the damaging

effects of the methylation, which can ultimately lead to mutations [44]. Therefore, the chem-

ical modification can be used as a switch to regulate messenger RNA’s ability to perform

transcription[37]. Naturally it can be believed that the ability, or lack there of, to maintain

the HG base pair, could play a role in these processes.

2.4 Methods

Structure generation for MD simulation: hp-A6-RNA, hp-A6-RNA 35, and A6-DNA helices

were built using make-na [45] with all bases in WC conformation. In the case of hp-A6-RNA,

a duplex structure was generated using make-na and the UUCG loop attached and annealed

using the CHARMM simulation package [24]. Rotating along the glycosidic bond angle χ by

180o created structures with HG conformation at A16. Unbiased MD equilibrium simulations

were performed as follows. All structures were simulated using constant temperature MD

with CHARMM36 forcefield [25] and a generalized Born molecular volume (GBMV) implicit

solvent [46]; parameters for m1A were taken from Xu et al[47]. Integration used a velocity-

Verlet algorithm with a timestep of 1 fs. The cutoff for non-bonded list generation was 21

Å, the cutoff for non-bonded interactions was 18 Å, and the onset of switching for non-

bonded interactions occurred at 16 Å. The SHAKE algorithm was used to constrain the

covalent bonds to hydrogen atoms involved. Each structure was heated to 300.0 K with

harmonic constraints on all non-hydrogen atoms, heating occurred in 1 ps increments of

1.0 K for a total of 300 ps steps, followed by 200 ps equilibration at 300.0 K. Harmonic

constraints were then gradually removed during a sequence of 4 reductions for 50 ps each.
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Unbiased production-run simulations were then run for 3 ns without constraints for each

system. Ten independent simulations with hp-A6-RNA and rA16-A6-DNA with A16 in HG

conformation were produced from independent conformations obtained during the heating

and equilibration method described above. A6-DNA in HG was repeated twice.

Global RMSD was calculated from the single 3 ns trajectories of m 1 A starting in HG for

both hp-A6-RNA and A6-DNA,in which ri(t) is the instantaneous coordinate of atom i and

rRi is the position of the reference structure.

RMSD =

√∑N
i=1(ri(t)− rR)2

N
(2.1)

H-bond presence was evaluated using CHARMM’s COOR HBOND module for each trajec-

tory with cutoff distance and angle of 3.6 Å, and 120o following Goldsmith et al[43].

Biased MD simulations: The protocols for minimization, heating, and solvation were identical

to those used for the unbiased simulations. The biased molecular dynamics method [42]

implemented in the CHARMM package was used to force conformational transitions between

WC and HG states using a biasing potential W (ρ(t)) applied according to Equation 2.2,

ρ(t) =
1

N(N − 1)

N∑
i=1

N∑
j 6=1

(rij(t)− rRij)2 (2.2)

and

W (ρ(t)) =


α
2
(ρ(t)− ρa(t))2 if ρ(t) < ρa(t)

0 if ρ(t) ≥ ρa(t)

where ρa(t) = max
0≤τ≤t

ρ(t)
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ρ(t) is a collective distance between the instantaneous (rij) and the reference structure (rRij),

and α the strength of the half-harmonic bias. In all cases, biases were placed between pairs

of atoms that share a hydrogen-bond in the target structure, ensuring that the adenine

base would not only perform the roughly 180o flip, but also form the definitive hydrogen-

bonding structure of the desired WC or HG configuration. After the biased trajectories

were generated, they were post-processed in CHARMM, outputting the χ-angle dependence

of the relative interaction energy value in the absence of the bias. The relative interaction

energy was calculated for the base pair that includes the flipping base as well as the base

pairs above and below the flipping base. Angle-energy pairs were binned into 50 bins and

the mean of the energy was evaluated within each bin. Plots of relative interaction energy

as a function of the χ-angle were thus generated.
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Chapter 3

Biased and Equilibrium Molecular

Dynamics studies of the Hoogsteen

Base Pair in DNA in the presence of

Echinomycin

3.1 Introduction

This section serves to illustrate my contributions to a journal article published in Nature

Communications in 2018 by Xu et al. entitled ”Modulation of Hoogsteen dynamics on DNA

recognition.[48]”

The Hoogsteen base pair has been seen in numerous of contexts[18]. It has been fairly well

established that a dynamic equilibrium exists between the WC and HG states in DNA[23].

Prior to this it was only seen in rather peculiar binding situations. One such area was the

binding of drugs such as echinomycin [22][49]. This drug is a bisintercalator meaning it in-
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Figure 3.1: Palindromic sequence of DNA used in NMR and MD analyses with location of
bisintercalated quinaxolone groups of echinomycin

serts its quinaxolone groups directly in between base pairs in the strands of DNA it binds to.

This clearly would disrupt the stacking effects of neighboring base pairs and potentially fixes

some in the Hoogsteen state. Hear it was demonstrated through NMR relaxation dispersion

techniques and MD simulation, that in fact the drug allows for a dynamic equilibrium be-

tween WC and HG states, as in naked DNA, but a reduction in the energetic gap between

the two states.

The DNA strand in Fig. 3.1 was evaluated as it is based on previous sequences to demonstrate

for HG affinity in the presence of echinomycin [50]. Relaxation dispersion techniques were

used to identify, the predominant presence of HG base pairs at the T6A7/A7T6 locations.

While A3-T10 remained primarily WC, the relative population of HG saw an increase by

9 times. The identity of these conformational shifts were verified with trapping techniques,

that use modified sequences at varying pH’s known to induce HG modification.
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Figure 3.2: A) Contour plots showing the relative interaction energy (E kcal/mol) as a
function of the base opening (θ) and flipping (χ) angles from multiple bias trajectories
of Free DNA (blue) and DNA-echinomycin complex (orange). Dashed regions show the
primarily sampled χ and θ angles of the unbiased simulations. Two paths can be seen for
both systems. B) Comparison of the interaction energies of the WC,HG, and transition
states of both paths observed in the DNA-drug complex and Free DNA to the enthalpies
calculated from the relaxation dispersion experiments. C) Snapshots of an A3-T10 in the
DNA-echinomycin complex transitioning between WC and HG states via path B.

3.2 Molecular dynamics studies

Biased and equilibrium MD simulations were used to examine whether or not Hoogsteen

to Watson-Crick and Watson-Crick to Hoogsteen transitions are feasible in the presence

of a nearby bound echinomycin molecule. Conversely, the signals observed by the NMR

experiments, could readily be seen in cases where the HG and WC base pairs had become

trapped at the time of drug binding. Due to the protonation of cytosine that occurs in

the transition to the HG state, the focus of the simulations were on the A-T transitions,

specifically at the A3 position, highlighted in red in Figure 3.1.

