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Abstract 

 

Social organization in trematode parasitic flatworms 

by 

Ana Elisa Garcia Vedrenne 

As in the most complex animal societies, trematodes (parasitic flatworms) 

live in colonies characterized by a high degree of cooperative organization. My 

research started with the unexpected observation that several trematode species 

have a reproductive division of labor with morphologically and behaviorally distinct 

reproductive and non-reproductive castes. The non-reproductive individuals are 

smaller but have relatively large mouthparts. They are more active than their 

reproductive counterparts and disproportionately common in areas of the host 

where invasions by other trematodes occur. Finally, only non-reproductive 

individuals readily attack enemies with their mouths. Thus, it is clear that one major 

role of these individuals is to defend the colony from enemy trematode invaders; 

they are soldiers.  

The initial discovery was followed by reports revealing the existence of 

soldiers in five additional trematode species and by research examining the 

adaptive significance of soldiers. However, descriptions of colony structure were 

restricted to a single trematode superfamily (Echinostomatoidea), and knowledge of 

colony demography and caste function was limited to snapshots of the condition of 

mature colonies. My doctoral dissertation has laid the foundation to explore the 
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evolution of this remarkable social organization in trematodes, as well as the 

mechanisms regulating it. 

Here I quantify morphology, distribution, and behavior of parasites from both 

establishing and fully developed colonies of sixteen species of trematodes that 

infect the California horn snail. While showing that eight additional species have a 

soldier caste, including four species from a new superfamily, I expand the 

phylogenetic range for which trematode sociality has been examined. I identify 

patterns underlying colony structure for trematode species that lack a soldier caste 

and establish discrete criteria to recognize colonies with and without soldiers. 

Finally, I develop an in vitro system for cultivation of marine trematodes that 

includes co-culture with Biomphalaria glabrata embryonic (Bge) cell line and media 

with Bge-released factors. The results presented here highlight the promise of these 

methods to address questions regarding trematode sociality, interspecific 

interactions, development and caste differentiation.  

Trematode colonies are readily replicated, can be maintained in large 

numbers, and are amenable to in vitro studies. Hence, they provide many 

advantages as model systems to pursue experimental and comparative research 

probing general principles underlying the ecology and evolution of sociality. 

Furthermore, there are more than 20,000 species of trematodes worldwide. They 

cover a wide range of environmental and life history diversity and are both 

ecologically and medically important. Thus, understanding the mechanisms that 

shape trematode communities can have substantial public health, veterinary and 

wildlife disease applications.  
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Trematode Sociality: An overview 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 2 

Introduction 

Most people associate the term “complex sociality” with the classic social insects 

(bees, ants, termites) – animal groups characterized by a reproductive division of 

labor, where individuals of helper castes forego reproduction to serve the needs of 

the colony. Continuing with this word association, when thinking of trematodes 

(parasitic flatworms), one does not immediately think of colonies or castes. My 

research started with the unexpected observation that several trematode species 

have a reproductive division of labor with morphologically and behaviorally distinct 

reproductive and non-reproductive castes (Hechinger et al. 2011). My thesis work 

extends these observations and investigates the role that complex sociality plays in 

trematode biology and ecology.  

 

Rationale and Significance 

Trematodes form colonies within their first intermediate molluscan host. The 

colony is initiated by a single founder larva (miracidium) that infects the host, 

metamorphoses, and clonally produces large numbers of daughter parthenitae 

(Figure 1). Some trematode species have rediae: parthenitae that possess a 

muscular pharynx and a gut. Other species have sporocysts, which lack a pharynx 

and gut. Both kinds of parthenitae produce more parthenitae and then dispersive 

offspring (cercariae), which leave the colony to infect the next host in the life cycle.  

Once established inside the molluscan host, the colony blocks host reproduction 

and takes control of the host’s energy allocation to serve the needs of the colony, 
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primarily diverting energy to parasite reproduction (Kuris, 1974; Baudoin, 1975; 

Hechinger et al., 2009; Lafferty and Kuris, 2009). The colony commonly occupies the 

gonad and/or digestive gland of the host, taking up a large portion of the host’s soft 

tissue (10-50%; Fig 2A) (e.g., Hurst, 1927; Bernot and Lamberti, 2008; Hechinger et 

al., 2009). Given their extensive use of host resources, now directed to parasite 

reproduction, it is not surprising that such conditions could lead to intense competition 

should a different trematode clone occupy the same snail host.  

 

Figure 1. Generalized trematode life cycle. 

 

It has long been known that larval trematodes kill unrelated trematodes when a 

snail is simultaneously infected with two species. These antagonistic interactions are 
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hierarchical. Dominant species fend off invasions or displace established colonies of 

subordinate species. Until recently, this antagonism had been considered to occur 

via the actions of “totipotent” rediae, those that both reproduce and defend the colony 

(Lim and Heyneman, 1972; Lie, 1973; Kuris, 1990; Sousa, 1993; but see Lie, 1969). 

It is now known that some species have a non-reproducing soldier caste (Hechinger 

et al., 2011), where soldiers are specialized to defend the colony from enemy 

trematode invaders. In agreement with Hechinger et al (2011), my own investigations 

have shown that soldiers do not reproduce and are smaller than reproductives but 

have relatively large mouthparts (Fig. 2B). Only soldiers readily attack enemies with 

their mouths (Fig. 2C). In addition, soldiers are more active and disproportionately 

common in areas of the host where invasions occur.  

 

Figure 2. Cloacitrema michiganensis (CLOA) social organization. (A) De-shelled host 
California horn snail revealing appearance of an intact colony. (B) Examples of CLOA 
soldier (left) and reproductive (right) (C) CLOA soldier attacking a heterospecific 
(Euhaplorchis californiensis). Soldier indicated by black arrow. (D) CLOA soldiers adhering 
to each other at their posterior ends. Scale bar=300 μm. 
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The initial discovery (Hechinger et al. 2011) was followed by reports revealing the 

existence of soldiers in five additional trematode species (Leung & Poulin, 2011; 

Miura, 2012; Nielsen et al., 2014) and by research examining the adaptive 

significance of soldiers (e.g., Lloyd & Poulin 2012, Kamiya & Poulin 2013). However, 

descriptions of colony structure were restricted to a single trematode superfamily 

(Echinostomatoidea), and knowledge of colony demography and caste function was 

limited to snapshots of the condition of mature colonies.  

 

Table 1. Taxonomy of trematodes that infect the California horn snail 
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Here I address these gaps by studying sixteen trematode species that form 

colonies in the California horn snail, Cerithideopsis californica (= Cerithidea 

californica). The California horn snail is host for a diverse trematode guild (Table 1) 

that is characterized by a fairly well-resolved interspecific dominance hierarchy 

(Kuris, 1990; Sousa, 1993; Hechinger, 2010). This marine snail that can be found in 

salt marshes and tidal mudflats from northern California, USA, to Baja California, 

Mexico 

 

A summary of the major findings of this research are as follows:  

 

Chapter 2: This chapter examines colony structure for four trematode species 

that infect the California horn snail; two species belong to the Family 

Echinostomatidae (Himasthla rhigedana and Acanthoparyphium spinulosum) and 

two others to the Philophthalmidae (Parorchis acanthus and Cloacitrema 

michiganensis). In addition, we examine one echinostomatid (Echinostoma liei) 

isolated from the freshwater snail, Biomphalaria alexandrina, and maintained in 

Biomphalaria glabrata. We present redia morphology (pharynx and body size), and 

the distribution of individuals of different castes throughout the snail body. When 

morphological, developmental, and frequency-distribution evidence indicated the 

presence of a permanent soldier caste, we assessed behavior by measuring attack 

rates of the different morphs toward heterospecific trematodes. Our findings permit 

us to expand the list of trematodes known to have a non-reproductive soldier caste 

to include the four species examined from the California horn snail, and to document 
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colony structure for a species (E. liei) that explicitly lacks a permanent soldier caste. 

The contrasting colony structure for species with and without a soldier caste 

emphasizes the diverse nature of trematode sociality and the promise of the group to 

permit comparative investigations of the evolution and ecology of sociality. 

 

Chapter 3: This study examines colony structure for four trematode species that 

belong to the Family Heterophyidae (Euhaplorchis californiensis, Phocitremoides 

ovale, Pygidiopsoides spindalis and Stictodora hancocki). The heterophyids we study 

here have an intermediate position in the dominance hierarchy (they are subordinate 

to the echinostomatids and philophthalmids described in Chapter 2, but can eliminate 

or prevent infections of other, more subordinate, species in the guild). We also 

compare colony structure of a few recent, developing heterophyid colonies to fully 

developed colonies to shed light on the nature of colony development. We discuss 

the implications of our results, including alternative interpretations concerning the 

nature of trematode sociality. Our analysis of morphology, distribution, behavior, and 

colony development of these four heterophyid species indicates that they also have 

a soldier caste, and that trematode caste structure takes time to develop, becoming 

more pronounced with colony age. 

 

Chapter 4: We examine seven species that, having sporocyst parthenitae, 

cannot have soldiers. We also document patterns for a redia species that lacks a 

soldier caste. We present data on morphology, reproductive status, and distribution 

of the parthenitae. By describing such patterns for eight species belonging to five 
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additional digenean families, we expand the taxonomic range for which colony 

structure has been examined in the Trematoda. Our findings indicate that trematode 

colony structure and allometric growth patterns when a soldier caste is absent are in 

stark contrast to those of species with soldiers: (1) colonies are characterized by 

unimodal size-frequency distributions with few small and large individuals. (2) Even 

the smallest colony members contain developing embryos or late-stage cercariae. (3) 

Individuals of all sizes have similar morphologies and lack structures that are 

specialized for antagonism. (4) Distribution of parthenitae is restricted to the main 

infection locus. Thus, we identify easily measurable characteristics that can be used 

as “markers” to determine whether a soldier caste is present in trematode colonies.   

 

Chapter 5: The development of suitable culture systems for trematodes infecting 

marine snails would allow us to ask questions concerning trematode sociality such 

as the fundamentals of interspecific interactions and the mechanics underlying caste 

dynamics and regulation in mature colonies. However, because most trematodes of 

medical and veterinary importance infect pulmonate snails, efforts to develop in vitro 

systems have focused on freshwater systems rather than marine ones. Here we 

report primary in vitro culture of rediae of Euhaplorchis californiensis (Heterophyidae), 

Himasthla rhigedana and Himasthla sp. B (Echinostomatidae) infecting the California 

horn snail. Our results indicate that these trematodes can be cultured in vitro in the 

commercially available Leibovitz L-15 media that had been previously used for other 

marine trematodes. However, rediae survival and performance can be improved by 

using the Biomphalaria glabrata embryonic (Bge) cell line, either by co-culturing with 
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the Bge cells or in media that contains Bge released factors. Rediae do not appear 

to consume Bge cells but are able to eat rediae and cercariae of heterospecific 

species. Even though cultured rediae (both reproductive and soldier castes) were 

mobile and healthy looking, we rarely observed progeny rediae or cercariae being 

released. This is the first reported cultivation of marine trematodes that includes co-

culture with Bge cells and media with Bge factors. Our results highlight the promise 

of using these methods for cultivation of marine trematodes. 

 

Trematode colonies are readily replicated, can be maintained in large numbers, 

and are amenable to in vitro studies. Hence, they provide many advantages as model 

systems to introduce students to science and to pursue experimental and 

comparative research probing general principles underlying the ecology and 

evolution of sociality. Furthermore, there are over 20,000 species of trematodes 

worldwide; they cover a wide range of environmental and life history diversity and are 

both ecologically and medically important. Thus, understanding the mechanisms that 

shape trematode communities can have substantial public health, veterinary and 

wildlife disease applications.  
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Social organization in parasitic flatworms- four additional 

echinostomoid trematodes have a soldier caste and one does not 
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Social organization in parasitic flatworms- four additional 

echinostomoid trematodes have a soldier caste and one does not  

Abstract 

Complex societies where individuals exhibit division of labor with physical 

polymorphism, behavioral specialization, and caste formation, have evolved several 

times throughout the animal kingdom. Recently, such complex sociality has been 

recognized in digenean trematodes; evidence is limited to 6 marine species. Hence, 

the extent to which a soldier caste is present throughout the Trematoda is sparsely 

documented, and there are no studies detailing the structure of a species lacking 

such a social structure. Here we examine colony structure for an additional 5 

echinostomoid species, 4 of which infect the marine snail Cerithidea californica and 

1 (Echinostoma liei) that infects the freshwater snail Biomphalaria glabrata. For all 

species, we present redia morphology (pharynx and body size), and the distribution 

of individuals of different castes throughout the snail body. When morphological 

evidence indicated the presence of a soldier caste, we assessed behavior by 

measuring attack rates of the different morphs toward heterospecific trematodes. 

Our findings indicate that each of the 4 species from C. californica have a 

permanent soldier caste, while E. liei does not. The observed intra- and inter- 

specific variation of caste structure for those species with soldiers, and the 

documentation of colony structure for a species explicitly lacking permanent 

soldiers, emphasizes the diverse nature of trematode sociality and the promise of 

the group to permit comparative investigations of the evolution and ecology of 

sociality. 
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Introduction 

 In the most complex animal societies, individuals live in colonies 

characterized by a high degree of cooperative organization and the formation of 

morphologically and behaviorally distinct reproductive and non-reproductive castes. 

Non-reproducing individuals specialize on tasks that include gathering food, building 

nests, or defending the colony from invaders. Such organized and cooperative 

societies characterize several types of insects (e.g., Wilson, 1971; Aoki, 1977; 

Crespi, 1992; Kent and Simpson, 1992; review in Myles, 1999), snapping shrimp 

(Duffy, 1996), and naked mole-rats, (Jarvis et al., 1981). Recent findings (Hechinger 

et al., 2011; Leung and Poulin, 2011; Miura, 2012; Nielsen et al., 2014) have 

expanded the existence of complex sociality to a new phylum, the Platyhelminthes 

(Class Trematoda), by documenting the existence of a reproductive division of labor 

in rediae involving a non-reproductive soldier caste occurring alongside a 

reproductive caste. Here, we present experimental and observational evidence for 4 

additional echinostomoid species that exhibit such caste formation, and we 

document the colony structure for an echinostomoid lacking a permanent soldier 

caste.  

 Although not traditionally recognized as such, trematode infections in 

molluscan first intermediate hosts comprise colonies (Hechinger et al., 2011). A 

single founder larva (a miracidium) infects a mollusk host (usually a snail). After 

infection, the miracidium metamorphoses, initiates clonal reproduction, and 

produces large numbers of parthenitae (sporocysts or rediae). Initially, parthenitae 

produce more parthenitae, but ultimately switch to long-term production of 



 

 14 

dispersive offspring (cercariae), which leave the colony to infect the next host in the 

life cycle. Some trematode species have parthenitae that possess a muscular 

pharynx and a gut; these parthenitae are called rediae. Other species have 

parthenitae called sporocysts, which lack those structures. The mass of parthenitae 

commonly occupies the gonad and/or digestive gland of the snail, and, in mature 

infections, can constitute a large percentage (up to 50%) of the tissue mass of an 

infected host (Bernot and Lamberti, 2008; Hechinger et al., 2009). The parthenitae 

collectively block host reproduction and divert host physiology, generally for the life 

span of the host, often years (Sousa, 1983; Sorensen and Minchella, 2001), to 

serve the reproductive needs of the trematode clones (Lafferty and Kuris, 2009; 

Hechinger, 2010). Thus, the parthenitae work together as a colony, and the host 

body is an important, limited resource for the trematode colony (Kuris and Lafferty, 

1994; Hechinger et al., 2011). 

Consistent with the host body representing a limited and critical resource, 

when 2 trematode species simultaneously infect a snail host, one generally kills the 

other (Lim and Heyneman, 1972; Lie, 1973; Kuris, 1990; Sousa, 1993; Kuris and 

Lafferty 1994). This may occur frequently when overall prevalence of trematodes is 

high (Kuris and Lafferty, 1994). Thus, there can be strong selective pressure for 

established trematode colonies to protect and defend against new infections. 

Trematode antagonism has typically been considered, and sometimes clearly 

documented, as operating via “totipotent” rediae, which not only reproduce, but 

attack enemies (Lim and Heyneman, 1972; Lie, 1973; Kuris, 1990; Sousa, 1993). 

However, for some species, certain individual rediae are specialized for 
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antagonism. Sapp et al. (1998) documented a specialized reproductive morph of 

Echinostoma paraensei that matured early and remained at a prime site to attack 

invading heterospecific species. Further, Hechinger et al. (2011) reported the 

discovery of a caste of non-reproductive soldier rediae. In Himasthla sp. B, 

reproductive rediae produce additional parthenitae and dispersive cercariae, while 

soldiers lack actively developing embryos, and are specialized for inter-trematode 

antagonism. These non-reproductive soldiers are small, have relatively large 

pharynxes, and are more common at peripheral sites in the snail where new 

invasions are likely to be encountered (Hechinger et al., 2011). Soldiers are also 

more active, and readily attack enemies with their mouth.  

 The initial documentation of the soldier caste stimulated a search for soldiers 

in other trematode species. Five additional species have now been reported to 

exhibit a soldier caste (Leung and Poulin, 2011; Miura, 2012; Nielsen et al., 2014). 

All 6 species with soldiers belong to 2 families, the Echinostomatidae and 

Philophthalmidae, both of which lie within the super-family Echinostomoidea (Olson 

et al., 2003). This clade includes the most competitively dominant species in most 

trematode assemblages (Lim and Heyneman, 1972; Lie, 1973; Kuris, 1990). 

However, the extent to which a soldier caste is present in this clade is still sparsely 

documented, and there are no studies detailing the structure of trematode colonies 

that lack a soldier caste. This limits our ability to make empirical generalizations and 

to carry out comparative tests concerning the nature of sociality.  

 Here we examine colony structure for an additional 5 echinostomoid species: 

2 echinostomatids and 2 philophthalmids that infect the marine California horn snail 
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(Cerithidea californica) and 1 echinostomatid (Echinostoma liei) isolated from the 

freshwater snail, Biomphalaria alexandrina, and maintained in Biomphalaria 

glabrata. We present redia morphology (pharynx and body size), and the 

distribution of individuals of different castes throughout the snail body. When 

morphological, developmental, and frequency-distribution evidence indicated the 

presence of a permanent soldier caste, we assessed behavior by measuring attack 

rates of the different morphs toward heterospecific trematodes. Our findings permit 

us (1) to expand the list of trematodes known to have a non-reproductive soldier 

caste to include the four species examined from the California horn snail, and (2) to 

document colony structure for a species (E. liei) that explicitly lacks a permanent 

soldier caste. The contrasting colony structure for echinostomoids with and without 

a soldier caste emphasizes the diverse nature of trematode sociality and the 

promise of the group to permit comparative investigations of the evolution and 

ecology of sociality. 

 

Materials and Methods 

Study systems and sample collection 

Species from the California horn snail, Cerithidea californica (= 

Cerithideopsis californica) (Potamididae): We collected California horn snails at 

Carpinteria Salt Marsh, Santa Barbara County, California between July 2013 and 

May 2014. The snails were maintained in the laboratory in running seawater for up 

to 6 wk before processing. We identified trematode species following Martin (1972) 
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and additional unpublished observations. We studied 3 echinostomoids listed by 

Hechinger et al. (2011) as likely having soldiers: Himasthla rhigedana Dietz, 1909 

(Echinostomatidae), Parorchis acanthus Nicoll, 1907 (Philophthalmidae), and 

Cloacitrema michiganensis McIntosh, 1938 (Philophthalmidae), and added a fourth, 

Acanthoparyphium spinulosum Johnston, 1917 (Echinostomatidae). For simplicity 

and clarity, we will hereafter refer to each species with abbreviations formed by the 

first four letters of the genus (HIMA, PARO, CLOA and ACAN, respectively). 

 Echinostoma liei in Biomphalaria glabrata (Planorbidae): Echinostoma liei 

Jeyarasasingam et al. 1972 (= E. caproni in part) (Echinostomatidae) was isolated 

in Ethiopia c1970 and has been maintained in NIH albino B. glabrata in our 

laboratory for approximately 40 yr. General maintenance procedures follow Kuris 

(1980). Biomphalaria glabrata serves as both the first and second intermediate host 

to E. liei. Metacercariae obtained from snail pericardia were administered to Swiss 

Webster mice (25-30 metacercariae per mouse) via oral gavage. Four months later, 

we euthanized the mice, extracted adult trematodes from the intestines, and 

harvested trematode eggs. Following incubation at 26 C for 12 days, miracidia were 

hatched. Naive snails (5-15 mm diameter range) were exposed to 3-5 miracidia on 

October 2013 and maintained in aerated tanks at room temperature (22-26 C).  

Redia morphology and distribution 

To dissect California horn snails, we carefully cracked the shell with a 

hammer and removed the shell. Following Hechinger et al. (2011), we divided the 

body into 3 regions: mantle, basal visceral mass (middle), and the gonad/digestive 

gland. Five snails harboring colonies of each of the 4 horn snail trematode species 
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were used to quantify redia morphology and distribution. All colonies examined 

were mature and producing cercariae. 

 Six snails harboring E. liei colonies were examined for redia morphology and 

distribution. Three of these were examined 6 wk after exposure, and 3 more 12 wk 

post-exposure (colonies mature 2-4 wk after exposure). To dissect B. glabrata, we 

gently cracked the shells with a glass vial and carefully removed the shell 

fragments. Because of smaller size and less discrete tissue boundaries, we divided 

these snails into 2 instead of 3 regions: the snails were bisected just posterior to the 

heart, into anterior (head, foot and mantle) and posterior (visceral mass and 

ovotestis) regions for all colonies but one (which was analyzed whole). For 2 of the 

earlier infections, we collected all present individuals for quantitative analysis, as 

colony size was small enough for comprehensive redia collection. For the remaining 

4 infected B. glabrata, we followed the procedures described below. 

