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POLARIZATION PARAMETER IN PROTON-PROTON SCATTERING 
FROM 328 TO 736 MeV 

Frederick William Betz 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

August 11, 1964 

ABSTRACT 

The polarization parameter in elastic proton-proton scattering 

has been measured at several energies and angles. The unpolarized 

external proton beam from the 184-inch synchrocyclotron was made 

incident upon a polarized target. The full energy of the beam was de­

graded by means of copper absorber to obtain beams with laboratory 

kinetic energies of 328, 614s 679,. and 736 MeV. The elastic 

proton-proton scatterings were kinematically separated from back­

ground events by detection of both protons in coincidence with the use 

of scintillation counters. Measurements were made in the center-of-

. mass angular region from 33 to 110 degrees (at smaller angles the 

slower proton lacked sufficient range to emerge from the target). 

The target was polarized by means of a technique called dynamic 

nuclear orientation. Its polarization was measured by monitoring 

the nuclear magnetic resonance signal of the free protons in the tar­

get. This signal was calibrated in terms of absolute magnitude of 

polarization by measurement of the temperature of the proton system 

and the frequency of its resonance when the polarization of the target 

was unenhanced. The experimental procedure was to count the number 

of elastic scatterings into a solid angle with the polarization of the 

target parallel to the normal to the scattering plane and then, under 

identical conditions, to count the elastic scatterings with the direction 

of the polarization of the target reversed. The measured values of 

the polarization parameter are presented as a function of angle for 

each incident proton energy. 
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I. INTRODUCTION 

The two=nucleon interaction is of interest in the investigation 

of the nature of the strong interactions and, insofar as the nuclear 

forces can ·be considered two-body interactions, in the investigation 

of the binding of the atomic nucleus. Since a nucleon has an intrinsic 

spin of 1/2, it is necessary to obtain information on the spin dependence 

of the interaction. This dissertation describes an experiment to ob­

tain data on the two-nucleon (isotopic spin = 1) scattering amplitude. 

An unpolarized proton beam was made incident upon a polarized pro­

ton target to measure the polarization parameter P(8) in elastic p-p 

scattering for lab energies from 328 to 736 MeV. Comprehensive 

reviews of previous work on high-energy nucleon-nucleon interaction 

can be found in the articles by MacGregor et al. , 
1 

Hess, 
2 

and 

Wolfenstein? these also contain extensive lists of references . 
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II. THEORY 

The density matrix forma~ism, introduced by Wolfenstein and 

Ashkin 
4 

and by Dalitz, 5 is useful for the description of scattering ex­

periments that involve polarization. 

Let ~- be a wave function describing the incident wave of a 
1 

beam of particles upon .a target.. This incident wave gives rise to a 

scattered wave that displays .a scattered amplitude in each spin. state. 

Let ~f be the scattered wave, M the interaction matrix (with the part 

giving rise to the unscattered wave subtracted out, M = S-1, where S 

is the usual S matrix}, and -I the differential cross section of the 

scattering. From the definition of M 

<if =- M Y{ 
where ~- is normalized, ~.t ~- = 1 (matrix multiplication is implied), 

1 . 1 1 

The scattered wave ~f is not normalized, but 

I= ~t~ 

I= ( M ~ )t M ~ = 

For proton-proton .scattering M is a 4 X4 matrix, ~ is a four­

component column symbol, ~ t is a four-component row symbol, and 

t indicates the Hermitian conjugate. 

If ~. can be written, the initial state is completely known 
1 

and may, in .a sense, be said to be completely polarized, In practice, 

states of partial polarization must be dealt with,. as when a polarized 

target is only 50o/o polarized (not 100o/o). States of partial polarization 

can be described as incoherent mixtures of states of complete polari­

zation. As a simple example, the scattering of spin~O particles on a 

spin-1/2 polarized target, will be described. Suppose the target pro­

tons were in a state of partial polarization so that f
1 

of the protons 

could be described by an initial wave function ~i 1 and the remainder, 

fraction f 2 = 1 - f 1 , by the wave Junction ~i 2 . Then the scattered 

intensity would be 

T =f (MW )~ M 'f + +~ (M ~,.)tM l/1~ 
' ,, l.l . "'" ...... 



·• 

~I 

1 • 

Similarly, if one wished to find the average value of the x component 

of spin a for the scattered particles (final state), one calculates 
X 

fl lf:, ~I +- t 1- lift Lfl_p~ 

t I l.jJL; M tU-x M 1/J~ I ;-

where the denominator amounts to a normalization factor. 

In general, it may require more than two contributions to 

describe the desired state of partial polarization. If n components 

were required, one could use fractions f 1 · · · fn to make up the 

initial state. Any state of partial polarization (or no polarization) 

) 

can be made up as an incoherent mixture of perfectly polarized in­

gredients. For purposes of notation, this formalism can be simplified 

by making up a new matrix 

fi ::: L f~ tX·d. w! 
01. 

In the simple case of two contributions, 

If -Pi 1 and l/JiZ are two-element column symbols, then p would be 

a 2 XZ matrix. 

If·~ i 
1 

is written , where .Pi 11 and l(Ji1Z are com-

plex numbers,- then l(J~~ is 
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* * *'- ~l,w4: ~I *I/ ·t;L ~ld. V:~l Vi~, 
ft ·::: t, +t 

~ 

~~~~,: 
. ~ 

* ~~~tt: 1/il~// Vi~~~~ 
The advantage of introducing this matrix is that the forms we have 

used can be written very simply as 

T r-- ( f~) =- T.,.. ~ c. e f,: -= 1 
. t ) ....,...., .,.. I M /:)~ M t) .L -=..j.,..(f-1/'tM )/T'f'('f~, · . .::: \. ,-

I< cr-?(~ = T"' ( o--')(, M. f.: M t) 
(Note: in deriving these relations, one uses the fact that in taking 

the trace of a product of matrices the product may be cyclically 

permuted-

1'r (,4BC) -=Tv- (c.AB)-= T.,.. ( BGA) 

It is convenient to use a similar matrix to describe separately the 

final state 

f;. = M Pti M t 

r = Tr- ( f~) I 1 f" ( f,·) 

0 

p is· called the density matrix. This matrix has the advantage 

that it is guaranteed to include all cases of partial polarization. 

Since the density matrix in our simple example is a 2X2 

matrix, it can be represented as a sum 

where 1 is the unit 2 X 2 matrix and a 
1

, a 2 , a 3 are the three 

Pauli spin matrices. This set is complete, since none are linear 

combinations of the others. It has the convenient property 

I r ( S,M Sv) = 

,. 
v 



.., .. 

· .. 
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where S indicates one of the set: 1., a 
1

, a 2 , a 3 . 

This formalism has the important advantage of displaying 

explicitly what information is needed to describe fully a state of 

partial polarization. If the initial density matrix describes a set of 

protons that are partially polarized, then p. is completely determined 
1 

if we know all of the a in the expansion 
1-L 

f: -= [ a...~StA • 
Since 1'..,. ( p,· S~) -: ~ ~/""" , we need to know 

l Q..CI ":: T'~ ( f,: ) (: 1 C'bSe.) 

~ A-1 = I.,.. ( f.: ITi ) ( -= ( o-j') i . ) 

~a..,= TY' (f..: o-'1-) ( = < rr,_ 'n ) 
~ a..~ = T..,. ( ft G""3 ) ( =- < a--3 ) ~ ) .. 

In the final state the similar expressions are 

f+ = t1 f~· M 't 

r ~Tv- (f-f1) IT~ (ft) 

r <. ~~+ = ~~ ( f-~- ()")() • 
In general, 

• 

In fact the whole formalism may be expressed very compactly and 

conveniently as 

f = ~~ ~~ (( s'"") s~ 

p -:: -k I r (f) ~ < sr-) Sf'l 
r- • 

Here Tr(p) is a normalization factor that is equal to 1 for our p. 
1 

and is equal to I for our Pr Furthermore (si-L) is the expectation 

value of the particular operator for the particles in the state in 

question. If the initial state is partially polarized, p. is then deter-
1 

mined, and we wish to express information about the final state: 

I < s/'A-~ ~ t I < s" ~ T Y' ( M s ~ M t s r- ) 
~ 
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The concept of the density matrix that has been introduced through 

·this simple example can, in the general case, be defined for a particle 

with spin s scattering on a particle with spin st. An· a:tbltrary spin 

state of the composite system of.the ~th pair of particles (one in 

the beam and one in the target) may be described by a vector with 

components ljJ . • This vector can be represented as a linear com-
. nJ 

bination of the (2st 1) (2st + 1) basic states of the spin system. For 

two spin-1/2 pr~tons one could choose as a basis the four states of 

s I Q; t, t l. 

s7_ a: t,~'l.. 

s 3 
ex:; ,1,, t'l.. 

SL! ex:; -{,'I {,a 

and then ljJ = l: ljJ . s. . The arrows represent a quantum state with 
· n · nJ J 

the spin 11 up11 ot "down" in the usual sense and 1, 2 represent the first 

and second protons respectively. An arbitrary operator in this vector 

space can also be represented as a linear combination of a complete 

set of Hermitian matrices S 1-l, none of which are linear combinations 

of each other. The sl-l have the property that 

Tr(S!J.SV) = (2s+1) (2s t 1)6 For the vector basis chosen above, 
t 1-l v 

the following sixteen matrices constitute 

where 1 is the unit matrix, a. are the Pauli matrices, and j, k 
J . 

run from 1 to 3. The expectation value of one of the operators sl-l 
taken in the spin state of the nth pair of beam and target particles 

is found in the usual way as 

<sr>. -
1"1 



Experimentally one measures averages over all the beam­

target particle pairs, and one calculates the expectation value averaged 

over the pairs' s!J.' as 

~ (? '~~: tf~d) < ~>n (II-1) 

and substituting the 

one has 

~ (~ tf~ (j)h~) * 
results of Eq. (II-1) for ( ~ l/Jr~-4 Lfr~.~) < S.M >1'\ 

• (II- 2) 

~ <=- ~~7 lin~ 
~ 

With the implication that the average over the particle pairs is taken 

first, the density matrix is defined by 

-L (II- 3) 

Upon reflection one can see that this density matrix is equivalent to the 

one introduced through our early example.· Using this definition, we 

can rewrite Eq. (II-2) as 

• (II-4) 

The density matrix, as in our example, can always be expanded as a 

linear combination of the independent matrices 

' 

The density matrix before scattering p. is thus 
1 

(lS+I) ('2~+1) 

(II- 5) 

• 
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The density matrix after scattering .is found, in the same manner as 

in our example, to be given by 

• 
One can again ~relate the average expectation values after scat­

tering to the average expectation values before scattering through the 

equations ($.M')iJ :Tv-(~ s'·) /T'(' (f.(.'> ) 

{II- 6) 

From an experimental standpoint, this· equation is most .useful because 

one .frequently knows the state of polarization of the beam-t~rget 

system before scattering and one measures,. after the scattering, 

average expectation values of the spin operators. In the experiment 

described in this dissertation, an unpolarized beam of protons was 

scattered on polarized protons in ,a target .. An ar-ray of scintillation 

counters detected counts that were proportionalto the differential 

cross section for elastic p-p scattering. We can use Eq .. (II-6) to 

obtain .an expressionfor this differential cross section L <We take 

for the set stJ. the 16 operators previously chosen. Before the scat­

terings occurred, the only nonzero expectation values were 

<1112.) = 1 

< 1, ~· !j) = f ) 

where a is a .vector defined as {a 
1 
a 

2
a 3 ) .. We have chosen .as a 

coordinate system the three mutually orthonormal vectors, 

k- k' k + k 1 k Xk 1 

K= P -
' - N= where k is. th·e incident 

momentum and k 1 the scattered momentum, both in the center= of­

mass system. Since our target polarization is always parallel to N , -the normal to the scattering plane, we denote the polarization by the 
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number p, which is the component of the polarization in the ~ di­

rection. Equation (II-6) then gives us an expression for the average 

expectation values after the scattering as 

(II-6') 

where s = st = 1/2 has been used. 