In total thirty biased simulations were run, each starting with a different initial velocity

for both the Free DNA and DNA-echinomycin complex. Control simulations on A3T10 in

the free DNA duplex resulted in several (4 of 30 simulations) successful transitions between

WC and HG resulting in a Hoogsteen base pair. By comparison, all 30 simulations re-
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sulted in successful transitions between WC and HG without echinomycin dissociation in

the DNAechinomycin complex. Relative to the free DNA, the success of the transitions in-

dicate a lower energetic barrier height for the WC to HG transition in the complex DNA as

well as a decrease in energy of the HG base pair (Fig 3.2 part B). Both the barrier height and

energetic differences computed by MD are in good agreement with the NMR RD measured

counterparts (Fig 3.2 part B).

Successful transition pathways were predominantly clockwise about the χ angle in the case

of the drug complex, but in the case of free DNA, rotation of the glycosidc bond was seen in

both directions. The transition state of the predominant path (path B in Fig 3.2) part A)

features a purine base that is near-orthogonal to its paired pyrimidine resulting in disruption

of the neighboring WC base pair. Some stacking interactions with the quinoxaline rings are

disrupted as well. The intercalating portion of the drug remains stacked on the flanking GC

base pairs which can be seen in Fig 3.2 part C. The base flipping appears to be unhindered

due to the flexibility of the neighboring base pairs that exhibit collective conformational

changes during the transition.

The A7 location was also identified as likely to have a dynamic relationship between the

WC and HG state. However, it is suspected that the neighboring A-T pair cooperatively

transitions. In other words the T6A7/A7T6 simultaneously swap between WC and HG

states. Simulations in which a single base pair was flipped successfully from Hoogsteen

to Watson-Crick without disrupting the bound echinomycin were done. This supports the

feasibility of having HG to WC transition in the presence of the bound echinomycin.
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3.3 Discussion

There are two primary conclusions that can be reached from this work. First that the relative

stabilities of WC and HG pairs must be in some capacity influenced by base pair stacking

effects. Second, that intercalation did not inhibit the internal rotation of base pairs and still

allows for an exchange between WC and HG states. With intercalators such as echinomycin

that have been considered for sometime now as a possible cancer treatment [51, 52]. It is

possible the mechanism by which it is able to contribute medicinally is related to it’s effect

on the regulation of HG/WC base pair exchange.

3.4 Methods

Coordinates for the E12DNAechinomycin complex were obtained by downloading the 1XVN

structure 38 from the Protein Data Bank (PDB). The coordinates of the DNA portion of

the complex were loaded into the CHARMM molecular modeling package and coordinates

for the terminal two bps were generated using internal coordinate tables within CHARMM

[24]. Both A3 bases were rotated 180 at the glycosidic bond to begin in the Watson-Crick

conformation. Structures for control simulations of free DNA were generated through the

use of make-na [45]. Each A7 was rotated 180o along the glycosidic bond to begin in the

Hoogsteen conformation. The coordinates of a single echinomycin molecule were loaded

into Schrodingers Maestro program [53], to generate bond parameters. Bond parameter and

coordinate information for echinomycin were entered into CHARMM CgenFFs automated

atom typing program for generation of CHARMM force field parameters for the echinomycin

[54, 55, 56, 57]. The DNA-echinomycin complex and control free DNA were each placed into

cubic water boxes with side lengths of 87 Åwith 20,440 and 20,558 TIP3P water molecules,

respectively [58]. To insure the neutrality of each system 31 Na+ cations and 9 Cl- anions
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were added as well. Each system was equilibrated using constant temperature and pressure

dynamics. Temperature was maintained at 300 K and pressure at 1 atm using the Nose-

Hoover Thermostat [59]. Particle-mesh Ewald summation [60],[61] was used with cutoffs

of 14 Åto calculate electrostatic potentials. Equilibration for each system ran for 300 ps

using a leap verlet algorithm. From the final structure produced from the equilibration, for

each system, 30 simulations were run under the exact same conditions of equilibration while

varying the initial starting velocities sampling the immediate space near either the Watson-

Crick or Hoogsteen states. The biased MD method [42] implemented in the CHARMM

package was used to assess conformational transitions between Watson-Crick and Hoogsteen

bps for A3 and A7 both in the presence and absence of echinomycin, using a biasing potential

W (ρ(t)) applied according to equation 3.1,

ρ(t) =
1

N(N − 1)

N∑
i=1

N∑
j 6=1

(rij(t)− rRij)2 (3.1)

and

W (ρ(t)) =


α
2
(ρ(t)− ρa(t))2 ifρ(t) < ρa(t)

0 ifρ(t) ≥ ρa(t)

whereρa(t) = max
0≤τ≤t

ρ(t)

ρ(t) is a collective distance between the instantaneous (rij) and the reference structure (rRij),

and α the force constant of the half-harmonic bias in kcal/mol Å-4. In all cases, biases

were placed between pairs of atoms that share a hydrogen-bond in the target structure,

ensuring that the adenine base would flip 180o in the χ-direction, and form the appropriate

hydrogen-bonding structure of the target conformation. Trajectories were post-processed

in CHARMM, outputting the χ and θ angle dependence of the relative interaction energy

value (this excludes the bias potential for the biased simulations). The relative interaction
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energy was calculated for the bp that includes the flipping base as well as the bps above and

below the flipping base. In this calculation, each atom of the base was evaluated individually

for both bonded and non-bonded terms for the CHARMM force field, which includes the

interaction with the ligand and the solvent effect. The (χ, θ, energy) points were binned

into a 50 50 grid of bins for both angles and the mean of the energy was evaluated within

each bin. Contour plots of relative interaction energy as a function of both θ and χ were

generated.
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Chapter 4

Computational studies of the relative

stability of Hoogsteen base pairs in

DNA vs. RNA

4.1 Introduction

The Hoogsteen (HG) base pair has gained considerable interest in the biophysical commu-

nity in recent years [18]. With the exciting discovery of their appearances in naked DNA,

the prospect of its biological relevance in various context, has received appreciable support

[23][19]. In particular through the methylation of adenine and guanine at the N1 site, forces

the adoption of the HG base pairs[41]. This subsequently allows for repair enzymes to

recognize the site and check for inconsistencies in the genetic code[62, 63].