 Using a pipette, a grid, and random numbers, we sampled approximately 30 

rediae from each body region, irrespective of redia type. If there were less than 30 

rediae in the body region, we sampled all rediae present. Accurate counting of 

rediae was difficult because cercariae were sometimes densely intermingled with 

the rediae, so we frequently retrieved and measured more than 30 rediae. 

Consequently, the number of rediae measured per region ranged from 1-118. 

Sampled rediae were killed by immersion in hot deionized water, fixed in 70% 

EtOH, and mounted in glycerin; preliminary trials confirmed this process was 

suitable for our morphological analyses. Digital pictures of each redia were taken 

using a compound microscope with a Lumenera Infinity 3 camera at 4x, 10x or 20x 
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magnification to permit morphological measurements. We measured body and 

pharynx length and width to the nearest micron using the image analysis software 

FIJI (Fiji Is Just ImageJ). We calculated total body and pharynx volumes by 

approximation to a cylinder.  

 For each body region, we calculated the proportion of each redia morph type 

observed in the randomly sampled rediae. We assigned each redia to a morph 

category based on the presence or absence of embryonic or developing offspring 

(cercariae or rediae). Soldiers lacked free germ balls or later-stage embryos. 

Reproductives contained at least some late-stage embryos of cercariae or 

parthenitae. Occasionally, we observed individuals that only had early stage 

embryos. These individuals were scored as immature reproductives. For statistical 

analyses we have included these immature rediae in the reproductive category, 

unless otherwise stated. 

Attack Trials 

When morphology, reproduction, and size-frequency distributions indicated 

the existence of a permanent soldier caste, we ran experimental trials to evaluate 

attack rates to compare behavioral specialization of soldier and reproductive castes. 

This involved all species from the California horn snail. Rediae from each species 

were presented with rediae of the heterospecific Euhaplorchis californiensis 

(Heterophyidae). We selected E. californiensis (EUHA) as the heterospecific enemy 

in these trials, as did Hechinger et al. (2011), because it is one of the most common 

trematodes at Carpinteria Salt Marsh. Hence, in addition to being readily available, 

it is likely regularly encountered by other species.  
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 Experiments took place in May 2014. We used 96-well plates, with concave 

bottoms to increase encounter rates. Rediae from 3 colonies of each tested species 

were presented with reproductive rediae from 2 EUHA colonies (also referred to as 

“heterospecific rediae”). For each replicate, we placed 10 heterospecific rediae into 

a single well with sea water, followed by approximately 10 soldiers or 10 

reproductives of the focal species. For each combination, we used 5 replicate wells. 

The wells were held for 90-120 min at ambient room temperature (21-23 C). We 

then observed each individual well with a stereomicroscope for 20 sec. An attack 

was recorded whenever a redia was attached to another with its mouth, following 

Hechinger et al. (2011), or when a redia had already ingested an entire 

heterospecific redia (this consistently occurred for HIMA soldiers). These were 

easily distinguishable because the rediae of EUHA are yellow and their developing 

cercariae have eyespots.  

Statistical analysis 

All statistical analyses were performed using R 3.1.3 (ran with RStudio 

0.98.1103), or JMP Pro 11.0.0. For morphological analyses, we used a mixed-effect 

general linear model (GLM) on natural log-transformed data and setting colony ID 

as a random effect to model the relationship between soldier and reproductive total 

volume, pharynx volume, and pharynx/volume ratios. Interaction terms between 

colony and redia type were included in the model. We examined residual plots and 

normal quantile plots to ensure meeting assumptions regarding data normality and 

homoscedasticity. Cochran-Mantel-Haenszel chi-square tests were used to 

examine the relationship between rediae type and snail region, while controlling for 
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colony ID. For the attack rates, we used a binomial regression with a logit link 

function and tested for the effects of colony ID, redia type and heterospecific colony 

ID. Colony ID and heterospecific ID were incorporated as fixed effects because we 

were interested in distinguishing effects of specific colonies. 

 

Results 

We processed a total of 2,616 rediae from the 5 trematode species 

examined. We examined 5 colonies for each of the trematode species infecting the 

California horn snail, and 6 colonies for the species (Echinostoma liei) infecting B. 

glabrata. General patterns were consistent among colonies, and our analyses 

included data from all colonies. However, for illustration purposes, we provide 

figures in the main text for 1 representative colony of each species. Additional 

figures and detailed data for all colonies can be found in the Supplementary 

material (Figures S1-S5, Table S1). 

Morphology 

Examination of rediae of the 4 trematode species from the California horn snail 

revealed distinct soldier and reproductive castes. Reproductive rediae were 

consistently longer and wider, with no overlap in body volume (Figs. 1, 2A). The 

size frequency distributions were clearly bimodal (Fig. 1B), and the volume of a 

reproductive redia was 141 times that of a soldier for CLOA (t632=85.0, p<0.0001), 

216x for PARO (t480=26.1, p<0.0001), 21x for HIMA (t441=20.5, p<0.0001), and 39x 

for ACAN (t573=14.6, p<0.0001) (on average, pooling all rediae per species; results 
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for each individual colony can be found in Table S1). In absolute dimensions, 

pharynx size of a reproductive redia was 3.2 times that of a soldier for CLOA 

(t620=9.7, p<0.0001), 1.9x for PARO (t470=2.2, p=0.0285), 1.8x for HIMA (t438=6.4, 

p<0.0001), and 1.5x for ACAN (t567=4.3, p<0.0001) (Figure 2b). However, relative to 

their body size, soldiers had substantially larger pharynxes than did reproductive 

rediae; it was 40x larger for CLOA (t620=9.6, p<0.0001), 114x for PARO (t470=20.9, 

p<0.0001), 12x for HIMA (t438=19.2, p<0.0001), and 26x for ACAN (t567=16.8, 

p<0.0001) (Fig. 2C).   

In addition to the difference in size, soldiers had a distinctive body shape (Fig. 1, 

Supplemental video). They possessed pronounced collars and had larger 

appendages compared to reproductive rediae. For ACAN, there is also strong 

dimorphism in color, with reproductive rediae being orange and soldiers being 

cream-colored. In 1 ACAN colony, however, we observed 1 individual that was 

shaped like a soldier, but it contained a daughter redia. Following our operational 

categorization, this individual was recorded as a reproductive redia (see ACAN 

scatterplot and histogram in Fig. 1). 

 From the 6 E. liei colonies, no evidence of a soldier morph was detected. The 

size frequency distribution of the colonies had a single mode, and small and large 

rediae had similar morphology. Additionally, all of the rediae examined had germ 

balls or developing embryos (Fig. 1C). Individuals from the 12-wk-old colonies were 

2.6 times larger than those from 6-wk-old colonies (t468=12.45, p<0.0001; Fig. S5, 

Table S1).  
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Figure 1. Body size and shape of rediae for the 5 examined species of echinostomoid 
trematodes. (A) Body width to body length relationships. Each point represents a randomly 
sampled redia from a single trematode colony. (B) Frequency distributions of body volume 
for randomly sampled rediae. X-axis is log10 scale. A and B depict data from a single 
representative colony of each species (see Supplemental material for all colonies). The 
arrows on the third panel of B indicate the individual that was shaped as a soldier but 
contained a daughter redia. (C) Photographs of representative redia morphs for each 
species. Scale bar= 500µm. 
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Figure 2. Body and pharynx volumes for rediae of the 5 species examined. For each 
species, points represent randomly sampled, individual rediae from a single representative 
colony (see Supplemental material for all colonies). Boxplots indicate median (line), 
interquartile range (box) and range of data (whiskers) for the following metrics: (A) total 
body volume of individual rediae, (B) pharynx size, and (C) pharynx volume relative to body 
volume. Log10 scale for Y-axes. 
 
 
 
Table I. Percentage of rediae that are soldiers, by host body region, for 4 trematode 
species infecting the California horn snail. 
 
 Average (and range) percentage of soldiers among colonies  

 CLOA PARO HIMA ACAN 

Mantle 85% (45 - 100%) 96% (78 - 100%) 85% (75 - 100%) 100%  

Basal Visceral Mass 63% (28 - 80%) 54% (16 - 96%) 57% (44 - 90%) 95% (92 - 98%) 

Gonad 23% (11 - 42%) 51% (25 - 74%) 17% (4 - 41%) 55% (38 - 75%) 
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Figure 3. Proportion of reproductive, immature and solider rediae found in each region of 
the snail. The California horn snail was divided into 3 regions: mantle, basal visceral mass 
and gonad (and digestive gland); Biomphalaria glabrata was divided into 2: anterior and 
posterior. Numbers in boxes indicate total number of individuals sampled from that given 
region. 
 
 

Caste ratios and distribution  

For the 4 species examined from the California horn snail, most rediae were 

found in the gonadal area, but some were also found in the basal visceral mass and 

the mantle regions. The relative numbers of soldiers and reproductive rediae (caste 

ratios) varied between regions for each species (Table I, Figs. 3, S1-S4; CLOA: 

χ2
1,636=62.68, p<0.0001; PARO: χ2

1,485=1.87, p=0.1710; HIMA: χ2
1,447=86.27, 
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p<0.0001; and ACAN: χ2
1,578 =100.27, p<0.0001). However, in all cases, soldiers 

were relatively much more common in the snail anterior (basal visceral mass and 

mantle) compared to the gonad region.  

 For E. liei, very few individuals were retrieved from the anterior part of the 

snail; of the ones retrieved, all were reproductive or immature rediae (Figs. 3, S5).  

Immature reproductives: Morphology and frequencies 

 We occasionally observed some individuals that only had early stage 

embryos. These individuals were intermediate in size, ranging from the size of 

soldiers to that of the smallest reproductive rediae with developing embryos (Figs. 

1, S1-S5). They were shaped similarly to reproductive rediae, with reduced collars 

and appendages. These individuals were scored as immature reproductives. 

 Immature rediae were uncommon in colonies of all species (Figs. 1, S1-S5). 

Of the total rediae from the 4 species infecting the California horn snail, 77 out of 

2,146 rediae were immature. Among colonies within species, the average (and 

range) proportion of immatures among all rediae was 3.6% (0.9 - 10.2%) for CLOA, 

3.8% (0 - 9.3%) for PARO, 6.7% (1.7 - 12.8%) for HIMA, and 0.94% (0 - 2.1%) for 

ACAN. The average (and range) proportion of immatures considering only 

reproductive rediae was 9.9% (3 - 30.2%) for CLOA, 10.4% (0 - 30%) for PARO, 

16.2% (4.3 - 42.4%) for HIMA, and 3.5% (0 - 7.4%) for ACAN. For E. liei, we 

obtained a total of 470 reproductive rediae, 57 of which were immature. On average 

17% of the rediae per colony were immature, However, this percentage was higher 

in the 6-wk-old colonies (range 21 - 23%), than in the 12-wk-old colonies (2-17%) 

(Fig. S5, Table S1). 
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 In general, colonies of E. liei had a higher percentage of immature rediae 

(17%) compared to the species infecting the California horn snail (ranging from 1% 

in ACAN to 7% in HIMA) (logistic regression controlling for trematode species; χ2
4,26 

= 17.77, p = 0.0014). However, when excluding soldiers from the calculation, the 

proportions of reproductive rediae that were immature were more comparable (χ2
4,26 

= 3.52, p = 0.4750), with HIMA having effectively the same proportion of 

reproductive rediae that were immature (16%) as did E. liei. 

Activity and attack rates 

In each of the 4 species from the California horn snail, soldiers were 

qualitatively more active than reproductive rediae, consistent with the previous 

quantitative data for Himasthla sp. B (Hechinger et al., 2011). Reproductive rediae 

rarely moved when exposed to heterospecific rediae. In contrast, soldiers increased 

activity in the presence of heterospecific rediae, stretching and contracting their 

bodies and probing heterospecific rediae with their mouths. In some cases, soldiers 

attached their mouths to heterospecific rediae (Fig. 4A). We note that soldiers of all 

species often formed clusters of 2 to 7 individuals, adhering at the posterior ends of 

their bodies (Fig. 4B). Clustered soldiers were frequently observed attacking 

heterospecific rediae. This behavior was never observed in reproductive rediae of 

any of the species examined.  

 In quantitative attack experiments (Fig. 5), reproductive rediae rarely 

attacked heterospecific rediae for any of the 4 species from the California horn 

snail. No attacks were observed for reproductive rediae of CLOA and PARO. For 

ACAN, 6/323 (1.9%) reproductive rediae attacked, while in HIMA 1/274 (0.4%) 
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attacked a heterospecific redia. Soldiers, on the other hand, were much more 

aggressive. For CLOA, 85/280 (31%) soldiers attacked heterospecific rediae, for 

PARO, 32/278 (12%), and for ACAN, 94/270 (35%). Soldiers of HIMA attacked at a 

particularly high rate; 223/274 (81%) soldiers attacked heterospecific rediae, and 

frequently entirely ingested them during the 90-min trial (Fig. 4C). These substantial 

differences in attack rates between soldier and reproductive rediae were statistically 

significant for each species (logistic regression for CLOA: χ2
1,60=145.4, p<0.0001; 

PARO: χ2
1,60=48.8, p<0.0001; ACAN: χ2

1,60=134.7, p<0.0001; and HIMA: 

χ2
1,60=485.6, p<0.0001). Colony of origin of both the focal species and the 

heterospecific rediae were also significant predictors for attack rates (Fig. 5, Table 

S2).  

 

 

 

Figure 4. Examples of trematode soldier attack and activity: (A) Cloacitrema michiganensis 
(CLOA) soldier attacking a heterospecific redia (Euhaplorchis californiensis, EUHA). Soldier 
indicated by black arrow. (B) CLOA soldiers adhering to each other at their posterior ends. 
(C) Himasthla rhigedana (HIMA) soldier with a consumed heterospecific (EUHA) redia filling 
its gut (outlined in black, white arrows indicate eyespots of EUHA cercariae that were 
developing inside the ingested EUHA redia).  
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Figure 5. Attack rates of soldiers and reproductives, of the 4 species from the California 
horn snail on rediae of the heterospecific Euhaplorchis californiensis (EUHA). Three 
colonies of each focal species were used (represented by the different colors), and each 
was exposed to rediae from 3 colonies of the heterospecific EUHA (represented by different 
shapes). Points indicate proportion of individuals observed attacking for each replicate well 
(5 replicates for each of 48 combinations), boxplots indicate median (line), interquartile 
range (box) and range of data (whiskers). The arrows on the right indicate the average 
attack rates previously reported for soldiers of other species: Himasthla sp. B (figure 3a in 
Hechinger et al., 2010), Himasthla elongata (figure 5 in Nielsen et al., 2014), Philophthalmid 
sp. I, Philophthalmid sp. II, and Acanthoparyphium sp. I (figure 5 in Miura, 2012). We used 
WebPlotDigitizer (http://arohatgi.info/WebPlotDigitizer/app/) to extract data on attack rates 
from original published graphs. 

 

Discussion 

Patterns of colony structure in trematode species with a soldier caste 

Our analyses of morphological, distributional, and behavioral patterns 

indicate that the 4 species from the California horn snail have a soldier caste. 

Across those species, reproductive rediae were 21x to 216x larger than soldiers, 

http://arohatgi.info/WebPlotDigitizer/app/
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and lacked the prominent appendages and collars of the soldiers. Further, soldier 

and reproductive rediae of the 4 species were unevenly distributed throughout host 

tissues, with soldiers being disproportionately abundant in the anterior part of the 

snail, where invasions by other trematodes are initiated. Finally, very few 

reproductive rediae (0 - 1.9%) attacked heterospecific rediae, while the percentage 

of soldiers that attacked was substantially higher (12 - 81%). We note that, in 

addition to being more aggressive, soldiers frequently anchored their posterior ends 

onto the substrate, or each other, sometimes forming clusters (Fig. 4C). Similar 

observations have previously been reported in vitro for Philophthalmus sp. (Lloyd 

and Poulin, 2012) and, importantly, in vivo for Philophthalmus gralli (West, 1961), 

where the small (likely soldier) rediae attached to the walls of the blood passages of 

the snail host. Attaching to substrate may enhance attack rates, perhaps providing 

leverage and enabling movement in all directions, thus increasing the ability for 

soldiers to encounter and attack enemy trematodes.  

 Among species with a soldier caste, there was variation in the degree of 

morphological dimorphism between soldiers and reproductive rediae (Figs. 1, S1-

S4). The average differences in size between soldier and reproductive morphs was 

large for CLOA and PARO (141x and 216x, respectively), intermediate for ACAN 

(39x) and smallest for HIMA (21x). For the first three, there was no overlap in body 

size between soldier and reproductive rediae, and the size-frequency distributions 

are distinctly bimodal (Figs. 1, S1-S4). In ACAN, there is also strong dimorphism in 

color. HIMA colonies, on the other hand, exhibited less morphological divergence. 

They had the highest proportion of individuals bridging the size-frequency gap 
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between the modes of soldier and reproductive rediae distributions (Figs. 1, S4). 

Nonetheless, HIMA colonies were still characterized by bimodal size-frequency 

distributions and their division of labor is evident given the particularly aggressive 

behavior of their soldiers (see below).  

Aggressiveness of soldier rediae 

Although the soldier caste might have some other roles (e.g. Lloyd and 

Poulin, 2012), it is clear that one major role is defense. During the in vitro attack 

trials, soldiers of each of the 4 species from the California horn snail consistently 

attacked heterospecific rediae at much greater rates than did reproductive 

individuals (Figs. 5, Table S2). Despite some variation in methodological details, 

these values are generally consistent with values reported for other species with 

soldier and reproductive castes (Fig. 5; Hechinger et al., 2010; Miura, 2012; Nielsen 

et al., 2014), with the exception of the high 81% attack rate for HIMA. 

 HIMA soldiers were particularly aggressive. Not only did they have the 

highest attack rates, which appear to be at least 2 times greater than the other 

species’ attack rates (Fig. 5); HIMA soldiers often completely ingested 

heterospecific rediae during the observation periods (Fig. 4C). Therefore, although 

morphological differences were less extreme for HIMA than for the other trematodes 

from the California horn snail, the attack trials suggest that HIMA has the most 

aggressive soldiers yet described.  
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Intraspecific variation in behavior and colony structure (caste ratios) 

During the attack trials, there were intraspecific differences in the attack rates 

of soldiers originating from different colonies. For example, soldiers of ACAN 

colonies 2 and 3 were more aggressive than those from ACAN 1 (Fig. 5, Table S2). 

In addition, the antagonistic behavior varied depending on the colony of origin of the 

heterospecific rediae that soldiers were exposed to (e.g., ACAN soldiers 

consistently attacked EUHA 1 more often than EUHA 2; Fig. 5, Table S2).  

 In addition to the differences in antagonistic behavior, the examined colonies 

presented considerable intraspecific variation in redia morphometrics and colony 

structure (caste ratios). For example, reproductive rediae ranged from being 65 to 

423 times bigger than soldiers among CLOA colonies, and 86 to 673 times bigger 

for PARO (Table S1). This represents a 6x and 8x difference in reproductive to 

soldier body-size ratios, respectively. We also note that, although the percentage of 

soldiers consistently increased in the anterior parts of the snail, the range of values 

obtained for each region was wide, especially so for CLOA, PARO and HIMA (Table 

I). 

 The intraspecific variation in behavior and colony structure could be due to 

multiple factors, including colony condition, age, or history of threats of attack. For 

instance, the colonies for this study were collected over 11 mo from different sites at 

Carpinteria Salt Marsh. Because the risk of interspecific invasion varies by season 

(Martin, 1955; Yoshino, 1975), and at a fine spatial scale (Lafferty et al., 1994), it is 

possible that investment in soldiers could be adaptive, being higher in seasons or 

areas with higher risks of invasion. Variability in colony structure has also been 
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observed for colonies of Philophthalmus sp., (Lloyd and Poulin, 2014) and H. 

elongata (Nielsen et al., 2014) from different geographic locations. Although 

attempts have been made to explain the variation observed (Kamiya et al., 2013; 

Lloyd and Poulin, 2013), the mechanisms controlling caste ratio remain unclear. 

 We also hypothesize that the bimodality of the size-frequency distributions 

will increase with colony development. Early infections are likely to be dominated by 

rapidly growing reproductive rediae, and the size-frequency distributions will 

become more bimodal as the colony matures with the development of more soldiers 

and fewer developing reproductives. Hence, reproductive to soldier body-size ratios 

would also increase in older colonies. The horn snails examined here had been 

naturally infected. Although we only examined developed colonies, we were unable 

to estimate their exact ages. However, the size and distributional patterns analyzed 

for E. liei, where colony age was known, suggest that some of these factors change 

with colony age. Specifically, the proportion of immature rediae appeared lower, and 

the size of reproductive rediae larger in the older E. liei colonies (Fig. S5). If soldiers 

were present, this would also drive an increase in reproductive to soldier size ratios. 

Further supporting this scenario of colony development, in June 2015, we were able 

to examine 1 early HIMA colony. The morphological and distributional patterns of 

this developing colony (unimodal, with many immature reproductives; Fig. S6), are 

consistent with our prediction of increasing bimodality with colony age.  

 Finally, molecular genetic evidence indicates that ACAN (Nguyen, 2012; 

Nguyen et al., 2015) and PARO (Huspeni, 2000) are species complexes. Hence, it 

is important to consider that some of the intraspecific variation may actually reflect 
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interspecific variation caused by the 2 or 3 cryptic species that cannot currently be 

morphologically differentiated. 

Not all echinostomoids have a non-reproducing soldier caste 

For Echinostoma liei, small and large rediae had similar morphology, and all 

contained developing embryos. There was no evidence for within-colony redia size 

dimorphism, as body-size distributions were unimodal (Figs. 1, S5). The patterns 

observed for E. liei should be understood the first explicit depiction of colony 

structure in trematodes lacking soldiers. However, because this strain has been 

maintained in a laboratory setting without enemies for 40 yrs, examination of wild 

populations is required to understand whether E. liei lacks soldiers in the wild.  