After the interaction, all protons from elastic-scattering events 

were counted regardless of their spin orientation. This, in the nota­

tion of our formalism, is equivalent to having measured the average 

expectation value of the unit operator, 1
1

1 2 , in the final state. Thus 

from Eqo (II-6 1 ), 

(II- 7) 

The two terms of Eq. (II-7) can be interpreted in the following 

manner: If both initial beam and target were unpolarized, 

( 2.S+ 1)('2.st+ 1) 

Pt=~1.1.1. 
f.f-:: M f~ Mt ~ .!q M M-t 

the unpolarized differential cross section 1
0 

becomes 

:: • (II-8) 

Thus if we define the parameter P(tl) by the expression, 

(II- 9) 
) 

we can write Eq. (II- 7) as 

(II-10) 
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where () is the c. m. scattering angle. (Remember that the target 

polarization p is either a positive or a negative number, depending 

upon whether the alignment of the target protons is predominantly 

parallel or antiparallel to N. ) 

The theoretical forin of M can be restricted by the require­

ment of its invariance under spatial rotations, spatial inversions, and 

time reversal, because the corresponding conservation laws are ex­

pected to hold for strong interactions. If M is requir'ed to be a 

scalar or pseudoscalar, the interaction will yield identical results 

for all obse-rvers whose coordinate systems can be connected by pure 

rotations. A parity transformation inverts the coordinate system, 

so that a point that was reached by the position vector r = (x, y, z) 

will be reached by the position vector whose components are (-x, -y, -z). 

This procedure changes the sign of components of vectors, such as 

linear momentum; maintains the sign of components of pseudovectors, 

such as spin; and changes the sign of pseudoscalars and leaves scalars 

unchanged .. Thus if M is construuted as a scalar, it will be invariant 

under spatial rotations and inversions. The assumption of rotational 

invariance.has also implied that there be no preferred spatial directions 

in the center-of-mass system other than the incident and final mo-

menta, ~ and k 1 , and the particle spins, £
1 

and £ 2 . We are thus 

restricted to combinations of these four vectors in forming M. The 

terms in M will be at most linear in each a since M can be repre­

sented as a linear sum of the basis matrices: 

The x, y, z axes must be defined in terms of the physical vectors 

k and k 1 ; and for this purpose we take the previously chosen unit 

orthogonal vectors ~· !:• -~ in the directions k - k 1
, k + k 1

, k Xk 1
• 

The following expression is thus the most general form of M in­

variant under space rotations and inversions: 

.J 



'• 
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M ( ~) ~') :: ~ + b ( q: I. tJ - (["'t ·I;}. ) +- c.. ( <t I. 1::1 + g:-'t . t:::l) 

+- rM.. ( ~ • t::l G:,_ · t:! ) +- ~ c SI"\ • !.: sr l. I~ + 21 · 'S a: l. • ~ ) 
+ ..h.. l ~I o r g:-'l. 1 .!: - 2" I 0 1-<. cr 'I. ' ~~ ) 

+ ~ (T,·!: <r2.· !S) f- J.. (<T;· 15 ~1.· p) (II-11} 

where a, b, · · · , i. are scalar functions of the vectors k and k 1 • · 

The time-reversal transformation generates a transformed 
0 

state under the replacement of the time t by -t. Invariance under 

time reversal is the assertion that a system can develop backwards 

in time in .the same way it normally does forward in time. The effect 

of this transformation upon the linear- and angular-momentum operators 

can be summarized by the substitutions ~ ~ -!' and a ~ -a. 
For M to be invariant under time reversal, none of its terms must 

change sign with these substitutions. We note for k - -k1 and 

k' -+ -k that N-+ -N, P- =P, and K-+ K. The coefficients 

a, · · · , i. cannot change sign under time reversal since they are 

composed of combinations of k
2

, k 1 2 
and !." !' Thus the terms 

j (£ 1 · ~ £. 2 · ~) and i. (~1 · ~ _£ 2 · ..!::) change sign under time re­

versal and must be equal to zero. 

The indistinguishability of the protons is taken into account by 

the requirement that the interaction matrix M be symmetric under 

the interchange of the two particles. Thus the term b(~1 · ~ - .£_ 2 · ~) 

* must be equal to zero. The M matrix that is invariant under rotations, 

inversion, and time reversal, and symmetric under interchange of the 

two particles can thus be written as 

M ( ~ ,1{ ) = lL + c. ( Tl . N +- Q" .. I ~ ) +- (W\. ( Q";. N ~ I ~ ) 

+~ ( ~~·~ ~1.· P +9",· ~ ~1.· ~) + -l(~·/e~'l.·r- ~·~~,_.~). <n-12) 

If one uses the form of M(!_:, ~·) given in Eq. (II-12) and evaluates 

Eq. (II- 9), which was used to define P( ()). one can obtain 
>';: 
Since the protons are identical fermions, the total wave function 

must be antisymmetric. In the signlet-triplet notation, the operator 
(a 

1 
- ~ 2 ) . ~ changes the spin state of the system from triplet to 

singlet or vice versa. It must therefore also change the angular mo­
mentum i., since J = i. + S must be conserved. But changing i. by 
one is not allowed by parity conservation. Hence tpe term is zero. 



p{e.-) = 

Pl -b) = 

Tv- (M ~·Q"7.Mt) 
Tv-( M M t-) 
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(II-13) 

. The original double-scattering experiments, which were performed to 

measure polarization, involved the measurement of an asymmetry E 

given by 

) 
(II-14) 

where the subscripts A and B refer to the first and second targets, 

respectively. The conventional definition of the polarization parameter 

is P('9-) .: l'r(ff /;l'ff1)/ir(f.f) At target A- this can be written 

1" . 
T~ ( M A tv\ A 1:1. ,v,) 

Tv- (MA MAt) 

Notice then that P( 8), according to its usual definition, is the polari­

zation of the scattered particles that results when an unpolarized beam 

is scattered by an unpolarized target. In the double-scattering experi­

ments the polarization induced by the first scattering produced an 

asymmetry in the second scattering. The analyzing power -- the ex­

tent to which beam polarization at the second target produces asym­

metry-- is defined, then, as P.g: T.,.(M&~·.["; Mi)/'Tr ('MB M~) , 
For the case of elastic proton-proton scattering where MA = MB = M 

[which has the form given in Eq. (II-12)], we will show that the two .. 
factors are equal, P A= PB . This is the basis for the usual state-

ment that polarizing power is equal to the analyzing power. One can 

see, then, that the P(8) defined by Eq. (II-9) is the usual polarization 

parameter for elastic p-p scattering. One should note that although 

g_
1 

occurs in the double scattering experiment (since one usually 

\ 
.~ 
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speaks of the beam particles here) and a occurs in the polarized-
-2 

target experiment (since the target particle is polarized), the M 

matrix has been made symmetric with respect to the first and second 

particles because of the identity of the two protons. This insures 

that results of identical procedures that use £
1 

or £ 2 will be equiva.,. 

lent. Confusion about the bookkeeping notation will be avoided if one 

remembers that the polarization parameter must be an antisymmetric 

function about 90 ° in the Como systemo The proof that 

Td1'111"tt:i •.[):: '"' ( M ~·~ Mt-) is not entirely trivial since neither 

~· ~ 1 nor ~· £ 2 commutes with M, but the proof does follow by 

straightforward algebra and with the trac~ taken as indicated. One 

uses the following properties of the~ a matrices 

Gt ~ = ~£~ + ~ E'.e~k Ok 
a;:t = ~ 
,.,. G1 ::: 0 

where .R., j, k run from 1 to 3 and 

+1. ~•r 2 ·k d -=1~3 <>'r' -a ... ~ c~e.\ic ?el"rv~u.t~ t\ Dl-1. 

€.ti k :: -1 tc.,.. ~i k ,._~I~ c v· 
l>" I "'1 c.. I {c., ·~~-VI"' u.. t e.T '• ~ 1'\ 

0 ~ O'f· R""i ov- J= k oY. i~~<- ) 

ti-l "I' V' c c.( 

th.e,·t: d.( 

and a f. belonging to different spin spaces commute (i.e. , a 1.R. a Zj 

= a 2j a 1.R. ). With the previous coordinate system, the Pauli matrices 

can be written as 

u:,, 
·"~ 

<l'jK 
---

<:r,p = -

<JiN.= 

\};).\( :: 

a;.p == 

~N:= 

\{•CJ 
- -1 

?·cr ,... -1 

I'J.u-- _, 
K .q-~.. 

P·cr-
- -7.. 

N~rs-
- -2. • 
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With this notation, 

M : £k..- + C ( Uj N t Ci '2.1\1) t fV"'\. ( <lj tJ ()2. tJ) ~ d (ij) p Cl,_p) +- ~ ( G'"l \'. U:l.K J 
M + -:;· ~+c.* (a-,, +(),N) ~ fV"'\*( <iir-~ <JuJ) + d>l~E ( ()jp ~,) + .P* ( o-,K (J1.K) 

whe.re * denotes the complex conjugate and 

d:.~+~ 

.f- = 6 -k. 
Thus 

M Mt"-= L o...a..*''+ co...~(CSJN +-G""1.tJ J + fW'-~UJrv v-'2."-' 4-d ~ ~1'o-2P +ta.* IJI~<-G;_K 
· +O..c~(OJrv+ui:)·+ ~cc.:Jf<.( 1 +6j"'v2 N)-}-('N\.e.*(cs-'2.tJ ~ cr:,.~) 

+- ,.:_, d G #' ( <)II<- Cf;_ 'P + ()I P (f l..K J - ;._ f C ~ ( u, p Ci'2 K + CJi K U1. P) 

+ c::t. fV'IL-#. <f, N (J1.1\l + CIW\. .,1IE ( CJ, 1\J + () '2.N J 1- f'M.. I'Wl * 
d *' (l "' . d* 

- M'\ 6""1 " cr-, K - -t 1'(111. <l, P <J'l P 4- D- o-, r c>L.? 

- ,:_C. d '* ( ()\ K. G'2.P + CJ, p ()'2. K) - fV"'. d ..tE <Jj K G;_K 

'd~ * 4( + Cl - ~ d Gj N G"'"2..N + 0... t U"'l K (jl.l< 

When the trace is taken, 

(We have assumed that the initial density matrix is normalized to unity 

when we set r
0 

= Tr(MMt ). One then easily obtains 

T'('(MM1 CJ1N)-= (o..c*+ o...~c. +- cfY"'\.~+ c..*fV"\.) 
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Next one writes out 

,.. 

'*-t · .!N:.-r"'- '"* G' + c. G 1.. Gj tJ t- CJ 1. ,._1) + rM c. G 1 N . .) 2. N + ct C (), 'P 2 ? 

r ~ ~ ~ ) t t' {.; (f 1 K Cf<. K. + 0.... C:. ()I N ()2 N -t- C. C:. ( UuJ + \!2. "'' 

+-(VII. C..* - d C-'/1. v, 1<.()'1.1<. - -9 C. .>Ji ()I? ~1.\' + OvfVI\.;(<. ()2N 

+ c.. ~ /1:. ( CfpJ Cf1 r-J + I ) + fY<'\. .rM '*- 0", N 

d ~ , (' '* ,.;. r.- ' ''* -+ /-. VV\'~' Ci
1
pCJ1K- ;..ti'M- v t~<.·J1.p -"'(..vCI 1Ttt<.\J'2.i" 

t c.. cl ~ ( Cllr <:f?..Y - If 1 1<- G'1.K ) - ;_ fW'.. J -'* rf\ p G'u, 

- d d * CJ1N t f d * \)?..N 1- ,:_, tA.. f"'K Cf1-p ()"2\<. 

- c. t * ( - c;, ''-a-._ K. + CJ,I' U'2.? J + .\...rM. t~ vii< G''-? 