It is possible that the HG base pair’s biological relevance does not end at processes concerned

with DNA. This same methylation of purines in RNA is seen widely as post-transcriptional

switches [37]. It was shown recently that this modification in A-form RNA results in base pair
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melting, primarily due to an increase in instability of the HG base pair in RNA compared to

DNA [35]. Further NMR experiments and MD simulation have characterized the energetics

of why A-form RNA cannot maintain the HG base pair[64].

Here for the first time the relative conformational entropy of the HG base pair will be

assessed in both B-form DNA and A-form RNA. It will be shown that in comparison to

their respective WC base pairs, the HG base pair is more entropically disfavored in B-form

DNA and than A-form RNA. However, the well established flexibility of 5’-3’ CA steps[65]

of B-form DNA, a cooperative effect that does not exist in A-form RNA, results in a greater

diversity of sugar puckering states. This paired with a consistently being able to form the HG

characteristic hydrogen bond, results in a much lower value in the PMF difference in DNA

than RNA. This is supported by state-of-the-art enhanced sampling methods for calculation

of Potential of Mean Force (PMF) surfaces, qualitatively consistent with previous surfaces

[66].

4.2 Results

The conformational entropy was calculated for A6-DNA B-form with A16 in either WC or

HG and A6-RNA-hairpin A-form with A16 in either WC or HG. Due to the flexibility of the

terminal base pairs and the loop in RNA, these were omitted from the entropy calculation.

In the case of A6-DNA it was observed that the all WC strand was more favorable than the

HG containing strand, with a T∆S = −3.2 kcal/mol. In contrast,there was an increase in the

conformational entropy for the HG state in A6-RNA-hairpin with a T∆S = 6.44 kcal/mol.

The direction of both of these entropy differences were seen in various subsegments including

the backbone of the side of the strand with the flipping base, the C15A16 nucleotides, the

sugars of these two nucleotides, the T/U9-A16 base pair, and the single A16 nucleotide. All

of which can be seen in the table below.
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Segment considered DNA T∆S (kcal/mol) RNA T∆S (kcal/mol)
Majority of strand -3.2 6.4

Backbone of flipping side -6.0 1.9
C15,A16 -6.9 2.8

C15,A16 sugar only -6.5 1.0
T/U9-A16 -0.69 0.015*

A-16 -3.0 2.5

Table 4.1: Conformational entropy difference between simulations containing HG and WC
various segments of A6-DNA B form and A6-RNA-hairpin A form. Segments considered in-
cluded the base pairs between G2-C23 and G11-C14 for both strands, removing the most flex-
ible portions of each strand, referred to as the full strand. In addition, the sugar-phosphate
backbone of the A-16 flipping side between C14 and C23, the nucleotides of C15 and A16,
solely the sugars of C15 and A16, the nucleotides of T/U9 and A16, and just the A16 nu-
cleotide were considered. *In the case of the T/U9 and A16 of RNA, the calculations of each
states entropy did not converge to within the magnitude of the difference between them.

This suggests an increase in rigidity from the WC to HG state within this C-A step of

DNA, which is commonly associated with an increased presence of HG. With a considerable

change in entropy within the sugars of C-A step, the sugar pucker distribution for each was

considered for both DNA and RNA.

The calculation of the pseudorotation angle (P) as described by Altona and Sundaralingam,

allows for the determination of the sugar pucker conformation of each nucleotide. The

distribution of sugar pucker conformations adopted by the A16 and C15 nucleotide were the

only appreciably different distributions in the HG containing duplex when compared with

to the distributions of the purely WC duplex for both DNA and RNA.

Namely the primary conformation of the sugar pucker of A16 nucleotide in WC is shifted

from an average C2’ endo conformation to a O4’ endo conformation when in the HG state.

Paired to this the immediate neighbor C15 nucleotide’s sugar pucker adjusts from an average

C1’exo conformation to a C2’ endo conformation. Beyond these average conformational

shifts, it was observed that the entire distribution of pucker conformations is adjusted with

a decrease in variance for both. Though a minor shift to C4’ exo occurs in both A16 and

C15 sugar puckers for RNA the dominant sugar pucker remains to be C3’ endo, in addition
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Figure 4.1: Probability of sugar pucker conformations for A16 (Top) and C15 (bottom) in
DNA(left) and RNA(right) WC(blue) or HG(red)

the variability in pucker states remains mostly unchanged from it’s narrow distribution in

the WC case.

We also used the newly developed meta-eABF method to calculate the two dimensional

potential mean force (PMF) for the WC to HG transition in A6-DNA and A6-RNA segment.

We could get a converged PMF within 200 ns compared to 6-40 s simulations for other

computational studies. The presence of Hoogsteen base pair is in the DNA is confirmed by

the presence of clear deep minima at χ ≈ 50o and θ ≈ 0o. The Watson-Crick base pair is

depicted by the deep stretched minima between −180o and −50o of the glycosidic angle χ

for θ close to 0o. Meanwhile, for the Hoogsteen base pairs. This Hoogsteen-like structure

is energetically more unstable relative to the Hoogsteen structure of the DNA likely due to

a presence of only a single hydrogen bond. There is also a high barrier in RNA for direct

transition between HG and the other minima and the lower energy path is through higher
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Figure 4.2: PMFs of the glycosidic torsion angle (χ) and the flip out angle(θ) for A6-
DNA(left) and A6-RNA-hairpin (right). Overlayed with black dots showing sampled angles
of the equilibrium simulations. A dashed red circle shows the portion of the RNA HG
simulations that allowed for the HG characteristic hydrogen bond.

values of θ indicating base pair melting.

For comparison to the equilibrium studies the sampled χ and θ angles of the equilibrium

simulations are overlayed onto the PMFs. In these simulations less than 2% of all the

configurations sampled had the characteristic N7-N3 hydrogen bond formed between A16

and U9. The region in which this hydrogen bond was formed can be seen in the red dashed

circle. This region is clearly distinct from the majority of configurations sampled and the

intermediate HG well expected by the PMF calculations.

4.3 Discussion

From this information two primary inferences can be made. A primary contributing factor

for the 5’3’ CA step allowing for an increased propensity of HG base pairs in DNA, is likely

the large flexibility in the cytosine sugar. The clearly cooperative effect between the sugars
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seems to allow the loss of entropy, as the cytosine sugar of DNA is already in a broad

distribution of states. Secondly, though there is a large increase in entropy for RNA, it is

clearly not localized to the 5’3’ CA step as it is in DNA. Couple this with the fact that

RNA lacks the ability to form the characteristic HG hydrogen bond, suggest explanations

to for RNA not actually maintaining a HG base pair, but leads closer to the melting of base

pairs, which would be a highly entropic state, but also increase in energy compared to the

hydrogen bond stabilized base pairs.