Interestingly, in her undergraduate thesis, Zikmundová (2011) also reported 

a unimodal size distribution for rediae of another echinostomoid, E. nasincovae (= 

E. spiniferum) that naturally infected the freshwater snail Planorbarius corneus.  

 The patterns observed for these 2 trematodes are in contrast to those of 

species with soldiers and provide insight into colony structure and function when a 

permanent soldier caste is lacking. Echinostoma liei is a strong competitor 

(Heyneman et al., 1972). The fact that it lacks soldiers suggests that soldiers are 

not required for a species to be dominant in trematode dominance hierarchies and 

the potential existence of “totipotent” reproductive rediae that can also attack 

heterospecific rediae. Future examination of the distribution of defensive behavior 

among reproductive individuals might provide insight into the evolution of a 

reproductive division of labor in the Trematoda. For instance, we predict that 

defense in trematodes lacking soldiers will be mostly performed by younger, small 
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reproductive rediae (these individuals can more easily move through the snail body 

causing less damage to the host), suggesting that evolution of a permanent soldier 

caste operated via selection on these young reproductive stages.  

Role and origin of immature rediae in trematode colonies 

Consistent with previous research (Hechinger et al., 2011; Miura, 2012), for 

the species with soldiers, immature rediae were relatively rare. Immature rediae 

represent developing reproductives, which provide 2 functions for trematode 

colonies: colony growth and replacement of dying reproductives.  

 New reproductives are added to trematode colonies as colonies increase in 

size with host growth and age (e.g., Lim and Lie, 1969; Smith, 1984; Hechinger et 

al., 2011). Colonies that are growing quickly should have a higher proportion of 

developing reproductives. Supporting this, younger colonies (6-wk-old) in B. 

glabrata appeared to have a higher proportion of immature rediae than did the 12-

wk-old ones (Fig. S5). Because we examined developed colonies from the 

California horn snail, colony expansion would be slow, limited to concordant growth 

with the infected snail.  

 Despite us studying developed colonies, there were differences among 

species in the proportion of immatures. The difference in proportion of immature 

rediae of E. liei to the other 4 trematode species may simply represent the faster 

development of E. liei colonies permitted by their rapidly growing snail host. 

Because HIMA shares the same host snail as do the 3 other species with soldiers 

from C. californica, horn snails infected with HIMA must have a faster growth rate 

and/or a greater rate of turnover of reproductive rediae. 
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 Hechinger et al. (2011) did not observe dead or dying rediae in Himasthla sp. 

B. However, in dissections, we have now observed some reproductives with 

disintegrating teguments that were filled with active, developed cercariae (A. E. 

Garcia-Vedrenne, pers. obs.). Because these rediae are apparently dying while 

filled with living offspring, they could have gone unrecognized in Hechinger et al. 

(2011). The existence of these dying reproductives suggests that some immature 

rediae are produced to replace dead reproductive rediae, in addition to increasing 

the total number of reproductives as the host and the colony grows.  

 It remains an open question the extent to which any interspecific differences 

in the amount of immatures are caused by variation in turnover of reproductives or 

faster colony (and host) growth rates. It is also unknown whether immature 

reproductives originate from a few soldiers that switch roles and transition to 

become reproductive rediae, or from newly formed daughter rediae that never 

specialize in defense and that grow directly to reproductive rediae. 

Importance of ecology in evolution of sociality 

The intra- and inter- specific variation in colonial structure highlights the 

dynamic nature of social organization among trematodes, even within the single 

superfamily Echinostomoidea. Hechinger et al. (2011) predicted that trematode 

soldier castes would most likely evolve in taxa that are typically dominant in 

interspecific hierarchies, in situations of invasion risk, and among trematodes that 

infect longer-lived hosts. Although there are still few studies examining the 

existence of a trematode soldier caste, and all have involved echinostomoid 

trematodes (Table II), the available information is consistent with those predictions. 
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First, echinostomoids tend to be high in trematode dominance hierarchies (Lim and 

Heyneman, 1972; Kuris, 1990), so soldiers would be relatively common in this 

group. Second, species that use hosts infected by relatively more trematode 

species (see Table II) might have stronger caste formation. This would be expected 

because higher trematode diversity generally corresponds to higher overall 

prevalence (Poulin and Mouritsen, 2003), implying higher invasion probabilities. 

Hence, the apparently higher aggressiveness of ACAN soldiers compared to the 

congener infecting Batillaria attramentaria (Fig. 5) is consistent with the prediction 

that invasion probabilities can drive the evolution of a soldier caste. Similarly, 

Nielsen et al. (2014) suggest that Himasthla sp. B has stronger caste formation than 

H. elongata. However, we note several methodological differences between the 

studies characterizing Himasthla sp. B and H. elongata (e.g Nielsen et al. (2014) 

pooled colonies, which would obscure caste body-size differences due to 

considerable inter-colony variation in caste sizes; other differences included size of 

arenas in behavioral trials, type of target species of heterospecific enemies, and the 

method of counting attacks in the trials). Hence, we cannot draw conclusions about 

the strength of caste formation in those two Himasthla species at this point. Finally, 

the 2 echinostomoid species known to lack soldiers both infect relatively short-lived 

freshwater snails, whereas those with soldiers infect longer-lived marine snails 

(Table II). Although life span and habitat variables are presently confounded, the 

lack of soldiers in the two Echinostoma species is consistent with Hechinger et al.’s 

(2011) prediction that shorter lifespans may result in less selection for soldiers given 

a lower lifetime risk of invasion. Testing these hypotheses in a comparative 
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framework will require broader sampling throughout the trematode phylogeny in a 

way that encompasses substantial life-history and ecological variation.  

 

 

Table II. Species of trematodes that have been explicitly examined for the occurrence of a 
division of labor involving a reproductive and a soldier caste of rediae. 

Family 

 

Species Snail host 

Snail 
life 

span* 

Trematodes 

in guild † 

Soldier 
caste 

E
c
h

in
o
s
to

m
a
ti
d

a
e
 

 
Himasthla sp. B 

Cerithidea 
californica 

8-10 19 Yes ‡ 

 Himasthla 
rhigedana 

Cerithidea 
californica 

8-10 19 Yes § 

 Himasthla 
elongata 

Littorina 
littorea 

6-10 6 Yes II 

 Acanthoparyphium 
spinulosum 

Cerithidea 
californica 

8-10 19 Yes § 

 Acanthoparyphium 
sp. I 

Batillaria 
attramentaria 

6-10 9 Yes # 

 
Echinostoma liei 

Biomphalaria 
glabrata 

1-1.5 8/13†† No § 

 Echinostoma 
nasincovae 

Planorbarius 
corneus 

3 15 No ¶ 

P
h

ilo
p
h

th
a

lm
id

a
e
 

 Philophthalmid sp. 
I 

Batillaria 
attramentaria 

6-10 9 Yes # 

 Philophthalmid sp. 
II 

Batillaria 
attramentaria 

6-10 9 Yes # 

 Philophthalmus 
sp. 

Zeacumantus 
subcarinatus 

5-6 9 Yes ** 

 Cloacitrema 
michiganensis 

C. californica 8-10 19 Yes § 

 Parorchis 
acanthus 

C. californica 8-10 19 Yes § 

* Race, 1981; Eveland and Haseeb, 2011; Moore, 1937; Yamada, 1982; Berrie, 1963; 
Fredensborg et al., 2005 
† Sousa, 1993; Esteban, 2011; Blakeslee, 2008; Hechinger, 2007; Brown, 2011; 
Leung, et al., 2009  
‡ Hechinger et al., 2011. 
 § Present study, 
II Nielsen et al., 2014.  
# Miura, 2012.  
¶ Zikmundová, 2011.  
** Leung and Poulin, 2011. 
†† In nature / Experimentally. 

 



 

 39 

Acknowledgements 

I would like to thank my coauthors Anastasia C.E. Quintana, Andrea 

DeRogatis, Kayla Martyn, Armand M. Kuris, and Ryan F. Hechinger. We thank Alan 

Wood and Isolde Callihan for assistance, the University of California Carpinteria 

Salt Marsh Natural Reserve for access to field sites, and Kathy Foltz for access to 

microscope and camera, and for providing valuable comments. Our research was 

supported by NSF/NIH Ecology of Infectious Diseases program (OCE-1115965) 

and by a UC-MEXUS-CONACYT fellowship to A.E.G. 

 

References 

1. Aoki, S. 1977. Colophina clematis (Homoptera, Pemphigidae), an aphid species 
with ‘soldiers’. Kontyu 45: 276−282.  

2. Bernot, R. J., and G. A. Lamberti. 2008. Indirect effects of a parasite on a 
benthic community: An experiment with trematodes, snails and periphyton. 
Freshwater Biology 53: 322–329.  

3. Berrie, A. D. 1963. Life cycle of Planorbarius corneus (L.). Nature, London 198: 
805-806 

4. Blakeslee, A. M., and J. E. Byers, J. E. 2008. Using parasites to inform 
ecological history: comparisons among three congeneric marine snails. Ecology 
89: 1068-1078. 

5. Brown, R., M. Soldánová, J. Barrett, and A. Kostadinova. 2011. Small-scale to 
large-scale and back: Larval trematodes in Lymnaea stagnalis and Planorbarius 
corneus in Central Europe. Parasitology Research 108: 137-150. 

6. Crespi, B. J. 1992. Eusociality in Australian gall thrips. Nature 359: 724–726.  

7. Duffy, J. E. 1996. Eusociality in a coral-reef shrimp. Nature 381: 512−514 

8. Esteban, J. G., C. Muñoz-Antoli, M. Trelis, and R. Toledo. 2011. Effects of 
nonschistosome larval trematodes on Biomphalaria snails. In Biomphalaria 
snails and larval trematodes. Springer, New York, New York, p. 127-157. 



 

 40 

9. Eveland, L. K., and M. A. Haseeb. 2011. Laboratory rearing of Biomphalaria 
glabrata snails and maintenance of larval schistosomes in vivo and in vitro. In 
Biomphalaria snails and larval trematodes. Springer, New York, New York, p. 
33-55. 

10. Fredensborg, B. L., K. N. Mouritsen, and R. Poulin. 2005. Impact of trematodes 
on host survival and population density in the intertidal gastropod Zeacumantus 
subcarinatus. Marine Ecology Progress Series 290: 109-117. 

11. Hechinger, R. F. 2007. Annotated key to the trematode species infecting 
Batillaria attramentaria (Prosobranchia: Batillariidae) as first intermediate host. 
Parasitology International 56: 287-296. 

12. Hechinger, R. F. 2010. Mortality affects adaptive allocation to growth and 
reproduction: Field evidence from a guild of body snatchers. BMC Evolutionary 
Biology 10: 136. 

13. Hechinger, R. F., K. D. Lafferty, F. T. Mancini, R. R. Warner, and A. M. Kuris. 
2009. How large is the hand in the puppet? Ecological and evolutionary factors 
affecting body mass of 15 trematode parasitic castrators in their snail host. 
Evolutionary Ecology 23: 651–667.  

14. Hechinger, R. F., A. C. Wood, and A. M. Kuris. 2011. Social organization in a 
flatworm: Trematode parasites form soldier and reproductive castes. 
Proceedings of the Royal Society B, 278: 656–665. 

15. Heyneman, D., H. K. Lim, and U. Jeyarasasingam. 1972. Antagonism of 
Echinostoma liei (Trematoda: Echinostomatidae) against the trematodes 
Paryphostomum segregatum and Schistosoma mansoni. Parasitology 65: 223-
233. 

16. Huspeni, T.C. 2000. A molecular genetic analysis of host specificity, continental 
geography, and recruitment dynamics of a larval trematode in a salt marsh snail. 
Ph.D. Thesis. University of California, Santa Barbara, California, 145 p. 

17. Jarvis, J. U. M., N. Series, and N. May. 1981. Eusociality in a mammal: 
Cooperative breeding in naked mole-rat colonies. Science 212: 571–573.  

18. Kamiya, T., K. O’Dwyer, J. Nuy, & R. Poulin. 2013. What determines the growth 
of individual castes in social trematodes? Evolutionary Ecology 27: 1235-1247. 

19. Kent, D. S., and J. A. Simpson. 1992. Eusociality in the Beetle Austroplatypus 
incompertus (Coleoptera: Curculiomdae). Naturwissenschaften 79: 86–87. 

20. Kuris, A. 1990. Guild structure of larval trematodes in molluscan hosts: 
Prevalence, dominance and significance of competition. In Parasite 
communities: Patterns and processes. Chapman and Hall, London, U.K., p. 69-
100. 



 

 41 

21. Kuris, A. M. 1980. Effect of exposure to Echinostoma liei miracidia on growth 
and survival of young Biomphalaria glabrata snails. International Journal for 
Parasitology 10: 303-308. 

22. Kuris, A. M., and K. D. Lafferty. 1994. Community structure: Larval trematodes in 
snail hosts. Annual Review of Ecology and Systematics 25: 189–217.  

23. Lafferty, K. D., and A. M. Kuris. 2009. Parasitic castration: The evolution and 
ecology of body snatchers. Trends in Parasitology 25: 564–572.  

24. Lafferty, K. D., D. T. Sammond, and A. M. Kuris. 1994. Analysis of larval 
trematode communities. Ecology 75: 2275-2285. 

25. Leung, T. L., K. M. Donald, D. B. Keeney, A. V. Koehler, R. C. Peoples, and R. 
Poulin. 2009. Trematode parasites of Otago Harbour (New Zealand) soft‐
sediment intertidal ecosystems: Life cycles, ecological roles and DNA barcodes. 
New Zealand Journal of Marine and Freshwater Research 43: 857-865. 

26. Leung, T. L. F., and R. Poulin. 2011. Small worms, big appetites: ratios of 
different functional morphs in relation to interspecific competition in trematode 
parasites. International Journal for Parasitology 41: 1063–1068.  

27. Lie, K. J. 1973. Larval trematode antagonism: principles and possible application 
as a control method. Experimental Parasitology 33: 343-349. 

28. Lim, H. K., and D. Heyneman. 1972. Intramolluscan inter-trematode antagonism: 
A review of factors influencing the host-parasite system and its possible role in 
biological control. Advances in Parasitology 10:191-268. 

29. Lim, H. K., and K. J. Lie. 1969. The redial population of Paryphostomum 
segregatum (Trematoda: Echinostomatidae) in the snail Biomphalaria glabrata. 
Zeitschrift für Parasitenkunde 32: 112-119. 

30. Lloyd, M. M., and R. Poulin. 2012. Fitness benefits of a division of labour in 
parasitic trematode colonies with and without competition. International Journal 
for Parasitology 42: 939–946 

31. Lloyd, M. M., and R. Poulin. 2013. Reproduction and caste ratios under stress in 
trematode colonies with a division of labour. Parasitology 140: 825-832.  

32. Lloyd, M. M., and R. Poulin. 2014. Geographic variation in caste ratio of 
trematode colonies with a division of labour reflect local adaptation. Parasitology 
Research, 113: 2593-2602. 

33. Martin, W. E. 1955. Seasonal infections of the snail, Cerithidea californica 
Haldeman, with larval trematodes. In Essays in natural science in honor of 
Captain Alan Hancock on the occasion of his birthday.  University of Southern 
California Press, Los Angeles, California, p. 203-210. 



 

 42 

34. Martin, W.E. 1972. An annotated key to the cercariae that develop in the snail 
Cerithidea californica. Bulletin of the Southern California Academy of Sciences, 
71: 39–43. 

35. Miura, O. 2012. Social organization and caste formation in three additional 
parasitic flatworm species. Marine Ecology Progress Series 465: 119–127. 

36. Moore, H. B. 1937. The biology of Littorina littorea. Part I. Growth of the shell 
and tissues, spawning, length of life and mortality. Journal of the Marine 
Biological Association of the United Kingdom (New Series) 21: 721-742. 

37. Myles, T.G. 1999. Review of secondary reproduction in termites (Insecta: 
Isoptera) with comments on its role in termite ecology and social evolution. 
Sociobiology 33: 793-801. 

38. Nielsen, S. S., J. Johansen, and K. N. Mouritsen. 2014. Caste formation in larval 
Himasthla elongata (Trematoda) infecting common periwinkles Littorina littorea. 
Journal of the Marine Biological Association of the United Kingdom 94: 917–923.  

39. Nguyen, A. T. 2012. Genetic diversity and its relationship to host-specificity of a 
trematode parasite (Acanthoparyphium spinulosum). Ph.D. Thesis. University of 
California, Santa Barbara, California, 87 p.  

40. Nguyen, A. T., C. Kuwata, and A. M. Kuris. 2015. A synthetic workflow for 
coordinated direct observation and genetic tagging applied to a complex host-
parasite interaction. Parasitology Research 114: 2015-2021. 

41. Olson, P. D., T. H. Cribb, V. V. Tkach, R. A. Bray, and D. T. J. Littlewood. 2003. 
Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). 
International Journal for Parasitology 33: 733–755.  

42. Poulin, R., and K. N. Mouritsen. 2003. Large-scale determinants of trematode 
infections in intertidal gastropods. Marine Ecology Progress Series 254: 187-
198. 

43. Race, M. S. 1981. Field ecology and natural history of Cerithidea californica 
(Gastropoda: Prosobranchia) in San Francisco Bay. Veliger 24: 18-27. 

44. Sapp, K. K., K. A. Meyer, E. S. Loker, 1998. Intramolluscan development of the 
digenean Echinostoma paraensei: rapid production of a unique mother redia that 
adversely affects development of conspecific parasites. Invertebrate Biology 
117: 20-28 

45. Smith, G. 1984. The relationship between the size of Lymnaea truncatula 
naturally infected with Fasciola hepatica and the intensity and maturity of the 
redial infection. Journal of Helminthology 58: 123-127. 

46. Sorensen, R. E., and D. J. Minchella. 2001. Snail-trematode life history 
interactions: Past trends and future directions. Parasitology, 123: S3–S18. 



 

 43 

47. Sousa, W. P. 1983. Host life history and the effect of parasitic castration on 
growth: A field study of Cerithidea californica and its trematode parasites. 
Journal of Experimental Marine Biology and Ecology 73: 273-296. 

48. Sousa, W. P. 1993. Interspecific antagonism and species coexistence in a 
diverse guild of larval trematode parasites. Ecological Monographs 63: 103–128. 

49. West, A.F. 1961. Studies on the biology of Philophthalmus gralli Mathis and 
Leger, 1910 (Trematoda: Digenea). American Midland Naturalist 66: 363–383 

50. Wilson E. O. 1971. The insect societies. Harvard University Press, Cambridge, 
Massachusetts, 548 p. 

51. Yamada, S. B. 1982. Growth and longevity of the mud snail Batillaria 
attramentaria. Marine Biology 67: 187-192. 

52. Yoshino. T. P. 1975. A seasonal and histologic study of larval digenea infecting  
Cerithidea californica (Gastropoda: Prosobranchia) from Goleta Slough, Santa 
Barbara County, California. Veliger 18: 156-161. 

53. Zikmundová, J. 2011. Is there a soldier cast in freshwater echinostome 
trematodes? B.S. Thesis. Faculty of Science, University of South Bohemia in 
České Budějovice, Czech Republic, 36 p. 

 
 
 
 

  



 

 44 

 

 

 

 

 

Chapter 3 

 

Trematodes with a reproductive division of labor:   

Heterophyids also have a soldier caste and early infections reveal 

how colonies become structured 

 
 
 
 

Reprinted with permission 

Garcia-Vedrenne, A. E., Quintana, A. C., DeRogatis, A. M., Dover, C. M., Lopez, M., Kuris, A. 
M., & Hechinger, R. F. (2017). Trematodes with a reproductive division of labour: heterophyids 

also have a soldier caste and early infections reveal how colonies become 
structured. International Journal for Parasitology, 47(1), 41-50. 

 

  



 

 45 

 
 
Trematodes with a reproductive division of labor:  Heterophyids 

also have a soldier caste and early infections reveal how colonies 

become structured 

Abstract 

Recent findings have extended the documentation of complex sociality to the 

Platyhelminthes, describing the existence of a reproductive division of labor 

involving a soldier caste among the parthenitae of trematode parasites. However, all 

species examined so far occupy high positions in trematode interspecific dominance 

hierarchies, and belong to two closely related families, the Echinostomatidae and 

the Philophthalmidae (Superfamily Echinostomatoidea). Further, the two species 

documented as lacking soldiers also belong to the Echinostomatidae. Here, we 

examine four species of intermediate dominance, all belonging to the family 

Heterophyidae (Superfamily Opisthorchioidea): Euhaplorchis californiensis, 

Phocitremoides ovale, Pygidiopsoides spindalis and Stictodora hancocki, all of 

which infect the California horn snail, Cerithideopsis californica (=Cerithidea 

californica). We quantify morphology, distribution, and behavior of rediae from fully 

developed colonies. We also provide information on colony structure for three 

developing heterophyid colonies to better understand colony development. We 

discuss the implications of our findings, particularly with respect to how they 

suggest alternatives to the conclusions of other researchers concerning the nature 

of trematode sociality. Our analyses of morphological, distributional, and behavioral 
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patterns of developed colonies indicate that these heterophyid trematodes have a 

non-reproductive caste whose function is defense of the colony from invading 

trematodes. Hence, a soldier caste occurs for species lower in dominance 

hierarchies than previously known and is present in at least two superfamilies of 

digenean trematodes, suggesting that selection for a soldier caste may be much 

more common among the Trematoda than previously recognized.  