.... 

and taking the trace, we obtain 

T )r ( M f'1 t c-, N ) ":: ( Q, G ~ + a... >,If:. C. +- C /WI. :Jf.. + G >#{<.('IV\. ) 

Thus 

\'(' ( M U;f\1 M T) -::. T'(' ( M MT G"","') 
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Remembering that M is symmetric in _£
1 

and ~ 2 , one can show in 

a similar fashion that 'f.,. ( M CJ2.rJ MT) = TV' ( M 0""11J M t) = Io f>{~) 
The polarization parameter P(8) measured with the polarized target 

is thus the same as that measured in the double-scattering experiments . 

. It is worth noting that if M were not required to be invariant 

under time reversal and the form of M given in Eq. (II-11) were used, 

the polarizing power and the analyzing power would no longer be equal. 

In fact one would have obtained the following expressions: 

T.,- ( M M tcr;N) = i ( o..c. ~ +- ~ /tl:.c,) + (crM.~ +- c.*rM) +/..(.f.··;/''"- t~d) 

- ~ ( d 1 *- c\ *j ) J 
1-r (Ma-,,·nt)= [(o..~~-1-'-·a..~e) + (cNA.~+C~r#\.)-;._(~a~- -f"*'d) 

+~ (d ~~-J*1)] 

The presentation in this section is nonrelativistic. In the energy 

region with which this dissertation is concerned, it is necessary to use 

the relativistic kinematics. Stapp has given the relativistic treatment 

of the interaction .matrix M. 
6 

It turns out that for polarization mea­

surements, the results of the relativistic treatme-nt .are indentical to 

that from the nonrelativistic treatment. The reason this is so depends 

upon the fact that spin components perpendicular to the direction of the 

motion of the particle are unaffected by Lorentz transformations. For 

the polarization measurements described here, the nonrelativistic 

formalism is sufficient. 

\1 
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III. BEAM 

The Berkeley 184-inch synchrocyclotron accelerated protons 

to a. fixed energy. Various thicknesses of an absorber 

were used to degrade this maximum energy to lower energies. The 

manner in which the proton beam was formed makes it unlikely that ·i{ 

had any significant degree of polarization. In addition, the symmetry 

of the arrangement prohibited introducing any polarization that had a 

component perpendicular to the plane of the scattering. Figure 1 shows 

a diagram of the beam system. 

After a spin-independent injection and acceleration, the protons 

entered an auxiliary dee that could be used to stretch the beam spill 

to as much as 12 msec out of 16.7 msec of the acceleration cycle. 

The beam was extracted from the main magnetic field by the well-known 

Tuck-Ting method. The cyclotron had provision for inserting up to 

10 inches of Cu absorber in the external beam. To obtain the following 

beams we used the indicated thicknesses. 

Energy 
(MeV) 

740±4 

683±6 

619±4 

334±5 

Thickness of 
Cu absorber 

(in. ) 

0 

1 1/2 

3 1/16 

9 5/8 

Following this was a premagnet collimator whose aperture 

could be adjusted. 

The cyclotron steering magnet,whichfs a bending magnet with 

a 6 -inch gap, then deflected the beam in the horizontal plane through 

an angle of 18° into two 8-inch-aperture quadrupoles. These quadrupoles 

were used as a doublet to focus a 2-inch-diameter spot upon a colli­

mator placed in the proton cave. The size of this collimator could be 

varied from 2 by 2 inches to 1/8 by 1/8 inch. The jaws of the colli­

mator consisted of 8 inches of copper in the beam direction. This 

provided rectangular sources for an 8-inch-aperture quadrupole (used 
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.inch Synchrocyclotron 

of external proton beam 

MU- 34584 

Fig. 1. Proton- beam-transport system. 
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as a triplet) to focus the beam upon the crystals of the polarized tar~ 

get. The plane of the scattering was verticaL To minimize spreading 

of the beam (due to multiple Coulomb scattering) as it passed through 

the proton cave, a helium bag was used. The helium bag consisted of 

a plastic bag filled with 1 atmosphere of helium gas and extended most 

of the length of the cave from the collimator to the polarized target. 

S~nce only one bending of the beam occurred, there existed an 

energy distribution spread linearly across the target. But this was in 

the horizontal plane and perpendicular to the plane of the scattering. 

The energies of the beams were measured by a range telescope. 

Figure 2 shows the counter arrangement of the range telescope and 

the electronics. 

Coincidences S 
1 

S 4 were counted to normalize the points of 

the range curve. Coincidences S 
1 

S 
4 

s
2 

were counted to provide an 

integral range curve, and coincidences S 
1 

S 4 s 2 with s 3 in anti­

coincidence provided a differential range curve. Measurements of 

beam energy were made with three choices of copper in the cyclotron 

copper absorber box (0, 3 1/16, and 9 5/8 inches). The intensity of 

the external proton beam was made as low as possible and still be 

compatible with control of the intensity to within a factor of two. 

Varying amounts of Cu absorber pieces calibrated in g/cm·
2 

were 

inserted between s1 and s2) and the range curves were taken. 

Figure 3 shows the curve taken with no Cu absorber in the cyclotron 

absorber box. The range in Cu was found from both the differential 

and integral range curves. To these values was added, as was appro­

priate, the Cu equivalent of the scintillators and one~half the thickness 

of the differential Cu slab. Range energy tables from Rich and Madey 

were then used to determine the energies. 
7 

To obtain the range curve with no copper absorber in the cyclo­

tron box, 7 inches of copper was placed before counter S 4 . This 

served to reduce the singles rates in the counters and was included 

in the range calculations. The Cu absorber pie~es in the cyclotron 

box were not accessible for calibration. With the nominal thickness 

of the copper in inches andan assumed density of 8.94 g/cm
3

, the 
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slab of Cu 

Differential 
counts 
scaled 

Integral 
counts 
scaled 

Normalization 
counts 
scaled 

MU-34340 

Fig. 2. Range counter-telescope with associated elec­
tronics. Counter dimensions were: 

s
4 

1X1X1/4 in. 
S 1 1X1X1/4 in. 
s

2 
6 -in. diam circle Xi/ 4 in. thick 

s
3 

7X8X1/2 in. 
,., 
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Fig. 3. Differential range curve of full-energy beam 
{i.e., no copper absorber in the cyclotron cop:per 2 
absorber box). Range in copper = 308. 9± 2. 5 gj em 
{305.2 g/cm2 center of differential curve at half 
height+ 3. 7 g/cm2 for copper equivalent of 5

4
, 5

1
, 

1/2 5 2, and one -half differential slab). This cor­
responds to 740± 4 MeV. 
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values of CuBOX + CuRANGE for the thre·e curves are listed in Table 

I. The total thickness CuBOX + CuRANGE in each case must add to 

the same value because the sychrocyclotron is a fixed-energy machine. 

Since the values agree, within the accuracy of the measurements, we 

assumed this density and calculated the energy of 683 MeV from the 
2 

value found for the full=energy beam (308.9 g/cm ). The results 

given include the calculated energy loss to the center of the target: 

736±5 MeV 

679±7 MeV 

614±5 MeV 

328±6 MeV 

At energies 736, 679, and 328 MeV, the beam spots at the target were 

from 1.5 to 2 time.s the area of the target. At 614 MeV, the beam spot 

was approximately the size of the target. Effect of the size of the beam 

spot on the measurement of P(8) is discussed in.Sec. IX. 

.J 

.. . 

• • 



Table I. Results of range-energy measurements. 

Thickness of Cu CuBOX = CuRANGE = CuBOX + 
in cyclotron box Cu in cyclotron range in Cu CuRANGE 
(nominal inches) box for a copper measured with 2 

density=8, 94 g/ em 3 range telescope 
(g/cm ) 

2 
(g/cm ) 

2 
(g/cm ) 

0 0.0 308. 9±2. 5 308. 9±2. 5 

3 1/16 69.5 237,4±2.5 306.9±2.5 

9 5/8 238.3 90. 9±2. 5 309. 5±2, 5 

The energy spread of each beam was 15 MeV full width at half maximum. 

Energy 
(MeV) 

740±4 

619±4 

334±5 

I 
N 
vu 
I 
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IV. TARGET 

The polarized target used in the experiment has been described 

in detail by Schultz. 
8 

Only a brief summary is given here. 

The target itself consists of four single crystals of 

La2Mg
3

(N03 )
12

·24 H 20. A small fraction of the La ions have been 

replaced with the paramagnetic ions of Nd 
142

, and the hydrogen nuclei 

in the waters of hydration are polarized by means of a technique called 

dynamic nuclear orientation. 9 The hydrogen nuclei provide a polarized 

proton targ.et with an equivalent thickness of 0.15 gj em 
2

. 

The crystals are cooled in a liquid helium bath whose tempera­

ture has been lowered to about 1.2°K by decreasing ~he vapor pressure 

of the helium with a mechanical pump. An external magnetic field of 

18.75 kG applied to the crystals splits the two spin states of the spin-1/2 

protons. The polarization of the target is defined as the fractional dif­

ference in the population densities of these spin states: 

p _ N{+1/2) - N(-1/2) 
- N(+1/2) + N(-1/2) · 

(IV -1) 

At this temperature and field the Boltzrnan distributions in the two 

energy states provide a "natural" polarization of 0. 16o/o. To attain 

higher polarizations of either sign, the crystals are irradiated with 

microwaves of frequencies near the electron resonance (71 kMC for 

18 75 kG) Th · Nd142 · h" b h . . e pararnagnetlc 1ons at t 1s temperature e ave 

like spin-1/2 electrons with an effective g factor of 2. 70. These ions 

can be thought of as unpaired electrons whose spins couple with the 

spins of neighboring protons of the hydrogen nuclei. Figure .4 shows 

an energy-level diagram for an electron and proton spin system in an 

external magnetic field. In Fig. 4, A = ge f.l.e H
0 

and o = gp, f.ln H
0 

where f.lo and f.ln are.the Bohr rnagneton and the nuclear rnagneton, 

H0 is the external magnetic field, ge and gp are the spectroscopic 

splitting factors for the e1ectron and proton respectively.>:< k is the 

Boltzrnan constant; and ·T is the absolute temperature. Saturation 

of one of the forbidden transitions, which involves a simultaneous flip 

* M, rn denote magnetic quantum numbers of the electron and proton. 

" " 
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Fig. 4. Energy levels of an electron and a proton spin 
in an external magnetic field, showing magnetic 
quantum numbers of the four states and relative 
populations at thermal equilibrium and when satur­
ating the partially forbidden transition at frequency 
( .6.- 0 )j!i. 
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of an electron and proton spin, with the appropriate microwave fre­

quency produces the indicated relative population densities of the spin 

states. It is important that the relaxation time for the "electron" 

spin flip is much less than the relaxation time for the proton spin flip. 

For the present ta~get the relaxation time for the electron spin flip 

is of the order of millis-econds, whereas that of the proton spin flip 

is about 15 minutes.. Thus each neodymium ion can successively flip 

many neighboring proton spins. Further propagation of the proton 

polarization outward from the neighborhood of the neodymium center 

depends on proton-proton spin interactions, which cause mutual flips 

of neighboring protons. From the definition of the polarization one 

obtains the "naturaln polarization of the protons in thermal equilibrium 

with the liquid helium bath at temperature T and in the external 

magnetic field H
0 

to be 

r-i' .. H o 

p:: t~V\ h ;kT-
When one of the forbidden transitions is saturated, t-he proton polari­

zation becomes 

~e·!Jo 
P=t~t-.h akT (IV -3) 

Target polarizations as large as 65o/o have been obtained with the 

presenttargeL 

The determination of the target polarization consists of meas­

uring the fre,quency and strength of the nuclear magnetic resonance of 

the protons and the temperature of the liquid helium bath. When the 

target polarization is unenhanced and at thermal equilibrium with the 

helium bath, the strength of the nuclear magnetic resonance (NMR) 

signal is recorded and the temperature measured. The "natural" 

polarization under these conditions is computed from the frequency 

of the resonance and the temperature of the bath. This in effect cali­

brates the recorded thermal equilibrium NMR signal. After the 

polarization of the target has been .enhanced, the NMR signal is 
i 

continuously monitored and the enhancement of the target polarization 

.-
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is computed from the ratio of the areas of the enhanced NMR signal 

to the unenhanced signal. The absolute value of the target polarization 

is then obtained by multiplying this enhancement ratio by the computed 

polarization of the unenhanced signal. The actual calculation of the 

target polarization must take into account the effect of the characteristics 

of the detection system; this calculation is summarized in Sec. V. 