4.4 Methods

4.4.1 System preparation and equilibration

All input files were generated using CHARMM-GUI web server [67, 68] and VMD [69]. All

simulations were performed using NAMD [70] package in GPU. For A6-DNA and A6-RNA

the nucleic acid structures were made using the make-NA server [45]. All the structures

were solvated using TIP3P water in rectangular solvation box with 17Å of water padding

in each direction. CHARMM36 force field for nucleic acids [25]. Energy minimization was

performed for 10000 steps using conjugate gradient algorithm.

The system was gradually heated to 298 K temperature at a rate of 1K/ps in NVE ensemble

with harmonic constraints of 3 kcal/molÅ2 on the nucleic acid heavy atoms. Then the

constraints were removed in steps 0.5 kcal/molÅ2 per 200 ps. The terminal base pairs

are restrained with a small harmonic force constant of 0.1 kcal/molÅ2 and the system was

equilibrated for 3 ns in NVE ensemble and 10 ns of NPT ensemble with force constant 0.05

kcal/molÅ2.
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4.4.2 Enhanced sampling simulation

The newly developed meta-eABF method [71] implemented in NAMD 2.12 package through

colvars module [72] has been used to obtain the PMF surface. The glycosidic angle χ and

the pseudo-dihedral angle θ of the A-T base pair were chosen as order parameters following

earlier studies [23, 48, 73, 74]. The collective variable space was spanned from -180◦ to 180◦

with 5◦ bin width for both the dihedral angles. For all the systems the meta-eABF simulation

was started from the final structure from the NPT equilibration and continued till all the

bins are explored and the RMS difference of the PMF’s are converged. For most systems we

got converged PMF within 0.2 µs of simulation. The one-dimensional PMF along glycosidic

angle χ was obtained using the following expression

A(χ) = −kBT ln

(∫
exp

(
− A(χ, θ)

kBT

)
dθ

)
(4.1)

4.4.3 Equilibrium simulations

Starting from the final frame of the NPT equillibration step, each of the 4 systems (A6-RNA

WC/HG, A6-DNA WC/HG ) were run in NAMD NPT ensemble with periodic boundary

conditions. Simulations were held at 298 K and 1 atm using the Nose-Hoover Thermostat

[59]. Particle-mesh Ewald summation was used to account for electrostatics with periodic

images [60, 61]. Each simulation ran for a total of 25 ns with 1.0 fs time steps, saving

coordinates every picosecond. Each simulation was repeated a total of 5 times, with different

starting velocities
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4.4.4 Conformational Entropy Calculations

Trajectories were post processed in CHARMM [24]. After removing the first nanosecond

from each trajectory, the translational and rotational degrees of freedom were reduced and

the molecule was oriented using CHARMM’s ORIE command. Each of the 5 trajectories for

each system were combined, resulting in 120 ns of sampled conformations for each system.

Conformational entropy calculations were performed with varying atoms, the collections of

which can be seen in Table 4.1. These calculations were performed using quasihamoinc

analysis frequency analysis [75, 76]. These frequencies (ωi) are calculated, from the eigenval-

ues of the mass weighted covariance matrix, determined from the 120 ns trajectories. The

frequencies are used to calculate the absolute entropy of each conformation with:

S = kB

3n−6∑
i

h̄ωi/kBT

eh̄ωi/kBT − 1
− ln(1− e−h̄ωi/kBT ) (4.2)

For each conformation T ·S had converged within 0.05 kcal/mol for the last 10% of sampled

configurations.
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Chapter 5

Long-time correlation functions from

biased Langevin dynamics and

Markov chain walks

5.1 Introduction

Calculations of time-correlation functions can be invaluable in linking simulations and ex-

periments of biological macromolecules [77, 78, 79]. They can be used for attaining perti-

nent kinetic information such as rate constants and order parameters. However the various

timescales relevant to biological processes can be inaccessible to many simulation techniques

[80]. This barrier can make it difficult to calculate time-correlation functions that capture

longtime events. For kinetic information to be obtained, samples of configurations need to be

collected in sequence with knowledge about the time between the configurations occurring

[81]. Collection of all of this information can be time consuming and attempts at accelera-

tion of this process can lead to loss of information. In an effort to overcome these temporal
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barriers methods such as Steered Molecular dynamics (SMD) are sometimes employed [82].

This method uses a perturbing force in the MD simulation to induce conformational changes

that otherwise would not occur within the time span of the simulation. These can give new

information on low energy pathways and allow sampling of configurational states that were

otherwise inaccessible. The trade off when using methods such as this is that information

about the natural time between the various configurations along the pathway is lost. In

other words, though a new high energy state may have been reached, and knowledge about

the appropriate order of intermediate configurations between two states might be learned,

information about how long process would take along the way is lost. When applying a

similar concept of a perturbing force to Langevin dynamics there are means of recollecting

this temporal information through a rewieghitng scheme detailed in the theory section of

this paper [27]. This takes advantage of a the stochastic term within Langevin dynamics to

determine how likely a particular trajectory is to have occurred on the unperturbed poten-

tial. This means dynamical information about the original potential energy surface can be

determined faster than their normal evolution on that surface. This frame work, however, is

still limited to the time spans accessible to a single trajectory of Langevin dynamics.

Milestoning is a technique that places hyperplanes in phase space to divide it into subsec-

tions that can be simulated separately [83]. The primary computational benefit to running

simulations in this way, is that allows each subsection to be run in parallel [84]. This allows

for exploration of a large amount of configurations in much shorter time then exploring the

sames space from long continuous trajectories. In its inception this was an excellent tool

for determining thermodynamic properties. Over the past several years there have been

enhancements to the milestoning algorithm to improve on the ability to obtain these ther-

modynamic values [85], as well as novel ways of using the information obtained from these

simulations to obtain kinetic data [84]. More recently a milestoning method incorporating

the reweighting scheme with Langevin dynamics, known as Wind-Assisted Reweighted Mile-

stoning Method (WARM) was proposed by Grazioli and Andricioaei [86]. Further, the same
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authors proposed a means for the calculation of time-correlation functions from Milestoning

simulations through the use of Markov chain random walks [87]. In this paper, the two

methods shall be combined for the first time.