 

Keywords 

Sociality, colony, soldier caste, defense, rediae, Digenea, Trematoda 

 

Introduction 

A complex social system has recently been documented in digenean 

trematodes (Hechinger et al., 2011; Leung and Poulin, 2011; Miura, 2012; Nielsen 

et al., 2014, Garcia-Vedrenne et al., 2016). As in the most complex animal societies 

[e.g. several types of insects (e.g., Wilson, 1971; Aoki, 1977; Crespi, 1992; Kent 

and Simpson, 1992; review in Myles, 1999), snapping shrimp (Duffy, 1996), and 

naked mole-rats, (Jarvis et al., 1981)], the parthenita stages of some trematode 

species live in colonies with morphologically and behaviorally distinct reproductive 

and non-reproductive castes (Hechinger et al., 2011; Leung and Poulin, 2011; 

Miura, 2012; Nielsen et al., 2014, Garcia-Vedrenne et al., 2016). Although the non-

reproducing caste might have some other roles (e.g. Lloyd and Poulin, 2012; 

Galaktionov et al., 2015), it is clear that a major role is defense of colonies 
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(Hechinger et al., 2011; Miura, 2012; Mouritsen and Halvorsen, 2015; Garcia-

Vedrenne et al., 2016).  

 Digenean trematode colonies are formed in the first intermediate host, 

usually a mollusk. The colony is initiated by a single founder larva (miracidium) that 

infects the host, metamorphoses, and clonally produces large numbers of daughter 

parthenitae. Some trematode species have rediae: parthenitae that possess a 

muscular pharynx and a gut. Other species have sporocysts, which lack a pharynx 

and gut. Both kinds of parthenitae produce more parthenitae and then dispersive 

offspring (cercariae), which leave the colony to infect the next host in the life cycle. 

Once established, the colony blocks host reproduction and takes control of the 

host’s energy allocation to serve the needs of the colony, primarily diverting energy 

to parasite reproduction (Rothschild & Clay, 1952; Kuris, 1974; Baudoin, 1975; 

Hechinger et al., 2009; Lafferty and Kuris, 2009). The colony commonly occupies 

the gonad and/or digestive gland of the host, taking up a large portion of the host’s 

soft tissue (10-50%) (e.g., Hurst, 1927; Bernot and Lamberti, 2008; Hechinger et al., 

2009). Given their extensive use and control of host resources, such conditions 

would lead to intense competition should another trematode invade the same 

molluscan host. 

Typically, when two trematode species infect the same host, one kills the 

other. These antagonistic interactions are hierarchical. Dominant species fend off 

invasions or displace established colonies of subordinate species. This 

displacement may be via chemical mechanisms (known for some species with 

sporocysts (Basch et al., 1969; Walker, 1979)), but it most commonly occurs via 
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predation by rediae (Lim and Heyneman, 1972; Lie, 1973; Combes, 1982; Kuris, 

1990; Sousa, 1993). Until recently, this antagonism had been considered to occur 

via the actions of “totipotent” rediae, those that both reproduce and defend the 

colony (Lim and Heyneman, 1972; Lie, 1973; Kuris, 1990; Sousa, 1993; but see Lie, 

1969). 

However, recent studies have shown that several trematode species have a 

division of labor involving a caste of non-reproducing soldiers that are specialized 

for defense (Hechinger et al., 2011; Leung and Poulin, 2011; Miura, 2012; Nielsen 

et al., 2014; Garcia-Vedrenne et al., 2016). Despite being smaller than 

reproductives, soldiers have relatively large pharynxes to attack and kill invaders. 

Only soldiers readily attack heterospecific and even conspecific enemies. The small 

size of these soldiers likely facilitates dispersion throughout the host body, 

supported by the fact that soldiers are more active and disproportionately common 

in areas of the host where invasions occur. Small rediae have been long observed 

in trematode infections (e.g. Stunkard, 1930; Kuntz and Chandler, 1956). However, 

small rediae are classically considered solely as being immature reproductives that 

are generated early in colony development, to periodically replace dying 

reproductives, and to permit colony growth as the host body increases in size. The 

discovery that these small rediae are not solely immatures, and sometimes 

represent a soldier caste, has expanded our perspective on the nature of trematode 

infections in first intermediate hosts and opened up new research avenues 

examining the ecology and evolution of complex sociality. 
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Hechinger et al. (2011) predicted that soldier castes would most likely evolve 

in trematode taxa that are typically dominant in interspecific hierarchies. To 

adequately test this and other hypotheses concerning the evolution of sociality 

among trematode species, it is necessary to quantify social structure for trematode 

species encompassing a range of dominance positions and that are spread 

throughout the trematode phylogenetic tree. Despite there being over 150 families 

of Trematoda (Cribb and Bray, 2011), all trematodes so far examined for social 

structure belong to two closely related digenean families: Echinostomatidae and 

Philophthalmidae (Superfamily Echinostomatoidea) (Hechinger et al., 2011; Leung 

and Poulin, 2011; Miura, 2012; Nielsen et al., 2014; Garcia-Vedrenne et al., 2016). 

Echinostomoids tend to occupy high positions in trematode dominance hierarchies 

(Lim & Heyneman, 1972; Lie, 1973; Kuris, 1990). This restricted taxonomic 

sampling also includes the two species explicitly shown to lack soldiers (Garcia-

Vedrenne et al. 2016). Colony social structure has not been examined for species in 

any of the other trematode superfamilies.  

Here, we examine four trematode species that belong to the Family 

Heterophyidae of the Superfamily Opisthorchioidea (Euhaplorchis californiensis, 

Phocitremoides ovale, Pygidiopsoides spindalis and Stictodora hancocki). These 

species form colonies in the California horn snail, Cerithideopsis californica (= 

Cerithidea californica). The California horn snail is host for a diverse trematode guild 

that is characterized by a fairly well-resolved interspecific dominance hierarchy 

(Kuris, 1990; Sousa, 1993; Hechinger, 2010). Five of the most dominant species in 

this hierarchy (all in the Superfamily Echinostomatoidea) have been documented to 
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have soldiers. The heterophyids we study here have an intermediate position in the 

dominance hierarchy (they are subordinate to the echinostomatids and 

philophthalmids, but can eliminate or prevent infections of other, more subordinate, 

species in the guild (Kuris, 1990)). We also compare colony structure of a few 

recent, developing heterophyid colonies to fully developed colonies to shed light on 

the nature of colony development. We discuss the implications of our results, 

including alternative interpretations concerning the nature of trematode sociality. 

Our analysis of morphology, distribution, behavior, and colony development of these 

four heterophyid species indicates that they also have a soldier caste, and that 

trematode caste structure takes time to develop, becoming more pronounced with 

colony age. 

 

Materials and methods 

Study system and sample collection 

California horn snails, Cerithideopsis californica (=Cerithidea californica), 

(Potamididae) were collected from Carpinteria Salt Marsh, Santa Barbara County, 

California between July 2013 and May 2016. Snails were maintained in the lab for 

up to 7 weeks in mesh bags on running sea water tables until processing. Some 

infections were identified by inducing cercaria emergence, and then dissected. In 

other cases, the snails were dissected and, if infected with the appropriate species, 

immediately processed. We identified trematode species following Martin (1972) 

and additional unpublished observations.  
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We examined the four species that belong to the family Heterophyidae:  

Euhaplorchis californiensis (EUHA), Phocitremoides ovale (PHOC), Pygidiopsoides 

spindalis (PYGI), and Stictodora hancocki (STIC). For simplicity and clarity, we will 

refer to each species by the codes formed by the first 4 letters of their genus, as 

above.  

Redia morphology and distribution 

Snails were collected between July 2013 and October 2015. We targeted 3-5 

colonies (snails) for each of the study species. All the trematode colonies examined 

were producing cercariae. We followed the methods described in Garcia-Vedrenne 

et al. (2016). Briefly, we dissected snails by carefully cracking the shell with a 

hammer and divided the body into 3 different regions: mantle, basal visceral mass 

(middle), and the gonad/digestive gland. To ensure unbiased sampling of 

individuals to depict size-frequency distributions, we used a grid and random 

numbers to randomly sample approximately 30 parthenitae from each snail region. 

Sampled parthenitae were killed by immersion in hot water, fixed in 70% EtOH and 

mounted in glycerin. Digital pictures were taken with a Lumenera Infinity 3 camera 

mounted on an Olympus BX60 compound microscope. We measured body length 

and width to the nearest micron; we also measured pharynx width and length. We 

calculated total body and pharynx volumes by approximation to a cylinder. 

We assigned each individual to a morph category based on the presence or 

absence of developing offspring, regardless of size. Parthenitae that lacked free 

germ-balls or later-stage embryos were classified as soldiers, while individuals that 

contained at least some late-stage embryos of cercariae or parthenitae were 
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identified as mature reproductives. In some cases, we found individuals that had 

early stage embryos; these were scored as immature reproductives. For statistical 

analyses, we have included these immature morphs in the reproductive category, 

unless otherwise stated. 

Colony development 

In November 2015, California horn snails were collected from Carpinteria 

Salt Marsh and checked for infection status. Uninfected snails were sprayed with 

paint and returned to the salt marsh in December 2015. In May 2016, the marked 

snails were collected and dissected. Three snails harboring newly established 

heterophyid colonies were found (such infections are readily identifiable because 

the mother sporocyst is still present in the basal visceral mass region, and the 

rediae have not yet filled up the gonadal space and are generally creating more 

rediae compared to cercariae (pers. observations)). Identification to species was not 

possible due the absence of developed cercariae. Although exact age of the 

infection cannot be determined, they are likely less than 5 months old. We have 

organized the relative ages of the colonies from youngest (1) to oldest (3) as 

determined by the size, number, and distribution of parthenitae, as well as the stage 

of development of the cercariae within them. Individual rediae were randomly 

sampled from the whole snail (we did not divide these into the three different 

regions). Morphology and classification was determined as described in the 

previous section.  
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Attack trials  

 We performed attack trials to compare behavioral specialization of soldier 

and reproductive castes. Experiments took place between June and November 

2015, and during May 2016.  

Snails harboring heterophyid colonies were dissected and bisected just 

anterior to the gonad. Reproductives were isolated from the gonad by teasing apart 

the tissues and pipetting out the individuals into a separate petri dish with filtered 

sea water. To isolate soldiers, we first teased the tissues from the anterior part of 

the snail (mantle and basal visceral mass), and filtered the parasites and tissues 

using a 75 µm filter. This concentrated the soldiers and helped remove most of the 

snail tissue and free-swimming cercariae. Soldiers were further isolated and 

concentrated by pipetting them out into a smaller petri dish before setting up the 

attack trials. 

 For the attack trials, 96-well plates with concave bottoms were used to 

increase encounter rates. Parthenitae from one to three colonies (as available) of 

each tested species were presented with reproductive rediae from heterospecific 

colonies. Colonies of PHOC, PYGI and STIC were exposed to EUHA reproductives, 

following Hechinger et al. (2011) and Garcia-Vedrenne et al, (2016), because EUHA 

is one of the most common trematodes at the collection locality. To evaluate the 

attack rates of EUHA, reproductive individuals of the heterospecific STIC were 

used. For each replicate, we placed approximately 10 heterospecific rediae into a 

single well with sea water, followed by approximately 10 soldiers or 10 

reproductives of the focal species. For each combination, we used 2 to 4 replicate 
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wells. The wells were held for 90 min at ambient room temperature (21-23 C). We 

then observed each individual well with a stereomicroscope for 20 sec. An attack 

was recorded whenever a redia was attached to another with its mouth, following 

Hechinger et al. (2011). 

Statistical analysis 

All statistical analyses were performed using R 3.1.3 (ran with RStudio 

0.98.1103), or JMP Pro 12.0.0. For morphological analyses, we used a mixed-

effects general linear model (GLM) on natural log-transformed response data and 

set colony ID as a random effect to model the relationship between soldier and 

reproductive total volume, pharynx volume, and pharynx/volume ratios. Interaction 

terms between colony and morph type were included in the model as needed. We 

examined residual plots and normal quantile plots to ensure meeting assumptions 

regarding data normality and homoscedasticity. Cochran-Mantel-Haenszel Chi-

square tests were used to examine the relationship between rediae type and snail 

region, while controlling for colony ID. For the attack rates, we used a binomial 

regression with a logit link function and tested for the effects of redia type. Colony 

ID was set as random effect. 

 

Results 

Morphology 

We processed a total of 2,067 parthenitae from the 4 species. We examined 

four colonies of EUHA, three of PHOC, three of PYGI, and five of STIC. General 
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patterns were consistent among colonies, and our statistical analyses include data 

from all colonies. However, for illustrative purposes, we provide figures in the text 

for one representative colony of each species. Additional figures and detailed data 

are in the Supplementary material (Supplementary Figs. S1-S4, Supplementary 

Table S1). 

There was strong dimorphism among colony members for each of the four 

species. Soldiers were clear and transparent, while the tegument of reproductives 

had a light yellowish-orange pigmentation. Reproductives were consistently longer 

and wider (Figure 1B), with no overlap in body volume (Figure 1C). The size-

frequency distributions were clearly bimodal (Figure 1C) and reproductives had, on 

average, a volume 28 times larger than soldiers for EUHA (t504=80.0, p<0.0001), 

69x for PHOC (t618=141.0, p<0.0001), 32x for PYGI (t483=98.7, p<0.0001), and 19x 

for STIC (t445=16.6, p<0.0001 (pooling all rediae per species; Supplementary Table 

S1 shows results for individual colonies).  

For three species, absolute pharynx sizes of reproductive morphs were not 

significantly different from those of soldiers, being 0.98 times that of a soldier for 

EUHA (t449=-0.14, p=0.8893), 0.94x for PHOC (t554=-0.72, p=0.4702), and 0.92x for 

STIC (t367=-1.15, p=0.249) (Figure 1C). However, for PYGI the size of the pharynx 

of the large reproductive was actually smaller than that of the soldiers (0.87x, t401=-

2.74, p=0.0065) (Figure 1D). 
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Figure 1. Morphological attributes of redia morphs for each of the 4 species of examined 
heterophyid trematodes. Data for figures are of a single, representative colony, but 
statistical analyses used data from all colonies and Supplemental Material includes figures 
for each colony examined. (A) Photographs of representative redia morphs: soldiers on the 
left, reproductives on the right. Scale bar= 200µm. (B) Body width to body length 
relationships. (C) Frequency distributions of body volume for randomly sampled rediae. 
Note the log10 scale of X-axes. (D-E) Boxplots indicating median (line), interquartile range 
(box) and values that are within 1.5 * interquantile range (whiskers) of data for (D) absolute 
pharynx volume and (E) pharynx volume relative to body volume. Note the log10 scale for Y-
axes.  
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Both reproductive and soldier parthenitae in these four Heterophyidae lacked 

collars and locomotory appendages (lappets), consistent with the long-known 

general morphology of this group.  

Caste ratios and distribution 

For the 4 species examined, most parthenitae were located in the gonadal 

region, but some were also found in the basal visceral mass and the mantle. The 

relative numbers of soldiers and reproductive parthenitae (caste ratios) varied 

between regions for each species (Table 1, Figure 2, Supplementary Figs. S1-S4; 

EUHA: χ2
1,508=20.5, p<0.0001; PHOC: χ2

1,622=32.5, p<0.0001; PYGI: χ2
1,487=26.9, 

p<0.0001; and STIC: χ2
1,450 =26.2, p<0.0001). However, in all cases, soldiers were 

relatively more common in the anterior portion of the snail (basal visceral mass and 

mantle) compared to the gonad region.  

 

Table 1. Percentage of parthenitae that are soldiers, by host body region. Actual counts 
can be found in Table S1 and Figures S1-S4. 
 

 Average (and range) percentage of soldiers among colonies 

 EUHA PHOC PYGI STIC 

Mantle 79 (50 - 100) 92 (89 - 94) 72 (57 - 88) 98 (89 - 100) 

Basal Visceral Mass 47 (6 - 69) 80 (71 - 95) 55 (25 - 71) 79 (42 - 97) 

Gonad 8 (3 - 17) 14 (8 - 24) 9 (4 - 16) 9 (0 - 17) 

 

 

Immature individuals were uncommon in mature colonies of all species 

(Figures 2, Supplementary Fig. S1-S4, and Supplementary Table S1). Of the total 

parthenitae examined from the 4 species infecting the California horn snail, 23 out 

of 2,067 were immature. Among colonies within species, the average (and range) 
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proportion of immatures among all parthenitae examined was 0.8% (0 – 1.7%) for 

EUHA, 0.2% (0 – 0.5%) for PHOC, 1% (0 – 1.6%) for PYGI, and 2.9% (0 – 7.2%) 

for STIC. The average (and range) proportion of immatures considering only 

reproductive morphs was 1.1% (0 – 2.8%) for EUHA, 0.4% (0 – 0.8%) for PHOC, 

1.6% (0 – 2.8%) for PYGI, and 4.9% (0 – 9.5%) for STIC. 

 

 

 
 
Figure 2. Proportion of different morphs found in the three snail body regions: the mantle, 
basal visceral mass and gonad (and digestive gland). Data for figures are of a single, 
representative colony, but analyses used data from all colonies and Supplemental Material 
includes figures for all colonies. Numbers in boxes indicate total number of parthenitae 
sampled from the given region. 
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Table 2. Percentage of parthenitae of each morph type in three newly established 
heterophyid colonies.  1= youngest colony; 3= oldest colony. 
 

 1 2 3 

Reproductive 6% 47% 60% 

Immature 77% 29% 21% 

Soldier 17% 24% 19% 

N sampled 83 143 226 

 

 

 

Figure 3. Morphological attributes of developing heterophyid colonies. Colony 1 is inferred 
as being the youngest, Colony 3 as the oldest. (A) Body width to body length relationships. 
(B) Frequency distributions of body volume for randomly sampled rediae. Note the log10 
scale of X-axes. (C-D) Boxplots indicating median (line), interquartile range (box) and 
values that are within 1.5 * interquantile range (whiskers) of data for (C) absolute pharynx 
volume and (D) pharynx volume relative to body volume. Note the log10 scale for Y-axes.  
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Colony development 

We processed an additional 453 parthenitae from snails with newly 

established heterophyid colonies. Among these, the proportion of immature rediae 

was significantly different (χ2
4=102.7, p<0.0001), ranging from 21% immatures in 

the oldest colony to 77% in the youngest colony (Table 2; age was determined by 

number and size of parthenitae, as well as the stage of development of cercariae 

inside of them). The degree of bimodality of the size-frequency distributions 

increased as the colony matures (Figure 3). 

 Activity and attack rates 

For all species, soldiers qualitatively appeared more active than were 

reproductive morphs. Reproductive individuals rarely moved when exposed to 

heterospecific parthenitae. In contrast, soldiers increased activity, stretching and 

contracting their bodies and probing heterospecific parthenitae with their mouths. In 

some cases, soldiers attached their mouths to heterospecific parthenitae (Fig. 4), 

sometimes pulling the heterospecific’s tegument into the pharyngeal lumen. Similar 

to what has been reported for echinostomoid soldiers (West, 1961; Lloyd and 

Poulin, 2012; Garcia- Vedrenne et al. 2016).), soldiers of each species often formed 

clusters of 2 to 7 individuals, adhering at the posterior ends of their bodies (Fig. 4B). 

This clustering behavior was rarely observed among the reproductive morphs. 
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Figure 4. Examples of trematode soldier attack and activity. Individuals attacking are 
indicated by black arrows. (A) Attacks between Stictodora hancocki (STIC) soldiers and 
Euhaplorchis californiensis (EUHA) reproductives. (B) STIC and EUHA soldiers attacking 
each other. Note also soldiers adhering to each other at their posterior ends. Scale bar= 
200µm. 

 

 

In quantitative attack experiments (Figure 5), reproductive rediae rarely 

attacked heterospecific rediae. Only 1/324 reproductive rediae engaged in 

antagonism (0.3%). No attacks by reproductive rediae were observed for EUHA 

(0/105), PHOC (0/86) or PYGI (0/32) in the experimental trials. Only 1/101 (1%) 

STIC reproductive redia was recorded attacking a EUHA reproductive. We note that 

one EUHA reproductive was seen attacking a STIC soldier from a dissected snail, 

outside of the experimental trials (Figure 4A). 

In contrast, for two of the heterophyid species, soldiers more readily engaged 

in antagonism (Figure 5). A total of 5/63 (7.9%) EUHA soldiers attacked STIC 

reproductives (χ2
1,14=10.7, p<0.0001), and 28/91 (30.8%) STIC soldiers attacked 

EUHA reproductives (χ2
1,60=485.6, p<0.0001). However, only 1/62 (1.6%) of PHOC 
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soldiers attacked EUHA reproductive (χ2
1,12=1.7, p=0.19), and no PYGI soldiers 

were seen engaging in antagonistic behavior (0/22) (χ2
1,4=0, p=1). 

We also set up attack trials versus fellow colony members. In one of the 

dissected colonies, we observed 1 STIC soldier out of 90 attach its mouth to a 

member of its own colony. 

 

 
 
Figure 5.  Attack rates of soldiers and reproductives on heterospecific reproductive rediae 
for each of the 4 heterophyid species from the California horn snail. One to three colonies 
(as available) of each focal species were used (represented by the different colors). For 
EUHA, the heterospecific species used was STIC, while PHOC, PYGI, and STIC were 
exposed to colonies of EUHA. Points indicate proportion of individuals observed attacking 
for each replicate well (2-4 replicates for each combination), boxplots indicate median (line), 
interquartile range (box) and values that are within 1.5 * interquantile range (whiskers) of 
data. 
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Discussion 

The morphological aspects of the rediae in the four examined heterophyid 

species are generally consistent with the patterns previously observed for the 

echinostomoid trematodes having a soldier caste (Hechinger et al., 2011; Leung 

and Poulin, 2011; Miura, 2012; Nielsen et al., 2014; Garcia-Vedrenne et al., 2016).  

Across all species, reproductive rediae were 18x to 32x larger than soldiers. Despite 

the fact that soldiers are much smaller than reproductive rediae, pharynx size of 

both kinds of rediae greatly overlapped in size. The heterophyid soldiers examined 

here lack the collars and locomotory extensions that have been relatively 

pronounced in soldier rediae in the Echinostomatidae and Philophthalmidae 

(Hechinger et al., 2011; Leung and Poulin, 2011; Miura, 2012; Nielsen et al., 2014; 

Garcia-Vedrenne et al., 2016), clarifying that these features are not required for 

functioning as a soldier.  