In the scattering experiment the elements in the target, other 

than hydrogen, generated background events. The detected background 

events were primarily of two kinds: quasi-elastic scatterings of in­

cident beam protons with bound protons in the nuclei of the nonhydrogen 

elements; and accidental coincidences between scattered protons from 

different scatterings occurring within the resolution time of the coin= 

cidence circuit. To evaluate the shape of the background, we constructed 

a dummy target to simulate the crystal target in l<;:inds of atoms and in 

their respective proportions by weight. At each measured counter 

position and energy, runs were also made with the dummy target. 

Attempts were made to-keep all other conditions of the experimental 

setup identical between the set of dummy target runs and the crystal 

target runs. Table II gives the composition of the dummy target. 



Table II. Composition of the dummy target, 

Target (26.1 grams of 
La 2Mg 3 (N03) 

12 
· 24 H 20) 

Atomic Atomic 
Element No. weight 

Total 
weight 

(g:rams} 

La 57 138.9 4.7 

Mg 12 24.3 1.3 

N 7 14.0 2.9 

0 8 16.0 16.4 

H 1 1.0 0.8 

Dummy' target (3.36 grams of 
- ,Mg F'z, 6 .. 70 grams· of 

,BaC03, and '1,5.65 gFarns of CFz :CJf~(TefloJ:l))_ 

Afomic Atomic Total 
Element No. weight weight 

(grams} 

Ba 56 137.4 4.7 

Mg 12 24.3 1.3 

c 6 12.0 4.2 

0 8 16.0 1.6 

F 9 19.0 14.0 

;, 

G 

N 
00 
I 
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V. MEASUREMENT OF THE TARGET POLARIZATION 

The polarization of the free protons in the target was measured 

by monitoring their nuclear magnetic resonance signal. The crystals 

were positioned in the center of an rf pickup coil that consisted of two 

rectangular "figure eight" loops. Figure 5 shows a sketch of the crystals 

and NMR pickup coil. Two crystals were fastened to each side of the 

aluminum septum used to guide the flux lines into a more uniform rf 

magnetic-field configuration in the region occupied by the crystals. The 

leads from the coil were connected in parallel with a variable capacitance, 

forming an effective parallel capacitance-inductance circuit. A rf­

signal generator drove the circuit at resonance. This generator fed 

the tuned circuit through such a large capacitive reactance x that it s 
could be considered as a constant current source. When the frequency 

of the rf generator passed through the proton resonance value v 
p 

appropriate to the external magnetic field H
0

, the spin systems of the 

protons absorbed or emitted energy to the rf field (depending upon 

whether they were aligned predominantly parallel or antiparallel to the 

field). This appeared in the resonance circuit as a change in the im­

pedance of the circuit. Since the rf generator effectively generated 

a constant current, this change in impedance was detected by measuring 

the linearly related voltage change of the circuit. To facilitate the ob­

servation of this signal, the external ma.gnetic field was perturbed with 

a small alternating 400 cps component. This was achieved by a pair 

of coils (of approximate Helmholtz geometry) wrapped about the pole 

faces of the target magnet and fed an alternating current of 400 cps. The 

magnitude of this current was restricted so that the perturbation would 

not be large enough to disturb the stability of the polarization method. 

This perturbation of the field manifested itself in the detection system 

as a 400-cycle amplitude modulation on the rf voltage. The rf volt­

age across the resonance circuit was amplified and then, by means of 

a diode, rectified. The diode voltage gave a 400-cycle signal whose 

amplitude was proportional to the slope of the proton-resonance-ab­

sorption curve. This signal was amplified and converted by a lock-in 
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Fig. 5. Sketch of the polarized-target crystals and the 
NMR pick-up coils. There were four crystals, 
each of dimension:::::: 1X1X1/4 in. 
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phase-sensitive detector to a proportional de signal. Thi~ signal, 

representing the derivative of the NMR line, is called the differential 

signal. It was recorded on a chart recorder and digitized for recording 

on paper tape. The de voltage level of the rf rectifying diode was 

also recorded and simultaneously, as was the differential signal, digi­

tized and taped. Figure 6 is a schematic of the detection system. 

A complex rf susceptibility X = xu - i X" can be defined for 

the crystals. For a single Lorentz resonance, the dispersive X~ and 
10 

absorptive X" components can be expressed as 

X' {V -1) 

x•• 1 
xo T2 

1 = 2 wo 2 2 2 ' 1+ T 2 (w- wO) +{yH1) T1T2 

where wo = resonant frequency 

T 1 = relaxation time for proton spin component along l!o 
T 2 = relaxation time for proton spin component perpendicular 

to !:!o 
H 1 = component of rf magnetic field perpendicular to the ex-

ternal field !:!o 
y = gyromagnetic ratio of the proton. 

The static Curie susceptibility X is 
0 

where 

3kT 
2 

p N y I{I+1} 
v 

I = spin of proton 

k = Boltzman constant 

T = temperature of crystal 

p = polarization of target 

N = number of protons per unit volume. 
v 

{V- 2) 
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"rf level'' signal 

Fig. 6. Schematic of the NMR detection system. 
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The factor p N gives the net difference per unit volume of the number 
v 

of spins aligned with or against the field, since each of the two states 

contributes oppositely to x
0

. One notes that the complex susceptibility 

X is proportional to the polarization p. Although the rf susceptibility 

of the crystal cannot be derived from a single Lorentz shape, it can be 

thought of as a linear sum of the 48 single-proton resonances in the 

crystal molecule. A shape factor g(w-yH) is introduced to take this 

into account, such that 

X cc p X g ( w - y H) . (V- 3) 

H is the external magnetic field, including the 400-cycle perturbing 

component. The integral of the complex function g(w-yH) over all 

frequencies is a real constant and is usually normalized to unity. As 

the magnitude of the target 1 s polarization changes, these line shapes 

can change because the relative positions of the 48 single-proton reso­

nances (whose frequencies may depend on the spins of the nearest­

neighbor protons) shift with respect to each other. However, it is 

believed that the overall normalization does not change. 

The complex impedance Z of the tuned circuit can be written 

as 

1 1 1 --- +­z ZL Zc 
(V -4) 

where Z = 1/i we, and c is the value of the parallel capacitance. c 
The impedance Z L is the sum of resistive and inductive impedance 

of the circuit 

Z L = R + i w L ( 1 + 4 Tr 11 X), (V -5) 

where L is the inductance of the coil in the absence of resonance 

absorption and 11 is the fraction of the volume of the coil occupied by 

the crystals. Upon differentiating Z L with respect to the external 

field, one obtains 
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X X 
ag 

constant p a {yH) 

The detected voltage; across the circuit is directly proportional to Z: 

ZL zc 
V = constant X 2 +Z 

L c 

The differential signal of V was recorded 

av 
=-a .,_.( y-=H....-) = 

or 

. av 
a (yH} a: 

z 2 
c 

kL:_ 
z 2 

L 

azL 
a(yH) • 

X .constant . 

With the assumption that the change in the absolute magnitude of ZL 

is small, 

and from Eq. (V -6) 

1 av 
lzJZ a (yH) 

1 av ag 
P a (yH) oc I viz a (yH) 

(V ~ 7) 

p can be obtained by integration (where 0°(~H) - ~~ because g=g(w-yH) ) 



t.JI 

pX ~ (w 1-~H) o: s dw I 2-
-.J 0 IVtw)\ 

. I 
C» w 

p ~ JJtA!l d I d Vlw) 

0 
J 

0 
w IVlw)l'l. d (~H) 

(V -10) 

Thus a double integration, with respect to frequency, of the product of 

the detected differential signal divided by the square of the de voltage 

of the rectifying diode gives a quantity proportional to the polarization 

of the target. Note that the differential signal actually detected was 

: l~!) instead of 0°(~H) , and a correction should be made for this dif-

11 
ference. It is estimated that the correction is small, and it has not 

been made. As is explained later, the differential signal and the de 

level voltage were digitized and eventually recorded on magnetic tape. 

The double integrations of Eq. (V -10) were done numerically on an 

IBM 7044 computer. 

The procedure for measuring the target polarization consisted 

of recording the NMR proton signal when the crystals were in thermal 

equilibrium with the liquid He bath and no microwaves were present 

to stimulate the "forbidden transitions." This signal was called the 

thermal equilibrium (TE) signal. While such a TE signal was being 

recorded, the vapor pressure of the liquid He was measured with an 

oil manometer and the central rf frequency at which the resonance 

occurred was noted. The vapor pressure is effectively a measure of 

the temperature of the system, and the central-resonance frequency a 

measure of the strength of the external field. The absolute magnitude 

of the target polarization is computed under these conditions from 

Eq. (IV-1)--

~p·\j_tl 
P-rE =- t';)~ h Ol kT • 

The corresponding NMR proton signal recorded is subsequently 

doubly integrated to give an "area" ATE' This area can thus be cali­

brated in terms of absolute magnitude of polarization: 

= NMR signal area 
polarization 

ATE 
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Several of these TE signals were measured before and after a set of 

experimental runs. Their average APTE was computed. During an 

experimental run, the NMR signal was continuously recorded by an 

ink=pen paper-chart recorder .. A. sample signal for each run was usually 

digitized and recorded on paper tape for later double integration. The 

"area" AR of the sample run was divided by APTE to give the absolute 

magnitude of the polarization p . , which corresponded to this sample. 
r1 

For a set of experimental runs, the peak=to~,peak amplitudes of the dif= 

ferential NMR signals of these samples were plotted against their ab­

solute polarizations. This gave a calibration curve of target p"olari­

zation versus peak-to-peak amplitude. Figure 7 shows an example of 

one of the graphs. The average target polarization of an experimental 

run was then found from the graph according to the avera~e value of the 

peak=to-peak signals recorded during the length of the run. The ac­

curacy of these measurements is discussed in .Sec. IX. 



0.46 

0.42 

'-
a.. 0.38 

0.34 

-37-

0 

Negative 
polarization 

runs 

0.30 L--..L....-..L..-__.L._--'-----1....----L.---1-..I....__....l...-....I....---'----'-----'----1-~...L..-....L.--l 
3.0 3.2 3.6 3.8 4.0 4.2 4.4 4.6 

Recorded peak-to-peak signal 

Fig. 7. Calibration curve of target polarization versus 
peak-to-peak amplitude for runs taken at 736 MeV 
with the counters covering the angular region from 
65.5 to 83.2° center of mass. 

4.8 

MU-34581 
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VI. COUNTERS 

An upper array of 10 scintillation counters and a lower array 

of 10 scintillation counters were used to detect the elastiicaUy scat~ 

tered protons. A count was stored in .a coded bin of a 100-channel 

analyzer for each event detected. Figure 8 depicts the counter arrange­

ment. Each counter of the upper array measured .2 in. in the plane of 

scattering, 1 in. perpendicular to the plane, and 1/2~in. in thickness. 

Each counter of the lower array measured 3/2 in. by 3/2 .in. by 1/2 in. 

The dimensions of the counters and their distances from the target 

were chosen to maximize the ratio of the elastic p~op scatterings to the 

background. 

Quasi-elastic scatterings of protons in the beam with protons 

in the nuclei of the nonhydrogen elements of the target were prime con­

tributors to the background. Advantage was taken of the fact that these 

protons in the nuclei have an average Fermi momentum of 200 MeV /c. 