5.2 Theory

5.2.1 Wind-Assisted Reweighting Milestoning

As mentioned earlier, Milestoning has allowed for the calculation of equilibrium quantities

from the beginning of it’s use. The way this is accomplished is by first determining the

probability distribution of being at some particular milestone A at time t, PA(t) shown in

eq (5.1) [83]. Which must be the probability of arriving at milestone A, in t amount of time,

from any neighboring milestone described by: QA(t) combined with the probability of not

leaving milestone A within that same amount of time frame. The probability of leaving,

or transitioning from milestone A to some neighboring milestone B after it has been at A

for τ length of time, can be expressed by probabilities of various transition times τ between

milestone A and B: KAB(τ) [83]. For a set of M milestones, all cases where milestones A

and B are not nearest neighbors then KAB(τ) = 0 as any trajectory is to be terminated

upon reaching a milestone.

PA(t) =

∫ t

0

QA(t′)

[
1−

M∑
B=0

∫ t−t′

0

KAB(τ)dτ

]
dt′,

QA(t) = 2δ(t)PA(0) +
M∑
B=0

∫ t

0

QB(t′′)KBA(t− t′′)dt′′ (5.1)
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In the second line of eq 5.1, the probability of arriving at a milestone A, is determined from

whether a trajectory begins at milestone A at time t = 0, corresponding to the first term,

or reached a neighboring milestone B, sometime earlier and has now arrived at milestone

A [83]. Thus all PA(t) and QA(t) are determined from the collection of all KAB(τ). So

if one can generate each of these distributions, they shall contain all appropriate kinetic

information needed for the description of transitions over the reaction coordinates divided

by the milestones.

It is here that the WARM method becomes advantageous, as the reweighting scheme al-

lows for expedited calculations of these distributions [86]. The KAB(τ) distribution can be

described by a conditional probability distribution of configurations. If M number of mile-

stones are defined by a set of configurations {xs}, the probability a transition to a neighboring

milestone B occurs in τ amount of time provided that it was at milestone A at time 0 is:

KAB(τ) = P (xB, τ |xA, 0) (5.2)

Such a description of transition distributions pairs nicely with Langevin dynamics. The use

of Langevin dynamics allows for a relatively simple means of determining these distributions

from the generation of Langevin trajectories. The standard Langevin equation for trajectory

generation in configuration space is shown in eq (5.3), where γ is a coefficient of friction, the

potential energy of the system is defined by V (x), and ξ(t) is a random force, sometimes

refer to as a ”kicking” force [26]. This random force is typically described by Gaussian white

noise with a mean of 0 and obeys the fluctuation dissipation theorem so that it’s variance w

is defined as: w ≡ 〈ξ(t)ξ(t′)〉 = 2kBTmγ [26].

mẍ = −γmẋ−∇V (x) + ξ(t) (5.3)
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Conditional probabilities such as eq (5.2) can be related to this stochastic random force term

ξ(t) in this way [28]:

P (xB, τ |xA, 0) =

∫
DξW [ξ(t)]δ(x(τ)− xB) (5.4)

Using the delta function here, we select only for movements to nearest neighbor milestone

configurations. Milestoning trajectories terminate once a milestone is reached, therefore only

nearest neighbor transitions must be considered. Here, W [ξ(t)] is the probability distribution

of all random paths generated from ξ(t). Since the noise is defined to be Gaussian distributed

and it’s mean and variance defined as 0 and w respectively, then naturally this distribution

has the form:

W [ξ(t)] = exp(− 1

2w

∫ t

0

ξ(t′)2dt′ ) (5.5)

Rearranging eq (5.3) to isolate ξ(t) and squaring both sides, the integral within eq (5.5)

becomes, what is known as the Onsager-Machlup action functional [88, 89]:

S[x(t)] =

∫ t

0

(mẍ(t) + γmẋ(t) +∇V (x(t)))2dt (5.6)

Using the Ito formalism of stochastic calculus, a Wiener integral is able to be constructed

and a variable change made in eq (5.5) from ξ(t) to x(t), with a functional Jacobian that
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can be shown to be unity, the conditional probability can now be written in this form [90]:

P (xB, τ |xA, 0) =

∫ (xB ,τ)

(xA,0)

DxW [x(t)]

W [x(t)] ≡ exp(−S[x(t)]

2w
) (5.7)

This form allows for the determination of the likelihood a collection of random kicks will

be generated from the white noise and produce a specific trajectory x(t). This information

can be used to compare the likelihood a trajectory being generated on a specific potential

might be able to be generated on some other different potential [27]. This is what allows

information generated from Langevin dynamics to be reweighted. This feature is exploited in

the WARM method [86]. With inclusion of a perturbing force on some potential, a Langevin

simulation can be coaxed in a specific direction. For the WARM method this is referred

to as a ”wind” force, Fwind(x, t) [86]. With an additional wind force the Onsager-Machlup

functional becomes:

Sf [x(t)] =

∫ t

0

(m ¨x(t) + γm ˙x(t) +∇V (x(t))− Fwind(x, t))2dt (5.8)

Comparing this action to one without the Fwind(x, t) allows one to determine the probability
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or weight a trajectory generated with the wind, would have without that wind.

W [x(t)]

Wf [x(t)]
= exp(−S[x(t)]− Sf [x(t)]

2w
) (5.9)

In practice, the discrete form of each action is calculated with an overdamped approximation,

shown in eq (5.10).

Sf [x(t)] ≈
∑
i

(
mγ

∆xi
∆t

+∇Vi − Fwind(x, t)

)2

∆t

S[x(t)] ≈
∑
i

(
mγ

∆xi
∆t

+∇Vi
)2

∆t (5.10)

In order to calculate each K±s (τ), a histogram of times from many Langevin trajectories

are generated for each possible transition from every milestone. The Fwind(x, t) is chosen to

”blow” in the direction of the intended milestone for whichever transition distribution, a his-

togram is currently being generated. Each simulation will then reach the necessary milestone

faster than without any assistance. Instead of counting each trajectory as a whole in the

histogram, the relative weight, W [x(t)]
WFext [x(t)]

, of each trajectory is counted. This allows for the

histograms to be generated faster with Fwind(x, t), but the features of this histogram should

be the same as if there were no wind [86]. The ability to reproduce equilibrium values, such

as the equilibrium flux through each milestone, has been previously demonstrated. In this

paper it will be shown that kinetic information is retained as well, through the incorporation

of the random walk/ stochastic path integral method of calculating time correlation methods
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from milestoning data, originally proposed by Grazioli and Andricioaei, detailed in the next

section [87].