Garcia-Vedrenne et al. (2016) hypothesized that, for any given species with 

soldiers, developing infections would be dominated by rapidly growing reproductive 

rediae and characterized by unimodal size-frequency distributions. The size-

frequency distributions would become more bimodal as the colony matured. Garcia-

Vedrenne et al. (2016) present data for one developing infection and five 

established infections of the echinostomatid, Himasthla rhigedana, that are 

consistent with that hypothesis.  

Our observations on established and developing colonies of heterophyid 

trematodes further support this characterization of colony development. The size-

frequency distributions for the fully developed heterophyid colonies were strongly 
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bimodal, with very few immature rediae, if any, bridging the gap between the two 

modes. In fact, these heterophyids appear to have the lowest proportion of 

immatures of any of the species yet examined (Hechinger et al., 2011; Leung and 

Poulin, 2011; Miura, 2012; Nielsen et al., 2014; Garcia-Vedrenne et al., 2016). 

Despite this, one colony did stand out as having many immatures (see 

Supplementary Fig. S4); however, STIC 4 appears to have been a colony that was 

still becoming established, based on the small amount of mature cercariae 

observed at dissection, and the large number of reproductive rediae containing only 

early-stage cercariae.  

We also examined three heterophyid colonies that were just becoming 

established and provide evidence for colony development. Although species 

identification and exact age were unknown, we know they belong to the 

Heterophyidae and that colonies were likely less than six months old. The relative 

ages of the colonies were inferred based on size, number, and distribution of 

parthenitae, as well as the stage of development of the cercariae within them. In the 

youngest colony, the distribution was unimodal, and many immature rediae were 

present (Figure 3, Table 2). The bimodality of the size-frequency distributions was 

more pronounced in the (putatively) older colonies. The number of immature rediae 

decreased, more reproductive rediae contained late-stage cercariae, and the 

number of soldiers increased. Hence, these observations lend further support to the 

hypothesized characterization of colony development given by Garcia-Vedrenne et 

al. (2016) and highlight the need for research on experimentally initiated colonies to 

carefully quantify the details of trematode colony development.  
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Galaktionov et al. (2016) argue that digenean trematodes do not have a 

soldier caste. They posit that the overall bimodality reported for redia size-frequency 

distributions is partly determined by a constraint of redia growth, whereby young 

rediae initially undergo cellular proliferation, resulting in very little growth for a period 

of time, followed by a rapid increase in size via cellular extension. This scenario is 

not consistent with the clear documentation of unimodal size-frequency distributions 

for several trematode colonies. First, several species with soldiers and strong 

bimodal size-frequency distributions in developed colonies actually have unimodal 

size-frequency distributions in early colony development. This is the case for the 

developing heterophyid colonies reported here, and for the developing colony of 

Himasthla rhigedana described in Garcia-Vedrenne et al. (2016). In these 

developing colonies, the size-frequency distributions are dominated by immature 

reproductives with no evidence of arrested growth causing bimodality. Second, 

examination of established colonies from two species of echinostomatid trematodes 

that lack soldiers (Echinostoma liei in Garcia-Vedrenne et al. (2016), and E. 

nasincovae (= E. spiniferum) in (Zikmundová, J. 2011. Is there a soldier cast in 

freshwater echinostome trematodes? B.S. Thesis. Faculty of Science, University of 

South Bohemia in České Budějovice, Czech Republic, 36 p.)) consistently showed 

unimodal size-frequency distributions in established colonies. Garcia-Vedrenne et 

al. (2016) examined E. liei colonies of different ages. They found that, although the 

proportion of immatures decreases with infection age, the size-frequency 

distributions are always unimodal. Further, non-reproductive individuals are never 

seen, consistent with their not having a soldier caste (Garcia-Vedrenne et al., 2016). 
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Finally, we have observed similar unimodal size-frequency distributions in 

developed colonies for several species with sporocysts, and another redial species 

lacking soldiers (Garcia-Vedrenne, unpublished data for species infecting the 

California horn snail). The presence of these unimodal size-frequency distributions, 

including those in developing colonies of species with soldiers, confirms that a 

universal constraint for redia growth does not explain the bimodality characterizing 

developed colonies of trematodes with a soldier caste. 

Galaktionov et al. (2016) also argue that the bimodality of the size-frequency 

distributions is explained by young rediae experiencing a developmental arrest, 

driven by density-dependent suppression of their growth by developed rediae. This 

does not conflict with the hypothesis that small rediae are soldiers. However, 

Galaktionov et al. (2016) do not attribute a defensive function for those small, 

developmentally arrested rediae. They evaluate these rediae solely as being a 

reserve of immatures that will ultimately grow to become reproductives.   

 As Hechinger et al. (2010) point out, soldiers may have the physiological 

ability to mature, but the available data suggest the typical soldier does not 

transition to a reproductive. However, we still lack conclusive evidence for whether 

digenean trematode soldiers represent a permanent caste or a temporal caste. 

Intramolluscan development has not been well studied for heterophyids, and a 

careful investigation of colony development and of the progeny of reproductive 

rediae would shed the most light on the permanency of the soldier caste. However, 

similar to Hechinger et al.’s evaluation of the data for Himasthla sp. B, the large 

numbers of heterophyid soldiers, coupled with the rarity of immatures, strongly 
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supports the hypothesis that the transition from non-reproductive to reproductive is 

an infrequent occurrence. 

Although the permanency of members of the soldier caste remains an open 

question, the notion that they lack a defensive function is contradicted by several 

other lines of evidence, including their morphology, distribution within the host, and, 

particularly, their attack behavior in vivo and in vitro. 

The distribution of the heterophyid rediae is consistent with the patterns 

characterizing echinostomoid trematodes with soldiers (Hechinger et al., 2011; 

Leung and Poulin, 2011; Miura, 2012; Nielsen et al., 2014; Garcia-Vedrenne et al., 

2016). Reproductives were mostly located in the visceral mass, particularly in the 

gonad region (Figures 2, Supplementary Fig. S1-S4). On the other hand, soldiers 

comprised the majority of the individuals in the basal visceral mass, and particularly 

in the mantle (72-98%). Hence, soldier and reproductive rediae of the 4 species 

were unevenly distributed throughout host tissues, with soldiers being more 

common at invasion fronts. This is consistent with the hypothesis that they are a 

defensive caste. 

Also consistent with the caste hypothesis, heterophyid soldiers tended to 

attack enemies at greater rates than did reproductives. Although the reproductive 

rediae have the ability to attack with their mouthparts, they do so at much lower 

rates than their non-reproductive counterparts. Very few reproductive rediae (0-

1.6%) attacked heterospecific rediae, while the percentage of soldiers attacking was 

substantially higher: 8% of EUHA soldiers and 31% of STIC soldiers were observed 

engaging in aggressive interactions. Colonies of PHOC and PYGI were rarely 
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encountered in our sampling, and hence fewer replicates of the attack trials were 

possible. The lack of attacks by the soldiers in these species might be related to 

smaller sample size, or that they are indeed less aggressive. Although no attacks 

were observed for these two heterophyid species, the other lines of evidence 

(morphology, distribution, etc.) are congruent with them having soldiers. This, along 

with the fact that attacks were observed for EUHA and STIC, is also consistent with 

the heterophyids having a non-reproductive soldier caste.  

In addition to being more aggressive, the soldiers frequently attached to each 

other at their posterior ends, forming clusters (Figure 4b). This behavior has 

previously been reported in soldiers in the Echinostomatidae and Philophthalmidae 

(West, 1961; Lloyd and Poulin, 2012; Garcia-Vedrenne et al. 2016). Garcia-

Vedrenne et al. (2016) hypothesized this behavior could enhance attack rates in 

snail blood sinuses, providing leverage and enabling movement in all directions. 

Also consistent with previous work, soldiers and reproductives of these four 

species were not generally observed to attack fellow colony members. In the attack 

trials, no reproductive rediae attacked fellow colony members, and only one STIC 

soldier was seen attaching to a colony member. This may have been a behavioral 

artifact of the dissection. 

Hence, these distributional and behavioral results indicate that there is a 

defensive function for the small, non-reproductive rediae. Galaktionov et al. (2016) 

recognize that “small” and “large” rediae have distinct behaviors and are not 

randomly distributed throughout the host, suggesting that this is due solely to age-

related feeding preferences, conceiving this as a form of “niche segregation” 
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unlikely to be associated with the ‘colony’ defense against invaders. However, it is 

well known that these trematode colonies can incur relatively high rates of invasion 

by enemies in the field (Kuris, 1990; Sousa, 1993; Kuris et al., 1994; Lafferty et al., 

1994). Given that soldiers disproportionately attack these enemies in vitro, it is 

parsimonious to attribute defensive function in vivo. Further, we have repeatedly 

observed soldiers aggregating around and attacking invading trematodes in 

dissections of mixed-species infections (Garcia-Vedrenne, Hechinger, pers. 

observations; first noted in Hechinger et al. (2010)). Attacking and killing invading 

trematodes would increase the survivorship and reproductive output of trematode 

colonies. 

Hechinger et al. (2011) predicted that trematode soldier castes would most 

likely evolve in situations of higher invasion risk, among species that infect longer-

lived hosts, and in taxa that are typically dominant in interspecific hierarchies. The 

California horn snail is long-lived (>8 years (Race, 1981)), and it hosts a species-

rich guild of trematodes with a fairly well-resolved interspecific dominance hierarchy 

(Kuris, 1990; Sousa, 1993; Hechinger, 2010). Five of the most dominant species in 

this hierarchy (all echinostomoids) have soldiers (Hechinger et al., 2011; Garcia-

Vedrenne et al., 2016). However, the four heterophyid species examined here 

occupy a middle position in the hierarchy, being subordinate to the echinostomoids, 

but able to kill other, more subordinate species in the guild (Kuris, 1990). The 

morphological, distributional and behavioral evidence presented here indicates that 

these heterophyids also have soldiers. Hence, a soldier caste is more broadly 

distributed throughout the trematode phylogenetic tree, and among species lower in 
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dominance hierarchies than was previously known. The identification of soldiers in 

the Family Opisthorchioidea represents a doubling of the taxonomic range for which 

soldiers have been documented. This suggests an independent evolution of soldiers 

(or its loss) multiple times within the Trematoda and indicates that selection for a 

soldier caste may be much more common among digenean trematodes than 

previously recognized. 
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Degree of sociality varies across trematodes– finding measurable 

markers that underlie caste function  

Abstract  

Trematode flatworms form colonies in their first intermediate molluscan 

hosts, and these colonies can vary in degree of sociality. It is now evident that for 

some trematode species, social organization can include the formation of a non-

reproducing soldier caste. However, studies on species that lack a soldier caste are 

limited. By examining colonies from eight soldier-less species that infect the 

California horn snail, we found that, in contrast to species with soldiers, (1) colonies 

are characterized by unimodal size-frequency distributions with few small and large 

individuals. (2) Even the smallest colony members contain developing embryos or 

late-stage cercariae. (3) Individuals of all sizes have similar morphologies and lack 

structures that are specialized for antagonism. (4) Distribution of parthenitae is 

restricted to the main infection locus. The documentation of consistent, easy to 

measure aspects of colonies that reflect functional caste differences indicates that 

we may use those attributes as “markers” for the existence of a soldier caste. The 

relatively rapid identification of a soldier caste will facilitate future research on the 

evolution and strength of social organization among trematodes.  
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Introduction  

“We have defined a caste intuitively as a set of individuals, smaller than the 

society itself, that is specialized to perform one or more roles. Because this is a 

purely functional definition based on the behavior of sets of individuals, it is difficult 

to express in quantitative terms. If we can find other, more easily measurable 

characteristics that correlate well with the behavioral roles- that is, if we can use 

“markers”- then the task of empirically determining caste characteristics will be 

greatly facilitated.”  

Oster & Wilson, 1978 

Trematode flatworms form colonies in their first intermediate molluscan 

hosts, and these colonies can vary in degree of social organization (Hechinger et al. 

2011; Miura 2012; Nielsen et al. 2014; Garcia-Vedrenne et al. 2016; Garcia-

Vedrenne et al. 2017). Trematode colonies are initiated when a single founder larva 

(miracidium) infects a host, metamorphoses, and clonally produces large numbers 

of daughter parthenitae. These daughter parthenitae produce more parthenitae, and 

ultimately, most switch to produce dispersive offspring (cercariae) that will leave the 

colony to infect the next host in the life cycle. Larval trematodes are parasitic 

castrators, subsuming host resources in a physiologically sophisticated manner 

(Lafferty & Kuris, 2009; Hechinger et al, 2009). The mass of parthenitae in the snail 

cooperatively live together, often for years, to reproduce and operate the host 

phenotype (Kuris and Lafferty 2005; Hechinger et al. 2009). Full utilization of a 

limited resource that is directly related to colony reproductive output for an extended 

time presents a strong selective pressure to secure such resources and vigorously 
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defend them. It is now evident that for some trematode species, sociality can be 

developed so far as to include the formation of a morphologically and behaviorally 

distinct non-reproducing soldier caste that defends the colony form other invading 

trematodes (Hechinger et al 2011). Although documentation of a soldier caste is 

currently limited to three trematode families (Garcia-Vedrenne et al. 2017), there is 

growing evidence that such caste systems are widespread and have evolved 

multiple times (Leung and Poulin 2011; Miura 2012; Nielsen et al. 2014; Garcia-

Vedrenne et al. 2016; Garcia-Vedrenne et al. 2017). There are more than 20,000 

species of trematodes worldwide (Cribb & Bray 2011); they cover a wide range of 

environmental and life history diversity and are both ecologically and medically 

important. Thus, understanding the mechanisms that shape trematode communities 

can have substantial public health, veterinary and wildlife disease applications. A 

comparison of the well-described colonies with soldiers to colonies of species that 

lack a caste-based social structure will facilitate future research on the evolution 

and strength of sociality among trematodes.  

Trematode colonies with soldiers share several traits: (1) Such colonies are 

characterized by bimodal size-frequency distributions with many small soldiers and 

large reproductives, but few individuals of intermediate sizes (Fig 1). (2) The smaller 

colony members are not actively reproducing (although they may contain germ cells 

and germ balls). (3) Despite their size, smaller individuals have a mouthpart that is 

larger relative to their body size. (4) Small individuals are disproportionately 

common in areas of the host body where invading infections often start. (5) Finally, 

the small colony members are more active and aggressive than are the large, 
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sluggish reproductive individuals that are filled with offspring. Hence, these smaller, 

non-reproducing members are “soldiers”, having distinctive physical and behavioral 

features underlying their defensive caste function. Colony structure and individual 

morphology has now been characterized for 14 trematode species that have a 

soldier caste (Hechinger et al. 2011; Leung and Poulin 2011; Miura 2012; Nielsen et 

al., 2014; Garcia-Vedrenne et al. 2016; Garcia-Vedrenne et al., 2017).   

 

Figure 1. Morphological attributes of redia morphs of Himasthla rhigedana (HIMA) and 
Euhaplorchis californiensis (EUHA). Figures modified with permission from Garcia-
Vedrenne et al. (2016 and 2017). Data for figures are of a single, representative colony. 
Each point represents a randomly sampled redia from the trematode colony. (A) Body 
length to body width relationships. (B) Frequency distributions of body volume for randomly 
sampled rediae. Note the log10 scale of X-axes.  
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Conversely, few studies have characterized colony structure and individual 

morphology for trematode species that lack a soldier caste. The only clear depiction 

is from a species that had been maintained in a laboratory setting without enemies 

for 40 years (Garcia-Vedrenne et al. 2016). No wild populations had been explicitly 

examined. Here we characterize colony structure for eight species lacking soldiers.  

Trematode species have one of two general types of daughter parthenitae, 

which bears on the colony’s capacity to have soldiers. Redia species have 

parthenitae that possess a mouth, muscular pharynx and gut; they can use these 

structures to actively prey on snail tissue or heterospecific parasites. Thus, redia 

species may have soldiers. Sporocyst species, on the other hand, have parthenitae 

that lack a mouth and digestive system; they are generally immotile and absorb 

nutrients through their body surface. Phylogenetic analyses indicate that sporocysts 

are a derived trait that has evolved multiple times from ancestors with redia (Cribb 

et al. 2003). Once the mouth is lost, soldiering, as currently understood, is no longer 

possible. Hence, sporocyst species can be used to confirm the patterns 

characterizing colony structure for species that lack soldiers. 

Here we examine seven species that, having sporocyst parthenitae, cannot 

have soldiers. We also document patterns for a redia species that lacks a soldier 

caste. We present data on morphology, reproductive status, and distribution of the 

parthenitae. By describing such patterns for eight species belonging to five 

additional digenean families, we expand the taxonomic range for which colony 

structure has been examined in the Trematoda. Our findings indicate that trematode 

colony structure and allometric growth patterns when a soldier caste is absent are in 
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stark contrast to those of species with soldiers. Thus, we identify easily measurable 

characteristics that can be used as “markers” to determine whether a soldier caste 

is present in trematode colonies. 

Materials and methods 

We examine colony structure for trematode species that infect the California horn 

snail, Cerithideopsis californica (=Cerithidea californica) (Potamididae). The 

California horn snail has a diverse trematode guild that is characterized by an 

interspecific dominance hierarchy (Kuris, 1990; Sousa, 1993; Hechinger, 2010). 

Nine species in three families of this guild have been found to have soldiers 

(Hechinger et al. 2011; Garcia-Vedrenne et al. 2016; Garcia-Vedrenne et al. 2017). 

Here, we examine colony structure for eight additional species from five different 

families (Table 1). For simplicity and clarity, we will refer to each species with the 

abbreviations given in Table 1.  

 
Table 1. Trematode species that infect the California horn snail and are the focus of this 
paper 
 

Order Superfamily Family Parthenitae Species Abbreviation 

P
la

g
io

rc
h
iid

a
 

 

Pronocephaloidea Notocotylidae Redia 
Catatropis 
johnstoni 

CATA 

Microphalloidea 

Microphallidae 

Sporocyst 
 

Probolocoryphe 
uca 

PROB 

Sporocyst Small microphallid SMMI 

Renicolidae 

Sporocyst 
Renicola 

buchanani 
REBU 

Sporocyst 
Renicola sp. 

“polychaetophila” 
REPO 

S
tr

ig
e
id

a
 

Diplostomoidea Cyathocotylidae 

Sporocyst 
Mesostephanus 
appendiculatus 

MESO 

Sporocyst 
Small 

cyathocotylid 
SMCY 

Schistosomatoidea Schistosomatidae Sporocyst Austrobilharzia sp. AUST* 

 * In double infection with Himasthla rhigedana (HIMA), for which colony structure was 
described by Garcia-Vedrenne et al. (2016) 
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California horn snails were collected from Carpinteria Salt Marsh, Santa 

Barbara County, California between July 2013 and October 2015. Some infections 

were identified by inducing cercaria emergence and held up to seven weeks prior to 

dissection. Other snails were dissected up to one week after collection, and, if 

infected, trematode species were identified. All colonies examined were mature, 

producing cercariae. We identified trematode species following Martin (1972) and 

additional unpublished observations.  

We targeted 5 colonies (snails) for each of the study species. However, 

some species have low prevalence and fewer than the targeted 5 colonies were 

encountered. For these we show results for all colonies examined. Two of the 

species that infect the California horn snail, Renicola sp. “martini” and Renicola 

cerithidicola were not encountered.  

We followed the methods described in Garcia-Vedrenne et al. (2016). Briefly, 

we carefully dissected the snails, dividing the body into 3 different regions: mantle, 

basal visceral mass (middle), and the gonad/digestive gland. From each region, we 

randomly sampled approximately 30 individuals. Sampled parthenitae were killed by 

immersion in hot water, fixed in 70% EtOH and mounted in glycerin. Digital pictures 

were taken and used to measure body length and width to the nearest micron. For 

rediae, pharynx width and length were also measured. We calculated total body and 

pharynx volumes by approximation to a cylinder. 

We assigned each individual to a morph category based on the presence or 

absence of developing offspring. Parthenitae that had a defined body cavity but 

lacked free-germ balls and later-stage embryos were classified as non-reproductive 
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(soldiers), while individuals that contained at least one late-stage embryo of 

cercariae or parthenitae were identified as reproductives. Individuals with only early 

stage embryos were scored as immature reproductives. For all statistical analyses, 

we included immature morphs among the reproductive category, unless otherwise 

stated. 

Results 

We processed 1,602 individuals from eight trematode species from the 

California horn snail, including three colonies of PROB, two of SMMI, six of REBU, 

two of REPO, five of MESO, two of SMCY, two of AUST, and four of CATA. 

Patterns were consistent among colonies, and statistical analyses include data from 

all colonies. However, for illustrative purposes, we provide figures in the main text 

for one representative colony of each species. Additional figures and detailed data 

are in the Supplementary material (Figures S1-S8, Table S1). 

No morphological dimorphism was observed among colony members of the 

seven trematode species with sporocyst parthenitae. The size-frequency 

distributions of the colonies had a single mode (Fig 2, 3), and small and large 

sporocysts had similar morphologies. Additionally, all sporocysts examined 

contained either developing embryos or cercariae at different stages of maturation.  

Similarly, there is no evidence of a soldier caste in CATA, the only redia 

species examined here. All the rediae had free germ balls, developing embryos, or 

cercariae at various stages of development. In contrast to redia species with 

soldiers, the size-frequency distributions of CATA colonies had a single mode (Fig 

3), and small and large rediae had similar morphologies. The average size of the 
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pharynx across colonies was 70,555 ± 31,780 μm3, and average pharynx to body 

ratio was 0.0067± 0.0039 (Fig 3, 4). The pharynx to body ratio of smaller individuals 

did not differ from that of larger ones. No pharynx to body ratios fell within the range 

of values reported for soldiers of species with a reproductive division of labor (Fig 

4). 