The orientation of this momentum is random, and its effect is to smear 

the trajectories of the scattering particles through an angle 

e ·:::;: L 200(MeV/91/L pj(MeV/c)] centered about the .trajectories an elastic 

scattering would have had for the same center-of-mass -angle scattering. 

Here p. represents the lab momentum of either scattered particle. This 
J 

effect is largest for the counters that detect the slower proton of the 

scattering. The smaller and the farther back these counters are, the 

better the elastic scattering to background ratio becomes. However, 

a proton from an elastic scattering event at this angle has its trajectory 

smeared into an angle equal to twice the rms multiple-scattering angle 

e suffered by a particle as it emerged from the crystals. Once rms . 
the angle in the pla~e of scattering subtended by a counter is equal to 

28 ' decreasing this angle more does not improve the "signal to rms 
noise" ratio, but merely decreases the counting rate. The lower 

array was positioned to detect the slower proton from a scattering 

event. The ratio of the width w 3 of one of its counters in the plane 

of the scattering to the distance from the target d 3 was chosen equal 

to 28 for the average momentum of the proton detected in the rms 
array 
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Fig. 8. Arrangement of the scintillation counters. The counter 
dimensions were: 

ai (2 X 1 X 1/2 in.) (ten counters) 
~ (3/2 X 3/2 X 1/2 in.) (ten counters) 
E 1 , E 2 (2 X 1 X 1/2 in.) 
FL, FR (1/8 X 1/8 X 1/8 in.) 

U
0 

(22 X 3/2 X 1.2 in.) 
DD (4-1/4 X 3/2 X 1/8 in.) 
Do (16 X 2 X 1/2 in.) 
D A (22 X 4-1/2 X 1/2 in.) 

The direction of the normal to the scattering plane N and the 
direction of the external field !:!a are indicated nearthe crystals. 
Since the proton has a positive magnetic moment, positive 
target polarization is parallel to H . 

-0 
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w3 15 
-- 28 = --
d3 rms p 313 3 

where X radiation length for the target, X :::: 1/2 Since the tar-
e c 

get is about 1-inch wide in the plane of the scattering, w 3 should be at 

least this large or larger. The spread of the quasi(o,elastic scatterings 

can further be taken advantage of by matching .the angles that the lower 

and upper arrays subtend in the direction perpendicular to the plane of 

scattering. As an .additional consideration, the total 10 counters in 

each array had to subtend an angular region in the plane of scattering 

large enough to be efficient, that is, to measure all accessible angles 

at one energy in two or three counter settings. The counters in each 

array were spaced .as close to each other as the wrapppings wouldper­

mit. This was done to minimize the effects from shifts in the beam 1 s 

position or other changes that might cause elastic coincidences to shift 

in space. Since the counters were made adjacent, such a shift would 

merely result in the counts falling in the adjacent counter; and when 

one summed over several counters to obtain the hydrogen peak, one 

would still retain these counts. In this way the design and placement 

of the counters in the upper and lower array were determined. 

Counters u
0 

and D
0 

were designed to cover the upper and 

lower arrays, respectively, and to be used in coincidence with the ar­

rays to decrease accidental coincidences by requiring an extra coin­

cidence. Counter DD was designed to provide, along with the counters 

of the lower array and D
0

, a spatial counter telescope that used only 

the crystals as a target. This avoided contributions to the background 

which would have come from events generated in the flanges of the 

vacuum system and the pole faces of the magnet. 

Counter D A was used with D
0 

and DD to provide another 

spatial telescope that had the crystals as a target. This coincidence 

was used as a monitor to normalize the length of reach run. The ion 

chamber and .a two-counter spatial.telescope, E
1

E 2 (that used the ion 
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chamber as a target), were additional monitors independent of the 

normalizing monitor and the crystal target. 

The center-of.-mass scattering angles of events detected by the 

counter matrix were determined by kinematically tracing trajectories 

from the center of the target to the counter arrays in the laboratory 

frame. When the counter arrays were positioned to detect elastic scat­

tering events, measurements in the laboratory system were taken to 

locate the arrays with reference to the polarized target. With this in­

formation, trial center-of-mass scattering angles were systematically 

chosen and the trajectories of the corresponding scattered particles 

were traced in the laboratory frame from the center of the target, 

through the magnetic field of the target magnet, and into the region of 

the upper array. Energy losses in the target were taken into account . 

. When a trial trajectory intercepted the upper array, the trajectory of 

the conjugate particle of the scattering was traced out to determine into 

which lower counter it fell. Since these calculations were many and 

tedious, they were carried out on an IBM 7044 computer. When re­

sults were obtained, one could compare the location of the "hydrogen 

peaks" of the calculations to their locations in the experimental matrix. 

By varying parameters that described the location of the counter arrays 

and then noting any discrepancies in the positions of the calculated and 

experimental peaks, one could gain an estimate of the reliability of the 

angle determinations. In this manner we estimated that the calculated 

angles are correct to ±1 o center of mass, 
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VII. ELECTRONICS 

Figure 9(a) sho~s a schematic diagram of the elec:;tronics. The 

control system, called (3-63, was developed for this 

type of experiment by Frederick Kirsten .and group. A master trigger 

was formed to "tell" the system when to process an event and store it. 

The master trigger was produced by a multiple coincidence of the fol-
\ 

lowing counters: DD - D 0 - f3i ~ U 0 - aj, where. i, j = 0- 9. When a 

master trigger opened the circuit, the pulses from the upper and lower 

arrays that had generated standard pulses by means of discriminators 

were passed by a gate generated by the master pulse. Those signals 

on time with the gate, and thereby passed, set flip-flops for temporary 

storage. These flip-flops were interrogated to see whether one and 

only one signal existed in each array. If this were true) the event was 

considered valid,. and one count was added to one of a hundred bins 

of a multichannel scaler (MCS). The address of the scaler was de­

termined by the particular: counters of the upper and lower arrays 

in which the coincidence occurred. The multichannel scaler was a 

RIDL pulse-height analyzer that had been modified to provide access 

to the address system. The address was set so that the counters in 

the upper array determined the ten 1 s address and the counters in the 

lower array determined the unit 1 s address. Thus the 10 by 10 matrix 

was stored in the one-hundred bins, 00 to 99. 

To normalize the runs to the same number of incident protons, 

the monitoring circuits shown in Fig. 9(b) were used. 

The DD - D 0 = D A coincidences were counted and used to 

normalize the runs with different target polarizations. 

The ion chamber and number of E
1 

- E 2 coincidences were 

used to check on the functioning of the normalization monitor, and to 

determine whether any slight polarization dependence occurred in this 

monitor. 

The singles rates in F L and F R were counted so that their 

ratio might tell when drifts occurred in the beam position. 
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Fig. 9(a). Schematic of electronics used to process and store data. 
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I. C. Integrating Millivolt 

:::!::: amplifier 
~ chart 

recorder 

MU-34342 

Fig. 9 (b). Schematic of electronics used to provide monitoring 
information. 
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The length and smoothness of the beam spill was continuously 

observed by displaying the integrated singles rate of the u0 counter 

on an oscilloscope. The oscilloscope. was repetitively triggered at 

the same part of the acceleration cycle of the synchrocyclotron. 

Most of the arithmetic operations in the analysis of data were 

handled by an electronic computer. At the site of the experiment the 

data were recorded by electric typewriter and simultaneously by paper 

punch on punched paper tape. These outputs included information for 

run identification as well as numerical data from all the scaling circuits. 

On an intermittent basis, data were also recorded from the NMR 

equipment used to measure the target polarization. Once each 12 hours 

of operation the punched paper tapes were transcribed onto magnetic 

tape for analysis by the computer. 

I 
i 

I 
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VIII. ANALYSIS 

In the center-of~mass system, .a counter of the upper array de­

fined a solidangle .6.0 at an.angle e. From Eq. (II-10), the number 

of counts in.this counter that were accumulated during an ith run can 
~ . 

be written· as 

N. = m. I
0 

l1 + p. P{B)) + m. B 
1 1 1 1 

(VIII-1) 

where 

m. = monitor counts (m. o:: number of incident protons X solid 
1 1 

angle of counter as long as the counter positions are 

held fixed. ) 

~O = unpolarized differential cross section for elastic p-p 

scattering in c. m. system 

p. = polarization of target 
1 

P(B) =polarization parameter in p-p scattering 

B = background contribution per unit monitor 

Pi =+{pi j for positive target polarizations 

and -I pi 1 for negative target polarizations. 

Positive target polarization means alignment of the proton spins pre­

dominantly parallel to the magnetic field and negative, antiparalleL 

Since the field at the polarized target bent the beam downward, one 

can see from Fig. 8 that the above statement is in agreement with the 

previous definition of p. In order to subtract the background, runs 

taken with the dummy target were normalized to the total of the runs 

taken with the polarized target by multiplying the matrix of the dummy 

target by the ratio R of the flat areas (see the example in Sec. X): 

- R 
j 

n 

= [ mi I0 l1 + pi P(B)] 

i 

where Bj are the actual counts taken with the dummy target) 

(VIII-2) 

R-=~Kf~Nt/~~B~)t(~f~~/~f"Ba)J > and C, D indicate 

s u m mat i o n o v e r f 1 at a r e a s o f t h e c o u n t e r m a.t r i x . T o 
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evaluate the polarization parameter P(8) from the data, the hydrogen 

counts versus target polarization were fitted to a straight line by the 

method of least squares. This procedure is used because the target 

polarization varies from run to run. After background has been sub­

tracted, the hydrogen counts G. as a function of target polarization 
1 

p. can be written in the following form: 
1 

where 

G. = N. - m. B = a + b p. (VIII- 3) 
1 1 1 1 

a= r0 mi 

b = 1
0

m. P(8) 
. 1 

G.= number of elastic p-p coincidences. (The back-
1 

ground contribution m. B has been subtracted 
1 

out.) (VIII-4) 

For a least-squares fit one requires 

which yields 

n 

a [t G. - (a + b p.)] a a .1 1 

i 

n 

a lJGi Bb 
- (a + b p. )] 

1 

1 

t 2(G. - a - b p.) = 0 
1 1 

i 

n 

[2(Gi 

1 

- a - b p. )p. = 0. 
1 1 

Solving for a and b, one obtains 

a" ~(~Gi b~p} 
I 

2 

2 

= 0 

= 0, 

n 

_!\G.- b p 
n )_ .~ 1 

i 

(VIII-5) 

(VIII-6) 



where p = i 
n 

and 

We define Q. = p. - p and rewrite a .and b as 
1 1 

n n 

a~ ! 21 Gi)-dz) LGiQi 
1 1 

n 

h~ ( 2 ) ~G.Q 
n Q i 1 1 

where n 

(oz) _ ! ~;z ~(~z _ Pz). 
i 

Substitution of (VIII=8) and (VIII-9) into (VIII-4) gives 

where 

P(8) =1.,... _E-=­
- p E 

E -

.n. 
LG.Q. 

. 1 1 
1 

(VIII-7) 

(VIII-10) 

In this derivation the monitor counts m. for each ith run have all 
1 

bee? assumed to be equal. Since mi is proportional to the number of 

incident protons, it is a measur.e of the length of the run. The runs 

may not always be of equal length, and in order to take this into account 

must make the least-squares fit to (a+bp.) of the etastic p=p coincidences 
. 1 
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per unit monitor, G./m., and weight each term by the number of moni-
1 1 

tor counts m.. Thus we perform a least-squares fit to the more gen-
1 

era! form: 

n 2 

_a_ [m [Gi - (a + b pl. J = 0 aa . i m. 
1 1 

n 2 

[ m. [Gi - (a: t b p. )] = 0 , 
. 1 m. 1 
1 1 

which give 

- a 

(VIII-11) 

In a manner similar to the previous derivation, the simultaneous solu­

tion of these equations yields the following expression P( 8): 

P(8) = b/a 

P(8) 
e 

(VIII-12) = 
1 - p e 

where n 
L_c.a. 