5.2.2 Time Correlation Milestoning

The calculation of a time-correlation function using milestoning data, is possible if the set

of M number of milestones described by a set of configurations {xs}, are an appropriate

discrete approximation of the configuration space x [87]. Also required is the stationary

probability distribution Ps(∞), which is attained with any milestoning simulation, where

this approximation is valid.

In general a time-correlation function C(t) of a time dependent property A(x, t), where the

equilibrium distribution of variable x is f(x) would be:

C(t) = 〈A(x, 0)A(x, t)〉 =

∫
A(x0, 0)A(x, t)f(x)dx (5.11)

In essence, for all times after time t = 0 one is comparing the time dependent property with

its initial value, A(x0, 0). This time dependent property could be described by its expected

value according to a time-dependent probability distribution which is also dependent on an

initial configuration, g(x, t;x0, 0). In the case of a system obeying Langevin dynamics, this

distribution would be the solution to a Fokker-Planck equation [28]. The time dependent

property becomes:

A(x, t) = 〈A(x, t;x0, 0)〉 =

∫
A(x)g(x, t;x0, 0)dx (5.12)
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Which allows for substitution into eq (5.11):

C(t) =

∫
A(x)

(∫
A(x)g(x, t;x0, 0)dx

)
f(x)dx (5.13)

Focusing on the M sized set of {xs} defined by a set of milestones is a form discretizing the

continuous space x. To use this information one must have the ability to calculate a discrete

form of eq (5.13). Each initial condition can only be a member of this set and the observable

A can only be calculated for members of this set. To approximate the integral of eq (5.12)

a summation over all possible milestone configurations must be made, given some initial

milestone x0 where g(x, t;x0, 0) becomes the time dependent probability distribution for a

given initial milestone configuration x0, according to each milestone, Ps(t|x0). The discrete

approximation for the time-dependent property is then:

∫
A(x)g(x, x(0), t)dx ≈

M∑
s

A(xs)Ps(t|x0)∆xs (5.14)

The external integral must be also approximated as a summation over all milestone config-

urations. The equilibrium distribution f(x) then becomes the probability at infinite time

for each milestone Ps(∞). Though both summations are over the same set of {xs} config-

urations, the external summation must be taken over a distinct iterator from the internal

summation, in this case i is chosen for this distinction, but note that {xi} = {xs}. Thus the
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discrete form of the time correlation becomes [87]:

C(t) =
M∑
i

(
A(xi)Pi(∞)∆xi

M∑
s

A(xs)Ps(t|xi())∆xs

)
(5.15)

Provided one can calculate both probability distributions Pi(∞) and Ps(t|xi) from mile-

stoning simulations, it is clear from eq (5.15) that the time-correlation function shall be

calculable. The equilibrium distribution Pi(∞) is commonly calculated from the equilibrium

fluxes through each milestone in any milestoning simulation. With the determination of the

transition distribution functions K±s (τ), it is possible to construct a Markov chain random

walk, the trajectories of which can be used to calculate Ps(t|xi) [87].

5.2.3 Markov Chain Random Walk / Path Integral Methodology

from Milestoning Data

In order to calculate a time dependent probability distribution with a given an initial config-

uration, Ps(t|xi), from milestoning data two objects are required. First, each KAB(τ) must

be calculated. From these distributions, the second object must also be calculated, which is

a Markov transition matrix K outlined in eq (5.16), where each element is the probability of

a transition occurring, based only on the current location. An illustration of such a Markov

chain and it’s corresponding matrix can be seen in Fig 5.1 and equation 5.16.
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Figure 5.1: A six state Markov chain, with states labeled A-F. Nearest neighbors in config-
uration space are connected via black lines.

K =



0 K12 0 K14 0 0

K21 0 K23 K24 0 K26

0 K32 0 K34 K35 0

K41 K42 K43 0 K45 0

0 0 K53 K54 0 K56

0 K62 0 0 K65 0


(5.16)

Such a matrix is constructed under two assumptions, which are built into the milestoning

set up. First, only transitions between nearest neighbors in configuration space occur. In

the example from Fig 5.1 while at milestone x1 only transitions to either milestones x2 and

x4 have non-zero probability in the matrix K. Related to this, the second assumption is
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that given an infinite amount of time at a particular milestone a transition to a different

milestone shall necessarily occur, in other words the diagonal of the K matrix will have

zero probability. To calculate the values of each non-zero element, KAB(τ) are used. The

total probability of a transition occurring is simply the integral over all possible times of the

transition time distributions, eg KAB =
∫∞

0
KAB(τ)dτ . With the knowledge that a transition

must occur and that it can only be a transition to a neighboring milestone, equation the

sum of all M elements in a row in the K matrix must be 1, meaning for the first row of the

example matrix in 5.16 where A = 1:

1 =
M∑
B=1

∫ ∞
0

KAB(τ)dτ = K12 +K14 (5.17)

Once this K matrix is constructed, a Markov chain random walk can be easily generated

corresponding to appropriate thermodynamics. However, this random walk does not have

a constant ∆t, as going between one pair of milestones can take drastically longer than

another pair. In order to acquire physically relevant timescales of each step, once each

direction for the step in a walk is determined, a time for that transition is randomly chosen

from the KAB(τ) that corresponds to said transition [87]. A demonstration of movement

from milestone x1 to x4 in the example Markov chain in Fig 5.1 is shown in eq (5.18). Once

the movement is accepted based on the probability of the transition by virtue of it being

more probable than a random number R1, the time it took for the movement to occur can be

determined. Comparing the probability of τ ′ to a separately generated random number gives

a reasonable sampling of times every time this transition occurs. This allows for the fast

generation of a large collection of trajectories, each with the possibility of reaching timescales
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much further than feasible by typical molecular dynamics methods.

if R1[0, 1] < K14; r(t+ τ) = x4 ; if R2[0, 1] < K14(τ ′); τ = τ ′ (5.18)

Each trajectory can be set to begin at a specific milestone configuration xi. The collection

of all trajectories generated under such a condition can be used to generate an appropriate

Ps(t|xi) through means of path integrals [87]. In practice this becomes histograming the

times it takes to arrive at each milestone after starting from a particular one, followed by

normalizing over all milestones in each slice of time. With the discrete time dependent

distributions in hand time correlations functions can easily be calculated using eq (5.15).