Some of the parthenitae had only early stage embryos. These individuals 

were identified as immature reproductives. Immature parthenitae were uncommon 

in colonies of all species. Among colonies, the average (and range) proportion of 

immatures among all parthenitae sampled was 0.86% (0-1.43%) for PROB, 0.61% 

(0-1.22%) for SMMI, 0.57% (0-2.30%) for REBU, 1.85% (0-7.14%) for REPO, 

3.90% (0-7.41%) for MESO, 1.11% (0-1.89%) for SMCY, 1.75% (0-2.94%) for 

AUST, and 0.45% (0-1.75%) for CATA. 

Parthenitae from PROB, SMMI, REPO, SMCY and AUST were recovered 

from the basal visceral mass and gonad regions. Parthenitae from REBU, MESO 

and CATA only occurred in the mantle and the basal visceral mass of the infected 

snails. 

AUST was only recovered from snails that were co-infected with HIMA. The 

results for these two HIMA colonies are provided in the Supplemental Material (Fig. 

S8, Table S1), and the more detailed analyses of colony structure for this species 

can be found in Garcia-Vedrenne et al. (2016). 
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Figure 2. Morphological attributes of sporocyst species that infect the California horn snail. 
Data for figures are of a single, representative colony, but statistical analyses used data 
from all colonies and Supplemental Material includes figures for each colony examined. 
Each point represents a randomly sampled sporocyst from a single trematode colony. (A) 
Body length to body width relationships. (B) Frequency distributions of body volume for 
randomly sampled sporocysts. Note the log10 scale of X-axes. 
 
 

 

 

 

 
 
 
 
Figure 3. Morphological attributes of 
redia morphs of Catatropis johnstoni 
(CATA). Data for figures are of a single, 
representative colony, but statistical 
analyses used data from all colonies and 
Supplemental Material includes figures for 
each colony examined. Each point 
represents a randomly sampled redia 
from a single trematode colony. (A) Body 
length to body width relationships. (B) 
Frequency distributions of body volume 
for randomly sampled rediae. Note the 
log10 scale of X-axes. (C-D) Boxplots 
indicating median (line), interquartile 
range (box) and values that are within 1.5 
* interquartile range (whiskers) of data for 
(C) absolute pharynx volume and (D) 
pharynx volume relative to body volume. 
Note the log10 scale for Y-axes. 
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Figure 4. Variation in (A) body volume, (B) pharynx volume, and (C) pharynx/body ratio 
across redia species with and without soldiers. Figures include the pooled results of all 
redia colonies examined from the California horn snail and Echinostoma liei from 
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experimental infections in Biomphalaria glabrata (data for all but CATA obtained from 
Hechinger et al (2011) and Garcia-Vedrenne et al. (2016; 2017)). Abbreviations stand for 
species names- PARO: Parorchis acanthus; HIMA: Himasthla rhigedana; HIMB: Himasthla 
sp. B; CLOA: Cloacitrema michiganensis; ACAN: Acanthoparyphium spinulosum; PHOC: 
Phocitremoides ovale; STIC: Stictodora hancocki; EUHA: Euhaplorchis californiensis; 
PYGI: Pygidiopsoides spindalis; CATA: Catatropis johnstoni; ECHI: Echinostoma liei.  
 
 
 
 

Discussion 

Because they lack feeding structures (mouth, pharynx, gut, etc.) and are 

often immobile, sporocyst parthenitae cannot use predation to defend the colony. 

Therefore, by analyzing sporocyst species, we can characterize colony structure for 

trematode species lacking a soldier caste. Those patterns can then inform our 

interpretation of colony structure for redia species that lack soldiers. We found that 

the colony structure characterizing seven sporocyst species largely parallels colony 

structure for two redia species that lack soldiers. Further, colonies of all the 

examined soldier-less species share several traits that greatly differ from species 

with soldiers. First, soldier-less colonies are characterized by unimodal size-

frequency distributions, with few small and large individuals. Second, even the 

smallest colony members are actively reproducing and contain developing embryos 

or late-stage cercariae. Third, individuals of all sizes have similar morphologies and 

the redia species lack pharynx-body size dimorphism. Finally, parthenita distribution 

is restricted to the main infection locus.  

Sporocysts species do not have soldiers 

In contrast to what has been seen for colonies with soldiers, colony structure 

for sporocyst species revealed unimodal size-frequency distributions. Close 
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examination showed that all colony members were actively reproducing: most 

parthenitae contained at least some late stage embryos, although immature 

reproductives harboring only early stage embryos were also found. On average, 

immatures ranged from 0.57–3.90% of the individuals in a colony across sporocyst 

species.  

Sporocysts generally lack defense structures and are subordinate in 

trematode dominance hierarchies (Lim & Heyneman 1972; Kuris 1990; Fernandez 

& Esch 1991; Soldanova et al. 2012). This is true for six of the seven such species 

studied here (PROB, SMMI, REBU, REPO, MESO, and SMCY). Careful search for 

morphological differences between small and large sporocysts did not detect 

differences in shape, nor the presence of other structural defenses. A literature 

search for any documentation of sporocyst defense structures revealed that the 

schistosome Trichobilharzia cameroni has small individuals with spines that are lost 

as the sporocyst matures (Wu, 1953). The spines may be used in migrating through 

host tissues (Wu, 1953). Because those small individuals contained developing 

embryos (see Fig. 15 in Wu, 1953), they are immature sporocysts, not a non-

reproductive caste. Hence, most sporocyst species are low in interspecific 

dominance hierarchies and lack soldiers. 

A few sporocyst species are dominant in trematode dominance hierarchies 

(Walker 1979; Kuris 1990). AUST, for example, has sporocysts, but is effectively a 

dominant species because it is not eliminated by any of the species with large 

rediae (Kuris 1990). In fact, Austrobilharzia species may generally be obligate 

secondary invaders (Walker 1979; Kuris 1990). Species in this genus may only 
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become established if the defense mechanisms of the snail have been ‘switched off’ 

by another species of trematode (Walker 1979). The AUST colonies examined here 

were in co-infections with HIMA (Fig. S7). Based on the appearance of the HIMA 

colony, it is likely that AUST was slowly suppressing the development of HIMA 

rediae, similar to the impact of A. terrigalensis on other trematodes (Walker 1979; 

Appleton 1983). Given that all the sporocysts contained developing embryos, it 

appears that this trematode is able to suppress competitors by a mechanism other 

than the use of a specialized caste. Apparently, even sporocyst species at high 

positions in dominance hierarchies lack a soldier caste. 

Small and large individuals of all sporocyst species were restricted to the 

colony’s main locus. These distributions are contrary to the dispersion documented 

for trematodes with soldiers, where a substantial number of soldiers are found in 

areas away from the colony locus.  

Redia size-frequency distributions and reproductive status 

Redia species may also lack a soldier caste, and the patterns observed for 

such redia colonies are comparable to those observed for sporocysts. The CATA 

colonies examined here have unimodal size-frequency distributions and all rediae 

have developing embryos inside of them; only one of the four colonies examined 

had immature rediae present. Echinostoma liei, in long-term laboratory culture, 

exhibited a similar pattern (Garcia Vedrenne et al. 2016). Other studies have 

partially documented comparable patterns for other rediae species. Gonchar & 

Galaktionov (2017) examined a notocotylid, Tristriata anatis with a unimodal size 

distribution for rediae. Likewise, in her undergraduate thesis, Zikmundová (2011) 
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reported a unimodal size distribution for rediae of an echinostomoid, E. nasincovae 

(= E. spiniferum) that naturally infected the freshwater snail Planorbarius corneus. 

In both cases, “young rediae” contained germinal balls and embryos and were 

scarce. Hence, these species likely lack a soldier caste. 

Concerning species that have a bimodal size-frequency distribution, a 

purported alternative to the soldier caste hypothesis is that such a pattern could be 

explained by 1) a constraint on parthenita growth (whereby young parthenitae 

initially undergo cellular proliferation, resulting in very little growth for a period of 

time, followed by a rapid increase in size via cellular extension), and 2) small 

parthenitae experiencing developmental arrest, thus resulting in reduced 

reproduction (Galaktionov et al. 2015). This hypothesis does not counter the 

evidence that those small individuals are soldiers, particularly that they attack 

enemies at much greater rates than reproductives. Moreover, the gradual increase 

in parthenita size observed for the species that lack a soldier caste, and the lack of 

small parthenitae undergoing developmental arrest reject the developmental 

constraint hypothesis. There is no universal constraint on parthenita growth that 

yields a bimodal size-frequency distribution. Bimodal distributions occur only when a 

soldier caste is present. Thus, the small individuals evaluated as soldiers by 

Hechinger et al. (2011), Leung and Poulin (2011), Miura (2012), Nielsen et al. 

(2014), and Garcia-Vedrenne et al. (2016 and 2017) are not just a “reservoir” of 

individuals that will eventually produce cercariae. They represent a specialized 

trematode caste that has foregone reproduction to defend the colony.  
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Rediae defense structures 

Morphological differences among castes frequently underlie caste function 

(Oster & Wilson 1978). For many social animals, allometric growth differences can 

lead to individuals of a colony having distinctive body shapes and proportions. Such 

physical differences allow individuals in the colony to perform their specific roles 

more efficiently.  

For species with rediae, pharynx size is an important correlate with a 

species’ ability to kill heterospecifics (Kuris, 1990). In species with a soldier caste, 

small individuals have a large pharynx relative to the size of their body (Fig 6), 

presumably enhancing their ability to perform their defensive role. In CATA 

colonies, however, the smaller individuals had a relatively small pharynx (Fig 4D, 

S1D). We note that the rediae of CATA and E. liei (Garcia-Vedrenne et al. 2016) 

lacked pharynx:body volume ratios within the range characteristic of soldier rediae 

(Fig. 5). Thus, soldier-less species have monophasic growth patterns, whereas 

species with a soldier caste have diphasic allometric growth or almost complete 

dimorphism (see Wilson 1953). This variation in allometric growth curves further 

highlight the importance of pharynx size in antagonism and the usefulness of 

relative pharynx sizes to identify species with a soldier caste. 

Colony locus and soldier distribution 

For trematodes infecting the California horn snail, CATA is the only redia 

species that lacks soldiers and also the only redia species that has a colony locus in 

the mantle. This may represent an alternative strategy to soldier investment that still 

allows a species to escape being killed by some invaders. Notably, the confamilial 
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T. anatis does not develop in the mantle (Gonchar & Galaktionov, 2017), but it 

appears to also lack a soldier caste. Similarly, colonies of E. liei develop in the 

visceral mass and ovotestis of Biomphalaria glabrata (Garcia-Vedrenne et al. 2016). 

Thus, even if CATA’s use of mantle tissue is related to its lack of soldiers, such a 

strategy is not the only explanation for why some rediae species might lack soldiers. 

The distribution patterns of soldier-less rediae colonies show that, despite 

being mobile, the younger reproductive rediae never disperse. This is contrary to 

what is seen for species with soldiers, were rediae occupy the gonad as their 

preferred location (Hechinger et al. 2009), but small soldier rediae also frequently 

occur in the anterior parts of the snail (Hechinger et al. 2011; Garcia-Vedrenne et al. 

2016; Garcia-Vedrenne et al. 2017). Galaktionov et al. (2015) have proposed that 

such distribution patterns are merely a result of age-related differences in feeding 

preferences and activity levels that characterize trematode species with rediae. If 

“soldiers” were simply mobile, young rediae that prefer active predation on tissues 

while older, sluggish rediae absorb nutrients through tegument, one would expect 

most rediae species to have similar distribution patterns. However, the small 

parthenitae of both sporocyst and redia species that lack soldiers were restricted to 

the colony locus. Therefore, parthenita developmental stage is not the sole factor 

driving the distribution patterns in colonies with soldiers. Rather, the dispersal of 

most soldiers from the main colony locus suggests that their distribution underlies 

their caste function. Peripheral areas are often sites of invasion by other trematodes 

(Hechinger et al. 2011). Thus, the spatial patterns provide evidence of surveillance 

against invaders by members of a soldier caste. 
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Conclusion 

Here we have laid out the patterns underlying colony structure for trematode 

species that lack a soldier caste and contrasted them to those characterizing 

species with soldiers. Demographic, morphological, and distributional patterns 

reliably distinguish colonies with and without caste systems. The documentation of 

easy to measure aspects of colonies that reflect functional caste differences 

indicates that we may use those attributes as “markers” of the existence of a soldier 

caste. There are at least 20,000 trematode species that encompass substantial life-

history and ecological variation, many of which are ecologically and medically 

important. The relatively rapid identification of a soldier caste will facilitate future 

research on the occurrence and strength of social organization among trematodes.  
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In vitro systems for intramolluscan stages of trematodes—will the 

trick used for freshwater systems also work for marine ones? 
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In vitro systems for intramolluscan stages of trematodes—will the 

trick used for freshwater systems also work for marine ones? 

Abstract 

Is it possible to follow the success of freshwater in vitro methods and use 

snail cell lines for marine trematode culture? Two findings from freshwater systems 

using the Biomphalaria glabrata embryonic (Bge) cell line suggest a possible 

approach. First, co-cultivation with Bge cells is not necessary for culture success; 

media that have been only preconditioned with Bge cells has permitted trematode 

growth and development. Second, the Bge cell line works even for trematodes that 

use freshwater snails other than B. glabrata as first intermediate host. Hence, we 

asked whether the Bge cell line might also promote the in vitro survivorship and 

development of marine trematode parthenitae. Here we report primary in vitro 

culture of rediae of Euhaplorchis californiensis (Heterophyidae), Himasthla 

rhigedana and Himasthla sp. B (Echinostomatidae) infecting the California horn 

snail, Cerithideopsis californica (=Cerithidea californica), (Potamididae). 

Survivorship was evaluated both quantitatively and qualitatively under five 

experimental treatments i) sterile sea water, ii) the previously described marine L-15 

medium, iii) Bge-conditioned marine-adjusted medium, iv) Bge (non-conditioned) 

marine-adjusted medium and v) Co-cultivation with Bge cells at fresh-water 

osmolarity. To determine survivorship, parthenitae were counted and classified as 

alive or dead based on tegument integrity, movement, and shape. Video footage 

was used in blind trials to qualitatively gauge parthenitae activity in vitro. Our results 

indicate that trematodes infecting the California horn snail can be cultured in vitro in 
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the L-15 medium that had been previously used for other marine trematodes. 

However, rediae survival and performance can be improved by the presence of Bge 

cells or Bge released factors. Rediae do not appear to consume Bge cells but are 

able to eat rediae and cercariae of heterospecific species. Even though cultured 

rediae (both reproductive and soldier castes) were mobile and healthy looking, we 

rarely observed progeny rediae or cercariae being released. This is the first 

reported cultivation of marine trematodes that includes co-culture with Bge cells and 

media with Bge factors. Our results highlight the promise of using these methods for 

the cultivation of marine trematodes. 

1. Introduction 

In vitro systems for parasitic trematodes have long been a valuable tool for 

parasitology research (reviewed by Coustau and Yoshino, 2000). With them, it is 

possible to answer questions about the development and differentiation of parasites 

at the biochemical and physiological level, and gain insight into complex host-

parasite interactions such as mechanisms of immunosuppression and 

pathogenesis. Because most trematodes of medical and veterinary importance 

infect pulmonate snails (Biomphalaria, Lymnaea, Bulinus), efforts to develop in vitro 

systems have focused on freshwater systems rather than marine ones.  

However, the development of culture systems for trematodes infecting marine 

snails is also of interest. Many marine trematodes have relatives infecting 

pulmonate hosts, and the development of tools for the study of marine snails and 

their trematodes can provide insight into how properties of snail defense systems 
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might differ (Yakovleva et al., 2001). Further, the development of appropriate culture 

techniques could provide valuable tools needed to broaden our understanding of 

several aspects of trematode complex sociality, currently described for marine 

species only (i.e. Hechinger et al., 2011; Miura 2012; Garcia-Vedrenne et al. 2016; 

Garcia-Vedrenne et al. 2017). Suitable in vitro systems would allow us to ask 

questions concerning trematode sociality such as the fundamentals of interspecific 

interactions and the mechanics underlying caste dynamics and regulation in mature 

colonies.  

To our knowledge, only two published studies have aimed to develop in vitro 

culture methods for marine trematodes. In 2002, Gorbushin & Shaposhnikova 

designed an axenic system for the maintenance of rediae of Himasthla elongata, 

which infect the marine snail Littorina littorea.  This technique uses sterile seawater 

enriched with the commercially available Leibovitz’s L-15 medium, adjusting 

osmolarity as needed for marine invertebrates. This technique supported H. 

elongata rediae survival for up to 163 days in vitro. A similar technique was used by 

Lloyd & Poulin (2011). Five trematode species that infect the marine snails 

Zeacumantus subcarinatus, Diloma subrostrata, and Cominella glandiformis 

survived from 8 to 56 days in this medium. Although the osmotically-adjusted 

Leibovitz’s L-15 medium appears to permit parthenita survival, there is currently a 

lack of a successful, long-term media for in vitro culture of marine trematodes that 

allow continuous propagation of the colony.  

Continuous colony propagation has been achieved for fresh-water snail-

trematode systems. Following years of effort, highly successful co-cultivation 

https://www.sciencedirect.com/science/article/pii/S0014489402001479?via%3Dihub#BIB23
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methods were finally achieved for freshwater systems. Rediae were co-cultured with 

cells derived from embryos of an albino strain of Biomphalaria glabrata snails, which 

acts as first intermediate host for Schistosoma mansoni (Hansen, 1976). 

Incorporation of this embryonic cell line (“Bge cell line”) into culture media was key 

to permit continuous propagation of freshwater trematodes (reviewed by Coustau & 

Yoshino, 2000).  

Is it possible to follow the success of freshwater in vitro methods and use snail 

cell lines for marine trematode culture? Unfortunately, despite much effort, no 

marine snail cell lines have been successfully developed (Yoshino et al., 2013). 

However, two findings from freshwater systems using the Bge cell line suggest an 

alternative approach. First, co-cultivation with Bge cells is not necessary for culture 

success; media that have been only preconditioned with Bge cells has permitted 

parthenitae growth and development (Yoshino & Laursen, 1995). Second, the Bge 

cell line works even for trematodes that use freshwater snails other than B. glabrata 

as first intermediate host (e.g. Coustau et al. 1997; Laursen & Yoshino, 1999). 

Hence, we asked whether the Bge cell line might also promote the in vitro 

survivorship and development of marine trematode parthenitae.  

Here we describe cultivation of marine trematodes that includes both co-culture 

with Bge cells and media containing Bge factors. We report primary in vitro culture 

of rediae of Euhaplorchis californiensis (Heterophyidae), Himasthla rhigedana and 

Himasthla sp. B (Echinostomatidae) infecting the California horn snail, 

Cerithideopsis californica (=Cerithidea californica), (Potamididae). We cultured both 

soldier and reproductive castes of these species to address the following questions: 
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1) How well do trematodes infecting the California horn snail survive in vitro 

using the L-15 medium and conditions previously described for other marine 

trematodes?  

2) Is redia survival and performance improved by using media containing or 

conditioned with Bge cells?  

3) Are there intraspecific and interspecific differences in survival?  

4) Under any of these in vitro conditions, do rediae actively produce offspring 

(new rediae or cercariae)? If so, over what time interval? 

5) Can Bge cells or predation on rediae and cercariae of the same or different 

species serve as nutrient sources for rediae cultured in vitro? 

2. Materials and Methods 

2.1 Study System and Sample Collection 

California horn snails were collected between March 2010 and May 2016 

from Carpinteria Salt Marsh, Santa Barbara County, California, USA. Snails were 

maintained in the laboratory for up to two weeks in mesh bags on running sea water 

tables. Snails were screened for infections by Euhaplorchis californiensis (EUHA), 

Himasthla rhigedana (HIMA) and Himasthla sp. B (HIMB). Snails were removed 

from running sea water for 2 days. Then, they were individually placed in wells with 

filtered seawater and exposed to incandescent lamps for 2-3 hours to stimulate 

release of cercariae. Cercariae were examined and identified to species according 

to Martin (1972) and additional unpublished observations.   
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2.2 Rediae isolation 

 Prior to snail dissections, the work area and dissection tools were carefully 

cleaned and wiped down with 70% ethanol. Snail dissections and parasite isolation 

were performed in the aseptic area created around the flame of a Bunsen burner. 

Snails’ shells were wiped with 70% ethanol then placed into a sterile petri dish. 

Each snail was dissected by gently cracking the shell with a hammer and dividing 

the body into two distinct regions: mantle/ basal visceral mass and gonad/digestive 

gland.  We briefly submerged the two body segments for two seconds in 70% 

ethanol to kill any bacteria present on the outside tissue, and then transferred them 

to separate sterile petri dishes containing sterile sea water (SSW; see below). The 

gonads and digestive gland were teased apart to release rediae from the 

surrounding tissue. The pool of rediae sampled from one host individual was termed 

“colony”. Individual rediae were identified as being a member of either the soldier or 

reproductive caste (Hechinger et al., 2011; Garcia-Vedrenne et al., 2016), and 

carefully transferred with a glass pipette into a separate petri dish containing colony 

members of the same caste. If few soldiers were retrieved from the gonad and 

digestive gland, the mantle/ basal visceral mass were also examined. Once enough 

individuals had been isolated, the dishes containing pools of reproductive and 

soldier rediae were rinsed three times with sterile seawater to remove any snail 

tissue and cercariae that might have been transferred along with the rediae. A stock 

solution of 100 mL SSW supplemented with 0.4mL of Streptomycin/ penicillin 

solution (Fisher Scientific; #BP2959-50) was added to the dishes for approximately 

45 min to reduce bacterial contamination. Afterwards, rediae were transferred to 96-
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well plates with concave wells for the experiments. Approximately 10-15 rediae 

were added to each well of a 96 well-plate with the aid of a glass pipette. Any 

excess SSW that was introduced with the rediae was removed before adding media 

to the wells. Each media treatment had 2-5 replicate wells. 