1 1 

e i 

tci (a2) 

i 

and here 

(

n )

2 

n - Lm. p. .L:m. p. 2 
. 1 1 . 1 1 

= 1"'- - + 1 ri" -

r:. W\i L Mj 
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One can see that the result of this more general form is to use rn. 
1 

as a weighting factor in performing averages 0 Up to here we have 

neglected the background, but we next include its consideration. In 

order to take into account the background subtraction one notes that 

~ ~ ~ 

[ Ni Q::: E_ I'Vlt Io[l + ?.:Pt~)](.<i + L i3 ""~Q~ 

Since 

we have 

Also Eq. 

1'1. 

i i 

~ 

13rV'I\i.~~ 
L· 

(VIII-2) is, by definition, 

n' n 

'[_ N~ R [ Bd - [ Gt -
~ • ~ ~ 

• 

) 

(VIII-13) 

(VIII-14) 

Combining Eqs. (VIII-13) and (VIII-14) with (VIII-10) one obtains the 

final form for computing P(8): 
I" 

L NiQ~ 
~ E = 

Pl-lt) = {VIII-15) 

When making an experimental measurement of P(8), we attempted to 

keep all factors constant except the target polarization, which was re­

versed approximately every 40 minutes. Magnet currents and helium­

bag pressure were usually checked every 3 hours and counter voltages 

every 4 hours. The beam spill was continuously observed by the 
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operator. For each run, F L divided by F R' monitor coincidences 

divided by ion chamber volts, and the length of the run in minutes were 

graphed that changes might be observed in any of the conditions. The 

beam intensity was chosen so that changes in beam intensity, up or 

down, by a factor of two made no discernible difference in the ratio of 

the hydrogen peak to the background. The NMR differential signal 

of the polarized target was continuously recorded on a chart, and 

digitized examples were read out before each reversal of the target 

polarization. Every 12 hours, the microwaves to the target were 

turned off and the crystals were allowed to come to thermal equilib­

rium with the helium bath. Three NMR signals were recorded under 

these conditions, and the vapor pressure of the helium was read for 

each signal. 

In analyzing the runs that were taken for each setting of the 

counter positions, we made graphs for each upper counter. The 

number of counts in each successive run was plotted for each lower 

counter to determine the consistency of the measurements. The 

monitor coincidences were checked for any polarization dependence 

of the monitor circuit by plotting these counts versus ion chamber 

volts and versus (E
1

E 2 ) coincidences for each run. At three counter 

positions where the asymmetry in scattering was large and the slower 

scattered proton had sufficient energy to penetrate 1-in. slab of copper 

between counters n 0 and D A' an average polarization dependence of 

1% was found between the runs for positive target polarization and 

negative target polarization. More counts appeared in monitor c?inci­

dence for positive target runs than for negative runs for equal amounts 

of charge accumulated by the ion chamber. For a set of runs with 

negative polarization, the magnitudes of the negative target polarizations 

were roughly equal. The same was true for the magnitudes of the posi­

tive polarizations. Thus a first-order correction for polarization de­

pendence of the monitor was made by multiplying the number of counts 

in the monitor scaler for each negative run by a factor equal to the 

ratio of the average positive divided by average negative monitors. 

At the majority of counter positions no such correction was needed. 
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IX. ERRORS 

For convenience we write Eq. (VIII..,.13) again: 

E = 

p (f)') = E 
\-pC: • 

The runs were taken with the magnitude of the positive polarizations of 

the target roughly equal to the magnitude of the negative polarizations. 

Thus in practice p was always small, and in fact p < 0.1 for all 

counter positions. In practice e was always less than 0.5. With the 

assumption that the error on p is always negligible, the error analysis 

is simplified. We compute the errors in e and set ~p = (a Plae)~e, 

I I - 2 2 
where a p a E = 1 ( 1 - p E) • The square of the error in E' ~E ' is 

computed by combining the quadrature, the errors in the independent 

measurements times their weights: 

2. :[~ ( ~ € )l ( d! )k ( ~ Ll2B~> LIE JN. llNi + rR, ~R -t-
(., ~rB~ .. 

Yl Yl 

[_( ~ )~ [( ~6 t:>pcy- J + .6 W\~ + 
c}YV\i c). pL . • ' 1.. 

(IX-1) 

{a) The first source of error ( a e I a N.) ~ N. is determined by the 
1 1 

statistics of the counts in the hydrogen-peak region for each a. counter; 

~N. =tVN;. 
1 1 

(b) The second source of error,. (Bel a l:: B.)~ 1: B., is determined by 
J J 

the statistics of the counts of the dummy target in the region where the 

hydrogen peaks would have been; ~ I: B. = A{YB .. 
J J 
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(c) The third source, ( 8 ej 8 R).6. R, is determined from the statistics 

in the flat regions of the matrix that are used to normalize the dummy 

target; 

where C and D indicate summation over the flat areas of the matrix. 

(d) The fourth source (8 e/ am.) .6-m. is determined from the statistics 
1 1 

in the monitor coincidences used to normalize the runs; .6-m. = ~· 
1 . 1 

(e) The fifth source (a E I a p.) .6. p. arises from the estimation of the 
1 1 

average polarization of the target during a run. The error in p., 
1 

.6. p., is determined from the scatter in a plot of calculated polarizations 
1 

versus peak-to-peak recorded signals of the NMR proton resonance of 

the target; .6. p. ranged from 4. 5o/o to 5. 5o/o. 
1 

(f) In addition to the above sources of error an additional systematic 

error arose from measurements of (a) the area of the TE proton 

resonance signal and (b) the temperature of the liquid helium bath 

when the signal was recorded. The accuracy with which the oil ma­

nometer indicated the vapor pressure of the liquid helium contributed 

an uncertainty of 3o/o in the value of the absolute polarization of the 

average TE signal. The average area of the TE was estimated to 

be good to ±5o/o. Combining these errors in quadrature gave a syste­

matic error of 5. 83o/o to be added, in quadrature, to the other sources 

of error. 

If the polarization is not uniform in the target, a systematic 

error can be introduced. Early in the experiment, after some data 

had been taken, a small beam of approximately 1/4 in. diameter was 

focused on various parts of the target and the asymmetry in counting 

rate for each part was measured. In this manner a contour diagram 

of polarization in the target was obtained. It was found that scattering 

I 
~ 
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from the top, side, and bottom edges produced an asymmetry almost 

twice that produced from the center. A spot halfway between the side 

edge and center produced an intermediate asymmetry. Figure 10 

shows results of the probing. Nonuniform target polarization could 

arise from several sources: a nonuniform magnetic field across. the 

volume of the crystals, non penetration of the microwaves into the 

crystals, a temperature distribution within the crystals, and nonuni­

form radiation damage to the crystals. The magnetic field had been 

measured to provide a uniform field over the volume of the crystals, 

so this· source of nonuniformity was thought to be negligible. In 

practice, the other effects were difficult to separate reliably, and 

any of them may have been important. 

After the target was probed, the crystals were taken apart. It 

was realized that the. detection coils described in Se.c0 V had been 

placed too close to the crystals. At some points the edges of the 

crystals almost touched the coils. Thus the target polarization pre­

viously measured was not a true volume ave.rage but was very heavily 

weighted by the polarization a.t the edges of the crystal. A new cavity 

was fabricated in which the coils. were spaced farther apart. No part 

of the crystals came within 1/4 in. of the coils. A new septum design 

wa.s also made to increase the uniformity of the rf magnetic field 

within the coils. The old crystals had been greased with Kel-F fluorinated 

grease to protect the crystals from moisture. The grease, however, 

stuck the crysta\t.s together and prevented liquid helium from covering 

each individual crystaL The new crystals were left ungreased to mini­

mize any temperature gradients, and every point in the target was then 

within 1/8 in. or less of the liquid helium bath. 

Before the target was probed, the size of the beam spot was 

equal to the size of the crystals. Afterwards, the beam spots were 

made 1. 5 to 2 times the size of the target to avoid nonuniformity of 

polarization by radiation damage and to ensure that the beam sampled 

the target uniformlyo 
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Fig. 10. The ratios of the polarization parameter measured with a 
small beam spot at the center of the crystal to that measured 
with the spot at the edge of the crystal and at a point half-way 
in between are plotted with solid circles. The small beam 
measurements at the top, side, and bott01n edges gave identical 
results. As computed by the correction program, the same 
ratios for various choices of T(x, y, z) are also shown. 

2 0, experimental measurements; 0, T a: 1 + 10r; A, T a: 1 + 2r + 2r ; 
.6., T a: 1 + 4 r 2; , T a: e xp ( r 2/ R 2 ) ; 0, T a: r 2. 
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In summarizing the analysis of possible errors due to a non­

uniform spatial distribution of polarization within the target crystals' 

one notes that there are two ways of avoiding any error. First, if the 

target is uniformly polarized there is no difficulty. Second. if the rf 

system samples the target polarization uniformly over the target volume 

and the beam uniformly irradiates the target, then there is no error. 

Since it is difficult to guarantee uniform target polarization, we have 

generally adopted the second approach to getting the right answers. 

The data measured at energies of 736, 679, and 328 MeV were 

taken under the new conditions after the target probing. The data meas ~ 

ured at the energy of 614 MeV were taken previous to the probing" 

To estimate the magnitude of the systematic error introduced 

by the above effects, we calculated the ratio of the measured target 

polarization MT to the effective target polarization ET: 

M = T l_ 

(IX-2) 

where B(x; y) represents the distribution of the beam intensity incident 

upon the target, S(x, y, z) represents the sensitivity of the detection coils 

to points within its volume, and T(x,y,z) represents the target polari­

zation as a function of position within the targeL The coordinates 

x, y, z comprise an orthogonal coordinate system with z in the di­

rection of the incident beam. To corre.ct for this source of error, the 

measured P( 8) is multiplied by ,this factor: 

.M 
T P(tl) = - P(tl) 

corrected ET measured · 

The beam distribtit1on was approximated by a gaussian 

) 

(IX- 3) 

(IX-4), 

"f! 
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where a is standard deviation. 

The sensing function S(x, y, z) was approximated empirically by 

reproducing a scale model of the coils and cavity configuration with 

conducting paint on resistive carbon paper. The rf magnetic-field 

configuration of the coils was taken from the electrical equipotential 

lines traced on the paper. The sensing function was taken proportional 

to the energy density of the rf magnetic field. The field was taken as 

proportional to the density of the equipotential lines. An analytic fit to 

the line density was made: 

H v-.r oc ( l + ~ 1.) [ I + ~ y ~ ~ ( :t - -t) 'I J ( I t I D ~ t 'X ") 
(IX-5) 

and the sensing function S was: 

2 
. S(x, y, z} = (Hrf) . (IX-6) 

The . (Hrf max)
2 

f . ratlo H . or vanous parts of the crystals is given 
rf m1n 

m Fig. 1~. After T(x, y, z) was chosen, the 

to 80 and produced a 3o/o change in MT/ET. 

to 40 and produced 1/Zo/o change. The factor 

changed to 2 and produced a 5o/o change. 

factor 64 was changed 

The factor 10 was changed 

1 in front of y 
2 

was 

The polarization density T(x, y, z) was chosen by trial and error 

to give a best fit to the results of target probing shown in Fig. 10, which 

also shows the fit made by various distributions. 

(IX-7) 

(where r
2 = x 2 + y 2 + z

2 
and R = radius of the crystal) provided a 

reasonably good fit. Pictures of the beam spots used in the different 

energies are shown in Fig. 12 along with the relationship of the crystals 

to the detecting coils . 
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Fig. 11. This figure shows a sketch of a bottom-quarter section of 
the NMR coil configuration with the viewer looking parallel to 
the aluminum septum (perpendicular to the direction of the 
incident proton beam). The rf magnetic -field lines are 
represented by the solid lines. The dotted lines depict contours 
of constant (Hrf max /Hrf min)2 in the region occupied by the 
crystals. The normalization is such that the quantity has a 
value of 1 in the center of the crystals. 