Here it shall be demonstrated that this method works well in combination with the WARM

method.

5.3 Numerical Demonstration

The inclusion of a force such as the constant used in the WARM method, can give di-

rectionality to an otherwise symmetric potential such as a two well system described by

V (x) = x2(x − 2)2, shown in fig 5.2, with varying external forces. Here it should be clear

that passing through the same points in x in the same amount of time t will have signifi-

cantly different likelihoods depending on which potential in fig 5.2 on which a trajectory is

generated.
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Figure 5.2: The impact of various perturbing forces on a two well potential V (x) = x2(x−
2)2−Fext · x in pN · nm. Four potentials are shown with applied external forces Fext = 0, 1,
3, and 5 pN in black, green, red, and blue respectively.

Limits of Reweighting in the absence of Milestoning

The Reweighting scheme can be directly applied to the calculation of time-correlation func-

tions when calculated via a summation over trajectories x′(t). For the same gap in time

for all trajectories generated under constant force f , the values of x0 and xt are adjusted

according to the weight of the trajectory at that point in time [27].

C(t) = 〈x0 · xt〉 =

∫
Dx′x0 · xt W [x′(t)]

WFext [x′(t)]∫
Dx′ W [x′(t)]

WFext [x′(t)]

(5.19)

There are two problems that arise from this formalism as it is necessary to generate many long

time trajectories. The first problem is that each trajectory must be the full length of the time

frame at which a time-correlation function will be calculated, this can be computationally

expensive. Longtime effects in a time-correlation function is only obtained if information

collected after a large number of small steps are generated in serial for many trajectories.
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Second is that the magnitude of external force that will work for reweighting is heavily

limited, since the trajectories are so long.

These issues can be demonstrated on a 1-D potential , Langevin dynamics simulations were

run on a two-well, quartic potential energy function, V (x) = x2(x − 2)2, with parameters

β = 0.5 (pN · nm)−1 and D = 0.20 nm2/ps. Time-correlation functions were calculated

using a discrete approximation of eq 5.19 both with and without the use of reweighting.

This can be seen in Fig 5.3. The top panel shows the extent the time-correlation function

is changed by an external force, when no reweighting is applied. The stronger the constant

external force, the more significant the change in the time-correlation function. When the

functions are reweighted (bottom of Fig 5.3) it is clear that a stronger external force is

more difficult to rewirght accurately to the time-correlation function with no external force.

When a perturbation force of 5pN is reached, almost no accurate information is obtained

for the latter part of the time-correlation function. This limit is related to the fact that the

Onsager-Machlup action,S, accumulates over the entire trajectory. The longer a trajectory

spends on one potential, the less likely that entire trajectory would be able to be generated

on another potential.

The inclusion of milestoning circumvents these issues by using much smaller trajectories.

With appropriately placed milestones, such as those shown in Fig 5.4, the number of steps

needed to generate a trajectory can be reduced by orders of magnitude. By breaking up the

configuration space, a wind force can be applied to encourage the successful transition to

neighboring milestones, instead of applied to the entire potential as a whole. These much

shorter trajectories, should be easier to reweight as the change in action ∆S accumulated

over the course of simulation should be significantly smaller. They will also be much faster

to generate as they are stopped once a neighboring milestone is reached. Finally as with all

milestoning simulations, the trajectories can be generated in parallel saving on the overall

time to sample the potential. The draw back when looking for time-correlation functions, is
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that each trajectory individually no longer contains the necessary information to calculated

the longtime time-correlation functions. Instead, the transition time distributions can be

reweighted, and the Markov chain random walk/ path integral method described above can

generate a collection of longtime trajectories, which in turn can be used to determine the

time-correlation function.

5.4 Time correlation function from reweighted Langevin

dynamics

In the original proposition of the WARM method, only constant force accelerations are

used. The reweighting scheme allows for time-dependent external forces to be used as well

[27]. Here, in addition to constant force winds, constant velocity pulling type winds will

also be considered, for the determination of time-correlation functions with the use of 7

and 9 milestones evenly placed between -1 and 3 along the x axis. Langevin dynamics with

parameters β = 0.5 (pN ·nm)−1 and D = 0.20 nm2/ps were used to determine the transition

time distributions, KAB(τ), which were used in the Markov chain random walk/path integral

scheme in order to calculate the time-correlation function.

5.4.1 Constant-force wind

The calculation of the time-correlation function for the 1-D two well potential,V (x) = x2(x−

2)2, under various strength constant force winds can be seen in Fig 5.5. Evaluating the ∆S

in overdamped conditions with constant force Fwind(x, t) = Fconst, the expression for the
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rewighting factor becomes:

W [x(t)]

WFwind
[x(t)]

≈
∑
i

(
−β

2

∆xi
∆t

Fconst −
β

2mγ
∇ViFconst +

β

4mγ
Fconst

2

)
∆t (5.20)

The top panel shows the use of 7 milestones, and it is clear that wind forces of 5,10, and

15pN reproduce the true time-correlation function reasonably well. This is a significant

improvement over the reweighting of an external force of 5pN shown in the bottom of Fig

5.3. Consistent with the findings of Grazioli and Andriciaoei, the bottom panel of Fig 5.5

shows that an increased number of milestones results in improved recapturing of the time-

correlation. So much so, that when 9 milestones are used with wind forces of 5,10, and 15pN

the true time-correlation function is captured almost exactly. While reaching winds of 20pN

produces a much closer estimate of the true time-correlation function than the same force

with 7 milestones.

5.4.2 Constant-velocity wind

With parallels to single molecule pulling experiments, often times a constant velocity pulling

force is applied to simulations [82]. The reweighting factor, again in the overdamped limit,

now with a constant velocity pulling force of the form: Fwind(x, t) = −k(x−vconst ·t) becomes:

W [x(t)]

WFwind
[x(t)]

≈
∑
i

(
−β

2

∆xi
∆t

(−k(x− vconst · t))

− β

2mγ
∇Vi(−k(x− vconst · t)) +

β

4mγ
(−k(x− vconst · t))2

)
∆t (5.21)
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Simulations were done with 7 and 9 milestones with a constant velocity pulling wind force.

Again it is clear that an increased number of milestones reproduces the true time-correlation

function with greater accuracy. Pulling speeds vcons of 5,10, and 15nm
ps

show reasonable

estimates of the true time-correlation function with 7 milestones and fairly accurate repro-

duction of the true time-correlation function with 9 milestones. While 20nm
ps

becomes fairly

inaccurate for 7 milestones, 9 milestones still gives a reasonably close time-correlation func-

tion. It should be noted that a constant velocity above 0.5nm
ps

cannot produce a reasonable

time-correlation function from re-weighting without milestones.