During our first experiments we noted differences in redia activity and 

appearance during dissections, and the fact that those differences seemed to relate 

to early mortality. These observations resulted in a more stringent selection 

procedure. When selecting rediae to add to wells from the pool of available 

individuals, we targeted those that looked healthier. Such rediae had smooth 

teguments and exhibited vigorous bending movements, as well as longitudinal 

contractions and expansions of body and pharynx (Fig 1A). If the majority of the 

colony did not meet these criteria, a new snail was dissected. 

2.3 Media preparation 

Preliminary experiments used media that were similar in composition, pH and 

osmolality to those used in the culture of tissue of marine organisms (Birmelin, et 

al., 1999; Tucker, 1970). The medium reported by Gorbushin and Shaposhnikova 

(2002) for culture of marine trematodes was also tested. Out of the three media 

formulations, the latter was found to produce the best results (results not shown) 

and was therefore used in subsequent experiments to compare to the new media 

formulations suggested in this study.  
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Six different media were used throughout the experiments. All media were 

sterilized by filtration through 0.22-micron sterile syringe filters (Millipore) and 0.2 

mL of Streptomycin/ penicillin solution were added to 100mL stock solutions. 

Details on the preparation of each of these are included below: 

1. Sterile sea water (SSW): Prepared with 80% natural sea water and 20% 

deionized water, pH adjusted to 7.8 

2. Leibovitz L-15: As used by Gorbushin & Shaposhnikova (2002). Briefly, we 

added 0.8 g of L-15 medium (Sigma–Aldrich L-4386) to 100 mL of SSW, and 

adjusted pH to 7.8.  

3. L-15 with FCS: 10% heat inactivated fetal bovine serum (Sigma F4135) was 

added to the L-15 medium described above. 

4. Co-cultivation with Bge cells at fresh-water osmolarity: Bge cells were grown 

as described by Hansen (1976). Briefly, the Bge medium used to culture cells 

was prepared by combining 22mL of Schneider's Drosophila Medium (Gibco 

#172), 0.2 mL of phenol red, 68 mL nanopure water, 0.45 g Lactalbumin 

hydrolysate (Bacto™) and 0.13g of galactose (DifcoTM). We adjusted pH to 

7.2 before adding heat inactivated fetal calf serum to 10% of total and 0.2 mL 

of Penincillin/Streptomycin solution. Cells were added to the 96 well-plate 2 

days before the start of the experiment to allow cells to attach and to start 

dividing. No additional Bge cells were added once the cultures were initiated. 

5. Bge (unconditioned) marine-adjusted medium:  Bge medium as described 

above that was never in contact Bge cells; 0.936g of Instant Ocean were 

added to 50mL of Bge medium. 
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6. Bge-conditioned marine-adjusted medium: Bge medium that had been co-

cultured with Bge cells for one week was collected and sterilized by filtration 

with 0.22-micron sterile syringe filters (Millipore). Once enough Bge-

conditioned medium had been gathered, 0.936g of Instant Ocean were 

added to 50mL of Bge conditioned medium. 

Although we took several measures to avoid contamination, both bacterial and 

fungal contamination were observed in some of the wells (Fig 1H). Live individuals 

in contaminated wells were censored and 70% ethanol was added in an attempt to 

stop the spread of the contamination. Replicate wells would often remain free of 

contamination.  

2.4 Culture procedure  

In a laminar flow hood, we added approximately 0.2 mL of the corresponding 

media to each well. Cultures were incubated at 24 C under normal atmospheric 

condition in an incubator (Isotemp Incubator, Fisher Scientific) and kept in the dark, 

except for when the condition of rediae was monitored or culture media was 

replaced. Monitoring of rediae health status was done twice a week using an 

inverted microscope. Culture media was changed once per week by removing 0.1 

mL of media and replacing with approximately 1.5 mL (to account for any 

evaporative loss). Altogether, fourteen colonies from three different trematode 

species were monitored. 
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2.4.1 Survival in L-15 medium 

We first sought to determine whether trematodes infecting the California horn 

snail could survive in vitro under the conditions that had been previously used for 

other marine trematodes. Rediae from two EUHA colonies (EUHA-1 and EUHA-2) 

and two HIMB colonies (HIMB-1 and HIMB-2) were isolated and prepared for the in 

vitro system, three plates were prepared, all of them containing rediae from the four 

infected snails. The plates were individually maintained at a) 15°C, b) room 

temperature for 5 hours a day and 15°C at night, c) room temperature (19°C). L-15 

medium was used, except for the wells that contained SSW and were used as 

control experiments. 

2.4.2 Intraspecific and interspecific variation in survival  

Because we observed that in both the EUHA and HIMB colonies (especially 

the latter) one colony performed well and the other one did poorly under the L-15 

treatment, we decided to repeat our tests with additional colonies to better examine 

intra- and inter-specific variation. The snails from the previous experiment were 

used for this analysis, and two additional EUHA colonies (EUHA-3 and EUHA-4) 

and two HIMB colonies (HIMB-3 and HIMB-4) were dissected and cultured in L-15 

medium.  

2.4.3 Co-culture with Bge cells and Bge factors 

We wanted to test if rediae survival and health could be enhanced by the 

presence of Bge cells or Bge released factors, similar to what has been achieved in 

freshwater systems. One HIMB colony (HIMB-5), one EUHA colony (EUHA-5) and 
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one HIMA colony (HIMA-1) were used in this experiment and exposed to all six 

treatments described in section 2.3 (Media preparation). A second experiment was 

set up so that, in addition to survivorship, activity of individual rediae could be 

qualitatively and quantitatively assessed. One HIMB colony was used for this 

experiment and exposed to all treatments except L-15 with FCS. The details of this 

additional experiment are explained below in section 2.6 (Activity). 

2.4.4 Food trial 

Given that trematodes have been observed to prey on Bge cells (Loker et al., 

1999) and on heterospecifics in vitro (Basch & Diconza, 1975; Garcia-Vedrenne et 

al., 2017), we wanted to test whether such nutrient sources could increase rediae 

performance in vitro. Thus, we tested performance of HIMA soldiers and 

reproductives under different food regimes. These included a control of no food 

(rediae were cultured in Bge conditioned medium), Bge cells as food source, or 

heterospecifics of EUHA as food source. In this case, roughly ten EUHA 

reproductives were added every time the media was changed. Procedures to obtain 

and isolate these reproductive followed the sterile techniques described in section 

2.2 (Rediae isolation). 

2.5 Survivorship 

Individual rediae in each well were monitored for survival once or twice a 

week using a Biostar inverted microscope at 100-200x magnification and classified 

as alive/healthy, dying, or dead (Fig 1 and Supplementary video). Survival scores 

were based on three criteria: tegument integrity, body shape, and amount of 
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movement exhibited. Healthy rediae had smooth teguments and exhibited vigorous 

bending movements, as well as longitudinal contractions and expansions of body 

and pharynx. Dead rediae were identified by the opacity of bodies, loss of tegument 

integrity, and lack of movement. Living, motile cercariae inside of deceased rediae 

were noted on occasion. However, there was no movement of the pharynx and 

tegument integrity was compromised in these cases. Dying rediae were identified as 

such because of their rounded bodies, limited movement and wrinkled tegument. 

These rediae were scored as dying but ultimately included in alive counts, as they 

would sometimes recuperate when media were changed. 

2.6 Activity 

Although rediae had similar survival rates in all experimental treatments (see 

results), qualitative observations indicated that overall health was lowest in L-15 

medium and highest in the media associated with Bge cells (Bge cells co-culture 

(FW) and Bge conditioned (SW)) (as determined by the integrity of the tegument 

and motility). The activity analysis was designed to test whether the apparent 

differences in health status between rediae in L-15 medium those in media 

associated with Bge cells (Bge cells (FW) and Bge conditioned (SW)) could be 

reliably quantified. 

For the second part of experiment 2.4.3 (Co-culture with Bge cells and Bge 

factors), ten seconds of video footage was taken of each well once a week by 

attaching a digital camera (MU500, Amscope) to the inverted microscope. Each 

video was blindly scored for parthenita activity (Fig 1H) by each of four people (AD, 
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GH, IC and AG) using the rubric provided as Table 1 and instructions provided in 

Supplementary video 1.  

 

Table 1. Scoring rubric for redia health ranging from 4 (very active and healthy) to 0 (dead) 
based on movement, behavior, tegument integrity and shape.  

 

Reproductive rediae 

Score State Body Pharynx Opacity Tegument Cercariae 

4 
Healthy, 
thriving 

Bending/ 
contracting 

Extending/ 
contracting 

Clear or 
brightly 
colored 

Smooth 
Indicate if moving, but 
does not affect score 

3 
Healthy, 
surviving 

Bending/ 
contracting 

Extending/ 
contracting 

Clear or 
brightly 
colored 

Wrinkled 
Indicate if moving, but 
does not affect score 

2 Dying 
Some 

rounding 
Extending/ 
contracting 

Either Wrinkled 
Indicate if moving, but 
does not affect score 

1 Near dead Rounded 
Slight 

movement 
Opaque Wrinkled 

Indicate if moving, but 
does not affect score 

0 Dead Rounded No movement Opaque Crumbling 

Be aware that some 
rediae might appear to 

move because of wiggling 
cercariae inside. If the 
pharynx is not moving, 

mark as dead. 

 

Soldier rediae 

Score State Body Pharynx Opacity Tegument Behavior 

4 
Healthy, 
thriving 

Bending, extending, 
contracting 

Clear Smooth Interacting with other 
soldiers 

3 
Healthy, 
active 

Bending, extending, 
contracting 

Clear Smooth Active 

2 Less active 
Not bending, but 

extending/contracting 
Clear Smooth Less active 

1 Near dead Barely active 
Slight 

movement 
Opaque Wrinkled Barely moving 

0 Dead Inactive No movement Opaque Crumbling  

 

2.5 Statistical analysis 

 The R survival package (Therneau 2013) was used to construct Kaplan-

Meier curves and conduct statistical analyses. Kaplan Meier survival curves were 
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generated for each set of treatments. Individuals in wells that became contaminated 

or that were still alive when the experiment ended were censored. We calculated 

mean survival time for each species and treatment combination. Note, however, 

that mean survival time will depend on what value is chosen for the maximum 

survival time. By default, this assumes that the longest survival time is equal to the 

longest survival time in the data. Hence, we have included the restricted mean 

upper limit in all our statistics. A log-rank test was used to determine if there was a 

difference between two or more survival curves. 

 

3. Results 

Generally, soldiers and reproductives derived from the same colony had 

similar survivorship (though we do note that soldiers exhibited a slightly higher 

survival rate; results not shown). For simplicity, we have combined reproductives 

and soldiers for most of our results. The one exception was observed in HIMA 

colonies in the food trial, where soldiers far outlived reproductives. Results for the 

food trials report survivorship for soldiers and reproductives separately (see Section 

3.4). 
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Figure 1. Photographs of Himasthla sp. B in culture  A) Reproductive rediae and encysted 
cercariae (metacercariae) with loose tail; B) Reproductive rediae, soldier redia and cercaria 
body; C) Healthy soldier rediae with smooth teguments, bending movement and 
longitudinal contractions and expansions of body and pharynx and attached by posterior 
end; D) Dying soldiers with opaque bodies and limited motility;  E) Dead soldiers; F) 
Healthy reproductive rediae with smooth teguments, bending movement and longitudinal 
contractions and expansions of body and pharynx; G) Dying rediae with rounded bodies, 
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limited movement and wrinkled tegument; H) Example of rediae being scored during activity 
analysis; I-J) Soldiers co-cultured with Bge cells where I) shows Bge cells growing normally 
and J) arrows indicate clusters of cells post-addition of rediae with some sterile sea water 
(SSW). Scale bar = 500µm 

 

3.1 Survival in L-15 and intra- and inter-specific variation 

Our first experiment was designed to test whether HIMB and EUHA could 

survive in the media formulation that had worked for other marine trematodes 

(Gorbushin & Shaposhnikova, 2002; Lloyd & Poulin, 2013). Rediae in sterile sea 

water (SSW) control cultures were initially motile and releasing cercariae. Within a 

week, they were much less motile, and their tegument had become opaque and 

rough instead of clear and smooth. Most individuals were dead within 15-25 days 

(Figs 2A, 3).   

On the other hand, rediae in the Leibovitz L-15 (as used by Gorbushin & 

Shaposhnikova (2002)) had higher survival rates (Figs 2, 3). Rediae routinely 

survived for longer than 30 days in culture, up until experiments were terminated. 

The most robust colony had >80% of rediae surviving after 50 days of cultivation. 

However, there were differences in survival rate both within species (Figs 2B and 

2C; Table 2, 3) and across species (Figs 2, 3, Table 2, 3). For example, mean 

survival estimates ranged from 8 to 45 days for HIMB colonies and 7 to 26 days for 

EUHA colonies. 
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Figure 2. Survival curves for A) representative colonies of Himasthla sp. B and 
Euhaplorchis californiensis in the control treatment with sterile sea water (SSW) and 
Leibovitz L-15 (previously used for marine trematodes); B) four different HIMB colonies and 
C) four different EUHA colonies all maintained in L-15 medium at 15 C.  
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Table 2. Survival of rediae in sterile sea water and Leibovitz L-15 medium and statistics on 
intra- and interspecific variation in survival rates. 
 

Experiment 
Species 

ID 
Treatment 

N 
total 

N 
dead 

*Restricted 
mean 

*Std 
Error 

*Restricted 
mean upper 

limit 

Log-rank 
test 

Survival in 
L-15 medium 

 

EUHA-1 L-15 42 42 25.6 0.8 

34.5 
𝜒3
2= 228 

p<0.0001 

EUHA-1 SSW 36 36 9.7 0.1 

HIMB-1 L-15 45 22 33.0 0.5 

HIMB-1 SSW 46 46 18.6 0.9 

Intraspecific 
Variation 

(all in L-15 
medium) 

 

HIMB-1 L-15 45 22 36.7 0.7 

39 
𝜒3
2= 221 

p<0.0001 

HIMB-2 L-15 48 48 10.9 0.2 

HIMB-3 L-15 48 7 35.4 1.5 

HIMB-4 L-15 49 49 8.5 0.7 

EUHA-1 L-15 42 42 25.7 0.8 

39 
𝜒3
2= 24.6  

p<0.0001 

EUHA-2 L-15 54 43 22.4 1.3 

EUHA-3 L-15 60 43 21.5 1.9 

EUHA-4 L-15 61 55 18.2 1.0 

 

 

We noted that the starting health of the colony is an important determinant of 

whether the colony will survive in vitro or not. Colonies that died within the first 

couple of weeks were often already unhealthy looking during the dissection. Rediae 

were less motile, would become rounded in SSW rinses, their tegument was slightly 

more opaque, and dead rediae were encountered more frequently. Conversely, 

colonies that would generally perform well were characterized by motile individuals 

that were constantly bending, expanding and contracting their bodies and pharynx. 

Their tegument was smooth, and the colors were very bright and clear. Healthy 

colonies of HIMB would reliably survive for long periods of time. EUHA colonies, on 

the other hand, had a lower overall survivorship. 
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3.2 Techniques involving Bge cells 

Ideally, rediae would be cultured along with host snail cells. Because no 

marine snail cell lines are available (Yoshino et al., 2013), we explored the 

possibility of using freshwater Bge cells. Two general approaches were used. First, 

rediae were co-cultured with Bge cells under freshwater conditions (Bge cells (FW)); 

and second, rediae were cultured in the supernatant collected after culturing Bge 

cells for a week and adjusting for marine conditions (Bge conditioned (SW)). These 

treatments were compared to redia survival in SSW, L-15, L-15 supplemented with 

fetal bovine serum (L-15 + FCS) and in Bge media adjusted for marine conditions 

but that had never been in contact with Bge cells (Bge unconditioned (SW)). 

 When rediae were first added to culture wells containing Bge cells (FW), 

some sea water was inevitably added along with them. This was removed as 

promptly as possible and replaced with excess Bge medium. However, this was 

generally enough of a stressor for the cells to detach from the well and clump (Fig 

1J, 4B). The cells were able to recover and continued growing normally afterwards 

(Fig 1I). We did not observe Bge cells growing on (“encapsulating”) either live or 

dead rediae.  

Observations of rediae in SSW were consistent with the results described in 

Section 3.1. Rediae in L-15 medium with FCS deteriorated rapidly. Otherwise, 

survival across the remaining treatments was similar (Figs 3, 4; Table 3). Mean 

survival rates in L-15, Bge conditioned (SW), Bge unconditioned (SW) and Bge cells 

(FW) ranged from 31 to 33 for HIMB, 41 to 47 for HIMA and 6 to 9 for EUHA. 
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Figure 3. Survival curves for colonies of A) Himasthla sp. B; B) a Himasthla rhigedana; C) a 
Euhaplorchis californiensis in each of the six experimental treatments. Treatment 
abbreviations stand for i) Sterile Sea Water prepared with 80% sea water and 20% 
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deionized water (SSW); ii) Leibovitz L-15 medium as used by Gorbushin & Shaposhnikova 
(2002) (L-15); iii) 10% heat inactivated fetal bovine serum was added to the L-15 medium 
(L-15 + FCS); iv) Co-cultivation with Bge cells at fresh-water osmolarity (Bge cells (FW)); v) 
Bge medium that was never in contact Bge cells adjusted to marine conditions (Bge uncond 
(SW)) and vi)  Bge medium where Bge cells cultured for one week and then filter sterilized 
to remove cells (Bge cond (SW)). Note: All rediae in the Bge unconditioned (SW) in figures 
A-C were censored on day 23 because of generalized bacterial contamination. 

 

 

Table 3. Survival of rediae of Himasthla sp. B, Himasthla rhigedana and Euhaplorchis 
californiensis in each of the six treatments tested. 
 

Experiment 
Species 

ID 
Treatment 

N 
total 

N 
dead 

*Restricted 
mean 

*Std 
Error 

*Restricted 
mean upper 

limit 

Log-rank 
test 

Techniques 
with Bge cells 

 

HIMB-5 SSW 41 41 7.4 0.6 

35 
𝜒5
2= 283 

p<0.0001 
 

HIMB-5 Bge cond (SW) 61 4 32.9 1.0 

HIMB-5 
Bge uncond 

(SW) 
70 9 31.9 1.0 

HIMB-5 Bge cells (FW) 48 10 33.4 0.6 

HIMB-5 L-15 57 7 31.4 1.3 

HIMB-5 L-15 + FCS 51 45 8.8 1.5 

HIMA-1 SSW 38 36 19.9 3.0 

58 
𝜒5
2= 63.4 

p<0.0001 
 

HIMA-1 Bge cond (SW) 40 15 41.4 3.5 

HIMA-1 
Bge uncond 

(SW) 
34 11 41.4 4.2 

HIMA-1 Bge cells (FW) 41 12 47.4 3.1 

HIMA-1 L-15 45 11 45.5 3.2 

HIMA-1 L-15 + FCS 33 21 38.1 3.6 

EUHA-5 SSW 16 16 6.4 0.5 

15 
𝜒5
2= 8.4 

p=0.134 
 

EUHA-5 Bge cond (SW) 14 14 5.8 0.8 

EUHA-5 
Bge uncond 

(SW) 
17 17 8.5 0.9 

EUHA-5 Bge cells (FW) 13 10 9.4 1.3 

EUHA-5 L-15 11 11 7.5 1.8 

EUHA-5 L-15 + FCS 14 12 5.6 1.1 

Activity 
analysis 

 

HIMB-6 SSW 133 89 14.8 0.5 

50 
𝜒4
2= 240 

p<0.0001 
 

HIMB-6 Bge cond (SW) 134 16 45.6 1.1 

HIMB-6 
Bge uncond 

(SW) 
129 27 41.6 1.3 

HIMB-6 Bge cells (FW) 137 20 43.9 1.4 

HIMB-6 L-15 126 35 37.9 1.8 
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Figure 4. Results of the experiment that examined both survival and overall health and 
activity; A) Survival curve for one Himasthla sp. B colony and B) Results of redia activity 
and health evaluation. Scores ranged from 4 (healthy, thriving) to 0 (dead).  

 

 

Although survival was similar across treatments, redia activity and health score 

was not (Fig 4). After 50 days in culture, reproductive rediae of HIMB were still 

moving and had an index of ~1.5, while reproductives in L-15 and Bge 
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unconditioned were very close to dead. Similarly, soldiers in Bge conditioned 

medium also had an index of ~1.5. However, those that were co-cultured with Bge 

cells were extremely active, with a health score of ~3. We did not, however, that 

these individuals appeared swollen, likely from being exposed to hypotonic 

conditions. 

3.3 Rediae development and offspring production 

Reproductive rediae often had mature cercariae inside of them that would 

emerge within the first days of the experiments. Although cercariae emergence was 

also observed later in the experiment, it was much less frequent. Late cercariae 

emergence was often associated with the fact that the redia holding the cercariae 

was about to die. These cercariae were likely pre-developed inside the snail and 

achieved little, if any development in vitro.  

Cercariae of HIMB had normal swimming behavior and would often encyst in 

culture (despite rarely encysting in sea water) (Fig 1A). In contrast, HIMA cercariae 

often developed knobs on the body wall and rarely encysted in culture (despite 

easily encysting in sea water). Finally, EUHA cercariae had normal swimming 

behavior after emerging and never encysted. Moribund cercarial bodies separated 

from their tails were also noted for all species. 

3.4 Food trials 

This experiment was designed to test whether nutrient sources such as 

predation on heterospecifics or on Bge cells could increase redia performance in 
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vitro. Survival across treatments was similar, although soldier survival was much 

higher than that of reproductive colony members (Fig 5A, Table 4). 