<>·-
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736 MeV 614MeV 

---------Coilleads-----

' ' '---Upper col Is -- --... !F7::::!5 ...... ii!!:::;;;;> ,., 
------Crystals------

1!:::::::== ------ Lower coi Is--- -~"=~2!o:::;;;::r= 

ZN-4408 

Fig. 12. The picture in the upper-left-hand corner shows the beam 
spot used at 7 36 MeV; the geometry of the coils and crystals 
is sketched immediately below. The picture in the upper-right­
hand corner shows the beam spot at 614 MeV with a similar 
sketch below. At the energies of 328 and 679 MeV, the beam­
spot sizes were similar to that at 736 MeV and the coil-crystal 
geometry was identical. 
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The correction factor MT/ET for the energy of 614 MeV is 

1. 24. The P(8) for this energy have been corrected by this factor with 

a systematic e.rror of ±12o/o. For the three energies 736, 679, and 

328 MeV the coils had been moved back and the uniform cooling 'of 

crystals improved. No probing of the target was done after ~hese 

changes. Using the polarization distribution: of Eq. (IX-6 ). and the coil 

crystal geometry indicated in Fig. 12 one can place an upper limit of 

1.06 on this correction. Since the temperature distribution in. the tar­

get was made more uniform, any correction to this set of data should 

. be significantly less than this maximum limit, The data on P(8) pre­

sented for these energies have not been corrected for this effect, but 

a systematic erro: of(~~) o/o has been assigned. 
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X. SAMPLE CALCULATION 

We show a sample calculation of P(8) using an upper array 

counter a
8

, which corresponded to a center-of-mass angle of 68.5°.± 1 o 

at a lab kinetic energy of 736 MeV. The runs in Table III were taken at 

this counter position. Each run was gated off by the ion chamber at 

approximately 10 volts with an 1.08-j-LF capacitor. The length of an 

average run was 13 minutes. Two successive runs with the same sign 

of target polarization were taken, and the direction of the target polari­

zation was then reversed. The average beam intensity was 3.8X10
8 

protons/second, with a duty factor of two assumed for the cyclotron. 

Figures 13, 14, 15 are graphs of monitors divided by ion chamber, 

F L divided by F R' and the length of the run in minutes- -plotted 

respectively for each polarized run. 

The F L/F R counters ratio indicates a steady beam shift from 

run 12 to run 19. Equal numbers of positive and negative runs exist 

in this set. The magnet currents were checked at this point, and any 

drift is considerably less for runs 21 to 28. No polarization dependence 

of the monitor is discernible in the plot of monitor divided by ion cham­

ber. 

Figure 16 shows the coincidences for each run of the upper 

counter with each successive lower counter. The coincidences taken 

with positive (o) and negative (o) target polarization are displayed in 

temporal sequence. 

The full 10 by 10 matrix is reproduced in Table IV for run 12 

as an example. Table III contains the row of the matrix that corre= 

sponded for each run to counter a
8

. Tables V and VI are, respectively, 

the matrix formed by summing the runs with the polarized target and 

the matrix formed by summing the runs with the dummy target. The 

areas, indicated as C and D, were used for normalization of the 

dummy target data. 



Table III. List of runs taken at 736 MeV and center-of-mass 
angle e = 68.5 de g. The coincidence between the . c:. rn. 
upper counter at this angle (a.

8
} and each 13 counter are 

also given for each run. 

Run Targ~t 
13o 131 132 133 134 135 ~6 13.7 138 139 polarization 

12 86 152 486 958 5P5 210 165 175 173 163 

13 80 151 460 953 491 196 190 185 182 181 

14 + 77 184 608 1229 613 197 144 160 184 162 

15 + 74 164 580 1260 569 194 179 169 134 177 

16 72 155 460 960 477 184 176 176 155 149 

17 74 165 476 924 513 192 186 179 161 166 

18 + 84 164 652 1199 561 206 183 166 174 156 

19 + 66 154 557 1175 583 190 144 .. 146 . 153 165 

21 81 152 478 951 481 194. 175 188 184 178 

22 83 149 467 992 503 210 177 190 . 160 171 

23 + 77 179 631 1352 634 176 168 170 . 179 170 

24 + 75 171 552 1303 639 218 160 181 173 132 

25 65 144 470 1010 482 201. 168 182 166 181 

26 90 162 448 1037 512 169 174 176 146 194 

27 + 75 170 614 1234 574 188 173 185 179 170 

28 + 78 167 602 1275 576 183 171 206 145 162 

42 Dummy 79 107 161 152 162 170 146 170 150 118 
target 

44 Dummy 88 118 183 176 193 177 165 156 129 152 
target 

45 Dummy 88 140 133 175 174 189 167 166 148 127 
target 

46 Dummy 83 122 . 160 201 171 177 . 183 160 . 163 132 
. target 

~!.:.-:-···· 

.. 
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Fig. 13. Monitor counts/ion chamber versus run number for runs 
taken at 736 MeV, 8 = 68.5°. 
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Fig. 14. FL/FR versus run number (736 MeV, () = 68.5°). c.m. 

Fig. 15. Length of run in minutes versus run number 
(736 MeV, 8 = 68.5°). 

c.m. 
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Table IV. Ten-by-ten matrix of counter coincidences stored 
during Run 12. Each row corresponds to an alpha counter. 
Each column corresponds to a beta counter. 

4 4 12 25 21 23 23 22 31 41 

12 13 22 21 34 34 32 60 59 147 

20 16 29 52 34 49 65 69 180 335 

26 41 53 51 65 80 108 186 523 457 

37 62 82 94 99 134 290 882 576 220 

50 65 78 115 121 321 851 530 204 162 

51 83 101 169 350 898 575 198 186 165 

56 76 167 435 984 576 193 165 173 174 

86 152 486 958 505 210 165 175 173 163 

137 544 930 463 177 152 158 179 177 169 

..• 
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Table V. Coincidence matrix of the total counts accumulated 
during all the runs taken with the polarized target at · 
736 MeV, e c. m. = 68.5 deg. 

105 159 215 258 276 349 343 385 458 799 

188 262 342 396 503 576 595 734 861 2265 

246 393 569 658 689 815 921 1273 2859 5577 

401 602 780 901 1040 1182 1439 3021 8416 68~4 

583 881 1222 1524 1697 2129 4757 14853 9754 3425 

743 1068 1384 1719 2025 5541 15041 9844 2891 2610 

849 1227 1626 2280 6031 16246 9505 3044 2630 2770 
Area C 

979 1519 2382 7244 16380 9729 3047 2897 2663 . 2750 

1237 2583 8541 17812 8713 3108 2733 2834 2648 2677 

2516 9723 17251 8320 2930 2833 2723 2795 2722 2598 
Area D 

The data taken with the dummy target are normalized with the outlined 

areas, C and~ D. 

,. 
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Table VI. Coincidence matrix of the total counts accumulated 
during all the· runs taken with the dummy target at 736 
MeV, f) = 68.5 de g. 

c. m. 

40 37 49 60 63 78 85 65 83 62 

52 80 111 107 121 128 117 155 140 122 

72 108 131 149 194 199 216 210 213 220 

109 147 220 251 282 250 275 318 344 353 

192 240 334 354 366 '485 473 566 531 484 

232 296 389 482 480 578 620 620 498 '490 

266 351 444 516 570 679 612 570 524 498 
Area C 

328 386 508 613 705 700 652 577 503 531 

338 487 637 704 700 713 661 652 590 529 

374 641 775 762 665 693 674 616 583 541 
Area D 
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The sum matrix of the dummy target data is then multiplied by the 

ratio R. Figure 17 shows the results of the dummy background 

normalization. It displays the sum of the polarized target ~uns and 

the normalized dummy target runs for counter a
8

o The hydrogen peak 

for a 8 occurs in the lower counters 13 213 3 134 . The counts in these 

three bins are summed to provide th~ counts in the hydrogen peak and 

also to provide the background counts for subtraction. Table VII lists 

the quantities needed to compute P(B). 

P(-8) = 6 
I - '? ~ 

Pl~) = 

The error .0..P in P is computed as follows: 

A I' • ~: [ t ( ::, b IV L )\- ( ~ f> ~ \ ( #a·l b. '[. B~ r 
~ I 

+ 4 (~., f>""r r ~(~ q~)" r~ 

.... 
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17. Plot of the sum of the coincidences between counter a
8 and each [3 counter taken with the crystal target and with 

the dummy target. The coincidences taken with the dummy 
target have been normalized as indicated in the text . 
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Table VII. Data used for the sample calculation of P(B). 

Run 
N. 

2 2 
0. N. O. Ni oi p. m. mi pi pi mi Pi no. 1 1 1 1 1 1 

12 1949 -0.425 1889927 -803219 0.180625 3141368 -0.4153 336• -809 

13 1904 -0.415 1875346 -778269 0.172225 322981 -0.40 53 313 -772 

14 2450 +0.425 1857976 +789640 0.180625 335597 +0.4347 463 +1065 

15 2409 +0;449 1864089 +836976 0.201601 375802 +0.4587 507 +1105 

16 1897 -0.430 1848645 -794917 o. 184900 341814 -0.4203 335 -797 

17 1913 -0.425 1854500 -788163 0.180625 334969 -0.4157 330 -794 

18 2412 +0.401 1849678 +741721 0.160801 297430 +0.4107 407 +991 

19 2315 +0.425 1840528 +782224 0.180625 3324f15 +0.4347 437 +1006 

21 1910 -0.478 1864676 -891315 0.228484 426049 -0.4683 419 -894 

22 1962 -0.459 1874271 -860290 0.210681 394873 -0.4493 396 -882 

23 2617 +0.391 1885130 +737086 0.152881 288201 +0.4007 420 +1049 

24 2494 +0.391 1876609 +733754 0.152881 286898 +0.4007 400 +999 

25 1962 -0.391 1869823 -731101 0.152881 285860 ;-0.3813 285 -748 

26 1997 -0.430 1864237 -801622 0,184900 344697 -0.4203 353 -839 

27 2422 +0.401 1882319 +754810 0.160801 302679 +0.4107 409 +995 

28 2453 +0.415 1883127 +781498 0.172225 324322 +0.4247 443 +1042 

2:-6448896 2:+3.3756 2:+8252 

LjpJ6. 751 2:+6157709 2:-3.3754 2:-6535 

2: 35066 29880881 -291187 5335985 +0.0002 6253 +1717 

2:/16 2192 0.422 1868680 

2:B. 2041 R = 4.277 
J 

2:mi pi -291187 
-0.0097 R2:B.= 8729 p 

2;m. 29880881 J 
1 

(2:N. R2:B.) 26337 
2 1 J 

2 2:mi pi 5335985 
0.178575 p = 29880881 2:m.· 

1 

(o2)= 2 (pl 0.1785 p - = 

J(o2) = 0,4225 
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2 2 2 2 2 
l!,p ~ (0.017} -{ (0.0013} + (0.0027) + (0.00057) + (0.008) 

l!,p ~ 0.019. 

To this per<;:entage error (t!.P/P = 5.2%), a systematic error of 5.8% 

(from the area and polarization of the TE signal) is added in quadrature: 

p = 0.364±0.028. 

(The error from nonuniform polarization in the target has not been 

included). 
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XI. RESULTS 

The measured values of the polarization parameter P(8) in 

elastic proton-proton scattering are presented in the Tables VIII 

through XI and graphed in the Figs, 18 through 22, Given with each 

of the values of the polarization parameter is the corresponding center-

of-mass angle 8 and the negative of the invariant square of the 
c.m. 

four -momentum transfer t. For elastic p-p scattering, t is related 

to 8 _ by the expression t = -2k
2
(1-cos8 ), where k

2 
is the 

c. m. c. m. 
square of the incidentthre.e-momentum in the center-of-mass system. 