5.4.3 Kolmogorov-Smirnov Statistics for Transition Distributions

Generated Using WARM

The accuracy of the reweighting scheme in the WARM method is best seen in it’s ability to

reproduce the transition time distributions, KAB(τ). The importance of these distributions

is mentioned above, as they dictate both the thermodynamics and kinetics of the Markov

Chain trajectories, which are used for calculation of the time-correlation function. The

Kolmogorov-Smirnov (KS) statistic, DKS, is a measurement of the largest distance between

the Cumulative Distribution Function of a pair of distributions [91]. For our purposes it

appears as such:

DKS = sup |CDFFwind
(τ)− CDFF

wind
=0(τ)| (5.22)

The smaller this statistic is, the more likely a pair of distributions are in fact the same

distribution. The KS statistic was calculated for each forward transition time distribution

for both constant force and constant velocity pulling simulations with 7 and 9 milestones.
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In the top panel of Fig 5.7 one can see that with an increase of constant force wind, the

KS statistic increases. This increase is seen to a greater extent in the case of 7 milestones

over 9 milestones. Also to note is that, for a given constant force, the largest distances were

seen when leaving milestones at or near the bottom of each well in the potential. To a lesser

extreme these same qualities can be seen in the bottom panel of Fig 5.7 for the constant

velocity pulling experiments.

5.5 Discussion

This work has gone beyond previous uses of the WARM method in combining it with a

Markov chain random walk/path integral formalism to calculate accurate time-correlation

functions and explored some of the effects of doing this. The limits of the strengths of various

types of winds used were assessed. For further improvement in the reweighting scheme, it is

possible to consider alternate actions.

In the case of constant force winds, it was demonstrated that the incorporation of mile-

stoning with the reweighting scheme allows for the use of much stronger forces than when

no milestones are used. An increase in the number of milestones allows for even stronger

forces. The position dependence of the KS statistic suggests that the use of a varying force,

in which the same force applied to different milestone transitions, may improve the ability

to reproduce the transition time distributions and consequently the time-correlation func-

tions. A trade-off would need to be considered, as a decrease in the strength of the force

for milestones near potential energy minima, may produce more accurate transition time

distributions, this could lead to longer simulation times overall. In other words, the parts of

a simulation needing the most speed up, are the most sensitive to the loss of accuracy from

a speed up. It is possible that the inclusion of yet another method, the weighted ensemble

method [92], could lead to improved evaluation of these areas. By assigning weight heavier
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relative weights to the slowest moving trajectories and then incrementally terminating them,

the amount of time spent computing these slower, yet important trajectories is reduced [93].

Alternatively a reweigthing scheme using a different action could also improve the ability to

use stronger accelerating forces.

For the constant velocity simulations all that was seen in the case of constant force simula-

tions, with slightly different extents. The constant velocity pulling speeds that can be used

in the presence of milestones are an order of magnitude larger than the traditional reweight-

ing scheme. This is likely due to the time dependence of this type of wind force. For short

trajectories the minimum of the harmonic pulling force does not have enough time to move

far and create such a large effective force. The bulk of the transition time distribution is on

the shorter end, and longer transition times are highly unlikley. The success of the constant

velocity wind led to an attempt of using an additional aspect of reweighting, a stretching of

the time between points in the trajectory, originally proposed by Nummela and Andricioaei

[27].

W [x(α · t)]
Wv[x(t)]

= α−
n
2 exp

n∑
j=1

(
βmγ

4∆t
(1− 1

α
)∆x2

j +
β∆t

4mγ
(1− α)F 2

j ) (5.23)

Above is an equation that allows for the reweighting of a trajectory generated under constant

velocity pulling to a trajectory that has a constant velocity pulling speed that is α times

slower. The intention behind this would be to use very high pulling speeds and recapture

dynamics under much slower speeds and ultimately close to have no perturbing force at all.

Conceivably orders of magnitudes timescales larger could be sampled if done appropriately.

This was limited to a factor of about 2 in the in the absence of milestoning shown in the

original proposal of the reweighting scheme [27]. With the incorporation of milestonines in

this method, factors of even as small as 1.1 were unable to reproduce accurate transition time
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distribution. This is believed to be do to large jump (high ∆x) fast trajectories. These types

of trajectories would correspond to massive reweighting factors which were several orders of

magnitude larger than what was seen in the case of no stretching of time. In other words

these trajectories were highly improbable under the faster pulling speed and while being

highly probable under the slower pulling speeds. This means that the accelerated conditions

would be inefficient for sampling these highly probable trajectories on the slower potential.

To realize this goal, an alternative action that describes the relationship between trajectories

at longer time gaps between successive steps, may need to be considered.
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Figure 5.3: Time-correlation functions calculated at various strengths of accelerating force
with no re-weighting (top) and re-weighted to zero force (bottom) on the example two well
potential. The time correlation functions shown correspond to constant perturbing forces
Fext=0,1,3,5 in black, green,red,and blue respectively.
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Figure 5.4: (Top) Schematic of applying an external force overall to an entire potential
energy surface. (Bottom) Upon placing the milestones (dashed lines), a wind force is pushing
trajectories away from each milestone and towards its neighboring milestones, this gives an
accelerated directionality that is applied piece-wise to specific segments rather than overall
to the entire energy surface.
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Figure 5.5: Time-correlation functions calculated at various strengths of accelerating with
7(top) and 9(bottom) milestones with constant force winds Fconst= 5, 10, 15, and 20 pN
in blue, green, purple,and orange respectively. In black is the time correlation function
calculated without milestoning or accelerating forces
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Figure 5.6: Time-correlation functions calculated at various strengths of accelerating with 7
(top) and 9 (bottom) milestones with constant velocity pulling winds with velocities Vcons=
5, 10, 15, and 20 nm/ps in blue, green, purple,and orange respectively, and k = 1/2. In
black is the time correlation function calculated without milestoning or accelerating forces
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Figure 5.7: The Kolmogorov-Smirnov statistic is plotted for each forward transition dis-
tribution by its corresponding starting milestone x value, for simulations with 7 (blue) and
9(gold) milestones. (Top) KS statistics are shown for various constant force winds. (Bottom)
KS statistics are shown for various constant velocity pulling wind speeds.
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