Bge cells were not observed sticking to living rediae or cercariae. As noted 

above clumping of Bge cells did occur when rediae first added (Fig 5B). Often, the 

space around the rediae would be free of Bge cells, likely because movement of 

rediae would detach cells and push them away. Rediae did not appear to consume 

or otherwise directly damage Bge cells. 

In no occasion were rediae observed to either attack colony members, or 

feed on dead neighbors. Similarly, cercariae bodies and tails were never observed 

to be ingested by rediae of the same species. However, when rediae of HIMA and 

EUHA were cultured together, HIMA reproductive and soldiers would often eat 

EUHA reproductive within 3-5 days (Fig. 5C). HIMA rediae continued to prey on 

EUHA heterospecifics for the first couple of times such individuals were added with 

media change. After 3-4 weeks, predation rates appeared to decrease significantly 

Consumption of released cercariae of the heterospecific species was similarly 

observed. 
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Figure 5. Himasthla rhigedana (HIMA) colonies under three different food treatments A) 
Survival curves for soldiers and reproductives of two HIMA colonies (results from individual 
colonies pooled) under three different food treatments: control of Bge conditioned medium 
(no food), Bge cells and heterospecifics of Euhaplorchis californiensis (EUHA). B) HIMA 
soldiers in Bge cells treatment. Arrows point at clusters of cells from when rediae were 
added. Note normal growth patterns of newer cells around rediae. C) Sequence of photos 
of HIMA soldiers in EUHA treatment. Note EUHA rediae (black arrows) in Days 1 and 7 
when medium was first added/changed. EUHA rediae were completely consumed five days 
later. Scale bar= 400µm  
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Table 4. Survival of Himasthla rhigedana rediae under three different food regimes. 
 

Experiment Species ID Treatment 
N 

total 
N 

dead 
*Restricted 

mean 
*Std 
Error 

*Restricte
d mean 

upper limit 

Log-rank 
test 

Food 
Experiment 

 

HIMA 2 & 3 
repro 

No food 53 50 9.9 1.2 

33 

𝜒5
2= 229 

p<0.0001 
 
 

HIMA 2 & 3 
repro 

Bge cells 
(FW) 

52 52 9.4 0.9 

HIMA 2 & 3 
repro 

EUHA 52 48 11.0 1.2 

HIMA 2 & 3 
soldiers 

No food 40 15 29.0 1.3 

HIMA 2 & 3 
soldiers 

Bge cells 
(FW) 

45 10 29.8 1.2 

HIMA 2 & 3 
soldiers 

EUHA 46 5 31.1 1.1 

 

4. Discussion 

Trematodes infecting the California horn snail survive in L-15 medium  

Here we report primary in vitro culture of rediae of Euhaplorchis californiensis 

(Heterophyidae), Himasthla rhigedana and Himasthla sp. B (Echinostomatidae). A 

total of fourteen colonies were cultured over the course of these experiments. We 

monitored survival for both soldier and reproductive rediae of these species.  

As the first objective, we established that trematodes infecting the California 

horn snail can survive in vitro in the L-15 medium that had been previously used for 

other marine trematodes (Gorbushin & Shaposhnikova, 2002; Lloyd & Poulin, 2011) 

for at least 50 days, when experiments were terminated. At this point, several 

colonies had well over 50% survivorship, suggesting that rediae could potentially 

survive for longer time periods.  
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Survival varied greatly within species and across species. Some of the 

intraspecific variation appeared to be explained by the starting health of the colony. 

Colonies that died within the first weeks often appeared unhealthy during the initial 

dissection.  Healthy colonies of HIMB and HIMA appeared to consistently survive 

for long periods of time. EUHA, a heterophyid trematode, on the other hand, had a 

lower overall survivorship. This suggests that members of families other than the 

Echinostomatidae might require special formulations to improve performance and 

survivorship. 

Our results are comparable to what has been reported for cultures of other 

marine trematodes. Gorbushin & Shaposhnikova (2002) achieved the longest 

culture times with 50% survival at 163 days. However, other colonies they worked 

with had lower survival rates (see Fig 2 of Gorbushin & Shaposhnikova (2002)). 

Lloyd & Poulin (2011) also tested the L-15 media but supplemented it with chicken 

serum. They cultured six species that infect three different marine snail species, 

showing that this medium formulation can be broadly used. However, they note that 

survival varies greatly across species, ranging from only 8 days with Galactosomum 

sp. to about 50 days with Philophthalmus sp. In fact, they found that Philophthalmus 

sp. survived the longest (56 days) when the L-15 medium was supplemented with 

medium F (see Supplementary files for Lloyd & Poulin (2011) for recipe). This, and 

other findings discussed below suggest that medium F might provide essential 

factors for continuous development and proliferation. 
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Table 5. Survival, and development of various species of trematodes cocultured with Bge 
cells (modified from Coustau & Yoshino 2000). 
 

Parasite species Snail genus 
Max survival 

in culture 
medium (days) 

Max survival 
with Bge cells 

(days) 

Production 
of progeny 

Schistosoma mansoni Biomphalaria 18 Continuous + 

Schistosoma japonicum Oncomelania 28 210 - 

Schistosoma mattheei Bulinus 7 25 + 

Schistosoma intercalatum Bulinus 21 63 + 

Echinostoma caproni Biomphalaria 14 119 - 

Echinostoma magna Lymnaea 12 >90 - 
     

Himasthla elongata Littorina 163 - - 

Philophthalmus sp. Zeacumantus 56 - - 

 

Rediae survival and performance is enhanced by the presence of Bge cells 

or factors released from the cells  

Our second objective was to determine whether rediae survival and 

performance could be enhanced by the presence of Bge cells or Bge released 

factors. These treatments had similar survivorship to what was observed for the L-

15 medium. However, overall health of rediae seemed superior in the Bge cell 

related media (i.e. Bge co-culture and Bge conditioned). Such findings are 

consistent with what has been reported regarding freshwater trematodes (Table 5). 

For instance, freshwater trematodes were initially co-cultured with insect cell lines 

before the Bge cell line was created (DiConza & Hansen, 1973). Once the Bge cell 

line became available, it was observed that, although co-culture in direct contact 

with Bge cells was best, schistosome cultures with a Bge cell conditioned medium 

outperformed those cultures that were only in Bge medium (Yoshino & Laursen, 

1995).  



 

 126 

Rediae in the SSW control treatment died within the first 2-3 weeks, 

indicating that starving rediae can use internal energy stores up to a certain point. 

Rediae maintained in the Bge-conditioned medium did slightly better than those in 

the L-15, suggesting that some nutritional components were satisfied with the 

former but not the latter. Despite being cultured in hypotonic conditions, rediae co-

cultured with Bge cells (FW) were the most active. Rediae looked bloated, probably 

as consequence of osmotic regulation because of the freshwater conditions they 

were exposed to. Regardless of their swollen condition, they were the most active 

after >50 days of culture. Although less active than rediae in the Bge cell (FW) 

treatment, rediae in the Bge conditioned treatment had the healthiest appearance. 

They maintained size and tegument integrity and were still bending, contracting and 

extending at the time when the experiments were terminated 

The role that other factors, such as trematode densities and the need for 

additional nutrients, play in determining the success of culture systems is worth 

investigating. For example, Ivanchenko et al. (1999) found that proliferating cultures 

in the absence of Bge cells could be obtained if sporocysts were maintained at high 

density in Bge-conditioned medium and held under reduced oxygen. In such cases, 

growth and development were similar to those of sporocysts grown with Bge cells, 

but daughter sporocyst proliferation was somewhat reduced. Ivanchenko et al. 

(1999) noted that medium F was essential to schistosome indefinite proliferation. 

Exactly which components of Medium F are necessary for continuous propagation 

of the cultures has not been examined. However, if medium F was not included in 

the basal nutrient mix, cultures could be initiated and maintained for long time 
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periods, but continuous sporocyst proliferation could not be maintained. Thus, 

regulating trematode density and investigating the role of various nutrients might 

provide ways to improve culture of marine trematodes. 

Progeny rediae or cercariae are not produced in culture conditions 

All colonies examined here were obtained from mature colonies that were 

actively shedding cercariae. However, because the colonies originated from field-

collected snails that were naturally infected, the exact age of the infection could not 

be known. At the onset of culture, reproductive rediae contained developing 

cercariae. Cercariae would often emerge only for the first few days of culture 

experiments. As far as we can tell, the released cercariae were already fully 

developed (or very close to full development) when culture conditions started. 

Although reproductive rediae were observed to contain embryonic cercariae 

throughout the entire culture periods, it did not appear to us that those embryonic 

cercariae underwent further development. The lack of continual reproduction 

observed in the reproductive rediae indicates that we have not yet solved the 

problem of creating media that permit continuous proliferation of trematodes. 

Rediae of HIMA consume rediae and cercariae of a heterospecific species 

but not Bge cells. 

We had not expected rediae to perform well in co-culture with Bge cells given 

the hypotonic nature of the freshwater conditions. Rediae appeared swollen, but 

otherwise were very active and exhibiting normal behavior. The exact mechanism 

by which Bge cells contribute to rediae health and performance has yet to be 
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determined. Two suggested mechanisms have been predation and direct contact 

with cells. For instance, Loker et al. (1999) report that rediae readily ingested Bge 

cells in culture and fared better than rediae from cultures lacking cells (although the 

beneficial effects of Bge cells were not derived from eating cells alone, as some 

rediae consistently had guts packed with Bge cells but did not undergo germinal cell 

development and others were observed to eat few cells yet produced progeny). We, 

however, did not observe any predation on Bge cells. Further, because Bge cells 

have been observed to attach to and encapsulate some trematode species 

(Yoshino & Laursen, 1995) it has been suggested that the intimate contact with cells 

is a requirement for development of daughter sporocysts.  In our experiments, Bge 

cells did not attach to or encapsulate rediae, similar to what has been reported for 

Fascioloides magna rediae (Laursen & Yoshino, 1999) and E. caproni (Loker & 

Adema, 1995). Further, rediae survived in the Bge-conditioned medium to about the 

same degree as when co-cultured with the cells, suggesting that the Bge cells 

release factors that promote survival. 

Several studies have found that consumption of moribund or dead cercariae 

and rediae might be common among the Echinostomatidae. For instance, 

Gorbushin & Shaposhnikova, (2002) report that nutrients derived from this sort of 

predation were enough to allow continual survival of rediae for over 5 months and to 

continue the development of progeny that had already started growing in vivo, but 

not formation of new embryos in vitro. Loker et al. (1999) observed rediae feeding 

on dead cercariae, but not dead rediae. We, however, did not observe consumption 

of dead or dying rediae and cercariae. Similarly, and in agreement with Basch & 
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DiConza (1975), we noted no tendency for cultured rediae to attack live colony 

members. 

Predation on conspecifics and heterospecifics could provide a valuable 

source of nutrients for cultured rediae- if the cultured species is the dominant one in 

the interaction. It has long been known that there are strong antagonistic 

interactions among trematodes. Typically, when two trematode species infect the 

same host, one kills the other. Dominant species displace established colonies of 

subordinate species via predation by rediae (Lim and Heyneman, 1972; Lie, 1973; 

Combes, 1982; Kuris, 1990) This has also been observed in vitro (Basch & 

Diconza, 1975; Garcia-Vedrenne et al. 2016). With this in mind, it is not surprising 

that HIMA soldiers and reproductives both preyed on EUHA heterospecifics. HIMA 

soldiers attacked and completely consumed heterospecifics at higher rates than did 

their reproductive colony mates. The pool of heterospecific rediae was replenished 

along with the medium change. Heterospecifics were completely consumed the first 

couple of weeks, but predation rates decreased after that.  

There might be disadvantages associated with adding heterospecifics as a 

food source. First, this technique would require weekly snail dissections (including 

sterilizing space, dissecting and isolating parasites, rinses and time to let sit in 

antibiotics). Even with all these measures taken into consideration, there is an 

inherent higher risk of introducing bacterial or fungal contaminants when adding 

freshly dissected rediae to a well.  
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Guidelines on whether to use L-15 or Bge-related media  

Our results indicate that trematodes performed best in Bge-related media. 

However, there are distinct advantages to using the L-15 under certain 

circumstances. The L-15 medium is a chemically defined medium, entirely free of 

animal-derived components. By contrast, the other media tested here contain fetal 

calf serum and/or Bge cell derived factors. These components might provide a 

valuable source of nutrients, but the amounts of such nutrients and other animal-

derived factors cannot be established or controlled. Further, there are technical 

disadvantages to using serum that include the undefined nature of serum, batch-to-

batch variability in composition, and the risk of contamination. Thus, the L-15 

medium provides a suitable chemically defined option to study larval trematodes for 

long periods of time when a pure and consistent culture environment is required.  

On the other hand, we note that the presence of Bge cells or Bge released 

factors has a distinctly beneficial effect on both survivorship and overall health of 

cultured redial stages. This is the first reported cultivation of marine trematodes that 

includes co-culture with Bge cells and media with Bge factors. Our results highlight 

the promise of using these methods for cultivation of marine trematodes. Additional 

studies to pinpoint what factors are essential for increased trematode survivorship 

and performance should be undertaken because the prospects for considerably 

improving culture conditions are high. Development of long-term in vitro techniques 

with continuous propagation of larval stages would provide valuable tools for the 

study of interactions between trematodes of the same or different species. 
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Supplementary Fig. S1. Morphology and distribution of four different Euhaplorchis californiensis 
(EUHA) colonies. A) Body width to body length relationships. Each data point represents one 
randomly sampled redia from a single EUHA colony. B) Frequency distributions of body volume for 
randomly sampled rediae. X-axis is log10scale. (C-D) Boxplots indicating median (line), interquartile 
range (box) and values that are within 1.5 * interquantile range (whiskers) of data for (C) absolute 
pharynx volume and (D) pharynx volume relative to body volume. Note the log10 scale for Y-axes. (E) 
Proportion of reproductive, immature and solider rediae found in mantle, basal visceral mass and 
gonad regions for each EUHA colony examined. Numbers in boxes indicate total number of 
parthenitae sampled from each given region. 
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Supplementary Fig. S2. Morphology and distribution of three different Phocitremoides ovale (PHOC) 
colonies. A) Body width to body length relationships. Each data point represents one randomly 
sampled redia from a single PHOC colony. B) Frequency distributions of body volume for randomly 
sampled rediae. X-axis is log10scale. (C-D) Boxplots indicating median (line), interquartile range 
(box) and values that are within 1.5 * interquantile range (whiskers) of data for (C) absolute pharynx 
volume and (D) pharynx volume relative to body volume. Note the log10 scale for Y-axes. (E) 
Proportion of reproductive, immature and solider rediae found in mantle, basal visceral mass and 
gonad regions for each PHOC colony examined. Numbers in boxes indicate total number of 
parthenitae sampled from each given region. 
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Supplementary Fig. S3. Morphology and distribution of three different Pygidiopsoides spindalis 
(PYGI) colonies. A) Body width to body length relationships. Each data point represents one 
randomly sampled redia from a single PYGI colony. B) Frequency distributions of body volume for 
randomly sampled rediae. X-axis is log10scale. (C-D) Boxplots indicating median (line), interquartile 
range (box) and values that are within 1.5 * interquantile range (whiskers) of data for (C) absolute 
pharynx volume and (D) pharynx volume relative to body volume. Note the log10 scale for Y-axes. (E) 
Proportion of reproductive, immature and solider rediae found in mantle, basal visceral mass and 
gonad regions for each PYGI colony examined. Numbers in boxes indicate total number of 
parthenitae sampled from each given region. 
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Supplementary Fig. S4. Morphology and distribution of five different Stictodora hancocki (STIC) 
colonies. A) Body width to body length relationships. Each data point represents one randomly 
sampled redia from a single STIC colony. B) Frequency distributions of body volume for randomly 
sampled rediae. X-axis is log10scale. (C-D) Boxplots indicating median (line), interquartile range 
(box) and values that are within 1.5 * interquantile range (whiskers) of data for (C) absolute pharynx 
volume and (D) pharynx volume relative to body volume. Note the log10 scale for Y-axes. (E) 
Proportion of reproductive, immature and solider rediae found in mantle, basal visceral mass and 
gonad regions for each STIC colony examined. Numbers in boxes indicate total number of 
parthenitae sampled from each given region. 
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Chapter 4 Supplementary Files 

Supplementary Table S1. Statistics for each individual colony examined. 
 

Species 
Colony 

ID 
N (Soldier, 

Immature+Reproductive) 
Proportion 
immatures 

Average body size (µm3) 

Reproductives Soldiers 

Catatropsis 
johnstoni 

1 58 (0, 0 + 58) 0.0 27,824,579 N/A 

2 75 (0, 0 + 75) 0.0 10,110,210 N/A 

3 33 (0, 0 + 33) 0.0 12,780,123 N/A 

4 57 (0, 1 + 56) 1.8 4,258,115 N/A 

Probolocoryphe 
uca 

1 78 (0, 1 + 77) 1.3 7,276,544 N/A 

2 70 (0, 1 + 69) 1.4 6,761,718 N/A 

3 84 (0, 0 + 84) 0.0 9,286,241 N/A 

Small microphallid 
1 82 (0, 1 + 81) 1.2 12,833,127 N/A 

2 81 (0, 0 + 81) 0.0 18,068,054 N/A 

Renicola 
buchanani 

1 70 (0, 0 + 70) 0.0 211,380,137 N/A 

2 87 (0, 2 + 85) 2.3 185,511,765 N/A 

3 52 (0, 0 + 52) 0.0 298,728,602 N/A 

4 40 (0, 0 + 40) 0.0 353,707,005 N/A 

5 45 (0, 0 + 45) 0.0 227,578,677 N/A 

6 57 (0, 0 + 57) 0.0 263,688,028 N/A 

Renicola sp. 
“polychaetophila” 

1 80 (0, 0 + 80) 0.0 5,874,682 N/A 

2 28 (0, 2 + 26) 7.1 2,328,015 N/A 

Mesostephanus 
appendiculatus 

1 27 (0, 2 + 25) 7.4 22,725,650 N/A 

2 43 (0, 0 + 43) 0.0 89,078,540 N/A 

3 36 (0, 2 + 34) 5.6 110,858,903 N/A 

4 62 (0, 4 + 58) 6.5 55,620,019 N/A 

5 37 (0, 0 + 37) 0.0 19,652,982 N/A 

Small 
cyathocotylid 

1 53 (0, 1 + 52) 1.9 15,112,085 N/A 

2 37 (0, 0 + 37) 0.0 14,931,462 N/A 

Austrobilharzia sp. 
1 68 (0, 2 + 66) 2.9 27,289,898 N/A 

2 46 (0, 0 + 46) 0.0 13,162,857 N/A 

Himasthla 
rhigedana 

1 85 (21, 31 + 33) 36.5 25,411,404 4,318,651 

2 31 (8, 19 + 4) 61.3 13,512,043 4,643,556 
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Supplementary Figure S1. Morphology and distribution of four different Catatropis johnstoni 
(CATA) colonies. A) Body width to body length relationships. Each data point represents 
one randomly sampled redia from a single colony. B) Frequency distributions of body 
volume for randomly sampled rediae. X-axis is log10scale. (C-D) Boxplots indicating median 
(line), interquartile range (box) and values that are within 1.5 * interquantile range 
(whiskers) of data for (C) absolute pharynx volume and (D) pharynx volume relative to body 
volume. Note the log10 scale for Y-axes. 
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Supplementary Figure S2. Morphology and distribution of five different Probolocoryphe uca 
(PROB) colonies. A) Body width to body length relationships. Each data point represents 
one randomly sampled sporocyst from a single colony. B) Frequency distributions of body 
volume for randomly sampled sporocysts. X-axis is log10scale. 
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Supplementary Figure S3. Morphology and distribution of two different Small microphallid 
(SMMI) colonies. A) Body width to body length relationships. Each data point represents 
one randomly sampled sporocyst from a single colony. B) Frequency distributions of body 
volume for randomly sampled sporocysts. X-axis is log10scale. 
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Supplementary Figure S4. Morphology and distribution of six different Renicola buchanani 
(REBU) colonies. A) Body width to body length relationships. Each data point represents 
one randomly sampled sporocyst from a single colony. B) Frequency distributions of body 
volume for randomly sampled sporocysts. X-axis is log10scale. 

 
 

  



 

 151 

 
 

 
 

 
Supplementary Figure S5. Morphology and distribution of two different Renicola sp. 
“polychaetophila” (REPO) colonies. A) Body width to body length relationships. Each data 
point represents one randomly sampled sporocyst from a single colony. B) Frequency 
distributions of body volume for randomly sampled sporocysts. X-axis is log10scale. 
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Supplementary Figure S6. Morphology and distribution of five different Mesostephanus 
appendiculatus (MESO) colonies. A) Body width to body length relationships. Each data 
point represents one randomly sampled sporocyst from a single colony. B) Frequency 
distributions of body volume for randomly sampled sporocysts. X-axis is log10scale. 
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Supplementary Figure S7. Morphology and distribution of two different Small cyathocotylid 
(SMCY) colonies. A) Body width to body length relationships. Each data point represents 
one randomly sampled sporocyst from a single colony. B) Frequency distributions of body 
volume for randomly sampled sporocysts. X-axis is log10scale. 
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Supplementary Figure S8. Morphology and distribution of two different A-B) Austrobilharzia 
sp. (AUST) colonies in co-infection with C-F) Himasthla rhigedana (HIMA). A) Body width to 
body length relationships. Each data point represents one randomly sampled sporocyst 
from a single colony. B) Frequency distributions of body volume for randomly sampled 
sporocysts. X-axis is log10scale. C) Body width to body length relationships. Each data point 
represents one randomly sampled redia from a single colony. D) Frequency distributions of 
body volume for randomly sampled rediae. X-axis is log10scale. (E-F) Boxplots indicating 
median (line), interquartile range (box) and values that are within 1.5 * interquantile range 
(whiskers) of data for (E) absolute pharynx volume and (F) pharynx volume relative to body 
volume. Note the log10 scale for Y-axes. 