At the energy of 614 MeV, measurements were made to an 

angle as small as 8 = 40°. The measurements at these smaller 
c. m, 

angles, however, were discarded because the spatial locations of the 

p-p interactions in the target crystals came, at these angles, pre­

dominantly from the edges of the crystal. This was due to the fact 

that at smaller angles the recoil proton emerged with less energy and 

suffered increased energy losses. When the energy of the recoil pro­

ton corresponded to a range barely sufficient to emerge from the crys­

tals, the location of the interactions in the crystal target became im­

portant; and only those interactions near the edges of the crystals were 

observed. The correction factor, which we computed to correct the 

measurements for nonuniformity of polarization in the target, assumed 

that the only spatial distribution of interactions in the target arose from 

the Gaussian distribution of the beam particles. This correction factor 

could then be applied only at angles where the range of the recoil par­

ticle was not small enough to begin influencing the spatial locations of 

the interactions. 

The angle at which the range of the recoil particle did begin to 

influence these locations was easily determined by noting the angle at 

which the counting rate began to fall off rapidly; and measurements at 

angles smaller than this were discarded. In principle, of course, one 

could compute a correction factor for measurements of these smaller 

angles, but such a computation would require that we more accurately 
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know the distribution of the polarization within the target. The values 

of the polarization parameter P(8) given in Table IX and plotted in 

Fig. 19 have been corrected by, the factor of ~.24 discussed in Sec. IX. 

At the energies of 328, 679, and 736MeV, the same consider­

ations occur. However, as w.e have previously described, before we 

made the measurements at these energies, we had attempted to increase 

the uniformity of polarization within the target. To accomplish this, we 

had increased the area of contact of the individual crystals. with liquid 

helium bath and avoided nonuniform radiation damage to the crystals. 

Evidence that some success was attained can be found by considering 

the values of the polarization parameter at the corresponding small 

angles. At these angles (42.0 to 32.5" for 736 MeV, 48.1 to 38.80 for 

679 MeV, and. 65.5 to 52. 9o for 328 MeV) the pola.rization parameter 

show no clearly discernible increase that would be inconsistent with the 

shape of the polarization curve found by previous experiments in this 

energy range. We have retained the measurements of the polarization 

parameter for these angles although they are inherently less reliable. 

Figure 18, which shows the plot of P(8) at the energy of 328 

MeV, contains also the values measured by Chamberlain et al. 
12 

in a 

double-scattering experiment. The agreement between the results of 

the two experiments might be regarded by some as evidence that our 

method of measuring the target polarization is satisfactory. Although 

we have not seen any reason to doubt this method, the agreement does 

represent our best check on our method of measuring target polarization. 

In Fig. 22, the maximum value of the polarization parameter 

P(8) has been plotted as a function of lab kinetic energy T . Values 
m~ . . p 

measured in other experiments are shown for comparison. The points 

plotted with an open circle in the energy region from 1. 7 to 6.0 GeV are 

preliminary results as reported at the 1964 International Conference on 

High Energy Physics in Dubna. 13 

Since the purpose of this dissertation is to contribute data toward _. 

a future experimental determination of the two.,.nucleon isotopic spin-1 

amplitude, it is worthwhile at this point to review the amount of data 
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needed for such a determination. From Eq. (II-12) one can see that, 

in principle, ten experiments at all angles are necessary to determine 

fully the ten parameters in the M matrix at one energy. However, in 

the energy region where the interaction is purely elastic, the fact that 

the scattering matrix is unitary gives conditions on the imaginary parts 

of the M matrix that reduce the number of independent parameters to 

5. When inelastic processes become possible, the additional states re­

sulting from inelastic scattering (about which it is difficult to get the 

needed experimental evidence) must be included or the unitarity condi­

tion would be incorrect. 

The analysis of experimental data at many angles is usually ac­

complished by means of a phase -shift analysis. In terms of this des­

cription, the number of parameters needed to specify the scattering is 

a function of the maximum orbital angular momentum L that is 
max 

considered important in the scattering. 

In p-p scattering, the possible states of total spin can be de­

scribed as a singlet and a triplet state. Since the two protons are iden­

tical fermions, the total wave function of the system must be antisym­

metric, and this restricts the singlet state to occurring only in total 

states with even values of orbital angular momentum and the triplet 

state only with odd values of orbital angular momentum. Conservation 

of the total angular momentum J and conservation of spatial parity 

then require that the only allowable transitions occur between the fol­

lowing states: 

singlet J=L -+- singlet J=L 

triplet J=L -+- triplet J=L 

triplet J=L+1 -+- triplet J=L+1 

triplet J=L-1 -+- triplet J=L-1 

triplet J=L+1 ++ triplet J=L-1 

where L is the orbital angular momentum (that the triplet transitions 

J=L+1 -+- J·=L;..1 and J=L.,-1-+- J=L+1 are equal is a result of the assump­

tion of time-reversal invariance). By counting, one can ascertain that 
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five parameters are needed for each two values of L. These are 

usually expressed,as four phase shifts and a mixing parameter between 

states of the same. tbtal angular momentum, total spin, and spatial 

parity. When the inelastic processes occur, the parameters can be.-

come complex. Thus one needs (5 L /2) or· ( (5 L .. · +3)/2) param-
max max 

eters for L even·or o-dd to obtain a phase-shift solution. Cham-
max 

berlain et al. 12 have summarized the number of experimental param-

eters obtainable in some com~on forms. of experiments with polarized 

protons, They .conclude that. in the elastic -energy region, five kinds of 

experiments, which include the differential cross sectionand polariza­

tion measurements, should determine the nuclear-phase shifts. In the 

inelastic-energy region, additional information on the· effects of the in­

elastic processes is needed. In the phase-shift analyses performed by 

Zul'karneeve and Silin 
13 

and by Hoshizake and Machida 
14 

at 660 MeV, 

the assumption was made that the inelastic effects occur predominately 

in the lower angular-momentum states. The resonance model of Man­

delstam for pion production at energies from 400 to 900 MeV was then 

used to estimate these contributions. At the time of the writing of this 

dissertation, not enough experiments have been done at the energies of 

614, 679, and 736 MeV to be able to perform phase-shift analyses. 

The phase-shift analyses at 315 MeV are well known. 
15 

In concluding this dissertation, we wish to express the thought 

that extensive experimental work will continue to be needed on the two­

nucleon interaction to describe fully the spin-dependence of the forces. 

Any future theory, which might draw upon such an experimental de­

scription, will certainly need such work for quantitative comparison 

in order that the validity of the theory might be established. The polar­

ized target is an important tool that will facilitate the execution of the 

needed spin- dependent experiments. 
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Table VIII. Polarization parameter P( B) in elastic p-p 
scattering for incident lab kinetic energy of 
328± 6 MeV. a 

-t((BeV)2] e P(B) b. P(B) 
c c. m. 

±0.006 ± 10 

0.107 49.1 0.389 0.045 

0.119 52.2 0.349 0.031 

0.133 55.3 0.324 0.025 

0.147 58.4 0. 317 0.022 

0.162 61.6 0. 255 0.020 

0.177 64.8 0.256 0.027 

0.193 68.1 0.191 0.024 

0.210 71.4 0.165 0.023 

0. 227 74.7 0.187 0.023 

0.283 85.3 0.163 0.035 

0.302 88.9 0.016 0.027 

o. 322 92.6 -0.008 0.025 

0.343 96.5 -0.054 0.024 

0.365 100.6 -0.094 0.027 

a A systematic error of 

above errors b. P(B). 

(+6.5a1) 
-5.8 10 must be added in quadrature to the 
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Fig. 18. The measured values of P(B) in p-p scattering at 328 MeV 
are plotted as solid circles. The errors shown do not include 
systematic errors. The open triangles present data from 
Ref. 12. 
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Table IX. Polarization parameter P(8) in elastic p-p 
scattering for incident lab kinetic energy of 614± 5 MeV. a 

-t [ ( Be\)2] e P(8) AP(8) c c. m. 
± 0.015 ± 20 

0.271 58.0 0.505 0.019 

0.313 62.8 0.492 0.019 

0.344 66.2 0.413 0.020 

0.356 67.5 0.463 0.019 

0.397 71.9 0. 325 0.018 

0.401 72.3 0.357 0.019 

0.453 77.6 0.238 0.016 

0.511 83.5 0.091 0.015 

a A systematic error of (± 19o/o) must be added in quadrature to the 

above errors AP(8). 



0.7 I I 

0.6 -

0.5 f-

0.4 -

Q) 0.3 -

a.. 1-

0.2 f-

1-

0.1 -

1-

0.0 

-0.1 -

I I 
0 20 40 

-80-

I 

~2 
.£ 
~ 

. I 

60 
Bc.m. 

l 

I I 

-

614 MeV -

·-

-

~ 
-

-

-

I I 
80 100 120 

MU-34600 

Fig. 19. The measured values of P(e) in p-p scattering at 614 MeV. 
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Table X. Polarization parameter P(8) in elastic p-p a 
scattering for incident lab kinetic energy of 679 MeV. 

-t[{BeV)2] e P(8) 6.P(8) 
c c. m. 

±0.01 ± 1 0 

0.141 38.8 0.578 0.028 

0.163 41.9 0.578 0.019 

0.186 45.0 o. 583 0.017 

0.212 48.1 0.596 0.017 

0.238 51.2 0.570 0.0 1.3 

0. 266 54.3 0.529 0.013 

0.294 57.4 0.484 0.018 

0.324 60.5 0.430 0,017 

0.354 63.7 0.399 0.018 

0.386 66.7 0.363 0.019 

0.427 70.8 0.293 0.030 

0.458 73.7 0.274 0.027 

0.490 76.7 0.247 0.031 

0. 522 79.6 0.151 0.036 

0.555 82.6 0.073 0.044 

a A systematic error of (~~:~o/o) must be added in quadrature to the 

above errors 6.P(8). 
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Fig. 20. The measured values of P(8) in p-p scattering at 679 MeV. 
The errors shown do not include systematic errors. 
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Table XI. Polarization parameter P(8) in elastic p·-p 
scattering for incident lab kinetic energy of 736 MeV. 

a 

-t ((B~V )2] e P(8) .6-P( e) 
c.m. 

± 0.01 ± 10 

0.108 32.5 0.579 0.049 

0.129 35.6 0.579 0.028 

0.152 38.8 0.553 0.017 

0.177 42.0 o. 560 0.014 

0.203 45.1 0.559 0.015 

0.231 48.3 o. 528 0.011 

0.260 51..4 o. 520 0.011 

0.291 54.6 0.497 .0.013 

0.322 57 .• 7 0.498 0.013 

0.354 60.9 0.473 0.014 

0.404 65.5 0.419 0.018 

0.437 68.4 0.365 0.017 

0.470 71.4 0.342 0.018 

0.504 74.3 0.304 0.018 

0.538 77.2 0.231 0.018 

0.573 80.2 0.180 0.018 

0.609 83.2 0.144 0.023 

a A systematic error of (~~:~) o/o must be added in quadrature to the 

above errors .6.P(8). 



-Cl> 

a... 

-84-

0.7 I I I I I 

1-

0.6 f- ~£222 -
736 MeV 

I-

0.5 r- Q22 -
2 

0.4 I- £ -

~~ 
0.3 r- ~ -

I- £ 
0.2 I-

'1~ 
-

0.1 I- -

0.0 ~------------------------------~ 

-0.1 I-

1-

I 

0 20 
I 

40 
I 

60 
Bc.m. 

-

-

-
I I 

80 100 120 

MU-34601 .· 

Fig. 21. The measured values of P(8) in p-p scattering at 736 MeV. 
The errors shown do not include systematic errors. 
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Fig. 22. Maximum polarization as a function of beam energy T . 
Values from this experiment include systematic error. p 
0, data from this experiment; 0, data from Ref. 16; 
\1, data from Ref. 17; (>, data from Rev. 18; 6, data from 
Ref. 12; 0, data from Ref. 19; ~. data from Ref. 20; 
fl, data from Ref. 21; A, data from Ref. 22; Vf, data from 
Ref. 23. 
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